WO2013105188A1 - ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤 - Google Patents

ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤 Download PDF

Info

Publication number
WO2013105188A1
WO2013105188A1 PCT/JP2012/008236 JP2012008236W WO2013105188A1 WO 2013105188 A1 WO2013105188 A1 WO 2013105188A1 JP 2012008236 W JP2012008236 W JP 2012008236W WO 2013105188 A1 WO2013105188 A1 WO 2013105188A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl alcohol
group
alcohol polymer
mass
vinyl
Prior art date
Application number
PCT/JP2012/008236
Other languages
English (en)
French (fr)
Inventor
琢真 金島
雄介 天野
圭介 森川
藤原 直樹
謙介 長嶋
克爾 宇治田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP12864713.8A priority Critical patent/EP2803681B1/en
Priority to US14/371,508 priority patent/US9611344B2/en
Priority to JP2013553109A priority patent/JP5998153B2/ja
Priority to CN201280066825.2A priority patent/CN104039846B/zh
Priority to ES12864713.8T priority patent/ES2620638T3/es
Priority to KR1020147022394A priority patent/KR101931099B1/ko
Publication of WO2013105188A1 publication Critical patent/WO2013105188A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L41/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D141/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Coating compositions based on derivatives of such polymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/36Polyalkenyalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently

Definitions

  • the present invention relates to a vinyl alcohol polymer having a mercapto group in the side chain and a method for producing the same.
  • the present invention also relates to a composition comprising a vinyl alcohol polymer having a mercapto group in the side chain.
  • the present invention further relates to a coating agent comprising a vinyl alcohol polymer having a mercapto group in the side chain.
  • Vinyl alcohol polymers (hereinafter, vinyl alcohol polymers may be abbreviated as PVA) are one of the few crystalline water-soluble polymers, and have excellent interface and strength properties. In addition to being used as a stabilizer for the production, it occupies an important position as a PVA-based film and a PVA-based fiber. On the other hand, pursuing high functionality by controlling crystallinity or introducing a functional group to improve specific performance has been carried out, and various so-called modified PVAs have been developed.
  • a mercapto group is a functional group rich in reactivity. Introducing a mercapto group into PVA can produce functional polymers such as graft polymers and block polymers, modify polymers by various polymer reactions, and crosslinkers. It is important because it can make water resistant by reaction.
  • Patent Documents 1 to 3 Several proposals have been made for modified PVA having a mercapto group (Patent Documents 1 to 3). However, since the mercapto group of the modified PVA is introduced only at the end of the molecular chain, there is a problem that the number of reaction points is small and sufficient water resistance is not exhibited in the reaction with the crosslinking agent.
  • carboxyl group-modified PVA and acetoacetate group-containing PVA are known as PVA utilizing the reactivity with the crosslinking agent, and are used as coating agents for forming printing paper and coat layers.
  • Patent Documents 4 and 5 the carboxyl group-modified PVA is not sufficiently reactive, and in order to reach the desired water resistance level, a curing process for storing for about 1 day to 1 week in an environment of 30 to 40 ° C. is necessary.
  • acetoacetate group-containing PVA has excellent reactivity, water resistance can be imparted, but the reactivity between the acetoacetate ester introduced into the side chain and the cross-linking agent rapidly proceeds in solution. There was a problem that the viscosity stability was poor and the usable time was short.
  • JP 59-187005 A Japanese Patent No. 3256544 Japanese Patent Application Laid-Open No. 2007-246639 Japanese Patent Laid-Open No. 9-164863 JP 2007-84802 A
  • the present invention that has solved the above problems is a side-chain mercapto group-containing vinyl alcohol polymer containing a vinyl alcohol unit and a structural unit represented by the following formula (I).
  • R 1 is a hydrogen atom or a carboxyl group
  • R 2 is a hydrogen atom, a methyl group, a carboxyl group or a carboxymethyl group
  • X includes a carbon atom and a hydrogen atom, and a nitrogen atom and / or Or a divalent group having 1 to 22 carbon atoms which may contain an oxygen atom
  • R 1 is a carboxyl group
  • the carboxyl group forms a ring with the hydroxyl group of the adjacent vinyl alcohol unit.
  • R 2 is a carboxyl group or a carboxymethyl group
  • the carboxyl group or carboxymethyl group may form a ring with the hydroxyl group of the adjacent vinyl alcohol unit.
  • the present invention is also a vinyl alcohol polymer composition comprising the above-mentioned side chain mercapto group-containing vinyl alcohol polymer and a water-resistant agent.
  • the present invention also provides the above-mentioned side-chain mercapto group-containing vinyl alcohol polymer comprising a step of copolymerizing a vinyl ester and an unsaturated monomer that can be converted into the structural unit represented by the above formula (I). It is a manufacturing method.
  • the present invention is also a coating agent containing the above-mentioned side chain mercapto group-containing vinyl alcohol polymer.
  • a vinyl alcohol polymer having a mercapto group in the side chain and excellent in reactivity and a method for producing the same are provided.
  • the vinyl alcohol-type polymer composition which gives the product excellent in water resistance is provided.
  • a coating agent that exhibits excellent water resistance, excellent viscosity stability, and excellent storage stability is provided.
  • the side chain mercapto group-containing vinyl alcohol polymer of the present invention has a structural unit represented by the following formula (I). Since the number of reaction points can be increased by the presence of a mercapto group in the repeating unit of the polymer, the side-chain mercapto group-containing vinyl alcohol polymer of the present invention has high reactivity.
  • R 1 is a hydrogen atom or a carboxyl group
  • R 2 is a hydrogen atom, a methyl group, a carboxyl group or a carboxymethyl group
  • X contains a carbon atom and a hydrogen atom and is a nitrogen atom And / or a divalent group having 1 to 22 carbon atoms which may contain an oxygen atom.
  • R 1 is a carboxyl group
  • the carboxyl group may form a ring with a hydroxyl group of an adjacent vinyl alcohol unit.
  • R 2 is a carboxyl group or a carboxymethyl group
  • the carboxyl group or carboxymethyl group may form a ring with the hydroxyl group of the adjacent vinyl alcohol unit.
  • X in the unit represented by the formula (I) serves as a spacer between the polymer main chain and the mercapto group, and is a site that improves the reactivity of the mercapto group in terms of steric factors.
  • X is not particularly limited as long as it is a divalent group having 1 to 22 carbon atoms, which may contain a carbon atom and a hydrogen atom, and may contain a nitrogen atom and / or an oxygen atom.
  • the carbon number of X is preferably 1-20.
  • the number of hydrogen atoms, nitrogen atoms and oxygen atoms contained in X is not particularly limited.
  • Examples of the case where X contains a nitrogen atom and / or an oxygen atom include, for example, a carbonyl bond (—CO—), an ester bond (—COO—), an ether bond (inserted between carbon atoms of an aliphatic hydrocarbon group) -O-), amino bond [-NR- (R is a hydrogen atom or group containing carbon bonded to N)], amide bond (-CONH-) or the like, or a hydrogen atom of an aliphatic hydrocarbon group
  • Examples of the substituent include a carboxyl group (—COOH), a hydroxyl group (—OH) and the like.
  • Examples of X include linear, branched or cyclic aliphatic hydrocarbon groups having 1 to 22 carbon atoms (particularly alkylene groups); carbonyl bonds, ester bonds, ether bonds, amino bonds, and amide bonds.
  • Hints, total number of carbon atoms is 1 to 20
  • R 1 is a hydrogen atom
  • R 2 is a hydrogen atom or a methyl group
  • X contains a carbon atom and a hydrogen atom, and a nitrogen atom and / or oxygen A divalent group having 1 to 20 carbon atoms which may contain an atom.
  • X is a linear or branched alkylene group having a total of 1 to 20 carbon atoms which may be substituted with a carboxyl group or a hydroxyl group from the viewpoint of availability of raw materials and ease of synthesis.
  • X contains an amide bond
  • the amide bond is a main chain of the side chain mercapto group-containing vinyl alcohol polymer directly or via one methylene group.
  • the structural unit represented by the formula (I) is, for example, the following formula (I ′).
  • R 1 and R 2 have the same meanings as described above, n is 0 or 1, and X 1 is a divalent C 1-20 which may contain a nitrogen atom and / or an oxygen atom. It is an aliphatic hydrocarbon group.
  • n is preferably 0.
  • X is * —CO—NH—X 1 — (wherein, * represents a bond to be bonded to the polymer main chain, and X 1 is as defined above).
  • * represents a bond to be bonded to the polymer main chain, and X 1 is as defined above.
  • the aliphatic hydrocarbon group represented by X 1 may be linear, branched or cyclic, and is preferably linear or branched.
  • the number of carbon atoms at the site branched from the main chain of the aliphatic hydrocarbon group is 1 to 5 is preferable.
  • X 1 contains a nitrogen atom and / or an oxygen atom
  • examples of the case where X 1 contains a nitrogen atom and / or an oxygen atom include, for example, a carbonyl bond, an ether bond, an amino bond, an amide bond, etc., in which a nitrogen atom and / or an oxygen atom is inserted into the aliphatic hydrocarbon group
  • a nitrogen atom and / or an oxygen atom are contained as a carboxyl group, a hydroxyl group or the like which substitutes the aliphatic hydrocarbon group.
  • X 1 is preferably a linear or branched alkylene group having a total carbon number of 1 to 20, which may have a carboxyl group, more preferably.
  • a linear or branched alkylene group is preferably
  • Such a structural unit can be derived from an unsaturated monomer that can be copolymerized with a vinyl ester described later and can be converted into a structural unit represented by the formula (I), and preferably has the formula (II) It can derive from the thioester type monomer which has an unsaturated double bond represented by these.
  • R 3 and R 4 are both a hydrogen atom, or one is a hydrogen atom and the other is a carboxyl group
  • R 5 is a hydrogen atom, a methyl group, a carboxyl group, or a carboxymethyl group
  • X 2 is A group having 1 to 22 carbon atoms which may contain a carbon atom and a hydrogen atom and may contain a nitrogen atom and / or an oxygen atom
  • R 6 is a methyl group or a specific carbon atom contained in X 2 ; Covalently bond to form a ring structure.
  • the thioester monomer having an unsaturated double bond represented by the formula (II) is: Since very little unreacted monomer remains at the end of the polymerization, the odor of the side chain mercapto group-containing vinyl alcohol polymer of the present invention can be greatly reduced.
  • the thioester monomer having an unsaturated double bond represented by the formula (II) can be produced according to a known method.
  • Examples of the thioester monomer having an unsaturated double bond represented by the formula (II) include thioacetic acid S- (3-methyl-3-buten-1-yl) ester, thioacetic acid S-17- Octadecene-1-yl ester, thioacetic acid S-15-hexadecene-1-yl ester, thioacetic acid S-14-pentadecene-1-yl ester, thioacetic acid S-13-tetradecene-1-yl ester, thioacetic acid S- 12-tridecen-1-yl ester, thioacetic acid S-11-dodecen-1-yl ester, thioacetic acid S-10-undecen-1-yl ester, thioacetic acid S-9-decen-1-yl ester, thioacetic acid S-8-nonen-1-yl ester, thioacetic acid S-7-octen-1-yl
  • the content of the structural unit represented by the formula (I) in the side chain mercapto group-containing vinyl alcohol polymer of the present invention is not particularly limited, but the total structural unit in the polymer is 100 mol%, preferably 0.05. ⁇ 10 mol%, more preferably 0.1 to 7 mol%, particularly preferably 0.3 to 6 mol%.
  • the content is in these preferred ranges, the water resistance of the crosslinked film is easily developed.
  • the content is less than 0.05 mol%, the effect of modifying the vinyl alcohol polymer by the structural unit represented by the formula (I) may be insufficient. If the content exceeds 10 mol%, the crystallinity of the vinyl alcohol polymer tends to decrease, and the degree to which the water resistance of the crosslinked film becomes high may decrease.
  • the side chain mercapto group-containing vinyl alcohol polymer of the present invention can have one or more structural units represented by the formula (I). When it has 2 or more types of the said structural unit, it is preferable that the sum total of the content rate of these 2 or more types of structural units exists in the said range.
  • the constitutional unit in the polymer means a repeating unit constituting the polymer.
  • the following vinyl alcohol units and the following vinyl ester units are also constituent units.
  • the content of vinyl alcohol units in the side chain mercapto group-containing vinyl alcohol polymer of the present invention is not particularly limited. From the viewpoint of solubility in water, the total structural unit in the polymer is 100 mol%, preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 75 mol% or more, and particularly preferably 80 mol%. More than mol%. On the other hand, regarding the upper limit, the total structural unit in the polymer is 100 mol%, preferably 99.94 mol% or less, more preferably 99.9 mol% or less, still more preferably 99.5 mol%. It is as follows. A vinyl alcohol polymer having a higher content than 99.94 mol% is generally difficult to produce.
  • Vinyl alcohol units can be derived from vinyl ester units by hydrolysis or alcoholysis. Therefore, the vinyl ester unit may remain in the vinyl alcohol polymer depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit. Therefore, the side chain mercapto group-containing vinyl alcohol polymer of the present invention may contain a vinyl ester unit.
  • vinyl ester units include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, palmitic acid.
  • vinyl, vinyl stearate, vinyl oleate, vinyl benzoate and the like examples include vinyl, vinyl acetate is preferable from the industrial viewpoint.
  • the side chain mercapto group-containing vinyl alcohol polymer of the present invention further has a structural unit other than the structural unit represented by the formula (I), the vinyl alcohol unit and the vinyl ester unit as long as the effects of the present invention are obtained. Can do.
  • the structural unit is, for example, an unsaturated monomer that can be copolymerized with a vinyl ester and can be converted into a structural unit represented by the formula (I), and an ethylenically unsaturated monomer that can be copolymerized with a vinyl ester.
  • Is a structural unit derived from Examples of the ethylenically unsaturated monomer include ⁇ -olefins such as ethylene, propylene, n-butene, isobutylene, and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, and n-propyl acrylate.
  • Acrylates such as i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and its salts Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacryl Meta such as octadecyl acid Rylates; acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulf
  • the arrangement order of the structural unit represented by the formula (I) in the side chain mercapto group-containing vinyl alcohol polymer of the present invention, the vinyl alcohol unit, and other arbitrary structural units is not particularly limited, and may be random, block, Any one of alternating may be used.
