WO2014112015A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014112015A1
WO2014112015A1 PCT/JP2013/007520 JP2013007520W WO2014112015A1 WO 2014112015 A1 WO2014112015 A1 WO 2014112015A1 JP 2013007520 W JP2013007520 W JP 2013007520W WO 2014112015 A1 WO2014112015 A1 WO 2014112015A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
contact
layer
region
trench
Prior art date
Application number
PCT/JP2013/007520
Other languages
English (en)
French (fr)
Inventor
青吾 大澤
戸松 裕
荻野 誠裕
友視 大林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112013006445.6T priority Critical patent/DE112013006445T5/de
Priority to US14/759,823 priority patent/US9634095B2/en
Priority to CN201380070729.XA priority patent/CN104937720B/zh
Publication of WO2014112015A1 publication Critical patent/WO2014112015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Definitions

  • the present disclosure relates to a semiconductor device having a contact trench and a manufacturing method thereof.
  • Patent Document 1 Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • a P-type base layer is formed in the surface layer portion of the N ⁇ -type drift layer.
  • a plurality of gate trenches that reach the drift layer through the base layer are formed, and a gate insulating film and a gate electrode are sequentially formed on the wall surface of each gate trench.
  • An N + type source layer is formed on the surface layer portion of the base layer so as to be in contact with the side surface of the gate trench.
  • a contact trench reaching the base layer is formed between adjacent gate trenches. Then, an N ++ type source contact region having an impurity concentration higher than that of the source layer is formed so as to contact only the side surface on the opening side of the contact trench, and from the base layer so as to contact only the bottom surface of the contact trench. In addition, a P + -type base contact region having a high impurity concentration is formed.
  • a source electrode is embedded in the contact trench, and the source electrode is electrically connected to the source layer, the source contact region, the base layer, and the base contact region.
  • a drain electrode is formed on the back side of the drift layer.
  • a parasitic bipolar transistor is configured by the source layer and the source contact region, the base layer and the base contact region, and the drift layer.
  • a back electromotive force is generated in the load when it is changed from an on state to an off state, and the semiconductor device is formed between the drift layer and the base layer.
  • the diode to be reverse-biased. A breakdown occurs in a region near the gate trench where the electric field is concentrated, and a current flows. In this case, current (carrier) flows from the breakdown region to the source electrode via the base contact region.
  • the base contact region is small, current (carrier) hardly flows from the base contact region to the source electrode. That is, when the width of the contact trench is shortened and the semiconductor device is miniaturized, the resistance (voltage drop) in the base layer is increased and the parasitic bipolar transistor is easily turned on. Is easily destroyed.
  • Such a point does not occur only in a semiconductor device in which a trench gate type MOSFET is formed.
  • Such a point occurs not only in a trench gate type semiconductor device but also in a planar type semiconductor device. This is because even in a planar semiconductor device, when the base contact region is small when the state changes from the on state to the off state, current (carriers) hardly flows from the base contact region to the source electrode.
  • the present disclosure provides a semiconductor device and a method of manufacturing the same that can suppress destruction even if the contact trench is miniaturized by shortening the width of the contact trench when changing from an on state to an off state. With the goal.
  • a semiconductor device includes a first conductivity type drift layer, a second conductivity type first semiconductor layer provided in a surface layer portion of the drift layer, and a surface layer of the first semiconductor layer.
  • the first electrode disposed in the contact trench and electrically connected to the first semiconductor region and the second semiconductor region, and electrically connected to a region different from the region to which the first electrode is electrically connected; Second electric current flowing between the first electrode and the first electrode And, equipped with a.
  • the size of the second semiconductor region formed on the side surface of the contact trench does not change. That is, the size of the second semiconductor region can be ensured even if the semiconductor device is miniaturized. For this reason, even when the semiconductor device changes from an on state to an off state and breakdown occurs, current easily flows into the second semiconductor region, and an increase in resistance (voltage drop) in the first semiconductor layer can be suppressed. . Therefore, the parasitic bipolar transistor can be prevented from being turned on, and the semiconductor device can be prevented from being destroyed.
  • the first semiconductor region and the second semiconductor region may be in contact with each other.
  • the contact resistance can be lowered as compared with the case where the first electrode (the wall surface of the contact trench) is in contact with the first semiconductor layer and the second semiconductor layer. Further, since the contact resistance with the first electrode can be lowered, the contact trench need not be deepened in order to increase the contact area with the first electrode. Thereby, it can suppress that the depletion layer between a drift layer and a 1st semiconductor layer reaches a contact trench, and it can suppress that a proof pressure falls.
  • the junction position between the first semiconductor region and the second semiconductor region is shallower than the junction position between the first semiconductor layer and the second semiconductor layer. Can be.
  • the junction position between the first semiconductor region and the second semiconductor region is deeper than the junction position between the first semiconductor layer and the second semiconductor layer. Can be.
  • the semiconductor device since the second semiconductor region becomes large, the semiconductor device can be further prevented from being destroyed. Further, since the contact trench can be shallow, the first electrode can be easily embedded. In the semiconductor device according to the fourth aspect, since the first semiconductor region becomes large, the on-resistance can be reduced while suppressing the destruction of the semiconductor device.
  • the method for manufacturing a semiconductor device relates to a method for manufacturing a semiconductor device in which a first semiconductor region and a second semiconductor region are in contact with each other.
  • a method for manufacturing a semiconductor device includes forming a first semiconductor layer on one surface side of a semiconductor substrate having one surface and another surface opposite to the one surface, and forming a drift layer, and forming a first semiconductor layer on a surface layer portion of the first semiconductor layer. Forming a semiconductor layer, forming a mask on one surface of the semiconductor substrate, patterning the mask, and forming an opening that exposes a region for forming a contact trench in the one surface of the semiconductor substrate, Impurities are ion-implanted from one surface of the semiconductor substrate using a mask, and thermal diffusion is performed to form a first semiconductor region extending below the mask, and the first semiconductor region is formed using the mask.
  • Forming a penetrating contact trench, and a second conductive type with a dose amount smaller than a dose amount when forming the first semiconductor region with respect to the contact trench comprises forming a second semiconductor region in contact with the first semiconductor region.
  • the second conductivity type impurity is ion-implanted with a dose amount smaller than the dose amount when forming the one semiconductor region, and thermal diffusion is performed.
  • a semiconductor device in which the semiconductor region and the second semiconductor region are in contact can be manufactured.
  • FIG. 3 is a cross-sectional view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. FIG. 2 is a plan view showing a relationship between a gate trench and a contact trench shown in FIG. 1.
  • (A)-(f) is sectional drawing which shows the manufacturing process of the semiconductor device shown in FIG. It is a top view showing the relation between the trench for gates and the trench for contacts in a 2nd embodiment of this indication. It is a figure which shows the relationship between the area which contact
  • the semiconductor device is configured using a semiconductor substrate 1 that functions as an N ⁇ -type drift layer 10, and a predetermined thickness is formed on a surface layer portion on the one surface 1 a side of the semiconductor substrate 1.
  • P type base layer 11 is formed.
  • a plurality of gate trenches 12 reaching the drift layer 10 through the base layer 11 are formed.
  • each gate trench 12 extends in parallel with the longitudinal direction of one of the surface directions of the one surface 1 a of the semiconductor substrate 1 (the vertical direction in FIG. 2). ing.
  • each gate trench 12 is formed in a stripe shape, but each gate trench 12 may have an annular structure by drawing the tip in the extending direction.
  • each gate trench 12 is formed on the gate insulating film 13 formed on the gate insulating film 13 so as to cover the inner wall surface of each gate trench 12. It is embedded with the gate electrode 14. Thereby, a trench gate structure is configured.
  • a silicon oxide film is used as the gate insulating film 13, and polysilicon or the like is used as the gate electrode 14.
  • N + type source layer 15 having a higher impurity concentration than the drift layer 10 is formed on the surface layer portion of the base layer 11.
  • the source layer 15 is formed along the longitudinal direction of the gate trench 12 so as to be in contact with the side surface of the gate trench 12, and terminates in the base layer 11.
  • a contact trench 16 is formed between adjacent gate trenches 12. As shown in FIGS. 1 and 2, the contact trench 16 is formed along the longitudinal direction of the gate trench 12 and is shallower than the gate trench 12. Although not particularly limited, the contact trench 16 of the present embodiment is slightly deeper than the junction position between the drift layer 10 and the base layer 11.
