WO2023054630A1 - はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 - Google Patents

はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 Download PDF

Info

Publication number
WO2023054630A1
WO2023054630A1 PCT/JP2022/036553 JP2022036553W WO2023054630A1 WO 2023054630 A1 WO2023054630 A1 WO 2023054630A1 JP 2022036553 W JP2022036553 W JP 2022036553W WO 2023054630 A1 WO2023054630 A1 WO 2023054630A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
alloy
less
content
mass
Prior art date
Application number
PCT/JP2022/036553
Other languages
English (en)
French (fr)
Inventor
貴大 横山
裕貴 飯島
岳 齋藤
俊策 吉川
寛大 出井
昴太 杉澤
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Publication of WO2023054630A1 publication Critical patent/WO2023054630A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent

Definitions

  • the present invention relates to solder alloys, solder balls, solder preforms, solder pastes and solder joints used in various electronic devices.
  • solder joints are exposed to harsh environments include, in addition to consumer electronic components, in-vehicle electronic equipment and industrial electronic equipment.
  • Car electronics are progressing in automobiles, and there is a shift from gasoline cars to hybrid cars to electric cars.
  • substrates of in-vehicle electronic devices are sometimes arranged in locations exposed to high temperatures such as engine rooms due to expansion of applications.
  • the vehicle may be exposed to temperatures as low as -40°C or below in cold climates.
  • physical external force such as impact may be applied to the electronic device.
  • solder alloy is widely used as an alloy for connecting substrates and electronic parts.
  • the range of application of solder alloys is expanding, and along with this, high connection reliability that does not cause breakage or deterioration of solder joints even after long-term use in harsh environments, as typified by applications such as in-vehicle applications. Sex is becoming more sought after.
  • a Sn—Ag—Cu—Sb—Bi—Ni solder alloy is used as a solder alloy that suppresses the crack growth of solder joints and suppresses the generation of voids in a heat cycle environment, and In as an optional element.
  • An alloy composition is disclosed that may contain , Co, and the like.
  • Patent Document 2 describes a solder that has a fine structure of an intermetallic compound, has excellent crack resistance, suppresses voids and Cu erosion, and has excellent durability by suppressing crack propagation after a heat cycle.
  • an alloy an alloy composition is disclosed in which a Sn--Ag--Cu--Bi--Ni--Co solder alloy may contain Sb, In, etc. as optional elements.
  • Patent Document 3 a Sn--Ag--Cu--Bi--Sb--In--Ni solder alloy is used as a solder alloy excellent in improving wettability and bonding durability after heat cycles, and Co or the like is contained as an optional element.
  • the resulting alloy composition is disclosed.
  • JP 2017-170464 A Japanese Unexamined Patent Application Publication No. 2014-037005 Japanese Patent No. 6060199
  • solder alloys described in Patent Documents 1 to 3 are designed with a focus on heat cycle characteristics as described above.
  • stress is applied to the solder joints due to the difference in thermal expansion coefficients of the substrate and the electronic component.
  • vibration is applied to an in-vehicle electronic circuit
  • the manner in which the stress is applied is thought to be different from the stress due to the expansion and contraction of printed circuit boards and electronic components that occur during heat cycles.
  • solder alloy It is necessary to improve its own strength.
  • fracture of the solder joint includes fracture at the joint interface caused by poor wettability of the solder alloy.
  • known alloy compositions need to be reexamined in order to form more reliable solder joints.
  • An object of the present invention is to provide a solder alloy, a solder ball, a solder preform, a solder paste, and a solder joint having high wettability and high reliability by suppressing breakage of the solder joint.
  • the strain energy in the present invention is represented by the region after the point of inflection in the stress-strain curve for explaining the strain energy, as shown in FIG.
  • the area surrounded by the vertical and horizontal axes corresponds to the strain energy.
  • FIG. 1(b) if both the tensile stress and the amount of strain are large, it means that the strain energy is large. Thus, in order to increase the strain energy, high tensile strength and strain amount are required.
  • breakage at the joint interface between the electrode and the solder alloy can be considered as a cause of solder joint breakage.
  • it is necessary to improve the wettability of the solder alloy.
  • the melting point of solder alloys varies with alloy composition, but higher melting temperatures require an increase in soldering temperature to ensure wetting of the solder alloy.
  • changing the set temperature of the soldering machine is not easy from the viewpoint of the heat resistance of the electronic components mounted on the board. Therefore, in order to improve the wettability of the solder alloy, it is necessary to lower the melting point of the solder alloy.
  • the present inventors have been earnestly developing an alloy composition that simultaneously satisfies improved wettability, improved strain energy, high drawing area and tensile strength, even with conventional solder alloys that are said to be excellent in heat cycle resistance. Study was carried out. As a result, when the Sn-Ag-Cu-Sb-In-Ni-Bi solder alloy contains a predetermined amount of Bi, fine InSb crystals are formed by reducing the In content and the Sb content. We have obtained knowledge that contributes to the improvement of drawing. Since Bi dissolves in Sn, it has been found that if the content is within a predetermined range, it contributes to the improvement of tensile strength. In addition, it was found that Ag and Ni contribute to refinement of the alloy structure.
  • the present invention obtained from these findings is as follows. (1) Ag: 1.0 to 3.8%, Cu: 0.4 to 0.8%, Sb: 0.03 to 2.90%, In: 1.1 to 4.2%, in mass% , Ni: 0.01 to 0.14%, Bi: 0.1 to 5.0%, and the balance consisting of Sn.
  • FIG. 1 is a diagram showing a stress-strain curve for explaining strain energy
  • FIG. 1(a) is a diagram showing that the area surrounded by the axis of tensile strength and the axis of strain is small.
  • FIG. 1(b) is a diagram showing that the area enclosed by the tensile strength axis and the strain axis is large.
  • FIG. 2 is a cross-sectional SEM photograph of a solder alloy
  • FIG. 2(a) is Example 3
  • FIG. 2(b) is Comparative Example 3.
  • 3A and 3B are cross-sectional SEM photographs of the solder alloy
  • FIG. 3A is Example 3
  • FIG. 3B is Comparative Example 13.
  • solder alloy (1) Ag 1.0 to 3.8% Ag can form a network of fine Ag 3 Sn and promote densification of the solder alloy.
  • the lower limit of the Ag content is 1.0% or more, preferably 1.5% or more, more preferably 2.0% or more, still more preferably 2.5% or more, and particularly preferably 3 .0% or more.
  • the upper limit of Ag content is 3.8% or less, preferably 3.4% or less.
  • Cu 0.4-0.8% Cu can maintain the excellent wettability of the molten solder by suppressing the rise of the liquidus temperature. If the Cu content is less than 0.4% or more than 0.8%, the liquidus temperature rises and the fluidity at the bonding temperature decreases, resulting in poor wettability.
  • the lower limit of the Cu content is 0.4% or more, preferably 0.5% or more, and more preferably 0.6% or more. Also, the upper limit of the Cu content is 0.8% or less, preferably 0.7% or less.
  • Ni 0.01 to 0.14% Ni inhibits the diffusion of Cu into Sn after soldering and suppresses the growth of intermetallic compounds that precipitate at the bonding interface. Furthermore, by suppressing the coarsening of the metal compound precipitated at the joint interface, the joint interface can be strengthened. If the Ni content is less than 0.01%, the alloy structure will not be sufficiently dense, and the strain energy will not be improved. In addition, it is not possible to strengthen the bonding interface.
  • the lower limit of the Ni content is 0.01% or more, preferably 0.02% or more, more preferably 0.03% or more, and still more preferably 0.04% or more. On the other hand, when the Ni content exceeds 0.14%, wettability is lowered due to an increase in liquidus temperature.
  • the upper limit of the Ni content is 0.09% or less, preferably 0.06% or less, and more preferably 0.05% or less.
  • Bi 0.1 to 5.0% Bi can improve the tensile strength because Bi forms a solid solution in Sn. If the Bi content is less than 0.1%, the tensile strength is not improved.
  • the lower limit of the Bi content is 0.1% or more, preferably 0.5% or more.
  • Bi segregates, making the solder alloy embrittled and degrading tensile strength and reduction of area.
  • the upper limit of the Bi content is 5.0% or less, preferably 4.0% or less, more preferably 3.0% or less, still more preferably 2.0% or less, and particularly preferably 1 .0% or less.
  • the balance of the solder alloy according to the invention is Sn.
  • unavoidable impurities may be contained. Even if it contains unavoidable impurities, it does not affect the aforementioned effects.
  • Co is an optional element that has the effect of suppressing the growth of intermetallic compounds and refining the alloy structure.
  • the upper limit of the Co content is preferably 0.100% or less, more preferably 0.050% or less, and even more preferably 0.010% or less.
  • the lower limit of the Co content is not particularly limited, it is preferably 0.001% or more, more preferably 0.003% or more, and still more preferably 0.005% from the viewpoint of refining the alloy structure. more preferably 0.006% or more, particularly preferably 0.007% or more, and most preferably 0.008% or more.
  • the solder alloy according to the present invention contains Zr, Fe, Ge, Ga, P, As, Pb, Zn, Mg, Cr, Ti, Mn, Mo, Pt, Pd, At least one of Au, Al, and Si may be contained in a total amount of 0.1% or less.
