WO2014091914A1 - Led装置及びその製造方法 - Google Patents

Led装置及びその製造方法 Download PDF

Info

Publication number
WO2014091914A1
WO2014091914A1 PCT/JP2013/081660 JP2013081660W WO2014091914A1 WO 2014091914 A1 WO2014091914 A1 WO 2014091914A1 JP 2013081660 W JP2013081660 W JP 2013081660W WO 2014091914 A1 WO2014091914 A1 WO 2014091914A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
led die
led device
fluorescent member
die
Prior art date
Application number
PCT/JP2013/081660
Other languages
English (en)
French (fr)
Inventor
和 小山田
健二 今津
周作 望月
Original Assignee
シチズンホールディングス株式会社
シチズン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社, シチズン電子株式会社 filed Critical シチズンホールディングス株式会社
Priority to US14/650,787 priority Critical patent/US9490398B2/en
Priority to CN201380064344.2A priority patent/CN104854716B/zh
Priority to JP2014516115A priority patent/JP5611492B1/ja
Publication of WO2014091914A1 publication Critical patent/WO2014091914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to an LED device effective for a chip size package and a manufacturing method thereof.
  • the LED die which is a bare chip, has also increased in size and has become available on the order of 1 mm ⁇ (0.5-1) mm. Since this size is almost the same as that of other chip components such as resistors, it has been desired that an LED device in which an LED die is packaged with a resin or the like has a planar size comparable to that of the LED die.
  • This package is sometimes referred to as a chip size package (hereinafter referred to as “CSP”) because it directly reflects the size of the LED die.
  • CSP chip size package
  • a small mounting area and a small number of package members may be used.
  • the CSP has a feature that the degree of freedom in designing a lighting device or the like is increased because the number mounted on the mother board can be easily changed according to the required luminance.
  • FIG. 13 is a cross-sectional view of a CSP-based light emitting device 100 (LED device) shown as a first conventional example.
  • the light emitting device 100 shown in FIG. 13 is the ultimate device of CSP, and is an LED device in which the chip size of the LED die matches the outer shape of the package, and is disclosed in Patent Document 1.
  • the phosphor layer 130 and the lens 132 are laminated on the upper surface of the laminated body 112c (semiconductor layer). Under the laminated body 112c, there are seed metals 122a and 122b, copper wiring layers 124a and 124b that remain without etching the common electrode during electrolytic plating, and columnar copper pillars 126a and 126b formed by electrolytic plating.
  • the stacked body 112c includes a p-type cladding layer 112a, a light emitting layer 112e, and an n-type cladding layer 112b.
  • the lower surface of the stacked body 112c is covered with an insulating layer 120 that is partially opened.
  • Solder balls 136a and 136b are attached to the lower portions of the copper pillars 126a and 126b.
  • a reinforcing resin 128 is filled between the copper pillars 126a and 126b.
  • the planar size of the LED device 100 shown in FIG. 13 matches the planar size of the laminate 112c.
  • the LED device 100 is obtained by dividing a wafer in which the LED devices 100 are arranged and connected, and is sometimes referred to as a WLP (wafer level package) because it is the smallest in the product group divided by the CSP. . Since the LED device 100 removes the transparent insulating substrate (see paragraph 0026 and FIG. 2 of Patent Document 1) originally on the stacked body 112c, the light from the light emitting layer 112e is emitted only upward (arrow B). . For this reason, the phosphor layer 130 may be provided only on the LED device 100.
  • the manufacturing apparatus since a laser is used to remove the transparent insulating substrate, the manufacturing apparatus becomes large and the manufacturing process becomes long. Moreover, since the LED device 100 forms the phosphor layer 130 at the wafer level, it cannot cope with variations in the light emission characteristics of individual LED dies on the wafer. As a result, there is a problem that it becomes difficult to manage the emission color.
  • the inventor of the present application leaves a transparent insulating substrate as an LED device that is small in size and easy to control the emission color, and the side surface of the transparent insulating substrate is made of a reflective resin together with the side surface of the semiconductor layer formed on the lower surface thereof.
  • An LED device for flip chip mounting was produced in which the transparent insulating substrate and the upper surface of the reflective resin were covered with a phosphor sheet (see Patent Document 2).
  • FIG. 14 is a cross-sectional view of an LED device 200 shown as a second conventional example.
  • the LED device 200 is the LED device disclosed in Patent Document 2.
  • the LED device 200 includes an LED die 216b having a sapphire substrate 214b (transparent insulating substrate) and a semiconductor layer 215b formed on the lower surface thereof, and includes a white reflective member 217b (reflective resin) on the side surface.
  • a phosphor sheet 211b that converts the wavelength of emitted light is provided on the upper surface of the reflecting member 217b.
  • the protruding electrodes 218b and 219b connected to the semiconductor layer 215b of the LED die 216b are an anode and a cathode, respectively, and are external connection electrodes for connecting to the mother substrate.
  • the mother board is a board on which the LED device 200 is mounted together with other electronic components such as resistors and capacitors.
  • the LED device 200 can selectively change the phosphor sheet 211b in accordance with the light emission characteristics of the individual LED die 216b, the emission color can be easily managed. Further, since the white reflecting member 217b functions sufficiently even when the thickness is 100 ⁇ m or less, the LED device 200 can be downsized. Furthermore, the LED device 200 is easy to manufacture because it can be processed in a state where a large number of LED dies 216b are arranged, and finally an individual LED device 200 can be obtained by dividing into individual pieces.
  • the LED device 200 it is conceivable to apply the LED device 200 to a camera flash or the like.
  • the LED device 200 that emits a large amount of light from the side surface of the phosphor sheet 211b with respect to a flash that needs to be illuminated only in the photographing range cannot secure a sufficient amount of light in the region to be photographed.
  • the LED device 200 is not suitable for use in brightly illuminating a limited area.
  • An object of the present invention is to provide an LED device that is small in size, has good luminous efficiency, and has a narrow light distribution, and a method for manufacturing the LED device.
  • the LED device includes an LED die having a reflection frame surrounding the outer periphery of the LED device, a transparent insulating substrate, a semiconductor layer formed on the lower surface side of the transparent insulating substrate, and an external connection electrode disposed on the semiconductor layer;
  • a fluorescent member that is disposed on at least the upper surface side of the die and that converts the wavelength of light emitted from the LED die, and has an inclined surface that contacts the side surface of the fluorescent member on the inner side of the reflective frame;
  • the reflection frame is formed so that the inner diameter of the reflection frame increases toward the upper surface side.
  • the fluorescent member when the external connection electrode side is the lower surface, the fluorescent member is present on the upper surface side of the LED die.
  • the reflection frame surrounds the periphery of the fluorescent member, and has an inclined surface whose inner diameter expands from the bottom to the top. In other words, the reflection frame is in contact with the side portion of the fluorescent member and spreads downward on the slope portion.
  • the LED device has a structure that is easy to miniaturize because an LED die having an external connection electrode, a fluorescent member, and a reflection frame are integrated. The light that tries to travel in the lateral direction in the LED device is reflected by the slope of the reflecting frame and efficiently travels upward. As a result, luminous efficiency is improved. At the same time, there is no light emitted from the lateral direction of the LED device, so light distribution is reduced.
  • the position of the bottom surface of the LED die on the lower surface side is substantially the same as the position of the lowermost surface of the LED die on the inclined surface, and the fluorescent member is disposed in the gap between the inclined surface and the side surface of the LED die. It is preferable.
  • the position of the bottom surface on the lower surface side of the LED die is substantially the same as that of the lowermost portion of the lower surface side of the LED die, and the gap between the inclined surface and the side surface of the LED die is different from that of the fluorescent member. It is preferable that a fluorescent member or a translucent member is disposed.
  • the fluorescent member is a fluorescent sheet, and the fluorescent sheet is bonded to the upper surface of the LED die.
  • the reflective frame is made of a reflective resin.
  • the bottom surface on the lower surface side of the LED die is covered with a reflective resin except for the region occupied by the external connection electrodes.
  • the reflection frame has an inclined surface and a flat portion inside, and the flat portion covers the side surface of the LED die.
  • the upper surface side of the LED die inside the reflection frame has a surface perpendicular to the bottom surface of the lower surface side of the LED die, and the inclined surface is formed on the lower surface side of the LED die inside the reflection frame. It is preferable to have.
  • a manufacturing method of an LED device including a reflection frame that surrounds an outer peripheral portion, an LED die, and a fluorescent member that converts the wavelength of light emitted from the LED die is the external connection electrode side disposed on the lower surface side of the LED die on the first support sheet.
  • the reflective frame made of the reflective resin has a step of filling the V-shaped groove with the reflective resin, and thus has a slope on the inside. Due to this slope, the light that travels in the lateral direction in the LED device is directed upward, propagates through the gap between the side of the LED die and the reflection frame, and exits from the upper surface of the LED device to the outside. As a result, luminous efficiency is improved. At the same time, there is no light emitted from the lateral direction of the LED device, so the light distribution is narrowed down.
  • the groove forming step first, a groove having a rectangular cross section is formed in the fluorescent member, and then a slope is formed with a V-shaped blade in a part of the groove having a rectangular cross section from the bottom surface side of the fluorescent member. It is preferable to form a groove having a slope on the bottom surface side.
  • Another method of manufacturing an LED device including a reflective frame that surrounds the outer periphery, an LED die, and a fluorescent member that converts the wavelength of light emitted from the LED die is an external connection arranged on the lower surface side of the LED die on a large-sized phosphor sheet.
  • the method further comprises a step of dividing the reflective resin to obtain an LED device.
  • the reflective frame made of the reflective resin has a step of filling the V-shaped groove with the reflective resin, and thus has a slope on the inside. Due to this slope, the light that travels in the lateral direction in the LED device is directed upward, propagates through the gap between the side of the LED die and the reflection frame, and exits from the upper surface of the LED device to the outside. As a result, luminous efficiency is improved. At the same time, there is no light emitted from the lateral direction of the LED device, so the light distribution is narrowed down.
  • the LED device described above has a structure that is easy to miniaturize because the LED die having the external connection electrode, the fluorescent member, and the reflection frame are integrated, and because the inner surface of the reflection frame has a slope, the luminous efficiency is good and it is arranged at the same time. The light is squeezed.
  • the above LED device manufacturing method applies a so-called collective method, forms a V-shaped groove between LED dies, and fills the groove with a reflective resin, so that when it is separated into individual pieces, it has a reflection on its inner surface.
  • a frame can be formed.
  • the LED device thus obtained has a structure that is easy to miniaturize because the LED die having the external connection electrode, the fluorescent member, and the reflecting frame are integrated, and the inner surface of the reflecting frame has an inclined surface to emit light. The light distribution is narrowed down efficiently.
  • FIG. 1 is an external view of an LED device 10.
  • FIG. It is AA 'sectional drawing of the LED apparatus 10 shown in FIG. It is explanatory drawing (1) of the manufacturing process of the LED apparatus 10 shown in FIG. It is explanatory drawing (2) of the manufacturing process of the LED apparatus 10 shown in FIG. It is sectional drawing of the other LED apparatus 50.
  • FIG. FIG. 6 is a cross-sectional view of still another LED device 60.
  • FIG. 6 is a cross-sectional view of still another LED device 70. It is explanatory drawing (1) of the manufacturing process of the LED apparatus 70 shown in FIG. It is explanatory drawing (2) of the manufacturing process of the LED apparatus 70 shown in FIG.
  • FIG. 6 is a cross-sectional view of still another LED device 90.
  • FIG. 1 shows the appearance of the LED device 10
  • FIG. 1 (a) is a plan view
  • FIG. 1 (b) is a front view
  • FIG. 1 (c) is a bottom view.
  • FIG. 1A when the LED device 10 is viewed from above, a rectangular reflection frame 12 and a fluorescent member 11 inside the rectangular reflection frame 12 are observed.
  • FIG. 1B when the LED device 10 is viewed from the front, two external connection electrodes 15 are observed under the reflection frame 12.
  • FIG. 1C When the LED device 10 is viewed from below as shown in FIG. 1C, the rectangular reflection frame 12, the fluorescent member 11 and the semiconductor layer 14 inside the rectangular reflection frame 12, and two externals in the region inside the semiconductor layer 14 The connection electrode 15 is observed. Comparing FIG. 1 (a) and FIG. 1 (c) for the reflective frame 12, the width of FIG. 1 (c) is wider because there is an inclined surface inside the reflective frame 12 as will be described later.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
  • the LED device 10 includes a reflection frame 12 that surrounds the outer periphery, an LED die 16, and a fluorescent member 11 that converts the wavelength of light emitted from the LED die 16.
  • the LED die 16 includes a sapphire substrate 13 that is a transparent insulating substrate and a semiconductor layer 14, and the semiconductor layer 14 is formed on the lower surface side of the sapphire substrate 13.
  • the semiconductor layer 14 has two external connection electrodes 15.
  • the fluorescent member 11 exists inside the reflection frame 12 and covers the upper surface and side surfaces of the LED die 16.
  • the inside of the reflection frame 12 is a slope.
  • the fluorescent member 11 is obtained by kneading and curing phosphor fine particles in a silicone resin, and has a thickness of about 100 to 300 ⁇ m.
  • the fluorescent member 11 may be a fluorescent glass or a fluorescent plate obtained by sintering a fluorescent material. When it is desired to reduce the loss due to concentration quenching, the phosphor concentration in the fluorescent member is lowered and the fluorescent member 11 is set thicker.
  • the fluorescent member 11 converts the wavelength of the blue light emitted from the LED die 16 to white.
  • the reflective frame 12 is a reflective resin in which reflective fine particles such as titanium oxide and alumina are kneaded with a binder such as silicone resin or organopolysiloxane and thermally cured, and the width is 50 to 100 ⁇ m.
  • the reflective frame 12 in the case of the LED die 16 having a plane size of 0.8 mm ⁇ 0.3 mm, the plane size of the LED device 10 is about 1.1 mm ⁇ 0.6 mm, and the surface mounter (surface mounter) Easy to handle.
  • the sapphire substrate 13 included in the LED die 16 has a thickness of about 80 to 120 ⁇ m.
  • the semiconductor layer 14 formed on the lower surface of the sapphire substrate 13 has a thickness of about 10 ⁇ m, includes a p-type semiconductor layer and an n-type semiconductor layer, and a boundary surface thereof serves as a light emitting layer.
  • An interlayer insulating film and a protective film exist below the semiconductor layer 14, and an external connection electrode 15 is formed on the protective film.
  • the two external connection electrodes 15 are an anode and a cathode, and are connected to the p-type semiconductor layer and the n-type semiconductor layer via wiring on the interlayer insulating film, respectively.
  • the external connection electrode 15 is an electrode for connecting to a mother board on which other electronic components such as a resistor and a capacitor are mounted, and has a thickness of several hundred nm to several tens of ⁇ m. It has a tin layer.
  • the fluorescent member 11 exists between the side surface of the LED die 16 of the LED device 10 and the reflection frame 12. If the side surface of the LED die 16 and the reflection frame 12 are in contact with each other, light that is about to be emitted from the side surface of the sapphire substrate 13 is returned into the sapphire substrate 13. The light returned into the sapphire substrate 13 is attenuated by loss due to reflection and reabsorption by the semiconductor layer 14, leading to a decrease in the emission efficiency of the LED device.
  • the fluorescent member 11 exists between the side surface of the LED die 16 and the reflection frame 12. For this reason, most of the light emitted from the side surface of the LED die 16 and reflected by the reflecting frame 12 through the fluorescent member 11 (although some of the light may enter the sapphire substrate 13 again) It propagates in the fluorescent member 11 existing between the side portion and the reflection frame 12, travels upward, and exits from the LED device 10. As a result, the loss due to reflection or the rate of reabsorption by the semiconductor layer 14 is reduced, and the emission efficiency is improved. Further, since there is no light directed to the side of the LED device by the reflection frame 12, the light distribution is narrowed down.
  • the inclined surface of the reflection frame 12 is in contact with the side surface of the fluorescent member 11 and is configured such that the inner diameter of the reflection frame 12 (the distance between the left and right reflection frames 12) increases from the lower surface side of the LED die 16 toward the upper surface side. Has been.
  • 3 and 4 are explanatory diagrams of the manufacturing process of the LED device 10.
  • the manufacturing process shown in FIGS. 3 and 4 is a so-called assembly method, in which a large number of LED dies 16 are arranged at a predetermined pitch on a supporting sheet, and various processes are performed on the assembly. Finally, this assembly is separated into individual LED devices 10. Several hundred to several thousand LED dies 16 are arranged on the support sheet, but only two LED dies 16 are shown in FIGS.
  • a large number of LED dies 16 are arranged on the first support sheet 31.
  • each LED die 16 is arranged on the first support sheet 31 with the external connection electrode 15 of the LED die 16 facing down.
  • the LED dies 16 may be arranged on the first support sheet 31 one by one with a picker or the like.
  • a plurality of LED dies 16 may be arranged once in another adhesive sheet, and the plurality of LED dies 16 may be collectively attached to the first support sheet 31.
  • the bottom surface of the LED die 16 excluding the external connection electrode 15 is also in contact with the adhesive layer.
  • the LED dies 16 to be arranged are selected in advance so as to obtain a desired emission color.
  • the upper and side surfaces of the LED die 16 are changed in order to distinguish the fluorescent member 11a (a member included in a single LED device from a member included in an assembly). The same shall apply hereinafter).
