WO2014142166A1 - 低置換度酢酸セルロース - Google Patents

低置換度酢酸セルロース Download PDF

Info

Publication number
WO2014142166A1
WO2014142166A1 PCT/JP2014/056474 JP2014056474W WO2014142166A1 WO 2014142166 A1 WO2014142166 A1 WO 2014142166A1 JP 2014056474 W JP2014056474 W JP 2014056474W WO 2014142166 A1 WO2014142166 A1 WO 2014142166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
degree
substitution
weight
water
Prior art date
Application number
PCT/JP2014/056474
Other languages
English (en)
French (fr)
Inventor
岡田静
谷口寛樹
島本周
中村敏和
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2015505511A priority Critical patent/JP5921762B2/ja
Priority to EP14763960.3A priority patent/EP2975063A4/en
Priority to US14/775,369 priority patent/US10703825B2/en
Priority to CN201480015034.6A priority patent/CN105073782B/zh
Publication of WO2014142166A1 publication Critical patent/WO2014142166A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/24Hydrolysis or ripening
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/26Isolation of the cellulose ester
    • C08B3/28Isolation of the cellulose ester by precipitation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate

Definitions

  • the present invention relates to a low-substituted cellulose acetate from which a molded product such as a film or fiber having a high strength and elongation can be obtained.
  • water-soluble polymer materials include, for example, tablet binders, tablet coating agents, staple binders, cosmetic thickeners, cosmetic moisturizers, excipients, Used for molding material.
  • This application includes Japanese Patent Application No. 2013-050915 filed in Japan on March 13, 2013, Japanese Patent Application No. 2013-206955 filed in Japan on October 2, 2013, and Japanese Patent Application No. 2013-206955 filed in Japan on December 20, 2013. Claims priority of application 2013-263889, the contents of which are incorporated herein.
  • Hydroxypropyl cellulose and the like are known as water-soluble cellulose derivatives, and are used for tablet binders and coating agents.
  • cellulose acetate it is known that those having a low substitution degree of acetyl total substitution of about 0.3 to 1.2 are soluble or have a high affinity for water.
  • the total degree of acetyl substitution is 0.3 to 0.8, and the ratio of the 6-position acetyl substitution degree to the total acetyl substitution degree is 0.35 to 0.4.
  • a water-soluble cellulose acetate is disclosed. According to this document, the above cellulose acetate is hydrolyzed using a high-substituted cellulose acetate having a total degree of acetyl substitution of 2.4 or more, in the presence of a large amount of water, using an inorganic acid such as hydrochloric acid or sulfuric acid as a catalyst. Is obtained.
  • the total degree of acetyl substitution is 0.4 to 0.9
  • the content of water insolubles is 1.5% by weight or less
  • the weight average molecular weight is 5 ⁇ 10 3 to 3 ⁇ 10.
  • a water-soluble cellulose acetate of 6 is disclosed.
  • the water-soluble cellulose acetate is obtained by acetylating a cellulose in a high temperature for a short time in the presence of a small amount of an acidic catalyst, and the obtained cellulose acetate having a high acetyl substitution degree at a high temperature. It is described that it can be obtained by combining a first aging step for hydrolysis in a short time and a second aging step for further hydrolysis in a short time at a relatively high temperature in the presence of a small amount of an acidic catalyst.
  • the cellulose ester has a reduced degree of substitution by using a specific solvent-decomposable accelerator in the presence of a specific solvent.
  • a method for obtaining an ester is disclosed. These documents describe that according to this method, a cellulose ester having a substitution degree of 0.4 to 1.2 can be obtained from a cellulose ester having a substitution degree of 2 to 3.
  • the low-substituted cellulose acetate obtained by the conventional method has a problem of low strength and elongation when it is made into a film or fiber, for example, and has not yet been put to practical use in applications such as film and fiber.
  • An object of the present invention is to provide cellulose acetate having excellent solubility in water, which can obtain a film or fiber having a high strength and elongation even with a low degree of substitution.
  • Another object of the present invention is to provide a cellulose acetate molded article (film, fiber, etc.) having high strength and high solubility in water.
  • the present inventors have determined that the composition distribution index (CDI) (the ratio of the measured value to the theoretical value of the half value width of the composition distribution) is defined even for low-substituted cellulose acetate. Is less than a specific value, for example, it has been found that the strength and elongation of a film or fiber are increased, and the present invention has been completed.
  • CDI composition distribution index
  • the present invention provides cellulose acetate having a total degree of acetyl substitution of 0.4 to 1.1 and a composition distribution index (CDI) defined below of 3.0 or less.
  • CDI (actual value of composition distribution half width) / (theoretical value of composition distribution half width)
  • Measured value of half width of composition distribution half width of composition distribution obtained by HPLC analysis of cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups of cellulose acetate (sample)
  • DS Degree of total acetyl substitution
  • DPw Degree of weight average polymerization (value determined by GPC-light scattering method using cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups of cellulose acetate (sample))
  • the CDI may be 2.8 or less, and the CDI may be 2.0 or less.
  • the standard deviation ⁇ of the acetyl substitution degree at the 2nd, 3rd and 6th positions defined below is 0.08 or less.
  • Polydispersity related to molecular weight distribution and polymerization degree distribution (dispersion degree Mw / Mn; obtained by GPC-light scattering method using cellulose acetate propionate obtained by propionylation of all remaining hydroxyl groups of cellulose acetate (sample).
  • the value is preferably in the range of 1.2 to 2.5.
  • the weight average degree of polymerization (DPw; a value obtained by GPC-light scattering method using cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups of cellulose acetate (sample)) is in the range of 50 to 800. Is preferred.
  • the present invention also provides a method for producing cellulose acetate, wherein the cellulose acetate is partially hydrolyzed at a temperature of 90 ° C. or higher to lower the degree of substitution. .
  • the present invention further provides a molded article formed from the cellulose acetate.
  • the present invention also provides a fiber or film formed from the cellulose acetate.
  • the cellulose acetate of the present invention is excellent in solubility in water and has a low degree of substitution and a high strength and elongation of a molded product (for example, fiber) obtained by molding.
  • cellulose acetate having a CDI of 2.0 or less is excellent in solubility in water and has a high degree of elongation (tensile strength and elongation at break) when formed into a film while having a low degree of substitution.
  • the molded article (film, fiber, etc.) of the present invention is formed from the cellulose acetate of the present invention, it has a high strength and excellent solubility in water.
  • the cellulose acetate of the present invention has a total degree of acetyl substitution of 0.4 to 1.1, and a composition distribution index (CDI) defined by a ratio of an actual measurement value to a theoretical value of the half width of composition distribution is 3.0 or less. It is.
  • CDI composition distribution index
  • the cellulose acetate of the present invention has an acetyl total substitution degree (average substitution degree) of 0.4 to 1.1. If the total degree of acetyl substitution is within this range, the solubility in water is excellent, and if it is outside this range, the solubility in water decreases.
  • a preferred range of the total degree of acetyl substitution is 0.5 to 1.0, and a more preferred range is 0.6 to 0.95.
  • the total degree of acetyl substitution can be measured by a known titration method in which cellulose acetate is dissolved in water and the degree of substitution of cellulose acetate is determined.
  • the total degree of acetyl substitution can also be measured by NMR after propionylating the hydroxyl group of cellulose acetate (see the method described later), dissolving in deuterated chloroform.
  • the total degree of acetyl substitution is determined by converting the degree of acetylation determined according to the method for measuring the degree of acetylation in ASTM: D-817-91 (testing method for cellulose acetate, etc.) by the following formula. This is the most common method for determining the degree of substitution of cellulose acetate.
  • DS 162.14 ⁇ AV ⁇ 0.01 / (60.052-42.037 ⁇ AV ⁇ 0.01)
  • AV Degree of acetylation (%)
  • 500 mg of dried cellulose acetate (sample) was precisely weighed and dissolved in 50 ml of a mixed solvent of ultrapure water and acetone (volume ratio 4: 1), and then 50 ml of 0.2N sodium hydroxide aqueous solution was added. Saponify for 2 hours at 25 ° C.
  • AV (degree of acetylation) (%) is calculated according to the following formula.
  • AV (%) (AB) ⁇ F ⁇ 1.201 / sample weight (g)
  • composition distribution index (CDI) The cellulose acetate of the present invention has a composition distribution index (CDI) of 3.0 or less (for example, 1.0 to 3.0).
  • the composition distribution index (CDI) is preferably 2.8 or less, more preferably 2.0 or less, further preferably 1.8 or less, particularly preferably 1.6 or less, and most preferably 1.3 or less. .
  • the lower limit of the composition distribution index (CDI) is 0, but this is achieved by a special synthetic technique such as acetylating only the 6th position of a glucose residue and not acetylating other positions with 100% selectivity. Such synthesis techniques are not known. In a situation where all of the hydroxyl groups of the glucose residue are acetylated and deacetylated with the same probability, the CDI is 1.0. However, in an actual cellulose reaction, a considerable amount is required to approach such an ideal state. It needs some ingenuity. In the prior art, little attention has been paid to such control of the composition distribution.
  • the cellulose acetate of the present invention has a small composition distribution index (CDI) and a uniform composition distribution (intermolecular substitution degree distribution). Therefore, even when the degree of substitution is low, the strength and elongation of the film are very high. . This is because defects in the film structure are reduced due to the uniform composition distribution. Further, since the composition distribution is uniform, water solubility can be ensured in a range where the total substitution degree is wider than usual.
  • composition distribution index is the ratio of the measured value to the theoretical value of the half value width of the composition distribution [(actual value of the half value width of the composition distribution) / (theoretical value of the half value width of the composition distribution)]. Defined.
  • the composition distribution half-width is also referred to as “intermolecular substitution degree half-width” or simply “substitution degree distribution half-width”.
  • the maximum peak half-value width (also referred to as “half-value width”) of the intermolecular substitution degree distribution curve of cellulose acetate can be used as an index.
  • the half width is the width of the chart at half the height of the peak of the chart, where the acetyl substitution degree is on the horizontal axis (x axis) and the abundance at this substitution degree is on the vertical axis (y axis). It is an index representing the standard of variation in distribution.
  • the half value width of the substitution degree distribution can be determined by high performance liquid chromatography (HPLC) analysis.
  • the theoretical distribution of the half value width of composition distribution (substitution degree distribution half width) can be calculated stochastically. That is, the theoretical value of the composition distribution half width is obtained by the following equation (1).
  • m Total number of hydroxyl groups and acetyl groups in one molecule of cellulose acetate
  • DPw Weight average polymerization degree (by GPC-light scattering method) In addition, the measuring method of a weight average polymerization degree (DPw) is mentioned later.
  • the theoretical value of the composition distribution half width is represented by the substitution degree and the polymerization degree, it is expressed as follows.
  • the following formula (2) is defined as a definition formula for obtaining a theoretical value of the composition distribution half width.
  • DS Degree of total acetyl substitution
  • DPw Degree of weight average polymerization (by GPC-light scattering method)
  • the measuring method of a weight average polymerization degree (DPw) is mentioned later.
  • the polymerization degree distribution should be taken into account more strictly.
  • the “DPw” in the formula (1) and the formula (2) represents the polymerization degree. Substituting a distribution function, the entire equation should be integrated from 0 to infinity. However, as long as DPw is used, equations (1) and (2) give theoretical values with approximately sufficient accuracy. If DPn (number average degree of polymerization) is used, the influence of the degree of polymerization distribution cannot be ignored, so DPw should be used.
  • the actual value of the composition distribution half width is the composition distribution half width obtained by HPLC analysis of cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups (unsubstituted hydroxyl groups) of cellulose acetate (sample). It is.
  • HPLC high performance liquid chromatography
  • the actual value of the composition distribution half-width is obtained by derivatizing the residual hydroxyl group in cellulose acetate as a pretreatment before HPLC analysis, and then performing HPLC analysis.
  • Ask. The purpose of this pretreatment is to convert the low-substituted cellulose acetate into a derivative that can be easily dissolved in an organic solvent to enable HPLC analysis. That is, the residual hydroxyl group in the molecule is completely propionylated, and the fully derivatized cellulose acetate propionate (CAP) is subjected to HPLC analysis to determine the composition distribution half width (actual value).
  • CAP fully derivatized cellulose acetate propionate
  • CAP fully derivatized cellulose acetate propionate
  • Mw / Mn polydispersity
  • DPw weight average polymerization degree
  • HPLC analysis a plurality of cellulose acetate propionates having different degrees of acetyl substitution are used as standard samples, HPLC analysis is performed with a predetermined measuring apparatus and measurement conditions, and a calibration created using the analysis values of these standard samples. Obtain the half-value width (measured value) of cellulose acetate (sample) from the curve [Curve showing the relationship between the elution time of cellulose acetate propionate and the degree of acetyl substitution (0 to 3), usually a cubic curve]. Can do. What is required by HPLC analysis is the relationship between the elution time and the distribution of acetyl substitution degree of cellulose acetate propionate.
  • Substitution degree distribution curve obtained from the calibration curve [Substitution degree distribution curve of cellulose acetate propionate with the abundance of cellulose acetate propionate as the vertical axis and the acetyl substitution degree as the horizontal axis] ("Intermolecular substitution degree distribution curve )),
  • the half value width of the substitution degree distribution is obtained as follows for the maximum peak (E) corresponding to the average substitution degree.
  • the base (A) on the low substitution degree side of the peak (E) and the base line (AB) in contact with the high substitution side base (B) are drawn, and from this peak, the maximum peak (E) Take a vertical line on the horizontal axis.
  • An intersection (C) between the perpendicular and the base line (AB) is determined, and an intermediate point (D) between the maximum peak (E) and the intersection (C) is obtained.
  • a straight line parallel to the base line (AB) is drawn through the intermediate point (D) to obtain two intersection points (A ′, B ′) with the intermolecular substitution degree distribution curve.
  • a perpendicular line is drawn from the two intersections (A ′, B ′) to the horizontal axis, and the width between the two intersections on the horizontal axis is defined as the half-value width of the maximum peak (that is, the substitution value distribution half-value width).
  • the half-value width of the substitution degree distribution depends on the degree of acetylation of the hydroxyl chain of each glucose chain constituting the molecular chain of cellulose acetate propionate in the sample. (Retention time) is different. Therefore, ideally, the holding time width indicates the width of the composition distribution (in units of substitution degree).
  • tubes such as a guide column for protecting the column
  • the width of the holding time that is not caused by the width of the composition distribution is often included as an error. As described above, this error is affected by the length and inner diameter of the column, the length from the column to the detector, the handling, and the like, and varies depending on the apparatus configuration.
  • the half value width of the substitution degree distribution of cellulose acetate propionate can be usually obtained as the correction value Z based on the correction formula represented by the following formula.
  • Z (X 2 -Y 2 ) 1/2
  • X is the half-value width (uncorrected value) of the substitution degree distribution obtained with a predetermined measuring apparatus and measurement conditions.
  • Y (ab) x / 3 + b (0 ⁇ x ⁇ 3).
  • a is an apparent substitution degree distribution half-value width of cellulose acetate having a total substitution degree of 3 obtained by the same measuring apparatus and measurement conditions as X (actually, there is no substitution degree distribution because the total substitution degree is 3, and b is It is an apparent substitution degree distribution half-value width of cellulose propionate having a total substitution degree of 3 determined by the same measuring apparatus and measurement conditions as those of X.
  • x is the total acetyl substitution degree of the measurement sample (0 ⁇ x ⁇ 3)]