  • Fe has the effect of suppressing the growth of an intermetallic compound that precipitates at the joint interface, so the effect of Ni can be further improved by including it in the solder alloy according to the present invention. Even if these elements are contained in an amount of 0.1% or less, coarse compounds are not precipitated, and the above effects of the present invention can be exhibited.
  • the total content of these elements is preferably 0.1% or less, more preferably 0.09% or less, still more preferably 0.05% or less, and particularly preferably 0.015% or less. is. Although the content of each element is not particularly limited, it is preferably 0.0003 to 0.02%. Among them, Fe, like Ni, inhibits the diffusion of Cu into Sn after soldering and suppresses the growth of intermetallic compounds precipitated at the joint interface. Furthermore, by suppressing the coarsening of the metal compound precipitated at the joint interface, the joint interface can be strengthened.
  • Equations (1) to (4) 113 ⁇ Sn/Cu ⁇ 165 (1) 0.06 ⁇ Ag ⁇ Ni ⁇ 0.19 (2) 0.10 ⁇ Bi/(In+Sb) ⁇ 0.32 (3) 0.432 ⁇ (In+Sb)/(Ag+In+Bi) ⁇ 0.999 (4)
  • Sn, Cu, Ag, Ni, Bi, In, and Sb each represent the content (% by mass) of the alloy composition.
  • the solder alloy according to the present invention preferably satisfies at least one of formulas (1) to (4).
  • An alloy composition that satisfies all the formulas can exhibit particularly excellent effects.
  • the lower limit of the formula is preferably 113 or more, more preferably 123 or more, and particularly preferably 125 or more.
  • the upper limit of (1) is preferably 165 or less, more preferably 151 or less, even more preferably 132 or less.
  • the solder alloy according to the present invention Ag contributes to densification of the alloy structure, and Ni contributes to uniform densification of the joint interface. Since all of them can crystallize a compound with Sn, when each content is blended in a well-balanced manner, the coarsening of the compound is suppressed and the densification of the alloy structure is promoted.
  • the lower limit of the formula is preferably 0.06 or more, more preferably 0.09 or more, and still more preferably 0.10 or more.
  • the upper limit of (2) is preferably 0.19 or less, more preferably 0.15 or less.
  • Bi, In, and Sb contribute to the mechanical properties of the solder alloy according to the present invention.
  • Bi contributes to improvement of tensile strength
  • In and Sb contribute to improvement of drawing.
  • the solder alloy according to the present invention preferably satisfies the formula (3).
  • the lower limit of the formula is preferably 0.10 or more, more preferably 0.14 or more, and still more preferably 0.16 or more.
  • the upper limit of the formula (3) is preferably 0.32 or less, more preferably 0.25 or less, and even more preferably 0.200 or less.
  • the drawing can be further improved.
  • the lower limit of formula (4) is preferably 0.432 or more, more preferably 0.433 or more, and still more preferably 0.442 or more.
  • the upper limit of the formula (4) is preferably 0.999 or less, more preferably 0.769 or less, and even more preferably 0.750 or less.
  • solder alloy according to the invention can be used as solder balls.
  • the solder balls according to the present invention are used for forming electrodes of semiconductor packages such as BGA (Ball Grid Array) and bumps of substrates.
  • the diameter of the solder balls according to the present invention is preferably in the range of 1-1000 ⁇ m.
  • the solder balls can be manufactured by a general solder ball manufacturing method.
  • solder preform The shape of the solder preform according to the present invention is not particularly limited, and may be plate-shaped, ring-shaped, cylindrical, ribbon-shaped, square-shaped, disk-shaped, washer-shaped, chip-shaped, wire-shaped, or the like. Can be used in any form.
  • the solder preform has a higher melting point than the solder alloy and may contain high-melting-point metal grains (for example, Ni grains, Cu grains, and alloy powder containing Ni or Cu as the main component) that are easily wetted by molten solder. .
  • solder paste is a paste obtained by mixing solder alloy powder with a small amount of flux.
  • the solder alloy according to the present invention may be used as a solder paste for mounting electronic components on printed circuit boards by reflow soldering.
  • the flux used in the solder paste may be either water-soluble flux or non-water-soluble flux.
  • a rosin-based flux which is a rosin-based water-insoluble flux, is typically used.
  • solder joint connects an IC chip and its substrate (interposer) in a semiconductor package, or joins and connects a semiconductor package and a printed circuit board. That is, the solder joint according to the present invention refers to the connection portion of the electrodes, and can be formed using general soldering conditions.
  • the joining method using the solder alloy according to the present invention may be performed according to a conventional method using, for example, a reflow method.
  • the heating temperature may be appropriately adjusted according to the heat resistance of the chip and the liquidus temperature of the solder alloy.
  • Other joining conditions can be appropriately adjusted according to the alloy composition of the solder alloy.
  • a solder alloy having the alloy composition shown in Tables 1 to 3 is prepared, the liquidus temperature is measured as evaluation 1, the compactness of the solder structure is evaluated as evaluation 2, the reduction is evaluated as evaluation 3, and the reduction is evaluated as evaluation 4. Tensile strength was evaluated, and uniform refinement of the joint interface was evaluated as evaluation 5.
  • ⁇ Evaluation 2 Density of solder structure A solder alloy having the alloy composition shown in Table 1 is cast into a predetermined mold, the obtained solder alloy is molded with resin and polished, and the part where the solder alloy is polished about half was photographed with FE-SEM at a magnification of 1000 times. The compactness of Ag 3 Sn and the refinement of InSb were evaluated by cross-sectional observation from the photographed photograph and mapping composition analysis by EDS. Each compound was identified by mapping compositional analysis, and the largest grains were selected visually. Two parallel tangent lines were drawn so that the distance between the crystal grains was maximized, and the distance between them was taken as the maximum grain size.
  • ⁇ Evaluations 3 and 4 Reduction of area and tensile strength The area of reduction and tensile strength were measured according to JISZ3198-2. Each solder alloy listed in Table 1 was cast into a mold to prepare a test piece with a gauge length of 30 mm and a diameter of 8 mm. The prepared test piece was pulled by Instron's Type 5966 at room temperature with a stroke of 6 mm/min, and the strength when the test piece broke was measured. Also, the reduction of area was measured from the ratio of the cross-sectional area S1 of the fractured portion of the test piece to the cross-sectional area S0 before the test.
  • ⁇ Evaluation 5 Uniform fineness of bonding interface From each solder alloy shown in Table 1, solder balls of ⁇ 0.6 mm were prepared. After mounting this solder ball on a Cu pad, reflow was performed at 245° C. to produce a solder bump. The thickness of the intermetallic compound (IMC) was measured from a cross-sectional SEM photograph of the cross section of the joint interface between the solder bump and the Cu pad, and uniform refinement of the joint interface was evaluated. Since the intermetallic compound layer becomes thin when the bonding interface is uniform and fine, in evaluation 5, uniform fineness was evaluated by the thickness of the intermetallic compound.
  • IMC intermetallic compound
  • the cross-sectional SEM photograph was analyzed by image analysis software (manufactured by Seika Sangyo Co., Ltd.: Scandium) to measure the thickness of the intermetallic compound layer. If the thickness of the intermetallic compound was 1.5 ⁇ m or less, it was evaluated as “ ⁇ ”; if it exceeded 1.5 ⁇ m and 2.5 ⁇ m or less, it was evaluated as “ ⁇ ”; The evaluation results are shown in Tables 1-3.
  • the liquidus temperature showed a temperature within a predetermined range. Also, the structure of the solder alloy was dense and exhibited excellent drawing and tensile strength. Also, the structure of the joint interface was uniform and fine. Examples 2 to 4, 7, 8, 11 to 17, 19 to 22, 24, and 29 to 56 that satisfy the formulas (1) to (4) are confirmed to show excellent results in all evaluation items. was done.
  • Comparative Examples 1 to 3 since the Ag content was excessive or insufficient, the alloy structure was not dense and the drawing was inferior. In Comparative Examples 4 to 7, the liquidus temperature was not appropriate due to the excessive or insufficient Cu content. Comparative Examples 8 and 9 were inferior in drawing because of the small Sb content.
  • Comparative Example 10 the liquidus temperature was not appropriate due to the high Sb content. Comparative Examples 11 and 12 were inferior in reduction of area due to excessive or insufficient In content. In Comparative Example 13, uniform densification of the bonding interface could not be confirmed due to the low Ni content. In Comparative Example 14, the liquidus temperature was not appropriate due to the high Ni content.
  • Comparative Examples 15 and 16 were inferior in tensile strength due to their low Bi content. Comparative Examples 17 and 18 were inferior in terms of drawing and tensile strength due to their high Bi content.
  • FIG. 2 is a cross-sectional SEM photograph of a solder alloy
  • FIG. 2(a) is Example 3
  • FIG. 2(b) is Comparative Example 3.
  • Example 3 it could be confirmed that the solder structure was dense.
  • Comparative Example 3 since Ag 3 Sn was larger than 15 ⁇ m, it was confirmed that the crystal grains were coarse in all cases.
  • a dense structure was obtained and an excellent effect was exhibited. No, it was less effective.
  • Fig. 3 is a cross-sectional SEM photograph of the solder alloy
  • Fig. 3(a) is Example 3
  • Fig. 3(b) is Comparative Example 13.
  • Example 3 it was found that the intermetallic compound deposited on the joint interface was uniform and fine.
  • Comparative Example 13 uniform densification of the bonding interface could not be confirmed.