  • a squeegee or a mold is used as is well known.
  • the fluorescent member 11a is cured by heating.
  • the second support sheet 32a is attached to the upper surface of the fluorescent member 11a.
  • the assembly including a large number of LED dies 16 is turned upside down.
  • the first support sheet 31 is peeled off.
  • a V-shaped (wedge-shaped) blade 33 is prepared.
  • the space between the LED dies 16 is cut off from the bottom surface side of the LED die 16 with a blade 33 to form a V-shaped groove 34 in the fluorescent member 11a.
  • the groove 34 is filled with the reflective resin 35.
  • the reflection resin 35 is a resin in which reflective fine particles such as titanium oxide and alumina are kneaded with a silicone resin as described above, and an appropriate amount is dropped with a dispenser and is uniformly filled using a capillary phenomenon. When filling is completed, the reflective resin 35 is cured by heating.
  • the reflective resin 35 is cut, and the LED device 10 singulated is obtained.
  • a dicer is used for cutting. Moreover, you may cut
  • the LED device 10 includes a reflective frame 12 made of a reflective resin, but the material of the reflective frame 12 is not limited to the reflective resin.
  • the reflection frame 12 may be a metal cup. In this case, the bottom of the cup is removed so that the external connection electrode provided on the bottom surface of the LED die 16 can be utilized. Even with the reflective frame 12 made of a metal cup, the LED device 10 having a small size, good luminous efficiency, and narrowed light distribution can be obtained.
  • the reflective frame 12 of the LED device 10 is made of the reflective resin.
  • the reflective frame made of the reflective resin can be made thin, it can be further reduced in size.
  • the reflection frame can be formed by groove formation, reflection resin filling, and reflection resin cutting, the manufacturing process is less than that of a cup-type reflection frame that requires mold molding. Simplify.
  • the reason why the reflective frame 12 made of the reflective resin can be easily formed is that the LED device 10 does not have a submount substrate.
  • the groove can be formed with a V-shaped blade from the bottom side at the last part of the assembly method, a desired slope can be easily formed inside the reflection frame 12.
  • the LED device 10 was originally intended to be directly mounted on the mother board, the LED device 10 may be mounted on the submount substrate and then mounted on the mother substrate together with the submount substrate.
  • the LED device 10 can be used as a flash light source of a camera, and is also effective for a directional lighting device or a lighting device capable of color matching.
  • a plurality of LED devices 10 are applied to a lighting device that can be toned, since each LED device 10 is surrounded by a reflection frame, it is difficult for inadvertent light to enter the LED device from adjacent LED devices. For this reason, it is possible to avoid a phenomenon in which the LED device causes a color shift due to light emission of the adjacent LED device 10, and therefore, it is suitable for a light source of a lighting device capable of color matching.
  • FIG. 5 is a cross-sectional view of another LED device 50.
  • the LED device 50 shown in FIG. 5 is configured such that the fluorescent member 11 and the semiconductor layer 14 are not exposed on the bottom surface.
  • the reflection frame 52 surrounds the outer peripheral portion and covers the bottom surface of the LED die 16 except for the area occupied by the external connection electrode 15.
  • the reflection resin 35 that is the material of the reflection frame 52 is also added.
  • the fluorescent member 51 exists inside the reflection frame 52 and covers the upper surface and side surfaces of the LED die 16.
  • the inside of the reflection frame 52 is a slope like the reflection frame 12 of the LED device 10.
  • the fluorescent member 51 and the reflective frame 52 are made of the same material as the fluorescent member 11 and the reflective frame 12 in the LED device 10.
  • the difference between the LED device 50 shown in FIG. 5 and the LED device 10 shown in FIG. 2 is that the reflective resin 35 covers the fluorescent member 11 and the semiconductor layer 14 except for the external connection electrodes 15 at the bottom of the LED device 50. It ’s just that.
  • the LED device 50 is filled with a large amount of the reflective resin 35 in the reflective resin filling step shown in FIG. 4B, and after the reflective resin 35 is cured, the upper surface side of the reflective resin 35 is polished to expose the external connection electrodes 15. Can be manufactured. If the reflective resin 35 exists at the bottom of the LED device 50, the semiconductor layer 14 can be protected from contamination at the bottom.
  • the reflection resin 35 exists in the bottom part of the LED device 50, the light which is going to leak out from the peripheral part of the bottom part of the fluorescent member 51 and the semiconductor layer 14 at the bottom part can be shielded.
  • the slope of the reflection frame 52 is in contact with the side surface of the fluorescent member 51, and the inner diameter of the reflection frame 51 (the distance between the left and right reflection frames 51) increases from the lower surface side to the upper surface side of the LED die 16. Has been.
  • FIG. 6 is a cross-sectional view of yet another LED device 60.
  • the fluorescent members 11 and 51 are provided between the side surface of the LED die 16 and the reflection frames 12 and 52.
  • the LED device there may be no fluorescent member between the side surface of the LED die 16 and the reflection frame. Therefore, in the LED device 60 shown in FIG. 6, the side surface of the LED die 16 and the reflection frame 62 are in contact with each other.
  • the reflection frame 62 surrounds the outer peripheral portion and also contacts the side surface of the LED die 16. At this time, the reflection frame 62 includes a flat portion along with the inclined surface on the inner side, and the flat portion covers the side surface of the LED die 16.
  • the fluorescent member 61 exists inside the reflection frame 62 and covers the upper surface of the LED die 16.
  • the fluorescent member 61 and the reflective frame 62 are made of the same material as the fluorescent members 11 and 51 and the reflective frames 12 and 52 in the LED devices 10 and 50 described above.
  • the fluorescent member covering process shown in FIG. 3B is partially changed, and the LED die 16 is covered with the reflective resin and the fluorescent member.
  • a reflective resin (the same material as that of the reflective resin 35) is filled between the LED dies 16 so as to cover the side surface of the LED die 16, and cured.
  • the upper surface of the LED die 16 is covered with a fluorescent member (the same material as the fluorescent member 11a).
  • the steps similar to those shown in FIGS. 3C to 4C are performed for groove formation, reflection resin filling, and separation.
  • the emission efficiency of the LED device 60 is lower than that of the LED devices 10 and 50.
  • the component directed to the side of the light emitted by the phosphor in the fluorescent member 61 is reflected by the inclined surface of the reflecting member 62 and travels upward, the light emission efficiency is improved as compared with the case where there is no inclined surface.
  • the slope of the reflection frame 62 is in contact with the side surface of the fluorescent member 61, and the inner diameter of the reflection frame 61 (the distance between the left and right reflection frames 61) increases from the lower surface side to the upper surface side of the LED die 16. Has been.
  • the LED device 60 completely covers the side surface of the LED die 16 with a reflective resin in the fluorescent member coating step corresponding to FIG. Therefore, no light leaks from the side surface of the LED die 16 even if the filling amount of the reflecting resin 35 is insufficient in the reflecting resin filling step corresponding to FIG. That is, in the LED device 60, it is possible to increase the tolerance of the filling amount of the reflecting resin in the reflecting resin filling step corresponding to FIG. 4B (allowing a margin in the appropriate amount range of the filling amount of the reflecting resin). There are features.
  • FIG. 7 is a cross-sectional view of yet another LED device 70.
  • the upper surface of the LED die 16 is covered with the fluorescent members 11, 51, 61. As described in the description of the fluorescent member coating step shown in FIG. 3B, these fluorescent members are covered with the fluorescent member 11, 51, 61 before curing the upper surface or the side surface of the LED die 16.
  • the fluorescent members 11, 51 and 61 were cured.
  • a phosphor sheet that has been previously cured (or semi-cured) may be used for covering the upper surface of the LED die 16. Therefore, in the LED device 70 shown in FIG. 7, the upper surface of the LED die 16 is covered with a phosphor sheet 73 (one fluorescent member).
  • the reflection frame 72 surrounds the outer peripheral portion in the same manner as the LED device 10 shown in FIG.
  • a phosphor sheet 73 is attached to the upper surface of the LED die 16, and the side surface of the phosphor sheet 73 is in contact with the inner slope of the reflection frame 72.
  • a fluorescent member 71 (another fluorescent member) exists between the side surface of the LED die 16 and the reflection frame 72.
  • the fluorescent member consists of two parts. As described in the explanation of FIG. 2, when the main purpose is to exhibit the function of improving the light emission efficiency, the fluorescent member 71 is replaced with a transparent material (translucent member). Also good.
  • the slope of the reflection frame 72 is in contact with the side surface of the fluorescent member 71 and the side surface of the fluorescent sheet 73, and the inner diameter of the reflection frame 72 (the distance between the left and right reflection frames 72) from the lower surface side to the upper surface side of the LED die 16. ) Is spread.
  • the fluorescent member 71 and the reflective frame 72 are made of the same material as the fluorescent members 11, 51, 61 and the reflective frames 12, 52, 62 in the LED devices 10, 50, 60 of the first, second, and third embodiments.
  • the phosphor sheet 73 is obtained by kneading phosphor fine particles into phenyl silicone resin and processing it into a sheet shape, and has a thickness of about 100 to 300 ⁇ m. When it is desired to reduce loss due to concentration quenching, the phosphor sheet 73 may be set thicker.
  • the LED device 70 has an effect that the manufacturing process is simplified and the manufacturing becomes easy. Furthermore, since the LED device 70 can manufacture the phosphor sheet 73 at low cost and easily adjust the wavelength conversion characteristics, a phosphor sheet group including a plurality of types of wavelength conversion characteristics is prepared, and the LED die 16 is prepared from these. An appropriate phosphor sheet 73 can be selected according to the light emission characteristics. As a result, the management of the emission color of the LED device 70 is facilitated.
  • FIG. 8 and 9 are explanatory diagrams of the manufacturing process of the LED device 70.
  • FIG. 8 and 9 are explanatory diagrams of the manufacturing process of the LED device 70.
  • the entire manufacturing process is an application of a so-called assembly method.
  • Various processes are performed on an assembly in which a large number of LED dies 16 are arranged on a large-sized phosphor sheet 83, and finally, individual LED devices are separated into individual pieces. 70 is obtained.
  • Several hundred to several thousand LED dies 16 are attached to the large-sized phosphor sheet 83, but only two LED dies 16 are shown in FIGS.
  • the large-format phosphor sheet 83 is obtained by obtaining a large number of phosphor sheets 73 by singulation.
  • Each process shown in FIGS. 8 and 9 is limited to the processing of only one side of the large-sized phosphor sheet 83, and further uses gravity, so that it is shown upside down with respect to FIG.
  • a large-format phosphor sheet 83 and an LED die 16 are prepared, and the sapphire substrate 13 of the LED die 16 is pasted on the large-format phosphor sheet 83 at a predetermined pitch.
  • the LED dies 16 having light emission characteristics that match the wavelength conversion characteristics of the phosphor sheet 73 are selected so that a desired light emission color can be obtained (or large-format fluorescence to match the LED dies 16 having the same characteristics).
  • An adhesive (not shown) is applied to the large phosphor sheet 83. The adhesive may be applied by printing the adhesive on the portion where the LED die 16 is attached. The adhesive may be applied to the sapphire substrate 13 of the LED die 16.
  • the adhesive is once attached to the LED die 16 and then attached to the large-sized phosphor sheet 83.
  • a support sheet 85 is attached to the lower surface of the large-sized phosphor sheet 83.
  • the LED dies 16 may be arranged on the large-format phosphor sheet 83 one by one with a picker or the like. It is also possible to arrange a plurality of LED dies 16 on another pressure-sensitive adhesive sheet, and affix the plurality of LED dies 16 to the large-sized phosphor sheet 83 at once.
  • the adhesive is cured by heating. The adhesive may be cured by temporary curing in which crosslinking is not complete.
  • the gap between the LED dies 16 is filled with a fluorescent member 81 (other fluorescent member) different from the phosphor sheet 73 (one fluorescent member).
  • the fluorescent member 81 is filled in the gap at the side of the LED die 16 and then heated to be cured. At this time, the outer periphery of the large-sized phosphor sheet 83 (not shown) is surrounded by a dam material (not shown), and the uncured fluorescent member 81 accurately measured by the dispenser is dropped.
  • a V-shaped blade 33 is prepared as shown in FIG. 8 (c).
  • the fluorescent member 81 and the phosphor sheet 83 between the LED dies 16 are cut out from the fluorescent member 81 side toward the large-sized firefly support sheet 85 with the V-shaped blade 33.
  • a V-shaped groove 84 is formed.
  • the V-shaped blade 33 is the same as the blade 33 shown in FIG.
  • the groove 84 is filled with the reflective resin 82.
  • the reflective resin 82 is obtained by kneading reflective fine particles in a silicone resin, and an appropriate amount is dropped by a dispenser and is uniformly filled using a capillary phenomenon.
  • the reflective resin 35 is cured by heating.
  • the bottom surface of the LED die 16 may be covered with a reflective resin 82 as in the LED device 50 shown in FIG.
  • a large amount of the reflective resin 82 is filled, and after the reflective resin 82 is cured, the upper surface side of the reflective resin 82 is polished to expose the external connection electrodes 15.
  • the semiconductor layer 14 can be protected from contamination at the bottom of the LED device 70, and light that is about to leak from the fluorescent member 71 and the periphery of the bottom of the semiconductor layer 14 can be shielded at the bottom.
  • the reflective resin 82 is cut to obtain the individualized LED device 70.
  • a dicer is used for cutting. Instead of the dicer, the reflective resin 82 may be cut using a wire. If the reflection resin 82 constituting the reflection frame 72 has a thickness of 30 to 50 ⁇ m at the time of completion, it can sufficiently shield light.
  • the manufacturing process shown in FIGS. 8 and 9 is larger than the manufacturing process shown in FIGS. 3 and 4, which is a large-sized fluorescent sheet and a supporting sheet for arranging the LED dies 16.
  • the phosphor sheet 83 is also used.
  • the manufacturing process shown in FIGS. 8 and 9 is simplified compared to the manufacturing process shown in FIGS.
  • the manufacturing process shown in FIGS. 8 and 9 if the wavelength conversion characteristics of the large-format phosphor sheet 83 and the light emission characteristics of the LED die 16 are adjusted in advance, the emission color of the LED device 70 can be easily managed. .
  • FIG. 10 is a cross-sectional view of yet another LED device 90.
  • the LED device 10 was provided with a reflection frame 12 having a slope from the top to the bottom.
  • the LED device 60 shown in FIG. 6 includes a reflection frame 62 having an inclined surface only at the top. That is, in order to obtain a small LED device with good luminous efficiency while narrowing down the light distribution, it is preferable to provide a slope on a part of the reflection frame. Therefore, the LED device 90 shown in FIGS. 10 to 12 is configured to have a slope at the bottom of the reflection frame 92.
  • the LED device 90 includes a reflection frame 92 that surrounds the outer peripheral portion, the LED die 16, and a fluorescent member 91 that converts the wavelength of light emitted from the LED die 16.
  • the LED die 16 is the same as the LED die 16 shown in FIG. 2, and the materials of the reflective frame 92 and the fluorescent member 91 are the same as those of the reflective frame 12 and the fluorescent member 11 shown in FIG.
  • the slope of the reflection frame 92 is in contact with the side surface of the fluorescent member 91, and the inner diameter of the reflection frame 92 (the distance between the left and right reflection frames 92) increases from the lower surface side to the upper surface side of the LED die 16. Has been.
  • the cross-sectional shapes of the reflective frame 92 of the LED device 90 and the reflective frame 12 of the LED device 10 are different.
  • the inner surface of the reflection frame 92 of the LED device 90 has a surface perpendicular to the bottom surface of the LED die 16 at the top and a slope at the bottom. This inclined surface reflects the blue light emitted from the side surface of the sapphire substrate 13 and travels upward. Part of the blue light is directed upward while being wavelength-converted, and is emitted from the upper surface of the LED device 90.
  • 11 and 12 are explanatory diagrams of the manufacturing process of the LED device 90.
  • the arranging process of arranging the LED dies 16 on the support sheet and the fluorescent member covering process of covering the upper surface and the side surface of the LED die 16 with the fluorescent member 11 a are the manufacturing processes of the LED device 10. Since it is the same as shown in FIG. 3A and FIG. 3B, it is omitted.
  • another support sheet is attached to the upper surface of the fluorescent member 11a, which is the first stage of the groove forming process, the previous support sheet is peeled off, and the upper and lower sides of the assembly in which the many LED dies 16 are connected by the fluorescent member 11a.
  • the step of inverting is the same as that shown in FIG. 3C and FIG.
  • the LED device 90 groove forming process will be described with reference to FIGS. 11 (a) to 12 (a).
  • a flat blade 93 is prepared as shown in FIG.
  • FIG. 11B the space between the LED dies 16 is cut from the bottom surface side of the LED die 16 with a blade 93 to form a groove 94 having a rectangular cross section in the fluorescent member 11a.
  • FIG. 11C a blade 95 having a V-shaped tip is prepared.
  • FIG. 12A a slope is formed on the bottom (upper side in the drawing) of the groove 94 by the blade 95 to obtain the groove 96.
  • the groove 96 is filled with the reflective resin 97.
  • the reflective resin 97 is obtained by kneading reflective fine particles such as titanium oxide and alumina in a silicone resin. An appropriate amount is dropped with a dispenser in the same manner as in FIG. 4B, and uniformly filled using a capillary phenomenon. When filling is completed, the reflective resin 97 is cured by heating.
  • the reflective resin 97 is cut in the same manner as in FIG. 4C, and the individualized LED device 90 is obtained.
  • a dicer is used for cutting. Instead of the dicer, the reflective resin 97 may be cut using a wire. If the reflective resin 97 constituting the reflective frame 92 has a thickness of 30 to 50 ⁇ m at the time of completion, it can sufficiently shield light.
  • the groove 94 may be formed by a wire or a mold instead of the blade 93.
  • the bottom surface of the LED die 16 in the LED device 90 may be covered with a reflective resin 97.
  • a part of the fluorescent member 91 of the LED device 90 may be replaced with a phosphor sheet.
  • an assembly in which a large number of LED dies 16 are arranged may be prepared in the manufacturing process shown in FIG. 8, and then the manufacturing process shown in FIGS. 11 and 12 may be applied.