  • an N ++ source contact region 15a having a higher impurity concentration than the source layer 15 is formed so as to be in contact with the side surface of the contact trench 16 on the opening side.
  • the source contact region 15 a is formed in the source layer 15, is formed along the longitudinal direction of the contact trench 16, and terminates in the source layer 15.
  • a P + -type base contact region 11 a having a higher impurity concentration than the base layer 11 is formed so as to be in contact with the bottom surface of the contact trench 16 and the side surface on the bottom surface side.
  • the base contact region 11 a is formed from the base layer 11 to the source layer 15, is formed along the longitudinal direction of the contact trench 16, and terminates in the base layer 11.
  • the base contact region 11 a of the present embodiment is in contact with the source contact region 15 a on the side surface of the contact trench 16.
  • the junction position between the base contact region 11a and the source contact region 15a is shallower than the junction position between the base layer 11 and the source layer 15 on the gate trench 12 side.
  • the junction position between the base contact region 11a and the source contact region 15a is located closer to the one surface 1a side of the semiconductor substrate 1 than the junction position between the base layer 11 and the source layer 15 on the gate trench 12 side. .
  • an interlayer insulating film 17 made of a BPSG film or the like is formed on the gate insulating film 13 and the gate electrode 14.
  • a source electrode 18 is formed on the interlayer insulating film 17 so that the contact trench 16 is embedded.
  • the source electrode 18 is electrically connected to the source contact region 15 a on one surface 1 a of the semiconductor substrate 1, and is electrically connected to the source contact region 15 a and the base contact region 11 a on the wall surface of the contact trench 16. ing.
  • a drain electrode 19 is formed on the other surface 1 b side of the semiconductor substrate 1, and the drain electrode 19 is electrically connected to the drift layer 10.
  • the N type, N ⁇ type, N + type, and N ++ type correspond to the first conductivity type of the present disclosure
  • the P type and P + type correspond to the second conductivity type of the present disclosure.
  • the base layer 11 corresponds to the first semiconductor layer of the present disclosure
  • the source layer 15 corresponds to the second semiconductor layer of the present disclosure
  • the source contact region 15a corresponds to the first semiconductor region of the present disclosure
  • the base The contact region 11a corresponds to the second semiconductor region of the present disclosure
  • the source electrode 18 corresponds to the first electrode of the present disclosure
  • the drain electrode 19 corresponds to the second electrode of the present disclosure.
  • the semiconductor substrate 1 constituting the drift layer 10 is prepared, the base layer 11 is formed on the one surface 1 a side of the semiconductor substrate 1, and the source layer is formed on the surface layer portion of the base layer 11. 15 is formed.
  • the base layer 11 and the source layer 15 are formed by thermal diffusion after ion implantation of predetermined impurities.
  • the source layer 15 is formed so that the impurity concentration decreases from the one surface 1a side of the semiconductor substrate 1 in the thickness direction.
  • the trench gate structure is formed in the semiconductor substrate 1.
  • the specific manufacturing process of the trench gate structure is the same as a well-known one, and although not described in detail, a gate trench 12 that penetrates the base layer 11 and the source layer 15 and reaches the drift layer 10 is formed.
  • a gate insulating film 13 and polysilicon to be the gate electrode 14 may be formed on the inner wall surface of the gate trench 12.
  • an BPSG film is formed on the entire surface 1 a of the semiconductor substrate 1 so as to cover the gate insulating film 13 and the gate electrode 14, thereby forming an interlayer insulating film 17.
  • the interlayer insulating film 17 is patterned using a resist or the like (not shown) as a mask, and an opening for exposing a region where the contact trench 16 is to be formed in one surface 1a of the semiconductor substrate 1 is exposed. 17a is formed. Then, using the interlayer insulating film 17 as a mask, a predetermined contact impurity 15a is formed in the surface layer portion of the source layer 15 by ion implantation of a predetermined impurity and thermal diffusion.
  • the source contact region 15a is formed by thermal diffusion of impurities, and thus is formed wider than the region into which the impurities are implanted. That is, the source contact region 15 a is formed so as to extend below the interlayer insulating film 17.
  • the source contact region 15 a can be made clear by defining the source contact region 15 a using an impurity different from the impurity constituting the source layer 15. For example, when As (arsenic) is used as an impurity constituting the source layer 15, P (phosphorus) can be used as an impurity constituting the source contact region 15a.
  • etching is performed using the interlayer insulating film 17 as a mask to form a contact trench 16 reaching the base layer 11 through the source contact region 15a and the source layer 15.
  • a tapered contact trench 16 whose width decreases from the opening toward the bottom is formed.
  • the source contact region 15a in contact with the side surface on the opening side of the contact trench 16 is formed so as to extend below the interlayer insulating film 17 in the source contact region 15a formed in the step of FIG. It consists of parts.
  • the contact trench 16 is tapered so that the width becomes narrower from the opening toward the bottom surface, and the side surface of the contact trench 16 is inclined with respect to the one surface 1a of the semiconductor substrate 1, so that the semiconductor P-type impurities are ion-implanted from the direction normal to the surface 1 a of the substrate 1.
  • ion implantation is performed with a dose larger than the dose when forming the base layer 11 and smaller than the dose when forming the source contact region 15a.
  • the source contact region 15a has a high impurity concentration in the source region.
  • the contact area 15a remains as it is.
  • An interface with the base contact region 11a is formed in a portion of the source contact region 15a where the impurity concentration is equal to that of the base contact region 11a. That is, the base contact region 11a in contact with the source contact region 15a is formed.
  • the source layer 15 is formed so that the impurity concentration decreases from the one surface 1a side of the semiconductor substrate 1 in the thickness direction. For this reason, the impurity concentration of the source layer 15 on the base layer 11 side is low, and it can be suppressed that the impurity concentration of the source layer 15 is involved in the formation of the base contact region 11a.
  • the base contact region 11a can be clarified at the boundary with the base layer 11 by using an impurity different from the impurity constituting the base layer 11. For example, when Boron is used as the impurity constituting the base layer 11, Al (aluminum) can be used as the impurity constituting the base contact region 11a.
  • the interlayer insulating film (BPSG film) 17 is reflowed to round the interlayer insulating film 17. Then, the source electrode 18 is formed on the interlayer insulating film 17 so that the contact trench 16 is embedded, and the drain electrode 19 is formed on the other surface 1b side of the semiconductor substrate 1, thereby the semiconductor device shown in FIG. Is manufactured.
  • the source electrode 18 is preferably formed by depositing a barrier metal such as Ti or TiN from the one surface 1a side of the semiconductor substrate 1 and then depositing Al on the barrier metal. By making the source electrode 18 have a barrier metal, generation of Al spikes can be suppressed.
  • a barrier metal such as Ti or TiN
  • the base contact region 11a is formed so as to be in contact with the bottom surface of the contact trench 16 and the side surface on the bottom surface side. For this reason, even if the width of the contact trench 16 is shortened to miniaturize the semiconductor device, the size of the portion formed on the side surface of the contact trench 16 does not change. That is, the size of the base contact region 11a can be ensured even if the semiconductor device is miniaturized. For this reason, the semiconductor device is connected to a load having an inductance such as a motor or a coil, and the semiconductor device can be prevented from being destroyed even when the semiconductor device changes from the on state to the off state. In other words, the load resistance of the semiconductor device can be increased.
  • the back electromotive force is generated in the load, the diode formed between the drift layer 10 and the base layer 11 is in the reverse bias state, and the region near the gate trench 12 where the electric field is concentrated. A breakdown occurs and current flows.
  • the current (carrier) flows from the breakdown region to the source electrode 18 through the base contact region 11a.
  • the base contact region 11a is formed on the bottom surface and the bottom side surface of the contact trench 16. Is formed. For this reason, the current generated by the breakdown is likely to flow into the base contact region 11a, and an increase in resistance (voltage drop) in the base layer 11 can be suppressed. Therefore, the parasitic bipolar transistor can be prevented from being turned on, and the semiconductor device can be prevented from being destroyed.
  • the source contact region 15a and the base contact region 11a are in contact with each other. That is, the wall surface of the contact trench 16 is surrounded by the source contact region 15a and the base contact region 11a.
  • the contact resistance can be reduced as compared with the case where the source electrode 18 is in contact with the source layer 15 and the base layer 11. Since the contact resistance with the source electrode 18 can be lowered, the contact trench 16 need not be deepened in order to increase the contact area with the source electrode 18. For this reason, it can suppress that the depletion layer between the drift layer 10 and the base layer 11 reaches the contact trench 16, and it can suppress that a proof pressure falls.