Abstract

濡れ性に優れ、はんだ継手の破断が抑制されることによって、高い信頼性を備えるはんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手を提供する。はんだ合金は、質量%で、Ag:1.0~3.8%、Cu:0.4~0.8%、Sb:0.03~2.90%、In:1.1~4.2%、Ni:0.01~0.14%、Bi:0.1~5.0%、および残部がSnからなる合金組成を有する。

Description

はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
 本発明は、種々の電子機器に用いるはんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手に関する。
 近年、パソコンなどの民生電子機器の高機能化により、基板に搭載される電子部品の性能が飛躍的に向上している。電子部品が高性能になるにつれて電子部品に大電流が通電されるため、民生電子機器の基板に用いられるはんだ継手は高温に曝されることがある。また、ステップソルダリングにてはんだ付けが行われる場合にも、はんだ継手は150℃程度の高温に曝される。一方、民生電子機器が寒冷地で使用されることは、容易に想定される。
 はんだ継手が過酷な環境下に曝される用途として、民生電子部品に加えて、車載電子機器もしくは産業電子機器が挙げられる。自動車はカーエレクトロニクス化が進み、ガソリン車からハイブリッド車を経て電気自動車に移行しつつある。これにともない、車載電子機器の基板は、用途の拡張によりエンジンルーム等の高温に曝される箇所に配置されることがある。一方、エンジン停止時には、寒冷地であれば-40℃以下という低温に曝されることがある。さらに、使用環境によっては、衝撃などの物理的な外力が電子機器に加わることがある。
 また、産業電子機器は、作業者にとって作業が困難な場所などで使用される。このため、産業電子機器の基板は、車載電子機器の基板と同様に、寒暖差が激しい環境に曝されたり外力が電子機器に加わることが想定される。
 ところで、基板と電子部品を接続する合金としてSn-3Ag-0.5Cuはんだ合金が広く使用されている。はんだ合金の適用範囲は拡大しつつあるが、それに伴って、車載などの用途に代表されるように、過酷な環境で長期間使用しても、はんだ継手に破断や劣化が生じない高い接続信頼性が求められるようになってきている。
 しかし、電子回路が上述のような寒暖差に曝されると、電子部品とプリント基板の熱膨張係数の違いにより、はんだ継手に応力が集中する。また、外力が電子機器に加わった場合、断面積が小さいはんだ継手に応力が集中する。このため、従来のSn-3Ag-0.5Cuはんだ合金を用いるとはんだ継手が破断する懸念があり、これを抑制するはんだ合金が求められている。
 例えば特許文献1には、ヒートサイクル環境下においてはんだ継手の亀裂進展を抑制するとともにボイドの発生を抑制するはんだ合金として、Sn-Ag-Cu-Sb-Bi-Niはんだ合金に、任意元素としてInやCoなどを含有し得る合金組成が開示されている。
 特許文献2には、金属間化合物の組織が微細であり耐クラック性に優れ、ボイドおよびCu喰われが抑制されるとともに、ヒートサイクル後におけるクラックの進展が抑制されることにより耐久性に優れるはんだ合金として、Sn-Ag-Cu-Bi-Ni-Co系はんだ合金に、任意元素としてSb、Inなどを含有し得る合金組成が開示されている。
 特許文献3には、濡れ性およびヒートサイクル後の接合耐久性の向上に優れるはんだ合金として、Sn-Ag-Cu-Bi-Sb-In-Ni系はんだ合金に、任意元素としてCoなどを含有し得る合金組成が開示されている。
特開2017-170464号公報 特開2014-037005号公報 特許第6060199号公報
 しかし、特許文献1~3に記載のはんだ合金は、前述のように、主としてヒートサイクル特性に着目した合金設計がなされている。電子機器がヒートサイクルに曝されると、基板と電子部品の熱膨張係数の違いからはんだ継手に応力が加わる。一方、振動が車載電子回路に加えられる場合、その応力の加わり方は、ヒートサイクル時に発生するプリント基板や電子部品の伸縮による応力とは異なると考えられる。このように、近年の電子機器の高機能化や用途の拡張による使用環境の劣悪化により、はんだ継手に種々の応力が加わったとしても、はんだ継手の破断が回避されるためには、はんだ合金自体の強度を向上させることが必要である。
 また、はんだ継手の破断は、はんだ継手を構成するはんだ合金の破断の他に、はんだ合金の濡れ性が劣ることにより生じる接合界面での破断も挙げられる。このように、従来よりも信頼性が高いはんだ継手を形成するためには、公知の合金組成を再検討する必要がある。
 本発明の課題は、濡れ性に優れ、はんだ継手の破断が抑制されることにより高い信頼性を備えるはんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手を提供することである。
 本発明者らは、基板と電子部品の熱膨張係数の違いによりはんだ継手に加わる応力について詳細に検討し、はんだ継手に加わる応力が物性試験における絞り加工時の応力に近いことに着目した。熱膨張係数が大きく異なる場合、一方が大きく反れるため、はんだ継手を構成するはんだ合金の部分は絞られる。絞りが優れていれば大きな応力が加わってもはんだ継手の破断が抑制される。
 また、基板と電子部品の熱膨張係数の違いにより生じる応力がはんだ継手に加わったとしても、はんだ継手を構成するはんだ合金のひずみエネルギーが大きければ、はんだ継手の破断を抑制することができると考えられる。本発明におけるひずみエネルギーは、図1に示すように、ひずみエネルギーを説明するための応力-ひずみ曲線において、変曲点以降の領域で表される。縦軸と横軸で囲まれている面積がひずみエネルギーに相当する。図1(b)に示すように、引張応力とひずみ量がともに大きければ、ひずみエネルギーが大きいことを表す。このように、ひずみエネルギーが増加するためには、高い引張強度とひずみ量が要求される。
 また、はんだ継手が破断する原因として、電極とはんだ合金との接合界面での破断が考えられる。この破断を抑制するためには、はんだ合金の濡れ性を向上させる必要がある。はんだ合金の融点は合金組成とともに変動するが、融点が高い場合にはんだ合金が濡れ広がるようにするためには、はんだ付け温度を上げる必要がある。ただ、はんだ付け装置の設定温度を変えることは、基板に搭載される電子部品の耐熱性などの観点から容易ではない。このため、はんだ合金の濡れ性を向上させるためには、はんだ合金の融点を下げる必要がある。