Abstract

 小型でありながら発光効率が良く配光分布が絞られたLED装置を提供する。LED装置の外周部を囲う反射枠と、透明絶縁基板、透明絶縁基板の下面側に形成された半導体層及び半導体層上に配置された外部接続電極を有するLEDダイと、LEDダイの少なくとも上面側に配置され且つLEDダイからの発光を波長変換する蛍光部材を有し、反射枠の内側には蛍光部材の側面と接触する斜面を有し、斜面はLEDダイの下面側から上面側に向かって反射枠の内径が広がるように形成されているLED装置、及びその製造方法。

Description

LED装置及びその製造方法
 本発明は、チップサイズパッケージに有効なLED装置及びその製造方法に関する。
 高輝度化にともないベアチップであるLEDダイも大型化し、1mm×(0.5~1)mm程度のものが入手できるようになってきた。この大きさは抵抗等の他のチップ部品と同程度になるため、LEDダイを樹脂等でパッケージ化したLED装置はLEDダイと同程度の平面サイズを有することが望まれるようになった。このパッケージはLEDダイのサイズを直接的に反映するためチップサイズパッケージ(以下「CSP」と呼ぶ)と呼ばれることがある。CSPでは、実装面積が小さくて済むことやパッケージ用部材が少なくて良い。またCSPでは、必要な輝度に応じてマザー基板に搭載する個数を簡単に変えられることから照明装置等の設計の自由度が増すという特徴がある。
 図13は、第1の従来例として示すCSP化した発光装置100(LED装置)の断面図である。
 図13に記載の発光装置100は、CSPの究極的なものであり、LEDダイのチップサイズがパッケージの外形と一致したLED装置であり特許文献1に示されているものである。
 LED装置100において、積層体112c(半導体層)の上面には蛍光体層130とレンズ132が積層している。積層体112cの下部には、電解メッキ時の共通電極がエッチングされずに残ったシード金属122a、122b、銅配線層124a、124b、電解メッキで形成した柱状の銅ピラー126a、126bがある。
 積層体112cはp型クラッド層112a、発光層112e、n型クラッド層112bを備えている。積層体112cの下面は、一部が開口した絶縁層120で覆われている。銅ピラー126a、126bの下部には、半田ボール136a、136bが付着している。銅ピラー126a、126bの間には、補強樹脂128が充填されている。
 図13に示したLED装置100の平面サイズは、積層体112cの平面サイズと一致する。LED装置100は、LED装置100が配列して連結したウェハーを個片化して得られ、CSPで区分される製品群のなかで最も小型化しているためWLP(ウェハーレベルパッケージ)と呼ばれることもある。LED装置100は積層体112c上にもともとあった透明絶縁基板(特許文献1の段落0026、図2参照。)を除去しているため発光層112eからの光が上方(矢印B)にのみ出射する。このためLED装置100の上部にのみ蛍光体層130を設ければ良い。
 図13に示したLED装置100では、透明絶縁基板を除去するのにレーザーが用いられるため、製造装置が大掛かりになったり製造工程が長くなったりする。また、LED装置100は、ウェハーレベルで蛍光体層130を形成しているため、ウェハー上の個別のLEDダイが有する発光特性のばらつきに対応することができない。この結果、発光色の管理が難しくなるという課題がある。
 そこで本願の発明者は、小型でありながら作り易く発光色の管理が容易なLED装置として、透明絶縁基板を残し、その下面に形成された半導体層の側面とともに透明絶縁基板の側面を反射樹脂で被覆し、透明絶縁基板及び反射樹脂の上面を蛍光体シートで被覆したフリップチップ実装用のLED装置を製作した(特許文献2参照)。
 図14は、第2の従来例として示すLED装置200の断面図である。また、LED装置200は、特許文献2に示されたLED装置である。
 LED装置200は、サファイヤ基板214b(透明絶縁基板)とその下面に形成された半導体層215bとを有するLEDダイ216bを含み、側面に白色反射部材217b(反射樹脂)を備え、LEDダイ216b及び白色反射部材217bの上面に出射光を波長変換する蛍光体シート211bを備えている。蛍光体シート211bとサファイヤ基板214bの間には接着層213bがあり、蛍光体シート211bとサファイヤ基板214bとが接着している。またLEDダイ216bの半導体層215bと接続する突起電極218b、219bは、それぞれアノードとカソードであり、マザー基板と接続するための外部接続電極となっている。なお、マザー基板とは抵抗やコンデンサなど他の電子部品とともにLED装置200を実装する基板である。
 LED装置200は、個別のLEDダイ216bの発光特性に応じて蛍光体シート211bを選択変更できるため発光色の管理が容易である。また、白色反射部材217bは厚さが100μm以下でも充分に機能するのでLED装置200を小型化できる。さらにLED装置200は、多数のLEDダイ216bを配列した状態で加工を行い、最後に個片化することで個別のLED装置200を得られる集合工法が適用できるため製造し易い。
特開2010-141176号公報 特開2012-227470号公報
 例えば、上記のLED装置200をカメラ用のフラッシュ等に適用することが考えられる。しかしながら、撮影範囲だけ照らせば良いフラッシュに対し、蛍光体シート211bの側面から多くの光が出射するLED装置200では、撮影しようとする領域に充分な光量を確保できなかった。このように、LED装置200は、限定された領域を明るく照らす用途に適していない。
 本発明の目的は、小型でありながら発光効率が良く配光分布が絞られたLED装置及びその製造方法を提供することである。
 LED装置は、LED装置の外周部を囲う反射枠と、透明絶縁基板、透明絶縁基板の下面側に形成された半導体層、及び半導体層上に配置された外部接続電極を有するLEDダイと、LEDダイの少なくとも上面側に配置され且つLEDダイからの発光を波長変換する蛍光部材を有し、反射枠の内側には蛍光部材の側面と接触する斜面を有し、斜面はLEDダイの下面側から上面側に向かって反射枠の内径が広がるように形成されていることを特徴とする。
 上記のLED装置は、外部接続電極側を下面としたとき、LEDダイの上面側に蛍光部材が存在する。反射枠は、蛍光部材の周囲を囲んでおり、その内側に下から上に向かってその内径が広がるような斜面を備えている。言い換えると、反射枠は、蛍光部材の側部と接し、斜面部において下方に向かって広がる。LED装置は、外部接続電極を有するLEDダイと蛍光部材と反射枠とが一体化しているため小型化しやすい構造になっている。LED装置内で横方向に進もうとする光は反射枠の斜面で反射し、効率よく上方に向かう。この結果、発光効率が向上する。同時にLED装置の横方向から放射される光がなくなるので配光が絞られる。
 上記のLED装置では、LEDダイの下面側の底面と、斜面のLEDダイの下面側の最下部との位置が略同じであり、斜面とLEDダイの側面の間隙に蛍光部材が配置されていることが好ましい。
 上記のLED装置では、LEDダイの下面側の底面と、斜面のLEDダイの下面側の最下部との位置が略同じであり、斜面とLEDダイの側面の間隙に蛍光部材とは異なる他の蛍光部材又は透光性部材が配置されていることが好ましい。
 上記のLED装置では、蛍光部材が蛍光体シートであり、蛍光体シートがLEDダイの上面に接着されていることが好ましい。
 上記のLED装置では、反射枠が反射樹脂から構成されることが好ましい。
 上記のLED装置では、外部接続電極の占める領域を除き、LEDダイの下面側の底面が反射樹脂で被覆されていることが好ましい。
 上記のLED装置では、反射枠の内側には、斜面及び平坦部を有し、平坦部は前記LEDダイの側面を被覆していることが好ましい。
 上記のLED装置では、反射枠の内側の前記LEDダイの上面側にはLEDダイの下面側の底面に対して垂直な面を有し、反射枠の内側のLEDダイの下面側には斜面を有することが好ましい。
 外周部を囲う反射枠とLEDダイとLEDダイの発光を波長変換する蛍光部材とを備えるLED装置の製造方法は、第1の支持シート上にLEDダイの下面側に配置された外部接続電極側を下にしてLEDダイを配列する配列工程と、LEDダイの上面と側面を蛍光部材で被覆する蛍光部材被覆工程と、蛍光部材のLEDダイの上面側の上面に第2の支持シートを貼りつけ且つ蛍光部材の底面側からV字形のブレードでLEDダイの間に溝を形成する溝形成工程と、溝に反射樹脂を充填する反射樹脂充填工程と、反射樹脂を切断し個片化したLED装置を得る個片化工程を有することを特徴とする。
 上記のLED装置の製造方法では、反射樹脂からなる反射枠は、V字形の溝に反射樹脂を充填した工程を経ているため、内側に斜面を有するものとなる。この斜面により、LED装置内において横方向に進行しようとする光は上方を向き、LEDダイの側部と反射枠の間の隙間を伝搬し、LED装置の上面から外部に出射する。この結果、発光効率が向上する。同時にLED装置の横方向から放射される光がなくなるので配光が絞り込まれる。
 上記のLED装置の製造方法では、溝形成工程において、先ず蛍光部材に断面が長方形の溝を形成し、次に蛍光部材の底面側から断面が長方形の溝の一部にV字形のブレードで斜面を形成し、底面側に斜面を有する溝を形成することが好ましい。
 外周部を囲う反射枠とLEDダイとLEDダイの発光を波長変換する蛍光部材とを備えるLED装置の他の製造方法は、大判の蛍光体シート上にLEDダイの下面側に配置された外部接続電極側を上にしてLEDダイを配列する配列工程と、LEDダイの間隙に蛍光体シートとは異なる他の蛍光部材又は透光性部材を充填する透過光性部材充填工程と、蛍光体シートとは異なる他の蛍光部材又は透光性部材側から蛍光体シートに向かってV字形のブレードでLEDダイの間に溝を形成する溝形成工程と、溝に反射樹脂を充填する反射樹脂充填工程と、反射樹脂を切断し個片化したLED装置を得る個片化工程を有することを特徴とする。
 上記の他のLED装置の製造方法では、反射樹脂からなる反射枠は、V字形の溝に反射樹脂を充填した工程を経ているため、内側に斜面を有するものとなる。この斜面により、LED装置内において横方向に進行しようとする光は上方を向き、LEDダイの側部と反射枠の間の隙間を伝搬し、LED装置の上面から外部に出射する。この結果、発光効率が向上する。同時にLED装置の横方向から放射される光がなくなるので配光が絞り込まれる。
 上記のLED装置は、外部接続電極を有するLEDダイと蛍光部材と反射枠とが一体化しているため小型化させやすい構造になっており、反射枠内面に斜面があるため発光効率がよく同時に配光が絞られる。
 上記のLED装置の製造方法は、いわゆる集合工法を適用し、LEDダイの間にV字形の溝を形成し、この溝に反射樹脂を充填することにより、個片化すると内面に斜面を有する反射枠が形成できる。このようにして得られたLED装置は、外部接続電極を有するLEDダイと蛍光部材と反射枠とが一体化しているため小型化させやすい構造になっており、反射枠内面に斜面があるため発光効率がよく同時に配光が絞られる。
LED装置10の外観図である。 図1に示すLED装置10のAA´断面図である。 図1に示すLED装置10の製造工程の説明図(1)である。 図1に示すLED装置10の製造工程の説明図(2)である。 他のLED装置50の断面図である。 更に他のLED装置60の断面図である。 更に他のLED装置70の断面図である。 図7に示すLED装置70の製造工程の説明図(1)である。 図7に示すLED装置70の製造工程の説明図(2)である。 更に他のLED装置90の断面図である。 図10に示すLED装置90の製造工程の説明図(1)である。 図10に示すLED装置90の製造工程の説明図(2)である。 第1の従来例におけるLED装置100の断面図である。 第2の従来例におけるLED装置200の断面図である。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。但し、本発明の技術範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。なお図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また説明のため部材の縮尺は適宜変更している。