  • the viscosity average degree of polymerization of the side chain mercapto group-containing vinyl alcohol polymer of the present invention measured according to JIS K6726 is not particularly limited, and is preferably 100 to 5,000, more preferably 200 to 4,000. It is. When the viscosity average degree of polymerization is less than 100, the mechanical strength of the film may be lowered when it is used as a film.
  • the side chain mercapto group-containing vinyl alcohol polymer of the present invention having a viscosity average polymerization degree exceeding 5,000 is difficult to industrially produce.
  • the method for producing the side chain mercapto group-containing vinyl alcohol polymer of the present invention is not particularly limited.
  • a method including a step of copolymerizing a vinyl ester and an unsaturated monomer that can be converted into the structural unit represented by the formula (I) is simple. More specifically, as the method, a vinyl ester and an unsaturated monomer that can be converted into the structural unit represented by the formula (I) are copolymerized, and the vinyl ester unit of the obtained copolymer is converted into a copolymer.
  • Examples include a method of converting a unit derived from an unsaturated monomer that can be converted into a vinyl alcohol unit and converted into a structural unit represented by the formula (I) into a structural unit represented by the formula (I). .
  • the copolymer obtained by copolymerizing a vinyl ester and a thioester monomer having an unsaturated double bond represented by the formula (II) (hereinafter referred to as thioester monomer (II)).
  • a method of hydrolysis or alcoholysis of the ester bond of the combined vinyl ester unit and the thioester bond of the structural unit derived from the thioester monomer (II) is simple and preferably used, and this method will be described below.
  • copolymerization of the vinyl ester and the thioester monomer (II) can be carried out by employing known methods and conditions for homopolymerizing the vinyl ester.
  • a monomer copolymerizable with vinyl ester and thioester monomer (II) may be further copolymerized.
  • the copolymerizable monomer is the same as the ethylenically unsaturated monomer.
  • the ester bond of the vinyl ester unit of the obtained copolymer and the thioester bond of the structural unit derived from the thioester monomer (II) can be hydrolyzed or subjected to alcoholysis under substantially the same conditions. Therefore, the hydrolysis or alcoholysis of the ester bond of the vinyl ester unit and the thioester bond of the structural unit derived from the thioester monomer (II) of the obtained copolymer is used when saponifying the vinyl ester homopolymer.
  • the known methods and conditions can be employed.
  • the side-chain mercapto group-containing vinyl alcohol polymer of the present invention is a vinyl alcohol-based polymer according to known methods such as molding, spinning, and emulsification, either alone or as a composition to which other components are added. It can be used for various applications in which a polymer is used.
  • surfactants for various uses paper coating agents, paper modifiers such as paper binders and pigment binders, adhesives such as wood, paper, aluminum foil and inorganic materials, nonwoven fabric binders, paints, warp glue It can be used for adhesives, fiber finishing agents, pastes for hydrophobic fibers such as polyester, various other films, sheets, bottles, fibers, thickeners, flocculants, soil modifiers, ion exchange resins, ion exchange membranes and the like.
  • the method for molding the side chain mercapto group-containing vinyl alcohol polymer of the present invention is not limited.
  • the molding method includes, for example, a method of molding the polymer from a solution in water, a solvent such as dimethyl sulfoxide (for example, cast molding method); a method of plasticizing and molding the polymer by heating (for example, extrusion) Molding method, injection molding method, inflation molding method, press molding method, blow molding method).
  • a molded product having an arbitrary shape such as a film, a sheet, a tube, or a bottle can be obtained.
  • the side chain mercapto group-containing vinyl alcohol polymer of the present invention has a higher content of mercapto groups and more reactive sites than the terminal mercapto group-modified vinyl alcohol polymer, the water resistance such as a crosslinking agent is particularly high. Rich in reactivity with chemicals. Therefore, a vinyl alcohol polymer composition giving a product excellent in water resistance can be obtained by blending a water-resistant agent with the side chain mercapto group-containing vinyl alcohol polymer of the present invention.
  • the present invention is also a vinyl alcohol polymer composition
  • a vinyl alcohol polymer composition comprising the above-mentioned side chain mercapto group-containing vinyl alcohol polymer and a water-resistant agent.
  • Examples of the water-proofing agent contained in the vinyl alcohol polymer composition of the present invention include zirconyl nitrate, ammonium zirconium carbonate, zirconyl chloride, zirconyl acetate, zirconyl sulfate, aluminum sulfate, aluminum nitrate, titanium lactate, titanium diisopropoxy.
  • Acid anhydrides such as bis (triethanolaminate), pyromellitic dianhydride, divinyl sulfone compounds, melamine resins, methylol melamine, methylolated bisphenol S, polyvalent vinyl compounds, polyvalent (meth) acrylate compounds, many Examples thereof include valent epoxy compounds, aldehyde compounds, polyvalent isocyanate compounds, water-soluble oxidants, polyamide polyamine epichlorohydrin resins, and the like.
  • the polyvalent (meth) acrylate compound is not particularly limited.
  • “NK Ester” (701A, A-200, A-400, A-600, A-1000, A- B1206PE, ABE-300, A-BPE-10, A-BPE-20, A-BPE-30, A-BPE-4, A-BPEF, A-BPP-3, A-DCP, A-DOD-N, A-HD-N, A-NOD-N, APG-100, APG-200, APG-400, APG-700, A-PTMG-65, A-9300, A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A-TMM-3LM-N, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH 1G, 2G, 3G, 4G, A-PG5054E etc.) and the like.
  • the polyvalent epoxy compound is not particularly limited.
  • “Denacol” manufactured by Nagase ChemteX Corporation (EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321, EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX- 850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-861, EX-911, EX-941, EX-920, EX-931, EX-721, EX-203, EX-711, EX-221, etc.), bisphenol A diglycidyl ether, bisphenol A di ⁇ methyl glycidyl ether, bisphenol Nord F diglycidyl ether, tetrahydroxyphenylmethane tetragly
  • aldehyde compound For example, monoaldehydes, such as formaldehyde, acetaldehyde, propionaldehyde, crotonaldehyde, benzaldehyde, glyoxal, malonaldehyde, glutaraldehyde, pimelindialdehyde, suberindialdehyde, dialdehyde Examples include dialdehydes such as starch.
  • the polyvalent isocyanate compound is not particularly limited.
  • “Duranate” manufactured by Asahi Kasei Chemicals Corporation WB40-100, WB40-80D, WE50-100, WT30-100, WT20-100, etc.
  • Tolylene diisocyanate TDI
  • Hydrogenated TDI Trimethylolpropane-TDI adduct (for example, “DesmodurL” manufactured by Bayer); Triphenylmethane triisocyanate; Methylene (bisphenyl isocyanate) (MDI); Hydrogenated MDI; Polymerized MDI; Hexamethylene Examples include diisocyanate; xylylene diisocyanate; 4,4′-dicyclohexylmethane diisocyanate; isophorone diisocyanate. Isocyanates dispersed in water using an emulsifier can also be used.
  • the water-soluble oxidizing agent is not particularly limited, and examples thereof include persulfates such as ammonium persulfate, potassium persulfate, and sodium persulfate, hydrogen peroxide, benzoyl peroxide, dicumyl peroxide, cumene hydroperoxide, Examples thereof include t-butyl hydroperoxide, potassium bromate, t-butyl peracetate, t-butyl perbenzoate and the like.
  • Water resistance agents may be used alone or in combination.
  • the content of the water-resistant agent is not particularly limited, but can be determined according to the type of the side chain mercapto group-containing vinyl alcohol polymer.
  • the amount is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the side chain mercapto group-containing vinyl alcohol polymer.
  • the amount is more preferably from 100 parts by mass to 100 parts by mass, and particularly preferably from 1 to 80 parts by mass.
  • the vinyl alcohol polymer composition of the present invention further includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, Flame retardants, plasticizers, other thermoplastic resins, lubricants, fragrances, defoamers, deodorants, extenders, release agents, mold release agents, reinforcing agents, fungicides, preservatives, crystallization rate retarders Additives such as can be blended as needed.
  • a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, Flame retardants, plasticizers, other thermoplastic resins, lubricants, fragrances, defoamers, deodorants, extenders, release agents, mold release agents, reinforcing agents, fungicides, preservatives, crystallization rate retarders
  • Additives such as can be blended
  • the vinyl alcohol polymer composition of the present invention can be used for the same purpose in the same manner as a composition containing a known vinyl alcohol polymer and a water-resistant agent.
  • it is effectively used as a coating agent for inorganic materials or organic materials such as paper and various resin base materials, particularly as a surface coating agent for paper and various resin films.
  • the resin film include films of polyester, polystyrene, polyamide, polyvinyl chloride, polymethyl methacrylate, cellulose acetate, polycarbonate, polyimide, and the like.
  • the vinyl alcohol polymer composition of the present invention is very effectively used for a recording material, particularly a coating layer of a heat-sensitive recording material that cannot be heat-treated at a high temperature, particularly an overcoat layer.
  • the vinyl alcohol polymer composition of the present invention comprises an inorganic or organic adhesive or binder, a coating vehicle, a dispersant such as a pigment dispersion, a polymerization stabilizer or post-additive for a crosslinkable emulsion, a gelatin blend or a photosensitivity. It can be widely used for image forming materials such as resins, base materials for hydrogels such as bacterial cell-fixed gels or enzyme-fixed gels, and applications where water-soluble resins have been used. Furthermore, it can also be used for molded products such as films, sheets and fibers.
  • the present invention further provides a coating agent comprising the above-mentioned side chain mercapto group-containing vinyl alcohol polymer.
  • the coating agent of the present invention may contain the above water resistance agent in addition to the side chain mercapto group-containing vinyl alcohol polymer.
  • the above waterproofing agents may be used alone or in combination. From the viewpoint of higher viscosity stability of the coating agent, a polyamide polyamine epichlorohydrin resin is preferred.
  • the mass ratio of the side chain mercapto group-containing vinyl alcohol polymer and the water resistance agent is not particularly limited, but the water resistance agent is 0.5 to 100 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. It is preferably 1 to 80 parts by mass. If the amount of the water-resistant agent is less than 0.5 parts by mass, the crosslinking performance and the crosslinking rate may be insufficient. If the amount is more than 100 parts by mass, the water resistance decreases or the viscosity stability of the coating agent is poor. There is a case.
  • the coating agent of the present invention preferably contains water and is used in the form of an aqueous coating solution.
  • the solid content concentration may be arbitrarily selected in consideration of the coating property of the coating agent and the time required for drying after coating. However, it is preferably in the range of 1 to 40% by mass, more preferably in the range of 3 to 30% by mass.
  • the coating agent of the present invention may contain various additives as necessary.
  • additives include plasticizers such as glycols and glycerin; pH adjusters such as ammonia, caustic soda, sodium carbonate, and phosphoric acid; UV absorbers such as benzophenone and benzotriazole; lubricants, thickeners, and fluids Examples include property improvers, dyes, pigments, fluorescent brighteners, antioxidants, preservatives, antifungal agents, antifoaming agents, mold release agents, surfactants, and fillers.
  • the coating agent of the present invention includes, as additives, various modified PVAs such as non-modified PVA, sulfonic acid group-modified PVA, acrylamide-modified PVA, cation group-modified PVA, and long-chain alkyl group-modified PVA; starch, modified starch, and casein Effects of the present invention include water-soluble polymers such as carboxymethyl cellulose; synthetic resin emulsions such as styrene-butadiene latex, polyacrylate emulsion, vinyl acetate-ethylene copolymer emulsion, vinyl acetate-acrylate copolymer emulsion, and the like. May be included within a range not to be damaged.
  • the coating agent of the present invention is used as a coating agent for inorganic materials or organic materials such as paper and various resin substrates.
  • it is suitable as a paper coating agent and can be used as a clear coating agent or a pigment coating agent.
  • the coating layer can be formed on the paper surface as a coating layer (eg, overcoat layer, backcoat layer), and when used as a pigment coating agent, The layer can be formed on the paper surface as a coloring layer.
  • the coating amount of the coating agent of the present invention is not particularly limited, but is usually about 0.1 to 30 g / m 2 in terms of solid content.
  • the type of paper to be coated is not particularly limited.
  • paperboard such as manila ball, white ball, liner, etc .
  • general high quality paper such as manila ball, white ball, liner, etc .
  • general high quality paper such as manila ball, white ball, liner, etc .
  • medium quality paper Printing paper such as gravure paper; thermal paper.
  • the coating agent of the present invention When used as a clear coating agent, the coating agent may be applied as it is to the paper surface of the paper to be coated.
  • the type of paper to be coated is not particularly limited.
  • thermal paper, inkjet paper, pressure sensitive paper, art-coated paper, fine coating paper examples include craft paper.
  • a coating liquid obtained by mixing the coating agent and a pigment may be applied to the surface of the paper to be coated.
  • the mixing ratio of the coating agent and the pigment is not particularly limited, but 0.5 to 15 parts by weight of the coating agent is preferably mixed with 100 parts by weight of the pigment, and 1 to 10 parts by weight of the coating agent is mixed. More preferably.
  • the solid content concentration of the coating liquid can be appropriately adjusted within the range of 30 to 65% by mass.
  • the coating agent of the present invention is used as a pigment coating agent
  • the pigment is not particularly limited, and a known compound can be used.
  • kaolin, clay, talc, calcium carbonate, calcined clay, titanium oxide, diatomaceous earth, sedimentation Silica, gel-like silica, colloidal silica, aluminum oxide, aluminum hydroxide, synthetic aluminum silicate, synthetic magnesium silicate, polystyrene fine particles, polyvinyl acetate fine particles, urea-formalin resin fine particles and the like can be used.
  • the method for applying the coating agent of the present invention to the paper surface is not particularly limited, and for example, a known coater (size press coater, air knife coater, blade coater, roll coater, etc.) may be used.