  • the cellulose acetate (or cellulose propionate) having a total substitution degree of 3 is a cellulose ester in which all of the hydroxyl groups of cellulose are esterified, and (ideally) the half-width of the substitution degree distribution. (Ie, the substitution degree distribution half-width 0) cellulose ester.
  • the measured value of the composition distribution half width (substitution degree distribution half width) of the cellulose acetate of the present invention is preferably 0.12 to 0.34, more preferably 0.13 to 0.25.
  • substitution degree distribution theoretical formula explained above is a probabilistic calculation value assuming that all acetylation and deacetylation proceed independently and equally. That is, the calculated value according to the binomial distribution. Such an ideal situation is not realistic.
  • the cellulose ester substitution degree distribution is probable unless the cellulose acetate hydrolysis reaction approaches an ideal random reaction and / or unless special measures are taken to create a fractional composition for post-treatment after the reaction. It is much wider than what is theoretically determined by the binomial distribution.
  • the substitution degree distribution of cellulose acetate can be surprisingly controlled by devising post-treatment conditions after the cellulose acetate hydrolysis step.
  • Literature CiBment, L., and Rivibre, C., Bull. SOC. Chim., (5) 1, 1075 (1934), Sookne, A. M., Rutherford, H. A., Mark, H., and Harris, M. J Research Natl. Bur. Standards, 29, 123 (1942), A. J. Rosenthal, B. B. White Ind. Eng. Chem., 1952, 44 (11), pp 269 3-2696.
  • Another idea for narrowing the substitution degree distribution found by the present inventors is a hydrolysis reaction (aging reaction) of cellulose acetate at a high temperature of 90 ° C. or higher (or higher than 90 ° C.).
  • aging reaction aging reaction
  • decomposition of cellulose is preferred in a high-temperature reaction at 90 ° C. or higher.
  • This idea can be said to be a belief (stereotype) based solely on the consideration of viscosity.
  • the present inventors hydrolyze cellulose acetate to obtain low-substituted cellulose acetate, it is in a large amount of acetic acid at a high temperature of 90 ° C. or higher (or higher than 90 ° C.), preferably in the presence of a strong acid such as sulfuric acid. It was found that when the reaction was carried out with the above, the degree of polymerization was not lowered, but the viscosity was lowered with a decrease in CDI. That is, it has been clarified that the viscosity decrease due to the high temperature reaction is not due to a decrease in the degree of polymerization but is based on a decrease in structural viscosity due to a narrow substitution degree distribution.
  • the degree of acetyl substitution at positions 2, 3, and 6 of the glucose ring of the cellulose acetate of the present invention can be measured by NMR according to the method of Tezuka (Carbondr. Res. 273, 83 (1995)). That is, a free hydroxyl group of a cellulose acetate sample is propionylated with propionic anhydride in pyridine. The obtained sample is dissolved in deuterated chloroform and the 13 C-NMR spectrum is measured.
  • the carbon signal of the acetyl group appears in the order of 2, 3, 6 from the high magnetic field in the region of 169 ppm to 171 ppm, and the signal of the carbonyl carbon of the propionyl group appears in the same order in the region of 172 ppm to 174 ppm.
  • the degree of acetyl substitution at the 2, 3, and 6 positions of the glucose ring in the original cellulose diacetate can be determined.
  • the sum of each acetyl substitution degree of the 2nd, 3rd, and 6th positions thus obtained is the total acetyl substitution degree, and the total acetyl substitution degree can be obtained by this method.
  • the total degree of acetyl substitution can be analyzed by 1 H-NMR in addition to 13 C-NMR.
  • the standard deviation ⁇ of the substitution degree at the 2nd, 3rd and 6th positions is defined by the following equation.
  • the standard deviation of the degree of acetyl substitution at the 2, 3 and 6 positions of the glucose ring of cellulose acetate is preferably 0.08 or less (0 to 0.08).
  • Cellulose acetate having a standard deviation of 0.08 or less is evenly substituted at the 2, 3, and 6 positions of the glucose ring, and has excellent solubility in water.
  • the high elongation when it is used as a film is high.
  • the polydispersity (Mw / Mn) is a value determined by GPC-light scattering method using cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups of cellulose acetate (sample).
  • the polydispersity (dispersity: Mw / Mn) of the cellulose acetate of the present invention is preferably in the range of 1.2 to 2.5.
  • Cellulose acetate having a polydispersity Mw / Mn in the above range has a uniform molecular size, is excellent in water solubility, and has a high elongation when used as a film.
  • the number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity (Mw / Mn) of cellulose acetate can be determined by a known method using HPLC.
  • the polydispersity (Mw / Mn) of cellulose acetate is determined by dissolving cellulose acetate (sample) in the same manner as in the case of obtaining the measured value of the half-value width of the composition distribution in order to make the measurement sample soluble in an organic solvent.
  • Is completely derivatized cellulose acetate propionate (CAP) Is completely derivatized cellulose acetate propionate (CAP), and then size exclusion chromatography analysis is performed under the following conditions (GPC-light scattering method).
  • the weight average degree of polymerization (DPw) is a value determined by GPC-light scattering method using cellulose acetate propionate obtained by propionylating all remaining hydroxyl groups of cellulose acetate (sample).
  • the weight average polymerization degree (DPw) of the cellulose acetate of the present invention is preferably in the range of 50 to 800. If the weight average degree of polymerization (DPw) is too low, the strong elongation tends to be low. On the other hand, if the weight average degree of polymerization (DPw) is too high, filterability tends to deteriorate.
  • the weight average degree of polymerization (DPw) is preferably 55 to 700, more preferably 60 to 600.
  • the weight average degree of polymerization is obtained by completely derivatizing cellulose acetate (sample) with a method similar to that for obtaining the measured half-value width of the composition distribution. After obtaining propionate (CAP), it is determined by size exclusion chromatography analysis (GPC-light scattering method).
  • the molecular weight (polymerization degree) and polydispersity (Mw / Mn) of water-soluble cellulose acetate are measured by GPC-light scattering method (GPC-MALLS, GPC-LALLS, etc.).
  • GPC-MALLS GPC-light scattering method
  • detection of light scattering is generally difficult with an aqueous solvent. This is because aqueous solvents generally have a large amount of foreign matter and are easily contaminated by secondary contamination once purified.
  • the spread of molecular chains may not be stable due to the influence of ionic dissociation groups present in a trace amount, and if water-soluble inorganic salt (for example, sodium chloride) is added to suppress this, it will dissolve.
  • water-soluble inorganic salt for example, sodium chloride
  • the state may become unstable, and an aggregate may be formed in an aqueous solution.
  • One effective method for avoiding this problem is to derivatize water-soluble cellulose acetate so that it is dissolved in an organic solvent that is less contaminated and less susceptible to secondary contamination, and GPC-light scattering measurement is performed in the organic solvent. That is.
  • Propionylation is effective for derivatization of water-soluble cellulose acetate for this purpose, and specific reaction conditions and post-treatment are as described in the explanation of the measured value of the half width of the composition distribution.
  • the 6% viscosity of the cellulose acetate of the present invention is, for example, 5 to 500 mPa ⁇ s, preferably 6 to 300 mPa ⁇ s. If the 6% viscosity is too high, filterability may deteriorate. On the other hand, if the 6% viscosity is too low, the strength at the time of forming a film tends to decrease.
  • the 6% viscosity of cellulose acetate can be measured by the following method. Add 3.00 g of dry sample to a 50 ml volumetric flask and add distilled water to dissolve. The obtained 6 wt / vol% solution is transferred to a predetermined Ostwald viscometer mark and temperature-controlled at 25 ⁇ 1 ° C. for about 15 minutes. Measure the flow-down time between the time marks and calculate the 6% viscosity by the following formula.
  • the composition distribution (intermolecular substitution degree distribution) is narrow. Therefore, when cellulose acetate is formed into a film, for example, the tensile strength of the film In addition, the elongation at break can be increased. In particular, when the CDI is 2.0 or less (preferably 1.8 or less, more preferably 1.6 or less, particularly preferably 1.3 or less), very high tensile strength and elongation at break can be obtained. .
  • the elongation at break (22 ° C., tensile rate 100 mm / min) of the film is 5.0% or more (for example, 5.0 to 15%) at a thickness of 50 ⁇ m despite the low substitution degree. It is preferably 7.5% or more (for example, 7.5 to 13%), more preferably 8.5% or more (for example, 8.5 to 11%).
  • the cellulose acetate of the present invention can be obtained by, for example, (A) middle to high-substituted cellulose acetate hydrolysis step (ripening step), (B) precipitation step, and (C) washing and neutralization step performed as necessary. Can be manufactured.
  • (A) Hydrolysis step (aging step)
  • medium to high-substituted cellulose acetate (hereinafter sometimes referred to as “raw cellulose acetate”) is hydrolyzed.
  • the total acetyl substitution degree of the medium to high substitution cellulose acetate used as a raw material is, for example, 1.5 to 3, preferably 2 to 3.
  • As the raw material cellulose acetate commercially available cellulose diacetate (acetyl total substitution degree: 2.27 to 2.56) and cellulose triacetate (acetyl total substitution degree: more than 2.56 to 3) can be used.
  • the hydrolysis reaction can be performed by reacting raw material cellulose acetate and water in an organic solvent in the presence of a catalyst (aging catalyst).
  • a catalyst aging catalyst
  • the organic solvent include acetic acid, acetone, alcohol (such as methanol), and mixed solvents thereof. Among these, a solvent containing at least acetic acid is preferable.
  • a catalyst generally used as a deacetylation catalyst can be used.
  • sulfuric acid is particularly preferable.
  • the amount of the organic solvent (for example, acetic acid) used is, for example, 0.5 to 50 parts by weight, preferably 1 to 20 parts by weight, and more preferably 3 to 10 parts by weight with respect to 1 part by weight of the raw material cellulose acetate. .
  • the amount of the catalyst (for example, sulfuric acid) used is, for example, 0.005 to 1 part by weight, preferably 0.01 to 0.5 part by weight, more preferably 0.02 to 1 part by weight based on 1 part by weight of the raw material cellulose acetate. 0.3 parts by weight. If the amount of the catalyst is too small, the hydrolysis time becomes too long, which may cause a decrease in the molecular weight of cellulose acetate. On the other hand, if the amount of the catalyst is too large, the degree of change in the depolymerization rate with respect to the hydrolysis temperature increases, and even if the hydrolysis temperature is low to some extent, the depolymerization rate increases and it is difficult to obtain cellulose acetate having a somewhat high molecular weight. Become.
  • the amount of water in the hydrolysis step is, for example, 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, and more preferably 2 to 7 parts by weight with respect to 1 part by weight of the raw material cellulose acetate.
  • the amount of the water is, for example, 0.1 to 5 parts by weight, preferably 0.3 to 2 parts by weight, more preferably 0.5 to 1 part per 1 part by weight of the organic solvent (for example, acetic acid). .5 parts by weight.
  • all amounts of water may be present in the system at the start of the reaction, in order to prevent precipitation of cellulose acetate, a part of the water to be used is present in the system at the start of the reaction, and the remaining water is removed. It may be added to the system in 1 to several times.
  • the reaction temperature in the hydrolysis step is, for example, 40 to 130 ° C, preferably 50 to 120 ° C, more preferably 60 to 110 ° C.
  • the reaction temperature is 90 ° C. or higher (or a temperature exceeding 90 ° C.)
  • the equilibrium of the reaction tends to increase in the direction in which the rate of the reverse reaction (acetylation reaction) to the normal reaction (hydrolysis reaction) increases.
  • the substitution degree distribution becomes narrow, and a low substitution degree cellulose acetate having an extremely small composition distribution index CDI can be obtained without any particular ingenuity in the post-treatment conditions.
  • Step 2 After completion of the hydrolysis reaction, the temperature of the reaction system is cooled to room temperature, and a precipitation solvent is added to precipitate low-substituted cellulose acetate.
  • a precipitation solvent an organic solvent miscible with water or an organic solvent having high solubility in water can be used. Examples thereof include ketones such as acetone and methyl ethyl ketone; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate; nitrogen-containing compounds such as acetonitrile; ethers such as tetrahydrofuran; and mixed solvents thereof.
  • the mixed solvent include a mixed solvent of acetone and methanol, a mixed solvent of isopropyl alcohol and methanol, and the like.
  • composition distribution (intermolecular substitution degree distribution) is narrow, A low-substituted cellulose acetate having a very small composition distribution index CDI can be obtained.
  • low-substituted cellulose acetate (solid matter) obtained by precipitation is dissolved in water to obtain an aqueous solution having an appropriate concentration (for example, 2 to 10% by weight, preferably 3 to 8% by weight).
  • a poor solvent is added to this aqueous solution (or the aqueous solution is added to the poor solvent), and maintained at an appropriate temperature (for example, 30 ° C. or less, preferably 20 ° C. or less) to precipitate low-substituted cellulose acetate, This can be done by collecting the precipitate.
  • the poor solvent include alcohols such as methanol and ketones such as acetone.
  • the amount of the poor solvent used is, for example, 1 to 10 parts by weight, preferably 2 to 7 parts by weight with respect to 1 part by weight of the aqueous solution.
  • the low-substituted cellulose acetate (solid matter) obtained by the precipitation or the low-substituted cellulose acetate (solid matter) obtained by the precipitation fractionation is mixed with water and an organic solvent (for example, acetone or the like).
  • an organic solvent for example, acetone or the like.
  • a mixed solvent of an alcohol such as ketone and ethanol, and the like and after stirring at an appropriate temperature (for example, 20 to 80 ° C., preferably 25 to 60 ° C.), it is separated into a concentrated phase and a diluted phase by centrifugation, A precipitation solvent (for example, a ketone such as acetone or an alcohol such as methanol) is added to the dilute phase, and the precipitate (solid matter) is recovered.
  • the concentration of the organic solvent in the mixed solvent of water and organic solvent is, for example, 5 to 50% by weight, preferably 10 to 40% by weight.
  • the precipitate (solid matter) obtained in the precipitation step (B) is preferably washed with an organic solvent (poor solvent) such as alcohol such as methanol and ketone such as acetone. Moreover, it is also preferable to wash and neutralize with an organic solvent containing a basic substance (for example, alcohol such as methanol, ketone such as acetone).
  • alkali metal compounds for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal carbonates such as sodium hydrogen carbonate) Hydrogen salts; alkali metal carboxylates such as sodium acetate and potassium acetate; sodium alkoxides such as sodium methoxide and sodium ethoxide), alkaline earth metal compounds (for example, alkaline earth such as magnesium hydroxide and calcium hydroxide) Alkaline earth metal carbonates such as metal hydroxide, magnesium carbonate and calcium carbonate; alkaline earth metal carboxylates such as magnesium acetate and calcium acetate; alkaline earth metal alkoxides such as magnesium ethoxide, etc.) can be used. .
  • alkali metal compounds such as potassium acetate are particularly preferable.
  • Impurities such as the catalyst (sulfuric acid, etc.) used in the hydrolysis step can be efficiently removed by washing and neutralization.
  • molded articles such as films and fibers can be produced.
  • the low-substituted cellulose acetate is dissolved in a solvent such as an aqueous solvent to prepare a low-substituted cellulose acetate solution, and this solution is cast on a substrate using a coating means such as a bar coater and dried.
  • a cellulose acetate film can be manufactured.
  • the aqueous solvent include water; a mixed solvent of water and a water-soluble organic solvent.
  • the concentration of the low-substituted cellulose acetate solution is not particularly limited, but is preferably 1 to 50% by weight, more preferably 2 to 40% by weight, and still more preferably 5 to 15% by weight from the viewpoint of handleability and productivity. %.
  • substrate For example, a glass plate, a plastic plate, a metal plate etc. are mentioned.
  • the thickness of the obtained cellulose acetate film is, for example, 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 10 to 250 ⁇ m.
  • the cellulose acetate film thus obtained has high tensile strength and high elongation at break even if the degree of substitution is low.
  • a cellulose acetate fiber can be obtained by dissolving the low-substituted cellulose acetate in a solvent such as an aqueous solvent to prepare a low-substituted cellulose acetate solution (dope), and discharging the solution through a base and drying it.
  • a solvent such as an aqueous solvent
  • concentration of the low-substituted cellulose acetate solution (dope) is, for example, preferably 1 to 60% by weight, more preferably 5 to 50% by weight, and still more preferably 10 to 40% by weight from the viewpoints of handleability and productivity.
  • the aqueous solvent include water; a mixed solvent of water and a water-soluble organic solvent.
  • the drying temperature at the time of spinning is, for example, 100 ° C. or higher, preferably about 100 to 500 ° C.
  • the fineness (single yarn denier) of the fiber obtained by spinning is, for example, about 1 to 30 denier (d), preferably 5 to 20 denier (d).