 図1は、LED装置10の外観を示し、図1(a)が平面図、図1(b)が正面図、図1(c)が底面図である。
 図1(a)に示すようにLED装置10を上部から眺めると、長方形の反射枠12とその内側にある蛍光部材11が観察される。図1(b)に示すようにLED装置10を正面から眺めると、反射枠12の下に2個の外部接続電極15が観察される。図1(c)に示すようにLED装置10を下から眺めると、長方形の反射枠12と、その内側の蛍光部材11及び半導体層14と、半導体層14の内側の領域にある2個の外部接続電極15が観察される。反射枠12について図1(a)と図1(c)を比較すると、後述するように反射枠12の内側に斜面があるため図1(c)の方が幅が太くなっている。
 図2は、図1(a)のAA´断面図である。
 図2に示すようにLED装置10は、外周部を囲う反射枠12とLEDダイ16とLEDダイ16の発光を波長変換する蛍光部材11を備えている。LEDダイ16は透明絶縁基板であるサファイヤ基板13と半導体層14を含み、サファイヤ基板13の下面側に半導体層14が形成されている。半導体層14は2個の外部接続電極15を有している。蛍光部材11は反射枠12の内側に存在し、LEDダイ16の上面と側面を被覆している。反射枠12の内側は斜面になっている。
 蛍光部材11は、シリコーン樹脂に蛍光体微粒子を混練し硬化させたもので、厚さが100~300μm程度である。蛍光部材11は、蛍光ガラスや蛍光体を焼結した蛍光板などであっても良い。濃度消光による損失を軽減したい場合、蛍光部材中の蛍光体濃度を下げ、蛍光部材11を厚めに設定する。なお、蛍光部材11は、LEDダイ16の青色発光を波長変換し白色化する。
 反射枠12は、シリコーン樹脂やオルガノポリシロキサンのようなバインダーに酸化チタンやアルミナなどの反射性微粒子を混練し熱硬化させた反射樹脂であり、幅は50~100μmである。反射枠12を設けた結果、平面サイズが0.8mm×0.3mmのLEDダイ16の場合、LED装置10の平面サイズは1.1mm×0.6mm程度となり、サーフェースマウンタ(表面実装機)で扱いやすい大きさになる。
 LEDダイ16に含まれるサファイヤ基板13は、厚さが80~120μm程度である。サファイヤ基板13の下面に形成された半導体層14は、厚みが10μm程度で、p型半導体層及びn型半導体層を含み、その境界面が発光層となる。半導体層14の下部には、層間絶縁膜や保護膜が存在し、保護膜上に外部接続電極15が形成される。二つの外部接続電極15はアノード及びカソードであり、それぞれ層間絶縁膜上の配線を介してp型半導体層及びn型半導体層と接続している。外部接続電極15は、抵抗やコンデンサなど他の電子部品が実装されたマザー基板と接続するための電極であり、厚さが数100nmから数十μmであり、半田付けのため表面に金層又は錫層を備えている。
 前述したように、LED装置10のLEDダイ16の側面と反射枠12との間に蛍光部材11が存在する。仮に、LEDダイ16の側面と反射枠12とが接触していると、サファイヤ基板13の側面から出射しようとする光は、サファイヤ基板13内に戻されてしまう。サファイヤ基板13内に戻された光は、反射による損失や半導体層14による再吸収で減衰してしまい、LED装置の出射効率の低化を招く。
 これに対しLED装置10では、LEDダイ16の側面と反射枠12との間に蛍光部材11が存在している。この為に、LEDダイ16の側面から出射し、蛍光部材11をとおり反射枠12で反射した光の大部分は(一部が再びサファイヤ基板13内に入り込むかもしれないが)、LEDダイ16の側部と反射枠12との間に存在する蛍光部材11内を伝播して上方へ向かい、LED装置10から出射する。この結果、反射による損失又は半導体層14による再吸収の割合が低下し出射効率が向上する。また、反射枠12によりLED装置の側方に向かう光が存在しないため配光が絞り込まれる。反射枠12の斜面は、蛍光部材11の側面と接しており、LEDダイ16の下面側から上面側に向かって反射枠12の内径(左右の反射枠12の間の距離)が広がるように構成されている。
 図3及び図4は、LED装置10の製造工程の説明図である。
 図3及び図4に示した製造工程は、いわゆる集合工法と呼ばれるもので、支持用のシート上に多数のLEDダイ16を所定のピッチで配列し、この集合体に対して様々な処理を施し、最後にこの集合体を個片化して個別のLED装置10を得るものである。支持シートには数100から数1000個のLEDダイ16を配列させることとなるが、図3、図4では2個のLEDダイ16のみを示している。
 図3(a)に示す配列工程において、第1の支持シート31上に多数のLEDダイ16を配列する。このときLEDダイ16の外部接続電極15を下にして、各LEDダイ16を第1の支持シート31上に配置する。LEDダイ16はピッカー等で一個ずつ第1の支持シート31上に配置しても良い。また、いったん他の粘着シートに複数のLEDダイ16を配列させておき、この複数のLEDダイ16を一括して第1の支持シート31に貼り付けることもできる。第1の支持シート31上には粘着層があり、この粘着層に外部接続電極15が沈み込むようにする。この結果、外部接続電極15を除くLEDダイ16の底面も粘着層と接する。なお本工程に先立ち、所望の発光色が得られるように、配列されるLEDダイ16として所定の発光特性を有するものを選別しておく。
 図3(b)に示す蛍光部材被覆工程において、LEDダイ16の上面と側面を蛍光部材11a(単個のLED装置に含まれる部材と集合体に含まれる部材を区別するため符号を変えた。以下同様。)で被覆する。被覆は、良く知られているようにスキージや金型を使用する。蛍光部材11aでLEDダイ16を被覆したら加熱して蛍光部材11aを硬化させる。
 図3(c)~図4(a)に示す溝形成工程では、先ず図3(c)に示すように蛍光部材11aの上面に第2の支持シート32aを貼りつける。次に図3(d)に示すように多数のLEDダイ16を含む集合体の上下を反転する。このとき第1の支持シート31は剥がしておく。次に図3(e)で示すようにV字形(楔形)のブレード33を準備する。最後に図4(a)で示すようにブレード33でLEDダイ16の底面側からLEDダイ16の間を切除し、蛍光部材11aにV字形の溝34を形成する。
 図4(b)に示す反射樹脂充填工程では、溝34に反射樹脂35を充填する。反射樹脂35は、前述のようにシリコーン樹脂に酸化チタンやアルミナなどの反射性微粒子を混練した樹脂であり、ディスペンサで適量を滴下し、毛細管現象を利用して均一に充填する。充填が完了したら加熱して反射樹脂35を硬化させる。
 図4(c)に示す個片化工程では、反射樹脂35を切断し、個片化されたLED装置10が得られる。切断にはダイサーを使用する。またワイヤを使って切断しても良い。なお反射枠12を構成する反射樹脂35は完成時に厚さが30~50μmあれば充分に遮光できる。
 LED装置10では反射樹脂からなる反射枠12が備えられているが、反射枠12の材質は反射樹脂に限定されない。例えば、反射枠12は、金属製のカップであっても良い。この場合、LEDダイ16の底面に設けられた外部接続電極を活用できるように、カップの底を抜いておく。金属製のカップによる反射枠12でも、小型で発光効率が良く、配光分布が絞られたLED装置10が得られる。
 しかしながら、LED装置10の反射枠12を反射樹脂にすることにより、様々なメリットが生じる。第1に、反射樹脂による反射枠は薄くできるので、よりいっそうの小型化を図ることができる。第2に、図3、図4で示したように反射枠が、溝形成、反射樹脂の充填、反射樹脂の切断により形成できるため、金型成型が必要なカップ型反射枠に比べ製造工程が簡略化する。反射樹脂からなる反射枠12を簡単に形成できる理由は、LED装置10がサブマウント基板を持たないからである。また、集合工法の最後の部分で底面側からV字型のブレードで溝を形成できるため、反射枠12の内側に所望の斜面を容易に形成できる。
 LED装置10は本来マザー基板に直接搭載すること意図していたものであるが、LED装置10をサブマウント基板に実装し、その後マザー基板にサブマウント基板ごと搭載しても良い。前述したように、LED装置10は、カメラのフラッシュ用光源としても利用可能であり、指向性がある照明装置や調色できる照明装置にも有効である。調色可能な照明装置に複数のLED装置10を適用すると、各LED装置10は周囲を反射枠で囲まれているので、隣接するLED装置から当該LED装置に不用意な光が入り込みにくい。このため、隣接するLED装置10の発光により当該LED装置が色ずれを起こすという現象を回避できるため、調色が可能な照明装置の光源に適している。
 図5は、他のLED装置50の断面図である。
 図1~図4で示したようにLED装置10の底面は、蛍光部材11及び半導体層14が露出していた。そこで、図5に示すLED装置50では、底面において蛍光部材11及び半導体層14が露出しない様に構成した。LED装置50において反射枠52は、外周部を囲うとともに、外部接続電極15の占める領域を除きLEDダイ16の底面を被覆している。なお、図5では、反射枠52の材料である反射樹脂35も付記した。蛍光部材51は反射枠52の内側に存在し、LEDダイ16の上面と側面を被覆している。反射枠52の内側は、LED装置10の反射枠12と同様に斜面になっている。蛍光部材51及び反射枠52は、LED装置10における蛍光部材11及び反射枠12と同じ材料からなる。
 図5で示したLED装置50と図2で示したLED装置10との違いは、LED装置50の底部において反射樹脂35が外部接続電極15を除いて蛍光部材11及び半導体層14を被覆していることだけである。LED装置50は、図4(b)で示した反射樹脂充填工程において反射樹脂35を多めに充填し、反射樹脂35の硬化後、反射樹脂35の上面側を研磨して外部接続電極15を露出させることにより製造できる。LED装置50の底部に反射樹脂35が存在すると、底部における汚染から半導体層14を保護することがでる。また、LED装置50の底部に反射樹脂35が存在すると、底部において蛍光部材51及び半導体層14の底部周辺部から漏れ出そうとする光を遮光できる。反射枠52の斜面は、蛍光部材51の側面と接しており、LEDダイ16の下面側から上面側に向かって反射枠51の内径(左右の反射枠51の間の距離)が広がるように構成されている。
 図6は、更に他のLED装置60の断面図である。
 図2及び図5で示したLED装置10、50では、LEDダイ16の側面と反射枠12、52との間に蛍光部材11、51があった。しかしながら、LED装置では、LEDダイ16の側面と反射枠の間に蛍光部材が無くても良い。そこで、図6に示すLED装置60では、LEDダイ16の側面と反射枠62とが接触している。
 図6においてLED装置60では、反射枠62が、外周部を囲うとともに、LEDダイ16の側面とも接触している。このとき反射枠62は、内側に、斜面とともに平坦部を備え、この平坦部がLEDダイ16の側面を被覆していている。蛍光部材61は反射枠62の内側に存在し、LEDダイ16の上面を被覆している。蛍光部材61及び反射枠62は、前述したLED装置10、50における蛍光部材11、51及び反射枠12、52と同じ材料からなる。
 LED装置60では、図3(b)で示した蛍光部材被覆工程を一部変更し、反射樹脂と蛍光部材でLEDダイ16を被覆する。先ず、LEDダイ16の側面を被覆するように反射樹脂(反射樹脂35と同じ材料)をLEDダイ16の間に充填し硬化させる。その後、蛍光部材(蛍光部材11aと同じ材料)でLEDダイ16の上面を被覆する。その後、溝形成、反射樹脂充填及び個片化については図3(c)~図4(c)と同様の工程をとる。
 LED装置60では側面が反射枠62と接触しているため、サファイヤ基板13の側面から出射しようとする光はサファイヤ基板13内に戻されてしまう。サファイヤ基板13に戻った光は反射による損失や半導体層14による再吸収により減衰してしまうため、LED装置10、50と比べてLED装置60の出射効率は低下する。しかしながら、蛍光部材61内の蛍光体による発光のうち側方に向かう成分は、反射部材62の斜面で反射して上方へ向かうため、斜面がない場合にくらべて発光効率が改善する。反射枠62の斜面は、蛍光部材61の側面と接しており、LEDダイ16の下面側から上面側に向かって反射枠61の内径(左右の反射枠61の間の距離)が広がるように構成されている。