  • the junction position between the base contact region 11a and the source contact region 15a is shallower than the junction position between the base layer 11 and the source layer 15 on the gate trench 12 side. Therefore, the contact trench 16 can be made shallower and the source electrode 18 can be easily embedded.
  • the same interlayer insulation is used as a mask for ion implantation for forming the source contact region 15a, a mask for forming the contact trench 16, and a mask for forming the base contact region 11a.
  • a film 17 is used. For this reason, it can suppress that alignment shift generate
  • the source layer 15 is formed so that the impurity concentration decreases from the one surface 1a side of the semiconductor substrate 1 in the thickness direction. For this reason, the impurity concentration of the source layer 15 on the base layer 11 side is low, and it can be suppressed that the impurity concentration of the source layer 15 is involved in the formation of the base contact region 11a. For this reason, the manufacturing process can be simplified.
  • the basic structure of the semiconductor device of the present embodiment is the same as that of the first embodiment, but the gate trench 12 has a ladder shape as shown in FIG. That is, in this embodiment, the semiconductor device has a so-called mesh cell.
  • the contact trench 16 is formed in a region surrounded by the gate trench 12 so that the bottom surface is circular (perfect circle), and the entire circumference of the side surface on the bottom surface side is in contact with the base contact region 11a.
  • the rising height hereinafter referred to as the rising height of the base contact region 11a in contact with the side surface of the contact trench 16 in the base contact region 11a is defined as follows.
  • the scooping height in contact with the side surface of the contact trench 16 in the base contact region 11a is, in other words, the length in contact with the side surface of the contact trench 16 in the direction from the bottom surface side of the contact trench 16 to the opening side. That's it.
  • the load resistance depends on the area of the base contact region 11 a in contact with the contact trench 16. Specifically, as shown in FIG. 5, the load withstand capability decreases sharply when the area of the base contact region 11 a in contact with the contact trench 16 becomes 1.16 ⁇ m 2 or less. Therefore, the area of the base contact region 11a in contact with the contact trench 16 is preferably 1.16 ⁇ m 2 or more.
  • the rising height of the base contact region 11a is y [ ⁇ m] and the radius of the contact trench 16 is x [ ⁇ m], y ⁇ ⁇ x / 4 + 0.37 /
  • the area of the base contact region 11a in contact with the contact trench 16 is 1.16 ⁇ m 2 or more. Therefore, the base contact region 11a and the contact trench 16 are formed so as to satisfy y ⁇ ⁇ x / 4 + 0.37 / x.
  • the surface concentration of the base contact region 11a decreases sharply when it is lower than 1.0 ⁇ 10 18 cm ⁇ 3 . Therefore, the surface concentration of the base contact region 11a is set to 1.0 ⁇ 10 18 cm ⁇ 3 or more.
  • the base contact region 11a is formed so that the surface concentration is 1.0 ⁇ 10 18 cm ⁇ 3 or more and y ⁇ ⁇ x / 4 + 0.37 / x is satisfied.
  • the base contact region 11a is formed so that the surface concentration is 1.0 ⁇ 10 18 cm ⁇ 3 or more and y ⁇ ⁇ x / 4 + 0.37 / x is satisfied. ing. For this reason, the effect similar to the said 1st Embodiment can be acquired, obtaining the more stable load tolerance.
  • the gate insulating film 13 includes a side gate insulating film 13 a formed on the side surface of the gate trench 12 and an opening formed in the opening of the gate trench 12.
  • the gate insulating film 13 b and the bottom gate insulating film 13 c formed at the bottom of the gate trench 12 are configured.
  • the opening gate insulating film 13b and the bottom gate insulating film 13c are formed thicker than the side gate insulating film 13a.
  • the side gate insulating film 13a is configured, for example, by sequentially stacking a silicon oxide film, a silicon nitride film, and a silicon oxide film.
  • the source layer 15 is formed deeply to a portion where the thickness of the gate insulating film 13 is constant so that the threshold voltage for forming the inversion layer in the base layer 11 does not increase.
  • the present disclosure is also applied to a semiconductor device in which the electric field around the gate trench 12 can be relaxed by such a silicon nitride film, the opening gate insulating film 13b, and the bottom gate insulating film 13c.
  • a semiconductor device in which the electric field around the gate trench 12 can be relaxed by such a silicon nitride film, the opening gate insulating film 13b, and the bottom gate insulating film 13c.
  • the first conductivity type is N type and the second conductivity type is P type has been described.
  • the first conductivity type is P type
  • the second conductivity type is N type.
  • the present disclosure is applied to the semiconductor device that allows current to flow in the thickness direction of the semiconductor substrate 1 .
  • the drain electrode 19 is formed on the one surface 1a side of the semiconductor substrate 1 to form the semiconductor substrate.
  • the present disclosure can also be applied to a semiconductor device in which a current flows in the direction of one plane.
  • the junction position between the base contact region 11 a and the source contact region 15 a is the junction position between the base layer 11 and the source layer 15 on the gate trench 12 side. May be deeper. That is, the junction position between the base contact region 11a and the source contact region 15a is located closer to the other surface 1b side of the semiconductor substrate 1 than the junction position between the base layer 11 and the source layer 15 on the gate trench 12 side. Also good. In this case, since the area where the source contact region 15a is in contact with the source electrode 18 is increased, the on-resistance can be reduced. That is, the relationship between the junction position between the base contact region 11a and the source contact region 15a and the junction position between the base layer 11 and the source layer 15 can be changed as appropriate according to the application.
  • the base contact region 11a does not have to be in contact with the source contact region 15a. That is, the effect of the present disclosure can be obtained if the base contact region 11a is formed so as to be in contact with the bottom surface of the contact trench 16 and the side surface on the bottom surface side.
  • a portion between the bottom surface and the side surface of the contact trench 16 may be rounded.
  • the gate trench 12 is described as an example of a tapered shape whose width becomes narrower from the opening toward the bottom, but the width is made constant from the opening toward the bottom. It may be.
  • the ion implantation is performed in order to form the base contact region 11a of FIG. 3D, the ion implantation is performed while being inclined by a predetermined angle with respect to the one surface 1a of the semiconductor substrate 1. Impurities can be implanted into the side surface and the bottom surface (the entire wall surface) of the trench 16.
  • impurities may be implanted only into the bottom surface of the contact trench 16.
  • conditions for thermal diffusion may be appropriately controlled so that the base contact region 11a contacts the side surface on the bottom surface side of the contact trench 16.
  • the present disclosure is applied to a semiconductor device using a semiconductor substrate 1 having a super junction structure in which N-type regions 10 a and P-type regions 10 b are alternately and repeatedly arranged on an N + -type substrate 20. It can also be applied.
  • the gate trenches 12 may be formed in a hexagonal lattice shape, and the bottom surface (opening) of the contact trench 16 may be formed in a hexagonal shape.
  • the present disclosure can be applied to a semiconductor device that does not have a trench gate structure. That is, the present disclosure can be applied to a planar type semiconductor device as shown in FIG. Specifically, in this semiconductor device, a plurality of base layers 11 are formed so as to be separated from each other on the surface layer portion on the one surface 1a side of the semiconductor substrate 1 functioning as the drift layer 10. A source layer 15 is formed in the surface layer portion of the base layer 11, and a contact trench 16 is formed in the source layer 15.
  • a source contact region 15a is formed so as to be in contact with the side surface on the opening side of the contact trench 16, and a base contact region 11a is formed so as to be in contact with the bottom surface of the contact trench 16 and the side surface on the bottom surface side.
  • a gate insulating film 13 is formed on one surface 1 a of the semiconductor substrate 1, and a gate electrode 14 is formed on the gate insulating film 13.
  • An interlayer insulating film 17 is formed so as to cover the gate electrode 14, and a source electrode 18 is formed on the interlayer insulating film 17 so that the contact trench 16 is embedded.
  • the semiconductor device can be prevented from being destroyed. That is, the load resistance of the semiconductor device can be increased.
  • the base contact region 11a is formed so as to be in contact with the bottom surface and the side surface on the bottom surface side of the contact trench 16.
  • the base contact region 11a is formed on the bottom surface and the bottom surface side surface of the contact trench 16.
  • the source contact region 15a is formed so as to be in contact with the side surface of the contact trench 16 on the opening side.
  • the side surface on the opening side is formed. In other words, it can be said that the bottom surface of the contact trench 16 and the side surface on the bottom surface side are formed by the base contact region 11a, and the side surface on the opening side of the contact trench 16 is formed by the source contact region 15a.
  • the entire circumference of the side surface on the bottom surface side of the contact trench 16 is in contact with the base contact region 11a.
  • the entire circumference of the side surface on the bottom surface side of the contact trench 16 is formed by the base contact region 11a. Can also be understood.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 半導体装置において、コンタクト用トレンチ(16)のうち開口部側の側面に接し、第2半導体層(15)よりも高不純物濃度とされた第1導電型の第1半導体領域(15a)と、コンタクト用トレンチ(16)の底面および底面側の側面に接し、第1半導体層(11)よりも高不純物濃度とされた第2導電型の第2半導体領域(11a)を形成する。そして、第1半導体領域(15a)および第2半導体領域(11a)と電気的に接続される第1電極(18)をコンタクト用トレンチ(16)に配置する。コンタクト用トレンチの幅を短くすることで微細化しても、半導体装置がオン状態からオフ状態に変化した際に破壊されることを抑制することができる。