 従来から耐ヒートサイクル性に着目して検討されてきた特許文献1~3に開示されている従来のSn-Ag-Cu-Sb-In-Ni-Biはんだ合金では、絞り、ひずみエネルギー、および濡れ性が考慮されていない。特許文献1の実施例23に開示されているAg:3.0質量%、Cu:0.7質量%、Bi:3.2質量%、In:3.0質量%、Sb:3.0質量%、Ni:0.03質量%、Co:0.008質量%、および残部がSnであるはんだ合金では、液相線温度が高く濡れ性が劣る知見が得られた。特許文献2の実施例40に開示されているAg:3.0質量%、Cu:0.5質量%、Sb:1.5質量%、In:4.3質量%、Ni:0.05質量%、Bi:0.5質量%、Co:0.005質量%、および残部がSnであるはんだ合金では、絞りが劣る知見が得られた。特許文献3の実施例54に開示されているAg:0.1質量%、Cu:0.7質量%、Sb:0.08質量%、In:2質量%、Ni:0.065質量%、Bi:4.5質量%、Co:0.003質量%、および残部がSnであるはんだ合金では、はんだ合金の合金組織が粗大である知見が得られた。
 そこで、本発明者らは、耐ヒートサイクル性に優れるとされている従来のはんだ合金であっても、濡れ性の向上、ひずみエネルギーの向上、高い絞りおよび引張強度を同時に満足する合金組成について鋭意検討を行った。その結果、Sn-Ag-Cu-Sb-In-Ni-Biはんだ合金では、Biを所定量含有する場合には、Inの含有量とSbの含有量を低減することにより、微細なInSbが晶出して絞りの向上に寄与する知見が得られた。BiはSnに固溶するため、含有量が所定の範囲内であれば引張強度の向上に寄与する知見が得られた。また、AgとNiは合金組織の微細化に寄与する知見が得られた。Agは、微細なAgSnのネットワークを形成するために合金組織の緻密化を促進すると推察される。また、Niは接合界面での合金組織の微細化に寄与する知見が得られた。これに加えて、Cuは、Ag、Ni、Bi、In、およびSbが上記特性を満足する範囲内において、液相線温度の上昇を抑制することができる知見が得られた。このように、本発明は、各構成元素の含有量が所定の範囲内である場合に限り、上記効果を同時に発揮することができる知見により、完成された。
 これらの知見により得られた本発明は以下のとおりである。
 (1)質量%で、Ag:1.0~3.8%、Cu:0.4~0.8%、Sb:0.03~2.90%、In:1.1~4.2%、Ni:0.01~0.14%、Bi:0.1~5.0%、および残部がSnからなる合金組成を有することを特徴とするはんだ合金。
 (2)更に、質量%で、Co:0.1%以下を含有する、上記(1)に記載のはんだ合金。
 (3)更に、質量%で、Zr、Fe、Ge、Ga、P、As、Pb、Zn、Mg、Cr、Ti、Mn、Mo、Pt、Pd、Au、Al、およびSiの少なくとも1種を合計で0.1%以下を含有する、上記(1)または上記(2)に記載のはんだ合金。
 (4)上記合金組成は下記(1)式~(4)式の少なくとも1式を満たす、上記(1)~上記(3)のいずれか1項に記載のはんだ合金。
 113≦Sn/Cu≦165                 (1)
 0.06≦Ag×Ni≦0.19               (2)
 0.10≦Bi/(In+Sb)≦0.32          (3)
 0.432≦(In+Sb)/(Ag+In+Bi)≦0.999(4)
 上記(1)式~(4)式中、Sn、Cu、Ag、Ni、Bi、In、およびSbは、各々合金組成の含有量(質量%)を表す。
 (5)上記(1)~上記(4)のいずれか1項に記載のはんだ合金からなるはんだボール。
 (6)上記(1)~上記(4)のいずれか1項に記載のはんだ合金からなるはんだプリフォーム。
 (7)上記(1)~上記(4)のいずれか1項に記載のはんだ合金からなるはんだ粉末を有するはんだペースト。
 (8)上記(1)~上記(4)のいずれか1項に記載のはんだ合金を有するはんだ継手。
図1は、ひずみエネルギーを説明するための応力-ひずみ曲線を示す図であり、図1(a)は、引張強度の軸とひずみの軸で囲まれている面積が小さいことを表す図であり、図1(b)は、引張強度の軸とひずみの軸で囲まれている面積が大きいことを表す図である。 図2は、はんだ合金の断面SEM写真であり、図2(a)は実施例3であり、図2(b)は比較例3である。 図3は、はんだ合金の断面SEM写真であり、図3(a)は実施例3であり、図3(b)は比較例13である。
 本発明を以下により詳しく説明する。本明細書において、はんだ合金組成に関する「%」は、特に指定しない限り「質量%」である。
 1. はんだ合金
 (1) Ag:1.0~3.8%
 Agは、微細なAgSnのネットワークを形成し、はんだ合金の緻密化を促進することができる。Ag含有量が1.0%未満であるとAgSnを晶出することができず、絞りが劣化する。また、AgSnのネットワークを形成することができない。Ag含有量の下限は1.0%以上であり、好ましくは1.5%以上であり、より好ましくは2.0%以上であり、さらに好ましくは2.5%以上であり、特に好ましくは3.0%以上である。一方、Ag含有量が3.8%を超えると、粗大なAgSnが晶出されるために合金組織が緻密にならず、絞りが低下する。Ag含有量の上限は3.8%以下であり、好ましくは3.4%以下である。
 (2) Cu:0.4~0.8%
 Cuは、液相線温度の上昇を抑えることにより溶融はんだの優れた濡れ性を維持することができる。Cu含有量が0.4%未満であるか又は0.8%を超える場合には、液相線温度が上昇してしまい、接合温度での流動性が低下することにより濡れ性が劣化する。Cu含有量の下限は0.4%以上であり、好ましくは0.5%以上であり、さらに好ましくは0.6%以上である。また、Cu含有量の上限は0.8%以下であり、好ましくは0.7%以下である。
 (3) Sb:0.03~2.90%
 Sbは、Inと同時に添加することにより微細なInSbを晶出させ、絞りを向上させることができる。Sb含有量が0.03%未満であると、InSbが晶出せず、絞りの向上効果が得られない。Sb含有量の下限は0.03%以上であり、好ましくは0.05%以上である。一方、Sb含有量が2.90%を超えると液相線温度が上昇して濡れ性が劣化する。Sb含有量の上限は2.90%以下であり、好ましくは2.50%以下であり、より好ましくは2.00%以下である。
 (4) In:1.1~4.2%
 Inは、Sbと同時に添加することにより微細なInSbを晶出させ、絞りを向上させることができる。全体のIn含有量が1.1%未満であると、InSbが晶出せず、絞りの向上効果が得られない。In含有量の下限は1.1%以上であり、好ましくは2.0%以上であり、より好ましくは3.0%以上である。一方、In含有量が4.2%を超えるとAgと同時に添加することで粗大なInSb化合物が晶出するために絞りが劣化する。In含有量の上限は4.2%以下であり、好ましくは4.0%以下である。
 (5)Ni:0.01~0.14%
