WO2021002250A1 - 酢酸セルロース及び酢酸セルロースの製造方法 - Google Patents

酢酸セルロース及び酢酸セルロースの製造方法 Download PDF

Info

Publication number
WO2021002250A1
WO2021002250A1 PCT/JP2020/024720 JP2020024720W WO2021002250A1 WO 2021002250 A1 WO2021002250 A1 WO 2021002250A1 JP 2020024720 W JP2020024720 W JP 2020024720W WO 2021002250 A1 WO2021002250 A1 WO 2021002250A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
degree
weight
acetyl substitution
substitution
Prior art date
Application number
PCT/JP2020/024720
Other languages
English (en)
French (fr)
Inventor
修二 吉岡
中村 敏和
周 島本
崇生 岸本
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US17/612,651 priority Critical patent/US20220227891A1/en
Priority to EP20828944.7A priority patent/EP3995177A4/en
Priority to CN202080013954.XA priority patent/CN113454125A/zh
Publication of WO2021002250A1 publication Critical patent/WO2021002250A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/717Celluloses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/24Hydrolysis or ripening
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • C08B3/26Isolation of the cellulose ester
    • C08B3/28Isolation of the cellulose ester by precipitation

Definitions

  • the present invention relates to cellulose acetate and a method for producing cellulose acetate.
  • Low-degree-of-substitution cellulose acetate with a total acetyl substitution of 0.4 to 1.1 and water-soluble cellulose acetate with a total acetyl substitution of approximately 0.8 are metabolized and degraded by enterobacteria. It is known to exhibit physiological effects such as suppression of body weight gain and reduction of blood cholesterol (Patent Document 1 and Non-Patent Document 1).
  • acetic acid and propionic acid The major metabolic decomposition products of low-degree-of-substitution cellulose acetate are acetic acid and propionic acid.
  • Propionic acid is considered to be produced from glucose constituting cellulose via phosphoenolpyruvate and succinic acid (Non-Patent Documents 2 and 3).
  • Acetic acid is considered to be produced by liberation of acetic acid bound to cellulose in low-substituted cellulose acetate, and is also considered to be produced from glucose constituting cellulose via phosphoenolpyruvate (Non-Patent Document). 2 and Non-Patent Document 3).
  • Non-Patent Document 4 Acetate and propionic acid produced by metabolic decomposition of low-substituted cellulose acetate by intestinal bacteria, on the other hand, act on the nuclear receptor GPR43 of intestinal L cells and produce incretin GLP-1 to produce appetite and sugar. It is known that it affects metabolism (Non-Patent Document 4), and on the other hand, it acts on the hypothalamus and affects appetite suppression, weight gain suppression, glucose metabolism, and lipid metabolism (Non-Patent Document 5).
  • Non-Patent Document 6 Bacteroides xylanisolvens (Patent Document 1 and Non-Patent Document 1) that grow in the intestine of rats fed with low-degree-of-substitution cellulose acetate have been well studied as xylan-degrading bacteria and are considered to have acetylxylan esterase. Get it.
  • Non-Patent Document 6 Hydroxy groups are present at the 2-position, 3-position and 6-position of glucose contained as the main constituent unit of cellulose. In low-degree-of-substitution cellulose acetate, some of these hydroxyl groups are acetylated. Then, acetylxylan esterase selectively eliminates the acetyl group existing at the 2- or 3-position, but hardly eliminates the acetyl group at the 6-position (Non-Patent Document 6).
  • Cellulose acetate with a low degree of substitution is considered to exhibit a physiological effect through metabolic decomposition by intestinal bacteria.
  • Low-degree-of-substitution cellulose acetate which has biodegradability and is susceptible to metabolic decomposition by intestinal bacteria, is expected to exhibit excellent physiological effects.
  • acetylxylan esterase hardly eliminates the acetyl group at the 6-position, in order to improve the biodegradability of cellulose acetate with a low degree of substitution, the degree of acetyl substitution at the 2- and 3-positions of the glucose ring of cellulose acetate is used. On the other hand, it is necessary to relatively reduce the degree of acetyl substitution at the 6-position.
  • the acetyl substitution degree at the 6th position could not be made relatively lower than the acetyl substitution degree at the 2nd and 3rd positions of the glucose ring. ..
  • low-degree-of-substitution cellulose acetate which has a low degree of 6-position acetyl substitution and is excellent in water solubility, is particularly excellent in biodegradability.
  • Non-Patent Document 7 discloses low-replacement cellulose acetate having a low 6-position acetyl substitution degree as Experiment No. 6 and Experiment No. 7, but the water solubility is poor.
  • An object of the present invention is to provide cellulose acetate having a low total acetyl substitution degree, a low acetyl substitution degree at the 6-position with respect to the acetyl substitution degrees at the 2- and 3-positions of the glucose ring, and excellent water solubility. ..
  • the first of the present disclosure is that the total acetyl substitution degree is 0.4 or more and 0.9 or less, the ratio of the 6-position acetyl substitution degree in the total acetyl substitution degree is 0% or more and 18% or less, and 660 nm of a 4 wt% aqueous solution.
  • cellulose acetate which has a light transmittance of 5% or more.
  • the light transmittance of the 4 wt% aqueous solution at 660 nm may be 80% or more.
  • the second of the present disclosure is a step of solvolyzing raw cellulose acetate having a total acetyl substitution degree of 1.5 to 3.0 to deacetylate it, and deacetylating the raw material cellulose acetate to produce cellulose acetate.
  • the method for producing cellulose acetate which comprises a step of precipitation, and the solvolysis of the raw material cellulose acetate proceeds at a temperature equal to or higher than the boiling point of the alcohol in the presence of a solvent containing an alcohol having 3 or less carbon atoms and an acid catalyst.
  • the acid dissociation constant pKa of the acid catalyst in water at 25 ° C. may be 0 or less.
  • the acid catalyst may be sulfuric acid.
  • the alcohol may be methanol.
  • the solvent may contain an acetic acid ester.
  • the method for producing cellulose acetate may include a step of dissolving the precipitated cellulose acetate in water to remove a residue, and a step of precipitating the dissolved cellulose acetate.
  • the method for producing cellulose acetate may include a step of dissolving the precipitated cellulose acetate in water and centrifuging to remove the residue, and a step of reprecipitating the dissolved cellulose acetate.
  • cellulose acetate having a low total acetyl substitution degree, a low acetyl substitution degree at the 6-position with respect to the acetyl substitution degree at the 2- and 3-positions of the glucose ring, and further excellent water solubility. ..
  • the cellulose acetate of the present disclosure has a total acetyl substitution degree of 0.4 or more and 0.9 or less, a ratio of the 6-position acetyl substitution degree in the total acetyl substitution degree of 0% or more and 18% or less, and 660 nm of a 4 wt% aqueous solution.
  • the light transmittance of is 5% or more.
  • the cellulose acetate of the present disclosure has a total acetyl substitution degree of 0.4 or more and 0.9 or less. When the total degree of acetyl substitution is in this range, the cellulose acetate of the present disclosure has excellent water solubility and biodegradability.
  • the cellulose acetate of the present disclosure has a total acetyl substitution degree of 0.4 or more and 0.9 or less, and this may be referred to as a low substitution degree cellulose acetate.
  • the ratio of the 6-position acetyl substitution degree in the total acetyl substitution degree is 0% or more and 18% or less, and the ratio of the 6-position acetyl substitution degree is preferably 17% or less, 14 % Or less is more preferable, and 10% or less is further preferable.
  • the ratio of the degree of acetyl substitution at the 6-position is most preferably 0%, but may exceed 0%, may be 4% or more, may be 7% or more, and may be 9% or more. When it is 18% or less, it is excellent in degradability by an enzyme existing in the intestine (for example, acetylxylan esterase) and is easily metabolized in the body.
  • the total degree of acetyl substitution and the ratio of the degree of acetyl substitution at the 6th position to the total degree of acetyl substitution can be determined by the following method.
  • the degree of acetyl substitution at the 2-position, 3-position, and 6-position of the glucose ring of cellulose acetate is measured by an NMR method according to the method of Tezuka (Tezuka, Carbonydr. Res. 273, 83 (1995)). That is, the free hydroxyl group of cellulose acetate is propionylated in pyridine with propionic anhydride. The obtained sample is dissolved in deuterated chloroform and the 13 C-NMR spectrum is measured.
  • the carbon signal of the acetyl group appears in the region of 169 ppm to 171 ppm in the order of 2, 3, and 6 from the high magnetic field, and the signal of the carbonyl carbon of the propionyl group appears in the region of 172 ppm to 174 ppm in the same order.
  • the degree of acetyl substitution at the 2-position, 3-position, and 6-position of the glucose ring of cellulose acetate can be determined.
  • the degree of acetyl substitution can be analyzed by 1 H-NMR in addition to 13 C-NMR.
  • the degree of acetyl substitution at the i-position is a value obtained by dividing the number of moles of the acetyl group at the i-position by the sum of the number of moles of the acetyl group at the i-position and the number of moles of the hydroxyl group, and is a real number of 0 to 1.
  • i is either 2, 3 or 6.
  • the total degree of each acetyl substitution at the 2, 3 and 6 positions of the glucose ring of cellulose acetate is the total acetyl substitution.
  • the ratio of the 6-position acetyl substitution degree in the sum of the 2, 3 and 6-position acetyl substitution degrees of the glucose ring of cellulose acetate is the ratio (%) of the 6-position acetyl substitution degree in the total acetyl substitution degree. ..
  • the total degree of acetyl substitution can be converted into the degree of vinegarization by using the following formula.
  • DS 162.14 x AV x 0.01 / (60.052-42.037 x AV x 0.01)
  • AV Degree of vinegarization (%)
  • the cellulose acetate according to the present disclosure has a light transmittance of 5% or more at 660 nm of a 4 wt% aqueous solution of the cellulose acetate, and the light transmittance is preferably 10% or more, more preferably 30% or more, and 50%. % Or more is more preferable, and 80% or more is most preferable.
  • the light transmittance may be 99% or less, 98% or less, and 95% or less.
  • the water solubility of cellulose acetate is inferior.
  • the light transmittance of a 4 wt% aqueous solution of cellulose acetate at 660 nm can be determined using a spectrophotometer (manufactured by Shimadzu Corporation, UV-1800 ultraviolet-visible spectrophotometer, cell material polystyrene, cell length 10 mm).
  • the viscosity average degree of polymerization of cellulose acetate of the present disclosure is not particularly limited, but is preferably 3 or more and 400 or less, more preferably 10 or more and 200 or less, and further preferably 15 or more and 150 or less. When the viscosity average degree of polymerization is in the above range, it has particularly excellent water solubility and biodegradability.
  • the viscosity average degree of polymerization can be evaluated as the viscosity average degree of polymerization based on the limit viscosity number ([ ⁇ ], unit: g / ml) as shown below. Specifically, the limit viscosity number was determined by a method according to JIS-K-7376-1 and ISO1628-1, the viscosity average molecular weight was calculated according to the literature of Kamide et al., And the viscosity average degree of polymerization was calculated from the viscosity average molecular weight. Can be calculated.
  • the cellulose acetate of the present disclosure can be produced by the following production method.
  • the cellulose acetate of the present disclosure has a low total acetyl substitution degree, and the acetyl substitution degree at the 6th position is lower than the acetyl substitution degree at the 2nd and 3rd positions of the glucose ring. Therefore, an enzyme present in the intestine (for example, acetylxylan) It has excellent degradability by (esterase, etc.), is easily metabolized in the body, and can be used as food.
  • an enzyme present in the intestine for example, acetylxylan
  • the method for producing cellulose acetate of the present disclosure is produced by a step of solvolyzing raw material cellulose acetate having a total acetyl substitution degree of 1.5 to 3.0 to deacetylate it, and deacetylation of the raw material cellulose acetate. It has a step of precipitating cellulose acetate, and the solvolysis of the raw material cellulose acetate proceeds at a temperature equal to or higher than the boiling point of the alcohol in the presence of a solvent containing an alcohol having 3 or less carbon atoms and an acid catalyst.
  • deacetylation step In the deacetylation step in the method for producing cellulose acetate of the present disclosure, the raw material cellulose acetate is solvolyzed. In the deacetylation step of the present disclosure, deacetylation proceeds by solvolysis.
  • the solvolysis may involve only a solvent containing an alcohol having 3 or less carbon atoms, or may involve a solvent containing an alcohol having 3 or less carbon atoms and other solvents such as water. Solvolysis also includes hydrolysis.
  • cellulose acetate having a medium to high degree of substitution As the raw material cellulose acetate, cellulose acetate having a medium to high degree of substitution can be used. The total degree of acetyl substitution of cellulose acetate having a medium to high degree of substitution used as a raw material is 1.5 to 3.0, preferably 1.5 to 2.5.
  • the raw material cellulose acetate commercially available cellulose diacetate (total acetyl substitution degree 2.20 to 2.56) or cellulose triacetate (total acetyl substitution degree more than 2.56 to 3) can be used.
  • the raw material cellulose acetate When the raw material cellulose acetate is produced, it may be produced by a conventionally known production method. For example, it is produced by going through a series of steps including a step of crushing pulp which is a cellulose material, a step of pretreatment, a step of acetylation, a step of hydrolyzing, a step of precipitation, and a step of adding a stabilizer. be able to. Next, each of these steps will be described.
  • a general method for producing cellulose acetate refer to "Wood Chemistry" (above) (Kamimigita et al., Kyoritsu Shuppan Co., Ltd., 1968, pp. 180-190).
  • the ⁇ -cellulose content of the pulp is preferably 92% by weight or more, more preferably 93% by weight or more, and even more preferably 94% by weight or more. There is no particular upper limit, but it may be 99% by weight or less.
  • Such high-purity pulp contains almost no lignin derived from wood and also has a small amount of hemicellulose. This is because cellulose acetate, which is particularly excellent in water solubility and biodegradability, can be obtained because of the small amount of these impurities.
  • the ⁇ -cellulose content can be determined as follows. Pulp of known weight is continuously extracted with 17.5% and 9.45% aqueous sodium hydroxide solution at 25 ° C., and the soluble portion of the extract is oxidized with potassium dichromate, which is necessary for oxidation. The weight of ⁇ , ⁇ -cellulose is determined from the amount of potassium dichromate obtained. The value obtained by subtracting the weight of ⁇ and ⁇ -cellulose from the weight of the initial pulp is taken as the weight of the insoluble portion of the pulp and the weight of ⁇ -cellulose (TAPPI T203). The ratio of the weight of the insoluble portion of the pulp to the weight of the initial pulp is the ⁇ -cellulose content (% by weight).
  • wood pulp coniferous pulp, hardwood pulp
  • cotton linter etc.
  • wood pulp coniferous pulp, hardwood pulp
  • cotton linter etc.
  • These celluloses may be used alone or in combination of two or more, and for example, softwood pulp may be used in combination with cotton linter or hardwood pulp.
  • Wood pulp is preferable because it is advantageous in terms of cost as compared with the stable supply of raw materials and linters.
  • Examples of wood pulp include hardwood pre-hydrolyzed kraft pulp and the like.
  • the crushed pulp is brought into contact with acetic acid or sulfur-containing acetic acid.
  • acetic acid 96 to 100% by weight acetic acid can be used
  • sulfur-containing acetic acid is acetic acid containing sulfuric acid, preferably containing 1 to 10% by weight of sulfuric acid.
  • the pretreated pulp is brought into contact with a mixed solution of acetic acid and acetic anhydride to acetylate the pulp with acetic anhydride to obtain fully trisubstituted cellulose acetate (primary cellulose acetate).