  • a known coater size press coater, air knife coater, blade coater, roll coater, etc.
  • a drying process may be performed, and a coating layer having excellent water resistance can be formed in the drying process, and there is no need to separately provide a long curing process.
  • the drying step can be performed at either low temperature or high temperature, but sufficient water resistance can be imparted even at low temperature, for example, 50 ° C. or less, particularly 40 ° C. or less, and even room temperature or less.
  • the obtained film for evaluation was immersed in boiling water for 1 hour, taken out from the water, and vacuum-dried at 40 ° C. for 12 hours, and then the mass (W1) was measured. From the obtained mass (W1) and the mass before immersion (W2), the dissolution rate under boiling conditions was calculated according to the following formula. This elution rate was used as an index of water resistance after crosslinking. In addition, when the film for evaluation melt
  • dissolved during immersion in water, it evaluated as "impossible to measure.” Dissolution rate (mass%) 100 ⁇ ([W2] ⁇ [W1]) / [W2]
  • the water resistance of the coating layer formed with the coating agent was evaluated in three stages according to the following criteria. ⁇ and ⁇ are levels that can actually be used. A: Almost no peeling even after rubbing 100 times. ⁇ : Some peeling occurred at the time of rubbing 50 times. X: Peeling occurred when rubbed once.
  • Example 1 (1) In a reactor equipped with a stirrer, a reflux condenser, an argon inlet, and an initiator addition port, 630 parts by mass of vinyl acetate, thioacetic acid S-7-octene-1 represented by the following formula (II-1) -13.8 parts by mass of yl ester and 170 parts by mass of methanol were charged, and the system was purged with argon for 30 minutes while bubbling with argon. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.5 parts by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. After polymerization at 60 ° C.
  • a gelled product was formed about 8 minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and further allowed to stand at 40 ° C. for 52 minutes to allow saponification to proceed. Methyl acetate was added thereto to neutralize the remaining alkali, and then thoroughly washed with methanol and dried in a vacuum dryer at 40 ° C. for 12 hours to obtain a copolymer (PVA-1). The obtained copolymer had an odor considered to be derived from unreacted monomers.
  • the obtained copolymer was analyzed by 1 H-NMR (270 MHz, D 2 O (containing 3- (trimethylsilyl) -1-propanesulfonic acid sodium (DSS)), 60 ° C.). It was found that this was a polyvinyl alcohol having a mercapto group copolymerized with 0.5 mol% of 8-mercapto-1-octene units. The saponification degree of the polyvinyl alcohol having the mercapto group was 98.4 mol%. Moreover, the viscosity average polymerization degree of the polyvinyl alcohol measured based on JIS K6726 was 1600. The results of 1 H-NMR analysis are shown below.
  • Example 2 ⁇ Examples 2 to 5>
  • Polyvinyl alcohols (PVA-2 to PVA-5) having a mercapto group described in Table 1 were obtained in the same manner as in Example 1 except that the molar ratio was changed to the amount shown in Table 1.
  • the obtained polyvinyl alcohol having a mercapto group had an odor considered to be derived from an unreacted monomer.
  • Table 2 shows each evaluation result (evaluated in the same manner as in Example 1) of the obtained polyvinyl alcohol having a mercapto group.
  • Example 6 In Example 1, instead of thioacetic acid S-7-octen-1-yl ester, thioacetic acid S-11-dodecen-1-yl ester represented by the following formula (II-2) was used in the amount shown in Table 1. Examples, except that the amounts of vinyl acetate, methanol, and 2,2′-azobisisobutyronitrile used, and the molar ratio of sodium hydroxide to vinyl acetate units during saponification were changed to the amounts shown in Table 1. 1, polyvinyl alcohol (PVA-6) having a mercapto group described in Table 1 was obtained. The obtained polyvinyl alcohol having a mercapto group had an odor considered to be derived from an unreacted monomer.
  • PVA-6 polyvinyl alcohol having a mercapto group having a mercapto group described in Table 1 was obtained.
  • the obtained polyvinyl alcohol having a mercapto group had an odor considered to be derived from an unreacted monomer.
  • Example 7 instead of thioacetic acid S-7-octen-1-yl ester, thioacetic acid S- (3-methyl-3-buten-1-yl) ester represented by the following formula (II-3) Using the amounts shown in Table 1, the amounts of vinyl acetate, methanol, and 2,2'-azobisisobutyronitrile, and the molar ratio of sodium hydroxide to vinyl acetate units during saponification were used in the amounts shown in Table 1. Except for the change, the same procedure as in Example 1 was carried out to obtain the polyvinyl alcohols (PVA-7, PVA-8) having the mercapto group described in Table 1.
  • PVA-7, PVA-8 polyvinyl alcohols having the mercapto group described in Table 1.
  • the obtained polyvinyl alcohol having a mercapto group had an odor considered to be derived from an unreacted monomer.
  • the analysis results of 1 H-NMR (270 MHz, D 2 O (containing DSS), 60 ° C.) concerning PVA-7 are shown below.
  • Table 2 shows each evaluation result (evaluated in the same manner as in Example 1) of the obtained polyvinyl alcohol having a mercapto group.
  • an acrylate crosslinking agent (“NK Ester” A-400 manufactured by Shin-Nakamura Chemical Co., Ltd.) was added thereto.
  • the water resistance after crosslinking of the vinyl alcohol polymer composition was evaluated. The results are shown in Table 2.
  • Example 9 except that PVA-6 to PVA-8 were used instead of PVA-1 used in Example 9 and an acrylate crosslinking agent (“NK Ester” ATM-35E manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. As well as. The results are shown in Table 2.
  • Example 17 In place of the acrylate-based crosslinking agent used in Example 9, an epoxy-based crosslinking agent (“Denacol” EX-512, manufactured by Nagase ChemteX Corporation), a mercapto group of the PVA having a mercapto group, and an epoxy of the epoxy-based crosslinking agent The same procedure as in Example 9 was performed except that the group was used in an equimolar ratio. The results are shown in Table 2.
  • Example 18 Mercapto group and isocyanate of PVA having a mercapto group instead of an acrylate-based crosslinking agent used in Example 9 and an isocyanate crosslinking agent (“Duranate” WB40-100, manufactured by Asahi Kasei Chemicals Corporation, isocyanate group content 16.6 wt%)
  • Duranate WB40-100, manufactured by Asahi Kasei Chemicals Corporation, isocyanate group content 16.6 wt%
  • the same operation as in Example 9 was carried out except that the isocyanate group contained in the system crosslinking agent was used in an equimolar ratio. The results are shown in Table 2.
  • a reactor was charged with 2.5 parts by mass of DL-homocysteine thiolactone hydrochloride, 5.0 parts by mass of triethylamine, 0.3 parts by mass of hydroquinone, and 60 parts by mass of methylene chloride, and cooled to 0 ° C.
  • methacrylic acid chloride was added dropwise over 1 hour, the temperature was raised to room temperature and stirred for 1 hour to complete the reaction.
  • a saturated aqueous sodium hydrogen carbonate solution was added thereto for liquid separation treatment, and the extracted methylene chloride layer was concentrated to obtain a crude product.
  • the obtained crude product was dissolved in methylene chloride, activated carbon was added, and the mixture was stirred at room temperature for 30 minutes. After the activated carbon was filtered off using Celite and silica gel, the filtrate was concentrated to obtain 2.1 parts by mass of the thioester monomer (a-10).
  • the results of 1 H-NMR analysis are shown below.
  • Example 19 Synthesis of modified polyvinyl alcohol (PVA-9)
  • PVA-9 modified polyvinyl alcohol
  • a reactor equipped with a stirrer, reflux condenser, argon inlet, comonomer addition port and polymerization initiator addition port 450 parts by mass of vinyl acetate, thioester monomer as comonomer (A-9) 0.37 parts by mass and 141 parts by mass of methanol were charged, and the system was purged with argon for 30 minutes while bubbling with argon.
  • a methanol solution (concentration of 4% by mass) of the thioester monomer (a-9) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled for 30 minutes.
  • the temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.1 part by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. While the polymerization reaction was in progress, the prepared delay solution was dropped into the system so that the monomer composition in the polymerization solution (molar ratio of vinyl acetate and thioester monomer (a-9)) was constant. . After polymerization at 60 ° C.
  • methanol is added to 95 parts by mass of the obtained methanol solution to 98 parts by mass, and 2.2 parts by mass of a sodium hydroxide methanol solution (concentration 12.8% by mass) is added thereto at 40 ° C.
  • Saponification was performed for 1 hour. After completion of saponification, 200 parts by mass of methyl acetate was added to neutralize the remaining alkali. After confirming that neutralization was completed using a phenolphthalein indicator, the solution was filtered to obtain a white solid.
  • the washing process of adding 300 parts by mass of methanol to the obtained white solid, stirring at 50 ° C. and then filtering was repeated three times. The washed white solid was dried with a vacuum dryer at 40 ° C.
  • modified polyvinyl alcohol PVA-9
  • the obtained modified polyvinyl alcohol was almost odorless.
  • the synthesis conditions are shown in Table 3.
  • chemical shift values obtained by 1 H-NMR measurement are shown below.
  • Table 4 shows the content (modified amount) of the structural unit represented by the formula (I) and the content (saponification degree) of the vinyl alcohol unit obtained by 1 H-NMR measurement.
  • Table 4 shows the viscosity average degree of polymerization measured in accordance with JIS K6726.
  • Table 1 shows the polymerization conditions (initial amounts of vinyl acetate monomer, methanol and comonomer, and types of comonomers used during polymerization) and saponification conditions (concentration of modified polyvinyl acetate and molar ratio of sodium hydroxide to vinyl acetate units).
  • Various modified polyvinyl alcohols (PVA-10 to PVA-15) were synthesized in the same manner as in Example 19 except for changing to. The obtained modified polyvinyl alcohol was almost odorless. Chemical shift values obtained by 1 H-NMR measurement are shown below.
  • Table 4 shows the content (modified amount) of the structural unit represented by the formula (I) and the content (saponification degree) of the vinyl alcohol unit obtained by 1 H-NMR measurement. Furthermore, Table 4 shows the viscosity average degree of polymerization measured in accordance with JIS K6726.
  • acrylate-based crosslinking agent (“NK Ester” A-400 manufactured by Shin-Nakamura Chemical Co., Ltd.) was added thereto.
  • the water resistance after crosslinking of the vinyl alcohol polymer composition was evaluated. The results are shown in Table 4.
  • Example 32 1.5 parts by mass of PVA-15 obtained in the above Example was dissolved in 28.5 parts by mass of water, and an isocyanate-based crosslinking agent (“Duranate” WB40-100 manufactured by Asahi Kasei Chemicals Corporation, isocyanate group content 16.6 wt. %) was added in such a ratio that the mercapto group possessed by the PVA having a mercapto group and the isocyanate group possessed by the isocyanate-based crosslinking agent were equimolar, to prepare an aqueous solution of the vinyl alcohol polymer composition. According to the above evaluation method, the water resistance after crosslinking of the vinyl alcohol polymer composition was evaluated. The results are shown in Table 4.
  • the vinyl alcohol polymer of the present invention having a mercapto group in the side chain can exhibit high water resistance due to the reaction between a general-purpose crosslinking agent and the introduced mercapto group.
  • a vinyl alcohol polymer into which no mercapto group has been introduced does not exhibit water resistance.
  • water resistance does not express.
  • Example 33 90 g of aluminum hydroxide powder (manufactured by Showa Denko KK, Hydylite H42) was added to 210 g of distilled water and mixed to prepare aluminum hydroxide dispersion A (aluminum hydroxide concentration 30%). Separately from this, PVA-1 was dissolved in hot water at 95 ° C. to prepare a PVA aqueous solution having a concentration of 10%.
  • Examples 34 to 42> The same procedure as in Example 33 was performed except that PVA-3 to PVA-6, PVA-8 to PVA-10, and PVA-13 to PVA-14 were used instead of PVA-1 used in Example 33. The evaluation results are shown in Table 5.
  • Example 43 The amount of the dispersion A used in Example 33 was changed to 26.6 g, and in addition to the polyamide polyamine epichlorohydrin resin as a water resistance agent, a polyvalent acrylate compound (“NK ester manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. The same procedure as in Example 33 was conducted except that 0.18 g of "A-400)" was added. The evaluation results are shown in Table 5.
  • Example 44 to 46 The same procedure as in Example 43 was performed except that PVA-3 and PVA-13 to PVA-14 were used instead of PVA-1 used in Example 43. The evaluation results are shown in Table 5.
  • Example 47 In Example 33, it carried out similarly to Example 33 except having added 1.2 g of polyamide polyamine epichlorohydrin resin. The evaluation results are shown in Table 5.
  • Example 48 The same procedure as in Example 47 was performed except that PVA-13 was used instead of PVA-1 used in Example 47. The evaluation results are shown in Table 5.
  • Example 3 The same procedure as in Example 33 was performed except that unmodified PVA (viscosity average polymerization degree 1700, saponification degree 98.5 mol%) was used instead of PVA-1 used in Example 33. The evaluation results are shown in Table 5.
  • Example 6 The same procedure as in Example 33 was performed except that acetoacetyl group-modified PVA (saponification degree: 98.5 mol%, viscosity average polymerization degree: 1000, modification amount: 5 mol%) was used instead of PVA-1 used in Example 33. It was. The evaluation results are shown in Table 5.
  • the coating agent of the present invention is excellent in viscosity stability and storage stability in the case of an aqueous coating liquid, and after coating on paper, the curing step can be omitted.
  • a layer having excellent water resistance can be formed on the paper surface.
  • the vinyl alcohol polymer having a mercapto group in the side chain of the present invention can be used for the same applications as conventional vinyl alcohol polymers.
  • Applications include, for example, paper coating agents; paper additives such as paper additives and pigment binders; adhesives for wood, paper, aluminum foil, and inorganic materials; surfactants for various uses; nonwoven fabric binders Paint; warp paste; fiber processing agent; hydrophobic fiber paste such as polyester; various films, sheets, bottles, fibers; thickeners, flocculants, soil modifiers, ion exchange resins, ion exchange membranes, etc. is there.
  • a vinyl alcohol polymer having a mercapto group in the side chain of the present invention, it is possible to provide a coating agent that exhibits excellent water resistance and is excellent in viscosity stability and storage stability.
  • the coating agent is used as a paper coating agent, paper having a layer having excellent water resistance suitable for various printing including offset printing and thermal printing can be produced with high productivity. it can.