 Niは、はんだ付け後にSnへのCuの拡散を阻害し、接合界面に析出する金属間化合物の成長を抑制する。さらに、接合界面に析出する金属化合物の粗大化を抑制することにより、接合界面の強化を図ることができる。Ni含有量が0.01%未満であると合金組織が十分に緻密にならず、ひずみエネルギーが向上しない。また、接合界面の強化を図ることができない。Ni含有量の下限は0.01%以上であり、好ましくは0.02%以上であり、より好ましくは0.03%以上であり、更に好ましくは0.04%以上である。一方、Ni含有量が0.14%を超えると液相線温度の上昇により濡れ性が低下する。Ni含有量の上限は0.09%以下であり、好ましくは0.06%以下であり、より好ましくは0.05%以下である。
 (6)Bi:0.1~5.0%
 Biは、BiはSnに固溶するために引張強度を向上させることができる。Bi含有量が0.1%未満であると、引張強度が向上しない。Bi含有量の下限は0.1%以上であり、好ましくは0.5%以上である。一方、Bi含有量が5.0%を超えるとBiが偏析するためにはんだ合金が脆化し、引張強度と絞りが劣化する。Bi含有量の上限は5.0%以下であり、好ましくは4.0%以下であり、より好ましくは3.0%以下であり、更に好ましくは2.0%以下であり、特に好ましくは1.0%以下である。
 (6) 残部:Sn
 本発明に係るはんだ合金の残部はSnである。前述の元素の他に不可避的不純物を含有してもよい。不可避的不純物を含有する場合であっても、前述の効果に影響することはない。
 (7)Co:0.100%以下
 Coは、金属間化合物の成長を抑制し、合金組織を微細にする効果がある任意元素である。Co含有量の上限は、好ましくは0.100%以下であり、より好ましくは0.050%以下であり、さらに好ましくは0.010%以下である。Co含有量の下限は特に限定されないが、合金組織の微細化が図られる観点から、好ましくは0.001%以上であり、より好ましくは0.003%以上であり、更に好ましくは0.005%以上であり、更により好ましくは0.006%以上であり、特に好ましくは0.007%以上であり、最も好ましくは0.008%以上である。
 (9)その他の任意元素
 本発明に係るはんだ合金は、上記の他に、Zr、Fe、Ge、Ga、P、As、Pb、Zn、Mg、Cr、Ti、Mn、Mo、Pt、Pd、Au、Al、およびSiの少なくとも1種を合計で0.1%以下の量で含有してもよい。特にFeについては、接合界面に析出する金属間化合物の成長を抑制する効果があるため、本発明に係るはんだ合金に含有することで、Niの効果を更に向上させることができる。これらの元素が0.1%以下含有しても、粗大な化合物が析出することがなく、本発明の上記効果を発揮することができる。これらの元素の含有量の合計は、好ましくは0.1%以下であり、より好ましくは0.09%以下であり、さらに好ましくは0.05%以下であり、特に好ましくは0.015%以下である。各々の元素の含有量については特に限定されるものではないが、好ましくは0.0003~0.02%である。これらの中で、FeはNiと同様に、はんだ付け後にSnへのCuの拡散を阻害し、接合界面に析出する金属間化合物の成長を抑制する。さらに、接合界面に析出する金属化合物の粗大化を抑制することにより、接合界面の強化を図ることができる。
 (10)(1)式~(4)式
 113≦Sn/Cu≦165                 (1)
 0.06≦Ag×Ni≦0.19               (2)
 0.10≦Bi/(In+Sb)≦0.32          (3)
 0.432≦(In+Sb)/(Ag+In+Bi)≦0.999(4)
 上記(1)式~(4)式中、Sn、Cu、Ag、Ni、Bi、In、およびSbは、各々前記合金組成の含有量(質量%)を表す。
 本発明に係るはんだ合金は(1)式~(4)式の少なくとも1式を満たすことが好ましい。すべての式を満たす合金組成は、特に優れた効果を発揮することができる。
 Cuは液相線温度に大きく寄与する。このため、主成分であるSnとの割合が(1)式を満たすと、はんだ付けに適した濡れ性を示す液相線温度になる。(1)式の下限は、好ましくは113以上であり、より好ましくは123以上であり、特に好ましくは125以上である。(1)の上限は、好ましくは165以下であり、より好ましくは151以下であり、さらに好ましくは132以下である。
 本発明に係るはんだ合金において、Agは合金組織の緻密化に寄与し、Niは接合界面の均一緻密化に寄与する。いずれもSnとの化合物を晶出することができるため、各々の含有量がバランスよく配合されると、化合物の粗大化が抑制され、合金組織の緻密化が促進される。(2)式の下限は、好ましくは0.06以上であり、より好ましくは0.09以上であり、さらに好ましくは0.10以上である。(2)の上限は、好ましくは0.19以下であり、より好ましくは0.15以下である。
 また、Bi、In、およびSbは本発明に係るはんだ合金の機械的特性に寄与する。Biは引張強度の向上に寄与し、InおよびSbは絞りの向上に寄与する。しかし、いずれかの元素の含有量が過剰、もしくは不足すると、前述のように、引張強度と絞りの両立を図ることができないことがある。よって、本発明に係るはんだ合金は、(3)式を満たすことが好ましい。(3)式の下限は、好ましくは0.10以上であり、より好ましくは0.14以上であり、さらに好ましくは0.16以上である。(3)式の上限は、好ましくは0.32以下であり、より好ましくは0.25以下であり、さらに好ましくは0.200以下である。
 また、本発明に係るはんだ合金は、(4)式を満たすと、更に絞りの向上を図ることができる。このためには、添加により絞りが向上するInおよびSbの含有量の合計、並びに、含有量が多いと絞りが低下するAg、In、およびBiが、均衡を保つように含有されることが望ましい。(4)式の下限は、好ましくは0.432以上であり、より好ましくは0.433以上であり、さらに好ましくは0.442以上である。(4)式の上限は、好ましくは0.999以下であり、より好ましくは0.769以下であり、さらに好ましくは0.750以下である。
 2.はんだボール
 本発明に係るはんだ合金は、はんだボールとして使用することができる。本発明に係るはんだボールは、BGA(ボールグリッドアレイ)などの半導体パッケージの電極や基板のバンプ形成に用いられる。本発明に係るはんだボールの直径は1~1000μmの範囲内が好ましい。はんだボールは、一般的なはんだボールの製造法により製造することができる。
 3.はんだプリフォーム
本発明に係るはんだプリフォームの形状は、特に限定されるものではなく、板状、リング形状、円筒形状、リボン形状、スクエア形状、ディスク形状、ワッシャ形状、チップ形状、ワイヤ形状などの形態で使用することができる。はんだプリフォームは、融点がはんだ合金よりも高く、溶融はんだに濡れやすい高融点金属粒(たとえばNi粒やCu粒及び、NiやCuを主成分とする合金粉)を内部に含有してもよい。
 4.はんだペースト