  • the mixed solution preferably contains sulfuric acid as a catalyst.
  • acetic acid can be used as acetic acid, and concentrated sulfuric acid is preferable as sulfuric acid.
  • a neutralizing agent such as water, dilute acetic acid, or an aqueous solution of magnesium acetate is added to neutralize sulfuric acid (complete neutralization or partial neutralization), inactivate acetic anhydride, and acetylate. Stop the chemical reaction.
  • completely trisubstituted cellulose acetate primary cellulose acetate
  • the dilute acetic acid refers to an aqueous acetic acid solution of 1 to 50% by weight.
  • the magnesium acetate concentration of the magnesium acetate aqueous solution is preferably 5 to 30% by weight.
  • a mixture containing cellulose acetate is mixed with a precipitating agent such as water, dilute acetic acid, dilute calcium hydroxide aqueous solution, or magnesium acetate aqueous solution to precipitate cellulose acetate. Further, the produced cellulose acetate (precipitate) is separated and washed with water to remove free metal components, sulfuric acid components and the like.
  • a precipitating agent such as water, dilute acetic acid, dilute calcium hydroxide aqueous solution, or magnesium acetate aqueous solution to precipitate cellulose acetate.
  • an alkali metal compound and / or an alkaline earth metal compound, particularly a calcium compound such as calcium hydroxide may be added as a stabilizer, if necessary. Moreover, you may use a stabilizer at the time of washing with water.
  • Solvolysis of the raw material cellulose acetate proceeds at a temperature equal to or higher than the boiling point of the alcohol in the presence of a solvent containing an alcohol having 3 or less carbon atoms and an acid catalyst.
  • the solvent containing an alcohol having 3 or less carbon atoms may be a solvent containing an alcohol having 3 or less carbon atoms and capable of dissolving the raw material cellulose acetate.
  • the fact that the raw material cellulose acetate can be dissolved means that a part or all of the raw material cellulose acetate can be molecularly dispersed under either heating or non-heating conditions, and the form of the solid raw material cellulose acetate is visually clarified. It means that various changes and disappearances can be observed.
  • Alcohol with 3 or less carbon atoms contained in the solvent is not particularly limited. Examples thereof include methanol, ethanol, 1-propanol and 2-propanol. Among these, methanol and ethanol are preferable, and methanol is more preferable.
  • the content of alcohol having 3 or less carbon atoms in the solvent is preferably 70% by weight or more, more preferably 80% by weight or more. Further, it may be 100% by weight or less.
  • the solvent may contain, for example, acetic acid ester, acetic acid, acetone and the like as optional components in addition to the alcohol having 3 or less carbon atoms.
  • acetic acid ester is preferable, and among acetic acid esters, ethyl acetate and methyl acetate are more preferable. This is because the solubility of the starting material (raw material cellulose acetate) and / or the reaction intermediate substance in the reaction bath is enhanced, and cellulose acetate having excellent water solubility and biodegradability can be obtained.
  • the content of any component other than alcohol having 3 or less carbon atoms in the solvent is preferably 30% by weight or less, more preferably 20% by weight or less.
  • the content of acetic acid ester in the solvent is preferably 10% by weight or more and 5% by weight or less.
  • the amount of the solvent containing alcohol having 3 or less carbon atoms is, for example, 0.5 to 50 parts by weight, preferably 1 to 20 parts by weight, and more preferably 3 to 10 parts by weight with respect to 1 part by weight of the raw material cellulose acetate. Is.
  • an acid catalyst generally used as a deacetylation catalyst can be used.
  • the acid catalyst include inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid; and organic acids such as trifluoroacetic acid and formic acid. These acid catalysts may be used alone or in combination of two or more.
  • the acid catalyst preferably has an acid dissociation constant pKa of 0 or less, more preferably ⁇ 0.5 or less, and even more preferably ⁇ 1.0 or less in water at 25 ° C.
  • the acid dissociation constant pKa may be ⁇ 6.0 or higher.
  • Sulfuric acid is preferable as the acid catalyst. Further, as the sulfuric acid, a sulfuric acid aqueous solution having a sulfuric acid concentration of 98% by weight can be used as the concentrated sulfuric acid.
  • the catalyst may be mixed with a solvent containing an alcohol having 3 or less carbon atoms in advance and used for solvolysis of the raw material cellulose acetate.
  • the amount of the acid catalyst used is, for example, preferably 0.005 to 1 part by weight, more preferably 0.01 to 0.5 part by weight, and 0.02 to 0.3 part by weight with respect to 1 part by weight of the raw material cellulose acetate. Parts are more preferred. If the amount of the catalyst is too small, the time for solvolysis becomes too long, which has the advantage that the end point of the reaction can be easily controlled, but it is not economically preferable. On the other hand, if the amount of the catalyst is too large, the degree of change in the depolymerization rate with respect to the solvolysis temperature becomes large, it becomes difficult to control the end point of the reaction, and it becomes difficult to obtain cellulose acetate having the total degree of substitution of the present disclosure. .. In addition, heterogeneous cellulose acetate with varying degrees of acetyl substitution is likely to occur.
  • the content of water in the solvolysis reaction system is preferably smaller, preferably 2 parts by weight or less, more preferably 1 part by weight or less, and 0.5 part by weight or less, based on 1 part by weight of the raw material cellulose acetate. More preferred. Further, it is sufficient that the solvolysis of the raw material cellulose acetate is started and progressed, and there is no lower limit of the water content in the solvolysis reaction system, but for example, 0.01 with respect to 1 part by weight of the raw material cellulose acetate. It may be parts by weight or more.
  • the water originally contained in the raw material cellulose acetate may or may not be removed in advance.
  • the water content of the raw material cellulose acetate may be, for example, 5% by weight or less, 4% by weight or less, or 3% by weight or less, and may be 1% by weight or more in the raw material cellulose acetate.
  • the water content contained in the raw material cellulose acetate can be measured by the following method. It can be measured using a Ket moisture meter (METTTLER TOLEDO HB43).
  • the water content (% by weight) in the sample can be calculated from the weight change before and after heating by placing about 2.0 g of the water-containing sample on the aluminum saucer of the Ket Moisture Analyzer and heating at 120 ° C. until the weight does not change.
  • water may be added to the system in addition to the water originally contained in the raw material cellulose acetate.
  • the entire amount may be present in the system at the start of the reaction, or a part of the water to be used may be present in the system at the start of the reaction and the remaining water may be added into the system in 1 to several batches. Good.
  • the content of water in the solvolysis reaction system is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, still more preferably 5 parts by weight or less, based on 1 part by weight of the solvent.
  • alcohol having 3 or less carbon atoms for example, when methanol is used, the temperature is 65 ° C or higher, when ethanol is used, the temperature is 78 ° C or higher, when 1-propanol is used, the temperature is 97 ° C or higher, and when 2-propanol is used, the temperature is 82 ° C or higher. is there.
  • the raw material cellulose acetate can be sufficiently dissolved in a solvent to allow the solvolysis reaction to proceed uniformly.
  • the temperature in the solvolysis reaction system is not limited as long as it is above the boiling point of an alcohol having 3 or less carbon atoms, but is preferably 105 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 95 ° C. or lower. When the temperature exceeds 105 ° C., the degree of polymerization and the yield of the obtained cellulose acetate are significantly reduced.
  • the gauge pressure in the solvolysis reaction system is preferably 0.2 MPaG or more and 1 MPaG or less. It is preferably 0.2 MPaG or more and 0.7 MPaG or less, and more preferably 0.2 MPaG or more and 0.5 MPaG or less.
  • the content is 0.2 MPaG or more, the raw material cellulose acetate can be sufficiently dissolved in the solvent, and the solvolysis reaction can proceed particularly uniformly.
  • it exceeds 1 MPaG the degree of polymerization and the yield of the obtained cellulose acetate are significantly reduced.
  • the time of the solvolysis reaction may be 20 minutes or more and 300 minutes or less, 30 minutes or more and 240 minutes or less, 60 minutes or more and 200 minutes or less, and 60 minutes or more and 150 minutes or less. Good. Within this range, the total degree of acetyl substitution can be easily adjusted to 0.4 or more and 0.9 or less.
  • the time of the solvolysis reaction means the time for maintaining the temperature after reaching the temperature in the solvolysis reaction system.
  • the raw material cellulose acetate is dissolved in a mixed solvent of acetic acid and water, and the raw material cellulose acetate is hydrolyzed using a sulfuric acid catalyst.
  • the elimination of the acetyl group proceeds in substantially the same manner at the 2-position, 3-position, and 6-position of the glucose ring of cellulose acetate.
  • the acetyl group at the 6-position is preferentially eliminated, and the cellulose acetate having a lower degree of acetyl substitution at the 6-position than the degree of acetyl substitution at the 2- and 3-positions of the glucose ring is produced. can get.
  • acetic acid is used as a reaction solvent, and the reaction proceeds while acetic acid is preferentially reacetylated to the 6-position in the process of deacetylation, so that the acetyl group is apparently deacetylated. Separation proceeds in substantially the same manner at the 2-position, 3-position, and 6-position of the glucose ring of cellulose acetate. If the reacetylation at the 6-position is suppressed, cellulose acetate having a low degree of substitution at the 6-position can be obtained, but in that case, a solvent instead of acetic acid is required.
  • a solvent containing alcohols having 3 or less carbon atoms is suitable as a reaction solvent for this purpose at a boiling point or higher.
  • a solvent containing alcohols having 3 or less carbon atoms dissolves or highly swells cellulose acetate having a medium to high degree of substitution as a starting material above the boiling point.
  • Solvolysis of the raw material cellulose acetate can be completed by adding a neutralizing agent.
  • the neutralizing agent include salts of weak acids, for example, acetates such as sodium acetate and magnesium acetate, and carbonates such as sodium carbonate and magnesium carbonate.
  • the neutralizer may be added together with a solvent containing an alcohol having 3 or less carbon atoms.
  • the amount of the neutralizing agent used may be 1.0 to 5.0 equivalents, preferably 1.1 to 3.0 equivalents, more preferably 1.2 to 2.0 equivalents, relative to 1 equivalent of the acid catalyst. preferable. If the amount of the neutralizing agent is too small, the acid catalyst may remain in the low-degree-of-substitution cellulose acetate and the low-degree-of-substitution cellulose acetate may be decomposed. On the other hand, if the amount of the neutralizing agent is too large, a large amount of solvents are used for cleaning the neutralizing agent, which is economically unfavorable.
  • Precipitation process In the precipitation step in the method for producing cellulose acetate of the present disclosure, cellulose acetate produced by deacetylation of the raw material cellulose acetate is precipitated.
  • Examples of the precipitation method include a method of precipitating cellulose acetate having a low degree of substitution by cooling the temperature of the reaction system to room temperature after the completion of the solvolysis reaction of the raw material cellulose acetate.
  • the method of precipitation using cooling does not require the addition of a precipitation solvent and is economically preferable.
  • a precipitation solvent may be added since the addition of a precipitation solvent may promote the precipitation of cellulose acetate having a low degree of substitution and increase the yield.
  • the precipitation solvent examples include the solvent containing an alcohol having 3 or less carbon atoms; a ketone such as acetone and methyl ethyl ketone; an ester such as ethyl acetate and methyl acetate; a nitrogen-containing compound such as acetonitrile; an ether such as tetrahydrofuran; and a mixed solvent thereof and the like. Can be mentioned.
  • These precipitation solvents may be used alone, or a mixed solvent containing two or more kinds of solvents may be used. Among these, if the same solvent as the reaction solvent is used as the precipitation solvent, the recovery and reuse of the waste solvent may be facilitated, so the solvent containing the alcohol having 3 or less carbon atoms is preferable.
  • the precipitation solvent preferably contains the following basic substances. This is because neutralization can be performed at the same time as precipitation.
  • the precipitated cellulose acetate is preferably washed with an alcohol such as methanol and an organic solvent (poor solvent) such as a ketone such as acetone. It is also preferable to wash and neutralize with an organic solvent containing a salt of a weak acid or a basic substance (for example, alcohol such as methanol, ketone such as acetone, etc.). Impurities such as catalysts (sulfuric acid, etc.) used in the solvolysis step can be efficiently removed by washing and neutralization.
  • Examples of the salt of the weak acid include hydrates of acetates such as sodium acetate and magnesium acetate, and hydrates of carbonates such as sodium carbonate and magnesium carbonate.
  • an alkali metal compound such as an alkali metal hydroxide such as calcium hydroxide can be used.
  • precipitated cellulose acetate solid matter
  • a hydrophilic organic solvent for example, acetone
  • a residue in other words, an insoluble component
  • Centrifugation may be used as a method for removing the residue.
  • the cellulose acetate may be dissolved by stirring at an appropriate temperature (for example, 20 to 80 ° C., preferably 25 to 60 ° C.). Further, the concentration (blending ratio) of cellulose acetate in the aqueous solution may be adjusted to an appropriate concentration (for example, 2 to 10% by weight, preferably 3 to 8% by weight).
  • the concentration of the organic solvent in the mixed solvent may be, for example, 5 to 50% by weight, preferably 10 to 40% by weight.
  • the dissolved cellulose acetate may be precipitated.
  • the precipitation method include reprecipitation and spray drying.
  • the precipitation solvent used for reprecipitation the solvent containing an alcohol having 3 or less carbon atoms; a ketone such as acetone and methyl ethyl ketone; an ester such as ethyl acetate and methyl acetate; a nitrogen-containing compound such as acetonitrile; an ether such as tetrahydrofuran; and these.
  • a mixed solvent of examples of these precipitation solvents may be used alone, or a mixed solvent containing two or more kinds of solvents may be used.
  • a stabilizer may be added to the precipitated cellulose acetate. This is to improve the thermal stability of cellulose acetate.
  • an alkali metal compound and / or an alkaline earth metal compound, particularly a calcium compound such as calcium hydroxide is preferable.
  • the amount of the stabilizer added is preferably, for example, a reaction mixture containing cellulose acetate and an aqueous solution of calcium hydroxide adjusted to 0.2 to 1.0% by weight in a volume ratio of 100: 1 to 10.
  • the stabilizer may be added at the same time when free metal components, sulfuric acid components and the like are removed by washing with a poor solvent such as a precipitation solvent for the precipitate.
  • the drying method is not particularly limited, and conventionally known methods can be used. For example, air drying such as hot air drying, vacuum drying, and drying such as vacuum drying can be mentioned. The temperature and pressure may be adjusted as appropriate.
  • the cellulose acetate may be crushed.
  • a conventional crusher for example, a sample mill, a hammer mill, a turbo mill, an atomizer, a cutter mill, a bead mill, a ball mill, a roll mill, a jet mill, a pin mill or the like can be used. Further, freeze pulverization, dry pulverization at room temperature, or wet pulverization may be performed.