Description

半導体装置およびその製造方法 関連出願の相互参照
 本開示は、2013年1月17日に出願された日本出願番号2013-6598号および2013年10月31日に出願された日本出願番号2013-226352号に基づくもので、ここにその記載内容を援用する。
 本開示は、コンタクト用トレンチを有する半導体装置およびその製造方法に関するものである。
 従来より、トレンチゲート型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を有する半導体装置が提案されている(例えば、特許文献1参照)。
 具体的には、この半導体装置では、N型のドリフト層の表層部にP型のベース層が形成されている。そして、ベース層を貫通してドリフト層に達する複数のゲート用トレンチが形成されており、各ゲート用トレンチの壁面にはゲート絶縁膜とゲート電極とが順に形成されている。また、ベース層の表層部には、ゲート用トレンチの側面に接するようにN型のソース層が形成されている。
 隣接するゲート用トレンチの間には、ベース層に達するコンタクト用トレンチが形成されている。そして、コンタクト用トレンチの開口部側の側面のみに接するようにソース層より不純物濃度が高くされたN++型のソース用コンタクト領域が形成され、コンタクト用トレンチの底面のみに接するようにベース層よりも不純物濃度が高くされたP型のベース用コンタクト領域が形成されている。
 また、コンタクト用トレンチにはソース電極が埋め込まれ、ソース電極がソース層、ソース用コンタクト領域、ベース層、ベース用コンタクト領域と電気的に接続されている。また、ドリフト層の裏面側には、ドレイン電極が形成されている。
特開2003-92405号公報
 ところで、近年では、半導体装置を微細化したいという要望があり、例えば、半導体装置を微細化するためにコンタクト用トレンチの幅を短くすることが考えられる。しかしながら、上記半導体装置では、コンタクト用トレンチの幅を短くすることによって微細化しようとすると、コンタクト用トレンチの底面のみに接するベース用コンタクト領域も小さくなる。このため、半導体装置をオン状態からオフ状態に変化した際、半導体装置が破壊され易くなる。
 すなわち、上記半導体装置では、ソース層およびソース用コンタクト領域、ベース層およびベース用コンタクト領域、ドリフト層によって寄生バイポーラトランジスタが構成される。また、上記半導体装置は、モータやコイル等のインダクタンスを有する負荷に接続されると、オン状態からオフ状態に変化した際、負荷に逆起電力が生じてドリフト層とベース層との間に形成されるダイオードが逆バイアス状態となる。そして、電界が集中しているゲート用トレンチ近傍の領域でブレイクダウンが発生して電流が流れる。この場合、電流(キャリア)はブレイクダウンした領域からベース用コンタクト領域を介してソース電極に流れるが、ベース用コンタクト領域が小さいと電流(キャリア)がベース用コンタクト領域からソース電極に流れ難くなる。つまり、コンタクト用トレンチの幅を短くして半導体装置を微細化すると、ベース層での抵抗(電圧降下)が大きくなって寄生バイポーラトランジスタがオンし易くなり、寄生バイポーラトランジスタがオンすることによって半導体装置が破壊され易くなる。
 なお、このような点は、トレンチゲート型のMOSFETが形成された半導体装置にのみ発生するものではなく、例えば、トレンチゲート型のIGBT(Insulated Gate Bipolar Transistor)が形成された半導体装置においても同様に発生する。また、このような点は、トレンチゲート型の半導体装置のみではなく、プレーナ型の半導体装置においても同様に発生する。プレーナ型の半導体装置においても、オン状態からオフ状態に変化した際、ベース用コンタクト領域が小さいと電流(キャリア)がベース用コンタクト領域からソース電極に流れ難くなるためである。
 本開示は上記点に鑑みて、オン状態からオフ状態に変化した際、コンタクト用トレンチの幅を短くすることで微細化しても破壊されることを抑制できる半導体装置およびその製造方法を提供することを目的とする。
 本開示の第一の態様によれば、半導体装置は、第1導電型のドリフト層と、ドリフト層の表層部に設けられた第2導電型の第1半導体層と、第1半導体層の表層部に設けられた第1導電型の第2半導体層と、第2半導体層に形成されたコンタクト用トレンチと、コンタクト用トレンチのうち開口部側の側面に接し、第2半導体層よりも高不純物濃度とされた第1導電型の第1半導体領域と、コンタクト用トレンチの底面および底面側の側面に接し、第1半導体層よりも高不純物濃度とされた第2導電型の第2半導体領域と、コンタクト用トレンチに配置され、第1半導体領域および第2半導体領域と電気的に接続される第1電極と、第1電極が電気的に接続される領域と異なる領域に電気的に接続され、第1電極との間に電流を流す第2電極と、を備える。
 これによれば、コンタクト用トレンチの幅を短くして半導体装置を微細化しても、コンタクト用トレンチの側面に形成されている第2半導体領域の大きさは変化しない。つまり、半導体装置を微細化しても、第2半導体領域の大きさを確保することができる。このため、半導体装置がオン状態からオフ状態に変化し、ブレイクダウンが発生しても、電流は第2半導体領域に流れ込み易く、第1半導体層で抵抗(電圧降下)が大きくなることを抑制できる。したがって、寄生バイポーラトランジスタがオンすることを抑制でき、半導体装置が破壊されることを抑制できる。
 本開示の第二の態様によれば、第一の態様における半導体装置において、第1半導体領域と第2半導体領域とは接しているものとすることができる。
 これによれば、第1電極(コンタクト用トレンチの壁面)が第1半導体層および第2半導体層と接触している場合と比較して、接触抵抗を下げることができる。また、第1電極との接触抵抗を下げることができるため、第1電極との接触面積を増加させるためにコンタクト用トレンチを深くしなくてもよい。これにより、ドリフト層と第1半導体層との間の空乏層がコンタクト用トレンチに達することを抑制でき、耐圧が低下することを抑制できる。
 本開示の第三の態様によれば、第一の態様における半導体装置において、第1半導体領域と第2半導体領域とのジャンクション位置は、第1半導体層と第2半導体層とのジャンクション位置より浅くされているものとすることができる。
 本開示の第四の態様によれば、第一の態様における半導体装置において、第1半導体領域と第2半導体領域とのジャンクション位置は、第1半導体層と第2半導体層とのジャンクション位置より深くされているものとすることができる。
 上記第三の態様における半導体装置では、第2半導体領域が大きくなるため、より半導体装置が破壊されることを抑制できる。また、コンタクト用トレンチを浅くできるため、第1電極を埋め込み易くできる。上記第四の態様における半導体装置では、第1半導体領域が大きくなるため、半導体装置が破壊されることを抑制しつつ、オン抵抗の低減も図をことができる。
 本開示の一態様における半導体装置の製造方法は、第1半導体領域と第2半導体領域とが接している半導体装置の製造方法に関するものである。
 半導体装置の製造方法は、一面および一面と反対側の他面を有し、ドリフト層を構成する半導体基板の一面側に第1半導体層を形成することと、第1半導体層の表層部に第2半導体層を形成することと、半導体基板の一面にマスクを形成し、マスクをパターニングして半導体基板の一面のうちコンタクト用トレンチの形成予定領域を露出させる開口部をマスクに形成することと、マスクを用いて半導体基板の一面から第1導電型の不純物をイオン注入すると共に熱拡散を行い、マスクの下方にまで広がる第1半導体領域を形成することと、マスクを用いて第1半導体領域を貫通するコンタクト用トレンチを形成することと、コンタクト用トレンチに対して、第1半導体領域を形成するときのドーズ量よりも少ないドーズ量にて第2導電型の不純物をイオン注入すると共に熱拡散を行うことにより、コンタクト用トレンチの底面および底面側の側面に接し、第1半導体領域と接する第2半導体領域を形成することと、を備える。
 このように、第2半導体領域を形成する際、1半導体領域を形成するときのドーズ量よりも少ないドーズ量にて第2導電型の不純物をイオン注入すると共に熱拡散を行うことにより、第1半導体領域と第2半導体領域とが接する半導体装置を製造することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態における半導体装置の断面図である。 図1に示すゲート用トレンチとコンタクト用トレンチとの関係を示す平面図である。 (a)~(f)は図1に示す半導体装置の製造工程を示す断面図である。 本開示の第2実施形態におけるゲート用トレンチとコンタクト用トレンチとの関係を示す平面図である。 ベース用コンタクト領域のコンタクト用トレンチと接する面積と、負荷耐量との関係を示す図である。 ベース用コンタクト領域におけるコンタクト用トレンチと接する面積が1.16μmであるときのコンタクト用トレンチの半径とベース用コンタクト領域の這い上がり高さとの関係を示す図である。 ベース用コンタクト領域の表面濃度と負荷耐量との関係を示す図である。 本開示の第3実施形態における半導体装置の断面図である。 本開示の他の実施形態における半導体装置の断面図である。 本開示の他の実施形態における半導体装置の断面図である。 本開示の他の実施形態における半導体装置の断面図である。 本開示の他の実施形態におけるゲート用トレンチとコンタクト用トレンチとの関係を示す平面図である。 本開示の他の実施形態における半導体装置の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について図面を参照しつつ説明する。なお、本実施形態では、本開示をnチャネル型のMOSFETに適用した例について説明する。
 図1に示されるように、半導体装置は、N型のドリフト層10として機能する半導体基板1を用いて構成されており、この半導体基板1のうちの一面1a側の表層部に所定厚さのP型のベース層11が形成されている。そして、ベース層11を貫通してドリフト層10に達する複数のゲート用トレンチ12が形成されている。
 ゲート用トレンチ12は、図2に示されるように、半導体基板1の一面1aの面方向のうちの一方向(図2中紙面上下方向)を長手方向とし、この長手方向に平行に延設されている。本実施形態では、各ゲート用トレンチ12は、ストライプ状に形成されているが、各ゲート用トレンチ12は延設方向の先端部が引き回されることで環状構造とされていてもよい。
 そして、各ゲート用トレンチ12内は、図1に示されるように、それぞれのゲート用トレンチ12の内壁表面を覆うように形成されたゲート絶縁膜13と、このゲート絶縁膜13上に形成されたゲート電極14とにより埋め込まれている。これにより、トレンチゲート構造が構成されている。
 なお、ゲート絶縁膜13としては、例えば、シリコン酸化膜が用いられ、ゲート電極14としては、例えば、ポリシリコン等が用いられる。
 ベース層11の表層部には、ドリフト層10よりも高不純物濃度とされたN型のソース層15が形成されている。このソース層15は、ゲート用トレンチ12の側面に接するようにゲート用トレンチ12の長手方向に沿って形成され、ベース層11内で終端している。