 本発明に係るはんだ合金は、はんだペーストとして使用することができる。はんだペーストは、はんだ合金粉末を少量のフラックスと混合してペースト状にしたものである。本発明に係るはんだ合金は、リフローはんだ付け法によるプリント基板への電子部品の実装に、はんだペーストとして利用してもよい。はんだペーストに用いるフラックスは、水溶性フラックスと非水溶性フラックスのいずれでもよい。典型的にはロジンベースの非水溶性フラックスであるロジン系フラックスが用いられる。
 5.はんだ継手
 本発明に係るはんだ継手は、半導体パッケージにおけるICチップとその基板(インターポーザ)との接続、或いは半導体パッケージとプリント基板とを接合して接続する。すなわち、本発明に係るはんだ継手は電極の接続部をいい、一般的なはんだ付け条件を用いて形成することができる。
 本発明に係るはんだ合金を用いた接合方法は、例えばリフロー法を用いて常法に従って行えばよい。加熱温度はチップの耐熱性やはんだ合金の液相線温度に応じて適宜調整してもよい。この他の接合条件は、はんだ合金の合金組成に応じて適宜調整することができる。
 表1~3に示す合金組成からなるはんだ合金を調製し、評価1として液相線温度を測定し、評価2としてはんだ組織の緻密性を評価し、評価3として絞りを評価し、評価4として引張強度を評価し、評価5として接合界面の均一微細化を評価した。
 ・評価1:液相線温度
 表1の各はんだ合金を作製し、はんだ合金の液相線温度を測定した。液相線温度は、JIS Z 3198-1の固相線温度の測定方法と同様のDSCによる方法で実施した。液相線温度が200~218℃の場合には「◎」と評価し、218℃超え220℃以下の場合には「〇」と評価し、220℃を超える場合には「×」と評価し、200℃を下回る場合にも「×」と評価した。
  ・評価2:はんだ組織の緻密性
 所定の金型に表1に示す合金組成からなるはんだ合金を鋳込み、得られたはんだ合金を樹脂でモールドして研磨し、はんだ合金が半分程度研磨された箇所をFE-SEMにて1000倍の倍率で撮影した。撮影した写真から断面観察及びEDSによるマッピング組成分析によりAgSnの緻密性およびInSbの微細化を評価した。マッピング組成分析により各々の化合物を同定し、目視にて最大の結晶粒を選択した。その結晶粒について、間隔が最大となるように平行な2本の接線を引き、その間隔を最大結晶粒径とした。AgSnの最大結晶粒径が5μm以上10μm以下である場合には「◎」とし、10μm超え15μm以下である場合には「〇」とし、5μm未満である場合および15μmを超える場合には「×」とした。また、InSbの最大結晶粒径が5μm以下である場合には「◎」とし、5μm超え10μm以下である場合には「〇」とし、10μmを超える場合には「×」とした。なお、評価2では、AgSnおよびInSbがいずれも「◎」である場合には「◎」と評価し、いずれか一方が「◎」で他方が「〇」である場合には「〇」と評価し、いずれか一方が「×」である場合には「×」と評価した。
 ・評価3、4:絞り、引張強度
 絞り、および引張強度はJISZ3198-2に準じて測定された。表1に記載の各はんだ合金について、金型に鋳込み、ゲージ長が30mm、直径8mmの試験片が作製された。作製された試験片は、Instron社製のType5966により、室温で、6mm/minのストロークで引っ張られ、試験片が破断したときの強度が計測された。また、試験前の断面積Sに対する試験片の破断部分の断面積Sの割合から、絞りが計測された。引張強度が65MPa以上の場合には「◎」と評価し、60MPa以上65MPa未満の場合には「〇」と評価し、60MPa未満の場合には「×」と評価した。絞りが50%以上である場合には「〇」と評価し、50%未満の場合には「×」と評価した。
 評価結果を表1~3に示す。
 ・評価5:接合界面の均一微細化
 表1に示す各はんだ合金から、φ0.6mmのはんだボールを調製した。このはんだボールをCuパット上に搭載した後、245℃でリフローを行い、はんだバンプを作製した。はんだバンプとCuパットの接合界面の断面を撮影した断面SEM写真から、金属間化合物(IMC)の厚みを測定することにより接合界面の均一微細化を評価した。接合界面が均一で微細になっている場合には金属間化合物層が薄くなることから、評価5では、均一微細化の評価を金属間化合物の厚みで評価した。断面SEM写真を画像解析ソフト(西華産業株式会社製:Scandium)により解析し、金属間化合物層の厚みを計測した。金属間化合物の厚みが1.5μm以下であれば「◎」、1.5μm超え2.5μm以下であれば「〇」、2.5μm超えであれば「×」と評価した。
 評価結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表1~3から明らかなように、実施例1~56は構成元素がいずれも適正であるため、液相線温度が所定の範囲内の温度を示した。また、はんだ合金の組織が緻密であり、優れた絞りおよび引張強度を示した。また、接合界面の組織が均一で微細になっていた。(1)式~(4)式を満たす実施例2~4、7、8、11~17、19~22、24、および29~56は、すべての評価項目において優れた結果を示すことが確認された。
 一方、比較例1~3は、Ag含有量が過剰もしくは不足しているために合金組織が緻密にならず、絞りが劣った。
 比較例4~7は、Cu含有量が過剰もしくは不足しているために液相線温度が適正ではなかった。
 比較例8および9は、Sb含有量が少ないために絞りが劣った。
 比較例10は、Sb含有量が多いために液相線温度が適正ではなかった。
 比較例11および12は、In含有量が過剰もしくは不足しているために絞りが劣った。
 比較例13は、Ni含有量が少ないために接合界面の均一緻密化を確認することができなかった。
 比較例14は、Ni含有量が多いために液相線温度が適正ではなかった。
 比較例15および16は、Bi含有量が少ないために引張強度が劣った。
 比較例17および18は、Bi含有量が多いために絞り及び引張強度が劣った。
 これらの結果を、図を用いて説明する。図2は、はんだ合金の断面SEM写真であり、図2(a)は実施例3であり、図2(b)は比較例3である。図2から明らかなように、実施例3でははんだ組織が緻密であることを確認することができた。一方、比較例3は、AgSnが15μmより大きいため、いずれも結晶粒が粗大になっていることを確認することができた。このように、構成元素の含有量が適正である実施例では緻密な組織になり優れた効果が発揮されたが、構成元素の少なくとも1種の含有量が適正ではない比較例では緻密な組織にならず、効果が劣った。
 図3は、はんだ合金の断面SEM写真であり、図3(a)は実施例3であり、図3(b)は比較例13である。実施例3では、接合界面に析出した金属間化合物が均一で微細であることがわかった。一方、比較例13は、接合界面の均一緻密化を確認することができなかった。