 LED装置60は、図3(b)に相当する蛍光部材被覆工程において完全にLEDダイ16の側面を反射樹脂で被覆している。したがって、その後の図4(b)に相当する反射樹脂充填工程において反射樹脂35の充填量が不足しても、LEDダイ16の側面から漏れ出す光がない。すなわち、LED装置60では、図4(b)に相当する反射樹脂充填工程において、反射樹脂の充填量の公差を大きくできる(反射樹脂の充填量の適量範囲に余裕を持たせることができる)という特徴がある。
 図7は、更に他のLED装置70の断面図である。
 図2、図5及び図6で示したLED装置10、50、60では、LEDダイ16の上面を蛍光部材11、51、61で被覆していた。これらの蛍光部材は図3(b)で示した蛍光部材被覆工程の説明にあったように、硬化前の蛍光部材11、51、61によりLEDダイ16の上面又及び側面を被覆部してから、蛍光部材11、51、61を硬化させていた。しかしながら、LEDダイ16の上面の被覆には、予め硬化(又は半硬化)した蛍光体シートを使っても良い。そこで、図7に示すLED装置70では、LEDダイ16の上面を蛍光体シート73(一の蛍光部材)で被覆している。
 LED装置70において反射枠72は、図2に示したLED装置10と同様に外周部を囲い、内側が斜面になっている。LEDダイ16の上面には蛍光体シート73が貼り付けられており、蛍光体シート73の側面は反射枠72の内側の斜面と接触している。LEDダイ16の側面と反射枠72の間には蛍光部材71(他の蛍光部材)が存在する。このように、LED装置70では蛍光部材が二つの部分からなる。なお、図2の説明の中で述べた様に、発光効率を向上させる機能を発揮させることを主な目的とする場合には、蛍光部材71は透明な材料(透光性部材)に置き換えても良い。反射枠72の斜面は、蛍光部材71の側面及び蛍光シート73の側面と接しており、LEDダイ16の下面側から上面側に向かって反射枠72の内径(左右の反射枠72の間の距離)が広がるように構成されている。
 蛍光部材71及び反射枠72は、第1、第2及び第3実施形態のLED装置10、50、60における蛍光部材11、51、61及び反射枠12、52、62と同じ材料からなる。蛍光体シート73は、フェニル系シリコーン樹脂に蛍光体微粒子を混練し、シート状に加工したもので、厚さが100~300μm程度である。濃度消光による損失を軽減したい場合は、蛍光体シート73を厚めに設定しても良い。
 LED装置70は、後述するように、製造工程が簡略化され、製造し易くなるという効果がある。さらに、LED装置70は、蛍光体シート73が安価に製造でき波長変換特性の調整が容易であるため、複数種類の波長変換特性からなる蛍光体シート群を準備し、これらのなかからLEDダイ16の発光特性に応じて適切な蛍光体シート73を選択することができる。この結果、LED装置70の発光色の管理が容易になる。
 図8及び図9は、LED装置70の製造工程の説明図である。
 本製造工程全体は、いわゆる集合工法を適用したものであり、大判蛍光体シート83に多数のLEDダイ16を配置した集合体に対し様々な処理を行い、最後に個片化して個別のLED装置70を得るものである。大判蛍光体シート83には数100から数1000個のLEDダイ16を貼り付けることとなるが、図8、図9では、2個のLEDダイ16のみを示している。大判蛍光体シート83は、個片化により多数の蛍光体シート73が得られるものである。図8及び図9に示す各工程は、大判蛍光体シート83の片面のみの処理に限定され、さらに重力を利用するので、図7に対し上下方向を倒置して示している。
 図8(a)に示す配列工程では、大判蛍光体シート83とLEDダイ16を準備し、所定のピッチで大判蛍光体シート83上にLEDダイ16のサファイヤ基板13を貼り付ける。このとき所望の発光色が得られるように、蛍光体シート73の波長変換特性にあうような発光特性を有するLEDダイ16を選別しておく(又は特性がそろったLEDダイ16に合うよう大判蛍光体シート83を選ぶ。)。大判蛍光体シート83には、図示していない接着材が塗布される。接着材の塗布は、LEDダイ16を貼り付ける部分に接着材を印刷すれば良い。なお、接着材は、LEDダイ16のサファイヤ基板13に塗布しても良い。LEDダイ16に接着材を塗布する場合は、ピッカー(又はソーター)でLEDダイ16を取り上げたら、一旦LEDダイ16に接着材をつけ、その後大判蛍光体シート83に貼り付ければ良い。大判蛍光体シート83の下面には、支持シート85が貼りつけてある。
 大判蛍光体シート83にLEDダイ16のサファイヤ基板13を貼り付けるとき、LEDダイ16をピッカー等で一個ずつ大判蛍光体シート83上に配置しても良い。一旦、他の粘着シートに複数のLEDダイ16を配列させておき、複数のLEDダイ16を一括して大判蛍光体シート83に貼り付けることもできる。大判蛍光体シート83にLEDダイ16を配置し終えたら、加熱して、接着材を硬化させる。接着材の硬化は、架橋が完全でない仮硬化でもよい。
 図8(b)に示す透過光性部材充填工程では、LEDダイ16の間隙に蛍光体シート73(一の蛍光部材)とは異なる蛍光部材81(他の蛍光部材)を充填する。蛍光部材81は、LEDダイ16の側部の間隙に充填し、その後加熱して硬化させる。このとき予め図示していない大判蛍光体シート83の外周部を図示していないダム材でとり囲んでおき、ディスペンサで正確に計量した硬化前の蛍光部材81を滴下する。
 図8(c)と図8(d)に示す溝形成工程では、まず、図8(c)で示すようにV字形のブレード33を準備する。次に、図8(d)に示すように、蛍光部材81側から大判蛍支持シート85に向かって、V字形のブレード33でLEDダイ16の間の蛍光部材81及び蛍光体シート83を切除して、V字形の溝84を形成する。V字形のブレード33は、図3(e)で示したブレード33と同じものである。
 図9(a)に示す反射樹脂充填工程では、溝84に反射樹脂82を充填する。反射樹脂82は、前述のようにシリコーン樹脂に反射性微粒子を混練したもので、ディスペンサで適量を滴下し、毛細管現象を利用して均一に充填する。充填が完了したら、その後加熱して、反射樹脂35を硬化させる。
 図5で示したLED装置50のように、LEDダイ16の底面を反射樹脂82で被覆して良い。この場合、反射樹脂82を多めに充填し、反射樹脂82の硬化後、反射樹脂82の上面側を研磨して外部接続電極15を露出させれば良い。このようにすればLED装置70の底部における汚染から半導体層14を保護することができ、さらに底部において蛍光部材71及び半導体層14の底部周辺部から漏れ出そうとする光を遮光できる。
 図9(b)に示す個片化工程では、反射樹脂82を切断し、個片化されたLED装置70を得る。切断にはダイサーを使用する。ダイサーの代わりに、ワイヤを使って反射樹脂82を切断しても良い。反射枠72を構成する反射樹脂82は、完成時に厚さが30~50μmあれば充分に遮光できる。
 以上説明したように、図8及び図9で示した製造工程は、図3及び図4で示した製造工程に比べLEDダイ16を配列させるための支持用のシートと一の蛍光部材である大判蛍光体シート83とが兼用されている。このため、図8及び図9で示した製造工程は、図3及び図4で示した製造工程に比べ簡略化している。また、図8及び図9で示した製造工程において、予め大判蛍光体シート83の波長変換特性とLEDダイ16の発光特性を調整しておけば、LED装置70の発光色の管理が容易である。
 図10は、更に他のLED装置90の断面図である。
 図2で示したようにLED装置10は、斜面が上部から底部にまで至る反射枠12を備えていた。これに対し図6に示したLED装置60は、上部にのみ斜面を有する反射枠62を備えていた。すなわち、配光を絞り込みながら小型で発光効率の良いLED装置を得るためには、反射枠の一部に斜面を備えていることが好ましい。そこで、図10~12に示すLED装置90では、反射枠92の底部に斜面を備えるように構成した。
 LED装置90は、外周部を囲う反射枠92とLEDダイ16とLEDダイ16の発光を波長変換する蛍光部材91を備えている。LEDダイ16は図2で示したLEDダイ16と同じものであり、反射枠92及び蛍光部材91の材料も図2等で示した反射枠12及び蛍光部材11等と同じものである。反射枠92の斜面は、蛍光部材91の側面と接しており、LEDダイ16の下面側から上面側に向かって反射枠92の内径(左右の反射枠92の間の距離)が広がるように構成されている。
 LED装置90と図2で示したLED装置10とを比較すると、LED装置90の反射枠92とLED装置10の反射枠12の断面形状が異なっている。LED装置90の反射枠92の内側の面は、上部にLEDダイ16の底面に対し垂直な面を有し、底部に斜面を備えている。この斜面によりサファイヤ基板13の側面から出射してきた青色光が反射して上方に向かう。青色光は、その一部が波長変換されながら上方に向かい、LED装置90の上面から出射する。
 図11及び図12は、LED装置90の製造工程の説明図である。
 LED装置90の製造工程の内、支持シート上にLEDダイ16を配列する配列工程、及びLEDダイ16の上面と側面を蛍光部材11aで被覆する蛍光部材被覆工程は、LED装置10の製造工程として示した図3(a)及び図3(b)と同じであるため、省略している。また、溝形成工程の最初の段階である、蛍光部材11aの上面に他の支持シートを貼りつけ、先の支持シートを剥がし、多数のLEDダイ16が蛍光部材11aで連結した集合体の上下を反転させる工程も、LED装置10の製造工程として示した図3(c)及び図3(d)と同じであるため、省略している。
 図11(a)~図12(a)を参照して、LED装置90溝形成工程を説明する。前述のように多数のLEDダイ16を含む集合体が準備できたら、図11(a)で示すように平板状のブレード93を準備する。次に、図11(b)で示すようにブレード93でLEDダイ16の底面側からLEDダイ16の間を切除し、蛍光部材11aに断面が長方形の溝94を形成する。次に、図11(c)で示すように先端がV字状のブレード95を準備する。最後に、図12(a)で示すように、ブレード95により溝94の底部(図では上側)に斜面を形成し、溝96を得る。
 図12(b)に示す反射樹脂充填工程では、溝96に反射樹脂97を充填する。反射樹脂97は、シリコーン樹脂に酸化チタンやアルミナなどの反射性微粒子を混練したものであり、図4(b)と同様にディスペンサで適量を滴下し、毛細管現象を利用して均一に充填する。充填が完了したら加熱して、反射樹脂97を硬化させる。
 図12(c)に示す個片化工程では、図4(c)と同様に反射樹脂97を切断し、個片化されたLED装置90が得られる。切断にはダイサーを使用する。ダイサーの代わりに、ワイヤを使用して、反射樹脂97を切断しても良い。反射枠92を構成する反射樹脂97は、完成時に厚さが30~50μmあれば充分に遮光できる。
 溝94は、断面が長方形であるため、ブレード93ではなく、ワイヤや型により形成しても良い。図5に示したLED装置50ように、LED装置90におけるLEDダイ16の底面を反射樹脂97で被覆しても良い。図7に示したLED装置70のように、LED装置90の蛍光部材91の一部を蛍光体シートで置き換えても良い。蛍光体シートを利用する場合、多数のLEDダイ16を配置した集合体を図8に示した製造工程で準備し、その後、図11及び図12で示した製造工程を適用すれば良い。
 10、50、60、70、90  LED装置
 11、11a、51、61、71、81、91  蛍光部材
 12、52、62、72、92  反射枠
 13  サファイヤ基板(透明絶縁基板)
 14  半導体層
 15  外部接続電極
 16  LEDダイ
 31、32a、85  支持シート
 33、93、95  ブレード
 35、82、97  反射樹脂
 34、84、94、96  溝
 73  蛍光体シート
 83  大判蛍光体シート

Claims (11)

  1.  LED装置であって、
     前記LED装置の外周部を囲う反射枠と、
     透明絶縁基板、当該透明絶縁基板の下面側に形成された半導体層、及び当該半導体層上に配置された外部接続電極を有するLEDダイと、
     前記LEDダイの少なくとも上面側に配置され、且つ前記LEDダイからの発光を波長変換する蛍光部材と、を有し、
     前記反射枠の内側には、前記蛍光部材の側面と接触する斜面を有し、
     前記斜面は、前記LEDダイの下面側から上面側に向かって、前記反射枠の内径が広がるように形成されている、
     ことを特徴とするLED装置。
  2.  前記LEDダイの下面側の底面と、前記斜面の前記LEDダイの下面側の最下部との位置が略同じであり、前記斜面と前記LEDダイの側面の間隙に前記蛍光部材が配置されている、請求項1に記載のLED装置。
  3.  前記LEDダイの下面側の底面と、前記斜面の前記LEDダイの下面側の最下部との位置が略同じであり、前記斜面と前記LEDダイの側面の間隙に前記蛍光部材とは異なる他の蛍光部材又は透光性部材が配置されている、請求項1に記載のLED装置。
  4.  前記蛍光部材が蛍光体シートであり、前記蛍光体シートが前記LEDダイの上面に接着されている、請求項1~3の何れか一項に記載のLED装置。
  5.  前記反射枠が反射樹脂から構成される、請求項1~4の何れか一項に記載のLED装置。
  6.  前記外部接続電極の占める領域を除き、前記LEDダイの下面側の底面が前記反射樹脂で被覆されている、請求項1~5の何れか一項に記載のLED装置。
  7.  前記反射枠の内側には、前記斜面及び平坦部を有し、前記平坦部は前記LEDダイの側面を被覆している、請求項1に記載のLED装置。
  8.  前記反射枠の内側の前記LEDダイの上面側には、前記LEDダイの下面側の底面に対して垂直な面を有し、
     前記反射枠の内側の前記LEDダイの下面側には、前記斜面を有する、請求項1~6の何れか一項に記載のLED装置。
  9.  外周部を囲う反射枠とLEDダイと前記LEDダイの発光を波長変換する蛍光部材とを備えるLED装置の製造方法において、
     第1の支持シート上に前記LEDダイの下面側に配置された外部接続電極側を下にして前記LEDダイを配列する配列工程と、
     前記LEDダイの上面と側面を前記蛍光部材で被覆する蛍光部材被覆工程と、
     前記蛍光部材の前記LEDダイの上面側の上面に第2の支持シートを貼りつけ、前記蛍光部材の底面側からV字形のブレードで前記LEDダイの間に溝を形成する溝形成工程と、
     前記溝に反射樹脂を充填する反射樹脂充填工程と、
     前記反射樹脂を切断し個片化した前記LED装置を得る個片化工程と、
     を有することを特徴とするLED装置の製造方法。
  10.  前記溝形成工程において、先ず前記蛍光部材に断面が長方形の溝を形成し、次に前記蛍光部材の底面側から前記断面が長方形の溝の一部に前記V字形のブレードで斜面を形成し、前記底面側に斜面を有する溝を形成する、請求項9に記載のLED装置の製造方法。
  11.  外周部を囲う反射枠とLEDダイと前記LEDダイの発光を波長変換する蛍光部材とを備えるLED装置の製造方法において、
     大判の蛍光体シート上に前記LEDダイの下面側に配置された外部接続電極側を上にして前記LEDダイを配列する配列工程と、
     前記LEDダイの間隙に前記蛍光体シートとは異なる他の蛍光部材又は透光性部材を充填する透過光性部材充填工程と、
     前記蛍光体シートとは異なる他の蛍光部材又は前記透光性部材側から前記蛍光体シートに向かってV字形のブレードで前記LEDダイの間に溝を形成する溝形成工程と、
     前記溝に反射樹脂を充填する反射樹脂充填工程と、
     前記反射樹脂を切断し個片化した前記LED装置を得る個片化工程と、
     を有することを特徴とするLED装置の製造方法。
PCT/JP2013/081660 2012-12-10 2013-11-25 Led装置及びその製造方法 WO2014091914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/650,787 US9490398B2 (en) 2012-12-10 2013-11-25 Manufacturing method of light emitting device in a flip-chip configuration with reduced package size
CN201380064344.2A CN104854716B (zh) 2012-12-10 2013-11-25 Led装置及其制造方法
JP2014516115A JP5611492B1 (ja) 2012-12-10 2013-11-25 Led装置及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012269210 2012-12-10
JP2012-269210 2012-12-10
JP2013-003290 2013-01-11
JP2013003290 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014091914A1 true WO2014091914A1 (ja) 2014-06-19

Family

ID=50934208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081660 WO2014091914A1 (ja) 2012-12-10 2013-11-25 Led装置及びその製造方法

Country Status (4)

Country Link
US (1) US9490398B2 (ja)
JP (1) JP5611492B1 (ja)
CN (1) CN104854716B (ja)
WO (1) WO2014091914A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393153A (zh) * 2014-11-28 2015-03-04 江阴长电先进封装有限公司 一种半导体器件的圆片级封装方法
CN104916763A (zh) * 2015-05-29 2015-09-16 广州市鸿利光电股份有限公司 一种芯片级封装led的封装方法
CN105006510A (zh) * 2015-07-29 2015-10-28 广州市鸿利光电股份有限公司 一种csp led的封装方法
CN105006512A (zh) * 2015-08-06 2015-10-28 广州市鸿利光电股份有限公司 一种led封装结构及制造方法
CN105047786A (zh) * 2015-05-29 2015-11-11 广州市鸿利光电股份有限公司 芯片级封装led的封装方法
CN105161609A (zh) * 2015-09-24 2015-12-16 晶科电子(广州)有限公司 一种芯片级led光源模组及其制作方法
JP2016092110A (ja) * 2014-10-31 2016-05-23 日亜化学工業株式会社 発光装置及び発光装置の製造方法
WO2016192452A1 (zh) * 2015-05-29 2016-12-08 广州市鸿利光电股份有限公司 Csp led的封装方法和csp led
CN106257695A (zh) * 2015-06-19 2016-12-28 三星电子株式会社 发光二极管封装件及其制造方法
JP2017092449A (ja) * 2015-11-05 2017-05-25 アクロラックス・インコーポレーテッド パッケージ構造及びその製造方法
JP2017108111A (ja) * 2015-10-05 2017-06-15 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. 斜角反射体を備えた発光素子およびその製造方法
JP2017123393A (ja) * 2016-01-07 2017-07-13 日亜化学工業株式会社 発光装置の製造方法
KR20170119772A (ko) * 2016-04-19 2017-10-30 주식회사 세미콘라이트 반도체 발광소자
CN107431115A (zh) * 2015-03-16 2017-12-01 日东电工株式会社 带光反射层的光半导体元件的制造方法、带光反射层和荧光体层的光半导体元件的制造方法
WO2018008197A1 (ja) * 2016-07-07 2018-01-11 日東電工株式会社 反射層および蛍光体層付光半導体素子
JP2018061027A (ja) * 2016-09-29 2018-04-12 日亜化学工業株式会社 発光装置の製造方法
JP2018107285A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法
JP2018148075A (ja) * 2017-03-07 2018-09-20 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP2018190771A (ja) * 2017-04-28 2018-11-29 日亜化学工業株式会社 発光装置及びその製造方法
JP2018536297A (ja) * 2015-11-10 2018-12-06 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 発光ダイオードデバイスおよびその製造方法
JP2019009449A (ja) * 2016-06-30 2019-01-17 日亜化学工業株式会社 Ledモジュール
JP2019054073A (ja) * 2017-09-14 2019-04-04 日亜化学工業株式会社 発光装置の製造方法
JP2019091898A (ja) * 2018-12-25 2019-06-13 日亜化学工業株式会社 発光装置の製造方法
KR20190093415A (ko) * 2018-02-01 2019-08-09 엘지이노텍 주식회사 발광소자 패키지 및 광원 장치
JP2019149538A (ja) * 2018-02-27 2019-09-05 ルーメンス カンパニー リミテッド 発光素子パッケージの製造方法
JP2019526173A (ja) * 2016-07-28 2019-09-12 ルミレッズ リミテッド ライアビリティ カンパニー 反射性側面コーディングを伴う発光デバイスパッケージ
JP2019165122A (ja) * 2018-03-20 2019-09-26 日亜化学工業株式会社 発光装置および発光装置の製造方法
US10431724B2 (en) 2017-05-12 2019-10-01 Nichia Corporation Light emitting device and method of manufacturing same
EP3154095B1 (en) * 2015-10-05 2020-04-08 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
US10641437B2 (en) 2016-06-30 2020-05-05 Nichia Corporation LED module
US10886430B2 (en) 2018-03-29 2021-01-05 Nichia Corporation Light-emitting device and method of manufacturing the same
JP2021507527A (ja) * 2017-12-19 2021-02-22 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH 変換素子を製造する方法および変換素子

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393374B (zh) * 2013-07-19 2019-05-28 亮锐控股有限公司 具有光学元件并且没有衬底载体的pc led
DE102014100772B4 (de) * 2014-01-23 2022-11-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
US9997676B2 (en) 2014-05-14 2018-06-12 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
US10439111B2 (en) 2014-05-14 2019-10-08 Genesis Photonics Inc. Light emitting device and manufacturing method thereof
TWI557952B (zh) * 2014-06-12 2016-11-11 新世紀光電股份有限公司 發光元件
DE102015100575A1 (de) * 2015-01-15 2016-07-21 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Mehrzahl von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
TWI583019B (zh) * 2015-02-17 2017-05-11 新世紀光電股份有限公司 Light emitting diode and manufacturing method thereof
DE102015109413A1 (de) * 2015-06-12 2016-12-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von optoelektronischen Konversions-Halbleiterchips und Verbund von Konversions-Halbleiterchips
KR102401847B1 (ko) * 2015-07-03 2022-05-25 엘지디스플레이 주식회사 편광 발광 다이오드 패키지
KR102432859B1 (ko) * 2015-07-10 2022-08-16 삼성전자주식회사 발광 장치 및 이를 포함하는 발광 모듈
KR102501878B1 (ko) * 2015-08-13 2023-02-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
CN105098044B (zh) * 2015-09-16 2018-06-26 福建天电光电有限公司 具有倒装结构的led封装器件及其制造方法
CN111223975A (zh) 2015-09-18 2020-06-02 新世纪光电股份有限公司 发光装置及其制造方法
KR101968244B1 (ko) * 2015-10-08 2019-04-11 주식회사 세미콘라이트 반도체 발광소자
US10008648B2 (en) 2015-10-08 2018-06-26 Semicon Light Co., Ltd. Semiconductor light emitting device
KR20170058489A (ko) * 2015-11-18 2017-05-29 주식회사 세미콘라이트 반도체 발광소자용 프레임
JP6842234B2 (ja) * 2015-10-13 2021-03-17 ローム株式会社 光半導体装置の製造方法および光半導体装置
JP2017079311A (ja) * 2015-10-22 2017-04-27 豊田合成株式会社 発光装置の製造方法
KR101772550B1 (ko) * 2015-12-10 2017-08-31 주식회사 세미콘라이트 반도체 발광소자
JP6974324B2 (ja) * 2015-12-29 2021-12-01 ルミレッズ ホールディング ベーフェー 側面反射器と蛍光体とを備えるフリップチップled
CN106935697B (zh) * 2015-12-30 2020-08-14 晶元光电股份有限公司 发光装置以及其制造方法
CN105449071B (zh) * 2015-12-31 2018-11-16 鸿利智汇集团股份有限公司 芯片级封装led成型方法及芯片级封装led
CN105449080B (zh) * 2015-12-31 2018-08-28 鸿利智汇集团股份有限公司 用正装芯片成型csp led的方法和成型倒装芯片的方法及csp led
CN109196667B (zh) 2016-03-07 2022-02-25 世迈克琉明有限公司 半导体发光元件及其制造方法
KR102532804B1 (ko) * 2016-03-14 2023-05-16 주식회사 루멘스 반도체 발광 소자 및 이를 포함하는 백라이트 어셈블리
JP6447557B2 (ja) * 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法
DE102016105868A1 (de) * 2016-03-31 2017-10-05 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102016106833A1 (de) * 2016-04-13 2017-10-19 Osram Opto Semiconductors Gmbh Bauelement mit Reflektor und Verfahren zur Herstellung von Bauelementen
CN105845790B (zh) * 2016-05-18 2018-08-31 厦门多彩光电子科技有限公司 一种倒装led芯片的封装方法
CN107482099B (zh) * 2016-06-08 2019-09-10 光宝光电(常州)有限公司 发光二极管封装结构
US10193043B2 (en) * 2016-07-28 2019-01-29 Lumileds Llc Light emitting device package with reflective side coating
CN107968142A (zh) 2016-10-19 2018-04-27 新世纪光电股份有限公司 发光装置及其制造方法
KR101877236B1 (ko) * 2016-11-04 2018-07-11 주식회사 세미콘라이트 반도체 발광소자 및 이의 제조방법
DE102016121099A1 (de) * 2016-11-04 2018-05-09 Osram Opto Semiconductors Gmbh Herstellung von strahlungsemittierenden halbleiterbauelementen
KR20180090006A (ko) * 2017-02-02 2018-08-10 서울반도체 주식회사 발광 다이오드 유닛
DE102017104479B4 (de) * 2017-03-03 2022-03-10 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von optoelektronischen Halbleiterbauteilen
DE102017107234A1 (de) * 2017-04-04 2018-10-18 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterbauelemente und strahlungsemittierendes Halbleiterbauelement
DE102017107226A1 (de) 2017-04-04 2018-10-04 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterbauelemente und strahlungsemittierendes Halbleiterbauelement
CN108695424B (zh) * 2017-04-05 2021-01-05 深圳市斯迈得半导体有限公司 一种增光型单面发光型cspled及其加工方法
KR101877241B1 (ko) * 2017-06-29 2018-07-11 주식회사 세미콘라이트 반도체 발광소자
KR101872317B1 (ko) * 2017-07-03 2018-06-29 주식회사 세미콘라이트 반도체 발광소자
EP3454386B1 (en) * 2017-07-21 2020-11-25 Maven Optronics Co., Ltd. Asymmetrically shaped light-emitting device, backlight module using the same, and method for manufacturing the same
WO2019015683A1 (zh) * 2017-07-21 2019-01-24 亿光电子工业股份有限公司 一种发光装置及其制作方法以及发光模组
US10680145B2 (en) 2017-08-04 2020-06-09 Everlight Electronics Co., Ltd. LED package structure and method for manufacturing same
WO2019044108A1 (ja) * 2017-08-30 2019-03-07 日本ゼオン株式会社 積層体およびその製造方法
US10361349B2 (en) * 2017-09-01 2019-07-23 Cree, Inc. Light emitting diodes, components and related methods
US10854780B2 (en) 2017-11-05 2020-12-01 Genesis Photonics Inc. Light emitting apparatus and manufacturing method thereof
TW201919261A (zh) 2017-11-05 2019-05-16 新世紀光電股份有限公司 發光裝置
KR102530755B1 (ko) * 2017-12-07 2023-05-10 삼성전자주식회사 광 반사 패턴 및 파장 변환 층을 갖는 발광 소자
US10854794B2 (en) * 2017-12-20 2020-12-01 Lumileds Llc Monolithic LED array structure
CN109980072A (zh) * 2017-12-27 2019-07-05 深圳市聚飞光电股份有限公司 Led器件及封装方法、背光模组、液晶显示模组和终端
CN109980068A (zh) * 2017-12-27 2019-07-05 深圳市聚飞光电股份有限公司 Led器件及封装方法、背光模组、液晶显示模组和终端
CN109980069A (zh) * 2017-12-27 2019-07-05 深圳市聚飞光电股份有限公司 Led器件及封装方法、背光模组、液晶显示模组和终端
TWI659550B (zh) * 2018-02-14 2019-05-11 行家光電股份有限公司 具電極辨識之晶片級封裝發光裝置及其製造方法
US11335842B2 (en) * 2018-02-14 2022-05-17 Maven Optronics Co., Ltd. Chip-scale packaging light-emitting device with electrode polarity identifier and method of manufacturing the same
KR102473290B1 (ko) 2018-04-02 2022-12-05 주식회사 루멘스 발광소자 패키지 및 발광소자 패키지 제조 방법
KR102519738B1 (ko) * 2018-02-27 2023-04-11 주식회사 루멘스 발광소자 패키지 및 발광 소자 패키지 제조 방법
KR102521810B1 (ko) * 2018-03-19 2023-04-17 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 패키지
US11552226B2 (en) * 2018-03-23 2023-01-10 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic device
KR101946244B1 (ko) * 2018-05-08 2019-02-11 주식회사 세미콘라이트 반도체 발광소자
CN109282178B (zh) * 2018-08-24 2022-02-08 京东方科技集团股份有限公司 灯条及其制备方法、显示装置
JP7150547B2 (ja) 2018-09-27 2022-10-11 日亜化学工業株式会社 発光装置の製造方法
CN109952660B (zh) * 2018-12-14 2022-07-19 泉州三安半导体科技有限公司 发光二极管封装体
US10910433B2 (en) 2018-12-31 2021-02-02 Lumileds Llc Pixelated LED array with optical elements
DE102019106546A1 (de) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung von optoelektronischen halbleiterbauteilen und optoelektronisches halbleiterbauteil
KR102140993B1 (ko) * 2019-04-01 2020-08-05 (주)라이타이저 발광다이오드 칩 스케일 패키지 및 그의 제조 방법
CN110416373B (zh) * 2019-07-10 2021-09-24 瑞识科技(深圳)有限公司 一种正面出光的led发光器件及其制作方法
CN110459467A (zh) * 2019-07-23 2019-11-15 深圳光台实业有限公司 一种电路基板封装切割工艺
DE102020103433A1 (de) 2020-02-11 2021-08-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische Vorrichtung und Verfahren
JP7239840B2 (ja) * 2020-08-31 2023-03-15 日亜化学工業株式会社 発光装置の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368286A (ja) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd 発光ダイオード及びその製造方法
JP2004354534A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 光照射装置
WO2009066430A1 (ja) * 2007-11-19 2009-05-28 Panasonic Corporation 半導体発光装置および半導体発光装置の製造方法
WO2009069671A1 (ja) * 2007-11-29 2009-06-04 Nichia Corporation 発光装置及びその製造方法
WO2011093454A1 (ja) * 2010-01-29 2011-08-04 シチズン電子株式会社 発光装置の製造方法及び発光装置
JP2011258665A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 半導体発光装置および半導体発光装置の製造方法
JP2012503332A (ja) * 2008-09-16 2012-02-02 オスラム・シルバニア・インコーポレイテッド 照明モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158472B2 (ja) * 2007-05-24 2013-03-06 スタンレー電気株式会社 半導体発光装置
JP4724222B2 (ja) 2008-12-12 2011-07-13 株式会社東芝 発光装置の製造方法
JP5482378B2 (ja) * 2009-04-20 2014-05-07 日亜化学工業株式会社 発光装置
KR101601622B1 (ko) * 2009-10-13 2016-03-09 삼성전자주식회사 발광다이오드 소자, 발광 장치 및 발광다이오드 소자의 제조방법
US8329482B2 (en) * 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
JP5680472B2 (ja) 2011-04-22 2015-03-04 シチズンホールディングス株式会社 半導体発光装置の製造方法
US8901578B2 (en) * 2011-05-10 2014-12-02 Rohm Co., Ltd. LED module having LED chips as light source
WO2014024370A1 (ja) * 2012-08-10 2014-02-13 パナソニック株式会社 半導体発光装置
JP6099901B2 (ja) * 2012-08-23 2017-03-22 スタンレー電気株式会社 発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368286A (ja) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd 発光ダイオード及びその製造方法
JP2004354534A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 光照射装置
WO2009066430A1 (ja) * 2007-11-19 2009-05-28 Panasonic Corporation 半導体発光装置および半導体発光装置の製造方法
WO2009069671A1 (ja) * 2007-11-29 2009-06-04 Nichia Corporation 発光装置及びその製造方法
JP2012503332A (ja) * 2008-09-16 2012-02-02 オスラム・シルバニア・インコーポレイテッド 照明モジュール
WO2011093454A1 (ja) * 2010-01-29 2011-08-04 シチズン電子株式会社 発光装置の製造方法及び発光装置
JP2011258665A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 半導体発光装置および半導体発光装置の製造方法

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092110A (ja) * 2014-10-31 2016-05-23 日亜化学工業株式会社 発光装置及び発光装置の製造方法
CN104393153A (zh) * 2014-11-28 2015-03-04 江阴长电先进封装有限公司 一种半导体器件的圆片级封装方法
CN104393153B (zh) * 2014-11-28 2017-05-31 江阴长电先进封装有限公司 一种半导体器件的圆片级封装方法
EP3273491B1 (en) * 2015-03-16 2021-12-01 Epistar Corporation Optical semiconductor element with light reflecting layer and phosphor layer
CN107431115A (zh) * 2015-03-16 2017-12-01 日东电工株式会社 带光反射层的光半导体元件的制造方法、带光反射层和荧光体层的光半导体元件的制造方法
US10923639B2 (en) 2015-03-16 2021-02-16 Epistar Corporation Method for producing an optical semiconductor device
US10573794B2 (en) 2015-05-29 2020-02-25 Hongli Zhihui Group Co.,Ltd. Method of packaging CSP LED and CSP LED
WO2016192452A1 (zh) * 2015-05-29 2016-12-08 广州市鸿利光电股份有限公司 Csp led的封装方法和csp led
CN105047786A (zh) * 2015-05-29 2015-11-11 广州市鸿利光电股份有限公司 芯片级封装led的封装方法
CN104916763A (zh) * 2015-05-29 2015-09-16 广州市鸿利光电股份有限公司 一种芯片级封装led的封装方法
CN106257695A (zh) * 2015-06-19 2016-12-28 三星电子株式会社 发光二极管封装件及其制造方法
CN105006510A (zh) * 2015-07-29 2015-10-28 广州市鸿利光电股份有限公司 一种csp led的封装方法
CN105006512A (zh) * 2015-08-06 2015-10-28 广州市鸿利光电股份有限公司 一种led封装结构及制造方法
CN105161609A (zh) * 2015-09-24 2015-12-16 晶科电子(广州)有限公司 一种芯片级led光源模组及其制作方法
JP2017108111A (ja) * 2015-10-05 2017-06-15 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. 斜角反射体を備えた発光素子およびその製造方法
US10763404B2 (en) 2015-10-05 2020-09-01 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
EP3154095B1 (en) * 2015-10-05 2020-04-08 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
JP2017092449A (ja) * 2015-11-05 2017-05-25 アクロラックス・インコーポレーテッド パッケージ構造及びその製造方法
JP2018536297A (ja) * 2015-11-10 2018-12-06 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 発光ダイオードデバイスおよびその製造方法
JP2017123393A (ja) * 2016-01-07 2017-07-13 日亜化学工業株式会社 発光装置の製造方法
KR20170119772A (ko) * 2016-04-19 2017-10-30 주식회사 세미콘라이트 반도체 발광소자
KR101907612B1 (ko) * 2016-04-19 2018-10-16 주식회사 세미콘라이트 반도체 발광소자
JP2019009449A (ja) * 2016-06-30 2019-01-17 日亜化学工業株式会社 Ledモジュール
US10641437B2 (en) 2016-06-30 2020-05-05 Nichia Corporation LED module
WO2018008197A1 (ja) * 2016-07-07 2018-01-11 日東電工株式会社 反射層および蛍光体層付光半導体素子
JP7280820B2 (ja) 2016-07-28 2023-05-24 ルミレッズ リミテッド ライアビリティ カンパニー 反射性側面コーティングを伴う発光デバイスの製造方法
JP2019526173A (ja) * 2016-07-28 2019-09-12 ルミレッズ リミテッド ライアビリティ カンパニー 反射性側面コーディングを伴う発光デバイスパッケージ
JP2018061027A (ja) * 2016-09-29 2018-04-12 日亜化学工業株式会社 発光装置の製造方法
JP2018107285A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法
JP7046493B2 (ja) 2017-03-07 2022-04-04 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP2018148075A (ja) * 2017-03-07 2018-09-20 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP7111939B2 (ja) 2017-04-28 2022-08-03 日亜化学工業株式会社 発光装置及びその製造方法
JP2018190771A (ja) * 2017-04-28 2018-11-29 日亜化学工業株式会社 発光装置及びその製造方法
US10700248B2 (en) 2017-05-12 2020-06-30 Nichia Corporation Method of manufacturing light emitting device
US10431724B2 (en) 2017-05-12 2019-10-01 Nichia Corporation Light emitting device and method of manufacturing same
JP2019054073A (ja) * 2017-09-14 2019-04-04 日亜化学工業株式会社 発光装置の製造方法
JP2021507527A (ja) * 2017-12-19 2021-02-22 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH 変換素子を製造する方法および変換素子
JP7317831B2 (ja) 2017-12-19 2023-07-31 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツング 変換素子を製造する方法および変換素子
KR20190093415A (ko) * 2018-02-01 2019-08-09 엘지이노텍 주식회사 발광소자 패키지 및 광원 장치
KR102514176B1 (ko) 2018-02-01 2023-03-27 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지 및 광원 장치
JP2019149538A (ja) * 2018-02-27 2019-09-05 ルーメンス カンパニー リミテッド 発光素子パッケージの製造方法
JP2019165122A (ja) * 2018-03-20 2019-09-26 日亜化学工業株式会社 発光装置および発光装置の製造方法
US10886430B2 (en) 2018-03-29 2021-01-05 Nichia Corporation Light-emitting device and method of manufacturing the same
US11424384B2 (en) 2018-03-29 2022-08-23 Nichia Corporation Light-emitting device and method of manufacturing the same
JP2019091898A (ja) * 2018-12-25 2019-06-13 日亜化学工業株式会社 発光装置の製造方法

Also Published As

Publication number Publication date
CN104854716B (zh) 2017-06-20
US9490398B2 (en) 2016-11-08
CN104854716A (zh) 2015-08-19
US20150311405A1 (en) 2015-10-29
JPWO2014091914A1 (ja) 2017-01-05
JP5611492B1 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5611492B1 (ja) Led装置及びその製造方法
JP6599295B2 (ja) 斜角反射体を備えた発光素子およびその製造方法
JP5995695B2 (ja) Led装置の製造方法
US8987774B2 (en) Semiconductor light-emitting device and producing method thereof
JP5619680B2 (ja) 半導体発光素子の製造方法
JP5680472B2 (ja) 半導体発光装置の製造方法
JP6008940B2 (ja) 半導体発光装置及びその製造方法
JP6515515B2 (ja) 発光装置の製造法
JP5634647B1 (ja) Ledモジュール
TWI505507B (zh) 發光元件以及其製造方法
TWI476946B (zh) 發光二極體裝置及其製造方法
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
JP6086738B2 (ja) Led装置
JP2013183020A (ja) 半導体発光装置およびその製造方法
JP6325536B2 (ja) 透明スペーサによってledから離隔された蛍光体
US20160190397A1 (en) Led package structure and the manufacturing method of the same
JP5611122B2 (ja) 半導体発光素子の製造方法
JP5656748B2 (ja) 半導体発光素子の製造方法
JP2019201089A (ja) チップスケールパッケージング発光素子の斜角チップ反射器およびその製造方法
CN107086266B (zh) 半导体发光器件封装件
US20230006109A1 (en) Light emitting device and manufacturing method thereof
JP7296201B2 (ja) 半導体発光装置
KR20120012677A (ko) 발광 소자 패키지 및 이의 제조방법
KR101946243B1 (ko) 반도체 발광소자의 제조방법
KR20140127099A (ko) 반도체 소자 구조물을 제조하는 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014516115

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14650787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861784

Country of ref document: EP

Kind code of ref document: A1