 また、隣接するゲート用トレンチ12の間には、コンタクト用トレンチ16が形成されている。このコンタクト用トレンチ16は、図1および図2に示されるように、ゲート用トレンチ12の長手方向に沿って形成され、ゲート用トレンチ12よりも浅くされている。特に限定されるものではないが、本実施形態のコンタクト用トレンチ16は、ドリフト層10とベース層11とのジャンクション位置より僅かに深くされている。
 そして、図1に示されるように、コンタクト用トレンチ16の開口部側の側面と接するように、ソース層15よりも高不純物濃度とされたN++型のソース用コンタクト領域15aが形成されている。このソース用コンタクト領域15aは、本実施形態では、ソース層15内に形成されていると共にコンタクト用トレンチ16の長手方向に沿って形成されており、ソース層15内において終端している。
 また、コンタクト用トレンチ16の底面および底面側の側面に接するように、ベース層11よりも高不純物濃度とされたP型のベース用コンタクト領域11aが形成されている。このベース用コンタクト領域11aは、ベース層11からソース層15に渡って形成されていると共にコンタクト用トレンチ16の長手方向に沿って形成されており、ベース層11内において終端している。
 また、本実施形態のベース用コンタクト領域11aは、コンタクト用トレンチ16の側面においてソース用コンタクト領域15aと接している。そして、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置は、ベース層11とソース層15とのゲート用トレンチ12側のジャンクション位置より浅くされている。言い換えると、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置は、ベース層11とソース層15とのゲート用トレンチ12側のジャンクション位置より半導体基板1の一面1a側に位置している。
 ゲート絶縁膜13およびゲート電極14上には、BPSG膜等で構成される層間絶縁膜17が形成されている。そして、コンタクト用トレンチ16が埋め込まれるように、層間絶縁膜17上にソース電極18が形成されている。
 ソース電極18は、半導体基板1の一面1aにてソース用コンタクト領域15aと電気的に接続され、コンタクト用トレンチ16の壁面にてソース用コンタクト領域15aおよびベース用コンタクト領域11aと電気的に接続されている。また、半導体基板1の他面1b側には、ドレイン電極19が形成され、ドレイン電極19がドリフト層10と電気的に接続されている。
 以上が本実施形態における半導体装置の構成である。なお、本実施形態では、N型、N型、N型、N++型が本開示の第1導電型に相当し、P型、P型が本開示の第2導電型に相当している。また、ベース層11が本開示の第1半導体層に相当し、ソース層15が本開示の第2半導体層に相当し、ソース用コンタクト領域15aが本開示の第1半導体領域に相当し、ベース用コンタクト領域11aが本開示の第2半導体領域に相当している。そして、ソース電極18が本開示の第1電極に相当し、ドレイン電極19が本開示の第2電極に相当している。
 次に、上記半導体装置の製造方法について図3を参照しつつ説明する。
 まず、図3(a)に示されるように、ドリフト層10を構成する半導体基板1を用意し、半導体基板1の一面1a側にベース層11を形成すると共にベース層11の表層部にソース層15を形成する。なお、ベース層11およびソース層15は、所定の不純物をイオン注入した後に熱拡散することによって形成される。また、本実施形態では、半導体基板1の一面1a側から厚さ方向に不純物濃度が低くなるようにソース層15を形成する。
 そして、半導体基板1に上記トレンチゲート構造を形成する。トレンチゲート構造の具体的な製造工程に関しては、周知なものと同様であり、詳しく説明しないが、ベース層11およびソース層15を貫通してドリフト層10に達するゲート用トレンチ12を形成し、このゲート用トレンチ12の内壁表面にゲート絶縁膜13とゲート電極14となるポリシリコンとを形成すればよい。
 次に、ゲート絶縁膜13およびゲート電極14が覆われるように、半導体基板1の一面1aの全面にBPSG膜を成膜して層間絶縁膜17を形成する。
 続いて、図3(b)に示されるように、図示しないレジスト等をマスクとして層間絶縁膜17をパターニングし、半導体基板1の一面1aのうちコンタクト用トレンチ16の形成予定領域を露出させる開口部17aを形成する。そして、層間絶縁膜17をマスクとし、所定の不純物をイオン注入すると共に熱拡散することにより、ソース層15の表層部にソース用コンタクト領域15aを形成する。
 なお、ソース用コンタクト領域15aは不純物が熱拡散されることによって形成されるため、不純物が注入された領域よりも広がって形成されている。つまり、ソース用コンタクト領域15aは、層間絶縁膜17の下方にまで広がって形成されている。
 また、ソース用コンタクト領域15aは、ソース層15を構成する不純物と異なる不純物を用いて構成することにより、ソース層15との境界を明確にすることができる。例えば、ソース層15を構成する不純物としてAs(砒素)を用いた場合には、ソース用コンタクト領域15aを構成する不純物としてP(リン)を用いることができる。
 続いて、図3(c)に示されるように、層間絶縁膜17をマスクとしてドライエッチングを行い、ソース用コンタクト領域15aおよびソース層15を貫通してベース層11に達するコンタクト用トレンチ16を形成する。本実施形態では、開口部から底面に向かって幅が狭くなるテーパ状のコンタクト用トレンチ16を形成する。
 なお、コンタクト用トレンチ16の開口部側の側面に接するソース用コンタクト領域15aは、上記図3(b)の工程で形成したソース用コンタクト領域15aのうち層間絶縁膜17の下方に広がって形成された部分にて構成される。
 次に、図3(d)に示されるように、層間絶縁膜17をマスクとし、コンタクト用トレンチ16の側面および底面に対して、P型の不純物をイオン注入すると共に熱拡散することにより、上記ベース用コンタクト領域11aを形成する。
 具体的には、コンタクト用トレンチ16が開口部から底面に向かって幅が狭くなるテーパ状とされており、コンタクト用トレンチ16の側面が半導体基板1の一面1aに対して傾いているため、半導体基板1の一面1aに対する法線方向からP型の不純物をイオン注入する。
 また、イオン注入は、ベース層11を形成する際のドーズ量よりも大きく、ソース用コンタクト領域15aを形成する際のドーズ量よりも少ないドーズ量にて行う。これにより、ベース用コンタクト領域11aを形成するための不純物がコンタクト用トレンチ16の側面および底面(壁面全面)に対してイオン注入されても、ソース用コンタクト領域15aのうち不純物濃度が高い領域ではソース用コンタクト領域15aがそのまま残る。そして、ソース用コンタクト領域15aのうち不純物濃度がベース用コンタクト領域11aと等しくなる部分にてベース用コンタクト領域11aとの界面が構成される。つまり、ソース用コンタクト領域15aと接するベース用コンタクト領域11aが形成される。
 なお、本実施形態では、半導体基板1の一面1a側から厚さ方向に不純物濃度が低くなるようにソース層15を形成している。このため、ベース層11側のソース層15の不純物濃度が低くなっており、ベース用コンタクト領域11aの形成にソース層15の不純物濃度が関与することを抑制できる。また、ベース用コンタクト領域11aは、ソース用コンタクト領域15aと同様に、ベース層11を構成する不純物と異なる不純物を用いて構成することにより、ベース層11との境界を明確にすることができる。例えば、ベース層11を構成する不純物としてBoron(ボロン)を用いた場合には、ベース用コンタクト領域11aを構成する不純物としてAl(アルミニウム)を用いることができる。
 次に、図3(e)に示されるように、ウェットエッチングを行い、層間絶縁膜17および半導体基板1の一面1aに形成されたゲート絶縁膜13を後退させ、半導体基板1の一面1aからソース用コンタクト領域15aを露出させる。
 その後、図3(f)に示されるように、層間絶縁膜(BPSG膜)17をリフローして層間絶縁膜17を丸める。そして、コンタクト用トレンチ16が埋め込まれるように層間絶縁膜17上にソース電極18を形成すると共に、半導体基板1の他面1b側にドレイン電極19を形成することにより、上記図1に示す半導体装置が製造される。
 なお、ソース電極18は、半導体基板1の一面1a側からTi、TiN等のバリアメタルを成膜した後、バリアメタル上にAlを成膜することによって形成することが好ましい。ソース電極18をバリアメタルを有する構成とすることにより、Alスパイクの発生を抑制できる。
 以上説明したように、本実施形態では、コンタクト用トレンチ16の底面および底面側の側面に接するようにベース用コンタクト領域11aが形成されている。このため、コンタクト用トレンチ16の幅を短くして半導体装置を微細化しても、コンタクト用トレンチ16の側面に形成されている部分の大きさは変化しない。つまり、半導体装置を微細化しても、ベース用コンタクト領域11aの大きさを確保することができる。このため、半導体装置がモータやコイル等のインダクタンスを有する負荷に接続され、オン状態からオフ状態に変化しても半導体装置が破壊されることを抑制できる。言い換えると、半導体装置の負荷耐量を高くできる。
 すなわち、上記半導体装置は、ゲート-ソース間に所定の閾値電圧以上の電圧が印加されている状態からゲート-ソース間に印加される電圧が所定の閾値電圧以下になると、ベース層11のうちゲート用トレンチ12と接する部分に形成されていたN型のチャネル層が消滅してオフ状態となる。
 このとき、上記のように、負荷に逆起電力が生じてドリフト層10とベース層11との間に形成されるダイオードが逆バイアス状態となり、電界が集中しているゲート用トレンチ12近傍の領域でブレイクダウンが発生して電流が流れる。
 この場合、電流(キャリア)はブレイクダウンした領域からベース用コンタクト領域11aを介してソース電極18に流れるが、本実施形態では、ベース用コンタクト領域11aがコンタクト用トレンチ16の底面および底面側の側面に形成されている。このため、ブレイクダウンにて発生した電流がベース用コンタクト領域11aに流れ込み易く、ベース層11で抵抗(電圧降下)が大きくなることを抑制できる。したがって、寄生バイポーラトランジスタがオンすることを抑制でき、半導体装置が破壊されることを抑制できる。
 また、本実施形態では、ソース用コンタクト領域15aとベース用コンタクト領域11aとが接している。つまり、コンタクト用トレンチ16の壁面がソース用コンタクト領域15aおよびベース用コンタクト領域11aにて囲まれている。
 このため、ソース電極18がソース層15およびベース層11と接触している場合と比較して、接触抵抗を下げることができる。そして、ソース電極18との接触抵抗を下げることができるため、ソース電極18との接触面積を増加させるためにコンタクト用トレンチ16を深くしなくてもよい。このため、ドリフト層10とベース層11との間の空乏層がコンタクト用トレンチ16に達することを抑制でき、耐圧が低下することを抑制できる。