  • the fineness can be controlled by adjusting the amount of dope discharged from the die.
  • the strength and elongation of the cellulose acetate fiber thus obtained are high even with a low degree of substitution.
  • the tensile strength (based on JIS L 1015) of the cellulose acetate fiber at a temperature of 20 ⁇ 2 ° C. and a relative humidity of 65 ⁇ 2% is, for example, a fineness of 9 denier and 1.5 g / d or more (for example, 1.
  • the cellulose acetate fiber has an elongation (based on JIS L 1015) at a temperature of 20 ⁇ 2 ° C.
  • a relative humidity of 65 ⁇ 2% for example, a fineness of 9 denier and 22% or more (for example, 22 to 40%), Preferably, it is 23% or more (for example, 23 to 35%), and when the fineness is 16.7 denier, it is 10% or more (for example, 10 to 18%), preferably 11% or more (for example, 11 to 16%).
  • Example 1 5.1 parts by weight of acetic acid and 2.0 parts by weight with respect to 1 part by weight of cellulose acetate (manufactured by Daicel, trade name “L-50”, acetyl total substitution degree 2.43, 6% viscosity: 110 mPa ⁇ s) A portion of water was added and the mixture was stirred for 3 hours to dissolve the cellulose acetate. 0.13 parts by weight of sulfuric acid was added to this solution, and the resulting solution was kept at 95 ° C. for hydrolysis. In order to prevent the precipitation of cellulose acetate during hydrolysis, water was added to the system in two portions. That is, 0.37 hours after the start of the reaction, 0.67 parts by weight of water was added to the system over 5 minutes.
  • cellulose acetate manufactured by Daicel, trade name “L-50”, acetyl total substitution degree 2.43, 6% viscosity: 110 mPa ⁇ s
  • the first hydrolysis step from the start of the reaction to the first water addition
  • the second hydrolysis step from the first water addition to the second water addition.
  • Step) From the second addition of water to the end of the reaction is referred to as a third hydrolysis step (third aging step).
  • the temperature of the system was cooled to room temperature (about 25 ° C.), and 15 parts by weight of precipitation solvent (methanol) was added to the reaction mixture to form a precipitate.
  • the precipitate was recovered as a wet cake having a solid content of 15% by weight, and washed by adding 8 parts by weight of methanol and draining to a solid content of 15% by weight. This was repeated three times. The washed precipitate was further washed twice with 8 parts by weight of methanol containing 0.004% by weight of potassium acetate, neutralized and dried to obtain low-substituted cellulose acetate. Further, a film (thickness: 50 ⁇ m) was produced from the low-substituted cellulose acetate according to the above method (the method described in the explanation of tensile strength and elongation at break).
  • the total degree of acetyl substitution of the resulting low-substituted cellulose acetate, the standard deviation of the degree of substitution at the 2nd, 3rd and 6th positions, 6% viscosity (mPa ⁇ s), weight average degree of polymerization (DPw), polydispersity ( Mw / Mn), intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ), and elongation at break (%) were measured by the methods described above.
  • Table 1 shows the experimental conditions
  • Table 2 shows the measurement results of the physical properties of the obtained low-substituted cellulose acetate.
  • third aging solution composition (acetic acid wt%)” means the acetic acid concentration (wt%) in the system in the third aging step.
  • degree of substitution means “total degree of acetyl substitution”
  • standard deviation of C2, C3, C6 means “standard deviation of degree of substitution at the 2nd, 3rd and 6th positions”.
  • degree of polymerization means “weight average degree of polymerization”.
  • Example 4 5.1 parts by weight of acetic acid and 2.0 parts by weight with respect to 1 part by weight of cellulose acetate (manufactured by Daicel, trade name “L-50”, acetyl total substitution degree 2.43, 6% viscosity: 110 mPa ⁇ s) A portion of water was added and the mixture was stirred for 3 hours to dissolve the cellulose acetate. 0.13 parts by weight of sulfuric acid was added to this solution, and the resulting solution was kept at 70 ° C. for hydrolysis. In order to prevent the precipitation of cellulose acetate during hydrolysis, water was added to the system in two portions. That is, after 1 hour, 0.67 parts by weight of water was added to the system over 5 minutes.
  • the first hydrolysis step from the start of the reaction to the first water addition
  • the second hydrolysis step from the first water addition to the second water addition.
  • Step) From the second addition of water to the end of the reaction is referred to as a third hydrolysis step (third aging step).
  • the temperature of the system is cooled to room temperature (about 25 ° C.), and 15 parts by weight of a precipitation solvent [acetone / methanol 1: 1 (weight ratio) mixed solvent] is added to the reaction mixture to form a precipitate. I let you.
  • the precipitate was drained to form a wet cake having a solid content of 15% by weight.
  • the obtained precipitate was added to water and stirred for 8 hours to obtain a 5 wt% solution.
  • Methanol which is a poor solvent, was added in an amount four times (weight basis) of the above 5 wt% solution, and kept at 10 ° C. for 1 hour to collect the precipitate (precipitation fractionation).
  • the precipitate was drained to form a wet cake having a solid content of 15% by weight. This precipitate was washed, neutralized and dried in the same manner as in Example 1 to obtain low-substituted cellulose acetate.
  • a film (thickness: 50 ⁇ m) was produced from the low-substituted cellulose acetate according to the above method (the method described in the explanation of tensile strength and elongation at break).
  • Table 1 shows the experimental conditions and yield
  • Table 2 shows the measurement results of the physical properties of the obtained low-substituted cellulose acetate.
  • third aging solution composition acetic acid wt%)
  • acetic acid concentration wt% in the system in the third aging step.
  • weight (parts by weight) of the poor solvent in the column for precipitation fractionation in Table 1 is a value relative to 1 part by weight of a 5% by weight solution prepared by adding water to the precipitate.
  • Example 6 5.1 parts by weight of acetic acid and 2.0 parts by weight with respect to 1 part by weight of cellulose acetate (manufactured by Daicel, trade name “L-50”, acetyl total substitution degree 2.43, 6% viscosity: 110 mPa ⁇ s) A portion of water was added and the mixture was stirred for 3 hours to dissolve the cellulose acetate. 0.13 parts by weight of sulfuric acid was added to this solution, and the resulting solution was kept at 70 ° C. for hydrolysis. In order to prevent the precipitation of cellulose acetate during hydrolysis, water was added to the system in two portions. That is, after 1 hour, 0.67 parts by weight of water was added to the system over 5 minutes.
  • the first hydrolysis step from the start of the reaction to the first water addition
  • the second hydrolysis step from the first water addition to the second water addition.
  • Step) From the second addition of water to the end of the reaction is referred to as a third hydrolysis step (third aging step).
  • the temperature of the system is cooled to room temperature (about 25 ° C.), and 15 parts by weight of a precipitation solvent (methanol / isopropyl alcohol 1: 2 (weight ratio) mixed solvent) is added to the reaction mixture to precipitate. Generated.
  • a precipitation solvent methanol / isopropyl alcohol 1: 2 (weight ratio) mixed solvent
  • the precipitate was drained to form a wet cake having a solid content of 15% by weight. 15 parts by weight of an acetone / water mixed solvent (acetone concentration: 15% by weight) is added to 1 part by weight of the solid content of the resulting precipitate. After stirring at 20 ° C. for 8 hours, the concentrated phase is removed by centrifugation. Acetone (precipitation solvent) was added to the diluted phase, and the precipitate (solid) was recovered (dissolved fractionation). The precipitate was drained to form a wet cake having a solid content of 15% by weight. This precipitate was washed, neutralized and dried in the same manner as in Example 1 to obtain low-substituted cellulose acetate.
  • a film (thickness: 50 ⁇ m) was produced from the low-substituted cellulose acetate according to the above method (the method described in the explanation of tensile strength and elongation at break).
  • Table 1 shows the experimental conditions and yield
  • Table 2 shows the measurement results of the physical properties of the obtained low-substituted cellulose acetate.
  • third aging solution composition acetic acid wt%)
  • solvent in the column for dissolution fractionation in Table 1
  • concentration means the concentration of the organic solvent in the preparation of the mixture of the organic solvent and water.
  • Example 8 5.1 parts by weight of acetic acid and 2.0 parts by weight with respect to 1 part by weight of cellulose acetate (manufactured by Daicel, trade name “L-50”, acetyl total substitution degree 2.43, 6% viscosity: 110 mPa ⁇ s) A portion of water was added and the mixture was stirred for 3 hours to dissolve the cellulose acetate. 0.13 parts by weight of sulfuric acid was added to this solution, and the resulting solution was kept at 40 ° C. for hydrolysis. In order to prevent the precipitation of cellulose acetate during hydrolysis, water was added to the system in two portions. That is, after 14 hours, 0.67 parts by weight of water was added to the system over 5 minutes.
  • the first hydrolysis step from the start of the reaction to the first water addition
  • the second hydrolysis step from the first water addition to the second water addition.
  • Step) From the second addition of water to the end of the reaction is referred to as a third hydrolysis step (third aging step).
  • the temperature of the system is cooled to room temperature (about 25 ° C.), and 15 parts by weight of a precipitation solvent (acetone / methanol 1: 1 (weight ratio) mixed solvent) is added to the reaction mixture to form a precipitate. I let you.
  • the precipitate was drained into a wet cake with a solid content of 15%.
  • the obtained precipitate was added to water and stirred for 8 hours to obtain a 5 wt% solution.
  • Methanol which is a poor solvent, was added in an amount four times (weight basis) of the above 5 wt% solution, and kept at 10 ° C. for 1 hour to collect the precipitate (precipitation fractionation).
  • the precipitate was drained to form a wet cake having a solid content of 15% by weight. 15 parts by weight of an acetone / water mixed solvent (acetone concentration: 15% by weight) is added to 1 part by weight of the solid content of the resulting precipitate. After stirring at 20 ° C. for 8 hours, the concentrated phase is removed by centrifugation.
  • the total degree of acetyl substitution of the resulting low-substituted cellulose acetate, the standard deviation of the degree of substitution at the 2nd, 3rd and 6th positions, 6% viscosity (mPa ⁇ s), weight average degree of polymerization (DPw), polydispersity ( Mw / Mn), intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2), and elongation at break (%) were measured by the methods described above.
  • Table 1 shows the experimental conditions and yield
  • Table 2 shows the measurement results of the physical properties of the obtained low-substituted cellulose acetate.
  • third aging solution composition means the acetic acid concentration (wt%) in the system in the third aging step.
  • weight (parts by weight) of the poor solvent in the column for precipitation fractionation in Table 1 is a value relative to 1 part by weight of a 5% by weight solution prepared by adding water to the precipitate.
  • solvent in the column for dissolution fractionation in Table 1 means the type of the organic solvent mixed with water
  • concentration means the concentration of the organic solvent in the preparation of the mixture of the organic solvent and water.
  • Examples 2 to 3, Example 5, Example 7, Examples 9 to 28, Comparative Example 1, Comparative Examples 3 to 4 In the conditions shown in Table 1, when precipitation fractionation and dissolution fractionation are not performed, the same as in Example 1 above, and when precipitation fractionation and dissolution fractionation are carried out, as in Example 4, 6 or 8, Reaction and precipitation were performed to obtain low substituted cellulose acetate. Further, a film (thickness: 50 ⁇ m) was produced according to the above method (the method described in the explanation of tensile strength and elongation at break). Table 1 shows the experimental conditions, and Table 2 shows the measurement results of the physical properties of the obtained low-substituted cellulose acetate.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • a film (thickness: 50 ⁇ m) was produced from the mixture of the two types of cellulose acetate according to the above-described method (the method described in the explanation of tensile strength and elongation at break).
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods. Table 2 shows the measurement results of each physical property.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • Example 7 A low-substituted cellulose acetate was produced according to the method described in Example 6 of JP-T-5-500684 (reaction solvent: methanol). From this cellulose acetate, a film (thickness 50 ⁇ m) was produced according to the above-described method (the method described in the explanation of tensile strength and elongation at break).
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • the total degree of acetyl substitution of the obtained cellulose acetate, the standard deviation of the substitution degree at the 2-position, 3-position and 6-position, 6% viscosity (mPa ⁇ s), weight average polymerization degree (DPw), polydispersity (Mw / Mn) ), Intermolecular substitution degree distribution half width (actual value), composition distribution index (CDI), film tensile strength (kgf / cm 2 ) and elongation at break (%) were measured by the above-described methods.
  • the yield is shown in Table 1, and the measurement results of physical properties are shown in Table 2.
  • a fiber having a fineness of 16.7d was prepared from the low-substituted cellulose acetate obtained in the above examples and comparative examples by the method described in Example 1 of JP-B-1-13481. That is, a low-substituted cellulose acetate sample was dissolved in water at a concentration of 15% by weight to obtain a dope.
  • the dope was dry-spun under the conditions of a winding speed of 100 m / min, a drying temperature of 400 ° C., a discharge rate of 2.22 g / min, a number of nozzle holes of 12 and a diameter of the nozzle hole of 0.5 mm, and a single yarn denier fiber 16.7 )
  • the tensile strength (g / d) and elongation (%) of the obtained fiber at a temperature of 20 ⁇ 2 ° C. and a relative humidity of 65 ⁇ 2% were measured according to JIS L1015. The results are shown in Table 2. In Table 2, those that could not be spun due to clogging of the dope die were described as “unspinning”.
  • a fiber having a fineness of 9d (10 dtex) was prepared from the low-substituted cellulose acetate obtained in the above-mentioned Examples and Comparative Examples by the method described in Example 2 of JP-A-7-268724. That is, 900 g of a low-substituted cellulose acetate sample was dissolved in 1.9 L of hot water at 95 ° C. The filtered and degassed solution was heated to 125 ° C., discharged through a spinner pump through a die having 20 holes (pore diameter 0.15 mm), and dried at 380 ° C. and wound at 305 m / min.
  • the tensile strength (g / d) and elongation (%) of the obtained fiber at a temperature of 20 ⁇ 2 ° C. and a relative humidity of 65 ⁇ 2% were measured according to JIS L1015. The results are shown in Table 2. In Table 2, those that could not be spun due to clogging of the dope die were described as “unspinning”.
  • FIG. 1 is a graph showing the relationship between CDI and tensile strength (kgf / cm 2 ) for films (50 ⁇ m thickness) formed from cellulose acetate obtained in Examples and Comparative Examples.
  • FIG. 2 is a graph showing the relationship with the degree (%). Further, for fibers (yarns) having a fineness of 16.7d and fibers (yarns) having a fineness of 9d (380 ° C.) prepared from cellulose acetate obtained in Examples and Comparative Examples, CDI and tensile strength (g / d)
  • FIG. 3 is a graph showing the relationship between the CDI and FIG. 4 is a graph obtained by grafting the relationship between the CDI and the elongation (%).
  • FIG. 1 is a graph showing the relationship between CDI and tensile strength (kgf / cm 2 ) for films (50 ⁇ m thickness) formed from cellulose acetate obtained in Examples and Comparative Examples.
  • FIG. 2 is a graph showing the relationship
  • white triangle marks ( ⁇ ) are data of fibers (yarns) having a fineness of 16.7d
  • black triangle marks ( ⁇ ) are data of fibers (yarns) having a fineness of 9d (380 ° C.).
  • white square marks ( ⁇ ) are data of fibers (yarns) having a fineness of 16.7 d
  • black square marks ( ⁇ ) are data of fibers (yarns) having a fineness of 9 d (380 ° C.).
  • the fiber (yarn) prepared from the low-substituted cellulose acetate obtained in the examples has a composition distribution index (CDI) of 3.0 or less, Despite the low degree of substitution, the tensile strength and elongation are high.
  • the film made from low-substituted cellulose acetate having a composition distribution index (CDI) of 2.0 or less has a low degree of substitution. Nevertheless, the tensile strength and elongation at break are high.
  • the light transmittance (wavelength: 500 nm) of the prepared aqueous cellulose acetate solution was measured with an ultraviolet-visible spectrophotometer (trade name “UV-1700” manufactured by Shimadzu Corporation). The results are shown in Table 3. From Table 3, it can be seen that cellulose acetate having a smaller composition distribution index (CDI) has higher light transmittance and better water solubility.
  • CDI composition distribution index
  • the cellulose acetate of the present invention is excellent in solubility in water and has a high degree of elongation (tensile strength or tensile strength and elongation at break or elongation) when used as a film or fiber while having a low degree of substitution. Therefore, it can be used as a water-soluble or water-compatible polymer material for tablet binders, tablet coating agents, staple binders, cosmetic thickeners, cosmetic moisturizers, excipients, molded article materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の酢酸セルロースは、アセチル総置換度が0.4~1.1である酢酸セルロースであって、下記で定義される組成分布指数(CDI)が3.0以下である。 CDI=(組成分布半値幅の実測値)/(組成分布半値幅の理論値) 組成分布半値幅の実測値:酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートをHPLC分析して求めた組成分布半値幅 下記式において、DSはアセチル総置換度、DPwは重量平均重合度(酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)である。