Abstract

 本発明は、メルカプト基を有する反応性に優れたビニルアルコール系重合体を提供する。本発明は、ビニルアルコール単位、及び下記式(I)で表される構成単位を含む側鎖メルカプト基含有ビニルアルコール系重合体である(式中の各記号は、明細書に定義の通りである)。

Description

ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤
 本発明は、側鎖にメルカプト基を有するビニルアルコール系重合体及びその製造方法に関する。本発明はまた、側鎖にメルカプト基を有するビニルアルコール系重合体を含む組成物に関する。本発明はさらに、側鎖にメルカプト基を有するビニルアルコール系重合体を含む塗工剤に関する。
 ビニルアルコール系重合体(以下ビニルアルコール系重合体をPVAと略記することがある)は数少ない結晶性の水溶性高分子として優れた界面特性及び強度特性を有する事から、紙加工、繊維加工及びエマルジョン用の安定剤に利用されているほか、PVA系フィルム及びPVA系繊維等として重要な地位を占めている。一方で結晶性を制御したり、官能基を導入して特定の性能を向上させた高機能化の追求も行われており、いわゆる変性PVAも種々開発されている。
 メルカプト基は反応性に富む官能基であり、メルカプト基をPVAに導入することはグラフトポリマーやブロックポリマー等の機能性重合体の製造、各種高分子反応による重合体の改質、架橋剤との反応による耐水化等を可能にすることができ、重要である。
 メルカプト基を有する変性PVAとしてはこれまでにいくつかの提案がなされている(特許文献1~3)。しかしながら、当該変性PVAのメルカプト基は分子鎖末端のみに導入されているため、反応点の数が少なく、架橋剤との反応において十分な耐水性が発現しないという問題があった。
 また、架橋剤との反応性を活かしたPVAとして、カルボキシル基変性PVAやアセト酢酸エステル基含有PVAが知られており、印刷用紙やコート層を形成するための塗工剤などに用いられている(特許文献4、5)。しかしながら、カルボキシル基変性PVAは反応性が充分ではなく、所望の耐水レベルに到達させるために、30~40℃の環境下で1日~1週間程度保存するキュア工程が必要であった。また、アセト酢酸エステル基含有PVAは、優れた反応性を有するため、耐水性付与は可能であるが、側鎖に導入されたアセト酢酸エステルと架橋剤との反応性が急速に進むため溶液での粘度安定性が悪く、使用可能時間が短いという問題点があった。
特開昭59-187005号公報 特許第3256544号公報 特開2007-246639号公報 特開平9-164763号公報 特開2007-84802号公報
 本発明は、メルカプト基を有する反応性に優れたビニルアルコール系重合体及びその製造方法を提供することを目的とする。本発明はまた、耐水性に優れる製品を与えるビニルアルコール系重合体組成物を提供することを目的とする。本発明はさらに、優れた耐水性を発現し、粘度安定性に優れ貯蔵安定性が良好な塗工剤を提供することを目的とする。
 上記課題を解決した本発明は、ビニルアルコール単位、及び下記式(I)で表される構成単位を含む側鎖メルカプト基含有ビニルアルコール系重合体である。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子又はカルボキシル基であり、Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基であり、Xは、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~22の2価の基であり、Rがカルボキシル基である場合、当該カルボキシル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよく、Rがカルボキシル基又はカルボキシメチル基である場合、当該カルボキシル基又はカルボキシメチル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよい。)
 本発明はまた、上記の側鎖メルカプト基含有ビニルアルコール系重合体と耐水化剤とを含むビニルアルコール系重合体組成物である。
 本発明はまた、ビニルエステルと、上記式(I)で表される構成単位に変換可能な不飽和単量体とを共重合する工程を含む上記の側鎖メルカプト基含有ビニルアルコール系重合体の製造方法である。
 本発明はまた、上記の側鎖メルカプト基含有ビニルアルコール系重合体を含む塗工剤である。
 本発明によれば、側鎖にメルカプト基を有する反応性に優れたビニルアルコール系重合体及びその製造方法が提供される。また、本発明によれば、耐水性に優れる製品を与えるビニルアルコール系重合体組成物が提供される。さらに、本発明によれば、優れた耐水性を発現し、粘度安定性に優れ貯蔵安定性が良好な塗工剤が提供される。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、以下の式(I)に示される構成単位を有する。重合体の繰り返し単位中にメルカプト基が存在することにより反応点を多くすることができるため、本発明の側鎖メルカプト基含有ビニルアルコール系重合体は反応性が高い。式(I)において、Rは、水素原子又はカルボキシル基であり、Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基であり、Xは、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~22の2価の基である。Rがカルボキシル基である場合、当該カルボキシル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよい。Rがカルボキシル基又はカルボキシメチル基である場合、当該カルボキシル基又はカルボキシメチル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000002
 式(I)で表される単位中のXは、重合体主鎖とメルカプト基との間のスペーサーの役割を果たし、メルカプト基の反応性を立体的因子の点から向上させる部位である。Xは、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~22の2価の基であればよく、特に限定されない。Xの炭素数としては、1~20が好ましい。Xが含む水素原子、窒素原子及び酸素原子の数は特に限定されない。Xが窒素原子及び/又は酸素原子を含む場合としては、例えば、脂肪族炭化水素基の炭素原子間に挿入された、カルボニル結合(-CO-)、エステル結合(-COO-)、エーテル結合(-O-)、アミノ結合〔-NR-(Rは水素原子またはNと結合する炭素を含む基)〕、アミド結合(-CONH-)等として含む場合や、脂肪族炭化水素基の水素原子を置換する、カルボキシル基(-COOH)、水酸基(-OH)等として含む場合が挙げられる。Xの例としては、直鎖状、分岐状又は環状の炭素数1~22の脂肪族炭化水素基(特に、アルキレン基);カルボニル結合、エステル結合、エーテル結合、アミノ結合、及びアミド結合からなる群より選ばれる少なくとも1種の結合を含み、合計炭素数が1~22の直鎖状、分岐状又は環状の脂肪族炭化水素基(特に、アルキレン基);アルコキシ基、カルボキシル基及び水酸基からなる群より選ばれる少なくとも1種の置換基を有する合計炭素数が1~22の直鎖状、分岐状又は環状の脂肪族炭化水素基(特に、アルキレン基);アルコキシ基、カルボキシル基及び水酸基からなる群より選ばれる少なくとも1種の置換基を有し、かつカルボニル基、エステル結合、エーテル結合及びアミド結合からなる群より選ばれる少なくとも1種の結合を含み、合計炭素数が1~20の直鎖状、分岐状又は環状の脂肪族炭化水素基(特に、アルキレン基)等が挙げられる。
 好ましい一実施形態では、式(I)において、R1が、水素原子であり、Rが、水素原子又はメチル基であり、Xが、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の基である。当該実施形態においては、Xは、原料入手性、合成上の容易さから、カルボキシル基又は水酸基で置換されていてもよい合計炭素数1~20の直鎖状又は分岐状のアルキレン基であることが好ましく、合計炭素数1~20の直鎖状又は分岐状のアルキレン基であることがより好ましく、合計炭素数2~14の直鎖状又は分岐状のアルキレン基であることがさらに好ましく、合計炭素数2~8の直鎖状又は分岐状のアルキレン基であることがさらにより好ましい。さらに反応性の観点から、最も好ましくは、直鎖状の炭素数6のアルキレン基である。
 別の好ましい一実施形態では、式(I)において、Xが、アミド結合を含み、当該アミド結合が、直接又は一つのメチレン基を介して、側鎖メルカプト基含有ビニルアルコール系重合体の主鎖に結合する。当該実施形態では、式(I)で表される構成単位は、例えば、下記式(I’)となる。
Figure JPOXMLDOC01-appb-C000003
 式中、R1及びRは、前記と同義であり、nは0又は1であり、Xは、窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基である。
 nは0であることが好ましい。このとき、Xは、*-CO-NH-X-(式中、*は重合体主鎖と結合する結合手を示し、Xは前記と同義である)となる。nが0である場合、側鎖メルカプト基含有ビニルアルコール系重合体の製造の際に、未反応の単量体が残りにくく、未反応の単量体による影響を低減することができる。
 Xで表される脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは直鎖又は分岐状である。前記脂肪族炭化水素基が分岐している場合には、脂肪族炭化水素基の主鎖(硫黄原子と窒素原子との間で原子が連続する鎖)から分岐した部位の炭素数は、1~5であることが好ましい。Xが窒素原子及び/又は酸素原子を含む場合としては、例えば、窒素原子及び/又は酸素原子を、前記脂肪族炭化水素基に挿入された、カルボニル結合、エーテル結合、アミノ結合、アミド結合等として含む場合や、窒素原子及び/又は酸素原子を、前記脂肪族炭化水素基を置換する、カルボキシル基、水酸基等として含む場合が挙げられる。原料入手性、合成上の容易さから、Xは、好ましくは、合計炭素数が1~20の、カルボキシル基を有していてもよい直鎖状又は分岐状アルキレン基であり、より好ましくは、合計炭素数が2~15の、カルボキシル基を有していてもよい直鎖状又は分岐状アルキレン基であり、さらに好ましくは、合計炭素数が2~10の、カルボキシル基を有していてもよい直鎖状又は分岐状アルキレン基である。
 かかる構成単位は、後述するビニルエステルと共重合可能であり、かつ式(I)で表される構成単位に変換可能な不飽和単量体より誘導することができ、好ましくは、式(II)で表される不飽和二重結合を有するチオエステル系単量体より誘導することができる。
Figure JPOXMLDOC01-appb-C000004
 式中、R及びRは、共に水素原子、又は一方が水素原子かつ他方がカルボキシル基であり、Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基であり、Xは、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~22の基であり、Rはメチル基であるか、Xに含まれる特定の炭素原子と共有結合して環状構造を形成する。
 Xがアミド結合を含み、当該アミド結合のカルボニル炭素がビニル炭素と結合している場合には、式(II)で表される不飽和二重結合を有するチオエステル系単量体は、後述するビニルエステルとの共重合性が良好であり、本発明の側鎖メルカプト基含有ビニルアルコール系重合体の変性量、重合度を高くすることが容易である。また、一般にチオエステル系単量体を使用した場合、重合終了時に残留する未反応の単量体に起因する臭気が懸念されている。しかしながら、Xがアミド結合を含み、当該アミド結合のカルボニル炭素がビニル炭素と結合している場合には、式(II)で表される不飽和二重結合を有するチオエステル系単量体は、重合終了時に残留する未反応の単量体が非常に少ないことから、本発明の側鎖メルカプト基含有ビニルアルコール系重合体の臭気を大きく低減することができる。
 式(II)で表される不飽和二重結合を有するチオエステル系単量体は、公知方法に準じて製造することができる。
 式(II)で表される不飽和二重結合を有するチオエステル系単量体としては、例えば、チオ酢酸S-(3-メチル-3-ブテン-1-イル)エステル、チオ酢酸S-17-オクタデセン-1-イルエステル、チオ酢酸S-15-ヘキサデセン-1-イルエステル、チオ酢酸S-14-ペンタデセン-1-イルエステル、チオ酢酸S-13-テトラデセン-1-イルエステル、チオ酢酸S-12-トリデセン-1-イルエステル、チオ酢酸S-11-ドデセン-1-イルエステル、チオ酢酸S-10-ウンデセン-1-イルエステル、チオ酢酸S-9-デセン-1-イルエステル、チオ酢酸S-8-ノネン-1-イルエステル、チオ酢酸S-7-オクテン-1-イルエステル、チオ酢酸S-6-ヘプテン-1-イルエステル、チオ酢酸S-5-ヘキセン-1-イルエステル、チオ酢酸S-4-ペンテン-1-イルエステル、チオ酢酸S-3-ブテン-1-イルエステル、チオ酢酸S-2-プロペン-1-イルエステル、チオ酢酸S-[1-(2-プロペン-1-イル)ヘキシル]エステル、チオ酢酸S-(2,3-ジメチル-3-ブテン-1-イル)エステル、チオ酢酸S-(1-エテニルブチル)エステル、チオ酢酸S-(2-ヒドロキシ-5-ヘキセン-1-イル)エステル、チオ酢酸S-(2-ヒドロキシ-3-ブテン-1-イル)エステル、チオ酢酸S-(1,1-ジメチル-2-プロペン-1-イル)エステル、2-[(アセチルチオ)メチル]-4-ペンテン酸、チオ酢酸S-(2-メチル-2-プロペン-1-イル)エステル、下記式(a-1)~(a-30)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 不飽和単量体の重合性の観点から、式(a-1)~(a-30)で表される化合物が好ましく、式(a-1)~(a-20)及び(a-26)~(a-30)で表される化合物がより好ましい。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体における式(I)に示される構成単位の含有率は特に限定されないが、重合体中の全構成単位を100モル%として、好ましくは0.05~10モル%であり、より好ましくは0.1~7モル%、特に好ましくは0.3~6モル%である。含有率がこれらの好ましい範囲にある場合、架橋皮膜の耐水性が発現しやすい。含有率が0.05モル%未満であると、式(I)で表される構成単位によるビニルアルコール系重合体の変性の効果が不十分となることがある。含有率が10モル%を超えると、ビニルアルコール系重合体の結晶性が低下し始める傾向にあり、架橋皮膜の耐水性が高くなる程度が減少することがある。本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、式(I)で表される構成単位を1種又は2種以上有することができる。2種以上の当該構成単位を有する場合、これら2種以上の構成単位の含有率の合計が上記範囲にあることが好ましい。なお、本発明において重合体中の構成単位とは、重合体を構成する繰り返し単位のことをいう。例えば、下記のビニルアルコール単位や、下記のビニルエステル単位も構成単位である。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体におけるビニルアルコール単位の含有率(すなわち、本発明の側鎖メルカプト基含有ビニルアルコール系重合体のけん化度)は特に限定されないが、下限に関しては、水に対する溶解性の観点から、重合体中の全構成単位を100モル%として、好ましくは50モル%以上であり、より好ましくは70モル%以上、さらに好ましくは75モル%以上、特に好ましくは80モル%以上である。一方、上限に関しては、重合体中の全構成単位を100モル%として、好ましくは99.94モル%以下であり、より好ましくは99.9モル%以下であり、さらに好ましくは99.5モル%以下である。99.94モル%より含有率が高いビニルアルコール系重合体は、一般に製造が難しい。