  • reaction product yield yield of cellulose acetate before the purification step (% by weight) was calculated as follows.
  • Reaction product yield (% by weight) actual yield of solvolysis reaction product (cellulose acetate before purification step if purification step is included) / solvolysis reaction product (before purification step if purification step is included) Theoretical yield of cellulose acetate)
  • the NMR measurement conditions are as follows. Measuring solvent: CDCl 3 (using about 3 ml) Measurement temperature: 40 ° C Sample amount: 160-180 mg ( ⁇ 10 mm) Observation nucleus: 13C (1H complete decoupling) Number of data points: 32768 Pulse angle and time: 45 °, 9 ⁇ sec Data acquisition time: 0.9667 sec Waiting time: 2.0333 sec Accumulation number: 18,000 times
  • the total degree of acetyl substitution (DS) was calculated by the following equation, where X was the integrated intensity of the acetylcarbonyl carbon signal and Y was the integrated intensity of the propionylcarbonyl carbon signal.
  • Total Acetyl Substitution (DS) 3 ⁇ [X / (X + Y)]
  • the ultimate viscosity number of cellulose acetate is based on JIS-K-7367-1 and ISO1628-1, using a Ubbelohde viscometer of size 1C as a viscometer, and dimethyl sulfoxide (DMSO) as a solvent.
  • DMSO dimethyl sulfoxide
  • Viscosity average molecular weight (extreme viscosity number [ ⁇ ] /0.171) (1 / 0.61)
  • Example A-1 Deacetylation step: 70 parts by weight of cellulose diacetate as raw material cellulose acetate (manufactured by Daicel Co., Ltd., trade name "L-50", water content 3% by weight, total acetyl substitution degree 2.43, 2nd position acetyl substitution degree 0.86, 3rd place Acetyl substitution degree 0.82 and 6-position acetyl substitution degree 0.75) were added to 554 parts by weight of methanol as a solvent at room temperature, and 3.5 parts by weight of acetic acid was further added as a catalyst. While stirring the mixture, the temperature was raised to 90 ° C. over a heating time of 50 minutes, and the temperature was adjusted (held) at 90 ° C. for 100 minutes.
  • Precipitation process The reaction mixture was cooled to room temperature and sulfuric acid was neutralized by adding a mixture of 14.6 parts by weight of sodium acetate trihydrate and 55 parts by weight of methanol. The white solid suspended in this reaction mixture was filtered by suction filtration. The filtered white solid was suspended in 277 parts by weight of methanol and stirred at room temperature for 1 hour. The white solid in methanol was filtered by suction filtration.
  • the separated white solid was suspended again in 277 parts by weight of methanol and stirred at room temperature for 1 hour.
  • the white solid in methanol was filtered by suction filtration.
  • the white solid washed with methanol was dried under reduced pressure at 60 ° C. until the weight became constant to obtain 42 parts by weight of low-degree-of-substitution cellulose acetate.
  • Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-2 Deacetylation and precipitation steps: By the same method as in Example A-1, 42 parts by weight of low-degree-of-substitution cellulose acetate was obtained.
  • this low-degree-of-substitution cellulose acetate was added to 1,440 parts by weight of water, stirred at room temperature for 8 hours, and allowed to stand overnight.
  • the suspension was centrifuged at 12,600 G for 30 minutes to obtain a supernatant of the suspension.
  • the supernatant was added dropwise to 10,000 parts by weight of acetone with stirring to obtain a white precipitate.
  • the white precipitate was filtered off by suction filtration and dried under reduced pressure at 60 ° C. until it reached a constant weight to obtain 54 parts by weight of low-degree-of-substitution cellulose acetate.
  • Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-3 Deacetylation and precipitation steps: Cellulose acetate manufactured by Eastman Chemical Co., Ltd. (trade name "CA-320S", water content 3% by weight, total acetyl) instead of cellulose diacetate (trade name "L-50", water content 3% by weight) manufactured by Daicel Co., Ltd. Degree of substitution 1.80, 2-position acetyl substitution degree 0.61, 3-position acetyl substitution degree 0.56, 6-position acetyl substitution degree 0.63), except that the temperature adjustment time at 90 ° C is 80 minutes. 47 parts by weight of low-degree-of-substitution cellulose acetate was obtained in the same manner as in Example A-1. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-4 Instead of cellulose diacetate (manufactured by Daicel Co., Ltd., trade name "L-50", water content 3% by weight), cellulose diacetate (manufactured by Daicel Co., Ltd., trade name "LM-80", water content 3% by weight), Using a total acetyl substitution degree of 2.14, a 2-position acetyl substitution degree of 0.75, a 3-position acetyl substitution degree of 0.75, and a 6-position acetyl substitution degree of 0.64), the temperature regulation (retention) time at 90 ° C. is 125. 41 parts by weight of low-degree-of-substitution cellulose acetate was obtained by the same method as in Example A-1 except that the amount was divided. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-5 Same as Example A-1 except that cellulose diacetate (manufactured by Daicel Corporation, trade name "L-50", moisture content 3% by weight) was used and the temperature regulation (holding) time at 90 ° C. was 65 minutes. By the method, 45 parts by weight of low-degree-of-substitution cellulose acetate was obtained. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-6 Same as Example A-1 except that cellulose diacetate (manufactured by Daicel Corporation, trade name "L-50", moisture content 3% by weight) was used and the temperature regulation (holding) time at 90 ° C. was set to 130 minutes. By the method, 38 parts by weight of low-degree-of-substitution cellulose acetate was obtained. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • This cellulose diacetate solution was adjusted to 50 ° C., and a mixture of 12.6 parts by weight of 98% sulfuric acid (catalyst) and 57 parts by weight of acetic acid (solvent) was added.
  • the temperature of this reaction mixture was adjusted to 50 ° C. with stirring, and 137 parts by weight of water was added over 30 minutes 4 hours after the addition of sulfuric acid, and 111 parts by weight of water was added over 30 minutes 8 hours after the addition of sulfuric acid. did.
  • the temperature of this reaction mixture was adjusted to 50 ° C. with continuous stirring, and 72 parts by weight of sodium acetate trihydrate and 109 g of a mixture of water were added 23 hours and 40 minutes (1,420 minutes) after the addition of sulfuric acid. The reaction was stopped.
  • Precipitation process The reaction mixture was added dropwise to 4,700 parts by weight of methanol with stirring to give a white precipitate. The operation of filtering the white precipitate, dispersing it in 1,100 parts by weight of methanol, and filtering again was repeated 5 times. The white precipitate separated by weight was dried under reduced pressure at 60 ° C. until it became constant to obtain 62 parts by weight of low-degree-of-substitution cellulose acetate. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Deacetylation step 100 parts by weight of cellulose diacetate (manufactured by Daicel Co., Ltd., trade name "L-50", water content 3% by weight, total acetyl substitution degree 2.43, 2-position acetyl substitution degree 0.86, 3-position acetyl substitution degree 0)
  • a mixture of 510 parts by weight of acetic acid and 95 parts by weight of water was added to 0.82, 6-position acetyl substitution degree 0.75), and the mixture was stirred at 70 ° C. for 3 hours to obtain a cellulose diacetate solution.
  • the temperature of this cellulose diacetate solution was adjusted to 70 ° C. with stirring, and 13 parts by weight of 98% sulfuric acid was added.
  • reaction mixture was adjusted to 70 ° C. with continuous stirring, 67 parts by weight of water was added over 5 minutes 3 hours after the addition of sulfuric acid, and 133 parts by weight of 133 parts by weight of sulfuric acid was added 8 hours later. Water was added over 10 minutes.
  • the temperature of the reaction mixture was adjusted to 70 ° C. with continuous stirring, and 10 hours (600 minutes later) after the addition of sulfuric acid, the reaction mixture was cooled to 25 ° C. to substantially stop the reaction.
  • Precipitation process The reaction mixture was added dropwise to 1,500 parts by weight of acetone with stirring to give a white precipitate. The operation of filtering the white precipitate, dispersing it in 800 parts by weight of acetone, and filtering again was repeated three times. The filtered white precipitate was dispersed in 800 parts by weight of methanol containing 0.004% by weight of potassium acetate, and the operation of filtering again was repeated twice. The separated white precipitate was dried under reduced pressure at 60 ° C. until it became constant. To 64 parts by weight of this dried product, 960 parts by weight of a 20% by weight aqueous acetone solution was added, and the mixture was stirred at 40 ° C.
  • Example A-5 Same as Example A-1 except that cellulose diacetate (manufactured by Daicel Corporation, trade name "L-50", moisture content 3% by weight) was used and the temperature regulation (holding) time at 90 ° C was set to 50 minutes. By the method, 43 parts by weight of low-degree-of-substitution cellulose acetate was obtained. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • Example A-6 Same as Example A-1 except that cellulose diacetate (manufactured by Daicel Corporation, trade name "L-50", moisture content 3% by weight) was used and the temperature regulation (holding) time at 90 ° C. was 160 minutes. By the method, 34 parts by weight of low-degree-of-substitution cellulose acetate was obtained. Table 1 shows the results of measuring the physical characteristics of the obtained low-degree-of-substitution cellulose acetate.
  • the cellulose acetate of Comparative Example A-1 had a 6-position acetyl substitution degree of 0.24 and a 6-position acetyl substitution degree ratio of 36.9% in the total acetyl substitution degree, and the cellulose acetate of Comparative Example A-2.
  • the 6-position acetyl substitution degree is 0.28
  • the 6-position acetyl substitution degree ratio in the total acetyl substitution degree is 35.9%
  • the cellulose acetate of Comparative Examples A-1 and A-2 is 6
  • the degree of acetyl substitution at the position is higher than the degree of acetyl substitution at the 2nd and 3rd positions.
  • the cellulose acetate of Comparative Example A-3 has a 6-position acetyl substitution degree of 0.05 and a 6-position acetyl substitution degree ratio of 10.4% in the total acetyl substitution degree, and the cellulose acetate of Comparative Example A-4.
  • the 6-position acetyl substitution degree is 0.06
  • the 6-position acetyl substitution degree ratio in the total acetyl substitution degree is 12.0%
  • the cellulose acetate of Comparative Examples A-3 and A-4 is 6
  • the degree of acetyl substitution at the position is lower than the degree of acetyl substitution at the 2nd and 3rd positions.
  • the light transmittance of the 4 wt% aqueous solution at 660 nm is low, and the water solubility is poor.
  • the cellulose acetate of Comparative Example A-5 has a 6-position acetyl substitution degree of 0.13 and a 6-position acetyl substitution degree ratio of 13.1% in the total acetyl substitution degree, and the cellulose acetate of Comparative Example A-6
  • the 6-position acetyl substitution degree is 0.03, the 6-position acetyl substitution degree ratio in the total acetyl substitution degree is 9.1%, and the cellulose acetate of Comparative Examples A-5 and A-6 is 6
  • the degree of acetyl substitution at the position is lower than the degree of acetyl substitution at the 2nd and 3rd positions.
  • the light transmittance of the 4 wt% aqueous solution at 660 nm is low, and the water solubility is poor.
  • the ratio of the 6-position acetyl substitution degree in the total acetyl substitution degree was as low as 18% or less, and the light transmittance of the 4 wt% aqueous solution at 660 nm was 5% or more. It is excellent in water solubility.
  • the light transmittance at 660 nm of the 4 wt% aqueous solution of cellulose acetate of Examples A-2 and A-3 is 92% or more, which is particularly excellent in water solubility.
  • the purified feed AIN-93G (Reeves et al., Journal of Nutrition, 123, 1939-1951 (1993)) was fed with tap water for 3 days and acclimatized, and then based on the body weight (of each group). Divide into 3 groups (to eliminate bias in total body weight of rats), AIN-93G (sometimes referred to as "control group") in the first group, and low substitution of Example A-2 in the second group. AIN-93G containing 5% by weight of cellulose acetate (sometimes referred to as "test group”), and AIN-93G containing 5% by weight of low substitution cellulose acetate of Comparative Example A-1 in the third group (“Comparison").
  • Groups (Sometimes referred to as "group") were allowed to freely ingest each with tap water for 14 days.
  • the number of rats per group is all three.
  • the first group corresponds to Reference Example B-1
  • the second group corresponds to Example B-1
  • the third group corresponds to Comparative Example B-1.
  • the rats were divided into 3 groups, and on the 3rd, 7th, and 13th days after the start of breeding with each feed, the entire amount of feces for one day was collected and used for analysis of the residual rate of acetyl groups.
  • the analysis method is as follows. In addition, feed intake and weight gain were measured throughout the breeding period.
  • the rats were fasted from 7:00 am and an autopsy was performed from 15:00.
  • the rat was laparotomized under isoflurane anesthesia, and about 2 mL of blood was collected from the abdominal aorta into a heparinized test tube (Benoject II heparin sodium, 3 mL for blood collection: Terumo Co., Ltd.). After that, blood was exsanguinated and euthanized, and epididymal fat (left and right) was promptly removed. Then, the epididymal fat weight was measured.
  • the collected blood was centrifuged at 2,380 G for 10 minutes at room temperature to separate plasma.
  • the separated plasma was used for blood glucose level using Shikarikid GLU (Kanto Chemical Co., Ltd.); and triglyceride using Shikarikid-N TG (Kanto Chemical Co., Ltd.), and Shikarikid-N CHO (Kanto).
  • Cholesterol also called plasma cholesterol was measured using Chemical Co., Ltd.
  • rat feces was suspended in a 150 mM aqueous sodium hydroxide solution, and the temperature was adjusted at 70 ° C. for 4 hours, and treated with sodium hydroxide by the method of Miwa et al. (Journal of Chromatography, 321, 165-174 (1985)).
  • the acetic acid concentration of sodium hydroxide-treated rat feces was determined by derivatizing acetic acid contained in rat feces into the corresponding 2-nitrophenyl hydrazide and quantifying 2-nitrophenyl hydrazide of acetic acid by HPLC analysis.
  • the difference between the acetic acid concentration of the rat feces treated with sodium hydroxide and the acetic acid concentration of the rat feces suspended in water was defined as the acetyl group concentration (the number of moles per unit weight) of the rat feces.
  • the residual ratio of acetyl groups was calculated by the following formula.
  • Acetyl group residual rate 100 x (rat fecal acetyl group concentration) x A / (B x C / D)
  • D: Number of moles of acetyl group per unit weight of cellulose acetate DS / (162.14 + 42.07 ⁇ DS) DS: Total degree of acetyl substitution
  • Example B-1 When rats were fed with cellulose acetate of Example A-2 on days 3, 7 and 13 of breeding (the ratio of the degree of acetyl substitution at the 6th position to the total degree of acetyl substitution was 18% or less) (Example B-1).
  • the residual rate of acetyl groups in the feces was obtained when rats were fed with cellulose acetate of Comparative Example A-1 (the ratio of the degree of acetyl substitution at the 6th position in the total degree of acetyl substitution exceeded 18%) (Comparative Example). It is lower than B-1). This indicates that the cellulose acetate of the example having a low ratio of the degree of acetyl substitution at the 6-position has excellent degradability and is easily metabolized in the body.
  • Example B-1 The blood glucose level and cholesterol of the rats of Example B-1 (test group) showed a decreasing tendency, though not significantly different, from those of Reference Example B-1 (control group).
  • the cellulose acetate of the example having a low ratio of acetyl substitution at the 6th position has excellent degradability and is easily metabolized in the body, and suppresses appetite (suppression of feed intake), suppression of weight gain, and suppression of triglyceride in rats. And it can be seen that it particularly contributes to the suppression of fat accumulation (suppression of epididymal fat).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、アセチル総置換度が低く、グルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度が低く、さらに水溶性に優れる酢酸セルロースを提供することを目的とする。 アセチル総置換度が0.4以上0.9以下、前記アセチル総置換度における6位のアセチル置換度の割合が0%以上18%以下、及び4重量%水溶液の660nmの光線透過率が5%以上である、酢酸セルロース。