Description

低置換度酢酸セルロース
 本発明は、強伸度の高いフィルムや繊維等の成形品が得られる低置換度酢酸セルロースに関する。このような酢酸セルロースは水に対する溶解性が高いため、水溶性高分子材料として、例えば、錠剤のバインダー、錠剤のコーティング剤、ステープルバインダー、化粧品用増粘剤、化粧品用保湿剤、賦形剤、成形品材料などに用いられる。本願は、2013年3月13日に日本に出願した特願2013-050915、2013年10月2日に日本に出願した特願2013-206955、及び2013年12月20日に日本に出願した特願2013-263889の優先権を主張し、その内容をここに援用する。
 水溶性のセルロース誘導体としてヒドロキシプロプルセルロースなどが知られており、錠剤のバインダーやコーティング剤に使用されている。また、酢酸セルロースについても、アセチル総置換度が0.3~1.2程度の低置換度のものは水に対して可溶性又は高い親和性を有することが知られている。
 例えば、特公平1-13481号公報には、アセチル総置換度が0.3~0.8であり、且つ6位アセチル置換度のアセチル総置換度に対する割合が0.35~0.4の範囲にある水に可溶な酢酸セルロースが開示されている。この文献には、上記酢酸セルロースは、アセチル総置換度が2.4以上の高置換度の酢酸セルロースを大量の水の存在下で、塩酸、硫酸等の無機酸を触媒とし、加水分解することによって得られると記載されている。
 特開平4-261401号公報には、アセチル総置換度が0.4~0.9であり、水不溶物の含量が1.5重量%以下、重量平均分子量が5×103~3×106である水溶性酢酸セルロースが開示されている。この文献には、上記水溶性酢酸セルロースは、セルロースを少量の酸性触媒の存在下で、高温、短時間でアセチル化するアセチル化工程と、得られた高アセチル置換度の酢酸セルロースを、高温、短時間で加水分解する第一熟成工程と、少量の酸性触媒の存在下で、比較的高温、短時間でさらに加水分解する第二熟成工程とを組み合わせることにより得られると記載されている。
 特表平5-500684号公報及び特表平5-501129号公報には、セルロースエステルを、特定の溶媒の存在下、特定の可溶媒分解促進剤を用いることにより、置換度の低減されたセルロースエステルを得る方法が開示されている。これらの文献には、該方法によれば、置換度2~3のセルロースエステルから置換度0.4~1.2のセルロースエステルが得られることが記載されている。
特公平1-13481号公報 特開平4-261401号公報 特表平5-500684号公報 特表平5-501129号公報
 しかしながら、従来の方法で得られる低置換度酢酸セルロースは、例えばフィルムや繊維とした時の強伸度が低いという問題を有するため、フィルムや繊維などの用途での実用化には至っていない。
 本発明の目的は、低置換度であっても強伸度の高いフィルムや繊維を得ることができる、水に対する溶解性に優れた酢酸セルロースを提供することにある。
 本発明の他の目的は、強伸度が高く、しかも水に対する溶解性に優れた酢酸セルロース成形品(フィルム、繊維等)を提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、低置換度の酢酸セルロースであっても、組成分布指数(CDI)(組成分布半値幅の理論値に対する実測値の比率で定義される)が特定値以下である場合には、例えばフィルムや繊維とした時の強伸度が高くなることを見出し、本発明を完成した。
 すなわち、本発明は、アセチル総置換度が0.4~1.1である酢酸セルロースであって、下記で定義される組成分布指数(CDI)が3.0以下である酢酸セルロースを提供する。
 CDI=(組成分布半値幅の実測値)/(組成分布半値幅の理論値)
 組成分布半値幅の実測値:酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートをHPLC分析して求めた組成分布半値幅
Figure JPOXMLDOC01-appb-M000003
  DS:アセチル総置換度
  DPw:重量平均重合度(酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)
 この酢酸セルロースにおいて、前記CDIは2.8以下であってもよく、また、前記CDIは2.0以下であってもよい。
 また、この酢酸セルロースにおいて、下記で定義される、2位、3位及び6位のアセチル置換度の標準偏差σが0.08以下であるのが好ましい。
Figure JPOXMLDOC01-appb-M000004
 また、分子量分布および重合度分布に関する多分散性(分散度Mw/Mn;酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)が1.2~2.5の範囲であるのが好ましい。
 さらに、重量平均重合度(DPw;酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)が50~800の範囲であるのが好ましい。
 本発明は、また、前記酢酸セルロースの製造方法であって、酢酸セルロースを90℃以上の温度で部分的に加水分解して低置換度化することを特徴とする酢酸セルロースの製造方法を提供する。
 本発明は、さらに、前記酢酸セルロースから形成された成形品を提供する。
 本発明は、また、前記酢酸セルロースから形成された繊維又はフィルムを提供する。
 本発明の酢酸セルロースは、水に対する溶解性に優れるとともに、低置換度でありながら、成形して得られる成形品(例えば、繊維等)の強度及び伸度が高い。特に、CDIが2.0以下の酢酸セルロースにおいては、水に対する溶解性に優れるとともに、低置換度でありながら、フィルムとした時の強伸度(引張強度及び破断伸度)が高い。このため、水溶性或いは水親和性の高分子材料として、錠剤のバインダー、錠剤のコーティング剤、ステープルバインダー、化粧品用増粘剤、化粧品用保湿剤、賦形剤、繊維やフィルム等の成形品材料などに利用できる。
 また、本発明の成形品(フィルム、繊維等)は、上記本発明の酢酸セルロースから形成されているので、強伸度が高く、しかも水に対する溶解性に優れる。
実施例及び比較例で得られたフィルム(50μm厚)におけるCDIと引張強度(kgf/cm2)との関係を示すグラフである。 実施例及び比較例で得られたフィルム(50μm厚)におけるCDIと破断伸度(%)との関係を示すグラフである。 実施例及び比較例で得られた酢酸セルロースから調製した繊度16.7dの繊維(糸)及び繊度9d(380℃)の繊維(糸)におけるCDIと引張強さ(g/d)との関係を示すグラフである。 実施例及び比較例で得られた酢酸セルロースから調製した繊度16.7dの繊維(糸)及び繊度9d(380℃)の繊維(糸)におけるCDIと伸び率(%)との関係を示すグラフである。
 本発明の酢酸セルロースは、アセチル総置換度が0.4~1.1であり、且つ組成分布半値幅の理論値に対する実測値の比率で定義される組成分布指数(CDI)が3.0以下である。
 (アセチル総置換度)
 本発明の酢酸セルロースは、アセチル総置換度(平均置換度)が0.4~1.1である。アセチル総置換度がこの範囲であると水に対する溶解性に優れ、この範囲を外れると水に対する溶解性が低下する。本発明の酢酸セルロースにおいて、アセチル総置換度の好ましい範囲は0.5~1.0であり、さらに好ましい範囲は0.6~0.95である。アセチル総置換度は、酢酸セルロースを水に溶解し、酢酸セルロースの置換度を求める公知の滴定法により測定できる。また、該アセチル総置換度は、酢酸セルロースの水酸基をプロピオニル化した上で(後述の方法参照)、重クロロホルムに溶解し、NMRにより測定することもできる。
 アセチル総置換度は、ASTM:D-817-91(セルロースアセテートなどの試験方法)における酢化度の測定法に準じて求めた酢化度を次式で換算することにより求められる。これは、最も一般的なセルロースアセテートの置換度の求め方である。
 DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
 DS:アセチル総置換度
 AV:酢化度(%)
 まず、乾燥した酢酸セルロース(試料)500mgを精秤し、超純水とアセトンとの混合溶媒(容量比4:1)50mlに溶解した後、0.2N-水酸化ナトリウム水溶液50mlを添加し、25℃で2時間ケン化する。次に、0.2N-塩酸50mlを添加し、フェノールフタレインを指示薬として、0.2N-水酸化ナトリウム水溶液(0.2N-水酸化ナトリウム規定液)で、脱離した酢酸量を滴定する。また、同様の方法によりブランク試験(試料を用いない試験)を行う。そして、下記式にしたがってAV(酢化度)(%)を算出する。
 AV(%)=(A-B)×F×1.201/試料重量(g)
 A:0.2N-水酸化ナトリウム規定液の滴定量(ml)
 B:ブランクテストにおける0.2N-水酸化ナトリウム規定液の滴定量(ml)
 F:0.2N-水酸化ナトリウム規定液のファクター
 (組成分布指数(CDI))
 本発明の酢酸セルロースは、組成分布指数(CDI)が3.0以下(例えば、1.0~3.0)である。組成分布指数(CDI)は、好ましくは2.8以下、より好ましくは2.0以下、さらに好ましくは1.8以下、特に好ましくは1.6以下であり、最も好ましくは1.3以下である。
 組成分布指数(CDI)の下限値は0であるが、これは例えば100%の選択性でグルコース残基の6位のみをアセチル化し、他の位置はアセチル化しない等の特別な合成技術をもって実現されるものであり、そのような合成技術は知られていない。グルコース残基の水酸基の全てが同じ確率でアセチル化および脱アセチル化される状況において、CDIは1.0となるが、実際のセルロースの反応においてはこのような理想状態に近付けるためには相当の工夫を要する。従来の技術においては、このような組成分布の制御についてはあまり関心が払われていなかった。
 本発明の酢酸セルロースは組成分布指数(CDI)が小さく、組成分布(分子間置換度分布)が均一であるため、低置換度であっても、フィルムとした時の強伸度が非常に高い。これは、組成分布が均一であることにより、フィルム構造の欠陥が減少するためである。また、組成分布が均一であるため、総置換度が通常よりも広い範囲で水溶性を確保できる。
 ここで、組成分布指数(Compositional Distribution Index, CDI)とは、組成分布半値幅の理論値に対する実測値の比率[(組成分布半値幅の実測値)/(組成分布半値幅の理論値)]で定義される。組成分布半値幅は「分子間置換度分布半値幅」又は単に「置換度分布半値幅」ともいう。
 酢酸セルロースのアセチル総置換度の均一性を評価するのに、酢酸セルロースの分子間置換度分布曲線の最大ピークの半値幅(「半価幅」ともいう)の大きさを指標とすることができる。なお、半値幅は、アセチル置換度を横軸(x軸)に、この置換度における存在量を縦軸(y軸)としたとき、チャートのピークの高さの半分の高さにおけるチャートの幅であり、分布のバラツキの目安を表す指標である。置換度分布半値幅は、高速液体クロマトグラフィー(HPLC)分析により求めることができる。なお、HPLCにおけるセルロースエステルの溶出曲線の横軸(溶出時間)を置換度(0~3)に換算する方法については、特開2003-201301号公報(段落0037~0040)に説明されている。
 (組成分布半値幅の理論値)
 組成分布半値幅(置換度分布半値幅)は確率論的に理論値を算出できる。すなわち、組成分布半値幅の理論値は以下の式(1)で求められる。
Figure JPOXMLDOC01-appb-M000005
 m:酢酸セルロース1分子中の水酸基とアセチル基の全数
 p:酢酸セルロース1分子中の水酸基がアセチル置換されている確率
 q=1-p
 DPw:重量平均重合度(GPC-光散乱法による)
 なお、重量平均重合度(DPw)の測定法は後述する。
 さらに、組成分布半値幅の理論値を置換度と重合度で表すと、以下のように表される。本発明では下記式(2)を組成分布半値幅の理論値を求める定義式とする。
Figure JPOXMLDOC01-appb-M000006
 DS:アセチル総置換度
 DPw:重量平均重合度(GPC-光散乱法による)
 なお、重量平均重合度(DPw)の測定法は後述する。
 ところで、式(1)および式(2)においては、より厳密には重合度分布を考慮に入れるべきであり、この場合には式(1)および式(2)の「DPw」は、重合度分布関数に置き換え、式全体を重合度0から無限大までで積分すべきである。しかしながら、DPwを使う限り、式(1)および式(2)は近似的に十分な精度の理論値を与える。DPn(数平均重合度)を使うと、重合度分布の影響が無視できなくなるので、DPwを使うべきである。
 (組成分布半値幅の実測値)
 本発明において、組成分布半値幅の実測値とは、酢酸セルロース(試料)の残存水酸基(未置換水酸基)をすべてプロピオニル化して得られるセルロースアセテートプロピオネートをHPLC分析して求めた組成分布半値幅である。
 一般的に、アセチル総置換度2~3の酢酸セルロースに対しては、前処理なしに高速液体クロマトグラフィ(HPLC)分析を行うことができ、それによって組成分布半値幅を求めることができる。例えば、特開2011-158664号公報には、置換度2.27~2.56の酢酸セルロースに対する組成分布分析法が記載されている。
 一方、本発明においては、組成分布半値幅(置換度分布半値幅)の実測値は、HPLC分析前に前処理として酢酸セルロースの分子内残存水酸基の誘導体化を行い、しかる後にHPLC分析を行って求める。この前処理の目的は、低置換度酢酸セルロースを有機溶剤に溶解しやすい誘導体に変換してHPLC分析可能とすることである。すなわち、分子内の残存水酸基を完全にプロピオニル化し、その完全誘導体化セルロースアセテートプロピオネート(CAP)をHPLC分析して組成分布半値幅(実測値)を求める。ここで、誘導体化は完全に行われ、分子内に残存水酸基はなく、アセチル基とプロピオニル基のみ存在していなければいけない。すなわち、アセチル置換度(DSac)とプロピオニル置換度(DSpr)の和は3である。これは、CAPのHPLC溶出曲線の横軸(溶出時間)をアセチル置換度(0~3)に変換するための較正曲線を作成するために関係式:DSac+DSpr=3を使用するためである。
 酢酸セルロースの完全誘導体化は、ピリジン/N,N-ジメチルアセトアミド混合溶媒中でN,N-ジメチルアミノピリジンを触媒とし、無水プロピオン酸を作用させることにより行うことができる。より具体的には、溶媒として混合溶媒[ピリジン/N,N-ジメチルアセトアミド=1/1(v/v)]を酢酸セルロース(試料)に対して20重量部、プロピオニル化剤として無水プロピオン酸を該酢酸セルロースの水酸基に対して6.0~7.5当量、触媒としてN,N-ジメチルアミノピリジンを該酢酸セルロースの水酸基に対して6.5~8.0mol%使用し、温度100℃、反応時間1.5~3.0時間の条件でプロピオニル化を行う。そして、反応後、沈殿溶媒としてメタノールを用い、沈殿させることにより、完全誘導体化セルロースアセテートプロピオネートを得る。より詳細には、例えば、室温で、反応混合物1重量部をメタノール10重量部に投入して沈澱させ、得られた沈殿物をメタノールで5回洗浄し、60℃で真空乾燥を3時間行うことにより、完全誘導体化セルロースアセテートプロピオネート(CAP)を得ることができる。なお、後述の多分散性(Mw/Mn)及び重量平均重合度(DPw)も、酢酸セルロース(試料)をこの方法により完全誘導体化セルロースアセテートプロピオネート(CAP)とし、測定したものである。
 上記HPLC分析では、異なるアセチル置換度を有する複数のセルロースアセテートプロピオネートを標準試料として用いて所定の測定装置および測定条件でHPLC分析を行い、これらの標準試料の分析値を用いて作成した較正曲線[セルロースアセテートプロピオネートの溶出時間とアセチル置換度(0~3)との関係を示す曲線、通常、三次曲線]から、酢酸セルロース(試料)の組成分布半値幅(実測値)を求めることができる。HPLC分析で求められるのは溶出時間とセルロースアセテートプロピオネートのアセチル置換度分布の関係である。これは、試料分子内の残存ヒドロキシ基のすべてがプロピオニルオキシ基に変換された物質の溶出時間とアセチル置換度分布の関係であるから、本発明の酢酸セルロースのアセチル置換度分布を求めていることと本質的には変わらない。
 上記HPLC分析の条件は以下の通りである。
 装置: Agilent 1100 Series
 カラム: Waters Nova-Pak phenyl 60Å 4μm(150mm×3.9mmΦ)+ガードカラム
 カラム温度:30℃
 検出: Varian 380-LC
 注入量: 5.0μL(試料濃度:0.1%(wt/vol))
 溶離液: A液:MeOH/H2O=8/1(v/v),B液:CHCl3/MeOH=8/1(v/v)
 グラジェント:A/B=80/20→0/100(28min);流量:0.7mL/min
 較正曲線から求めた置換度分布曲線[セルロースアセテートプロピオネートの存在量を縦軸とし、アセチル置換度を横軸とするセルロースアセテートプロピオネートの置換度分布曲線](「分子間置換度分布曲線」ともいう)において、平均置換度に対応する最大ピーク(E)に関し、以下のようにして置換度分布半値幅を求める。ピーク(E)の低置換度側の基部(A)と、高置換度側の基部(B)に接するベースライン(A-B)を引き、このベースラインに対して、最大ピーク(E)から横軸に垂線をおろす。垂線とベースライン(A-B)との交点(C)を決定し、最大ピーク(E)と交点(C)との中間点(D)を求める。中間点(D)を通って、ベースライン(A-B)と平行な直線を引き、分子間置換度分布曲線との二つの交点(A’、B’)を求める。二つの交点(A’、B’)から横軸まで垂線をおろして、横軸上の二つの交点間の幅を、最大ピークの半値幅(すなわち、置換度分布半値幅)とする。
 このような置換度分布半値幅は、試料中のセルロースアセテートプロピオネートの分子鎖について、その構成する高分子鎖一本一本のグルコース環の水酸基がどの程度アセチル化されているかにより、保持時間(リテンションタイム)が異なることを反映している。したがって、理想的には、保持時間の幅が、(置換度単位の)組成分布の幅を示すことになる。しかしながら、HPLCには分配に寄与しない管部(カラムを保護するためのガイドカラムなど)が存在する。それゆえ、測定装置の構成により、組成分布の幅に起因しない保持時間の幅が誤差として内包されることが多い。この誤差は、上記の通り、カラムの長さ、内径、カラムから検出器までの長さや取り回しなどに影響され、装置構成により異なる。このため、セルロースアセテートプロピオネートの置換度分布半値幅は、通常、下式で表される補正式に基づいて、補正値Zとして求めることができる。このような補正式を用いると、測定装置(および測定条件)が異なっても、同じ(ほぼ同じ)値として、より正確な置換度分布半値幅(実測値)を求めることができる。
    Z=(X2-Y21/2
[式中、Xは所定の測定装置および測定条件で求めた置換度分布半値幅(未補正値)である。Y=(a-b)x/3+b(0≦x≦3)である。ここで、aは前記Xと同じ測定装置および測定条件で求めた総置換度3のセルロースアセテートの見掛けの置換度分布半値幅(実際は総置換度3なので、置換度分布は存在しない)、bは前記Xと同じ測定装置および測定条件で求めた総置換度3のセルロースプロピオネートの見掛けの置換度分布半値幅である。xは測定試料のアセチル総置換度(0≦x≦3)である]
 なお、上記総置換度3のセルロースアセテート(もしくはセルロースプロピオネート)とは、セルロースのヒドロキシル基の全てがエステル化されたセルロースエステルを示し、実際には(理想的には)置換度分布半値幅を有しない(すなわち、置換度分布半値幅0の)セルロースエステルである。
 本発明の酢酸セルロースの組成分布半値幅(置換度分布半値幅)の実測値としては、好ましくは0.12~0.34であり、より好ましくは0.13~0.25である。