 さらに、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置は、ベース層11とソース層15とのゲート用トレンチ12側のジャンクション位置より浅くされている。このため、コンタクト用トレンチ16を浅くでき、ソース電極18を埋め込み易くできる。
 そして、本実施形態では、ソース用コンタクト領域15aを形成するイオン注入する際のマスク、コンタクト用トレンチ16を形成する際のマスク、ベース用コンタクト領域11aを形成する際のマスクとして、全て同じ層間絶縁膜17を用いている。このため、各工程で別のマスクを用いる場合と比較して、アライメントズレが発生することを抑制できる。
 さらに、本実施形態では、半導体基板1の一面1a側から厚さ方向に不純物濃度が低くなるようにソース層15を形成している。このため、ベース層11側のソース層15の不純物濃度が低くなっており、ベース用コンタクト領域11aの形成にソース層15の不純物濃度が関与することを抑制できる。このため、製造工程の簡略化を図ることができる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対してゲート用トレンチ12およびコンタクト用トレンチ16の形状を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態の半導体装置は、基本的な構成は上記第1実施形態と同様であるが、図4に示されるように、ゲート用トレンチ12は梯子状とされている。つまり、本実施形態では、いわゆるメッシュセルを有する半導体装置とされている。コンタクト用トレンチ16は、ゲート用トレンチ12で囲まれる領域に底面が円(真円)状となるように形成され、底面側の側面の全周がベース用コンタクト領域11aと接している。そして、ベース用コンタクト領域11aにおけるコンタクト用トレンチ16の側面と接する這い上がり高さ(以下では、ベース用コンタクト領域11aの這い上がり高さという)が以下のように規定されている。なお、ベース用コンタクト領域11aにおけるコンタクト用トレンチ16の側面と接する這い上がり高さとは、言い換えると、コンタクト用トレンチ16の底面側から開口部側に向かう方向において、コンタクト用トレンチ16の側面と接する長さのことである。
 すなわち、負荷耐量はコンタクト用トレンチ16と接するベース用コンタクト領域11aの面積に依存する。具体的には、図5に示されるように、負荷耐量は、コンタクト用トレンチ16と接するベース用コンタクト領域11aの面積が1.16μm以下になると、急峻に低下する。このため、コンタクト用トレンチ16と接するベース用コンタクト領域11aの面積は、1.16μm以上であることが好ましい。
 この場合、図6に示されるように、ベース用コンタクト領域11aの這い上がり高さをy[μm]、コンタクト用トレンチ16の半径をx[μm]とすると、y≧-x/4+0.37/xである場合に、コンタクト用トレンチ16と接するベース用コンタクト領域11aの面積が1.16μm以上となる。したがって、ベース用コンタクト領域11aおよびコンタクト用トレンチ16は、y≧-x/4+0.37/xを満たすように形成されている。
 また、図7に示されるように、ベース用コンタクト領域11aの表面濃度(コンタクト用トレンチ16の底面と接する部分の濃度)は、1.0×1018cm-3より低くなると急峻に低下する。このため、ベース用コンタクト領域11aの表面濃度は、1.0×1018cm-3以上とされている。
 すなわち、本実施形態では、ベース用コンタクト領域11aは、表面濃度が1.0×1018cm-3以上とされ、y≧-x/4+0.37/xを満たすように形成されている。
 以上説明したように、本実施形態では、ベース用コンタクト領域11aは、表面濃度が1.0×1018cm-3以上とされ、y≧-x/4+0.37/xを満たすように形成されている。このため、さらに安定した負荷耐量を得つつ、上記第1実施形態と同様の効果を得ることができる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第1実施形態に対してゲート絶縁膜13を部分的に厚膜化したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図8に示されるように、本実施形態では、ゲート絶縁膜13は、ゲート用トレンチ12の側面に形成された側面用ゲート絶縁膜13a、ゲート用トレンチ12の開口部に形成された開口部用ゲート絶縁膜13b、ゲート用トレンチ12の底部に形成された底部用ゲート絶縁膜13cにて構成されている。
 そして、開口部用ゲート絶縁膜13bおよび底部用ゲート絶縁膜13cは、側面用ゲート絶縁膜13aより厚く形成されている。側面用ゲート絶縁膜13aは、例えば、シリコン酸化膜、シリコン窒化膜、シリコン酸化膜が順に積層されて構成されている。
 また、ソース層15は、ベース層11に反転層を形成するための閾値電圧が大きくならないように、ゲート絶縁膜13の厚さが一定となる部分まで深く形成されている。
 このようなシリコン窒化膜、開口部用ゲート絶縁膜13b、底部用ゲート絶縁膜13cにてゲート用トレンチ12の周囲の電界を緩和することができるようにした半導体装置においても、本開示を適用することにより、上記第1実施形態と同様の効果を得ることができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
 例えば、上記第1実施形態では、第1導電型をN型とし、第2導電型をP型とした例について説明したが、第1導電型をP型とし、第2導電型をN型とすることもできる。
 また、上記各実施形態では、MOSFETに本開示を適用した例を説明したが、半導体基板1の他面1b側にP型のコレクタ層を形成したIGBTに本開示を適用することできる。
 そして、上記各実施形態では、半導体基板1の厚さ方向に電流を流す半導体装置に本開示を適用した例を説明したが、ドレイン電極19を半導体基板1の一面1a側に形成して半導体基板1の平面方向に電流を流すようにした半導体装置に本開示を適用することもできる。
 さらに、上記各実施形態において、図9に示されるように、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置は、ベース層11とソース層15とのゲート用トレンチ12側のジャンクション位置より深くされていてもよい。つまり、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置は、ベース層11とソース層15とのゲート用トレンチ12側のジャンクション位置より半導体基板1の他面1b側に位置していてもよい。この場合は、ソース用コンタクト領域15aがソース電極18と接触する面積が増加するため、オン抵抗の低減を図ることができる。すなわち、ベース用コンタクト領域11aとソース用コンタクト領域15aとのジャンクション位置とベース層11とソース層15とのジャンクション位置との関係は、用途に応じて適宜変更可能である。
 そして、上記各実施形態において、図10に示されるように、ベース用コンタクト領域11aは、ソース用コンタクト領域15aと接していなくてもよい。すなわち、ベース用コンタクト領域11aがコンタクト用トレンチ16の底面および底面側の側面に接するように形成されていれば本開示の効果を得ることができる。
 また、上記各実施形態において、コンタクト用トレンチ16の底面と側面との間の部分が丸められていてもよい。
 さらに、上記各実施形態では、ゲート用トレンチ12は、開口部から底面に向かって幅が狭くなるテーパ状のものを例に挙げて説明したが、開口部から底面に向かって幅が一定とされていてもよい。この場合、図3(d)のベース用コンタクト領域11aを形成するためにイオン注入を行う際には、半導体基板1の一面1aに対して所定角度だけ傾けながらイオン注入を行うことにより、コンタクト用トレンチ16の側面および底面(壁面全面)に対して不純物を注入することができる。
 そして、上記図3(d)のベース用コンタクト領域11aを形成するためにイオン注入を行う際には、コンタクト用トレンチ16の底面のみに対して不純物を注入するようにしてもよい。この場合は、ベース用コンタクト領域11aがコンタクト用トレンチ16の底面側の側面に接するように熱拡散する際の条件等を適宜制御すればよい。
 また、図11に示されるように、N型基板20上にN型領域10aおよびP型領域10bが繰り返し交互に配置されたスーパージャンクション構造を有する半導体基板1を用いた半導体装置に本開示を適用することもできる。
 さらに、図12に示されるように、平面形状において、ゲート用トレンチ12が六角格子状に形成されていてもよく、コンタクト用トレンチ16の底面(開口部)が六角状とされていてもよい。
 また、トレンチゲート構造を備えていない半導体装置に本開示を適用することもできる。すなわち、図13に示されるようなプレーナ型の半導体装置に本開示を適用することもできる。具体的には、この半導体装置では、ドリフト層10として機能する半導体基板1のうちの一面1a側の表層部に複数のベース層11が互いに離間するように形成されている。そして、ベース層11の表層部にソース層15が形成され、このソース層15にコンタクト用トレンチ16が形成されている。
 また、コンタクト用トレンチ16の開口部側の側面と接するようにソース用コンタクト領域15aが形成され、コンタクト用トレンチ16の底面および底面側の側面に接するようにベース用コンタクト領域11aが形成されている。
 そして、半導体基板1の一面1aにゲート絶縁膜13が形成され、ゲート絶縁膜13上にゲート電極14が形成されている。また、ゲート電極14を覆うように層間絶縁膜17が形成され、層間絶縁膜17上にコンタクト用トレンチ16が埋め込まれるようにソース電極18が形成されている。
 このような半導体装置としても、コンタクト用トレンチ16の底面および底面側の側面に接するようにベース用コンタクト領域11aが形成されているため、半導体装置が破壊されることを抑制できる。つまり、半導体装置の負荷耐量を高くできる。
 本開示において、ベース用コンタクト領域11aがコンタクト用トレンチ16の底面及び底面側の側面に接するように形成されているとは、ベース用コンタクト領域11aがコンタクト用トレンチ16の底面及び底面側の側面を形成しているとも理解することができ、また、ソース用コンタクト領域15aがコンタクト用トレンチ16の開口部側の側面と接するように形成されているとは、ソース用コンタクト領域15aがコンタクト用トレンチ16の開口部側の側面を形成しているとも理解することができる。言い換えれば、コンタクト用トレンチ16の底面及び底面側の側面はベース用コンタクト領域11aにより形成されており、コンタクト用トレンチ16の開口部側の側面はソース用コンタクト領域15aにより形成されているとも言える。また、コンタクト用トレンチ16の底面側の側面の全周がベース用コンタクト領域11aと接しているとは、コンタクト用トレンチ16の底面側の側面の全周がベース用コンタクト領域11aにより形成されているとも理解することができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (13)