 ビニルアルコール単位は、加水分解や加アルコール分解などによってビニルエステル単位から誘導することができる。そのためビニルエステル単位からビニルアルコール単位に変換する際の条件等によってはビニルアルコール系重合体中にビニルエステル単位が残存することがある。よって、本発明の側鎖メルカプト基含有ビニルアルコール系重合体はビニルエステル単位を含んでいてもよい。
 ビニルエステル単位のビニルエステルの例としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどを挙げることができ、これらの中でも酢酸ビニルが工業的観点から好ましい。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、本発明の効果が得られる限り、式(I)で表される構成単位、ビニルアルコール単位及びビニルエステル単位以外の構成単位をさらに有することができる。当該構成単位は、例えば、ビニルエステルと共重合可能でありかつ式(I)で表される構成単位に変換可能な不飽和単量体及びビニルエステルと共重合可能なエチレン性不飽和単量体に由来する構成単位である。エチレン性不飽和単量体は、例えば、エチレン、プロピレン、n-ブテン、イソブチレン、1-ヘキセンなどのα-オレフィン類;アクリル酸及びその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類;メタクリル酸及びその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩(例えば4級塩);メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩(例えば4級塩);メチルビニルエーテル、エチルビニルエーテル、n―プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパンなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸及びその塩又はそのエステル;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニルである。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体における式(I)で表される構成単位、ビニルアルコール単位、及びその他の任意の構成単位の配列順序には特に制限はなく、ランダム、ブロック、交互などのいずれであってもよい。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体のJIS K6726に準拠して測定した粘度平均重合度は特に限定されず、好ましくは100~5,000であり、より好ましくは200~4,000である。粘度平均重合度が100未満になると、フィルムとしたときに当該フィルムの機械的強度が低下することがある。粘度平均重合度が5,000を超える本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、工業的な製造が難しい。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体の製造方法は特に限定されない。製造方法としては、ビニルエステルと、前記式(I)で表される構成単位に変換可能な不飽和単量体とを共重合する工程を含む方法が簡便である。当該方法として、より具体的には、ビニルエステルと、式(I)で表される構成単位に変換可能な不飽和単量体とを共重合し、得られた共重合体のビニルエステル単位をビニルアルコール単位に変換し、一方で式(I)で表される構成単位に変換可能な不飽和単量体に由来する単位を式(I)で表される構成単位に変換する方法が挙げられる。特に、ビニルエステルと式(II)で表される不飽和二重結合を有するチオエステル系単量体(以下、チオエステル系単量体(II)と称する)とを共重合し、得られた共重合体のビニルエステル単位のエステル結合及びチオエステル系単量体(II)由来の構成単位のチオエステル結合を、加水分解又は加アルコール分解する方法が簡便であり好ましく用いられ、以下この方法について説明する。
 ビニルエステルとチオエステル系単量体(II)との共重合は、ビニルエステルを単独重合する際の公知の方法及び条件を採用して行うことができる。
 なお、共重合の際、ビニルエステル及びチオエステル系単量体(II)と共重合可能な単量体をさらに共重合させてもよい。当該共重合可能な単量体は、前記のエチレン性不飽和単量体と同様である。
 得られた共重合体のビニルエステル単位のエステル結合と、チオエステル系単量体(II)由来の構成単位のチオエステル結合は、ほぼ同じ条件で加水分解又は加アルコール分解可能である。したがって、得られた共重合体のビニルエステル単位のエステル結合及びチオエステル系単量体(II)由来の構成単位のチオエステル結合の加水分解又は加アルコール分解は、ビニルエステルの単独重合体をけん化する際の公知の方法及び条件を採用して行うことができる。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、その特性を利用して、単独で又は他の成分を添加した組成物として、成形、紡糸、エマルジョン化等の公知方法に従い、ビニルアルコール系重合体が用いられる各種用途に使用可能である。例えば、各種用途の界面活性剤、紙用コーティング剤、紙用内添剤及び顔料バインダーなどの紙用改質剤、木材、紙、アルミ箔及び無機物などの接着剤、不織布バインダー、塗料、経糸糊剤、繊維加工剤、ポリエステルなどの疎水性繊維の糊剤、その他各種フィルム、シート、ボトル、繊維、増粘剤、凝集剤、土壌改質剤、イオン交換樹脂、イオン交換膜などに使用できる。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体を成形する方法は限定されない。成形方法は、例えば、当該重合体を水、ジメチルスルホキシドなどの溶媒に溶解させた溶液の状態から成形する方法(例えばキャスト成形法);加熱により当該重合体を可塑化して成形する方法(例えば押出成形法、射出成形法、インフレ成形法、プレス成形法、ブロー成形法)である。これらの成形方法により、フィルム、シート、チューブ、ボトルなどの任意の形状を有する成形品が得られる。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体は、末端メルカプト基変性ビニルアルコール系重合体に比べ、メルカプト基の含有量が多く反応点を多く有するため、反応性、特に架橋剤等の耐水化剤との反応性に富んでいる。よって、本発明の側鎖メルカプト基含有ビニルアルコール系重合体に耐水化剤を配合することにより、耐水性に優れた製品を与えるビニルアルコール系重合体組成物を得ることができる。
 そこで、本発明はまた、上記の側鎖メルカプト基含有ビニルアルコール系重合体と耐水化剤とを含むビニルアルコール系重合体組成物である。
 本発明のビニルアルコール系重合体組成物が含有する耐水化剤としては、例えば、硝酸ジルコニル、炭酸ジルコニウムアンモニウム、塩化ジルコニル、酢酸ジルコニル、硫酸ジルコニル、硫酸アルミニウム、硝酸アルミニウム、チタンラクテート、チタンジイソプロポキシビス(トリエタノールアミネート)、ピロメリット酸二無水物等の酸無水物、ジビニルスルホン化合物、メラミン系樹脂、メチロールメラミン、メチロール化ビスフェノールS、多価ビニル化合物、多価(メタ)アクリレート化合物、多価エポキシ化合物、アルデヒド化合物、多価イソシアネート化合物、水溶性酸化剤、ポリアミドポリアミンエピクロロヒドリン樹脂等が挙げられる。
 上記の多価(メタ)アクリレート化合物としては、特に限定されないが、例えば、新中村化学株式会社製「NKエステル」(701A、A-200、A-400、A-600、A-1000、A-B1206PE、ABE-300、A-BPE-10、A-BPE-20、A-BPE-30、A-BPE-4、A-BPEF、A-BPP-3、A-DCP、A-DOD-N、A-HD-N、A-NOD-N、APG-100、APG-200、APG-400、APG-700、A-PTMG-65、A-9300、A-9300-1CL、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH、1G、2G、3G、4G、A-PG5054E等)等が挙げられる。
 上記の多価エポキシ化合物としては、特に限定されないが、例えば、ナガセケムテックス株式会社製「デナコール」(EX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-201、EX-211、EX-212、EX-252、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-861、EX-911、EX-941、EX-920、EX-931、EX-721、EX-203、EX-711、EX-221等)、ビスフェノールAジグリシジルエーテル、ビスフェノールAジβメチルグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラヒドロキシフェニルメタンテトラグリシジルエーテル、レゾルシノールジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、クロル化ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル、ビスフェノールAアルキレンオキサイド付加物のジグリシジルエーテル、ノボラックグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、エポキシウレタン樹脂等のグリシジルエーテル型;p-オキシ安息香酸グリシジルエーテル・エステル等のグリシジルエーテル・エステル型;フタル酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、アクリル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等のグリシジルエステル型;グリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、トリグリシジルアミノフェノール等のグリシジルアミン型;エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ樹脂;3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキサイド、ジシクロペンタジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテル、リモネンジオキサイド等の脂環族エポキシ樹脂等が挙げられる。
 上記のアルデヒド化合物としては、特に限定されないが、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、クロトンアルデヒド、ベンズアルデヒドなどのモノアルデヒド類、グリオキザール、マロンアルデヒド、グルタルアルデヒド、ピメリンジアルデヒド、スベリンジアルデヒド、ジアルデヒドデンプン等のジアルデヒド類が挙げられる。
 上記の多価イソシアネート化合物としては、特に限定されないが、例えば、旭化成ケミカルズ株式会社製「デュラネート」(WB40-100、WB40-80D、WE50-100、WT30-100、WT20-100等);トリレンジイソシアネート(TDI);水素化TDI;トリメチロールプロパン-TDIアダクト(例えばバイエル社製、「DesmodurL」);トリフェニルメタントリイソシアネート;メチレン(ビスフェニルイソシアネート)(MDI);水素化MDI;重合MDI;ヘキサメチレンジイソシアネート;キシリレンジイソシアネート;4,4’-ジシクロヘキシルメタンジイソシアネート;イソホロンジイソシアネート等が挙げられる。乳化剤を用いて水に分散させたイソシアネートも使用できる。
 上記の水溶性酸化剤としては、特に限定されないが、例えば、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムなどの過硫酸塩、過酸化水素、ベンゾイルパーオキシド、ジクミルパーオキシド、キュメンハイドロパーオキシド、t-ブチルハイドロパーオキシド、臭素酸カリウム、過酢酸t-ブチル、過安息香酸t-ブチル等を挙げることができる。
 耐水化剤は、1種のみで用いても良いし複数種併用しても構わない。また、耐水化剤の含有量は特に限定されないが、側鎖メルカプト基含有ビニルアルコール系重合体の種類に応じて決めることができる。例えば、耐水化剤と反応後の皮膜の耐水性の観点から、側鎖メルカプト基含有ビニルアルコール系重合体100質量部に対し0.1質量部~200質量部であることが好ましく、0.5質量部~100質量部であることがより好ましく、1質量部~80質量部であることが特に好ましい。
 本発明のビニルアルコール系重合体組成物には、さらに、充填材、銅化合物などの加工安定剤、耐候性安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、可塑剤、他の熱可塑性樹脂、潤滑剤、香料、消泡剤、消臭剤、増量剤、剥離剤、離型剤、補強剤、防かび剤、防腐剤、結晶化速度遅延剤などの添加剤を、必要に応じて適宜配合できる。
 本発明のビニルアルコール系重合体組成物は、公知のビニルアルコール系重合体と耐水化剤を含む組成物と同様の方法で同様の用途に用いることができる。例えば、無機質材料、あるいは紙、各種樹脂基材などの有機質材料のコート剤、特に紙の表面コート剤、各種樹脂フィルムの表面コート剤として有効に使用される。ここで、樹脂フィルムとしては、例えば、ポリエステル、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリメチルメタクリレート、酢酸セルロース、ポリカーボネート、ポリイミド等のフィルムが挙げられる。また、本発明のビニルアルコール系重合体組成物は、記録材料、とりわけ高温で熱処理のできない感熱記録材料のコート層、特にオーバーコート層に極めて有効に使用される。本発明のビニルアルコール系重合体組成物は、無機物あるいは有機物用接着剤あるいはバインダー、塗料用ビヒクル、顔料分散などの分散剤、架橋性エマルジョン用の重合安定剤や後添加剤、ゼラチンブレンドあるいは感光性樹脂等の画像形成材料、菌体固定ゲルあるいは酵素固定ゲル等のハイドロゲル用基材、さらには、従来水溶性樹脂が使用されていた用途にも広範に使用できる。さらに、フィルム、シート、繊維などの成形物にも使用できる。
 本発明の側鎖メルカプト基含有ビニルアルコール系重合体を塗工剤に用いた際には、優れた耐水性を発現し、粘度安定性に優れ貯蔵安定性が良好である。そこで本発明はさらに、上記の側鎖メルカプト基含有ビニルアルコール系重合体を含む塗工剤である。
 本発明の塗工剤は、上記の側鎖メルカプト基含有ビニルアルコール系重合体の他に、上記の耐水化剤を含んでいても良い。上記の耐水化剤は、1種のみで用いても良いし複数種併用しても構わない。塗工剤のより高い粘度安定性の観点から、ポリアミドポリアミンエピクロロヒドリン樹脂が好ましい。