 先に説明した置換度分布理論式は、すべてのアセチル化と脱アセチル化が独立かつ均等に進行することを仮定した確率論的計算値である。すなわち、二項分布に従った計算値である。このような理想的な状況は現実的にはあり得ない。酢酸セルロースの加水分解反応が理想的なランダム反応に近づくような、および/または、反応後の後処理について組成について分画が生じるような特別な工夫をしない限り、セルロースエステルの置換度分布は確率論的に二項分布で定まるものよりも大幅に広くなる。
 反応の特別な工夫の一つとしては、例えば、脱アセチル化とアセチル化が平衡する条件で系を維持することが考えられる。しかし、この場合には酸触媒によりセルロースの分解が進行するので好ましくない。他の反応の特別な工夫としては、脱アセチル化速度が低置換度物について遅くなる反応条件を採用することである。しかし、従来、そのような具体的な方法は知られていない。つまり、セルロースエステルの置換度分布を反応確率論通り二項分布にしたがうよう制御するような反応の特別な工夫は知られていない。さらに、酢化過程(セルロースのアセチル化工程)の不均一性や、熟成過程(酢酸セルロースの加水分解工程)で段階的に添加する水による部分的、一時的な沈殿の発生などの様々な事情は、置換度分布を二項分布よりも広くする方向に働き、これらを全て回避し、理想条件を実現することは、現実的には不可能である。これは、理想気体があくまで理想の産物であり、実在する気体の挙動はそれとは多かれ少なかれ異なることと似ている。
 従来の低置換度酢酸セルロースの合成と後処理においては、このような置換度分布の問題について殆ど関心が払われておらず、置換度分布の測定や検証、考察が行われていなかった。例えば、文献(繊維学会誌、42、p25 (1986))によれば、低置換度酢酸セルロースの溶解性は、グルコース残基2、3、6位へのアセチル基の分配で決まると論じられており、組成分布は全く考慮されていない。
 本発明によれば、後述するように、酢酸セルロースの置換度分布は、驚くべきことに酢酸セルロースの加水分解工程の後の後処理条件の工夫で制御することができる。文献(CiBment, L., and Rivibre, C., Bull. SOC. chim., (5) 1, 1075 (1934)、Sookne, A. M., Rutherford, H. A., Mark, H., and Harris, M. J . Research Natl. Bur. Standards, 29, 123 (1942)、A. J. Rosenthal , B. B. White Ind. Eng. Chem., 1952, 44 (11), pp 2693-2696.)によれば、置換度2.3の酢酸セルロースの沈澱分別では、分子量に依存した分画と置換度(化学組成)に伴う微々たる分画が起こるとされており、本発明のように置換度(化学組成)で顕著な分画ができるとの報告はない。さらに、本発明のような低置換度酢酸セルロースについて、溶解分別や沈澱分別で置換度分布(化学組成)を制御できることは検証されていなかった。
 本発明者らが見出した置換度分布を狭くするもう1つの工夫は、酢酸セルロースの90℃以上の(又は90℃を超える)高温での加水分解反応(熟成反応)である。従来、高温反応で得られた生成物の重合度について詳細な分析や考察がなされて来なかったにもかかわらず、90℃以上の高温反応ではセルロースの分解が優先するとされてきた。この考えは、粘度に関する考察のみに基づいた思い込み(ステレオタイプ)と言える。本発明者らは、酢酸セルロースを加水分解して低置換度酢酸セルロースを得るに際し、90℃以上の(又は90℃を超える)高温下、好ましくは硫酸等の強酸の存在下、多量の酢酸中で反応させると、重合度の低下は見られない一方で、CDIの減少に伴い粘度が低下することを見出した。すなわち、高温反応に伴う粘度低下は、重合度の低下に起因するものではなく、置換度分布が狭くなることによる構造粘性の減少に基づくものであることを解明した。上記の条件で酢酸セルロースの加水分解を行うと、正反応だけでなく逆反応も起こるため、生成物(低置換度酢酸セルロース)のCDIが極めて小さい値となり、水に対する溶解性も著しく向上する。これに対し、逆反応が起こりにくい条件で酢酸セルロースの加水分解を行うと、置換度分布は様々な要因で広くなり、水に溶けにくいアセチル総置換度0.4未満の酢酸セルロース及びアセチル置換度1.1を超える酢酸セルロースの含有量が増大し、全体として水に対する溶解性が低下する。
 (2,3,6位の置換度の標準偏差)
 本発明の酢酸セルロースのグルコース環の2,3,6位の各アセチル置換度は、手塚(Tezuka,Carbonydr.Res.273,83(1995))の方法に従いNMR法で測定できる。すなわち、酢酸セルロース試料の遊離水酸基をピリジン中で無水プロピオン酸によりプロピオニル化する。得られた試料を重クロロホルムに溶解し、13C-NMRスペクトルを測定する。アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、そして、プロピオニル基のカルボニル炭素のシグナルは、172ppmから174ppmの領域に同じ順序で現れる。それぞれ対応する位置でのアセチル基とプロピオニル基の存在比から、元のセルロースジアセテートにおけるグルコース環の2,3,6位の各アセチル置換度を求めることができる。なお、このように求めた2,3,6位の各アセチル置換度の和はアセチル総置換度であり、この方法でアセチル総置換度を求めることもできる。なお、アセチル総置換度は、13C-NMRのほか、1H-NMRで分析することもできる。
 2,3,6位の置換度の標準偏差σは、次の式で定義される。
Figure JPOXMLDOC01-appb-M000007
 本発明においては、酢酸セルロースのグルコース環の2,3及び6位のアセチル置換度の標準偏差が0.08以下(0~0.08)であることが好ましい。該標準偏差が0.08以下である酢酸セルロースは、グルコース環の2,3,6位が均等に置換されており、水に対する溶解性に優れる。また、フィルムとした時の強伸度も高い。
 (多分散性(Mw/Mn))
 本発明において、多分散性(Mw/Mn)は、酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値である。
 本発明の酢酸セルロースの多分散性(分散度;Mw/Mn)は、1.2~2.5の範囲であることが好ましい。多分散性Mw/Mnが上記の範囲にある酢酸セルロースは、分子の大きさが揃っており、水に対する溶解性に優れるとともに、フィルムとした時の強伸度も高い。
 酢酸セルロースの数平均分子量(Mn)、重量平均分子量(Mw)及び多分散性(Mw/Mn)は、HPLCを用いた公知の方法で求めることができる。本発明において、酢酸セルロースの多分散性(Mw/Mn)は、測定試料を有機溶剤に可溶とするため、前記組成分布半値幅の実測値を求める場合と同様の方法で、酢酸セルロース(試料)を完全誘導体化セルロースアセテートプロピオネート(CAP)とした後、以下の条件でサイズ排除クロマトグラフィー分析を行うことにより決定される(GPC-光散乱法)。
 装置:Shodex製 GPC 「SYSTEM-21H」
 溶媒:アセトン
 カラム:GMHxl(東ソー)2本、同ガードカラム
 流速:0.8ml/min
 温度:29℃
 試料濃度:0.25%(wt/vol)
 注入量:100μl
 検出:MALLS(多角度光散乱検出器)(Wyatt製、「DAWN-EOS」)
 MALLS補正用標準物質:PMMA(分子量27600)
 (重量平均重合度(DPw))
 本発明において、重量平均重合度(DPw)は、酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値である。
 本発明の酢酸セルロースの重量平均重合度(DPw)は、50~800の範囲であることが好ましい。重量平均重合度(DPw)が低すぎると強伸度が低くなり傾向がある。また、重量平均重合度(DPw)が高すぎると、濾過性が悪くなりやすい。前記重量平均重合度(DPw)は、好ましくは55~700、さらに好ましくは60~600である。
 上記重量平均重合度(DPw)は、前記多分散性(Mw/Mn)と同じく、前記組成分布半値幅の実測値を求める場合と同様の方法で、酢酸セルロース(試料)を完全誘導体化セルロースアセテートプロピオネート(CAP)とした後、サイズ排除クロマトグラフィー分析を行うことにより求められる(GPC-光散乱法)。
 上述のように、水溶性の酢酸セルロースの分子量(重合度)、多分散性(Mw/Mn)はGPC-光散乱法(GPC-MALLS、GPC-LALLSなど)により測定される。なお、光散乱の検出は、一般に水系溶媒では困難である。これは水系溶媒は一般的に異物が多く、一旦精製しても二次汚染されやすいことによる。また、水系溶媒では、微量に存在するイオン性解離基の影響のため分子鎖の広がりが安定しない場合があり、それを抑えるために水溶性無機塩(例えば塩化ナトリウム)を添加したりすると、溶解状態が不安定になり、水溶液中で会合体を形成したりすることがある。この問題を回避するための有効な方法の一つは、水溶性酢酸セルロースを誘導体化し、異物が少なく、二次汚染されにくい有機溶媒に溶解するようにし、有機溶媒でGPC-光散乱測定を行うことである。この目的の水溶性酢酸セルロースの誘導体化としてはプロピオニル化が有効であり、具体的な反応条件及び後処理は前記組成分布半値幅の実測値の説明箇所で記載した通りである。
 (6%粘度)
 本発明の酢酸セルロースの6%粘度は、例えば5~500mPa・s、好ましくは6~300mPa・sである。6%粘度が高すぎると濾過性が悪くなる場合がある。また、6%粘度が低すぎると、フィルムとした時の強伸度が低下しやすくなる。
 酢酸セルロースの6%粘度は、下記の方法で測定できる。
 50mlのメスフラスコに乾燥試料3.00gを入れ、蒸留水を加え溶解させる。得られた6wt/vol%の溶液を所定のオストワルド粘度計の標線まで移し、25±1℃で約15分間整温する。計時標線間の流下時間を測定し、次式により6%粘度を算出する。
 6%粘度(mPa・s)=C×P×t
 C:試料溶液恒数
 P:試料溶液密度(0.997g/cm3
 t:試料溶液の流下秒数
 試料溶液恒数は、粘度計校正用標準液[昭和石油社製、商品名「JS-200」(JIS Z 8809に準拠)]を用いて上記と同様の操作で流下時間を測定し、次式より求める。
 試料溶液恒数={標準液絶対粘度(mPa・s)}/{標準液の密度(g/cm3)×標準液の流下秒数}
 (引張強度、破断伸度)
 本発明の酢酸セルロースは、前記のように、組成分布指数(CDI)が小さいので、組成分布(分子間置換度分布)が狭く、そのため、酢酸セルロースを例えばフィルム化した場合、該フィルムの引張強度及び破断伸度を高くすることができる。特に、CDIが2.0以下(好ましくは1.8以下、さらに好ましくは1.6以下、特に好ましくは1.3以下)の場合において、非常に高い引張強度及び破断伸度を得ることができる。
 該フィルムの引張強度(22℃、引張速度100mm/分)は、厚み50μmで、500kgf/cm2以上(例えば、500~1200kgf/cm2)となり、好ましくは800kgf/cm2以上(例えば、800~1100kgf/cm2)、さらに好ましくは840kgf/cm2以上(例えば、840~1000kgf/cm2)にもなる。また、該フィルムの破断伸度(22℃、引張速度100mm/分)は、低置換度であるにもかかわらず、厚み50μmで、5.0%以上(例えば、5.0~15%)となり、好ましくは7.5%以上(例えば、7.5~13%)、さらに好ましくは8.5%以上(例えば、8.5~11%)にもなる。
 引張強度及び破断伸度の測定は、以下の方法により行うことができる。すなわち、蒸留水に固形分濃度が5~15重量%になるように酢酸セルロース試料を溶解させる。この溶液をバーコーターを用いてガラス板上に流延し、厚さ50μmのフィルムを得る。このフィルムを、引張り試験機(オリエンテック(株)製、「UCT-5T」)および環境ユニット(オリエンテック(株)製、「TLF-U3」)を用いて、室温(約22℃)で、100mm/分の速度で引っ張り、破断するときの強度(=引張強度)(kgf/cm2)及び伸度(=破断伸度)(%)を求める。
 (低置換度酢酸セルロースの製造)
 本発明の酢酸セルロースは、例えば、(A)中乃至高置換度酢酸セルロースの加水分解工程(熟成工程)、(B)沈殿工程、及び、必要に応じて行う(C)洗浄、中和工程により製造できる。
 [(A)加水分解工程(熟成工程)]
 この工程では、中乃至高置換度酢酸セルロース(以下、「原料酢酸セルロース」と称する場合がある)を加水分解する。原料として用いる中乃至高置換度酢酸セルロースのアセチル総置換度は、例えば、1.5~3、好ましくは2~3である。原料酢酸セルロースとしては、市販のセルロースジアセテート(アセチル総置換度2.27~2.56)やセルローストリアセテート(アセチル総置換度2.56超~3)を用いることができる。
 加水分解反応は、有機溶媒中、触媒(熟成触媒)の存在下、原料酢酸セルロースと水を反応させることにより行うことができる。有機溶媒としては、例えば、酢酸、アセトン、アルコール(メタノール等)、これらの混合溶媒などが挙げられる。これらの中でも、酢酸を少なくとも含む溶媒が好ましい。触媒としては、一般に脱アセチル化触媒として用いられる触媒を使用できる。触媒としては、特に硫酸が好ましい。
 有機溶媒(例えば、酢酸)の使用量は、原料酢酸セルロース1重量部に対して、例えば、0.5~50重量部、好ましくは1~20重量部、さらに好ましくは3~10重量部である。
 触媒(例えば、硫酸)の使用量は、原料酢酸セルロース1重量部に対して、例えば、0.005~1重量部、好ましくは0.01~0.5重量部、さらに好ましくは0.02~0.3重量部である。触媒の量が少なすぎると、加水分解の時間が長くなりすぎ、酢酸セルロースの分子量の低下を引き起こすことがある。一方、触媒の量が多すぎると、加水分解温度に対する解重合速度の変化の度合いが大きくなり、加水分解温度がある程度低くても解重合速度が大きくなり、分子量がある程度大きい酢酸セルロースが得られにくくなる。
 加水分解工程における水の量は、原料酢酸セルロース1重量部に対して、例えば、0.5~20重量部、好ましくは1~10重量部、さらに好ましくは2~7重量部である。また、該水の量は、有機溶媒(例えば、酢酸)1重量部に対して、例えば、0.1~5重量部、好ましくは0.3~2重量部、さらに好ましくは0.5~1.5重量部である。水は、反応開始時において全ての量を系内に存在させてもよいが、酢酸セルロースの沈殿を防止するため、使用する水の一部を反応開始時に系内に存在させ、残りの水を1~数回に分けて系内に添加してもよい。
 加水分解工程における反応温度は、例えば、40~130℃、好ましくは50~120℃、さらに好ましくは60~110℃である。特に、反応温度を90℃以上(或いは90℃を超える温度)とする場合には、正反応(加水分解反応)に対する逆反応(アセチル化反応)の速度が増加する方向に反応の平衡が傾く傾向があり、その結果、置換度分布が狭くなり、後処理条件を特に工夫しなくとも、組成分布指数CDIの極めて小さい低置換度酢酸セルロースを得ることができる。この場合、触媒として硫酸等の強酸を用いるのが好ましく、また、反応溶媒として酢酸を過剰に用いるのが好ましい。また、反応温度を90℃以下とする場合であっても、後述するように、沈殿工程において、沈殿溶媒として2種以上の溶媒を含む混合溶媒を用いて沈殿させたり、沈殿分別及び/又は溶解分別を行うことにより、組成分布指数CDIが非常に小さい低置換度酢酸セルロースを得ることができる。
 [(B)沈殿工程]
 この工程では、加水分解反応終了後、反応系の温度を室温まで冷却し、沈殿溶媒を加えて低置換度酢酸セルロースを沈殿させる。沈殿溶媒としては、水と混和する有機溶剤若しくは水に対する溶解度の大きい有機溶剤を使用できる。例えば、アセトン、メチルエチルケトン等のケトン;メタノール、エタノール、イソプロピルアルコール等のアルコール;酢酸エチル等のエステル;アセトニトリル等の含窒素化合物;テトラヒドロフラン等のエーテル;これらの混合溶媒などが挙げられる。
 沈殿溶媒として2種以上の溶媒を含む混合溶媒を用いると、後述する沈殿分別と同様の効果が得られ、組成分布(分子間置換度分布)が狭く、組成分布指数(CDI)が小さい低置換度酢酸セルロースを得ることができる。好ましい混合溶媒として、例えば、アセトンとメタノールの混合溶媒、イソプロピルアルコールとメタノールの混合溶媒などが挙げられる。
 また、沈殿して得られた低置換度酢酸セルロースに対して、さらに沈殿分別(分別沈殿)及び/又は溶解分別(分別溶解)を行うことにより、組成分布(分子間置換度分布)が狭く、組成分布指数CDIが非常に小さい低置換度酢酸セルロースを得ることができる。
 沈殿分別は、例えば、沈殿して得られた低置換度酢酸セルロース(固形物)を水に溶解し、適当な濃度(例えば、2~10重量%、好ましくは3~8重量%)の水溶液とし、この水溶液に貧溶媒を加え(又は、貧溶媒に前記水溶液を加え)、適宜な温度(例えば、30℃以下、好ましくは20℃以下)に保持して、低置換度酢酸セルロースを沈殿させ、沈殿物を回収することにより行うことができる。貧溶媒としては、例えば、メタノール等のアルコール、アセトン等のケトンなどが挙げられる。貧溶媒の使用量は、前記水溶液1重量部に対して、例えば1~10重量部、好ましくは2~7重量部である。
 溶解分別は、例えば、前記沈殿して得られた低置換度酢酸セルロース(固形物)或いは前記沈殿分別で得られた低置換度酢酸セルロース(固形物)に、水と有機溶媒(例えば、アセトン等のケトン、エタノール等のアルコールなど)の混合溶媒を加え、適宜な温度(例えば、20~80℃、好ましくは25~60℃)で撹拌後、遠心分離により濃厚相と希薄相とに分離し、希薄相に沈殿溶剤(例えば、アセトン等のケトン、メタノール等のアルコールなど)を加え、沈殿物(固形物)を回収することにより行うことができる。前記水と有機溶媒の混合溶媒における有機溶媒の濃度は、例えば、5~50重量%、好ましくは10~40重量%である。
 [(C)洗浄、中和工程]
 沈殿工程(B)で得られた沈殿物(固形物)は、メタノール等のアルコール、アセトン等のケトンなどの有機溶媒(貧溶媒)で洗浄するのが好ましい。また、塩基性物質を含む有機溶媒(例えば、メタノール等のアルコール、アセトン等のケトンなど)で洗浄、中和することも好ましい。
 前記塩基性物質としては、例えば、アルカリ金属化合物(例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム等のアルカリ金属炭酸水素塩;酢酸ナトリウム、酢酸カリウム等のアルカリ金属カルボン酸塩;ナトリウムメトキシド、ナトリウムエトキシド等のナトリウムアルコキシドなど)、アルカリ土類金属化合物(例えば、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸マグネシウム、炭酸カルシウム等のアルカリ土類金属炭酸塩;酢酸マグネシウム、酢酸カルシウム等のアルカリ土類金属カルボン酸塩;マグネシウムエトキシド等のアルカリ土類金属アルコキシドなど)などを使用できる。これらの中でも、特に、酢酸カリウム等のアルカリ金属化合物が好ましい。
 洗浄、中和により、加水分解工程で用いた触媒(硫酸等)などの不純物を効率よく除去することができる。
 [成形品]
 上記本発明の酢酸セルロースを原料として、フィルムや繊維等の成形品を製造することができる。なお、成形品製造時において、本発明の効果を損なわない範囲で適宜な添加剤を添加してもよい。
 例えば、上記低置換度酢酸セルロースを水性溶媒等の溶媒に溶解させて低置換度酢酸セルロース溶液を調製し、この溶液を基板上に、バーコーターなどの塗工手段を用いて流延し、乾燥させることにより酢酸セルロースフィルムを製造することができる。前記水性溶媒としては、水;水と水溶性有機溶媒との混合溶媒などが挙げられる。前記低置換度酢酸セルロース溶液の濃度は、特に制限はないが、取扱性及び生産性の観点から、1~50重量%が好ましく、より好ましくは2~40重量%、さらに好ましくは5~15重量%である。前記基板としては、特に制限はないが、例えば、ガラス板、プラスチック板、金属板等が挙げられる。