Description

酢酸セルロース及び酢酸セルロースの製造方法
 本発明は、酢酸セルロース及び酢酸セルロースの製造方法に関する。
 アセチル総置換度が0.4~1.1の低置換度酢酸セルロース、及びアセチル総置換度がおよそ0.8の水溶性酢酸セルロース(低置換度酢酸セルロース)が腸内細菌により代謝分解され、体重増加抑制及び血中コレステロール低減等の生理作用を示すことが知られている(特許文献1及び非特許文献1)。
 低置換度酢酸セルロースの主要な代謝分解物は酢酸とプロピオン酸である。プロピオン酸は、セルロースを構成するグルコースから、ホスホエノールピルビン酸及びコハク酸を経由して生成すると考えられる(非特許文献2及び非特許文献3)。酢酸は、低置換度酢酸セルロースにおいてセルロースに結合した酢酸が、遊離することにより生成すると考えられ、また、セルロースを構成するグルコースから、ホスホエノールピルビン酸を経由して生成すると考えられる(非特許文献2及び非特許文献3)。
 腸内細菌が低置換度酢酸セルロースを代謝分解して生成する酢酸及びプロピオン酸は、一方では腸管L細胞の核内受容体GPR43等に作用しインクレチンGLP-1を生成することで食欲及び糖代謝に影響すること(非特許文献4)、他方で視床下部に作用し、食欲抑制、体重増加抑制、糖代謝、及び脂質代謝に影響すること(非特許文献5)が知られている。
 低置換度酢酸セルロースの脱アセチル化には、酵素であるアセチルキシランエステラーゼが関与することが知られている(非特許文献6)。なお、低置換度酢酸セルロースを与えたラットの腸内で増殖するBacteroides xylanisolvens(特許文献1、非特許文献1)はキシラン分解菌として良く研究されているものであり、アセチルキシランエステラーゼを有すると考えらえる。これらのことから、低置換度酢酸セルロースの腸内細菌による代謝分解において、最初の分解は脱アセチル化であると推定され、この分解にはアセチルキシランエステラーゼが関与すると考えられる。
 セルロースの主な構成単位として含まれるグルコースの2位、3位及び6位には水酸基存在する。低置換度酢酸セルロースにおいては、これら水酸基の一部がアセチル化されている。そして、アセチルキシランエステラーゼは2位又は3位に存在するアセチル基を選択的に脱離させるが、6位のアセチル基は殆ど脱離させない(非特許文献6)。
特許第6453851号公報
Genda et al., Journal of Agricultural and Food Chemistry, 66, 11909-11916 (2018). Gijs den Besten et al., Journal of Lipid Research, 54, 2325-2340 (2013). Strobel, Applied and Environmental Microbiology, 58, 2331-2333 (1992). Sleeth et al., Nutrition Research Reviews, 23, 135-145 (2010). Frost et al., Nature Communications, DOI: 10.1038 (2014). Puls et al., Mactomolecular Symposia, 208, 239-253 (2004). Buchanan et al, Macromolecules, 24, 3060-3064 (1991).
 低置換度酢酸セルロースは、腸内細菌による代謝分解を通じて生理作用を示すものであると考えられる。生分解性を有し、腸内細菌による代謝分解を受けやすい低置換度酢酸セルロースは、優れた生理作用を示すことが期待される。
 アセチルキシランエステラーゼは、6位のアセチル基は殆ど脱離させないことから、低置換度酢酸セルロースの生分解性を向上するためには、酢酸セルロースのグルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度を相対的に低減する必要がある。
 しかし、従来の方法では、アセチル総置換度が低い酢酸セルロースにおいて、そのグルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度を相対的に低くすることはできなかった。
 また、低置換度酢酸セルロースは水溶性に優れる方が、生分解性が向上する。したがって、6位アセチル置換度が低く、かつ、水溶性に優れる低置換度酢酸セルロースは、特に生分解性に優れる。
 しかし、このような6位アセチル置換度が低く、かつ、水溶性に優れる低置換度酢酸セルロースは従来知られていなかった。例えば、特許文献1に開示される低置換度酢酸セルロースの6位アセチル置換度は低くない。非特許文献7には実験番号6及び実験番号7として6位アセチル置換度の低い低置換度酢酸セルロースが開示されているが、水溶性は乏しい。
 本発明は、アセチル総置換度が低く、グルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度が低く、さらに水溶性に優れる酢酸セルロースを提供することを目的とする。
 本開示の第一は、アセチル総置換度が0.4以上0.9以下、前記アセチル総置換度における6位のアセチル置換度の割合が0%以上18%以下、及び4重量%水溶液の660nmの光線透過率が5%以上である、酢酸セルロースに関する。
 前記酢酸セルロースにおいて、前記4重量%水溶液の660nmの光線透過率が80%以上であってよい。
 本開示の第二は、アセチル総置換度が1.5~3.0の原料酢酸セルロースを加溶媒分解して脱アセチル化する工程、及び前記原料酢酸セルロースの脱アセチル化により生じた酢酸セルロースを沈殿する工程を有し、前記原料酢酸セルロースの加溶媒分解は、炭素数3以下のアルコールを含む溶媒及び酸触媒の存在下、前記アルコールの沸点以上の温度で進行する、前記酢酸セルロースの製造方法に関する。
 前記酢酸セルロースの製造方法において、前記酸触媒の25℃水中での酸解離定数pKaが0以下であってよい。
 前記酢酸セルロースの製造方法において、前記酸触媒が硫酸であってよい。
 前記酢酸セルロースの製造方法において、前記アルコールがメタノールであってよい。
 前記酢酸セルロースの製造方法において、前記溶媒が酢酸エステルを含んでよい。
 前記酢酸セルロースの製造方法は、前記沈殿した酢酸セルロースを水に溶解し、残渣を除去する工程、及び前記溶解した酢酸セルロースを析出する工程を有してよい。
 前記酢酸セルロースの製造方法は、前記沈殿した酢酸セルロースを水に溶解し、遠心分離して、残渣を除去する工程、及び前記溶解した酢酸セルロースを再沈殿する工程を有してよい。
 本発明によれば、アセチル総置換度が低く、グルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度が低く、さらに水溶性に優れる酢酸セルロースを提供することができる。
 [酢酸セルロース]
 本開示の酢酸セルロースは、アセチル総置換度が0.4以上0.9以下、前記アセチル総置換度における6位のアセチル置換度の割合が0%以上18%以下、及び4重量%水溶液の660nmの光線透過率が5%以上である。
 [アセチル総置換度]
 本開示の酢酸セルロースは、アセチル総置換度が0.4以上0.9以下である。アセチル総置換度がこの範囲であると、本開示の酢酸セルロースは、優れた水溶性及び生分解性を有する。なお、本開示の酢酸セルロースは、アセチル総置換度が0.4以上0.9以下であり、これを低置換度酢酸セルロースと称する場合がある。
 [6位のアセチル置換度の割合]
 本開示に係る酢酸セルロースは、アセチル総置換度における6位のアセチル置換度の割合が0%以上18%以下であるところ、当該6位のアセチル置換度の割合は、17%以下が好ましく、14%以下がより好ましく、10%以下がさらに好ましい。当該6位のアセチル置換度の割合は、0%が最も好ましいが、0%を超えてよく、4%以上であってよく、7%以上であってよく、9%以上であってよい。18%以下であることにより、腸内に存在する酵素(例えば、アセチルキシランエステラーゼ等)による分解性に優れ、体内で代謝され易い。
 アセチル総置換度、及びアセチル総置換度における6位のアセチル置換度の割合は、次の方法により求めることができる。
 まず、酢酸セルロースのグルコース環の2位、3位、6位の各アセチル置換度を、手塚(Tezuka, Carbonydr. Res. 273, 83(1995))の方法に従いNMR法で測定する。すなわち、酢酸セルロースの遊離水酸基をピリジン中で無水プロピオン酸によりプロピオニル化する。得られた試料を重クロロホルムに溶解し、13C-NMRスペクトルを測定する。アセチル基の炭素シグナルは169ppmから171ppmの領域に高磁場から2位、3位、6位の順序で、そして、プロピオニル基のカルボニル炭素のシグナルは、172ppmから174ppmの領域に同じ順序で現れる。それぞれ対応する位置でのアセチル基とプロピオニル基の存在比から、酢酸セルロースのグルコース環の2位、3位、6位の各アセチル置換度を求めることができる。また、アセチル置換度は、13C-NMRのほか、H-NMRで分析することもできる。
 i位のアセチル置換度は、i位のアセチル基のモル数を、i位のアセチル基のモル数と水酸基のモル数の総和で除した値であり、0~1の実数となる。ここで、iは2、3又は6のいずれかである。また、酢酸セルロースのグルコース環の2,3,6位の各アセチル置換度の総和が、アセチル総置換度である。そして、酢酸セルロースのグルコース環の2,3,6位の各アセチル置換度の和における6位のアセチル置換度の割合が、アセチル総置換度における6位のアセチル置換度の割合(%)である。
 なお、アセチル総置換度は、次式を用いて酢化度に換算することができる。
 DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
 DS:アセチル総置換度
 AV:酢化度(%)
 [光線透過率]
 本開示に係る酢酸セルロースは、その酢酸セルロースの4重量%水溶液の660nmの光線透過率が5%以上であるところ、当該光線透過率は、10%以上が好ましく、30%以上がより好ましく、50%以上がさらに好ましく、80%以上が最も好ましい。当該光線透過率は、99%以下であってよく、98%以下であってよく、95%以下であってよい。4重量%水溶液の660nmの光線透過率が5%未満であると、酢酸セルロースの水溶性に劣る。
 酢酸セルロースの4重量%水溶液の660nmの光線透過率は、分光光度計(島津製作所製、紫外可視分光光度計UV-1800、セル材質ポリスチレン、セル長10mm)を用いて求めることができる。
 [重合度(粘度平均重合度)]
 本開示の酢酸セルロースの粘度平均重合度は、特に限定されないが、3以上400以下が好ましく、10以上200以下がより好ましく、15以上150以下がさらに好ましい。粘度平均重合度が当該範囲にあることにより、特に優れた水溶性と生分解性を有する。
 粘度平均重合度(DP)は、以下に示すように、極限粘度数([η]、単位:g/ml)に基づく粘度平均重合度として評価できる。具体的には、JIS-K-7367-1及びISO1628-1に準じた方法により極限粘度数を求め、Kamideらの文献に従って、粘度平均分子量を算出し、当該粘度平均分子量から、粘度平均重合度を算出できる。
 本開示の酢酸セルロースは、下記の製造方法により製造することができる。
 本開示の酢酸セルロースは、アセチル総置換度が低く、グルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度が低いため、腸内に存在する酵素(例えば、アセチルキシランエステラーゼ等)による分解性に優れ、体内で代謝され易く、食品として利用することが可能である。
 [酢酸セルロースの製造方法]
 本開示の酢酸セルロースの製造方法は、アセチル総置換度が1.5~3.0の原料酢酸セルロースを加溶媒分解して脱アセチル化する工程、及び前記原料酢酸セルロースの脱アセチル化により生じた酢酸セルロースを沈殿する工程を有し、前記原料酢酸セルロースの加溶媒分解は、炭素数3以下のアルコールを含む溶媒及び酸触媒の存在下、前記アルコールの沸点以上の温度で進行するものである。
 [脱アセチル化工程]
 本開示の酢酸セルロースの製造方法における脱アセチル化工程では、原料酢酸セルロースを加溶媒分解する。本開示の脱アセチル化工程において、脱アセチル化は加溶媒分解によって進行する。当該加溶媒分解には、炭素数3以下のアルコールを含む溶媒のみが関与する場合、並びに炭素数3以下のアルコールを含む溶媒及び水等のその他の溶媒が関与する場合がある。加溶媒分解には加水分解も含まれる。
 (原料酢酸セルロース)
 原料酢酸セルロースとしては、中乃至高置換度の酢酸セルロースを用いることができる。原料として用いる中乃至高置換度の酢酸セルロースのアセチル総置換度は、1.5~3.0であり、1.5~2.5が好ましい。原料酢酸セルロースとしては、市販のセルロースジアセテート(アセチル総置換度2.20~2.56)やセルローストリアセテート(アセチル総置換度2.56超~3)を用いることができる。
 原料酢酸セルロースを製造する場合、従来公知の製造方法により製造すればよい。例えば、セルロース材料であるパルプを解砕する工程、前処理する工程、アセチル化する工程、加水分解する工程、沈殿する工程、及び安定剤を添加する工程を有する一連の工程を経ることにより製造することができる。次に、これらの各工程について説明する。なお、一般的な酢酸セルロースの製造方法については、「木材化学」(上)(右田ら、共立出版(株)1968年発行、第180頁~第190頁)を参照できる。
 パルプのα-セルロース含有率は、92重量%以上が好ましく、93重量%以上がより好ましく、94重量%以上がさらに好ましい。上限値は特にないが、99重量%以下であってよい。このような高純度のパルプには木材に由来するリグニンは殆ど含まれておらず、また、ヘミセルロースも少ない。これら不純物が少ないことを理由として、特に水溶性と生分解性に優れた酢酸セルロースが得られるためである。
 α-セルロース含有率は、以下のようにして求めることができる。重量既知のパルプを25℃で17.5%と9.45%の水酸化ナトリウム水溶液で連続的に抽出し、その抽出液の可溶部分に対して重クロム酸カリウムで酸化し、酸化に要した重クロム酸カリウムの容量からβ,γ-セルロースの重量を決定する。初期のパルプの重量からβ,γ-セルロース重量を引いた値を、パルプの不溶部分の重量、α-セルロースの重量とする(TAPPI T203)。初期のパルプの重量に対する、パルプの不溶部分の重量の割合が、α-セルロース含有率(重量%)である。
 パルプとしては、木材パルプ(針葉樹パルプ、広葉樹パルプ)及び綿花リンター等が使用できる。これらのセルロースは単独で又は二種以上組み合わせてもよく、例えば、針葉樹パルプと、綿花リンター又は広葉樹パルプとを併用してもよい。
 木材パルプは、原料の安定供給及びリンターに比べコスト的に有利であるため、好ましい。木材パルプとしては、例えば、広葉樹前加水分解クラフトパルプ等が挙げられる。
 パルプを解砕する工程では、例えば、ディスクリファイナーを用いて乾式で解砕することができる。
 前処理する工程においては、解砕したパルプと酢酸又は含硫酢酸とを接触させる。酢酸は、96~100重量%酢酸を用いることができ、含硫酢酸は、硫酸を含む酢酸であり、1~10重量%の硫酸を含むことが好ましい。
 アセチル化する工程においては、前処理したパルプを酢酸及び無水酢酸の混合溶液と接触させてパルプを無水酢酸でアセチル化し、完全三置換酢酸セルロース(一次セルロースアセテート)を得る。混合溶液には、触媒として硫酸を含むことが好ましい。アセチル化工程において、酢酸は96~100重量%酢酸を用いることができ、硫酸は濃硫酸が好ましい。
 加水分解する工程においては、水、希酢酸、又は酢酸マグネシウム水溶液等の中和剤を添加して、硫酸を中和(完全中和又は部分中和)するとともに、無水酢酸を失活させ、アセチル化反応を停止させる。これにより、完全三置換酢酸セルロース(一次セルロースアセテート)を加水分解させて所望する置換度の酢酸セルロース(二次セルロースアセテート)を得る。ここで、希酢酸とは、1~50重量%の酢酸水溶液をいう。また、酢酸マグネシウム水溶液の酢酸マグネシウム濃度は、5~30重量%であることが好ましい。
 沈殿する工程においては、酢酸セルロースを含む混合物と、水、希酢酸、希水酸化カルシウム水溶液、又は酢酸マグネシウム水溶液等の沈殿剤とを混合し、酢酸セルロースを沈殿させる。さらに、生成した酢酸セルロース(沈殿物)を分離して、水洗により遊離の金属成分や硫酸成分等を除去する。
 安定剤を添加する工程においては、水洗に加えてさらに、必要に応じて安定剤として、アルカリ金属化合物及び/又はアルカリ土類金属化合物、特に水酸化カルシウム等のカルシウム化合物を添加してもよい。また、水洗の際に安定剤を用いてもよい。
 (原料酢酸セルロースの加溶媒分解)
 原料酢酸セルロースの加溶媒分解は、炭素数3以下のアルコールを含む溶媒及び酸触媒の存在下、前記アルコールの沸点以上の温度で進行する。
 炭素数3以下のアルコールを含む溶媒としては、炭素数3以下のアルコールを含み、原料酢酸セルロースを溶解することができる溶媒であればよい。原料酢酸セルロースを溶解することができるとは、加温又は加温しない条件のいずれかで、原料酢酸セルロースの一部又は全部を分子分散できることをいい、目視で固体の原料酢酸セルロースの形態の明確な変化や消失が観察できることをいう。
 溶媒に含まれる炭素数3以下のアルコールは、特に制限されない。メタノール、エタノール、1-プロパノール及び2-プロパノール等が挙げられる。これらの中でも、メタノール及びエタノールが好ましく、メタノールがより好ましい。
 溶媒における、炭素数3以下のアルコールの含有量としては、70重量%以上が好ましく、80重量%以上がより好ましい。また、100重量%以下であってよい。
 溶媒は、炭素数3以下のアルコール以外に、任意成分として、例えば、酢酸エステル、酢酸、及びアセトン等を含んでよい。これらの中でも、酢酸エステルが好ましく、酢酸エステルの中でも、酢酸エチル及び酢酸メチルがより好ましい。出発物質(原料酢酸セルロース)及び/又は反応中間物質の反応浴への溶解性を高め、水溶性及び生分解性に優れた酢酸セルロースが得られるためである。
 溶媒における、炭素数3以下のアルコール以外の任意成分の含有量としては、30重量%以下が好ましく、20重量%以下がより好ましい。特に、任意成分として、酢酸エステルを含有する場合、溶媒における酢酸エステルの含有量としては、10重量%以上5重量%以下が好ましい。
 炭素数3以下のアルコールを含む溶媒の使用量は、原料酢酸セルロース1重量部に対して、例えば、0.5~50重量部、好ましくは1~20重量部、さらに好ましくは3~10重量部である。
 触媒としては、一般に脱アセチル化触媒として用いられる酸触媒を使用できる。酸触媒としては、例えば、硫酸、塩酸、及びリン酸等の無機酸;並びにトリフルオロ酢酸及びギ酸等の有機酸が挙げられる。これらの酸触媒は単独又は2種以上を併用してよい。
 酸触媒は、25℃水中での酸解離定数pKaが0以下であることが好ましく、-0.5以下であることがより好ましく、-1.0以下であることがさらに好ましい。当該酸解離定数pKaは-6.0以上であってよい。
 酸触媒としては、硫酸が好ましい。また、硫酸は、濃硫酸として、硫酸濃度が98重量%の硫酸水溶液を用いることができる。触媒は、予め炭素数3以下のアルコールを含む溶媒と混合しておき、原料酢酸セルロースの加溶媒分解に用いてよい。
 酸触媒の使用量は、原料酢酸セルロース1重量部に対して、例えば、0.005~1重量部が好ましく、0.01~0.5重量部がより好ましく、0.02~0.3重量部がさらに好ましい。触媒の量が少なすぎると、加溶媒分解の時間が長くなりすぎ、反応の終点の制御が容易になる長所はあるものの経済的には好ましくない。一方、触媒の量が多すぎると、加溶媒分解温度に対する解重合速度の変化の度合いが大きくなり、反応の終点の制御が難しくなり、本開示の総置換度を有する酢酸セルロースが得られにくくなる。また、アセチル置換度がばらついた不均一な酢酸セルロースにもなりやすい。
 加溶媒分解反応系内における水の含有量は、より少ない方がよく、原料酢酸セルロース1重量部に対して、2重量部以下が好ましく、1重量部以下がより好ましく0.5重量部以下がさらに好ましい。また、原料酢酸セルロースの加溶媒分解が開始及び進行すればよく、加溶媒分解反応系内における水の含有量の下限値はないが、例えば、原料酢酸セルロース1重量部に対して、0.01重量部以上であってよい。
 原料酢酸セルロースを加溶媒分解する上で、原料酢酸セルロースに元来含まれる水分は予め除去しても良いし除去しなくても良い。その原料酢酸セルロースの含水率としては、例えば、原料酢酸セルロース中、5重量%以下、4重量%以下又は3重量%以下であってよく、1重量%以上であってよい。
 原料酢酸セルロースに含まれる含水率は、以下の方法により測定することができる。ケット水分計(METTLER TOLEDO HB43)を用いて測定することができる。ケット水分計のアルミ受け皿に含水状態の試料約2.0gを乗せ、重量が変化しなくなるまで120℃で加熱することで加熱前後の重量変化から試料中の含水率(重量%)が算出できる。
 原料酢酸セルロースを加溶媒分解して脱アセチル化する工程において、原料酢酸セルロースに元来含まれる水分に加え、水を系内に添加してもよい。反応開始時において全ての量を系内に存在させてよく、使用する水の一部を反応開始時に系内に存在させ、残りの水を1~数回に分けて系内に添加してもよい。
 加溶媒分解反応系内における水の含有量は、溶媒1重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下がさらに好ましい。
 加溶媒分解反応系内における温度は、炭素数3以下のアルコールの沸点以上の温度に調整する。炭素数3以下のアルコールとして、例えば、メタノールを用いる場合は65℃以上、エタノールを用いる場合は78℃以上、1-プロパノールを用いる場合は97℃以上、2-プロパノールを用いる場合は82℃以上である。原料酢酸セルロースを溶媒に十分に溶解させ、加溶媒分解反応を均一に進行することができる。
 加溶媒分解反応系内における温度は、炭素数3以下のアルコールの沸点以上であれば限定されないが、105℃以下が好ましく、100℃以下がより好ましく、95℃以下がさらに好ましい。105℃を超えると、得られる酢酸セルロースの重合度低下や収量低下が顕著となる。
 加溶媒分解反応系内のゲージ圧は、0.2MPaG以上1MPaG以下が好ましい。0.2MPaG以上0.7MPaG以下が好ましく、0.2MPaG以上0.5MPaG以下がより好ましい。0.2MPaG以上とすることにより、原料酢酸セルロースを溶媒に十分に溶解させ、加溶媒分解反応を特に均一に進行することができる。1MPaGを超えると、得られる酢酸セルロースの重合度低下や収量低下が顕著となる。
 加溶媒分解反応の時間は、20分間以上300分間以下であってよく、30分間以上240分間以下であってよく、60分間以上200分間以下であってよく、60分以上150分以下であってよい。当該範囲にあることによりアセチル総置換度が0.4以上0.9以下への調整が容易である。
 ここで、加溶媒分解反応の時間とは、前記加溶媒分解反応系内における温度に到達してから、当該温度を保持する時間をいう。
 従来の原料酢酸セルロースの脱アセチル化では、原料酢酸セルロースを酢酸及び水混合溶媒に溶解し、硫酸触媒を用いて、原料酢酸セルロースを加水分解する。このとき、アセチル基の脱離は、酢酸セルロースのグルコース環の2位、3位、6位で概ね同様に進行する。一方、本開示の酢酸セルロースの製造方法では、6位のアセチル基が優先的に脱離し、グルコース環の2位及び3位のアセチル置換度に対し、6位のアセチル置換度が低い酢酸セルロースが得られる。
 従来の原料酢酸セルロースの脱アセチル化では、反応溶媒として酢酸が使われ、脱アセチル化の過程で酢酸が6位に優先的に再アセチル化しながら反応が進行するため、見掛け上、アセチル基の脱離は、酢酸セルロースのグルコース環の2位、3位、6位で概ね同様に進行する。6位の再アセチル化を抑制すれば6位置換度の低い酢酸セルロースが得られるが、その場合には酢酸に代わる溶媒が必要となる。本発明者らは鋭意検討の結果、炭素数3以下のアルコール類を含む溶媒が沸点以上でこの目的の反応溶媒として適していることを見出した。炭素数3以下のアルコール類を含む溶媒は、沸点以上で出発物質の中乃至高置換度の酢酸セルロースを溶解又は高度に膨潤する。
 原料酢酸セルロースの加溶媒分解は、中和剤の添加により終了することができる。中和剤としては、弱酸の塩、例えば、酢酸ナトリウム及び酢酸マグネシウム等の酢酸塩、並びに炭酸ナトリウム及び炭酸マグネシウム等の炭酸塩が挙げられる。中和剤は、炭素数3以下のアルコールを含む溶媒とともに添加してよい。
 中和剤の使用量は、酸触媒1当量に対して、1.0~5.0当量であってよく、1.1~3.0当量が好ましく、1.2~2.0当量がより好ましい。中和剤の量が少なすぎると、低置換度酢酸セルロースに酸触媒が残存し低置換度酢酸セルロースの分解が生じることがある。一方、中和剤の量が多すぎると、中和剤の洗浄のために多量に溶媒類を用いることになり経済的に好ましくない。
 [沈殿工程]
 本開示の酢酸セルロースの製造方法における沈殿工程では、前記原料酢酸セルロースの脱アセチル化により生じた酢酸セルロースを沈殿する。
 沈殿の方法としては、例えば、原料酢酸セルロースの加溶媒分解反応終了後、反応系の温度を室温まで冷却することで置換度の低い酢酸セルロースを沈殿させる方法が挙げられる。このように、冷却を用いる沈殿の方法は、沈殿溶媒を加える必要はなく、経済上好ましい。尤も、沈殿溶媒を加えることで置換度の低い酢酸セルロースを沈殿化が促進され、収量が上がることがあるので、沈殿溶媒を加えても良い。
 沈殿溶媒としては、前記炭素数3以下のアルコールを含む溶媒;アセトン、メチルエチルケトン等のケトン;酢酸エチル及び酢酸メチル等のエステル;アセトニトリル等の含窒素化合物;テトラヒドロフラン等のエーテル;並びにこれらの混合溶媒等が挙げられる。これらの沈殿溶媒は1種で用いてよく、2種以上の溶媒を含む混合溶媒を用いても良い。これらの中でも、反応溶媒と同じ溶媒を沈殿溶媒として使えば、廃溶媒の回収再利用が容易になることがあるため、前記炭素数3以下のアルコールを含む溶媒が好ましい。
 沈殿溶媒は、下記の塩基性物質を含むことが好ましい。中和を沈殿と同時に行うことができるためである。
 [任意工程]
 (洗浄工程、中和工程)
 沈殿した酢酸セルロースは、メタノール等のアルコール、及びアセトン等のケトン等の有機溶媒(貧溶媒)で洗浄するのが好ましい。また、弱酸の塩や塩基性物質を含む有機溶媒(例えば、メタノール等のアルコール、アセトン等のケトン等)で洗浄、中和することも好ましい。洗浄、中和により、加溶媒分解工程で用いた触媒(硫酸等)等の不純物を効率よく除去することができる。
 前記弱酸の塩としては、例えば、酢酸ナトリウム及び酢酸マグネシウム等の酢酸塩の水和物、並びに炭酸ナトリウム及び炭酸マグネシウム等の炭酸塩の水和物が挙げられる。前記塩基性物質としては、例えば、水酸化カルシウム等のアルカリ金属水酸化物等のアルカリ金属化合物を使用できる。
 (精製工程)
 沈殿した酢酸セルロースに対して、さらに精製することにより、水溶性に優れた酢酸セルロースを得ることができる。特に、原料酢酸セルロースのアセチル総置換度が高い程、得られる酢酸セルロースの水溶性が低下する傾向があるので、精製することが好ましい。精製は、例えば、沈殿分別(分別沈殿)及び/又は溶解分別(分別溶解)により行うことができる。
 溶解分別は、例えば、沈殿した酢酸セルロース(固形物)を、水又は水と親水性有機溶媒(例えばアセトン)との混合溶媒に溶解して水系溶液とし、残渣(言い換えれば、不溶解成分)を除去することにより行うことができる。残渣の除去の方法としては、遠心分離を用いてよい。
 酢酸セルロースの溶解は、適宜な温度(例えば、20~80℃、好ましくは25~60℃)で撹拌すればよい。また、水系溶液における酢酸セルロースの濃度(配合割合)は、適当な濃度(例えば、2~10重量%、好ましくは3~8重量%)に調整すればよい。
 また、前記水と親水性有機溶媒との混合溶媒を用いる場合、混合溶媒における有機溶媒の濃度は、例えば、5~50重量%、好ましくは10~40重量%であってよい。
 残渣を除去した後、溶解した酢酸セルロースを析出すればよい。析出の方法としては、再沈殿及びスプレードライ等が挙げられる。再沈殿に用いる沈殿溶媒としては、前記炭素数3以下のアルコールを含む溶媒;アセトン、メチルエチルケトン等のケトン;酢酸エチル及び酢酸メチル等のエステル;アセトニトリル等の含窒素化合物;テトラヒドロフラン等のエーテル;並びにこれらの混合溶媒等が挙げられる。これらの沈殿溶媒は1種で用いてよく、2種以上の溶媒を含む混合溶媒を用いても良い。
 (安定剤添加)
 酢酸セルロースを沈殿させた後、沈殿した酢酸セルロースに安定剤を添加してもよい。酢酸セルロースの熱安定性を高めるためである。安定剤としては、アルカリ金属化合物及び/又はアルカリ土類金属化合物、特に水酸化カルシウム等のカルシウム化合物が好ましい。
 安定剤の添加量は、例えば、酢酸セルロースを含む反応混合物と、0.2~1.0重量%に調整した水酸化カルシウム水溶液とを100:1~10の体積比で添加することが好ましい。
 当該安定剤の添加は、前記沈殿物の沈殿溶媒等の貧溶媒を用いた洗浄により遊離の金属成分や硫酸成分等を除去する際に併せて行ってもよい。
 前記脱アセチル化された酢酸セルロースを沈殿する工程の後、又は任意工程を含む場合は任意工程の後、酢酸セルロースを乾燥することが好ましい。酢酸セルロースを乾燥させる場合、乾燥の方法としては特に限定されず、従来公知のものを用いることができる。例えば、熱風乾燥等の送風乾燥、減圧乾燥、及び真空乾燥等の乾燥が挙げられる。温度や圧力は適宜調整すればよい。
 酢酸セルロースを乾燥させた後、酢酸セルロースを粉砕してもよい。粉砕は、慣用の粉砕機、例えば、サンプルミル、ハンマーミル、ターボミル、アトマイザー、カッターミル、ビーズミル、ボールミル、ロールミル、ジェットミル、及びピンミル等を用いることができる。また、凍結粉砕、常温での乾式粉砕、又は湿式粉砕でもよい。
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲が限定されるものではない。
 <酢酸セルロースの調製及び物性>
 実施例及び比較例の酢酸セルロースについて、表1に記載の物性の測定は、以下のとおり行った。
 (反応生成物収率)
 反応生成物収率(精製工程前の酢酸セルロースの収率)(重量%)は、以下のとおり算出した。
反応生成物収率(重量%)=加溶媒分解反応生成物(精製工程を含む場合は精製工程前の酢酸セルロース)の実際収量/加溶媒分解反応生成物(精製工程を含む場合は精製工程前の酢酸セルロース)の理論収量
 (精製物収率)
 精製物収率(重量%)は、以下のとおり算出した。
精製物収率(精製工程後の酢酸セルロースの収率)(重量%)=精製物(精製工程を含む場合は精製工程後の酢酸セルロース)の実際収量/加溶媒分解反応生成物(精製工程を含む場合は精製工程前の酢酸セルロース)の実際収量
 (アセチル総置換度、2位、3位及び6位の各アセチル置換度(DS、DS、及びDS)、アセチル総置換度における6位のアセチル置換度の割合)
 Tezukaらの文献(Carbohydrate Research,273,83-91(1995))に準じて、試料をピリジン溶媒中、無水プロピオン酸でプロピオニル化した後、クロロホルム溶媒で13C-NMRスペクトルを測定し、169.1~170.2ppm付近に現れるアセチルカルボニル炭素の3シグナルの強度を積算し、また、172.7~173.6ppm付近に現れるプロピオニルカルボニル炭素の3シグナルの強度を積分した。
 13C-NMRスペクトルにおいて、169.1~170.2ppm付近に現れるアセチルカルボニル炭素の3シグナルは、高磁場側からそれぞれ2、3、6位に帰属される。各シグナルの極大に対して±0.2ppmの範囲の強度を積分し、これを各アセチルカルボニル炭素シグナルの積分強度と定義し、次式からDS(iは2、3又は6)を求めた。
DS=DS×(i位アセチルカルボニル炭素シグナル積分強度)/(2、3及び6位アセチルカルボニル炭素シグナル積分強度の和)
 NMR測定条件は次の通りである。
測定溶媒:CDCl(約3ml使用)
測定温度:40℃
サンプル量:160~180mg(φ10mm)
観測核:13C(1H完全デカップリング)
データポイント数:32768
パルス角と時間:45°,9μsec
データ取り込み時間:0.9667sec
待ち時間:2.0333sec
積算回数:18,000回
 アセチル総置換度(DS)は、アセチルカルボニル炭素シグナル積分強度をXとし、プロピオニルカルボニル炭素シグナル積分強度をYとして、次式で求めた。
アセチル総置換度(DS)=3×[X/(X+Y)]
 アセチル総置換度における6位のアセチル置換度の割合(%)は、次式で求めた。
6位のアセチル置換度の割合(%)=6位のアセチル置換度(DS)/アセチル総置換度(DS)×100
 (重合度(粘度平均重合度))