 側鎖メルカプト基含有ビニルアルコール系重合体と耐水化剤との質量比は特に限定されないが、ビニルアルコール系重合体100質量部に対して、耐水化剤が0.5~100質量部であることが好ましく、1~80質量部であることがより好ましい。耐水化剤の量が0.5質量部未満だと架橋性能や架橋速度が不十分となるおそれがあり、100質量部より多いと耐水性が低下する場合や塗工剤の粘度安定性が悪くなる場合がある。
 本発明の塗工剤は、好ましくは水を含み、水性塗工液の形態で使用される。本発明の塗工剤を水性塗工液の形態で使用する場合、その固形分濃度は塗工剤の塗工性や塗工後の乾燥に要する時間などを考慮して任意に選択することができるが、1~40質量%の範囲内が好ましく、3~30質量%の範囲内がより好ましい。
 本発明の塗工剤は、必要に応じて、各種の添加剤を含んでいてもよい。添加剤としては、例えば、グリコール類、グリセリンなどの可塑剤;アンモニア、カセイソーダ、炭酸ソーダ、リン酸などのpH調節剤;ベンゾフェノン系、ベンゾトリアゾール系などの紫外線吸収剤;滑剤、増粘剤、流動性改良剤、染料、顔料、蛍光増白剤、酸化防止剤、防腐剤、防黴剤、消泡剤、離型剤、界面活性剤、充填剤などが挙げられる。
 本発明の塗工剤は、添加剤として、無変性PVA、スルホン酸基変性PVA、アクリルアミド変性PVA、カチオン基変性PVA、長鎖アルキル基変性PVAなどの各種の変性PVA;澱粉、変性澱粉、カゼイン、カルボキシメチルセルロースなどの水溶性高分子;スチレン-ブタジエンラテックス、ポリアクリル酸エステルエマルジョン、酢酸ビニル-エチレン共重合エマルジョン、酢酸ビニル-アクリル酸エステル共重合エマルジョンなどの合成樹脂エマルジョンなどを、本発明の効果が損なわれない範囲で含んでいてもよい。
 本発明の塗工剤は、無機質材料、あるいは紙、各種樹脂基材などの有機質材料のコート剤などに使用される。特に、紙用塗工剤として好適であり、クリア塗工剤あるいは顔料塗工剤として用いることができる。本発明の塗工剤をクリア塗工剤として用いた場合、塗工層をコート層(例、オーバーコート層、バックコート層)として紙面に形成でき、顔料塗工剤として用いた場合、塗工層を発色層として紙面に形成できる。本発明の塗工剤の塗工量は特に限定されないが、通常、固形分換算で0.1~30g/m程度である。
 本発明の塗工剤をクリア塗工剤として用いる場合、塗工の対象となる紙の種類は特に限定されないが、例えば、マニラボール、白ボール、ライナーなどの板紙;一般上質紙、中質紙、グラビア用紙などの印刷用紙;感熱紙などが挙げられる。
 本発明の塗工剤をクリア塗工剤として用いる場合、当該塗工剤を、そのまま塗工対象となる紙の紙面に塗工すればよい。
 本発明の塗工剤を顔料塗工剤として用いる場合においても、塗工の対象となる紙の種類は特に限定されないが、例えば、感熱紙、インクジェット用紙、感圧紙、アート・コート紙、微塗工紙などが挙げられる。
 本発明の塗工剤を顔料塗工剤として用いる場合、例えば当該塗工剤と顔料とを混合して得た塗工液を、塗工対象となる紙の紙面に塗工すればよい。塗工剤と顔料との混合比は特に限定されないが、顔料100質量部に対して、塗工剤0.5~15質量部を混合することが好ましく、塗工剤1~10質量部を混合することがより好ましい。塗工液の固形分濃度は、30~65質量%の範囲で適宜調整できる。
 本発明の塗工剤を顔料塗工剤として用いる場合、顔料としては特に限定されず公知の化合物を使用でき、例えば、カオリン、クレー、タルク、炭酸カルシウム、焼成クレー、酸化チタン、ケイソウ土、沈降シリカ、ゲル状シリカ、コロイダルシリカ、酸化アルミニウム、水酸化アルミニウム、合成ケイ酸アルミニウム、合成ケイ酸マグネシウム、ポリスチレン微粒子、ポリ酢酸ビニル系微粒子、尿素-ホルマリン樹脂微粒子等を使用することができる。
 本発明の塗工剤を紙面に塗工する方法は特に限定されず、例えば、公知のコーター(サイズプレスコーター、エアナイフコーター、ブレードコーター、ロールコーターなど)を用いればよい。
 紙面への塗工後は、乾燥工程を行えばよく、乾燥工程において耐水性に優れる塗工層を形成することができ、長時間にわたるキュア工程を別途設ける必要がない。乾燥工程の後は、必要に応じて、カレンダー工程などの任意の工程を経てもよい。乾燥工程では、低温、高温いずれでも行うことができるが、低温下、例えば50℃以下、特に40℃以下、さらには室温以下でも充分耐水性を付与することができる。
 このようにして、本発明の塗工剤より得られる塗工層を有する紙を得ることができる。
 以下、合成例、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
[フィルムの耐水性評価]
 以下の実施例又は比較例で得られた組成物を含む水溶液をポリエチレンテレフタレートフィルムの端を折り曲げて作製した15cm×15cmの型枠に流延し、室温大気圧下で溶媒を充分に揮発させ、厚さ約40μmの評価用PVAフィルムを作製した。
 得られた評価用フィルムを沸騰水中に1時間浸漬し、水から取り出して、40℃で12時間真空乾燥した後に質量(W1)を測定した。得られた質量(W1)と浸漬前の質量(W2)とから、以下の式に従って煮沸条件下における溶出率を算出した。そして、この溶出率を架橋後の耐水性の指標とした。なお、水中に浸漬中に評価用フィルムが溶解した場合には「測定不能」と評価した。
 溶出率(質量%)=100×([W2]-[W1])/[W2]
[塗工液の粘度安定性評価]
 下記の実施例及び比較例で得られた塗工剤を、温度20℃で1週間放置し、放置後の液の流動性に基づき、以下に示す2段階で評価した。
 ○:流動性があった。
 ×:ゲル化し液の流動性が無かった。
[塗工層の耐水性評価]
 下記の実施例及び比較例で得られた塗工剤を、市販の感熱紙(コクヨ社製、ワープロ用感熱紙A4スタンダードタイプ)の紙面に、バーコーターのNo.22(エトウキカイ社製)を用いて手塗りした後、乾燥機を用いて50℃で10分乾燥させ、塗工層を作製した。当該塗工層を有する紙を20℃の水に16時間浸漬させた後、塗工面を指で100回擦って、当該面に生じた剥がれの状態を観察し、剥がれがほとんど無ければ耐水性が高いと判断した。塗工剤により形成された塗工層の耐水性の評価は、以下の基準により3段階で行った。○及び△が実使用可能なレベルである。
 ○:100回擦ってもほとんど剥がれが無かった。
 △:50回擦った時点で剥がれが少しあった。
 ×:1回擦った時点で剥がれが生じた。
<実施例1>
(1) 攪拌機、還流冷却管、アルゴン導入管、開始剤の添加口を備えた反応器に、酢酸ビニル630質量部、下記式(II-1)で示されるチオ酢酸S-7-オクテン-1-イルエステル13.8質量部、及びメタノール170質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.5質量部を添加し重合を開始した。60℃で4時間重合した後、冷却して重合を停止した。重合停止時の重合率は38%であった。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、チオエステル基を有するポリ酢酸ビニルのメタノール溶液(濃度35.6%)を得た。
Figure JPOXMLDOC01-appb-C000035
 得られたチオエステル基を有するポリ酢酸ビニルの一部を乾固し、H-NMR(270MHz,DMSO-d,60℃)で解析したところ、全構成単位のモル数に対してチオ酢酸S-7-オクテン-1-イルエステル単位が0.5モル%共重合されたチオエステル基を有するポリ酢酸ビニルであることが分かった。H-NMRの分析結果を以下に示した。
 H-NMR(270MHz,DMSO-d,60℃) δ(ppm):1.1-1.9(-C CH(OCOCH)-、および、-C (C CHSCOCH)-)、1.9-2.1(-CHCH(OCOC )-)、2.29-2.31(-CHCH(CHCHCHCHCHCHSCOC )-)、2.75-2.86(-CHCH(CHCHCHCHCH SCOCH)-)、4.6-4.9(-CH(OCOCH)-)
(2) 上記(1)で得られたチオエステル基を有するポリ酢酸ビニルのメタノール溶液280.9質量部にメタノール39.7質量部を加え(溶液中のチオエステル基を有するポリ酢酸ビニルは100質量部)、さらに、12.7質量部の水酸化ナトリウムメタノール溶液(濃度12.8%)を添加して、40℃でけん化を行った(けん化溶液のチオエステル基を有するポリ酢酸ビニル濃度30%、チオエステル基を有するポリ酢酸ビニル中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比0.035)。水酸化ナトリウムメタノール溶液を添加後約8分でゲル化物が生成したので、これを粉砕機にて粉砕し、さらに40℃で52分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールでよく洗浄し、真空乾燥機中40℃で12時間乾燥することにより共重合体(PVA-1)を得た。得られた共重合体は未反応のモノマー由来と考えられる臭気を有していた。
 得られた共重合体をH-NMR(270MHz,DO(3-(トリメチルシリル)-1-プロパンスルホン酸ナトリウム(DSS)含有),60℃)で解析したところ、全構成単位のモル数に対して8-メルカプト-1-オクテン単位が0.5モル%共重合されたメルカプト基を有するポリビニルアルコールであることが分かった。当該メルカプト基を有するポリビニルアルコールのけん化度は98.4モル%であった。また、JIS K6726に準拠して測定した当該ポリビニルアルコールの粘度平均重合度は1600であった。H-NMRの分析結果を以下に示した。
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):1.3-1.9(-C CH(OH)-、および、-C (C CHSH)-)、2.05-2.15(-CHCH(OCOC )-)、2.51-2.61(-CHCH(CHCHCHCHCH SH)-)、3.9-4.2(-CH(OH)-)
<実施例2~5>
 実施例1において、酢酸ビニル、チオ酢酸S-7-オクテン-1-イルエステル、メタノール、及び2,2’-アゾビスイソブチロニトリルの使用量、ならびにけん化時における酢酸ビニルユニットに対する水酸化ナトリウムのモル比を表1に示した量に変更した以外は実施例1と同様にして、表1に記載のメルカプト基を有するポリビニルアルコール(PVA-2~PVA-5)を得た。得られたメルカプト基を有するポリビニルアルコールは未反応のモノマー由来と考えられる臭気を有していた。得られたメルカプト基を有するポリビニルアルコールの各評価結果(実施例1と同様にして評価したもの)を表2に示した。
<実施例6>
 実施例1において、チオ酢酸S-7-オクテン-1-イルエステルに代えて下記式(II-2)で示されるチオ酢酸S-11-ドデセン-1-イルエステルを表1に示した量用い、酢酸ビニル、メタノール、及び2,2’-アゾビスイソブチロニトリルの使用量、ならびにけん化時における酢酸ビニルユニットに対する水酸化ナトリウムのモル比を表1に示した量に変更した以外は実施例1と同様にして、表1に記載のメルカプト基を有するポリビニルアルコール(PVA-6)を得た。得られたメルカプト基を有するポリビニルアルコールは未反応のモノマー由来と考えられる臭気を有していた。得られたメルカプト基を有するポリビニルアルコールのH-NMR(270MHz,DO(DSS含有),60℃)の分析結果を以下に示した。また、得られたメルカプト基を有するポリビニルアルコールの各評価結果(実施例1と同様にして評価したもの)を表2に示した。
Figure JPOXMLDOC01-appb-C000036
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):1.3-1.9(-C CH(OH)-、および、-C (C CHSH)-)、2.05-2.15(-CHCH(OCOC )-)、2.51-2.61(-CHCH(CHCHCHCHCHCHCHCHCH SH)-)、3.9-4.2(-CH(OH)-)
<実施例7~8>
 実施例1において、チオ酢酸S-7-オクテン-1-イルエステルに代えて下記式(II-3)で示されるチオ酢酸S-(3-メチル-3-ブテン-1-イル)エステルを表1に示した量用い、酢酸ビニル、メタノール、及び2,2’-アゾビスイソブチロニトリル、ならびにけん化時における酢酸ビニルユニットに対する水酸化ナトリウムのモル比の使用量を表1に示した量に変更した以外は実施例1と同様にして、表1に記載のメルカプト基を有するポリビニルアルコール(PVA-7、PVA-8)を得た。得られたメルカプト基を有するポリビニルアルコールは未反応のモノマー由来と考えられる臭気を有していた。PVA-7に関するH-NMR(270MHz,DO(DSS含有),60℃)の分析結果を以下に示した。また、得られたメルカプト基を有するポリビニルアルコールの各評価結果(実施例1と同様にして評価したもの)を表2に示した。
Figure JPOXMLDOC01-appb-C000037
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):0.9-1.1(-CHC(C )(CHCHSH)-)、1.3-1.9(-C CH(OH)-、および、-C C(CH)(C CHSH)-)、2.05-2.15(-CHCH(OCOC )-)、2.51-2.61(-CHC(CH)(CH SH)-)、3.9-4.2(-CH(OH)-)
Figure JPOXMLDOC01-appb-T000001
<実施例9~13>
 上記実施例で得たPVA-1~PVA-5 1.5質量部を水28.5質量部に溶解し、これにアクリレート系架橋剤(新中村化学株式会社製「NKエステル」A-400)を、メルカプト基を有するPVAが有するメルカプト基とアクリレート系架橋剤が有するアクリロイルオキシ基とが等モルとなる割合で添加し、ビニルアルコール系重合体組成物の水溶液を作製した。上記の評価方法に従って、ビニルアルコール系重合体組成物の架橋後の耐水性を評価した。結果を表2に示す。
<実施例14~16>
 実施例9で用いたPVA-1に代えてPVA-6~PVA-8を用い、アクリレート系架橋剤(新中村化学株式会社製「NKエステル」ATM-35E)を用いたこと以外は実施例9と同様に行った。結果をあわせて表2に示す。
<実施例17>
 実施例9で用いたアクリレート系架橋剤に代えてエポキシ系架橋剤(ナガセケムテックス株式会社製「デナコール」EX-512)を、メルカプト基を有するPVAが有するメルカプト基とエポキシ系架橋剤が有するエポキシ基とが等モルとなる割合で用いた以外は実施例9と同様に行った。結果をあわせて表2に示す。
<実施例18>
 実施例9で用いたアクリレート系架橋剤に代えてイソシアネート系架橋剤(旭化成ケミカルズ株式会社製「デュラネート」WB40-100、イソシアネート基含量16.6wt%)をメルカプト基を有するPVAが有するメルカプト基とイソシアネート系架橋剤が有するイソシアネート基とが等モルとなる割合で用いた以外は実施例9と同様に行った。結果をあわせて表2に示す。
Figure JPOXMLDOC01-appb-T000002
<合成例1>
チオエステル系単量体(a-6)の合成
Figure JPOXMLDOC01-appb-C000038
 反応器に2-アミノエタンチオール塩酸塩3.1質量部、及び塩化メチレン20質量部を仕込み、室温で塩化アセチル4.3質量部を滴下し、4時間加熱還流した。室温まで冷却し、析出した固体をろ別した後、塩化メチレンで洗浄し、チオ酢酸S-アミノエチル塩酸塩4.1質量部を得た。