 得られる酢酸セルロースフィルムの厚さは、例えば、1~1000μm、好ましくは5~500μm、さらに好ましくは10~250μmである。
 こうして得られる酢酸セルロースフィルムは、前述したように、低置換度であっても、引張強度及び破断伸度が高い。
 また、上記低置換度酢酸セルロースを水性溶媒等の溶媒に溶解させて低置換度酢酸セルロース溶液(ドープ)を調製し、これを口金を通して吐出し、乾燥させることにより、酢酸セルロース繊維を得ることができる。前記低置換度酢酸セルロース溶液(ドープ)の濃度は、取扱性及び生産性の観点から、例えば、1~60重量%が好ましく、より好ましくは5~50重量%、さらに好ましくは10~40重量%である。前記水性溶媒としては、水;水と水溶性有機溶媒との混合溶媒などが挙げられる。また、紡糸の際の乾燥温度は、例えば、100℃以上、好ましくは100~500℃程度である。
 上記紡糸により得られる繊維の繊度(単糸デニール)は、例えば、1~30デニール(d)程度、好ましくは5~20デニール(d)である。繊度は口金におけるドープの吐出量を調整することにより制御できる。こうして得られる酢酸セルロース繊維の強度及び伸度は、低置換度であっても高い。例えば、該酢酸セルロース繊維の温度20±2℃、相対湿度65±2%における引張強さ(JIS L 1015に準拠)は、例えば、繊度9デニールで、1.5g/d以上(例えば、1.5~2.4g/d)、好ましくは1.6g/d以上(例えば、1.6~2.2g/d)となり、繊度16.7デニールでは、2.1g/d以上(例えば、2.1~2.8g/d)、好ましくは2.2g/d以上(例えば、2.2~2.6g/d)となる。また、該酢酸セルロース繊維の温度20±2℃、相対湿度65±2%における伸び率(JIS L 1015に準拠)は、例えば、繊度9デニールで、22%以上(例えば、22~40%)、好ましくは23%以上(例えば、23~35%)となり、繊度16.7デニールでは、10%以上(例えば、10~18%)、好ましくは11%以上(例えば、11~16%)となる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 (実施例1)
 酢酸セルロース(ダイセル社製、商品名「L-50」、アセチル総置換度2.43、6%粘度:110mPa・s)1重量部に対して、5.1重量部の酢酸および2.0重量部の水を加え、混合物を3時間攪拌して酢酸セルロースを溶解した。この溶液に0.13重量部の硫酸を加え、得られた溶液を95℃に保持し、加水分解を行った。加水分解の間に酢酸セルロースが沈殿するのを防止するために、系への水の添加を2回に分けて行った。すなわち、反応を開始して0.3時間後に0.67重量部の水を5分間にわたって系に加えた。さらに0.7時間後、1.33重量部の水を10分間にわたって系に加え、さらに1.5時間反応させた。合計の加水分解時間は2.5時間である。なお、反応開始時から1回目の水の添加までを第1加水分解工程(第1熟成工程)、1回目の水の添加から2回目の水の添加までを第2加水分解工程(第2熟成工程)、2回目の水の添加から反応終了までを第3加水分解工程(第3熟成工程)という。
 加水分解を実施した後、系の温度を室温(約25℃)まで冷却し、反応混合物に15重量部の沈殿溶媒(メタノール)を加えて沈殿を生成させた。
 固形分15重量%のウェットケーキとして沈殿を回収し、8重量部のメタノールを加え、固形分15重量%まで脱液することにより洗浄した。これを3回繰り返した。洗浄した沈殿物を、酢酸カリウムを0.004重量%含有するメタノール8重量部でさらに2回洗浄して中和し、乾燥して、低置換度酢酸セルロースを得た。
 また、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、上記低置換度酢酸セルロースからフィルム(厚さ50μm)を作製した。
 得られた低置換度酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。
 実験条件を表1に、得られた低置換度酢酸セルロースの物性の測定結果を表2に示す。なお、表1において、「第3熟成液組成(酢酸wt%)」とは、第3熟成工程における系内の酢酸濃度(重量%)を意味する。また、表2において、「置換度」は「アセチル総置換度」を意味し、「C2、C3、C6の標準偏差」は「2位、3位及び6位の置換度の標準偏差」を意味し、「重合度」は「重量平均重合度」を意味する。
 (実施例4)
 酢酸セルロース(ダイセル社製、商品名「L-50」、アセチル総置換度2.43、6%粘度:110mPa・s)1重量部に対して、5.1重量部の酢酸および2.0重量部の水を加え、混合物を3時間攪拌して酢酸セルロースを溶解した。この溶液に0.13重量部の硫酸を加え、得られた溶液を70℃に保持し、加水分解を行った。加水分解の間に酢酸セルロースが沈殿するのを防止するために、系への水の添加は2回に分けて行った。すなわち、1時間後に0.67重量部の水を5分間にわたって系に加えた。さらに2時間後、1.33重量部の水を10分間にわたって系に加え、さらに9時間反応させた。合計の加水分解時間は12時間である。なお、反応開始時から1回目の水の添加までを第1加水分解工程(第1熟成工程)、1回目の水の添加から2回目の水の添加までを第2加水分解工程(第2熟成工程)、2回目の水の添加から反応終了までを第3加水分解工程(第3熟成工程)という。
 加水分解を実施した後、系の温度を室温(約25℃)まで冷却し、反応混合物に15重量部の沈殿溶媒[アセトン/メタノール1:1(重量比)混合溶媒]を加えて沈殿を生成させた。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 得られた沈殿物に水に加え、8時間撹拌し、5重量%溶液とした。ここに貧溶媒であるメタノールを上記5重量%溶液の4倍量(重量基準)加え、10℃に1時間保ち、沈殿物を回収した(沈殿分別)。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 この沈殿物を、実施例1と同様の方法で洗浄、中和、乾燥して、低置換度酢酸セルロースを得た。
 また、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、上記低置換度酢酸セルロースからフィルム(厚さ50μm)を作製した。
 得られた低置換度酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。
 実験条件及び収率を表1に、得られた低置換度酢酸セルロースの物性の測定結果を表2に示す。なお、表1において、「第3熟成液組成(酢酸wt%)」とは、第3熟成工程における系内の酢酸濃度(重量%)を意味する。また、表1の沈殿分別の欄の貧溶媒の重量(重量部)は、上記沈殿物に水を加えて調製した5重量%溶液1重量部に対する値である。
 (実施例6)
 酢酸セルロース(ダイセル社製、商品名「L-50」、アセチル総置換度2.43、6%粘度:110mPa・s)1重量部に対して、5.1重量部の酢酸および2.0重量部の水を加え、混合物を3時間攪拌して酢酸セルロースを溶解した。この溶液に0.13重量部の硫酸を加え、得られた溶液を70℃に保持し、加水分解を行った。加水分解の間に酢酸セルロースが沈殿するのを防止するために、系への水の添加は2回に分けて行った。すなわち、1時間後に0.67重量部の水を5分間にわたって系に加えた。さらに3時間後、1.33重量部の水を10分間にわたって系に加え、さらに13時間反応させた。合計の加水分解時間は17時間である。なお、反応開始時から1回目の水の添加までを第1加水分解工程(第1熟成工程)、1回目の水の添加から2回目の水の添加までを第2加水分解工程(第2熟成工程)、2回目の水の添加から反応終了までを第3加水分解工程(第3熟成工程)という。
 加水分解を実施した後、系の温度を室温(約25℃)まで冷却し、反応混合物に15重量部の沈澱溶媒(メタノール/イソプロピルアルコール1:2(重量比)混合溶媒)を加えて沈殿を生成させた。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 得られた沈殿物の固形分1重量部に対し、15重量部のアセトン/水の混合溶剤(アセトン濃度15重量%)を加え、20℃で8時間撹拌後、遠心分離により、濃厚相を除き、希薄相にアセトン(沈殿溶剤)を加え、沈殿物(固形物)を回収した(溶解分別)。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 この沈殿物を、実施例1と同様の方法で洗浄、中和、乾燥して、低置換度酢酸セルロースを得た。
 また、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、上記低置換度酢酸セルロースからフィルム(厚さ50μm)を作製した。
 得られた低置換度酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。
 実験条件及び収率を表1に、得られた低置換度酢酸セルロースの物性の測定結果を表2に示す。なお、表1において、「第3熟成液組成(酢酸wt%)」とは、第3熟成工程における系内の酢酸濃度(重量%)を意味する。また、表1の溶解分別の欄の「溶媒」とは水と混合した有機溶媒の種類を意味し、「濃度」とは当該有機溶媒と水の混合物調製における当該有機溶媒の濃度を意味する。
 (実施例8)
 酢酸セルロース(ダイセル社製、商品名「L-50」、アセチル総置換度2.43、6%粘度:110mPa・s)1重量部に対して、5.1重量部の酢酸および2.0重量部の水を加え、混合物を3時間攪拌して酢酸セルロースを溶解した。この溶液に0.13重量部の硫酸を加え、得られた溶液を40℃に保持し、加水分解を行った。加水分解の間に酢酸セルロースが沈殿するのを防止するために、系への水の添加は2回に分けて行った。すなわち、14時間後に0.67重量部の水を5分間にわたって系に加えた。さらに34時間後、1.33重量部の水を10分間にわたって系に加え、さらに107時間反応させた。合計の加水分解時間は155時間である。なお、反応開始時から1回目の水の添加までを第1加水分解工程(第1熟成工程)、1回目の水の添加から2回目の水の添加までを第2加水分解工程(第2熟成工程)、2回目の水の添加から反応終了までを第3加水分解工程(第3熟成工程)という。
 加水分解を実施した後、系の温度を室温(約25℃)まで冷却し、反応混合物に15重量部の沈澱溶媒(アセトン/メタノール1:1(重量比)混合溶媒)を加えて沈殿を生成させた。沈澱物は脱液し、固形分15%のウェットケーキとした。
 得られた沈殿物に水に加え、8時間撹拌し、5重量%溶液とした。ここに貧溶媒であるメタノールを上記5重量%溶液の4倍量(重量基準)加え、10℃に1時間保ち、沈殿物を回収した(沈殿分別)。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 得られた沈殿物の固形分1重量部に対し、15重量部のアセトン/水の混合溶剤(アセトン濃度15重量%)を加え、20℃で8時間撹拌後、遠心分離により、濃厚相を除き、希薄相にアセトン(沈殿溶剤)を加え、沈殿物(固形物)を回収した(溶解分別)。沈澱物は脱液し、固形分15重量%のウェットケーキとした。
 この沈殿物を、実施例1と同様の方法で洗浄、中和、乾燥して、低置換度酢酸セルロースを得た。
 また、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、上記低置換度酢酸セルロースからフィルム(厚さ50μm)を作製した。
 得られた低置換度酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。
 実験条件及び収率を表1に、得られた低置換度酢酸セルロースの物性の測定結果を表2に示す。なお、表1において、「第3熟成液組成(酢酸wt%)」とは、第3熟成工程における系内の酢酸濃度(重量%)を意味する。また、表1の沈殿分別の欄の貧溶媒の重量(重量部)は、上記沈殿物に水を加えて調製した5重量%溶液1重量部に対する値である。さらに、表1の溶解分別の欄の「溶媒」とは水と混合した有機溶媒の種類を意味し、「濃度」とは当該有機溶媒と水の混合物調製における当該有機溶媒の濃度を意味する。
 (実施例2~3、実施例5、実施例7、実施例9~28、比較例1、比較例3~4)
 表1に示す条件で、沈殿分別、溶解分別をしない場合は上記実施例1と同じようにして、また、沈殿分別、溶解分別をする場合は実施例4、6又は8と同じようにして、反応及び沈殿を行い、低置換度酢酸セルロースを得た。また、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。実験条件を表1に、得られた低置換度酢酸セルロースの物性の測定結果を表2に示す。
 (比較例2)
 特開平4-261401号公報の実施例1に記載の方法に従って低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例5)
 低粘度品として実施例19で得られた酢酸セルロース、高粘度品として実施例7で得られた酢酸セルロースを、前者/後者(重量比)=50/50の割合で混合した。この2種の酢酸セルロースの混合物から、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。各物性の測定結果を表2に示す。
 (比較例6)
 特表平5-500684号公報の実施例1に記載の方法(反応溶媒:メタノール)に従って低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例7)
 特表平5-500684号公報の実施例6に記載の方法(反応溶媒:メタノール)に従って低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例8)
 特表平5-501129号公報の実施例1に記載の方法(反応溶媒:メタノール)に従って低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例9)
 特公平1-13481号公報の実施例1に記載の方法に従って低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例10)
 特開平4-261401号公報の実施例1に記載の方法に従い、但し加水分解時間を20.7時間から11.5時間に短縮し、低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 (比較例11)
 接触時間を12時間から11時間に短縮したこと以外は、比較例8と同様の方法で、低置換度酢酸セルロースを製造した。この酢酸セルロースから、前記の方法(引張強度及び破断伸度の説明箇所で記載した方法)に従い、フィルム(厚さ50μm)を作製した。得られた酢酸セルロースのアセチル総置換度、2位、3位及び6位の置換度の標準偏差、6%粘度(mPa・s)、重量平均重合度(DPw)、多分散性(Mw/Mn)、分子間置換度分布半値幅(実測値)、組成分布指数(CDI)、フィルムの引張強度(kgf/cm2)及び破断伸度(%)を前記の方法で測定した。収率を表1に、物性の測定結果を表2に示す。
 [繊度16.7dの繊維の調製]
 特公平1-13481号公報の実施例1に記載の方法で、上記実施例および比較例で得られた低置換度酢酸セルロースから繊度16.7dの繊維を調製した。すなわち、低置換度酢酸セルロース試料を15重量%の濃度で水に溶解してドープを得た。かかるドープを巻取速度100m/分、乾燥温度400℃、吐出量2.22g/分、口金孔数12、口金孔径0.5mmの条件で乾式紡糸し、単糸デニール16.7の繊維(糸)を得た。得られた繊維の温度20±2℃、相対湿度65±2%における引張強さ(g/d)と伸び率(%)をJIS L 1015に準じて測定した。結果を表2に示す。なお、表2おいては、ドープの口金詰まりを主な理由として紡糸ができなかったものを「紡糸不可」と記載した。
 [繊度9dの繊維の調製(380℃)]
 特開平7-268724号公報の実施例2に記載の方法で、上記実施例および比較例で得られた低置換度酢酸セルロースから繊度9d(10dtex)の繊維を調製した。すなわち、低置換度酢酸セルロース試料900gを、95℃の熱水1.9Lに溶解した。これを、ろ過し、脱ガスした溶液を125℃に加熱し、紡糸ポンプを介して、20ホール(孔径0.15mm)を有する口金を通して吐出し、380℃で乾燥しながら、305m/分で巻取り、口金吐出量を調整することで単糸デニール9d(10dtex)の繊維(糸)を得た。得られた繊維の温度20±2℃、相対湿度65±2%における引張強さ(g/d)と伸び率(%)をJIS L 1015に準じて測定した。結果を表2に示す。なお、表2おいては、ドープの口金詰まりを主な理由として紡糸ができなかったものを「紡糸不可」と記載した。
 [繊度9dの繊維の調製(120℃)]
 上記実施例および比較例で得られた低置換度酢酸セルロース試料900gを9100gの水に溶解し、濃度9重量%のドープを得た。これをろ過し、濃縮することで、濃度31重量%のドープを得た。これを95℃に加熱し、脱泡し、紡糸ポンプを介して18ホール(孔径0.1mm)を有する口金を通して4ml/分で吐出し、120℃で乾燥しながら巻取り速度を約10~15mで調整し、単糸デニール9dの繊維(糸)を得た。得られた繊維の温度20±2℃、相対湿度65±2%における引張強さ(g/d)と伸び率(%)をJIS L 1015に準じて測定した。結果を表2に示す。なお、表2おいては、ドープの口金詰まりを主な理由として紡糸ができなかったものを「紡糸不可」と記載した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 また、実施例及び比較例で得られた酢酸セルロースから形成したフィルム(50μm厚)について、CDIと引張強度(kgf/cm2)との関係をグラフ化したものを図1に、CDIと破断伸度(%)との関係をグラフ化したものを図2に示す。さらに、実施例及び比較例で得られた酢酸セルロースから調製した繊度16.7dの繊維(糸)及び繊度9d(380℃)の繊維(糸)について、CDIと引張強さ(g/d)との関係をグラフ化したもの図3に、CDIと伸び率(%)との関係をグラフト化したものを図4に示す。図3において、白三角印(△)は、繊度16.7dの繊維(糸)のデータ、黒三角印(▲)は、繊度9d(380℃)の繊維(糸)のデータである。また、図4において、白四角印(□)は、繊度16.7dの繊維(糸)のデータ、黒四角印(■)は、繊度9d(380℃)の繊維(糸)のデータである。
 表2、図3及び図4に示す結果から分かるように、実施例で得られた低置換度酢酸セルロースから調製した繊維(糸)は、組成分布指数(CDI)が3.0以下であり、低置換度であるにもかかわらず、引張強さ及び伸び率が高い。また、表2、図1及び図2に示す結果から分かるように、特に、組成分布指数(CDI)が2.0以下の低置換度酢酸セルロースから作製されたフィルムは、低置換度であるにもかかわらず、引張強度及び破断伸度が高い。
 (水に対する溶解性の評価)
 実施例19で得られた酢酸セルロース、実施例14と同様の合成法(但し、第3熟成時間を107時間から95時間に短縮)で得られた酢酸セルロース(実施例28として記載)、比較例8と同様の合成法(但し、接触時間を12時間から11時間に短縮)で得られた酢酸セルロース(比較例11として記載)をイオン交換水に溶解し、それぞれ5重量%及び10重量%の水溶液を調製した。調製した酢酸セルロース水溶液の光線透過率(波長:500nm)を紫外可視分光光度計(島津製作所製、商品名「UV-1700」)で測定した。その結果を表3に示す。表3より、組成分布指数(CDI)が小さい酢酸セルロースほど光線透過率が高く、水溶性に優れることが分かる。
Figure JPOXMLDOC01-appb-T000010
 本発明の酢酸セルロースは、水に対する溶解性に優れるとともに、低置換度でありながら、フィルムや繊維とした時の強伸度(引張強度若しくは引張強さ、及び破断伸度若しくは伸び率)が高いので、水溶性或いは水親和性の高分子材料として、錠剤のバインダー、錠剤のコーティング剤、ステープルバインダー、化粧品用増粘剤、化粧品用保湿剤、賦形剤、成形品材料などに利用できる。