 酢酸セルロースの重合度は極限粘度数([η]、単位:g/ml)に基づく粘度平均重合度として評価した。
 具体的には、まず、酢酸セルロースの極限粘度数はJIS-K-7367-1及びISO1628-1に準じて、粘度計としてサイズ番号1Cのウベローデ型粘度計を用い、溶媒としてジメチルスルホキシド(DMSO)を用い、25℃の対数相対粘度を濃度で除した値に基づき決定した。
 次に、酢酸セルロースの分子量(粘度平均分子量)を、Kamideらの文献に従って次の式で求めた。
粘度平均分子量=(極限粘度数[η]/0.171)(1/0.61)
 そして、酢酸セルロースの重合度(粘度平均重合度)は次の式で求めた。
重合度(粘度平均重合度)=粘度平均分子量/(162.14+42.037×DS)
 (透過率(4重量%水溶液の光線透過率))
 0.4gの酢酸セルロースを10mlの水に分散し、マグネチックスターラーで2時間攪拌し、一夜静置し、再度2時間攪拌した。このようにして得られた酢酸セルロースの4%水溶液の660nmの光線透過率(%)を分光光度計(島津製作所製、紫外可視分光光度計UV-1800、セル材質ポリスチレン、セル長10mm)で測定した。
 (実施例A-1)
 脱アセチル化工程:
 原料酢酸セルロースとして70重量部の二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%、アセチル総置換度2.43、2位アセチル置換度0.86、3位アセチル置換度0.82、6位アセチル置換度0.75)を、室温下、溶媒として554重量部のメタノールに加え、さらに、触媒として3.5重量部の硫酸を加えた。この混合物を攪拌しながら昇温時間50分を要して90℃に昇温し、90℃で100分間整温(保持)した。
 沈殿工程:
 反応混合物を室温に冷却し、14.6重量部の酢酸ナトリウム三水和物と55重量部のメタノールの混合物を加えて硫酸を中和した。この反応混合物中に懸濁している白色固体を吸引ろ過でろ別した。ろ別した白色固体を277重量部のメタノールに懸濁し室温で1時間攪拌した。メタノール中の白色固体は吸引ろ過でろ別した。
 ろ別した白色固体を再度277重量部のメタノールに懸濁し室温で1時間攪拌した。メタノール中の白色固体は吸引ろ過でろ別した。このようにメタノールで洗浄した白色固体を恒量になるまで60℃で減圧乾燥することで、42重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (実施例A-2)
 脱アセチル化工程及び沈殿工程:
 実施例A-1と同じ方法で、42重量部の低置換度酢酸セルロースを得た。
 精製工程:
 さらに、この低置換度酢酸セルロースを1,440重量部の水に加え、室温で8時間攪拌し、一夜静置した。この懸濁液を12,600Gで30分間遠心分離し、懸濁液の上清を得た。この上清を10,000重量部のアセトンに攪拌下で滴下し、白色の沈殿物を得た。この白色沈殿物を吸引ろ過でろ別し、恒量になるまで60℃で減圧乾燥することで、54重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (実施例A-3)
 脱アセチル化工程及び沈殿工程:
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)に代えてイーストマンケミカル社製酢酸セルロース(商品名「CA-320S」、含水率3重量%、アセチル総置換度1.80、2位アセチル置換度0.61、3位アセチル置換度0.56、6位アセチル置換度0.63)を使い、90℃での整温時間を80分とする以外は実施例A-1と同じ方法で、47重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (実施例A-4)
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)に代えて、二酢酸セルロース(株式会社ダイセル製、商品名「LM-80」、含水率3重量%、アセチル総置換度2.14、2位アセチル置換度0.75、3位アセチル置換度0.75、6位アセチル置換度0.64)を使い、90℃での整温(保持)時間を125分とした以外は実施例A-1と同じ方法で、41重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (実施例A-5)
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)を使い、90℃での整温(保持)時間を65分とした以外は実施例A-1と同じ方法で、45重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (実施例A-6)
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)を使い、90℃での整温(保持)時間を130分とした以外は実施例A-1と同じ方法で、38重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-1)
 脱アセチル化工程:
 原料酢酸セルロースとして100重量部の二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%、アセチル総置換度2.43、2位アセチル置換度0.86、3位アセチル置換度0.82、6位アセチル置換度0.75)を、溶媒として358重量部の酢酸と95重量部の水の混合物(混合溶媒)に加え、70℃で5時間攪拌したのち、室温(約25℃)で一夜静置した。この混合物を70℃とし、178重量部の水を追加し、二酢酸セルロース溶液を得た。
 この二酢酸セルロース溶液を50℃に整温し、12.6重量部の98%硫酸(触媒)と57重量部の酢酸(溶媒)の混合物を添加した。この反応混合物を攪拌しながら50℃に整温し、硫酸添加後4時間後に137重量部の水を30分にわたって追加し、さらに、硫酸添加後8時間後に111重量部の水を30分にわたって追加した。この反応混合物を引き続き攪拌しながら50℃に整温し、硫酸添加後23時間40分後(1,420分後)に72重量部の酢酸ナトリウム三水和物と109gの水の混合物を添加し反応を停止させた。
 沈殿工程:
 この反応混合物を4,700重量部のメタノールに攪拌下で滴下し、白色の沈殿物を得た。この白色の沈殿物をろ別し、1,100重量部のメタノールに分散し、再度ろ別する操作を5回繰り返した。このろ別した白色沈殿物を恒量になるまで60℃で減圧乾燥することで、62重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-2)
 特許第6378712号の実施例17に準じた方法で低置換度酢酸セルロースを得た。具体的には、以下のとおりである。
 脱アセチル化工程:
100重量部の二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%、アセチル総置換度2.43、2位アセチル置換度0.86、3位アセチル置換度0.82、6位アセチル置換度0.75)に510重量部の酢酸と95重量部の水の混合物を加え、70℃で3時間攪拌し二酢酸セルロース溶液を得た。この二酢酸セルロース溶液を攪拌しながら70℃に整温し、13重量部の98%硫酸を加えた。この反応混合物を引き続き攪拌しながら70℃に整温し硫酸を添加してから3時間後に67重量部の水を5分間にわたって添加し、さらに、硫酸を添加してから8時間後に133重量部の水を10分間にわたって添加した。この反応混合物を引き続き攪拌しながら70℃に整温し硫酸を添加してから10時間後(600分後)に反応混合物を冷却し25℃として実質的に反応を停止した。
 沈殿工程:
 この反応混合物を1,500重量部のアセトン中に攪拌下で滴下し、白色の沈殿物を得た。この白色の沈殿物をろ別し、800重量部のアセトンに分散し、再度ろ別する操作を3回繰り返した。このろ別した白色沈殿物を、酢酸カリウムを0.004重量%含有する800重量部のメタノールに分散し、再度ろ別する操作を2回繰り返した。このろ別した白色沈殿を恒量になるまで60℃で減圧乾燥した。この乾燥物64重量部に対して、960重量部の20重量%アセトン水溶液を加え、40℃で8時間攪拌後、遠心分離により濃厚相を除き、希薄相に重量部のアセトンを加え、白色の沈殿物を得た。この白色の沈殿物をろ別し、3,000重量部のアセトンに分散し、再度ろ別した。このろ別した白色沈殿物を恒量になるまで60℃で減圧乾燥することで、57重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-3)
 Edgarら、Macromolecules、24、3060(1991)の実験番号6の条件にしたがって低置換度酢酸セルロースを得た。
 具体的には、60重量部の二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、恒量となるまで60℃で減圧乾燥して使用)を237重量部のメタノールに懸濁し、0.2重量部のヘキサカルボニルモリブデン(Mo(CO))を加え、密閉反応器中で窒素を用いて内圧を200psiに調整し、140℃で7時間(420分間)整温した。反応混合物を室温まで冷却し、反応混合物中の固体を吸引ろ過でろ別した。このろ別した固体を恒量になるまで60℃で減圧乾燥することで、34重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-4)
 Edgarら、Macromolecules、24、3060(1991)の実験番号7の条件にしたがって低置換度酢酸セルロースを得た。
 具体的には、60重量部の二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、恒量となるまで60℃で減圧乾燥して使用)を237重量部のメタノールに懸濁し、0.2重量部の酸化モリブデン(VI)(MoO)を加え、密閉反応器中で窒素を用いて内圧を1,000psiに調整し、155℃で3時間(180分間)整温した。反応混合物を室温まで冷却し、反応混合物中の固体を吸引ろ過でろ別した。このろ別した固体を恒量になるまで60℃で減圧乾燥することで、33重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-5)
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)を使い、90℃での整温(保持)時間を50分とした以外は実施例A-1と同じ方法で、43重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
 (比較例A-6)
 二酢酸セルロース(株式会社ダイセル製、商品名「L-50」、含水率3重量%)を使い、90℃での整温(保持)時間を160分とした以外は実施例A-1と同じ方法で、34重量部の低置換度酢酸セルロースを得た。得られた低置換度酢酸セルロースの各物性を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 比較例A-1の酢酸セルロースは、6位のアセチル置換度が0.24、アセチル総置換度における6位のアセチル置換度の割合が36.9%であり、比較例A-2の酢酸セルロースは、6位のアセチル置換度が0.28、アセチル総置換度における6位のアセチル置換度の割合が35.9%であって、比較例A-1及びA-2の酢酸セルロースは、6位のアセチル置換度が2位及び3位の各アセチル置換度よりも高い。
 比較例A-3の酢酸セルロースは、6位のアセチル置換度が0.05、アセチル総置換度における6位のアセチル置換度の割合が10.4%であり、比較例A-4の酢酸セルロースは、6位のアセチル置換度が0.06、アセチル総置換度における6位のアセチル置換度の割合が12.0%であって、比較例A-3及びA-4の酢酸セルロースは、6位のアセチル置換度が2位及び3位の各アセチル置換度よりも低い。しかし、4重量%水溶液の660nmの光線透過率が低く、水溶性は乏しい。
 比較例A-5の酢酸セルロースは、6位のアセチル置換度が0.13、アセチル総置換度における6位のアセチル置換度の割合が13.1%であり、比較例A-6の酢酸セルロースは、6位のアセチル置換度が0.03、アセチル総置換度における6位のアセチル置換度の割合が9.1%であって、比較例A-5及びA-6の酢酸セルロースは、6位のアセチル置換度が2位及び3位の各アセチル置換度よりも低い。しかし、4重量%水溶液の660nmの光線透過率が低く、水溶性は乏しい。
 一方、実施例A-1~A-6の酢酸セルロースは、アセチル総置換度における6位のアセチル置換度の割合が18%以下と低く、4重量%水溶液の660nmの光線透過率が5%以上であって、水溶性に優れる。特に、実施例A-2及びA-3の酢酸セルロースの4重量%水溶液の660nmの光線透過率は92%以上と特に水溶性に優れる。
 <動物実験(アセチル基残存率、飼料摂取量、体重増加量、血糖値、コレステロール、中性脂肪、精巣上体脂肪)>
 室温24±1℃、相対湿度55±5℃で12時間の明暗周期(7:00~19:00点灯)の条件下、ステンレス製ゲージ内で個別に飼育した、7週齢(体重150~170g)のウィスター系雄性ラット(日本エスエルシー株式会社)9匹を用いて、動物実験を開始した。
 ラットは搬入後、精製飼料AIN-93G(Reevesら、Journal of Nutrition,123,1939-1951(1993))の飼料を水道水とともに3日間与え順化させた後、体重を基準に(各群のラットの合計体重の偏りをなくすように)3群に分け、第1群にはAIN-93G(「対照群」と称する場合がある)、第2群には実施例A-2の低置換度酢酸セルロースを5重量%含むAIN-93G(「試験群」と称する場合がある)、及び第3群には比較例A-1の低置換度酢酸セルロースを5重量%含むAIN-93G(「比較群」と称する場合がある)をそれぞれ水道水とともに14日間自由摂取させた。1群当たりのラット数は全て3匹で構成されている。第1群は参考例B-1、第2群は実施例B-1、及び第3群は比較例B-1にそれぞれ相当する。
 ラットを3群に分け各飼料による飼育を開始してから3日目、7日目、13日目には糞便1日分の全回収を行い、アセチル基残存率の分析に供した。分析方法は下記のとおりである。また、飼育期間中を通じて、飼料摂取量及び体重増加量を測定した。
 飼育14日目、朝7時からラットを絶食し、15時から剖検を実施した。ラットをイソフルラン麻酔下で開腹し、腹大動脈からヘパリン加試験管(ベノジェクトIIヘパリンナトリウム、3mL採血用:テルモ株式会社)に約2mL採血した。その後放血して安楽殺し、速やかに精巣上体脂肪(左右)を摘出した。そして、精巣上体脂肪重量を測定した。
 採取した血液は室温、2,380Gで10分間遠心分離して血漿を分離した。分離した血漿について、採血当日にシカリキッドGLU(関東化学株式会社)を用いて血糖値;並びにシカリキッド-N TG(関東化学株式会社)を用いて中性脂肪(トリグリセリド)、及びシカリキッド-N CHO(関東化学株式会社)を用いてコレステロール(血漿コレステロールとも称する)を測定した。
 <アセチル基残存率>
 0.1gのラット糞便を10mlの水に懸濁し、Miwaらの方法(Journal of Chromatography,321,165-174(1985))でラット糞便に含まれる酢酸を対応する2-ニトロフェニルヒドラジドに誘導体化しHPLC分析により酢酸の2-ニトロフェニルヒドラジドを定量することで、ラット糞便の酢酸濃度を求めた。
 また、0.1gのラット糞便を150mM水酸化ナトリウム水溶液に懸濁し70℃で4時間整温し、Miwaらの方法(Journal of Chromatography,321,165-174(1985))で水酸化ナトリウム処理したラット糞便に含まれる酢酸を対応する2-ニトロフェニルヒドラジドに誘導体化しHPLC分析により酢酸の2-ニトロフェニルヒドラジドを定量することで、水酸化ナトリウム処理したラット糞便の酢酸濃度を求めた。
 水酸化ナトリウム処理したラット糞便の酢酸濃度と、水に懸濁したラット糞便の酢酸濃度との差をラット糞便のアセチル基濃度(単位重量あたりのモル数)とした。次の式でアセチル基残存率を求めた。
 アセチル基残存率(モル%)=100×(ラット糞便のアセチル基濃度)×A/(B×C/D)
A:0~24時間のラット糞便量(重量)
B:-24時間~0時間のラットの飼料摂取量(重量)
C:飼料中の酢酸セルロースの濃度(重量%)
D:酢酸セルロースの単位重量あたりのアセチル基モル数
 =DS/(162.14+42.037×DS)
DS:アセチル総置換度
Figure JPOXMLDOC01-appb-T000002
 