Claims (11)

  1.  質量%で、Ag:1.0~3.8%、Cu:0.4~0.8%、Sb:0.03~2.90%、In:1.1~4.2%、Ni:0.01~0.14%、Bi:0.1~5.0%、および残部がSnからなる合金組成を有することを特徴とするはんだ合金。
  2.  更に、質量%で、Co:0.1%以下を含有し、前記合金組成は下記(3)式を満たす、請求項1に記載のはんだ合金。
     0.10≦Bi/(In+Sb)≦0.32       (3)
     上記(3)式中、Bi、In、およびSbは、各々前記合金組成の含有量(質量%)を表す。
  3.  前記合金組成は下記(1)式、および(4)式の少なくとも1式を満たす、請求項1または2に記載のはんだ合金。
     113≦Sn/Cu≦165              (1)
     0.432≦(In+Sb)/(Ag+In+Bi)≦0.999(4)
     上記(1)式、および(4)式中、Sn、Cu、Ag、Bi、In、およびSbは、各々前記合金組成の含有量(質量%)を表す。
  4.  更に、質量%で、Zr、Fe、Ge、Ga、P、As、Pb、Zn、Mg、Cr、Ti、Mn、Mo、Pt、Pd、Au、Al、およびSiの少なくとも1種を合計で0.1%以下を含有し、前記合金組成は下記(2)式を満たす、請求項1~3のいずれか1項に記載のはんだ合金。
     0.06≦Ag×Ni≦0.19            (2)
     上記(2)式中、Ag、およびNiは、各々前記合金組成の含有量(質量%)を表す。
  5.  更に、質量%で、Co:0.1%以下を含有し、Zr、Fe、Ge、Ga、As、Pb、Zn、Mg、Cr、Ti、Mn、Mo、Pt、Pd、Au、Al、およびSiの少なくとも1種を合計で0.1%以下を含有する、請求項1に記載のはんだ合金。
  6.  更に、質量%で、前記合金組成は下記(3)式を満たす、請求項5に記載のはんだ合金。
     0.10≦Bi/(In+Sb)≦0.32       (3)
     上記(3)式中、Bi、In、およびSbは、各々前記合金組成の含有量(質量%)を表す。
  7.  前記合金組成は下記(2)式を満たす、請求項1~3のいずれか1項に記載のはんだ合金。
     0.06≦Ag×Ni≦0.19            (2)
     上記(2)式中、Ag、およびNiは、各々前記合金組成の含有量(質量%)を表す。
  8.  請求項1~7のいずれか1項に記載のはんだ合金からなるはんだボール。
  9.  請求項1~7のいずれか1項に記載のはんだ合金からなるはんだプリフォーム。
  10.  請求項1~7のいずれか1項に記載のはんだ合金からなるはんだ粉末を有するはんだペースト。
  11.  請求項1~7のいずれか1項に記載のはんだ合金を有するはんだ継手。
PCT/JP2022/036553 2021-09-30 2022-09-29 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手 WO2023054630A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161532A JP7161134B1 (ja) 2021-09-30 2021-09-30 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
JP2021-161532 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054630A1 true WO2023054630A1 (ja) 2023-04-06