Claims (9)

  1.  アセチル総置換度が0.4~1.1である酢酸セルロースであって、下記で定義される組成分布指数(CDI)が3.0以下である酢酸セルロース。
     CDI=(組成分布半値幅の実測値)/(組成分布半値幅の理論値)
     組成分布半値幅の実測値:酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートをHPLC分析して求めた組成分布半値幅
    Figure JPOXMLDOC01-appb-M000001
      DS:アセチル総置換度
      DPw:重量平均重合度(酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)
  2.  前記CDIが2.8以下である請求項1記載の酢酸セルロース。
  3.  前記CDIが2.0以下である請求項1記載の酢酸セルロース。
  4.  下記で定義される、2位、3位及び6位のアセチル置換度の標準偏差σが0.08以下である請求項1~3の何れか1項に記載の酢酸セルロース。
    Figure JPOXMLDOC01-appb-M000002
  5.  多分散性(Mw/Mn;酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)が1.2~2.5である請求項1~4の何れか1項に記載の酢酸セルロース。
  6.  重量平均重合度(DPw;酢酸セルロース(試料)の残存水酸基をすべてプロピオニル化して得られるセルロースアセテートプロピオネートを用いてGPC-光散乱法により求めた値)が50~800である請求項1~5の何れか1項に記載の酢酸セルロース。
  7.  請求項1~6の何れか1項に記載の酢酸セルロースの製造方法であって、酢酸セルロースを90℃以上の温度で部分的に加水分解して低置換度化することを特徴とする酢酸セルロースの製造方法。
  8.  請求項1~6の何れか1項に記載の酢酸セルロースから形成された成形品。
  9.  請求項1~6の何れか1項に記載の酢酸セルロースから形成された繊維又はフィルム。
PCT/JP2014/056474 2013-03-13 2014-03-12 低置換度酢酸セルロース WO2014142166A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015505511A JP5921762B2 (ja) 2013-03-13 2014-03-12 低置換度酢酸セルロース
EP14763960.3A EP2975063A4 (en) 2013-03-13 2014-03-12 LOW SUBSTITUTED ACETOCELLULOSE
US14/775,369 US10703825B2 (en) 2013-03-13 2014-03-12 Cellulose acetate with a low degree of substitution
CN201480015034.6A CN105073782B (zh) 2013-03-13 2014-03-12 低取代度乙酸纤维素