 飼育3、7及び13日目の実施例A-2の酢酸セルロース(アセチル総置換度における6位のアセチル置換度の割合が18%以下)をラットに摂取させた場合(実施例B-1)の糞便中のアセチル基残存率は、いずれも比較例A-1の酢酸セルロース(アセチル総置換度における6位のアセチル置換度の割合が18%を超える)をラットに摂取させた場合(比較例B-1)に比べて低い。これは、6位のアセチル置換度の割合が低い実施例の酢酸セルロースが分解性に優れ、体内で代謝され易いことを示す。
 比較例B-1(比較群)のラットの飼料摂取量は、参考例B-1(対照群)に比べて有意に低いが、体重増加量には有意差が見られなかった。一方、実施例B-1(試験群)のラットの飼料摂取量及び体重増加量は、いずれも比較例B-1(比較群)よりも低く、参考例B-1(対照群)に対し明らかな有意差が見られた。
 実施例B-1(試験群)のラットの血糖値及びコレステロールは、参考例B-1(対照群)に対し、有意差ではないものの減少傾向を示した。
 また、比較例B-1(比較群)のラットの中性脂肪は、参考例B-1(対照群)に対して有意差が見られなかった。一方、実施例B-1(試験群)のラットの中性脂肪は、参考例B-1(対照群)に対し低く、有意差が見られた。
 さらに、比較例B-1(比較群)及び実施例B-1(試験群)のラットの精巣上体脂肪は、いずれも参考例B-1(対照群)に対し低く、有意差が見られた。
 以上のとおり、6位のアセチル置換度の割合が低い実施例の酢酸セルロースが分解性に優れ、体内で代謝され易く、ラットの食欲抑制(飼料摂取量抑制)、体重増加抑制、中性脂肪抑制及び脂肪蓄積抑制(精巣上体脂肪抑制)に特に寄与することがわかる。