  1.  第1導電型のドリフト層(10)と、
     前記ドリフト層の表層部に設けられた第2導電型の第1半導体層(11)と、
     前記第1半導体層の表層部に設けられた第1導電型の第2半導体層(15)と、
     前記第2半導体層に設けられたコンタクト用トレンチ(16)と、
     前記コンタクト用トレンチのうち開口部側の側面に接し、前記第2半導体層よりも高不純物濃度とされた第1導電型の第1半導体領域(15a)と、
     前記コンタクト用トレンチの底面および前記底面側の側面に接し、前記第1半導体層よりも高不純物濃度とされた第2導電型の第2半導体領域(11a)と、
     前記コンタクト用トレンチに配置され、前記第1半導体領域および前記第2半導体領域と電気的に接続される第1電極(18)と、
     前記第1電極が電気的に接続される領域と異なる領域に電気的に接続され、前記第1電極との間に電流を流す第2電極(19)と、を備えている半導体装置。
  2.  前記第1半導体領域と前記第2半導体領域とは接している請求項1に記載の半導体装置。
  3.  前記第1半導体領域と前記第2半導体領域とのジャンクション位置は、前記第1半導体層と前記第2半導体層とのジャンクション位置より浅くされている請求項1または2に記載の半導体装置。
  4.  前記第1半導体領域と前記第2半導体領域とのジャンクション位置は、前記第1半導体層と前記第2半導体層とのジャンクション位置より深くされている請求項1または2に記載の半導体装置。
  5.  前記コンタクト用トレンチは、前記底面が円状とされている請求項1ないし4のいずれか1つに記載の半導体装置。
  6.  前記第2半導体領域は、前記コンタクト用トレンチにおける前記底面側の側面の全周と接しており、前記コンタクト用トレンチの底面と接する部分の濃度が1.0×1018[cm-3]以上とされ、前記コンタクト用トレンチにおける前記底面側の側面と接する這い上がり高さは、前記コンタクト用トレンチの半径をx[μm]としたとき、-x/4+0.37/x以上とされている請求項5に記載の半導体装置。
  7.  前記コンタクト用トレンチは、底面が六角状とされている請求項1ないし6のいずれか1つに記載の半導体装置。
  8.  前記第1半導体層を貫通して前記ドリフト層に達する複数のゲート用トレンチ(12)と、
     前記複数のゲート用トレンチの壁面にそれぞれ設けられたゲート絶縁膜(13)と、
     前記ゲート絶縁膜上にそれぞれ設けられたゲート電極(14)と、を備えている請求項1ないし7のいずれか1つに記載の半導体装置。
  9.  一面(1a)および前記一面と反対側の他面(1b)を有し、第1導電型のドリフト層(10)を構成する半導体基板(1)の前記一面側に第2導電型の第1半導体層(11)を形成することと、
     前記第1半導体層の表層部に第2半導体層(15)を形成することと、
     前記半導体基板の一面にマスク(17)を形成し、前記マスクをパターニングして前記半導体基板の一面のうちコンタクト用トレンチ(16)の形成予定領域を露出させる開口部(17a)を形成することと、
     前記マスクを用いて前記半導体基板の一面側から第1導電型の不純物をイオン注入すると共に熱拡散を行い、前記マスクの下方にまで広がる第1導電型の第1半導体領域(15a)を形成することと、
     前記マスクを用いて前記第1半導体領域を貫通する前記コンタクト用トレンチを形成することと、
     前記コンタクト用トレンチに対して、前記1半導体領域を形成するときのドーズ量よりも少ないドーズ量にて第2導電型の不純物をイオン注入すると共に熱拡散を行うことにより、前記コンタクト用トレンチの底面および底面側の側面に接し、前記第1半導体領域と接する第2導電型の第2半導体領域(11a)を形成することと、を備える半導体装置の製造方法。
  10.  前記第2半導体領域を形成することでは、前記コンタクト用トレンチの側面および底面に対して前記第2導電型の不純物をイオン注入する請求項9に記載の半導体装置の製造方法。
  11.  前記コンタクト用トレンチを形成することでは、深さ方向に幅が狭くなるテーパ状の前記コンタクト用トレンチを形成し、
     前記第2半導体領域を形成することでは、前記半導体基板の一面に対する法線方向から前記イオン注入を行う請求項9または10に記載の半導体装置の製造方法。
  12.  前記第1半導体領域を形成することの前に、前記半導体基板の一面に層間絶縁膜を形成することを備え、前記マスクとして前記層間絶縁膜を用いる請求項9ないし11のいずれか1つに記載の半導体装置の製造方法。
  13.  前記開口部を形成することの前に、前記第1、第2半導体層を貫通して前記ドリフト層に達するゲート用トレンチ(12)を形成することと、前記ゲート用トレンチにゲート絶縁膜(13)を形成することと、前記ゲート絶縁膜上にゲート電極(14)を形成することと、を備え、
     前記第2半導体層を形成することでは、前記半導体基板の一面から当該半導体基板の厚さ方向に不純物濃度が低くなるように前記第2半導体層を形成し、
     前記第2半導体領域を形成することでは、前記第1半導体層と前記第2半導体層とのジャンクション位置より浅くなる前記第2半導体領域を形成する請求項9ないし12のいずれか1つに記載の半導体装置の製造方法。
PCT/JP2013/007520 2013-01-17 2013-12-23 半導体装置およびその製造方法 WO2014112015A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013006445.6T DE112013006445T5 (de) 2013-01-17 2013-12-23 Halbleitervorrichtung und Verfahren zu deren Fertigung
US14/759,823 US9634095B2 (en) 2013-01-17 2013-12-23 Semiconductor device and method for manufacturing the same
CN201380070729.XA CN104937720B (zh) 2013-01-17 2013-12-23 半导体装置及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013006598 2013-01-17
JP2013-006598 2013-01-17
JP2013226352A JP5831526B2 (ja) 2013-01-17 2013-10-31 半導体装置およびその製造方法
JP2013-226352 2013-10-31