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013050915 2013-03-13
JP2013-050915 2013-03-13
JP2013-206955 2013-10-02
JP2013206955 2013-10-02
JP2013-263889 2013-12-20
JP2013263889 2013-12-20

Publications (1)

Publication Number Publication Date
WO2014142166A1 true WO2014142166A1 (ja) 2014-09-18

Family

ID=51536817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056474 WO2014142166A1 (ja) 2013-03-13 2014-03-12 低置換度酢酸セルロース

Country Status (5)

Country Link
US (1) US10703825B2 (ja)
EP (1) EP2975063A4 (ja)
JP (3) JP5921762B2 (ja)
CN (1) CN105073782B (ja)
WO (1) WO2014142166A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146853A1 (ja) * 2014-03-24 2015-10-01 株式会社ダイセル 栄養組成物
WO2016135778A1 (ja) * 2015-02-26 2016-09-01 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
WO2016203657A1 (ja) * 2015-06-19 2016-12-22 株式会社ダイセル 水溶性酢酸セルロース系樹脂組成物、被覆製剤、水溶性酢酸セルロース複合体成形品及びその製造方法
JP2017052961A (ja) * 2016-10-21 2017-03-16 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
JPWO2015146853A1 (ja) * 2013-12-20 2017-04-13 株式会社ダイセル 栄養組成物
WO2019198307A1 (ja) * 2018-04-09 2019-10-17 株式会社ダイセル 酢酸セルロースの製造方法
JP2020026444A (ja) * 2018-08-09 2020-02-20 株式会社ダイセル セルロースアセテート組成物及び成形体
WO2021002250A1 (ja) * 2019-07-01 2021-01-07 株式会社ダイセル 酢酸セルロース及び酢酸セルロースの製造方法
WO2024095994A1 (ja) * 2022-10-31 2024-05-10 株式会社ダイセル セルロースアセテートフレーク及びこれを用いた金回収方法、濃縮方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921762B2 (ja) * 2013-03-13 2016-05-24 株式会社ダイセル 低置換度酢酸セルロース
US11015291B2 (en) * 2016-03-16 2021-05-25 Futamura Kagaku Kabushiki Kaisha Fine cellulose fiber and production method for same
CN106317229A (zh) * 2016-08-22 2017-01-11 四川北方硝化棉股份有限公司 一种制备低取代度醋酸纤维素的生产方法
JP2018119052A (ja) * 2017-01-25 2018-08-02 株式会社ダイセル セルロースアセテートフレークの製造方法
CN106832005A (zh) * 2017-03-07 2017-06-13 北京理工大学 低酯化度的醋酸纤维素酯的制备方法
JP2020026499A (ja) * 2018-08-14 2020-02-20 株式会社ダイセル セルロースアセテート組成物及び成形体
US11384224B1 (en) 2018-10-05 2022-07-12 Celanese International Corporation Cellulose acetate film with optical properties

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659801A (en) * 1979-10-22 1981-05-23 Daicel Chem Ind Ltd New production process of cellulose acetate
JPS5834801A (ja) * 1981-08-26 1983-03-01 Asahi Chem Ind Co Ltd セルロ−スアセテ−ト
JPS627701A (ja) * 1985-07-03 1987-01-14 Daicel Chem Ind Ltd 部分加水分解法
JPH04261401A (ja) 1990-11-15 1992-09-17 Daicel Chem Ind Ltd 水溶性酢酸セルロース及びその製造方法
JPH05500684A (ja) 1990-04-16 1993-02-12 イーストマン ケミカル カンパニー 新規セルロースエステル組成物およびその製造方法
JPH05501129A (ja) 1990-04-16 1993-03-04 イーストマン ケミカル カンパニー カルボン酸の使用によるセルロースエステルの製造方法
JPH07268724A (ja) 1994-02-15 1995-10-17 Hoechst Ag セルロースの造形構造物の製造方法
JPH0977801A (ja) * 1995-09-14 1997-03-25 Daicel Chem Ind Ltd 均質な酢酸セルロース
JP2003201301A (ja) 2001-11-05 2003-07-18 Daicel Chem Ind Ltd セルロースアセテートのアセチル置換度の調整方法
JP2011158664A (ja) 2010-01-29 2011-08-18 Daicel Chemical Industries Ltd 位相差フィルム用セルロースジアセテート

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544389A (en) 1967-12-18 1970-12-01 Bell Telephone Labor Inc Process for surface treatment of copper and its alloys
BE785656A (fr) 1971-06-30 1973-01-02 Celanese Corp Procede d'hydrolyse de la cellulose esterifiee a temperature elevee
US4888420A (en) 1987-12-08 1989-12-19 Celanese Fibers, Inc. Water soluble cellulose acetate microspheres
US5914397A (en) 1995-03-31 1999-06-22 Daicel Chemical Industries, Ltd. Cellulose acetate excellent in physical strength, and process for production thereof
JP4035181B2 (ja) 1996-07-30 2008-01-16 ダイセル化学工業株式会社 セルロースの混合脂肪酸エステル、その溶液およびセルロースの混合脂肪酸エステルフイルム
JP4817088B2 (ja) 2000-10-10 2011-11-16 株式会社林原生物化学研究所 塞栓材料
JP2002154906A (ja) 2000-11-13 2002-05-28 Michio Hayashi 抗菌剤組成物
US7671193B2 (en) 2001-03-14 2010-03-02 Daicel Chemical Industries, Ltd. Method for adjusting the degree of substitution with acetyl group of cellulose acetate
EP1689787A2 (en) 2003-11-28 2006-08-16 Eastman Chemical Company Cellulose interpolymers and method of oxidation
US20060240108A1 (en) 2005-04-26 2006-10-26 Bernard Bobby L Cellulosic films incorporating a pharmaceutically acceptable plasticizer with enhanced wettability
AU2007309225A1 (en) 2006-10-20 2008-05-02 Dow Global Technologies Llc Method of preventing or treating metabolic syndrome
JP2010506958A (ja) 2006-10-20 2010-03-04 ダウ グローバル テクノロジーズ インコーポレイティド 酸化的ストレスまたは酸化的細胞傷害の予防または低減
KR100985254B1 (ko) 2006-10-30 2010-10-04 한올바이오파마주식회사 방출성이 제어된 안지오텐신―Ⅱ―수용체 차단제와HMG―CoA 환원 효소 억제제의 복합 조성물
US8153782B2 (en) 2007-02-14 2012-04-10 Eastman Chemical Company Reformation of ionic liquids
JP4740938B2 (ja) 2007-12-27 2011-08-03 ダイセル化学工業株式会社 6位高アセチル化セルロースジアセテート及びその製造方法
JP2010100583A (ja) 2008-10-24 2010-05-06 Hayashibara Biochem Lab Inc 脂質代謝改善剤
EP2379059A4 (en) 2008-12-10 2012-10-31 Anhui Zhongren Technology Co Ltd COMPOSITION WITH CONTROLLED RELEASE
WO2012163836A1 (en) 2011-05-27 2012-12-06 Dsm Ip Assets B.V. Extrusion process
JP5921762B2 (ja) 2013-03-13 2016-05-24 株式会社ダイセル 低置換度酢酸セルロース
KR102162542B1 (ko) 2013-12-20 2020-10-07 주식회사 다이셀 지질 대사 개선 작용을 갖는 영양 조성물
EP3130236B1 (en) * 2014-03-24 2020-08-05 Daicel Corporation Nutritional composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659801A (en) * 1979-10-22 1981-05-23 Daicel Chem Ind Ltd New production process of cellulose acetate
JPS5834801A (ja) * 1981-08-26 1983-03-01 Asahi Chem Ind Co Ltd セルロ−スアセテ−ト
JPH0113481B2 (ja) 1981-08-26 1989-03-07 Asahi Chemical Ind
JPS627701A (ja) * 1985-07-03 1987-01-14 Daicel Chem Ind Ltd 部分加水分解法
JPH05500684A (ja) 1990-04-16 1993-02-12 イーストマン ケミカル カンパニー 新規セルロースエステル組成物およびその製造方法
JPH05501129A (ja) 1990-04-16 1993-03-04 イーストマン ケミカル カンパニー カルボン酸の使用によるセルロースエステルの製造方法
JPH04261401A (ja) 1990-11-15 1992-09-17 Daicel Chem Ind Ltd 水溶性酢酸セルロース及びその製造方法
JPH07268724A (ja) 1994-02-15 1995-10-17 Hoechst Ag セルロースの造形構造物の製造方法
JPH0977801A (ja) * 1995-09-14 1997-03-25 Daicel Chem Ind Ltd 均質な酢酸セルロース
JP2003201301A (ja) 2001-11-05 2003-07-18 Daicel Chem Ind Ltd セルロースアセテートのアセチル置換度の調整方法
JP2011158664A (ja) 2010-01-29 2011-08-18 Daicel Chemical Industries Ltd 位相差フィルム用セルロースジアセテート

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. J. ROSENTHAL; B. B. WHITE, IND. ENG. CHEM., vol. 44, no. 11, 1952, pages 2693 - 2696
CIBMENT, L.; RIVIBRE, C., BULL. SOC. CHIM., vol. 1, no. 5, 1934, pages 1075
JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, JAPAN, vol. 42, 1986, pages 25
SOOKNE, A. M.; RUTHERFORD, H. A.; MARK, H.; HARRIS, M. J., RESEARCH NATL. BUR. STANDARDS, vol. 29, 1942, pages 123
TEZUKA, CARBONYDR. RES., vol. 273, 1995, pages 83

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146853A1 (ja) * 2013-12-20 2017-04-13 株式会社ダイセル 栄養組成物
US10869883B2 (en) 2013-12-20 2020-12-22 Daicel Corporation Nutrient composition having lipid metabolism-improving action
WO2015146853A1 (ja) * 2014-03-24 2015-10-01 株式会社ダイセル 栄養組成物
US10300085B2 (en) 2014-03-24 2019-05-28 Daicel Corporation Nutritional composition
JP6063605B1 (ja) * 2015-02-26 2017-01-18 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
WO2016135778A1 (ja) * 2015-02-26 2016-09-01 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
US10875932B2 (en) 2015-02-26 2020-12-29 Daicel Corporation Cellulose acetate powder and method of producing cellulose acetate powder
CN107709431A (zh) * 2015-06-19 2018-02-16 株式会社大赛璐 水溶性乙酸纤维素类树脂组合物、包覆制剂、水溶性乙酸纤维素复合体成型品及其制造方法
KR20180019660A (ko) * 2015-06-19 2018-02-26 주식회사 다이셀 수용성 아세트산셀룰로오스계 수지 조성물, 피복 제제, 수용성 아세트산셀룰로오스 복합체 성형품 및 그 제조 방법
JPWO2016203657A1 (ja) * 2015-06-19 2018-04-05 株式会社ダイセル 水溶性酢酸セルロース系樹脂組成物、被覆製剤、水溶性酢酸セルロース複合体成形品及びその製造方法
WO2016203657A1 (ja) * 2015-06-19 2016-12-22 株式会社ダイセル 水溶性酢酸セルロース系樹脂組成物、被覆製剤、水溶性酢酸セルロース複合体成形品及びその製造方法
KR102257406B1 (ko) * 2015-06-19 2021-05-27 주식회사 다이셀 수용성 아세트산셀룰로오스계 수지 조성물, 피복 제제, 수용성 아세트산셀룰로오스 복합체 성형품 및 그 제조 방법
JP2017052961A (ja) * 2016-10-21 2017-03-16 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
WO2019198307A1 (ja) * 2018-04-09 2019-10-17 株式会社ダイセル 酢酸セルロースの製造方法
CN110357972A (zh) * 2018-04-09 2019-10-22 株式会社大赛璐 乙酸纤维素的制造方法
JP2020026444A (ja) * 2018-08-09 2020-02-20 株式会社ダイセル セルロースアセテート組成物及び成形体
JP7176885B2 (ja) 2018-08-09 2022-11-22 株式会社ダイセル セルロースアセテート組成物及び成形体
WO2021002250A1 (ja) * 2019-07-01 2021-01-07 株式会社ダイセル 酢酸セルロース及び酢酸セルロースの製造方法
JP2021008565A (ja) * 2019-07-01 2021-01-28 株式会社ダイセル 酢酸セルロース及び酢酸セルロースの製造方法
WO2024095994A1 (ja) * 2022-10-31 2024-05-10 株式会社ダイセル セルロースアセテートフレーク及びこれを用いた金回収方法、濃縮方法
WO2024095343A1 (ja) * 2022-10-31 2024-05-10 株式会社ダイセル セルロースアセテートフレーク及びこれを用いた金回収方法、濃縮方法

Also Published As

Publication number Publication date
EP2975063A1 (en) 2016-01-20
US20160032020A1 (en) 2016-02-04
JP6378712B2 (ja) 2018-08-22
US10703825B2 (en) 2020-07-07
JP2016169386A (ja) 2016-09-23
JP2018119160A (ja) 2018-08-02
CN105073782A (zh) 2015-11-18
JP6851342B2 (ja) 2021-03-31
EP2975063A4 (en) 2016-08-17
JPWO2014142166A1 (ja) 2017-02-16
CN105073782B (zh) 2018-06-01
JP5921762B2 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
JP6378712B2 (ja) 低置換度酢酸セルロース
JP6157472B2 (ja) 導電性セルロース系樹脂組成物
KR101057509B1 (ko) 개선된 습열 안정성을 갖는 셀룰로오스 에스테르
KR100976329B1 (ko) 셀룰로오스 에스테르 및 그의 제조 방법
WO2015107565A1 (ja) 酢酸セルロース繊維、酢酸セルロース繊維成形体、およびこれらの製造方法
JP5171859B2 (ja) 酢酸セルロース及びその製造方法
JP6283523B2 (ja) 水溶性酢酸セルロース系樹脂組成物、水溶性酢酸セルロース複合体成形品及びその製造方法
JP2019044102A (ja) 熱成形用セルロースアセテート組成物及び成形体
RU2764180C1 (ru) Композиция ацетилцеллюлозы для термоформования, формованное изделие и способ получения композиции ацетилцеллюлозы для термоформования
CN105980522A (zh) 量子点复合体、具有该复合体的波长转换元件、光电转换装置及太阳能电池
US11905393B2 (en) Cellulose acetate composition and molded article
JP5465368B2 (ja) セルロースエステル及びその製造方法
JP4682308B2 (ja) セルロースエステル又はそのフイルム及びその製造方法
JP2013049867A (ja) セルロースエステルの製造方法
WO2020036089A1 (ja) セルロースアセテート組成物及び成形体
JP2001055403A (ja) セルロースアセテートの冷却混合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015034.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505511

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14775369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014763960

Country of ref document: EP