Claims (9)

  1.  アセチル総置換度が0.4以上0.9以下、
    前記アセチル総置換度における6位のアセチル置換度の割合が0%以上18%以下、及び
    4重量%水溶液の660nmの光線透過率が5%以上である、酢酸セルロース。
  2.  前記4重量%水溶液の660nmの光線透過率が80%以上である、請求項1に記載の酢酸セルロース。
  3.  アセチル総置換度が1.5~3.0の原料酢酸セルロースを加溶媒分解して脱アセチル化する工程、及び
    前記原料酢酸セルロースの脱アセチル化により生じた酢酸セルロースを沈殿する工程を有し、
    前記原料酢酸セルロースの加溶媒分解は、炭素数3以下のアルコールを含む溶媒及び酸触媒の存在下、前記アルコールの沸点以上の温度で進行する、請求項1又は2に記載の酢酸セルロースの製造方法。
  4.  前記酸触媒の25℃水中での酸解離定数pKaが0以下である、請求項3に記載の酢酸セルロースの製造方法。
  5.  前記酸触媒が硫酸である、請求項3又は4に記載の酢酸セルロースの製造方法。
  6.  前記アルコールがメタノールである、請求項3~5のいずれか一項に記載の酢酸セルロースの製造方法。
  7.  前記溶媒が酢酸エステルを含む、請求項3~6のいずれか一項に記載の酢酸セルロースの製造方法。
  8.  前記沈殿した酢酸セルロースを水に溶解し、残渣を除去する工程、及び
    前記溶解した酢酸セルロースを析出する工程を有する、請求項3~7のいずれか一項に記載の酢酸セルロースの製造方法。
  9.  前記沈殿した酢酸セルロースを水に溶解し、遠心分離して、残渣を除去する工程、及び
    前記溶解した酢酸セルロースを再沈殿する工程を有する、請求項3~8のいずれか一項に記載の酢酸セルロースの製造方法。
PCT/JP2020/024720 2019-07-01 2020-06-24 酢酸セルロース及び酢酸セルロースの製造方法 WO2021002250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/612,651 US20220227891A1 (en) 2019-07-01 2020-06-24 Cellulose acetate and method for producing cellulose acetate
EP20828944.7A EP3995177A4 (en) 2019-07-01 2020-06-24 Cellulose acetate and method for producing cellulose acetate
CN202080013954.XA CN113454125A (zh) 2019-07-01 2020-06-24 乙酸纤维素及乙酸纤维素的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-122736 2019-07-01
JP2019122736A JP2021008565A (ja) 2019-07-01 2019-07-01 酢酸セルロース及び酢酸セルロースの製造方法

Publications (1)

Publication Number Publication Date
WO2021002250A1 true WO2021002250A1 (ja) 2021-01-07

Family

ID=74101061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024720 WO2021002250A1 (ja) 2019-07-01 2020-06-24 酢酸セルロース及び酢酸セルロースの製造方法

Country Status (5)

Country Link
US (1) US20220227891A1 (ja)
EP (1) EP3995177A4 (ja)
JP (1) JP2021008565A (ja)
CN (1) CN113454125A (ja)
WO (1) WO2021002250A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834801A (ja) * 1981-08-26 1983-03-01 Asahi Chem Ind Co Ltd セルロ−スアセテ−ト
JPS627701A (ja) * 1985-07-03 1987-01-14 Daicel Chem Ind Ltd 部分加水分解法
JPH0153851B2 (ja) 1984-07-25 1989-11-15 Asahi Chemical Ind
JPH05500684A (ja) * 1990-04-16 1993-02-12 イーストマン ケミカル カンパニー 新規セルロースエステル組成物およびその製造方法
WO2014142166A1 (ja) * 2013-03-13 2014-09-18 株式会社ダイセル 低置換度酢酸セルロース
WO2018183467A1 (en) * 2017-03-29 2018-10-04 Eastman Chemical Company Regioselectively substituted cellulose esters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834801A (ja) * 1981-08-26 1983-03-01 Asahi Chem Ind Co Ltd セルロ−スアセテ−ト
JPH0153851B2 (ja) 1984-07-25 1989-11-15 Asahi Chemical Ind
JPS627701A (ja) * 1985-07-03 1987-01-14 Daicel Chem Ind Ltd 部分加水分解法
JPH05500684A (ja) * 1990-04-16 1993-02-12 イーストマン ケミカル カンパニー 新規セルロースエステル組成物およびその製造方法
WO2014142166A1 (ja) * 2013-03-13 2014-09-18 株式会社ダイセル 低置換度酢酸セルロース
JP6378712B2 (ja) 2013-03-13 2018-08-22 株式会社ダイセル 低置換度酢酸セルロース
WO2018183467A1 (en) * 2017-03-29 2018-10-04 Eastman Chemical Company Regioselectively substituted cellulose esters

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BUCHANAN CHARLES M. ET AL.: "Preparation and Characterization of Cellulose Monoacetates: The Relationship between Structure and Water Solubility", MACROMOLECULES, vol. 24, 1991, pages 3060 - 3064, XP000231259, DOI: 10.1021/ma00011a005 *
BUCHANAN ET AL., MACROMOLECULES, vol. 24, 1991, pages 3060 - 3064
FROST ET AL., NATURE COMMUNICATIONS, 2014
GENDA ET AL., JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 66, 2018, pages 11909 - 11916
GIJS DEN BESTEN ET AL., JOURNAL OF LIPID RESEARCH, vol. 54, 2013, pages 2325 - 2340
MIGITA ET AL.: "Wood Chemistry", vol. I, 1968, KYORITSU SHUPPAN CO., LTD., pages: 180 - 190
MIWA ET AL., JOURNAL OF CHROMATOGRAPHY, vol. 321, 1985, pages 165 - 174
PUIS ET AL., MACTOMOLECULAR SYMPOSIA, vol. 208, 2004, pages 239 - 253
REEVES ET AL., JOURNAL OF NUTRITION, vol. 123, 1993, pages 1939 - 1951
See also references of EP3995177A4
SLEETH ET AL., NUTRITION RESEARCH REVIEWS, vol. 23, 2010, pages 135 - 145
STROBEL, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 58, 1992, pages 2331 - 2333
TAKEDA NOBUKO ET AL.: "Synthesis and enzymatic degradation of randomly substituted 2 , 3 , 6- 0 - cellulose acetate and regioselectively substituted 2 , 3-0 -cellulose acetate", POLYMER DEGRADATION AND STABILITY, vol. 129, 2016, pages 125 - 132, 126 *
TEZUKA ET AL., CARBOHYDRATE RESEARCH, vol. 273, 1995, pages 83 - 91

Also Published As

Publication number Publication date
EP3995177A1 (en) 2022-05-11
JP2021008565A (ja) 2021-01-28
US20220227891A1 (en) 2022-07-21
CN113454125A (zh) 2021-09-28
EP3995177A4 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
Cao et al. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl)
Fundador et al. Acetylation and characterization of xylan from hardwood kraft pulp
Fang et al. Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system
US20030199087A1 (en) Methods of separating a corn fiber lipid fraction from corn fiber
KR19980702642A (ko) 용액으로부터의 크실로즈의 회수방법
WO2018066477A1 (ja) セルロースアセテートおよびセルロースアセテートの製造方法
Zhang et al. Cellulose fibers extracted from sesame hull using subcritical water as a pretreatment
US20220235189A1 (en) Extraction method
JPWO2011070948A1 (ja) 精製ヒアルロン酸類の製造方法
JPH06157601A (ja) セルロース脂肪酸エステル及びその製造方法
WO2021002250A1 (ja) 酢酸セルロース及び酢酸セルロースの製造方法
US9222223B1 (en) Esterified cellulose pulp compositions and related methods
US5430140A (en) Starch intermediate product, a process for producing a starch intermediate product, and a process for further processing of a starch intermediate product
JP2020196856A (ja) アセチル化粉末セルロース、アセチル化セルロース繊維、アセチル化木粉及びそれらとアセチル化単糖の製造方法
Kaur et al. Valorization of rice straw via production of modified xylans and xylooligosaccharides for their potential application in food industry
CN105440163A (zh) 一种制备及纯化依诺肝素钠的方法
JP2021161320A (ja) セルロースアセテートの製造方法
US20150376836A1 (en) Esterified cellulose pulp compositions and related methods
WO2019198307A1 (ja) 酢酸セルロースの製造方法
CN109195995B (zh) 乙酸纤维素
WO2022168221A1 (ja) セルロースアシレート
CN106573990B (zh) 乙酸纤维素薄片及其制造方法
JP7093256B2 (ja) セルロースアセテートの製造方法
Mondal et al. Synthesis of carboxymethyl cellulose from corn leaves based on particle size-A new aspect
Azubuike et al. Preparation and characterization of corn cob cellulose acetate for potential industrial applications: https://doi. org/10.51412/psnnjp. 2023.31

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20828944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020828944

Country of ref document: EP

Effective date: 20220201