Publications (1)

Publication Number Publication Date
WO2014112015A1 true WO2014112015A1 (ja) 2014-07-24

Family

ID=51209143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007520 WO2014112015A1 (ja) 2013-01-17 2013-12-23 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US9634095B2 (ja)
JP (1) JP5831526B2 (ja)
CN (1) CN104937720B (ja)
DE (1) DE112013006445T5 (ja)
WO (1) WO2014112015A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537603A (zh) * 2015-02-16 2017-03-22 富士电机株式会社 半导体装置和半导体装置的制造方法
WO2020149212A1 (ja) * 2019-01-16 2020-07-23 株式会社デンソー 半導体装置およびその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405814B2 (ja) * 2014-09-11 2018-10-17 富士電機株式会社 半導体装置および半導体装置の製造方法
US10446497B2 (en) * 2016-03-29 2019-10-15 Microchip Technology Incorporated Combined source and base contact for a field effect transistor
DE112017002229T5 (de) 2016-04-28 2019-01-17 Sony Corporation Anzeigevorrichtung und elektronische einrichtung
CN108780814B (zh) 2016-09-14 2021-12-21 富士电机株式会社 半导体装置及其制造方法
JP6864288B2 (ja) * 2016-12-28 2021-04-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2018117070A (ja) 2017-01-19 2018-07-26 エイブリック株式会社 半導体装置及びその製造方法
JP6776205B2 (ja) * 2017-09-20 2020-10-28 株式会社東芝 半導体装置の製造方法
CN110574153B (zh) 2017-11-13 2024-02-23 富士电机株式会社 半导体装置及半导体装置的制造方法
CN109873032A (zh) * 2017-12-05 2019-06-11 株洲中车时代电气股份有限公司 一种沟槽栅igbt器件及其制造方法
US10714580B2 (en) * 2018-02-07 2020-07-14 Alpha And Omega Semiconductor (Cayman) Ltd. Source ballasting for p-channel trench MOSFET
JP7119449B2 (ja) * 2018-03-16 2022-08-17 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6969586B2 (ja) * 2019-04-23 2021-11-24 株式会社デンソー 半導体装置およびその製造方法
JP2021012995A (ja) * 2019-07-09 2021-02-04 トヨタ自動車株式会社 トレンチゲート型半導体装置
JP7521246B2 (ja) 2020-04-16 2024-07-24 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2021210293A1 (ja) * 2020-04-16 2021-10-21 富士電機株式会社 半導体装置および半導体装置の製造方法
US11699727B2 (en) 2020-07-13 2023-07-11 Fuji Electric Co., Ltd. Semiconductor device
JP7121152B2 (ja) * 2021-02-02 2022-08-17 ローム株式会社 半導体装置
CN113421920A (zh) * 2021-06-02 2021-09-21 广东美的白色家电技术创新中心有限公司 一种igbt器件及其制备方法和电子产品
JPWO2023127253A1 (ja) * 2021-12-27 2023-07-06
JP2023136403A (ja) * 2022-03-17 2023-09-29 株式会社東芝 半導体装置
CN115084274A (zh) * 2022-08-24 2022-09-20 华羿微电子股份有限公司 一种高可靠性半导体功率器件及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113655A (ja) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2001345445A (ja) * 2000-06-02 2001-12-14 Nec Corp 半導体装置
JP2003092405A (ja) * 2001-09-19 2003-03-28 Toshiba Corp 半導体装置及びその製造方法
JP2003101019A (ja) * 2001-09-20 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP2003174167A (ja) * 2001-12-06 2003-06-20 Hitachi Ltd 半導体装置及びその製造方法
JP2005183547A (ja) * 2003-12-17 2005-07-07 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2006059940A (ja) * 2004-08-19 2006-03-02 Fuji Electric Device Technology Co Ltd 半導体装置
JP2006120894A (ja) * 2004-10-22 2006-05-11 Toshiba Corp 半導体装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748337B2 (ja) 1999-02-04 2006-02-22 株式会社東芝 半導体装置
JP4371521B2 (ja) 2000-03-06 2009-11-25 株式会社東芝 電力用半導体素子およびその製造方法
JP2001284587A (ja) 2000-03-28 2001-10-12 Kaga Toshiba Electron Kk 半導体装置およびその製造方法
JP2002016080A (ja) 2000-06-28 2002-01-18 Toshiba Corp トレンチゲート型mosfetの製造方法
JP2002280553A (ja) 2001-03-19 2002-09-27 Toshiba Corp 半導体装置及びその製造方法
JP2002353452A (ja) 2001-05-25 2002-12-06 Toshiba Corp 電力用半導体素子
JP2003101027A (ja) 2001-09-27 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP3993454B2 (ja) 2002-04-04 2007-10-17 株式会社東芝 半導体装置の製造方法
JP4004843B2 (ja) * 2002-04-24 2007-11-07 Necエレクトロニクス株式会社 縦型mosfetの製造方法
JP3964811B2 (ja) 2002-07-09 2007-08-22 株式会社東芝 半導体装置及びその製造方法
JP4839599B2 (ja) 2004-11-11 2011-12-21 富士電機株式会社 半導体装置及びその製造方法
DE102004057237B4 (de) 2004-11-26 2007-02-08 Infineon Technologies Ag Verfahren zum Herstellen von Kontaktlöchern in einem Halbleiterkörper sowie Transistor mit vertikalem Aufbau
JP4890780B2 (ja) 2005-04-11 2012-03-07 ルネサスエレクトロニクス株式会社 電界効果トランジスタ
JP2007005723A (ja) 2005-06-27 2007-01-11 Toshiba Corp 半導体装置
JP2007035841A (ja) 2005-07-26 2007-02-08 Toshiba Corp 半導体装置
JP2009043966A (ja) 2007-08-09 2009-02-26 Toshiba Corp 半導体装置及びその製造方法
CN101989602B (zh) * 2009-08-03 2012-11-07 力士科技股份有限公司 一种沟槽mosfet
US8564053B2 (en) * 2009-11-20 2013-10-22 Force Mos Technology Co., Ltd. Trench MOSFET with trenched floating gates in termination
JP2011204808A (ja) 2010-03-25 2011-10-13 Panasonic Corp 半導体装置および半導体装置の製造方法
JP2012199468A (ja) * 2011-03-23 2012-10-18 Toshiba Corp 半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113655A (ja) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2001345445A (ja) * 2000-06-02 2001-12-14 Nec Corp 半導体装置
JP2003092405A (ja) * 2001-09-19 2003-03-28 Toshiba Corp 半導体装置及びその製造方法
JP2003101019A (ja) * 2001-09-20 2003-04-04 Toshiba Corp 半導体装置及びその製造方法
JP2003174167A (ja) * 2001-12-06 2003-06-20 Hitachi Ltd 半導体装置及びその製造方法
JP2005183547A (ja) * 2003-12-17 2005-07-07 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2006059940A (ja) * 2004-08-19 2006-03-02 Fuji Electric Device Technology Co Ltd 半導体装置
JP2006120894A (ja) * 2004-10-22 2006-05-11 Toshiba Corp 半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537603A (zh) * 2015-02-16 2017-03-22 富士电机株式会社 半导体装置和半导体装置的制造方法
US10297682B2 (en) 2015-02-16 2019-05-21 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
CN106537603B (zh) * 2015-02-16 2019-12-13 富士电机株式会社 半导体装置和半导体装置的制造方法
US10720519B2 (en) 2015-02-16 2020-07-21 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
WO2020149212A1 (ja) * 2019-01-16 2020-07-23 株式会社デンソー 半導体装置およびその製造方法
JP2020113710A (ja) * 2019-01-16 2020-07-27 株式会社デンソー 半導体装置およびその製造方法
CN113196500A (zh) * 2019-01-16 2021-07-30 株式会社电装 半导体装置及其制造方法
CN113196500B (zh) * 2019-01-16 2024-04-09 株式会社电装 半导体装置及其制造方法

Also Published As

Publication number Publication date
DE112013006445T5 (de) 2015-10-08
CN104937720B (zh) 2017-09-12
US20150372090A1 (en) 2015-12-24
US9634095B2 (en) 2017-04-25
JP2014158013A (ja) 2014-08-28
CN104937720A (zh) 2015-09-23
JP5831526B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831526B2 (ja) 半導体装置およびその製造方法
JP5531787B2 (ja) 炭化珪素半導体装置およびその製造方法
JP4945594B2 (ja) 電力用半導体装置
US10243067B2 (en) Semiconductor device and method for manufacturing the same
US20050218472A1 (en) Semiconductor device manufacturing method thereof
WO2013187017A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2014163058A1 (ja) 半導体装置
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
JP2012169384A (ja) 炭化珪素半導体装置およびその製造方法
JP2015072999A (ja) 炭化珪素半導体装置
JP5939448B2 (ja) 半導体装置及びその製造方法
TWI659459B (zh) Semiconductor device
TWI655769B (zh) 功率半導體裝置及其製造方法
JP2019161103A (ja) 半導体装置
JP2009200300A (ja) 半導体装置およびその製造方法
US7573096B2 (en) Semiconductor device for reducing forward voltage by using OHMIC contact
JP2019175930A (ja) 半導体装置及びその製造方法
JP6750300B2 (ja) 半導体装置および半導体装置の製造方法
JP2012089824A (ja) 半導体素子およびその製造方法
JP2018046256A (ja) 半導体装置
NL2018610B1 (en) Power semiconductor device and method of manufacturing power semiconductor device
JP2009016480A (ja) 半導体装置、及び半導体装置の製造方法
JP2008306022A (ja) 半導体装置
JPWO2007034547A1 (ja) トレンチゲートパワーmosfet
JP6177300B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759823

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130064456

Country of ref document: DE

Ref document number: 112013006445

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872236

Country of ref document: EP

Kind code of ref document: A1