 次に、得られたチオ酢酸S-アミノエチル塩酸塩1.9質量部、トリエチルアミン3.7質量部、ヒドロキノン0.3質量部、及び塩化メチレン30質量部を別の反応器に仕込み、0℃まで冷却した。メタクリル酸クロリド1.3質量部を1時間かけて滴下した後、0℃のまま3時間攪拌し、反応を完結させた。ここに飽和炭酸水素ナトリウム水溶液を添加して分液処理を行い、抽出した塩化メチレン層を濃縮して粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィーで単離精製(展開溶媒:塩化メチレン/酢酸エチル=1/5)し、チオエステル系単量体(a-6)1.1質量部を得た。H-NMRの分析結果を以下に示す。
 H-NMR(270MHz,DMSO-d,TMS) δ(ppm):1.79(3H,CHCC )、1.92(3H,SCOC )、2.96(2H,SC CHNH)、3.21(2H,SCH NH)、5.78(1H,C CCH)、6.04(1H,C CCH)、8.08(1H,SCHCH
<合成例2>
チオエステル系単量体(a-9)の合成
Figure JPOXMLDOC01-appb-C000039
 反応器に1-アミノ-7-オクテン塩酸塩14.6質量部、チオ酢酸10.2質量部、及びテトラヒドロフラン100質量部を仕込み、20分間アルゴンを吹き込んだ。その後、アルゴン雰囲気のまま2,2-アゾビスイソブチロニトリル1.5質量部を添加し、2時間加熱還流した。室温まで冷却し、ヒドロキノン1.5質量部を添加した後、溶媒を減圧留去した。得られた固体を酢酸メチルで再結晶精製し、チオ酢酸S-アミノオクチル塩酸塩15.4質量部を得た。
 次に、得られたチオ酢酸S-アミノオクチル塩酸塩15.4質量部、トリエチルアミン19.7質量部、ヒドロキノン0.3質量部、及びテトラヒドロフラン100質量部を別の反応器に仕込み、30分間加熱還流した。その後0℃まで冷却し、メタクリル酸クロリド7.5質量部を2時間かけて滴下した。その後室温まで昇温してさらに30分間攪拌し、反応を完結させた。溶媒を減圧留去した後、酢酸エチルと炭酸水素ナトリウム水溶液(濃度5質量%)で分液処理を行い、抽出した酢酸エチル層を濃縮して粗体を得た。得られた粗体をシリカゲルカラムクロマトグラフィーで単離精製し、チオエステル系単量体(a-9)を得た。H-NMRの分析結果を以下に示す。
 H-NMR(270MHz,DMSO-d,TMS) δ(ppm):1.2-1.5(12H,SCH CHNH)、1.82(3H,CHCC )、2.30(3H,SCOC )、2.81(2H,SC CH)、3.05(2H,CH NH)、5.27(1H,C CCH)、5.60(1H,C CCH)、7.86(1H,CH
<合成例3>
チオエステル系単量体(a-10)の合成
Figure JPOXMLDOC01-appb-C000040
 反応器にDL-ホモシステインチオラクトン塩酸塩2.5質量部、トリエチルアミン5.0質量部、ヒドロキノン0.3質量部、及び塩化メチレン60質量部を仕込み、0℃まで冷却した。メタクリル酸クロリド1.7質量部を1時間かけて滴下した後、室温まで昇温し1時間攪拌し、反応を完結させた。ここに飽和炭酸水素ナトリウム水溶液を添加して分液処理を行い、抽出した塩化メチレン層を濃縮して粗体を得た。得られた粗体を塩化メチレンに溶解し、活性炭を加え、室温で30分間攪拌した。セライトとシリカゲルを用いて活性炭をろ別した後、ろ液を濃縮してチオエステル系単量体(a-10)2.1質量部を得た。H-NMRの分析結果を以下に示す。
 H-NMR(270MHz,DMSO-d,TMS) δ(ppm):1.85(3H,CHCC )、2.1-2.5(2H,SCH )、3.3-3.5(2H,SC CH)、4.7(1H,SCOCNH)、5.41(1H,C CCH)、5.70(1H,C CCH)、8.23(1H,CHN
<合成例4>
チオエステル系単量体(a-11)の合成
Figure JPOXMLDOC01-appb-C000041
 反応器に、合成例1と同様の方法で得られたチオ酢酸S-アミノエチル塩酸塩1.5質量部、無水マレイン酸1.0質量部、酢酸ナトリウム0.8質量部、及び酢酸50質量部を仕込み、室温で4時間攪拌した。ここに水100質量部を添加し、室温で5時間攪拌した後、析出した固体をろ別し、チオエステル系単量体(a-11)1.4質量部を得た。H-NMRの分析結果を以下に示す。
 H-NMR(270MHz,DMSO-d,TMS) δ(ppm):2.33(3H,SCOC )、3.07(2H,SC CHNH)、3.45(2H,SCH NH)、4.89(1H,SCHCH)、6.24(1H,COCCHCO)、6.42(1H,COCHCCO)
<実施例19>
変性ポリビニルアルコール(PVA-9)の合成
 攪拌機、還流冷却管、アルゴン導入管、コモノマー添加口及び重合開始剤の添加口を備えた反応器に、酢酸ビニル450質量部、コモノマーとしてチオエステル系単量体(a-9)0.37質量部、及びメタノール141質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。これとは別に、コモノマーの逐次添加溶液(以降ディレー溶液と表記する)としてチオエステル系単量体(a-9)のメタノール溶液(濃度4質量%)を調製し、30分間アルゴンをバブリングした。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.1質量部を添加し重合を開始した。重合反応の進行中は、調製したディレー溶液を系内に滴下することで、重合溶液におけるモノマー組成(酢酸ビニルとチオエステル系単量体(a-9)のモル比率)が一定となるようにした。60℃で210分間重合した後、冷却して重合を停止した。重合停止時の重合率は40%であり、チオエステル系単量体(a-9)は重合系内にほとんど残存していなかった。次に、30℃の減圧下でメタノールを追加しながら未反応の酢酸ビニルモノマーを留去し、チオエステル系単量体(a-9)が導入された変性ポリビニルアセテートのメタノール溶液(濃度21質量%)を得た。
 次に、得られた当該メタノール溶液95質量部にメタノールを加えて98質量部とし、これに水酸化ナトリウムのメタノール溶液(濃度12.8質量%)2.2質量部を添加し、40℃で1時間けん化を行った。けん化終了後、酢酸メチル200質量部を添加し、残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が完了していることを確認した後、溶液をろ別して白色固体を得た。次に、得られた白色固体にメタノール300質量部を添加し、50℃で攪拌後、ろ過する洗浄工程を三回繰り返した。洗浄後の白色固体を40℃の真空乾燥機で24時間乾燥し、変性ポリビニルアルコール(PVA-9)を得た。得られた変性ポリビニルアルコールはほぼ無臭であった。合成条件を表3に示す。また、H-NMR測定により得られた化学シフト値を以下に示す。また、H-NMR測定により求めた式(I)で表される構成単位の含有量(変性量)とビニルアルコール単位の含有量(けん化度)を表4に示す。さらに、JIS K6726に準拠して測定した粘度平均重合度を表4に示す。
 H-NMR(270MHz,DO(3-(トリメチルシリル)-1-プロパンスルホン酸ナトリウム(DSS)含有),60℃) δ(ppm):0.9-1.1(-CHCC )、1.3-1.9(-C CH(OH)-,NHCH CHSH)、2.0-2.2(-CHCH(OCOC )-)、2.5-2.6(CH SH)、3.5-4.2(-CH(OH)-,NHC CH
<実施例20~25>
 重合条件(酢酸ビニルモノマー、メタノール及びコモノマーの初期仕込み量ならびに重合時に使用するコモノマーの種類)とけん化条件(変性ポリビニルアセテートの濃度及び酢酸ビニル単位に対する水酸化ナトリウムのモル比)を表1に示すように変更したこと以外は実施例19と同様にして、各種変性ポリビニルアルコール(PVA-10~PVA-15)を合成した。得られた変性ポリビニルアルコールはほぼ無臭であった。H-NMR測定により得られた化学シフト値を以下に示す。また、H-NMR測定により求めた式(I)で表される構成単位の含有量(変性量)とビニルアルコール単位の含有量(けん化度)を表4に示す。さらに、JIS K6726に準拠して測定した粘度平均重合度を表4に示す。
<PVA-11>
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):0.9-1.1(-CHCC )、1.3-1.9(-C CH(OH)-)、2.0-2.2(-CHCH(OCOC )-)、2.5-2.6(NHCH SH)、3.5-4.2(-CH(OH)-,NHC CHSH)
<PVA-12>
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):0.9-1.1(-CHCC )、1.3-1.9(-C CH(OH)-,-C CCH,SHCH CHNH)、2.0-2.2(-CHCH(OCOC )-)、2.5-2.6(NHCHCH SH)、3.8-4.2(-CH(OH)-,NHCCOOH)
<PVA-13>
 H-NMR(270MHz,DO(DSS含有),60℃) δ(ppm):1.3-1.9(-C CH(OH)-)、2.0-2.2(-CHCH(OCOC )-)、2.5-2.6(NHCH SH)、3.5-4.2(-CH(OH)-,-C(COOH)C-,NHC CHSH)
<実施例26~31>
 上記実施例で得たPVA-9~PVA-14 1.5質量部を水28.5質量部に溶解し、これにアクリレート系架橋剤(新中村化学株式会社製「NKエステル」A-400)を、メルカプト基を有するPVAが有するメルカプト基とアクリレート系架橋剤が有するアクリロイルオキシ基とが等モルとなる割合で添加し、ビニルアルコール系重合体組成物の水溶液を作製した。上記の評価方法に従って、ビニルアルコール系重合体組成物の架橋後の耐水性を評価した。結果を表4に示す。
<実施例32>
 上記実施例で得たPVA-15 1.5質量部を水28.5質量部に溶解し、これにイソシアネート系架橋剤(旭化成ケミカルズ株式会社製「デュラネート」WB40-100、イソシアネート基含量16.6wt%)を、メルカプト基を有するPVAが有するメルカプト基とイソシアネート系架橋剤が有するイソシアネート基とが等モルとなる割合で添加し、ビニルアルコール系重合体組成物の水溶液を作製した。上記の評価方法に従って、ビニルアルコール系重合体組成物の架橋後の耐水性を評価した。結果を表4に示す。
<比較例1>
 実施例26で用いたPVA-9に代えて、無変性PVA(粘度平均重合度1700、けん化度98.5モル%;PVA-16)を用い、アクリレート系架橋剤の添加量を無変性PVAのビニルアルコール単位の0.15モル%(実施例26と同質量部)とした以外は実施例26と同様に行った。結果を合わせて表4に示す。
<比較例2>
 実施例26で用いたPVA-9に代えて、末端メルカプト基変性PVA(PVA-17)を用いた以外は実施例26と同様に行った。結果を合わせて表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2及び4に示すように、側鎖にメルカプト基を有する本発明のビニルアルコール系重合体は、汎用の架橋剤と導入されたメルカプト基との反応により高い耐水性を発現することができる。比較例1のように、メルカプト基を導入していないビニルアルコール系重合体では、耐水性は発現しない。また、メルカプト基を有する場合でも、比較例2のように分子鎖末端のみである場合には、耐水性が発現しない。
[塗工剤の作製]
<実施例33>
 水酸化アルミニウム粉末(昭和電工社製、ハイジライトH42)90gを蒸留水210gに投入し、混合することで水酸化アルミニウムの分散液A(水酸化アルミニウム濃度30%)を調製した。これとは別に、PVA-1を95℃の熱水に溶解させて、濃度10%のPVA水溶液を調製した。
 次に、PVA水溶液60gを26gの分散液Aに加え、両者を均一に混合した後、さらに、耐水化剤としてポリアミドポリアミンエピクロロヒドリン樹脂(星光PMC株式会社製「WS4020」)1.8gを加え、均一に混合し、固形分濃度が12%となるようにイオン交換水を加えて、塗工剤を調製した。得られた塗工剤の粘度安定性及び耐水性を前記の方法で評価した。評価結果を表5に示す。
<実施例34~42>
 実施例33で用いたPVA-1に代えて、PVA-3~PVA-6、PVA-8~PVA-10、PVA-13~PVA-14を用いた以外は実施例33と同様に行った。評価結果を表5に示す。
<実施例43>
 実施例33で用いた分散液Aの使用量を26.6gに変更し、耐水化剤としてポリアミドポリアミンエピクロロヒドリン樹脂に加えて、さらに多価アクリレート化合物(新中村化学株式会社製「NKエステル」A-400)を0.18g加えた以外は実施例33と同様に行った。評価結果を表5に示す。
<実施例44~46>
 実施例43で用いたPVA-1に代えて、PVA-3、PVA-13~PVA-14を用いた以外は実施例43と同様に行った。評価結果を表5に示す。
<実施例47>
 実施例33において、ポリアミドポリアミンエピクロロヒドリン樹脂の添加量を1.2gにした以外は実施例33と同様に行った。評価結果を表5に示す。
<実施例48>
 実施例47で用いたPVA-1に代えて、PVA-13を用いた以外は実施例47と同様に行った。評価結果を表5に示す。
<比較例3>
 実施例33で用いたPVA-1に代えて、無変性PVA(粘度平均重合度1700、けん化度98.5モル%)を用いた以外は実施例33と同様に行った。評価結果をあわせて表5に示す。
<比較例4>
 実施例33で用いたPVA-1に代えて、イタコン酸と酢酸ビニルの共重合体をけん化して得られたけん化度98.0モル%、粘度平均重合度1800、変性量2モル%のカルボン酸変性PVAを用いた以外は実施例33と同様に行った。評価結果をあわせて表5に示す。
<比較例5>
 実施例33で用いたPVA-1に代えてアセトアセチル基変性PVA(けん化度98.5モル%、粘度平均重合度1000、変性量5モル%)を用い、ポリアミドポリアミンエピクロロヒドリン樹脂に代えてグリオキザールを0.3g用いた以外は実施例33と同様に行った。評価結果をあわせて表5に示す。
<比較例6>
 実施例33で用いたPVA-1に代えてアセトアセチル基変性PVA(けん化度98.5モル%、粘度平均重合度1000、変性量5モル%)を用いた以外は実施例33と同様に行った。評価結果をあわせて表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明の塗工剤は、水性塗工液とした場合における粘度安定性および貯蔵安定性に優れ、また紙に塗工した後は、キュア工程を省略可能でありながら、耐水性に優れる層を紙面に形成することができる。
 本発明の側鎖にメルカプト基を有するビニルアルコール系重合体は、従来のビニルアルコール系重合体と同様の用途に使用できる。用途は、例えば紙用コーティング剤;紙用内添剤及び顔料バインダーなどの紙用改質剤;木材用、紙用、アルミ箔用、無機物用の接着剤;各種用途の界面活性剤;不織布バインダー;塗料;経糸糊剤;繊維加工剤;ポリエステルなどの疎水性繊維糊剤;各種フィルム、シート、ボトル、繊維;増粘剤、凝集剤、土壌改質剤、イオン交換樹脂、イオン交換膜などである。特に、本発明の側鎖にメルカプト基を有するビニルアルコール系重合体を用いて、優れた耐水性を発現し、粘度安定性および貯蔵安定性に優れる塗工剤を提供することができる。当該塗工剤を紙用塗工剤として使用した場合には、オフセット印刷、感熱印刷を始めとする各種の印刷に好適な耐水性に優れる層を有する紙を、高い生産性で製造することができる。