Family

ID=83782319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036553 WO2023054630A1 (ja) 2021-09-30 2022-09-29 はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手

Country Status (3)

Country Link
JP (1) JP7161134B1 (ja)
TW (1) TWI818752B (ja)
WO (1) WO2023054630A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106280A (ja) * 2010-10-29 2012-06-07 Harima Chemicals Inc 低銀はんだ合金およびはんだペースト組成物
WO2014013847A1 (ja) * 2012-07-19 2014-01-23 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2015020182A (ja) * 2013-07-17 2015-02-02 ハリマ化成株式会社 はんだ組成物、ソルダペーストおよび電子回路基板
JP6060199B2 (ja) 2015-03-24 2017-01-11 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2017170464A (ja) 2016-03-22 2017-09-28 株式会社タムラ製作所 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2017170522A (ja) * 2016-09-20 2017-09-28 株式会社タムラ製作所 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2018122323A (ja) * 2017-01-31 2018-08-09 株式会社タムラ製作所 フラックス組成物、ソルダペースト及び電子回路基板
CN108994480A (zh) * 2018-10-10 2018-12-14 云南锡业锡材有限公司 一种SnBiAgCu高可靠性无铅焊料合金
JP2019147190A (ja) * 2019-04-23 2019-09-05 株式会社タムラ製作所 フラックス組成物、ソルダペースト及び電子回路基板
WO2020137535A1 (ja) * 2018-12-25 2020-07-02 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106280A (ja) * 2010-10-29 2012-06-07 Harima Chemicals Inc 低銀はんだ合金およびはんだペースト組成物
WO2014013847A1 (ja) * 2012-07-19 2014-01-23 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2014037005A (ja) 2012-07-19 2014-02-27 Harima Chemicals Inc はんだ合金、ソルダペーストおよび電子回路基板
JP2015020182A (ja) * 2013-07-17 2015-02-02 ハリマ化成株式会社 はんだ組成物、ソルダペーストおよび電子回路基板
JP6060199B2 (ja) 2015-03-24 2017-01-11 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2017170464A (ja) 2016-03-22 2017-09-28 株式会社タムラ製作所 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2017170522A (ja) * 2016-09-20 2017-09-28 株式会社タムラ製作所 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP2018122323A (ja) * 2017-01-31 2018-08-09 株式会社タムラ製作所 フラックス組成物、ソルダペースト及び電子回路基板
CN108994480A (zh) * 2018-10-10 2018-12-14 云南锡业锡材有限公司 一种SnBiAgCu高可靠性无铅焊料合金
WO2020137535A1 (ja) * 2018-12-25 2020-07-02 株式会社タムラ製作所 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
JP2019147190A (ja) * 2019-04-23 2019-09-05 株式会社タムラ製作所 フラックス組成物、ソルダペースト及び電子回路基板

Also Published As

Publication number Publication date
JP7161134B1 (ja) 2022-10-26
JP2023051075A (ja) 2023-04-11
TW202315954A (zh) 2023-04-16
TWI818752B (zh) 2023-10-11

Similar Documents

Publication Publication Date Title
JP5090349B2 (ja) 接合材料、接合部及び回路基板
CN111745321B (zh) 软钎料合金、焊料球、软钎料预成型坯、焊膏和钎焊接头
JP5590272B1 (ja) 鉛フリーはんだ合金
CN111683785B (zh) 焊料合金、焊膏、焊球、带芯焊料及焊接接头
JP6128211B2 (ja) 半導体装置および半導体装置の製造方法
TWI645047B (zh) 焊料合金、焊料球及焊接接頭
JP2016040051A (ja) 鉛フリーはんだ、鉛フリーはんだボール、この鉛フリーはんだを使用したはんだ継手およびこのはんだ継手を有する半導体回路
JP6119911B1 (ja) はんだ合金、はんだボールおよびはんだ継手
JP5379402B2 (ja) 鉛フリーSn−Ag系半田合金及び半田合金粉末
KR20240013669A (ko) 땜납 합금, 땜납 볼, 땜납 페이스트 및 솔더 조인트
WO2023054630A1 (ja) はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
JP7161133B1 (ja) はんだ合金、はんだボール、はんだプリフォーム、はんだペースト及びはんだ継手
JP2008221330A (ja) はんだ合金
WO2013153595A1 (ja) はんだ合金
CN111954585B (zh) 焊料合金、以及焊料接头
JP7381980B1 (ja) はんだ合金、はんだボール、はんだプリフォーム、はんだ継手、および回路
KR20240056780A (ko) 땜납 합금, 땜납 볼, 땜납 프리폼, 땜납 페이스트 및 솔더 조인트
JP7421157B1 (ja) はんだ合金、はんだペースト及びはんだ継手
JP7376842B1 (ja) はんだ合金、はんだボール、はんだペースト及びはんだ継手
WO2024034689A1 (ja) はんだ合金、はんだペースト及びはんだ継手
JP2005334955A (ja) はんだ合金およびはんだボール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022876493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2401002046

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006276

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022876493

Country of ref document: EP

Effective date: 20240327