Claims (6)

  1.  ビニルアルコール単位、及び下記式(I)で表される構成単位を含む側鎖メルカプト基含有ビニルアルコール系重合体。
    Figure JPOXMLDOC01-appb-C000042
    (式中、Rは、水素原子又はカルボキシル基であり、Rは、水素原子、メチル基、カルボキシル基又はカルボキシメチル基であり、Xは、炭素原子及び水素原子を含みかつ窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~22の2価の基であり、Rがカルボキシル基である場合、当該カルボキシル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよく、Rがカルボキシル基又はカルボキシメチル基である場合、当該カルボキシル基又はカルボキシメチル基は、隣接するビニルアルコール単位の水酸基と環を形成していてもよい。)
  2.  前記Xが、*-CO-NH-X-(式中、*は重合体主鎖と結合する結合手を示し、Xは窒素原子及び/又は酸素原子を含んでいてもよい炭素数1~20の2価の脂肪族炭化水素基を示す)で表される2価の基である請求項1に記載のビニルアルコール系重合体。
  3.  前記式(I)で表される構成単位を0.05~10モル%含む請求項1に記載のビニルアルコール系重合体。
  4.  請求項1に記載のビニルアルコール系重合体と耐水化剤とを含むビニルアルコール系重合体組成物。
  5.  ビニルエステルと、前記式(I)で表される構成単位に変換可能な不飽和単量体とを共重合する工程を含む請求項1に記載のビニルアルコール系重合体の製造方法。
  6.  請求項1に記載のビニルアルコール系重合体を含むことを特徴とする塗工剤。
PCT/JP2012/008236 2012-01-12 2012-12-25 ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤 WO2013105188A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12864713.8A EP2803681B1 (en) 2012-01-12 2012-12-25 Vinyl alcohol polymer and method for producing same, and composition and coating agent containing vinyl alcohol polymer
US14/371,508 US9611344B2 (en) 2012-01-12 2012-12-25 Vinyl alcohol polymer, method for producing same, and composition and coating agent containing vinyl alcohol polymer
JP2013553109A JP5998153B2 (ja) 2012-01-12 2012-12-25 ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤
CN201280066825.2A CN104039846B (zh) 2012-01-12 2012-12-25 乙烯醇系聚合物及其制造方法、以及含有乙烯醇系聚合物的组合物及涂布剂
ES12864713.8T ES2620638T3 (es) 2012-01-12 2012-12-25 Polímero de alcohol vinílico y método para producir el mismo, y composición y agente de revestimiento que contiene polímero de alcohol vinílico
KR1020147022394A KR101931099B1 (ko) 2012-01-12 2012-12-25 비닐알코올계 중합체 및 이의 제조 방법, 및 비닐알코올계 중합체를 포함하는 조성물 및 도공제

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012004475 2012-01-12
JP2012004476 2012-01-12
JP2012-004476 2012-01-12
JP2012-004475 2012-01-12
JP2012163123 2012-07-23
JP2012163122 2012-07-23
JP2012-163123 2012-07-23
JP2012-163122 2012-07-23

Publications (1)

Publication Number Publication Date
WO2013105188A1 true WO2013105188A1 (ja) 2013-07-18

Family

ID=48781167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008236 WO2013105188A1 (ja) 2012-01-12 2012-12-25 ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤

Country Status (8)

Country Link
US (1) US9611344B2 (ja)
EP (1) EP2803681B1 (ja)
JP (1) JP5998153B2 (ja)
KR (1) KR101931099B1 (ja)
CN (1) CN104039846B (ja)
ES (1) ES2620638T3 (ja)
TW (1) TWI541255B (ja)
WO (1) WO2013105188A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087981A1 (ja) * 2012-12-04 2014-06-12 株式会社クラレ ビニルアルコール系グラフト重合体、その製造方法およびそれを用いるイオン交換膜
WO2015037672A1 (ja) * 2013-09-13 2015-03-19 株式会社クラレ ビニルアルコール系重合体及びその製造方法、掘削泥水用添加剤、掘削泥水、掘削セメントスラリー用添加剤、並びに掘削セメントスラリー
JP2015127399A (ja) * 2013-11-26 2015-07-09 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法
WO2018225742A1 (ja) * 2017-06-05 2018-12-13 株式会社クラレ 側鎖オレフィン含有ビニルアルコール系重合体
US10618986B2 (en) 2016-10-19 2020-04-14 Alcon Inc. Hydrophilic copolymer with pendant thiol groups

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644929B (zh) * 2013-11-26 2018-12-21 住友化學股份有限公司 樹脂、光阻組成物以及光阻圖案的製造方法
KR101673678B1 (ko) * 2014-10-10 2016-11-07 주식회사 엘지화학 변성 폴리비닐 알코올계 화합물, 이의 제조방법 및 이를 포함하는 염화비닐 중합체 조성물
CN108107677B (zh) * 2017-12-06 2020-12-22 中国乐凯集团有限公司 一种感光树脂组合物及水洗树脂版
CN114437704B (zh) * 2022-02-07 2023-01-31 延安双丰集团有限公司 一种油气田压裂液增稠剂及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187005A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有する重合体の製法
JPH0616738A (ja) * 1992-07-03 1994-01-25 Torida Masami ポリビニルアルコールへのビニルモノマーのグラフト方法
JPH09100319A (ja) * 1995-08-01 1997-04-15 Kuraray Co Ltd ビニルアルコール系重合体の製法
JPH09100320A (ja) * 1995-08-01 1997-04-15 Kuraray Co Ltd ビニルアルコール系重合体の製造方法
JPH09164763A (ja) 1995-12-14 1997-06-24 Oji Paper Co Ltd 感熱記録体
JPH10158325A (ja) * 1996-12-03 1998-06-16 Kuraray Co Ltd エチレン−ビニルアルコール共重合体の製法
JP2002012477A (ja) * 2000-06-27 2002-01-15 Kuraray Co Ltd セラミックス成形用バインダー
JP3256544B2 (ja) 1994-03-23 2002-02-12 株式会社クラレ 末端に保護されていてもよい官能基を有する重合体の製造方法
JP2003147144A (ja) * 2001-11-13 2003-05-21 Kuraray Co Ltd 水性組成物
JP2007084802A (ja) 2005-08-22 2007-04-05 Nippon Synthetic Chem Ind Co Ltd:The アセト酢酸エステル基含有ポリビニルアルコール系樹脂、樹脂組成物およびその用途
JP2007224192A (ja) * 2006-02-24 2007-09-06 Kiyoshi Yamauchi 複数のチオール基を有するポリビニルアルコールの製造法
JP2007246639A (ja) 2006-03-15 2007-09-27 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコール系重合体の製造方法
JP2009155563A (ja) * 2007-12-27 2009-07-16 Tohcello Co Ltd ガスバリア性膜の製造方法およびそれにより得られる膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565854A (en) 1983-04-07 1986-01-21 Kuraray Co., Ltd. Polymer having thiol end group
US5710211A (en) 1995-08-01 1998-01-20 Kuraray Co., Ltd. Process for producing vinyl alcohol polymer
EP1930352B1 (en) 2005-08-22 2010-02-10 The Nippon Synthetic Chemical Industry Co., Ltd. Acetoacetic-ester-group containing polyvinyl alcohol resin, resin composition and use thereof
US8097345B2 (en) * 2005-08-31 2012-01-17 Tohcello Co., Ltd. Gas barrier film, gas barrier laminate and method for manufacturing film or laminate
JP5489091B2 (ja) 2007-04-11 2014-05-14 日本合成化学工業株式会社 再乳化性樹脂粉末組成物、それを再乳化した水性エマルジョン、およびそれを用いた建築仕上げ塗り材

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187005A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有する重合体の製法
JPH0616738A (ja) * 1992-07-03 1994-01-25 Torida Masami ポリビニルアルコールへのビニルモノマーのグラフト方法
JP3256544B2 (ja) 1994-03-23 2002-02-12 株式会社クラレ 末端に保護されていてもよい官能基を有する重合体の製造方法
JPH09100319A (ja) * 1995-08-01 1997-04-15 Kuraray Co Ltd ビニルアルコール系重合体の製法
JPH09100320A (ja) * 1995-08-01 1997-04-15 Kuraray Co Ltd ビニルアルコール系重合体の製造方法
JPH09164763A (ja) 1995-12-14 1997-06-24 Oji Paper Co Ltd 感熱記録体
JPH10158325A (ja) * 1996-12-03 1998-06-16 Kuraray Co Ltd エチレン−ビニルアルコール共重合体の製法
JP2002012477A (ja) * 2000-06-27 2002-01-15 Kuraray Co Ltd セラミックス成形用バインダー
JP2003147144A (ja) * 2001-11-13 2003-05-21 Kuraray Co Ltd 水性組成物
JP2007084802A (ja) 2005-08-22 2007-04-05 Nippon Synthetic Chem Ind Co Ltd:The アセト酢酸エステル基含有ポリビニルアルコール系樹脂、樹脂組成物およびその用途
JP2007224192A (ja) * 2006-02-24 2007-09-06 Kiyoshi Yamauchi 複数のチオール基を有するポリビニルアルコールの製造法
JP2007246639A (ja) 2006-03-15 2007-09-27 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコール系重合体の製造方法
JP2009155563A (ja) * 2007-12-27 2009-07-16 Tohcello Co Ltd ガスバリア性膜の製造方法およびそれにより得られる膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803681A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087981A1 (ja) * 2012-12-04 2014-06-12 株式会社クラレ ビニルアルコール系グラフト重合体、その製造方法およびそれを用いるイオン交換膜
JPWO2014087981A1 (ja) * 2012-12-04 2017-01-05 株式会社クラレ ビニルアルコール系グラフト重合体、その製造方法およびそれを用いるイオン交換膜
US9908961B2 (en) 2012-12-04 2018-03-06 Kuraray Co., Ltd. Vinyl alcohol-based graft polymer, method for producing same, and ion-exchange membrane using same
WO2015037672A1 (ja) * 2013-09-13 2015-03-19 株式会社クラレ ビニルアルコール系重合体及びその製造方法、掘削泥水用添加剤、掘削泥水、掘削セメントスラリー用添加剤、並びに掘削セメントスラリー
US10118978B2 (en) 2013-09-13 2018-11-06 Kuraray Co., Ltd. Vinyl alcohol polymer and production method thereof, additive for drilling mud, drilling mud, additive for drilling cement slurry, and drilling cement slurry
JP2015127399A (ja) * 2013-11-26 2015-07-09 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法
US10618986B2 (en) 2016-10-19 2020-04-14 Alcon Inc. Hydrophilic copolymer with pendant thiol groups
WO2018225742A1 (ja) * 2017-06-05 2018-12-13 株式会社クラレ 側鎖オレフィン含有ビニルアルコール系重合体
JPWO2018225742A1 (ja) * 2017-06-05 2020-04-09 株式会社クラレ 側鎖オレフィン含有ビニルアルコール系重合体
US11078309B2 (en) 2017-06-05 2021-08-03 Kuraray Co., Ltd. Vinyl alcohol-based polymer having olefin in side chain
JP7153014B2 (ja) 2017-06-05 2022-10-13 株式会社クラレ 側鎖オレフィン含有ビニルアルコール系重合体

Also Published As

Publication number Publication date
US9611344B2 (en) 2017-04-04
TWI541255B (zh) 2016-07-11
JP5998153B2 (ja) 2016-09-28
KR20140112546A (ko) 2014-09-23
EP2803681A1 (en) 2014-11-19
CN104039846B (zh) 2016-08-17
EP2803681B1 (en) 2017-03-01
JPWO2013105188A1 (ja) 2015-05-11
KR101931099B1 (ko) 2018-12-21
CN104039846A (zh) 2014-09-10
TW201341415A (zh) 2013-10-16
ES2620638T3 (es) 2017-06-29
US20140350169A1 (en) 2014-11-27
EP2803681A4 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5998153B2 (ja) ビニルアルコール系重合体及びその製造方法、ならびにビニルアルコール系重合体を含む組成物及び塗工剤
WO2014112625A1 (ja) シリル基含有ポリビニルアルコール系樹脂及びその用途
KR101420221B1 (ko) 수지 조성물 및 그의 용도
KR20160014653A (ko) 코팅 조성물 및 이로부터 얻어지는 도막, 다층 구조체 및 다층 구조체의 제조 방법
JP2015034262A (ja) 変性ビニルアルコール系重合体
TWI389924B (zh) 可交聯乙烯基酯共聚物及其作為低收縮(low-profile)添加劑之用途
TW201831611A (zh) 親水性樹脂組合物及積層薄片
JP2005120115A (ja) ポリビニルアルコール系樹脂組成物
WO2015053342A1 (ja) 架橋剤、架橋高分子及び化合物
JP2007254732A (ja) 樹脂組成物およびその用途
JP4859749B2 (ja) 偏光板および偏光板用接着剤
JP4964643B2 (ja) 接着剤
JP2009280754A (ja) 樹脂組成物、コート層、およびインクジェット記録用媒体
JP4531553B2 (ja) ポリビニルアルコール系樹脂及びその用途
KR20150084883A (ko) 높은 라미네이션 결합 강도를 나타내는 잉크 및 코팅용 조성물
JP6418930B2 (ja) ポリビニルアルコール系樹脂組成物
JP2004143309A (ja) ポリビニルアルコール系樹脂組成物およびそれを用いたインクジェット記録用媒体
TW201905005A (zh) 側鏈含有胺基之乙烯醇系聚合物
JP6915403B2 (ja) 水性塗工液、インク受容層用塗工液及び多層構造体
JP2014173046A (ja) 側鎖エポキシ基含有ビニルアルコール系重合体及びビニルアルコール系重合体組成物
JP2006052244A (ja) 2液硬化型水性接着剤
JP3457492B2 (ja) 水性接着剤
JPH0222353A (ja) エマルジョン組成物
JP2013095869A (ja) 一級水酸基含有ビニルアルコール系重合体
JP2003212908A (ja) ビニルエステル系樹脂エマルジョン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553109

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371508

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012864713

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012864713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147022394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE