WO2013097605A1 - 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 - Google Patents
完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 Download PDFInfo
- Publication number
- WO2013097605A1 WO2013097605A1 PCT/CN2012/086495 CN2012086495W WO2013097605A1 WO 2013097605 A1 WO2013097605 A1 WO 2013097605A1 CN 2012086495 W CN2012086495 W CN 2012086495W WO 2013097605 A1 WO2013097605 A1 WO 2013097605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene oxide
- rubber
- latex
- parts
- styrene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
- C08J3/2053—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
- C08J2321/02—Latex
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- the invention relates to a method for preparing a graphene oxide/rubber nanocomposite with high peeling, high dispersion and strong interface, in particular to a combination of an emulsion compounding and a flocculation process, or a combination of an emulsion compounding and a spray drying process, and preparing an interface agent.
- Graphene oxide/rubber nanocomposites are examples of graphene oxide/rubber nanocomposites.
- the largest and most versatile fillers are nanoscale carbon blacks and white carbon blacks.
- Carbon black is the most important reinforcing filler in the rubber industry, but with the decreasing of petroleum resources, the application of the carbon black industry, which is completely dependent on petroleum, is limited to a certain extent, and there is environmental pollution in the production and application of carbon black. problem.
- the reinforcing performance of silica on rubber is close to that of carbon black.
- the compound filled with silica also has some disadvantages. Especially in the manufacturing process, silica is difficult to mix with rubber, once the white carbon black appears in the rubber. The poor dispersion will result in a decrease in the strength of the rubber compound and a decrease in performance.
- Graphene is a hexagonal lattice planar film composed of carbon atoms in sp 2 hybrid orbital, a two-dimensional material with only one or more carbon atom thicknesses.
- Graphene has an infinitely repeating periodic structure in the plane, and has a nanometer scale in a direction perpendicular to the plane. It can be a nanomaterial with macroscopic dimensions.
- Graphene has a high theoretical specific surface area ⁇ about 2630 ⁇ ), a large aspect ratio (>1000) and a good mechanical strength (Young's modulus is 1060GP a ), indicating that graphene has potential advantages for efficient enhancement of polymer materials. .
- the structurally intact graphene has high chemical stability, its surface is inert, its interaction with other media (such as solvent) is weak, and there is a strong van der Waals force between the graphene sheet and the sheet, which is easy to cause aggregation. Make it difficult to dissolve in water and often 3 ⁇ 4 organic solvents. This poses great difficulties in the preparation of graphene/polymer composites.
- the preparation of graphene by reduced graphite oxide is currently the most widely used method for preparing graphene. As an intermediate product of the graphite oxide, graphite oxide is dispersed in water or an organic solvent, and can be completely stripped into oxidized silica by ultrasonication.
- the surface of the graphene oxide contains a large amount of oxygen-containing functional groups, which makes it more compatible with water and common organic solvents, and the van der Waals force between the sheets is weakened, and the aggregation is reduced.
- graphene oxide has been successfully dispersed as a reinforcing filler in a rigid plastic matrix-based polymer (such as polyvinyl acetate, polymethyl methacrylate, polycaprolactone, etc.) (Xu, Y.; Hong ,W.;Bai,H.;Li,C.; Shi,G. Carbon 2009, 47, 3538-3543, Liang, I; Huang, Y.; Zhang, L,; Wang, Y.; Ma, Y.
- a rigid plastic matrix-based polymer such as polyvinyl acetate, polymethyl methacrylate, polycaprolactone, etc.
- the object of the present invention is to provide a method for preparing a graphene oxide/rubber nanocomposite with high peeling, high dispersion and strong interfacial bonding for the prior art problem, wherein the graphene is graphene oxide and has not undergone a reduction process.
- the graphene oxide is inevitably re-aggregated after being reduced to graphene, which is not conducive to the dispersion of graphene; and the surface functional group content of the graphene after reduction is greatly reduced, and the compatibility with the rubber matrix is poor).
- graphene oxide can be highly exfoliated, highly dispersed, and dispersed in a nanometer scale in a rubber matrix, thereby exerting a nanometer-enhancement effect of graphene oxide, and graphene oxide.
- There is a strong interface between the rubber and the scam which in turn achieves a good rubber-enhancing effect.
- graphene oxide is added to rubber
- the matrix can greatly increase the strength, wear resistance and gas barrier properties of the rubber product. Therefore, it can be widely used in industrial products such as tires, rubber sheets, tapes, rubber rollers, and various god sealing fields.
- graphene oxide has good self-recovering ability and crack propagation resistance, and can be widely applied in the field of self-healing materials and high tear resistant materials.
- the invention provides a combination of emulsion compounding and flocculation process, or emulsion compounding and spray drying process to prepare a graphene/rubber nanocomposite with high peeling, high dispersion and strong interface.
- This technology not only provides high efficiency enhancement of rubber, but also provides high gas barrier properties. It can also provide technical basis for the preparation of special materials with high electrical conductivity and high thermal conductivity in the future.
- the specific preparation conditions and steps are as follows:
- the graphite oxide is dispersed in deionized water, and the graphene oxide hydrosol is prepared by ultrasonic dispersion at a temperature of 0 to 100 ° C, a power of 10 to 1000 W, and a frequency of iO to 20000 Hz for 10 min to 6 h;
- A) Ion flocculation process flocculation can be carried out by adding a flocculant which can break the graphene oxide/rubber composite emulsion, and the flocculent is dehydrated and dried to obtain a graphite oxide thin/rubber nanocomposite;
- An advantage of the present invention is the use of graphene oxide as a reinforcing filler.
- the presence of oxygenated functional groups on the surface of graphene oxide in the presence of ionization in water causes a negative charge on the surface, and a stable sol is formed by the use of dry electrostatic force in water.
- the graphene oxide exhibits a highly exfoliated tantalum in the form of nanometers. A highly dispersed state of scale. This is one of the structural foundations on which the present invention can be established.
- a substance capable of ion-bonding or chemical bonding with the surface functional group of graphene oxide is added to the graphite ruthenium hydrosol to serve as an interface agent between graphene oxide and a rubber macromolecular chain, thereby improving the interface between graphene oxide and tannin. Fraud ⁇ .
- the graphene oxide hydrazine hydrosol or the graphene oxide/water predispersion liquid added to the interface agent is mixed with the rubber latex, and under the action of ultrasonic or stirring, the latex particles and the graphene oxide sheet interpenetrate each other and mutually Isolation, formation of a liquid phase, high peeling, high dispersion of graphene oxide / rubber dispersed phase structure.
- the invention has the advantages that the graphene oxide/rubber nano composite material is prepared by the 3 ⁇ 4 ion flocculation process or the spray drying process, and the graphene oxide ruthenium rubber nano composite material prepared by the method of the invention retains the graphene oxide/rubber composite emulsion.
- the phase-bonded hooks in the liquid state obtain highly dispersed, highly exfoliated and nano-scale dispersed graphite oxide ruthenium rubber nanocomposites. This is a technical means by which the present invention can be established.
- the mass fraction of the graphene oxide filler in the graphene oxide/rubber nanocomposite prepared by the method of the invention is the mass fraction of the graphene oxide filler in the graphene oxide/rubber nanocomposite prepared by the method of the invention.
- the interfacial agent in the method of the invention is a carboxylated styrene butadiene latex, a butylpyramid latex, a carboxylated styrene-butadiene latex, an epoxy natural latex, a carboxychloroprene latex, a carboxylated nitrile latex, and a carboxyl polybutadiene having a solid content of 10 to 80% by weight.
- Rubber latex It is a styrene-butadiene latex, natural latex, neoprene latex, butyl latex, nitrile latex, butadiene latex, ethylene propylene latex, polyisoprene latex, fluororubber latex with a solid content of l() ⁇ 80wt'1 ⁇ 2.
- silicone rubber latex and polyurethane latex One or two of silicone rubber latex and polyurethane latex.
- the flocculating agent is 0.1 ⁇ i0wi% (this article refers to the weight percent concentration unless otherwise specified) of sulfuric acid, hydrochloric acid, calcium chloride, sodium chloride, potassium chloride, sulfuric acid pin, aluminum sulfate, barium ferric chloride, polymerization. Any of aluminum chloride and polymeric ferric sulfate. Further, the solid content of graphene oxide in the graphene oxide Z hydrosol is 0,01 to 20 wi%.
- the drying medium used in the spray drying device is 60 ⁇ to 300 ⁇ hot air.
- the vulcanized graphene/rubber nanocomposite prepared by the method of the invention has high tensile strength, tensile strength, tear strength and other mechanical properties by subsequent kneading and vulcanization, and can greatly improve the vulcanizate. Gas barrier properties.
- the vulcanized rubber prepared by the graphene oxide/styrene-butadiene rubber nanocomposite has a tensile strength of 14.2 MPa when the amount of graphene oxide added is only 4 phr (which is pure styrene-butadiene rubber).
- the pseudo-cracking strength is 49.7KN/m (three times that of pure styrene-butadiene rubber), and the 100% and 300% modulus can reach 3,7MPa and l l.lMPa respectively (purified styrene-butadiene rubber, respectively) 3.7 times and 5.6 times)
- the gas barrier property is 2.35*liT i7 m 2 s— ⁇ a- 1 (3/10 of pure styrene-butadiene rubber, the smaller the value, the better the gas barrier property of the product).
- the invention has the advantages of simple preparation process, low cost, no environmental pollution, and easy realization of large-scale industrial production.
- Illustrated - Figure 1 is a graph of oxidized graphite in a graphene oxide hydrosol prepared by the method and conditions of the present invention.
- AFM photograph shows that graphene oxide is a monolithic layer or several sheets, and the graphene oxide has a lateral dimension of micron and a longitudinal dimension of nanometer.
- FIG. 2 is a graph of a graphene oxide transmission electron microscope (TEM) in a graphene oxide hydrosol prepared by the method and conditions of the present invention; a photograph of the crucible shows a distinct wrinkle structure at the edge of the graphene oxide.
- TEM graphene oxide transmission electron microscope
- Figure 3 is a high resolution transmission electron microscope of the present invention (implementing ⁇ 4 ) graphene oxide / styrene butadiene rubber nanocomposite
- J ⁇ is: graphite oxide used in the invention, the present invention (comparative inverted 1) styrene-butadiene rubber vulcanizate, and the X of the vulcanizate prepared by the graphene oxide/styrene-butadiene rubber nanocomposite of the present invention (implementing the inverted 1 and the embodiment 9)
- Light diffraction curve results It can be seen that in the graphite oxide styrene-butadiene rubber composite, the characteristic diffraction peak of graphene oxide does not appear, indicating that the graphene oxide is highly peeled in the form of a monolithic layer in the styrene-butadiene rubber matrix.
- Example 5 is a vulcanizate prepared by the present invention (Example 10) graphene oxide/styrene-butadiene rubber nanocomposite material and the invention (Comparative Example 2) ablation of a vulcanized rubber of the white carbon black/styrene-butadiene rubber nanocomposite
- the comparison of the salad Mach pattern it can be seen that the vulcanized rubber salad Mach stripe prepared by the graphene oxide/styrene-butadiene rubber nanocomposite is shallow and clear, and the rubber matrix or graphene oxide is not peeled off in a large amount, indicating oxidation.
- Graphene has a good interfacial interaction with the rubber matrix.
- the obtained styrene-butadiene rubber floc was gelled on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, 2 parts of antioxidant 4010NA, sulfur 2.5 Co-mixed to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and vulcanized at a time to obtain a styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the X-ray diffraction curve results of the vulcanizate are shown in the curve (a) in Fig. 4.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, and M 0, 2 parts of accelerator. 2 parts of antioxidant 4010NA, 2,5 parts of sulfur) are kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the X-ray diffraction curve results of the vulcanizate are shown in the curve (b) in Fig. 4.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table i.
- the gas barrier properties are shown in Table 2.
- 500g of styrene-butadiene latex (solid content: 20wt%) continued to be added at a speed of 500r/min to continue mixing 20mm; adding 1% calcium chloride solution for flocculation; the graphene oxide/styrene-butadiene rubber obtained by flocculation After the micelles were washed with water, they were dried at 80trF for 24h, and the graphite oxide styrene/styrene-butadiene rubber nanocomposites with 2 phr of graphene oxide and 5 phr of interface agent were obtained.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, and M 0, 2 parts of accelerator. 2 parts of antioxidant 4010NA, 2,5 parts of sulfur) are kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table i.
- the gas barrier properties are shown in Table 2.
- Example 5 The graphite oxide i0 g was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 ° C for 2 h, to obtain a solid content of 0.1 wi% of graphite oxide women/hydrosol; taking 8000 g of graphene oxide / hydrosol
- the pre-treated graphene oxide/water pre-dispersion liquid was obtained by mixing ⁇ with 50 g of buty-butadiene latex (solid content: 40 wt%) at a speed of 500 r/mi.
- 500g of styrene-butadiene latex (solid content of 20wt%) continued to be mixed at a speed of 500r/mm (mixing 20wt%) and mixing 20mm; adding 1% calcium chloride solution for flocculation; flocculating the obtained graphene oxide/styrene-butadiene rubber After the micelles were washed with water, they were dried at 80 Torr for 24 hours to obtain a graphene oxide/styrene-butadiene rubber nanocomposite with a graphene oxide content of 8 phr and an interface agent dosage of 20 phr.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite was prepared on a two-roller kneader according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, promoter M 0, 2 parts) , 2 parts of antioxidant 4010NA, 2,5 parts of sulfur), and kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposites are prepared on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, 0.2 parts of accelerator M, anti-aging agent 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table i.
- the gas barrier properties are shown in Table 2.
- the graphite oxide i0 g was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 ° C for 2 h to obtain a solid content of 0.1 wi% of graphite oxide women/hydrosol; taking 24000 g of graphene oxide / hydrosol
- the pre-treated graphene oxide/water pre-dispersion was obtained by mixing lOmi with i50 g of butyl pyrene latex (40% by weight of cerium) at a speed of 500 r/mm.
- 500g of styrene-butadiene latex (20% by weight of solid halo) continued to be added at a speed of 500r/mm.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite was prepared on a two-roller kneader according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, promoter M 0, 2 parts) , 2 parts of antioxidant 4010NA, 2,5 parts of sulfur), and kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the rubber compound is vulcanized at i50O and at a curing time T to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- 500g of styrene-butadiene latex (solid content of 20wt%) continued to be added at a speed of 50ik/mi « (mixing 20wt%) and mixing 20mm ; adding a concentration of i% calcium chloride solution for flocculation; the graphene oxide/styrene-butadiene rubber obtained by flocculation After the micelles were washed with water, they were dried at 80 Torr for 24 hours to obtain a graphene oxide/styrene-butadiene rubber nanocomposite compound having a graphene oxide content of 40 phr and an interface agent dosage of 00 phr.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula: 5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, promoter M 0, 2 parts, anti-aging agent 2 parts of 4010NA, 2,5 parts of sulfur)
- the mixture is kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 1.
- the gas barrier properties are shown in Table 2.
- the X-ray diffraction curve results of the vulcanizate are shown in curve (c) of Figure 4.
- the obtained styrene-butadiene rubber floc was gelled on a two-roll mill, according to the formula (50 parts of silica, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent) 2 parts of 4010NA, 2.5 parts of sulfur)
- the mixture was kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at i 50 C and a curing time to obtain a white carbon black/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula: 5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, promoter M 0, 2 parts, anti-aging agent 2 parts of 4010NA, 2,5 parts of sulfur)
- the mixture is kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- Flocculation was carried out by adding a 10% dilute sulfuric acid solution to a natural latex of 167 g (solid content: 60 wt%); the micelles of the natural rubber obtained by flocculation were washed with water, dried at 50 for 36 hours, and natural rubber was obtained. Floc gel.
- the obtained natural rubber floc was gelled on a two-roll mill, according to the formula (50 parts of silica, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent 4010NA 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound is vulcanized under the conditions of : ⁇ 43 ' ⁇ , and vulcanized to obtain white carbon black/natural rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- Example 11 - 5 g of graphite oxide was added to 1 L of water, using a power of 1000 W, a frequency of 1000 Hz, and a temperature of 100 ° C for 1 h, to obtain a solid content of 0.5 wi% of graphite oxide / hydrosol; 2000 g of graphene oxide / hydrosol, mixed with 10 g of epoxy natural latex (solid content of 42 wt%) at 30 rpm to obtain a pre-treated graphene oxide/water pre-dispersion at iOOOr mm.
- the obtained graphene oxide/natural rubber nanocomposite is prepared on a twin roll mill according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, and 2 parts of accelerator M 0, 2 parts of antioxidant 4010NA, 2,5 parts of sulfur) are kneaded to obtain a rubber compound.
- the rubber compound is vulcanized under ⁇ 3 ⁇ , vulcanization time to obtain graphene oxide/natural rubber.
- the mechanical properties of vulcanized rubber are shown in Table 3.
- styrene-butadiene latex solid content of 20wt% and 50g of butadiene latex (solid content of 40wt%) were stirred and mixed, and then uniformly mixed, then added with a concentration of 6% calcium sulfate solution for flocculation;
- the benzene rubber/butadiene rubber is washed with a glue spray and then dried under 200' ⁇ to obtain a styrene-butadiene rubber/butadiene rubber floc.
- the obtained graphene oxide/styrene-butadiene rubber/butadiene rubber nanocomposite is prepared on a two-roller mill according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, promotes Qi ij CZ l , 5 parts, promotes 0.2 parts of the agent M, 2 parts of the antioxidant 4010NA, and 2.5 parts of sulfur) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 ° C under a positive vulcanization time to obtain a graphene oxide / styrene butadiene rubber / butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- the obtained natural rubber/ethylene-propylene rubber floccule is used in a two-roll mill, according to the formula (50 parts of silica, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, accelerator M) 0.2 parts, 2 parts of antioxidant 4010NA, 2.5 parts of sulfur), and kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 145 Torr and vulcanization time to obtain a natural rubber/ethylene propylene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- the obtained graphene oxide/natural rubber/ethylene-propylene rubber nanocomposite is on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, 2 parts of antioxidant 40iONA, 2. 5 parts of sulfur), and kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 145 Torr and at a curing time to obtain a graphene oxide/natural rubber/ethylene propylene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- nitrile latex solid content: 28 wt%)
- a dilute hydrochloric acid solution of a concentration of ⁇ ⁇ is added for flocculation; the micelle of the nitrile rubber obtained by flocculation is washed with water, and dried at 300 Torr to obtain a nitrile rubber. Floc gel.
- nitrile rubber floc was gelled on a double roll, according to the formula (50 parts of silica, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent) 2 parts of 4010NA, 2.5 parts of sulfur)
- the mixture was kneaded to obtain a rubber compound.
- the rubber compound was vulcanized under i60 C and a curing time to obtain a white carbon black/nitrile rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- Example 14 Example 14 :
- the obtained graphene oxide/butyronitrile rubber nanocomposite material is placed on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, promoter M CU parts, anti-aging agent) 2 parts of 4010NA, 2.5 parts of sulfur)
- the mixture was kneaded to obtain a rubber compound.
- the rubber compound is vulcanized under the conditions of 160 and vulcanization to obtain a graphene oxide/butadiene rubber vulcanizate. According to the national standard, various performance tests are carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 3.
- the Akron abrasion consumption is shown in Table 4.
- the obtained styrene-butadiene rubber floc was gelled on a double-roller, according to the formula (40 parts of carbon black, 5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L5, accelerator M 0, 2 parts, anti-aging 2 parts of 4010NA, 2.5 parts of sulfur) were kneaded to obtain a rubber compound.
- the rubber compound is vulcanized under 15 (TC, normal vulcanization) to obtain styrene-butadiene rubber vulcanizate. According to the national standard, various performance tests are carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- Example IS- 20 g of graphite oxide was added to 100 ml of water, the power was 2000 W, the frequency was 1000 Hz, and the temperature of 0 ⁇ was ultrasonic 5bu to obtain an i3 ⁇ 4 content of 20 wt% graphene oxide/hydrosol: 25 g of graphite oxide/hydrosol, The mixture was mixed with lg carboxylated styrene-butadiene latex (solid content: 50% by weight), and ultrasonic irradiation was continued at a power of 2000 W at a frequency of 20,000 Hz, and a pre-treated graphene oxide/water pre-dispersion liquid was obtained.
- the obtained graphene oxide/styrene-butadiene rubber nanocomposite is on a two-roll mill, according to the formula: 5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, promoter M 0, 2 parts, anti-aging agent 2 parts of 4010NA, 2,5 parts of sulfur)
- the mixture is kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a graphene oxide/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained natural rubber flocculant is on a two-roll mill, according to 40 parts of formula carbon black, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, and 2 parts of antioxidant 4010NA. , 2,5 parts of sulfur), and kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 143 Torr and vulcanized at a time to obtain a natural rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- Example 16 - 5 g of graphite oxide was added to 1 L of water, using a power of 1000 W, a frequency of 1000 Hz, and a temperature of 100 ° C for 1 h, obtaining a solid content of 0,5 wt'1 ⁇ 2 graphene oxide/hydrosol; taking 1000 g of oxidation Graphite women/hydrosol, mixed with l()g epoxy natural latex (solid content: 42wt%), continue to ultrasonic lh at a power of 1000W, frequency of 1000Hz, temperature of 100 U, to obtain pretreated graphite oxide Alkene/water predispersion.
- the obtained graphite oxide thin/natural rubber nanocomposite is prepared on a double roller mill according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, promoter M 0, 2 parts, anti-aging agent) 2 parts of 4010NA, 2,5 parts of sulfur)
- the mixture is kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 143 Torr and at a curing time to obtain a graphene oxide/natural rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained natural rubber/styrene-butadiene rubber floc gel is used in a two-roll mill, according to the formula (40 parts of carbon black, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, accelerator M 0.2 Serving, anti-aging agent 4010NA 2 parts, sulfur 2.5 parts) mixing and mixing to get the rubber compound.
- the rubber compound is vulcanized in ⁇ 5 ⁇ , vulcanization time to obtain natural rubber.
- Glue / styrene butadiene rubber vulcanizate According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained graphene oxide/natural rubber styrene-butadiene rubber nanocomposite is on a two-roller kneader, according to the formula: 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent 2 parts of 4010NA, 2.5 parts of sulfur)
- the mixture was kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and at a curing time to obtain a graphene oxide/natural rubber/styrene-butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained neoprene foam is gelled on a double roller mill, according to the formula (40 parts of anthrax, 5 parts of zinc oxide, 2 parts of stearic acid, accelerator CZ), 5 parts, accelerator M 0.2 parts, anti-aging 2 parts of 4010NA, 2.5 parts of sulfur) were kneaded to obtain a rubber compound.
- the rubber compound is vulcanized at 143 and a curing time to obtain a neoprene vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained graphene oxide/chloroprene rubber nanocomposites are on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, 0.2 parts of accelerator M, anti-aging agent 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 143:, and the vulcanization time to obtain a graphene oxide/chloroprene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- Flocculation was carried out by adding a 5% strength sodium sulphate solution to a 400 g butyl latex (solid content: 25 wt%); the micelles of the butyl rubber obtained by flocculation were washed with water, and dried at 20 ° C for 6 h. A floc gel of butyl rubber is obtained.
- butyl rubber floc was gelled on a two-roll mill, according to the formula (40 parts of carbon black, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, promoter M CU parts, antioxidant 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and a curing time to obtain a butyl rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the oxide graphite IOg was added to 0.5 L of water at a power of 200 W, a frequency of 100 Hz, and a temperature of 55.
- the obtained graphene oxide/butyl rubber nanocomposites are on a two-roll mill, according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, 5 parts of accelerator CZ L, 0.2 parts of accelerator M, anti-aging agent 4010NA) 2 parts, sulfur (2.5 parts) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 and a curing time to obtain a graphene oxide/butyl rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- styrene-butadiene latex solid content of 20wt% and 50g of diene latex (40% by weight of strontium) were stirred and mixed, and then mixed and added to a 6% calcium sulfate solution for flocculation; After the styrene-butadiene rubber/butadiene rubber was washed with water and washed with water, it was dried at 200 Torr for 1 hour to obtain a floc gel of styrene-butadiene rubber/butadiene rubber.
- the obtained styrene-butadiene rubber/butadiene rubber flocculating gel is sprayed on a double-roller, according to the formula (40 parts of carbon black, 5 parts of zinc oxide, 2 parts of stearic acid, 1.5 parts of accelerator CZ, Promoter M 0, 2 parts, antioxidant 4010NA 2 parts, sulfur 2.5 parts), kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr and under a curing time to obtain a styrene-butadiene rubber butadiene rubber vulcanizate. According to the national standards, various performance tests are carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- the obtained graphene oxide/styrene-butadiene rubber/butadiene rubber nanocomposite is opened on a double-roller according to the formula (5 parts of zinc oxide, 2 parts of stearic acid, promotes Qi ij CZ l , 5 parts, promotes 0.2 parts of the agent M, 2 parts of the antioxidant 4010NA, and 2.5 parts of sulfur) were kneaded to obtain a rubber compound.
- the rubber compound was vulcanized at 150 Torr for a curing time to obtain a graphene oxide/styrene-butadiene rubber/butadiene rubber vulcanizate. According to the national standard, the performance test is carried out.
- the mechanical properties of the vulcanized rubber are shown in Table 5.
- the gas barrier properties are shown in Table 6.
- Table 6 Graphene oxide filled rubber and carbon black filled silicone gas barrier performance comparison table
- the obtained polyurethane powder is molded by molding to obtain a polyurethane vulcanizate. According to the national standards, various performance tests are carried out. The mechanical properties of polyurethane vulcanizates are shown in Table 7.
- Example 21 - 10 g of graphite oxide was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 ° C for 2 h to obtain a solid content of 0.1 wt% graphene oxide / hydrosol; taking 00 g of graphite oxide
- the olefin/hydrosol is mixed with 250 g of polyurethane emulsion (solid content: 55 wt%) for 20 min at a rotational speed of SOOr/mm; the composite emulsion of graphene oxide/polyurethane emulsion is transferred to a spray drying device, spray-dried, and the drying medium is 200 ⁇ hot air.
- the graphene oxide/polyurethane nanocomposite was obtained in an amount of 0.1 g of graphene oxide.
- the obtained graphene oxide/polynitride nano composite material is molded by molding to obtain graphene oxide/polyurethane vulcanizate.
- the mechanical properties of graphene oxide / polyurethane vulcanizate are shown in Table 7.
- Example 23 - 10 g of graphite oxide was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 ° C for 2 h to obtain a solid content of 0.1 wt% graphene oxide / hydrosol; taking 5000 g of graphene oxide /hydrosol, mixed with 250g polyurethane emulsion (solid content: 55wt%) at 800r/mm for 20min; graphene oxide/poly
- the composite emulsion of the urethane emulsion is transferred to a spray drying device for spray drying, and the dry medium is 200 Torr of hot air.
- the dried sample was collected to obtain a graphene oxide/polyurethane nanocomposite in an amount of 5 phr of graphene oxide.
- the obtained graphene oxide/polyurethane nanocomposite is molded by molding to obtain graphene oxide/polyurethane vulcanizate. According to the national standards, various performance tests were carried out. The mechanical properties of graphene oxide/polyoxynitride vulcanizates are shown in Table 7.
- Example 24 - 10 g of graphite oxide was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 Torr for 2 h, to obtain a solid content of 0.1 wi% of graphite oxide women/hydrosol; taking 100OOg of graphene oxide / Hydrosol, mixed with 250g polyurethane emulsion (solid content: 55wt%) at a speed of 8()0r/mm for 20mi.
- the composite emulsion of graphene oxide/polyurethane emulsion is transferred to a spray drying device, and the spray is dried.
- the drying medium is 200 Torr of hot air.
- the dried sample was collected to obtain a graphite oxide/polyurethane nanocomposite with a graphene oxide content of 0 phir.
- the obtained graphene oxide/polyurethane nanocomposite is molded by molding to obtain graphene oxide/polyurethane vulcanizate. According to the national standards for performance testing, the mechanical properties of graphene oxide / polyurethane vulcanizate are shown in Table 7.
- Example 25 the mechanical properties of graphene oxide / polyurethane vulcanizate are shown in Table 7.
- the obtained graphene oxide/polyurethane nanocomposite is molded by molding to obtain graphene oxide/polyurethane vulcanizate. According to the national standards, various performance tests were carried out. The mechanical properties of graphene oxide/polyoxynitride vulcanizates are shown in Table 7.
- Example 26 - 10 g of graphite oxide was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 Torr for 2 h to obtain a solid content of 0.1 wi% of the graphite oxide/hydrosol; 40,000 g of graphene oxide/ Hydrosol, mixed with 250g polyurethane emulsion (solid content: 55wt%) at 800r/mm for 20min; Transfer the composite emulsion of graphene oxide/polyurethane emulsion to spray drying device, spray drying treatment, drying medium is 200 ⁇ heat air. The graphene-completed sample was collected to obtain a graphene oxide/polyurethane nanocomposite with a graphene oxide content of 40 phr.
- the obtained graphene oxide/polyurethane nanocomposite was compression molded to obtain a graphene oxide/polyurethane vulcanizate.
- the mechanical properties of graphene oxide / polyurethane vulcanizate are shown in Table 7.
- Example 28 - 10 g of graphite oxide was added to 10 L of water, using a power of 800 W, a frequency of 1000 Hz, and a temperature of 25 Torr for 2 h to obtain a solid content of 0.1 wi% of graphite oxide/hydrosol; taking 5000 g of graphene oxide /Hydrosol, mixed with 200g of fluororubber latex (solid content: 50wt%) at a speed of 8()0r/miii for 30mi. Transfer the composite emulsion of graphene oxide/fluororubber latex to a spray drying device.
- the drying medium is 300 Torr of hot air, and 1'1 ⁇ 2 of 1 ⁇ 1 gas is introduced into the carrier gas according to the flow ratio of the carrier gas.
- the dried sample was collected to obtain a graphene oxide/fluororubber nanocomposite with a graphene oxide content of 5 phr.
- the obtained graphene oxide/fluororubber nanocomposite was kneaded in a two-roller kneader according to the formulation (DCP 2 parts) to obtain a rubber compound.
- the rubber compound was vulcanized at 150 ° C under normal vulcanization, and subjected to two-stage vulcanization at 204 ° C for 24 h to obtain graphene oxide / fluororubber vulcanizate.
- the performance tests were carried out according to national standards.
- the mechanical properties of vulcanizates are shown in Table 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
一种完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法,采用乳液复合与絮凝工艺相结合,或乳液复合与喷雾干燥工艺相结合,保留了氧化石墨烯/橡胶复合乳液在液态下的相态结构,获得了高度分散、高度剥离且呈纳米尺度分散的相态结构;同时,将能够与氧化石墨烯表面官能团产生离子键合或化学键合作用的物质加入到上述氧化石墨烯/水溶胶中,作为界面剂,从而提高了氧化石墨烯与橡胶的界面结合作用。复合材料通过后续混炼和硫化制得的硫化胶具有较高的拉伸强度、定伸应力、撕裂强度等力学性能,并且能大幅度提高硫化胶的耐磨性能和气体阻隔性能,简单易行、成本低、节约能源、易于工业化、适宜面广,具有较好的经济效益和社会效益。
Description
完全剥离的氧化石墨烯 /橡胶纳米复合材料的制备方法 技术领域
本发明涉及高剥离、高分散、强界面结合的氧化石墨烯 /橡胶纳米复合 料的制备方法, 特别涉及乳液复合与絮凝工艺相结合, 或乳液复合与喷雾干燥工艺相结合, 制备含界面剂 的氧化石墨烯 /橡胶纳米复合材料。
背景技术
在橡胶工业中, 用量最大、 最通用的填料是纳米级的炭黑和白炭黑。 炭黑是橡胶工业 最重要的补强填料, 但是随着石油资源的日益减少, 完全依赖于石油的炭黑产业的应用受 到了一定程度的限制, 而且炭黑在生产和应用中还存在环境污染问题。 白炭黑对橡胶的补 强性能接近炭黑, 然而填充白炭黑的胶料也存在一些缺点, 特别是制造工艺中, 白炭黑很 难与橡胶混合, 一旦胶料中出现了白炭黑的不良分散, 就会导致胶料强度降低、性能下降。 橡胶工业中还大量使用亚徵米和微米级的非金属矿物材料作填充剂, 用量最大的有陶土和 碳酸钙、 其余还有白云石、 硅灰石、 滑石、 冰晶石、 叶腊石、 重晶石等, 这些填料加入橡 胶中基本上以降低成本为目的, 对强度贡献微乎其微。 因此, 寻求能够替代传统填料的新 型高效增强填料 (用量少、 环保、 不依赖于石油资源) 以及高效、 便捷、 经济的增强方式 是当前橡胶工业所面临的重点和难点之一。
石墨烯是一种由碳原子以 sp2杂化轨道组成的六角晶格平面薄膜,只有一个或多个碳原 子厚度的二维材料。 2004年由英国曼彻斯特大学的 Novoselov和 Geim用胶带剥离高定向石 墨的方法首次成功制得真正能够独立存在的二维石墨烯晶体。 石墨烯在平面内有无限重复 的周期结构,在垂直于平面的方向只有纳米尺度, 可以看诈是具有宏观尺寸的纳米材料。 石 墨烯具有高理论比表面积 ί约 2630ηΛ ), 大的纵横比 (> 1000) 以及很好的力学强度 (杨 氏模量为 1060GPa) , 预示着石墨烯对高分子材料高效增强方向具有潜在优势。
结构完整的石墨烯化学稳定性高, 其表面呈惰性状态、 与其他介质 (如溶剂等) 的相 互作用较弱, 并且石墨烯片 '与片之间有较强的范德华力, 容易产生聚集, 使其难溶于水及 常 ]¾的有机溶剂。这给制备石墨烯 /聚合物复合村料造成了极大的困难。还原氧化石墨法制 备石墨烯是目前应用最广泛的一种制备石墨烯的方法。 氧化石墨作为还原氧化石墨制备石 墨烯的中间产物, 将其分散于水或者有机溶剂中, 通过超声作用可以完全被剥离成氧化石 墨烯。 氧化石墨烯表面含有大量的含氧官能团, 使得其与水和常用的有机溶剂具有更好的 相容性且片与片之间的范德华力减弱, 减小了聚集作用。 目前, 氧化石墨烯已作为补强填 料成功分散到硬质塑料基体为主的聚合物中 (如聚醋酸乙烯酯、 聚甲基丙烯酸甲酯、 聚己 内酯等) (Xu,Y.;Hong,W.;Bai,H.;Li,C.; Shi,G. Carbon 2009, 47, 3538-3543, Liang, I; Huang, Y.; Zhang, L,; Wang, Y.; Ma, Y.; Guo, T,;Chen, Y, Adv. Funct. Mater. 2009, 19, 2297-2302. Jang, J. Y.; Kim, M. S.; Jeong, H. M,; Shin, C. M Compos. Sci. Techno!. 2009, 69, 186-191. Kai. W,; Hirota, Y.; Hua, L.; Inoue, Y. J, Appl. Polym. Sci. 2008,107, 1395-1400,Cai, D.; Song, M. Nanotechnology 2009, 20. 315708/1-315708/6. ) 。 但遗憾的是能够实现氧化石墨浠与橡胶高 效复合 (简捷、 易于工业化, 所获材料综合性能好) 的先进制备技术尚未见报道, 如何解 决氧化石墨烯在橡胶基体中的分散及其与橡胶之间的界面结合作用是获得高性能橡胶制 品的难点和关键。
发明内容:
本发明的目的是针对现有技术问题, 提供一种高剥离、 高分散、 强界面结合的氧化石 墨烯 /橡胶纳米复合材料的制备方法, 所 ]¾石墨烯为氧化石墨烯, 没有经过还原过程(氧化 石墨烯被还原成石墨烯后不可避免的发生再聚集, 不利于石墨烯的分散; 并且还原后的石 墨烯表面官能团含量大幅度减少, 与橡胶基体的相容性很差) 。 这种方法制备得到的复合 材料中, 氧化石墨烯在橡胶基体中能达到高度剥离、 高度分散、 并 ϋ呈纳米尺度分散的状 态, 进而发挥氧化石墨烯纳米增强的作用, 同^, 氧化石墨烯与橡胶之间存在很强的界面 结合诈用, 继而达到很好的增强橡胶的效果。 .从各种测试结果看, 氧化石墨烯加入到橡胶
基体中能大大增加橡胶制品强度、 耐磨性、 及气体阻隔性能, 因此, 可广泛应用于轮胎、 胶板、 胶带、 胶辊等工业制品及各神密封领域。 同时, 氧化石墨烯具有良好的自恢复能力 及抗裂纹扩展能力, 可广泛应 于自修复材料及其高抗撕材料领域。
本发明提供的是乳液复合与絮凝工艺相结合, 或乳液复合与喷雾千燥工艺相结合, 制 备高剥离、 高分散、 强界面结合的氧化石墨烯 /橡胶纳米复合材料。 该技术不仅 ]¾于橡胶的 高效增强, 提供高的气体阻隔性等, 还可为未来制备具有高导电、 高导热性能的特种材料 提供技术基础》 具体制备条件和步骤如下:
( 1 ) 氧化石墨烯 /水溶胶的制备
将氧化石墨分散于去离子水中,于温度 0〜100°C ,功率 10〜1000W,频率 iO〜20000Hz 下超声分散 10min〜6h制得氧化石墨烯水溶胶;
(2) 氧化石墨烯 /水溶胶的预处理
向上述氧化石墨烯 Z水溶胶中加入界面剂,超声分散 5mm〜5h,或者在搅拌速度为 50〜 10000 r/mm下搅拌 5min〜5h, 得到预处理后的氧化石墨烯 Z水分散液;
( 3 ) 氧化石墨烯 /橡胶复合乳液的制备
直接将氧化石墨烯 /水溶胶、 或者将预处理后的氧化石墨浠 /水分散液与橡胶胶乳超声 分散 10min〜6h, 或者在搅拌速度为 50〜10000 r/min下搅拌 10min〜6h, 获得稳定的氧化 石墨烯 /橡胶复合乳液;
(4) 氧化 ¾墨烯 /橡胶纳米复合材料的制备
A) 离子絮凝工艺: 加入可使氧化石墨烯 /橡胶复合乳液破乳的絮凝剂进行絮凝, 将絮凝 物脱水、 烘千制备得到氧化石墨稀 /橡胶纳米复合材料;
B) 喷雾干燥工艺: 将上述氧化石墨烯 /橡胶复合乳液经过喷雾千燥装置, 雾化形成徵小 的复合液液滴, 在千燥介质中快速脱除水分, 得到氧化石墨烯 /橡胶纳米复合材料; 或者通 过^喷雾干燥装置的干燥介质载气中引入气化后的絮凝剂, 使得离子絮凝、 快速脱水在同 间内进行, 制备得到氧化石墨烯 /橡胶纳米复合材料。
本发明的优势在于使用氧化石墨烯作为补强填料。 氧化石墨烯表面含氧官能团在水中 存在离子化的诈用使其表面带有负电荷, 在水中由干静电力的诈用形成稳定的溶胶, 其中 的氧化石墨烯呈现一种高度剥离 ϋ呈纳米尺度高度分散的状态。 这是本发明得以建立的结 构基础之一。 在氧化石墨浠水溶胶中加入能够与氧化石墨烯表面官能团产生离子键合或化 学键合作用的物质, 作为氧化石墨烯与橡胶大分子链的界面剂, 从而提高氧化石墨烯与掾 胶的界面结合诈^。 这是本发明得以建立的结构基础之二。 将氧化石墨烯 Ζ水溶胶、 或者加 入界面剂后的氧化石墨烯 /水预分散液与橡胶胶乳混合, 在超声或者搅拌作用下, 乳胶粒子 会与氧化石墨烯片层在彼此间相互穿插而相互隔离, 形成液相 Τ高剥离、 高分散的氧化石 墨烯 /橡胶分散相态结构。 这是本发明得以建立的结构基础之 Ξ:。
本发明的优势在于利 ]¾离子絮凝工艺或喷雾千燥工艺制备氧化石墨烯 /橡胶纳米复合 材料, 本发明方法制备的氧化石墨烯 Ζ橡胶纳米复合村料保留了氧化石墨烯 /橡胶复合乳液 在液态下的相态结钩, 而获得了高度分散、 高度剥离且呈纳米尺度分散的氧化石墨浠 ζ 橡胶纳米复合材料。 这是本发明得以建立的技术手段。
本发明方法制备的氧化石墨烯 /橡胶纳米复合材料中氧化石墨烯填料的质量份数为
0.1phx-20phr(phr为每一百份橡胶质量中的氧化石墨烯质量 }, 界面剂的质量份数为 O.Olphr 〜100phitphr为每一百份掾胶质量中的界面剂质量)。 本发明方法中的界面剂为固含量为 10〜80wt%的羧基丁苯胶乳、 丁吡胶乳、 羧基丁苯吡胶乳、 环氧天然胶乳、 羧基氯丁胶乳、 羧基丁腈胶乳、 羧基聚丁二烯等, 或者是氨丙基:三乙氧基硅烷偶联剂 KH550 γ- (甲基丙 烯酰氧)丙基三甲氧基硅垸偶联剂 ΚΗ570等硅烷偶联剂以及季钹盐;橡胶胶乳为固含量为 l()〜80wt'½的丁苯胶乳、 天然胶乳、 氯丁胶乳、 丁基胶乳、 丁腈胶乳、 丁二烯胶乳、 乙丙 胶乳、 聚异戊二烯胶乳、 氟橡胶胶乳、 硅橡胶胶乳、 聚氨酯胶乳中的一种或两种。 絮凝剂 为 0.1〜i0wi% (本文如无特殊说明, 均指重量百分浓度)的硫酸、 盐酸、氯化钙、 氯化钠、 氯化钾、 硫酸销、 硫酸铝、 ≡氯化铁、 聚合氯化铝、 聚合硫酸铁中任一种。
迸一步, 氧化石墨烯 Z水溶胶中氧化石墨烯的固含量为 0,01〜20wi%。
进一步, 絮凝物在 下干燥。
进一歩, 喷雾干燥装置使用的干燥介质是 60Ό〜300'Ό的热空气。 本发明方法制备的氧化石墨烯 /橡胶纳米复合材料通过后续混炼和硫化制得的硫化胶 具有较高的拉伸强度、 定伸应力、 撕裂强度等力学性能, 并且能大幅度提高硫化胶的气体 阻隔性能。例如本发明实施例 4中, 氧化石墨烯 /丁苯橡胶纳米复合材料制备的硫化胶在氧 化石墨烯添加量仅为 4phr时,丁苯橡胶的拉伸强度高达 14.2MPa (为纯丁苯橡胶的 7.1倍), 擬裂强度达到 49.7KN/m (为纯丁苯橡胶的 3倍), 100%、 300%定伸应力可分别达到 3,7MPa 和 l l.lMPa (分别为纯丁苯橡胶的 3.7倍和 5.6倍) , 气体阻隔性为 2.35*liTi7m2s— ^a— 1 (为 纯丁苯橡胶的 3/10, 该数值越小, 表明该制品气体阻隔性能越好) 。
此外, 本发明的优势还在于制备工艺简单、 成本低、 无环境污染, 易于实现大规模的 工业化生产。
t图说明- 图 1为本发明的方法和条件制备的氧化石墨烯水溶胶中的氧化石墨婦原子力显微镜
( AFM) 照片; AFM照片显示氧化石墨烯为单片层或几个片层, 氧化石墨烯的横向尺度 为微米级、 纵向尺度为纳米级。
图 2为本发明的方法和条件制备的氧化石墨烯水溶胶中的氧化石墨烯透射电镜 (TEM ) 照片; ΊΈΜ照片显示氧化石墨烯边缘处有明显的褶皱结构。
图 3为本发明 (实施〈 4 ) 氧化石墨烯 /丁苯橡胶纳米复合材料的高分辨透射电镜
( HRTEM)照片; HRTEM照片显示氧化石墨烯在丁苯橡胶基体中以单片层的形式(纳米
、 J ^为: 发明所用氧化石墨、 本发明 (对比倒 1 ) 丁苯橡胶硫化胶以及本发明 (实施 倒 1和实施例 9) 氧化石墨烯 /丁苯橡胶纳米复合材料制备的硫化胶的 X光衍射曲线结果; 可以看出, 氧化石墨婦 /丁苯橡胶复合材料中, 没有出现氧化石墨烯的特征衍射峰, 说明氧 化石墨烯在丁苯橡胶基体中以单片层的形式呈高度剥离状态。
图 5为本发明(实施例 10)氧化石墨烯 /丁苯橡胶纳米复合材料制备的硫化胶与本发明 (对比例 2) 白炭黑 /丁苯橡胶纳米复合材料刺备的硫化胶阿克隆磨耗的沙拉马赫图纹对比 图; 可以看出, 氧化石墨烯 /丁苯橡胶纳米复合材料制备的硫化胶沙拉马赫条纹浅而清晰, 看不到橡胶基体或氧化石墨烯被大量剥离的形态, 说明氧化石墨烯与橡胶基体存在着良好 的界面作用。
具体实施方式- 对比例 1 :
在 500g丁苯胶乳 (固含量为 20wt%) 中加入浓度为 1%的氯化钙溶液进行絮凝; 将絮 凝得到的丁苯橡胶的胶团淋水洗涤后, 在 80°C下千燥 24h, 得到丁苯橡胶的絮凝胶。
将得到的丁苯橡胶絮凝胶在双辊筒开炼机上, 按照配方 (氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混 炼胶。 将混炼胶在 150Ό、 正硫化时间 Τ进行硫化得到丁苯橡胶硫化胶。 按国家标准进行 各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能见表 2。 硫化胶的 X光衍射 曲线结果见图 4中曲线 (a) 。
实施例
将氧化石墨〗 0g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 "C条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨烯冰溶胶; 取 100g氧化石墨烯冰溶胶, 在 5()()r/min的转速下与 0,625g丁 B比胶乳 (固含量为 40wt'½) 混合 ΙΟίη , 获得预处理后的氧 化石墨烯 /水预分散液。在 500f/min的转速下继续加入的 500g丁苯胶乳(固含量为 20wt%) 继续混合 20min; 加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯
橡胶的胶团淋水洗涤后, 在 80Ό下千燥 24h, 得到氧化石墨烯用量为 0.1phr、 界面剂用量 为 0.25pto的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1。5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。 硫化胶的 X光衍射曲线结果见图 4中曲线 (b) 。
实施例 2:
将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 V条件 下超声 2h, 获得固含量为 0, l wt%氧化石墨浠冰溶胶: 取 1200g氧化石墨烯 /水溶胶, 在 500f/min的转速下与 7,5g丁吡胶乳 (固含量为 40wt%) 混合 l Omin, 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/min的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt% ) 继续混合 20mi 加入浓度为 1 %的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80XTF千燥 24h, 得到氧化石墨烯用量为 : L2phr、 界面剂用量 为 3phr的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150 、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 i、 气体阻隔性能 见表 2。
实施例 3:
将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 Ό条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 2000g氧化石墨烯 /水溶胶, 在 500r/mm的转速下与 i2.5g丁吡胶乳 (固含量为 40wt% ) 混合 l Omin, 获得預处理后的氧 化石墨烯 /水预分散液。在 500r/min的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt% ) 继续混合 20mm; 加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80trF千燥 24h, 得到氧化石墨烯用量为 2phr、 界面剂用量为 5phr的氧化石墨婦 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1。5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。
实施例 4:
将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 Ό条件 下超声 2h, 获得固含量为 0, l wt%氧化石墨浠冰溶胶: 取 4000g氧化石墨烯 /水溶胶, 在 500f/min的转速下与 25g丁吡胶乳 (固含量为 40wt% ) 混合 lOmiii, 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/min的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt% ) 继续混合 20mi 加入浓度为 1 %的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80 TF千燥 24h, 得到氧化石墨烯用量为 4phr、 界面剂用量为 lOpto的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150 、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 i、 气体阻隔性能 见表 2。
实施例 5:
将氧化石墨 i0g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25°C条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 8000g氧化石墨烯 /水溶胶, 在 500r/m i的转速下与 50g丁吡胶乳 (固含量为 40wt%) 混合 ΙΟηώι, 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/mm的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt%) 继续混合 20mm; 加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80Ό下干燥 24h, 得到氧化石墨烯用量为 8phr、 界面剂用量为 20phr的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒幵炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1。5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。
实施例 6:
将氧化石墨 10g加入 iOL水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 °C条件 下超声 2h, 获得固含量为 0,lwt%氧化石墨浠 /水溶胶: 取 16000g氧化石墨烯 /水溶胶, 在 500r/min的转速下与 100g丁吡胶乳(固含量为 40wt%)混合 lOmi 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/min的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt%) 继续混合 20mi 加入浓度为 1%的氯化钙溶液进行絮凝: 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80 Τ千燥 24h, 得到氧化石墨烯用量为 : 6phr、 界面剂用量 为 40phr的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150 、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 i、 气体阻隔性能 见表 2。
实施例 7:
将氧化石墨 i0g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25°C条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 24000g氧化石墨烯 /水溶胶, 在 500r/mm的转速下与 i50g丁吡胶乳(圏含量为 40wt%)混合 lOmi 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/mm的转速下继续加入的 500g丁苯胶乳 (固含暈为 20wt%) 继续混合 20mm; 加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80'Ό下干燥 24h, 得到氧化石墨烯用量为 24phr、 界面剂用量 为 60phr的氧化石墨婦 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒幵炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1。5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。
实施例 8:
将氧化石墨 10g加入 iOL水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25°C条件 下超声 2h, 获得固含量为 0,lwt%氧化石墨浠冰溶胶: 取 32000g氧化石墨烯冰溶胶, 在 500r/min的转速下与 200g丁吡胶乳(固含量为 40wt%)混合 lOmi 获得预处理后的氧化 石墨烯 /水预分散液。 在 500r/min的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt%) 继续混合 20mi 加入浓度为 1%的氯化钙溶液进行絮凝: 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80 Τ千燥 24h, 得到氧化石墨烯用量为 32phr、 界面剂用量 为 80phr的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼 上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 Μ 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 i50O、 正硫化时间 T进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能測试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。
实施例 9:
将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 °C条件 下超声 2h, 获得固含量为 0.1wt%氧化石墨烯 /水溶胶; 取 40000g氧化石墨烯 /水溶胶, 在 SOOr/mm的转速下与 250g丁吡胶乳(固含量为 40wt% )混合 lOmin, 获得预处理后的氧化 石墨烯 /水预分散液。 在 50ik/mi«的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt%) 继续混合 20mm; 加入浓度为 i%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯 橡胶的胶团淋水洗涤后, 在 80Ό下千燥 24h, 得到氧化石墨烯用量为 40phr、 界面剂用量 为】00phr的氧化石墨烯 /丁苯橡胶纳米复合村料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 1、 气体阻隔性能 见表 2。 硫化胶的 X光衍射曲线结果见图 4中曲线 (c) 。
表 2乳液复合与絮凝工艺共同制备
气体阻隔性
试样
( liri 7m Pa- '! )
对比例 1 6.97
实施例 1 3.02
实施例 2 2.28
实施例 3 】,73
实施例 4 1 .42
实施例 5 1.21
实施例 6 1.09
实施例 Ί 0.92
实施例 8 0.78
对比例 2;
在 500g丁苯胶乳 (固含量为 20wt%) 中加入浓度为】%的氯化钙溶液进行絮凝; 将絮 凝得到的丁苯橡胶的胶团淋水洗涤后, 在 80Ό下干燥 24h, 得到丁苯橡胶的絮凝胶。
将得到的丁苯橡胶絮凝胶在双辊筒开炼机上, 按照配方 (白炭黑 50份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 i 50 C、 正硫化时间下进行硫化得到白炭黑 /丁苯橡胶硫化 胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量见表 4。 实施例 U
将氧化石墨 10g加入 0J L水中, 采用功率为 1000W, 频率为 2000Hz, 温度为 40 C条 件下超声 4h, 获得固含量为 10wt%氧化石墨烯冰溶胶; 取 100g氧化石墨烯 /水溶胶, 在 2000rZmin的转速下与 lg羧基丁苯胶乳 (固含量为 30wt%) 混合 20miii, 获得预处理后的 氧化石墨烯 /水预分散液。 在 2000r/mm的转速下继续加入的 500g丁苯胶乳 (固含量为 20wt%)继续混合 40min; 加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝得到的氧化石墨 烯 /丁苯橡胶的胶团淋水洗涤后, 在 80Γ下干燥 24h, 得到氧化石墨烯用量为 10phr、 界面 剂用量为 OJphr的氧化石墨烯 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量 见表 4。
对比例 3:
在 167g天然胶乳 (固含量为 60wt%) 中加入浓度为 10%的稀硫酸溶液进行絮凝; 将 絮凝得到的天然橡胶的胶团淋水洗涤后, 在 50 下千燥 36h, 得到天然橡胶的絮凝胶。
将得到的天然橡胶絮凝胶在双辊筒开炼机上, 按照配方 (白炭黑 50份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 :Ι 43 'Ό、 正硫化 ^间下进行硫化得到白炭黑 /天然橡胶硫化 胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量见表 4。 实施例 11- 将氧化石墨 5g加入 1L水中, 采用功率为 1000W, 频率为 1000Hz, 温度为 100°C条件 下超声 lh, 获得固含量为 0.5wi%氧化石墨婦 /水溶胶; 取 2000g氧化石墨烯 /水溶胶, 在 iOOOr mm的转速下与与 10g环氧天然胶乳(固含量为 42wt%)混合 30ηώι, 获得预处理后 的氧化石墨烯 /水预分散液。 在 lOOOrZmin的转速下加入 167g天然胶乳 (固含量为 60wt%) 继续混合 30mm; 加入浓度为 10%的稀硫酸溶液进行絮凝; 将絮凝得到的氧化石墨烯 /天然 橡胶的胶团淋水洗涤后, 在 50'Ό下干燥 36h, 得到氧化石墨烯用量为 10phr、 界面剂用量 为 4.2phr的氧化石墨浠 /天然橡胶纳米复合材料。
将得到的氧化石墨烯 /天然橡胶纳米复合材料在双辊筒幵炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1。5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 Μ3 Ό、 正硫化时间下进行硫化得到氧化石墨烯 /天然橡 。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量
将 350g丁苯胶乳 (固含量为 20wt%) 与 50g丁二烯胶乳 (固含量为 40wt%) 搅拌混 合, 混合均匀后后加入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的丁苯橡胶 /丁二烯 橡胶并用胶胶团淋水洗涤后,在 200'Ό下干燥】h,得到丁苯橡胶 /丁二烯橡胶并用的絮凝胶。
将得到的丁苯橡胶 Z丁 混筒开炼 上, 按照配方 (白炭黑
50份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0.2份, 防老剂 4010NA 2
份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到 丁苯橡胶 /丁二烯橡胶硫化胶。按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量见表 4。
实施例 12:
将氧化石墨】 0g加入 10L水中, 采用功率为 600W, 频率为 500Hz, 温度为 30Ό条件 下超声 3h, 获得固含量为 0. iwt%氧化石墨烯 /水溶胶; 取 10000g氧化石墨烯 /水溶胶, 在 l()()0r/niin的转速下与与 10g丁吡胶乳(固含量为 40wt'½)混合 30mimu 获得预处理后的氧 化石墨烯 Z水预分散液。 在 lOOOr/miii的转速下加入 350g丁苯胶乳 (固含量为 20wt%) 与 50g丁二烯胶乳 (固含量为 40wt%)继续混合 3h: 加入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯橡胶 /丁二婦橡胶的并用胶团淋水洗涤后, 在 200Ό下干燥 l ,得到氧化石墨烯用量为 10phr、界面剂用量为 4phr的氧化石墨烯 /丁苯橡胶 /丁二烯橡胶 纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶 /丁二烯橡胶纳米复合材料在双辊筒幵炼机上, 按照配 方(氧化锌 5份, 硬脂酸 2份, 促进齐 ij CZ l ,5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150°C、 正硫化时间下进行硫化得到氧化 石墨烯 /丁苯橡胶 /丁二烯橡胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能 参数见表 3、 阿克隆磨耗量见表 4。
对比例 5:
将 117g天然胶乳(固含量为 60wt%)与 54.5g乙丙胶乳(固含量为 55wt%)搅拌混合, 混合均勾后后加入浓度为 1%的硫酸钙溶液进行絮凝; 将絮凝得到的天然橡胶 /乙丙橡胶并 用胶胶团琳水洗涤后, 在 70Ό下干燥 24h, 得到天然橡胶 /乙丙橡胶并用的絮凝胶。
将得到的天然橡胶 /乙丙橡胶并用的絮凝胶在双辊筒开炼机上, 按照配方 (白炭黑 50 份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 145 Ό、 正硫化时间下进行硫化得到天然 橡胶 /乙丙橡胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿 克隆磨耗量见表 4。
实施例 13 :
将氧化石墨 10g加入 1L水中, 采用功率为 600W, 频率为 500Hz, 温度为 30Ό条件下 超声 3h,获得固含量为 1 4%氧化石墨烯 /水溶胶;取 1000g氧化石墨烯 /水溶胶,在 1000f/min 的转速下与 ig丁吡胶乳 (固含量为 40wt%) 混合 30min, 获得预处理后的氧化石墨烯 /水 预分散液。 在 1000r/min的转速下加入 117g天然胶乳 (固含量为 60wt%) 与 54,5g乙丙胶 乳 (固含量为 55wt%) 继续混合 3h; 加入浓度为 i%的硫酸钙溶液进行絮凝; 将絮凝得到 的氧化石墨烯 /丁苯橡胶 /丁二烯橡胶的并用胶团淋水洗涤后, 在 70Ό下干燥 24h, 得到氧 化石墨烯用量为 lOp r 界面剂用量为 0.4phr的氧化石墨烯 /天然橡胶 /乙丙橡胶纳米复合材 料。
将得到的氧化石墨烯 /天然橡胶 /乙丙橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 40iONA 2份, 硫磺 2。5份) 进行混炼得到混炼胶。 将混炼胶在 145 Ό、 正硫化时间下进行硫化得到氧化 石墨烯 /天然橡胶 /乙丙橡胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参 数见表 3、 阿克隆磨耗量见表 4。
对比例 6;
在 357g丁腈胶乳 (固含量为 28wt%) 中加入浓度为〗%的稀盐酸溶液进行絮凝; 将絮 凝得到的丁腈橡胶的胶团淋水洗涤后, 在 300ΓΤ千燥 , 得到丁腈橡胶的絮凝胶。
将得到的丁腈橡胶絮凝胶在双辊筒开炼 上, 按照配方 (白炭黑 50份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 i60 C、 正硫化时间下进行硫化得到白炭黑 /丁腈橡胶硫化 胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量见表 4。
实施例 14:
将氧化石墨 10g加入】 L水中, 采用功率为】 000W, 频率为】00()Hz 温度为 100 C条件 T超声 lh, 获得固含量为 wt%氧化石墨烯 /水溶胶; 取 i 30g氧化石墨烯 /水溶) k 在 lOOOrZmin的转速下与 lg羧基丁腈胶乳 (固含量为 20wt%) 混合 30miii, 获得预处理后的 氧化石墨烯 /水预分散液。 在】 000r/mm的转速下加入 357g丁腈胶乳 (固含量为 28wt%) 继续混合 ih; 加入浓度为 1% ί液进行絮凝; 将絮凝得到的氧化石墨烯 /丁腈橡胶 胶团淋水洗涤后, 在 300Ό下干燥 l h, 得到氧化石墨烯用量为 10phr、 界面剂用量为( phr 的氧化石墨烯 /丁腈橡胶纳米复合材料。
将得到的氧化石墨烯 /丁腈橡胶纳米复合村料在双辊筒开炼机上,按照配方(氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M CU份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 160 、 正硫化 间下进行硫化得到氧化石墨烯 /丁腈橡胶 硫化胶。 按国家标准迸行各项性能测试, 硫化胶的力学性能参数见表 3、 阿克隆磨耗量见 表 4。
表 3氧化石墨烯填充橡胶与白炭黑填充橡胶力学性能对照表
表 4氧化石墨烯填充橡胶与白炭黑填充椽胶阿克隆磨耗量数据对照表
对比例 Ί
在 500g丁苯胶乳 (固含 I为 20wt%) 中加入浓度为 1%的氯化钙溶液进行絮凝; 将絮凝 得到的丁苯橡胶的胶团 tt 洗涤后, 在 80'Ό下千燥 24h, 得到丁苯橡胶的絮凝胶。
将得到的丁苯橡胶絮凝胶在双辊筒开炼 上, 按照配方 (炭黑 40份, 氧化锌 5份, 硬 脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行 混炼得到混炼胶。 将混炼胶在 15(TC、 正硫化 ^间下进行硫化得到丁苯橡胶硫化胶。 按国 家标准迸行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能见表 6。
实施例 IS- 将氧化石墨 20g加入 100ml水中, 采 功率为 2000W, 频率为 1000Hz, 温度为 0Ό条 件下超声 5bu 获得 i¾含量为 20wt%氧化石墨烯 /水溶胶: 取 25g氧化石墨浠 /水溶胶, 与 lg 羧基丁苯胶乳 (固含量为 50wt%) 混合 ·, 在功率为 2000W, 频率为 20000Hz, 温度为 条件下继续超声 ih, 获得預处理后的氧化石墨烯 /水预分散液。 加入 500g丁苯胶乳 (固含 量为 20wt'½)在功率为 2000W, 频率为 20000Hz, 温度为()Ό条件下继续超声】 h: 加入浓 度为 1%的氯化钙溶液溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯橡胶的胶团淋水洗涤 后, 在 80t;下干燥 24h, 得到氧化石墨烯用量为 5phr、 界面剂 ffl量为 0。5phr的氧化石墨烯 Z丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶纳米复合材料在双辊筒开炼机上, 按照配方 氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化石墨烯 /丁苯橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能 见表 6。
对比例 8:
在 167g天然胶乳 (固含量为 60wt%) 中加入浓度为 10%的稀硫酸溶液进行絮凝; 将 絮凝得到的天然橡胶的胶团琳水洗涤后, 在 50Ό下千燥 36h, 得到天然橡胶的絮凝胶。
将得到的天然橡胶絮凝胶在双辊筒开炼机上, 按照配方 炭黑 40份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进 行混炼得到混炼胶。 将混炼胶在 143Ό、 正硫化时间 Τ进行硫化得到天然橡胶硫化胶。 按 国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能见表 6。
实施例 16- 将氧化石墨 5g加入 1L水中, 采用功率为 1000W, 频率为 1000Hz, 温度为 100°C条件 下超声 lh,获得固含量为 0,5wt'½氧化石墨烯 /水溶胶;取 1000g氧化石墨婦 /水溶胶,与 l()g 环氧天然胶乳 (固含量为 42wt%)混合, 在功率为 1000W, 频率为 1000Hz, 温度为 100 U 条件下继续超声 lh, 获得預处理后的氧化石墨烯 /水预分散液。 加入 167g天然胶乳 (固含 量为 60wi%) 在功率为 1000W, 频率为〗000Hz, 温度为 0'C条件下继续超声】 h; 加入浓 度为 10%的稀硫酸溶液进行絮凝; 将絮凝得到的氧化石墨烯 /天然橡胶的胶团淋水洗涤后, 在 50Ό下干燥 36h,得到氧化石墨婦用量为 5phr、界面剂用量为 4,2phr的氧化石墨烯 /天然 橡胶纳米复合材料。
将得到的氧化石墨稀 /天然橡胶纳米复合材料在双辊筒幵炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2,5份) 进行混炼得到混炼胶。 将混炼胶在 143Ό、 正硫化时间下进行硫化得到氧化石墨烯 /天然橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能 见表 6。
对比例 9:
将 1 7g天然胶乳(固含量为 60wt'½)与 150g丁苯胶乳(固含量为 20wt%)搅拌混合, 混合均匀后后加入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的天然橡胶 /丁苯橡胶并 用胶胶团淋水洗涤后, 在 40 下千燥 60h, 得到天然橡胶 Z丁苯橡胶并用的絮凝胶。
将得到的天然橡胶 /丁苯橡胶并用的絮凝胶在双辊筒开炼机上, 按照配方(炭黑 40份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫 磺 2.5份) 迸行混炼得到混炼胶。 将混炼胶在 Μ5Ό、 正硫化时间 Τ进行硫化得到天然橡
胶 /丁苯橡胶硫化胶。 按国家标准迸行各项性能测试, 硫化胶的力学性能参数见表 5、 气体 阻隔性能见表 6。
实施例 17:
将氧化石墨 10g加入 10L水中, 采用功率为 600W, 频率为 500Hz, 温度为 30°C条件 下超声 3h,获得固含量为 0.1wt%氧化石墨烯 /水溶胶;取 5000g氧化石墨烯 /水溶胶,与 l()g KH550混合, 在功率为 600W, 频率为 500Hz, 温度为 30Ό条件下继续超声:h, 获得预处 理后的氧化石墨烯冰预分散液。加入 U7g天然胶乳(固含量为 60wt%)与 150g丁苯胶乳 (固含量为 20wt%)在功率为 600W, 频率为 500Hz, 温度为 30'Ό条件下继续超声〗 h; 加 入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /天然橡胶丁苯橡胶的胶团 淋水洗涤后, 在 40Ό下干燥 60h, 得到氧化石墨浠用量为 5phr、 界面剂用量为〗0phr的氧 化石墨烯 /天然橡胶 /丁苯橡胶纳米复合材料。
将得到的氧化石墨烯 /天然橡胶丁苯橡胶纳米复合 料在双辊筒幵炼机上, 按照配方 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化 石墨烯 /天然橡胶 /丁苯橡胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参 数见表 5、 气体阻隔性能见表 6。
对比例 10:
在 286g氯丁胶乳 (固含量为 35wt%) 中加入浓度为(U%的稀盐酸溶液进行絮凝; 将 絮凝得到的氯丁橡胶的胶团淋水洗涤后, 在 200 TF千燥 2h, 得到氯丁橡胶的絮凝胶。
将得到的氯丁橡胶絮凝胶在双辊筒幵炼机上, 按照配方 (炭黒 40份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ〗.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 143 、 正硫化时间下进行硫化得到氯丁橡胶硫化胶。 按 国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能见表 6。
实施例 18:
将氧化石墨 5g加入 50L水中, 采用功率为 频率为 10Hz, 温度为 25°C条件下超 声 lOmi 获得固含量为 0.01wt%氧化石墨烯 /水溶胶; 取 50kg氧化石墨烯 /水溶胶, 在 10000r/min的转速下与 iOg羧基氯丁胶乳 (固含量为 38wt%) 混合 lOmin, 获得预处理后 的氧化石墨烯 /水预分散液。 在 lOOOOir/miii的转速下继续加入的 286g氯丁胶乳 (固含量为 35wt%) 继续混合 20min; 加入浓度为 0. i%的稀盐酸溶液进行絮凝; 将絮凝得到的氧化石 墨烯 /氯丁橡胶的胶团淋水洗涤后, 在 200Γ Τ千燥 2h, 得到氧化石墨烯用量为 5phr、 界面 剂 ]¾量为 3,8phr的氧化石墨烯 /氯丁橡胶纳米复合材料。
将得到的氧化石墨烯 /氯丁橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 143 :、 正硫化时间下进行硫化得到氧化石墨烯/氯丁橡 胶硫化胶。 按国家标准进行各项性能測试, 硫化胶的力学性能参数见表 5、 气体阻隔性能 见表 6。
对比例 11U
在 400g丁基胶乳 (固含量为 25wt%) 中加入浓度为 5%的硫酸钠溶液迸行絮凝; 将絮 凝得到的丁基橡胶的胶团淋水洗涤后, 在〗20'C下干燥 6h, 得到丁基橡胶的絮凝胶。
将得到的丁基橡胶絮凝胶在双辊筒开炼机上, 按照配方 (炭黑 40份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M CU份, 防老剂 4010NA 2份, 硫磺 2.5份) 进 行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到丁基橡胶硫化胶。 按 国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能见表 6。
实施例 19:
将氧化石墨 IOg加入 0.5L水中, 采用功率为 200W, 频率为 100Hz, 温度为 55。C条件
T超声 ill, 获得固含量为 2wt%氧化石墨烯 /水溶胶; 取 250kg氧化石墨烯 /水溶胶, 在 900r/min的转速下与 10g羧基丁基胶乳(固含量为 20wt%)混合】h, 获得预处理后的氧化
石墨烯 /水预分散液。 在 900rZmin的转速下加入 400g丁基胶乳 (固含量为 25wt%) 继续混 合 lh; 加入浓度为 5%的硫酸钠溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁基橡胶的胶团 淋水洗涤后, 在 120 Τ千燥 6h, 得到氧化石墨烯用量为 5phr、 界面剂 量为 2phr的氧化 石墨烯 /丁基橡胶纳米复合材料。
将得到的氧化石墨烯 /丁基橡胶纳米复合材料在双辊筒开炼机上, 按照配方 (氧化锌 5 份, 硬脂酸 2份, 促进剂 CZ L5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150 、 正硫化时间下进行硫化得到氧化石墨烯 /丁基橡 胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能 见表 6。
对比例 12 ;
将 350g丁苯胶乳 (固含量为 20wt%) 与 50g—了二烯胶乳 (圏含量为 40wt%) 搅拌混 合, 混合均勾后后加入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的丁苯橡胶 /丁二烯 橡胶并 ]¾胶胶团淋水洗涤后,在 200Ό下千燥 l h,得到丁苯橡胶 /丁二烯橡胶并用的絮凝胶。
将得到的丁苯橡胶 /丁二烯橡胶并 ^的絮凝胶在双辊筒开炼杭上, 按照配方 (炭黑 40 份, 氧化锌 5份, 硬脂酸 2份, 促进剂 CZ 1.5份, 促进剂 M 0,2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到丁苯 橡胶丁二烯橡胶硫化胶。 按国家标准迸行各项性能测试, 硫化胶的力学性能参数见表 5、 气体阻隔性能见表 6。
实施例 20:
将氧化石墨 10g加入 10L水中, 采用功率为 600W, 频率为 500Hz, 温度为 30°C条件 下超声 3h, 获得固含量为 0.1wt%氧化石墨烯 /水溶胶; 取 5000g氧化石墨烯 /水溶胶, 在 lOOOr/min的转速下与与 iOg丁吡胶乳(固含量为 40wt%)混合 30miii, 获得预处理后的氧 化石墨烯 /水预分散液。 在 lOOOr/min的转速下加入 350g丁苯胶乳 (圏含量为 20wt%) 与 50g丁二烯胶乳 (固含量为 40wt%)继续混合 3h; 加入浓度为 6%的硫酸钙溶液进行絮凝; 将絮凝得到的氧化石墨烯 /丁苯橡胶 /丁二婦橡胶的并用胶团淋水洗涤后, 在 200Ό下干燥 l h, 得到氧化石墨烯用量为 5phr、 界面剂用量为 4phr的氧化石墨烯 /丁苯橡胶 /丁二烯橡胶 纳米复合材料。
将得到的氧化石墨烯 /丁苯橡胶 /丁二浠橡胶纳米复合材料在双辊筒开炼 上, 按照配 方(氧化锌 5份, 硬脂酸 2份, 促进齐 ij CZ l ,5份, 促进剂 M 0.2份, 防老剂 4010NA 2份, 硫磺 2.5份) 进行混炼得到混炼胶。 将混炼胶在 150Ό、 正硫化时间下进行硫化得到氧化 石墨烯 /丁苯橡胶 /丁二烯橡胶硫化胶。 按国家标准进行各项性能测试, 硫化胶的力学性能 参数见表 5、 气体阻隔性能见表 6。
表 5氧化石墨烯填充橡胶与炭黑填充橡胶力学性能对照表
实施倒 19 72 2.7 10.0 19.2 508 24 47.8 对比例 12 71 23 8.6 17.5 512 16 47.3 实施例 20 74 2.9 9.1 17.1 641 24 49.1
表 6氧化石墨烯填充橡胶与炭黑填充撿胶气体阻隔性能对照表
对比例 13- 将 250g聚氨酯乳液 (固含量为 40wt%) 移至喷雾千燥装置, 进行喷雾干燥处理, 千 燥介质为 200 热空气。 收集干燥完成的样品即得到千燥的聚氨酯粉末。
将得到的聚氮酯粉末模压成型制备得到聚氨酯硫化胶。 按国家标准迸行各项性能测 试, 聚氨酯硫化胶的力学性能参数见表 7。
实施例 21- 将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 °C条件 下超声 2h, 获得固含量为 0.1wt%氧化石墨烯 /水溶胶; 取】 00g氧化石墨烯 /水溶胶, 在 SOOr/mm的转速下与 250g聚氨酯乳液 (固含量为 55wt% ) 混合 20min; 将氧化石墨烯 /聚 氨酯乳液的复合乳液转移至喷雾干燥装置, 进行喷雾干燥处理, 干燥介质为 200Ό热空气。 收集千燥完成的样品即得到氧化石墨烯用量为 O. lphr的氧化石墨烯 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氨酯纳米复合 料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准进行各项性能测试, 氧化石墨烯 /聚氨酯硫化胶的力学性能参数见表 7。 实施例 22:
将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 lOOOife, 温度为 25 Ό条件 下超声 2h, 获得固含量为 0.1wt%氧化石墨烯冰溶胶; 取 1000g氧化石墨烯 /水溶胶, 在 800rZmiii的转速下与 250g聚氨酯乳液 (固含量为 55wt%) 混合 20mm; 将氧化石墨烯 /聚 氨酯乳液的复合乳液转移至喷雾干燥装置, 进行喷雾干燥处理, 干燥介质为 200Ό热空气。 收集干燥完成的样品即得到氧化石墨烯用量为 Iphr的氧化石墨烯 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氮酯纳米复合村料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准进行各项性能测试, 氧化石墨烯 /聚氨酯硫化胶的力学性能参数见表 7。 实施例 23- 将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 °C条件 下超声 2h, 获得固含量为 0.1wt%氧化石墨烯 /水溶胶; 取 5000g氧化石墨烯 /水溶胶, 在 800r/mm的转速下与 250g聚氨酯乳液 (固含量为 55wt% ) 混合 20min; 将氧化石墨烯 /聚
氨酯乳液的复合乳液转移至喷雾干燥装置, 进行喷雾千燥处理, 千燥介质为 200Γ热空气。 收集干燥完成的样品即得到氧化石墨烯用量为 5phr的氧化石墨烯 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氨酯纳米复合材料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准迸行各项性能测试, 氧化石墨烯 /聚氮酯硫化胶的力学性能参数见表 7。 实施例 24- 将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25Ό条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 lOOOOg氧化石墨烯 /水溶胶, 在 8()0r/mm的转速下与 250g聚氨酯乳液 (固含量为 55wt%) 混合 20mi 将氧化石墨烯 /聚 氨酯乳液的复合乳液转移至喷雾千燥装置, 迸行喷雾千燥处理, 干燥介质为 200Ό热空气。 收集干燥完成的样品即得到氧化石墨烯用量为〗0phir的氧化石墨婦 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氨酯纳米复合材料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准进行各项性能测试, 氧化石墨烯/聚氨酯硫化胶的力学性能参数见表 7。 实施例 25 :
将氧化石墨 10g加入 iOL水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 °C条件 下超声 2h, 获得固含量为 0,lwt%氧化石墨浠 /水溶胶: 取 20000g氧化石墨烯 /水溶胶, 在 800r/min的转速下与 250g聚氨酯乳液 (固含量为 55wt%) 混合 20min; 将氧化石墨烯 /聚 氨酯乳液的复合乳液转移至喷雾干燥装置, 进行喷雾千燥处理, 千燥介质为 200Γ热空气。 收集干燥完成的样品即得到氧化石墨烯用量为 20phr的氧化石墨浠 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氨酯纳米复合材料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准迸行各项性能测试, 氧化石墨烯 /聚氮酯硫化胶的力学性能参数见表 7。 实施例 26- 将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25Ό条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 40000g氧化石墨烯 /水溶胶, 在 800r/mm的转速下与 250g聚氨酯乳液 (固含量为 55wt%) 混合 20min; 将氧化石墨烯 /聚 氨酯乳液的复合乳液转移至喷雾干燥装置, 进行喷雾干燥处理, 干燥介质为 200Ό热空气。 收集千燥完成的样品即得到氧化石墨烯用量为 40phr的氧化石墨烯 /聚氨酯纳米复合材料。
将得到的氧化石墨烯 /聚氨酯纳米复合 料模压成型制备得到氧化石墨烯 /聚氨酯硫化 胶。 按国家标准进行各项性能测试, 氧化石墨烯 /聚氨酯硫化胶的力学性能参数见表 7。
实施例 27:
将氧化石墨〗 0g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 "C条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨烯 /水溶胶; 取 5000g氧化石墨烯 /水溶胶, 在 8()()r/mm的转速下与 167g硅橡胶胶乳 (固含量为 60wt%) 混合 30mi 将氧化石墨浠 Z硅 橡胶胶乳的复合乳液转移至喷雾干燥装置, 进行喷雾干燥处理, 千燥介质为 60 热空气, 同时按载气的流量比, 向载气中引入 1%的 HC1气体。 收集千燥完成的样品即得到氧化石 墨烯用量为 5phr的氧化石墨烯 /硅橡胶纳米复合村料。
将得到的氧化石墨烯 /硅橡胶纳米复合 料在双辊筒幵炼机上, 按照配方 (DCP 2份) 进行混炼得到混炼胶。 将混炼胶在 170°C、 正硫化时间下进行一段硫化, 200°C、 2h烘箱 T进行二段硫化得到氧化石墨烯 /珪橡胶硫化胶。按国家标准进行各项性能测试, 硫化胶的 力学性能参数见表 8。
实施例 28- 将氧化石墨 10g加入 10L水中, 采用功率为 800W, 频率为 1000Hz, 温度为 25 Ό条件 下超声 2h, 获得固含量为 0.1wi%氧化石墨婦 /水溶胶; 取 5000g氧化石墨烯 /水溶胶, 在 8()0r/miii的转速下与 200g氟橡胶胶乳 (固含量为 50wt%) 混合 30mi 将氧化石墨烯 /氟 橡胶胶乳的复合乳液转移至喷雾千燥装置, 迸行喷雾千燥处理, 干燥介质为 300Ό热空气, 同时按载气的流量比, 向载气中引入 1'½的1^ 1气体。 收集干燥完成的样品即得到氧化石 墨烯用量为 5phr的氧化石墨烯 /氟橡胶纳米复合材料。
将得到的氧化石墨烯 /氟橡胶纳米复合 料在双辊筒幵炼机上, 按照配方 (DCP 2份) 进行混炼得到混炼胶。 将混炼胶在 150°C、 正硫化 ^间下进行一段硫化, 204°C、 24h烘箱 T进行二段硫化得到氧化石墨烯 /氟橡胶硫化胶。按国家标准进行各项性能测试, 硫化胶的 力学性能参数见表 8。
表 8 液复合与喷雾干燥工艺共同制备的氧化石墨燔 /橡胶硫化胶力学性能数据表
Claims
1. 完全剥离的氧化石墨烯 /橡胶纳米复合村料的制备方法, 其特征在于该方 法包含以下步骤:
( 1 ) 氧化石墨烯 /水溶胶的制备
将氧化石墨分散于去离子水中, 于温度 0〜1001, 功率 iO〜2000W , 频率 10〜20000Ηζ下超声分散 lOmii!〜 6h制得氧化石墨烯水溶胶;
(2 ) 氧化石墨烯 /水溶胶的预处理
向上述氧化石墨烯 Z水溶胶中加入界面剂, 超声分散 5mm〜5h, 或者在搅拌 速度为 50〜10000 r/min下搅拌 5mm〜5h, 得到预处理后的氧化石墨烯 /水预 分散液;
(3 ) 氧化石墨烯 /橡胶复合乳液的制备
直接将氧化石墨烯 /水溶胶、或者将预处理后的氧化石墨烯 /水预分散液与橡 胶胶乳超声分散 10min〜6h, 或者在搅拌速度为 50〜10000 r/min下搅拌 】0mm〜6h, 获得稳定的氧化石墨烯 /橡胶复合乳液;
(4) 氧化石墨烯 /橡胶纳米复合材料的制备
采用以下两种方案之一
A) 离子絮凝工艺: 向氧化石墨烯 /橡胶复合乳液中加入絮凝剂进行絮凝, 将絮凝物脱水、 烘千制备得到氧化石墨烯 /橡胶纳米复合材料;
B ) 喷雾千燥工艺: 将上述氧化石墨烯 /橡胶复合乳液经过喷雾干燥装置, 雾化形成微小的复合液液滴, 在干燥介质中脱除水分, 得到氧化石墨烯 /橡胶 纳米复合材料; 或者通过向喷雾干燥装置的干燥介质载气中弓 i入气化后的絮 凝剂, 使得离子絮凝、 脱水在同一时间内进行, 制备得到氧化石墨烯 /橡胶纳 米复合材料。
2.如权利要求 1 所述的方法, 其特征在于: 氧化石墨烯 /水溶胶中氧化石墨 烯的固含量为(lO -^Owt*^
3.如权利要求 1 所述的方法, 其特征在于: 界面剂为固含量为 10〜80wt% 的羧基丁苯胶乳、 丁吡胶乳、 羧基丁苯吡胶乳、 环氧天然胶乳、 羧基氯丁胶 乳、 羧基丁腈胶乳或羧基聚丁二烯, 或者是氨丙基三乙氧基硅烷偶联剂 ΚΗ550、 γ~ (甲基丙烯酰氧) 丙基三甲氧基硅烷偶联剂 ΚΗ570或季铵盐; 界 面剂的用量为 (I01phr〜100phr, phr为每一百份橡胶质量中的界面剂质量。
4.如权利要求 1所述的方法, 其特征在于:橡胶胶乳为固含量为 10〜80wt% 权利要求书 的丁苯胶乳、 天然胶乳、 氯丁胶乳、 丁基胶乳、 丁腈胶乳、 丁二烯胶乳、 乙 丙胶乳、 聚异戊二烯胶乳、 氟橡胶胶乳、 硅橡胶胶乳、 聚氨酯胶乳中的一种 或两种。
5.如权利要求 1所述的方法, 其特征在于: 絮凝剂为 0.1〜1(^1%的硫酸、 盐酸、 氯化钙、 氯化钠、 氯化钾、 硫酸钠、 硫酸铝、 三氯化铁、 聚合氯化铝、 聚合硫酸铁中任一种。
6.如权利要求 1所述的方法, 其特征在于: 絮凝物在≤3001下干燥。
7.如权利要求 1所述的方法, 其特征在于: 喷雾干燥装置使用的干燥介质是
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/318,691 US9376537B2 (en) | 2011-12-30 | 2014-06-29 | Process for preparing completely delaminated graphene oxide/rubber nanocomposite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104540005A CN102532629B (zh) | 2011-12-30 | 2011-12-30 | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 |
CN201110454000.5 | 2011-12-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/318,691 Continuation-In-Part US9376537B2 (en) | 2011-12-30 | 2014-06-29 | Process for preparing completely delaminated graphene oxide/rubber nanocomposite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013097605A1 true WO2013097605A1 (zh) | 2013-07-04 |
Family
ID=46340748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/086495 WO2013097605A1 (zh) | 2011-12-30 | 2012-12-13 | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9376537B2 (zh) |
CN (1) | CN102532629B (zh) |
WO (1) | WO2013097605A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016095370A1 (zh) * | 2014-12-17 | 2016-06-23 | 福州大学 | 一种管道内衬用高阻隔性tpu薄膜及其制备方法 |
EP3183287A1 (en) | 2014-08-21 | 2017-06-28 | Samsuri, Azemi B | Rubber products based on improved nbr masterbatch |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102532629B (zh) * | 2011-12-30 | 2013-06-05 | 北京化工大学 | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 |
CN102786726B (zh) * | 2012-07-24 | 2014-07-16 | 南京理工大学 | 一种含氧化石墨烯的高性能xnbr橡胶硫化胶及其制备方法 |
CN103224656A (zh) * | 2013-04-24 | 2013-07-31 | 北京化工大学 | 一种氧化石墨烯/炭黑橡胶纳米复合材料及其制备方法 |
CN104558727B (zh) * | 2013-10-17 | 2016-05-25 | 中国石油化工股份有限公司 | 氧化石墨烯-环氧化丁苯橡胶复合物及其制备方法和硫化橡胶 |
CN104530611B (zh) * | 2014-12-31 | 2016-09-07 | 宁波佳乐特橡塑机电有限公司 | 一种磨辊密封圈材料及其制备方法 |
CN104558708B (zh) * | 2015-01-19 | 2016-09-21 | 南京理工大学 | 含聚乙烯吡咯烷酮改性氧化石墨烯的多功能橡胶硫化胶及其制备方法 |
CN104693546B (zh) * | 2015-02-15 | 2017-01-04 | 北京化工大学 | 一种高性能氧化石墨烯/溶聚丁苯橡胶复合材料的制备方法 |
CN104710661A (zh) * | 2015-03-04 | 2015-06-17 | 聊城大学 | 羧基丁腈橡胶/石墨烯纳米复合材料及其制备方法 |
CN104774345B (zh) * | 2015-04-27 | 2017-12-08 | 黑龙江省科学院技术物理研究所 | 一种辐射法制备填充型导电橡胶的方法 |
CN105037821A (zh) * | 2015-05-13 | 2015-11-11 | 范志明 | 一种基于石墨烯改性技术的天然橡胶改性方法 |
CN104877192B (zh) * | 2015-06-03 | 2017-02-22 | 中北大学 | Fe3O4@GO/NR磁性弹性体复合材料及制备方法 |
CN105037823B (zh) * | 2015-07-13 | 2017-05-24 | 厦门万新橡胶有限公司 | 一种氧化石墨烯/Fe3O4基复合导电橡胶及其制备方法 |
CN105348572A (zh) * | 2015-08-28 | 2016-02-24 | 中科纳达控股股份有限公司 | 一种伊蒙粘土在橡胶中的应用方法 |
CN105694461A (zh) * | 2015-12-14 | 2016-06-22 | 上海应用技术学院 | 一种氧化石墨烯改性硅橡胶复合材料及其制备方法 |
CN105504342B (zh) * | 2015-12-16 | 2018-05-29 | 济南圣泉集团股份有限公司 | 石墨烯在保存天然乳胶中的应用和乳胶制品 |
CN105778189A (zh) * | 2016-03-18 | 2016-07-20 | 青岛大学 | 一种充油充氧化石墨烯二元乳液共沉橡胶及其制备方法 |
CN105750142B (zh) * | 2016-04-20 | 2018-06-26 | 江苏通用科技股份有限公司 | 一种隔离剂的喷涂工艺 |
CN105801724A (zh) * | 2016-04-20 | 2016-07-27 | 江苏通用科技股份有限公司 | 利用氧化石墨烯粉末凝固天然胶胶乳的方法 |
CN105728248B (zh) * | 2016-04-20 | 2018-06-26 | 江苏通用科技股份有限公司 | 一种密炼车间隔离剂的喷涂工艺 |
CN105949555B (zh) * | 2016-04-20 | 2017-07-25 | 江苏通用科技股份有限公司 | 密炼生产过程中氧化石墨烯预分散混炼工艺 |
CN105860166A (zh) * | 2016-04-20 | 2016-08-17 | 江苏通用科技股份有限公司 | 一种反式聚异戊二烯硫化胶及其混炼工艺 |
CN105713220B (zh) * | 2016-04-20 | 2018-10-12 | 江苏通用科技股份有限公司 | 氧化石墨烯在密炼车间中作为隔离剂的应用 |
CN105728267A (zh) * | 2016-04-20 | 2016-07-06 | 江苏通用科技股份有限公司 | 密炼车间的隔离剂池、下辅机系统及隔离剂的浸涂工艺 |
CN105966038B (zh) * | 2016-05-05 | 2017-11-07 | 郑州大学 | 一种梯度石墨烯/聚氨酯导电复合材料的制备方法 |
CN107383518B (zh) * | 2016-05-16 | 2020-01-07 | 中国石油天然气股份有限公司 | 聚乙烯-石墨烯复合物的制备方法 |
CN105860159B (zh) * | 2016-06-02 | 2018-11-16 | 上海明凤汽车科技有限公司 | 记忆橡胶组合物、制备方法及其应用 |
CN106085355A (zh) * | 2016-06-28 | 2016-11-09 | 成都迈瑞斯特装饰材料有限公司 | 一种环保型耐高低温补胎液及其制备方法 |
CN106010366A (zh) * | 2016-06-28 | 2016-10-12 | 成都迈瑞斯特装饰材料有限公司 | 一种耐高低温补胎液及其制备方法 |
CN106010438A (zh) * | 2016-06-28 | 2016-10-12 | 成都迈瑞斯特装饰材料有限公司 | 一种长效环保型耐高低温补胎液及其制备方法 |
CN106117681A (zh) * | 2016-07-13 | 2016-11-16 | 成都创威新材料有限公司 | 一种氯丁橡胶/石墨烯复合材料及其制备方法 |
CN106317901B (zh) * | 2016-08-22 | 2019-08-16 | 广东纳路纳米科技有限公司 | 一种改性纳米复合硅胶密封圈及其制备 |
CN106281205A (zh) * | 2016-08-22 | 2017-01-04 | 广东纳路纳米科技有限公司 | 一种高阻气性能的复合硅酮密封胶及其制备方法 |
CN106634244A (zh) * | 2016-11-17 | 2017-05-10 | 闻承岳 | 一种添加纳米氧铁体石墨烯复合材料的氯磺化聚乙烯防腐涂料 |
CN108084528A (zh) * | 2016-11-23 | 2018-05-29 | 航天特种材料及工艺技术研究所 | 一种橡胶材料及制备方法 |
CN106633437A (zh) * | 2016-11-29 | 2017-05-10 | 青岛福诺新材料有限公司 | 一种氧化石墨烯改性的高性能轮胎硫化胶囊及其制备方法 |
CN106832876B (zh) * | 2016-12-21 | 2019-10-18 | 柳州市昌泉贸易有限公司 | 一种耐油阻燃电缆料的制备方法 |
CN107129613B (zh) * | 2017-04-28 | 2019-03-08 | 哈尔滨工业大学 | 一种基于喷雾干燥及热压硫化相结合制备石墨烯/橡胶复合材料的方法 |
CN107129604A (zh) * | 2017-05-10 | 2017-09-05 | 安徽瑞鑫自动化仪表有限公司 | 一种用于仪表的减震件 |
CN107141540A (zh) * | 2017-05-10 | 2017-09-08 | 安徽瑞鑫自动化仪表有限公司 | 一种高速列车用仪表减震件 |
CN108003489A (zh) * | 2017-12-22 | 2018-05-08 | 恒力盛泰(厦门)石墨烯科技有限公司 | 一种含石墨烯的高导热性能轮胎内胎配方 |
CN108359240B (zh) * | 2018-03-12 | 2020-09-11 | 安徽大学 | 一种氧化石墨烯-纳米二氧化硅复合物协同改性室温硫化硅橡胶的方法 |
CN108486902B (zh) * | 2018-03-13 | 2021-06-08 | 山东星宇手套有限公司 | 一种石墨烯覆膜橡胶手套及其制备方法 |
CN110734586B (zh) * | 2018-07-19 | 2022-05-10 | 中国石油天然气股份有限公司 | 一种改性氟化石墨烯制备含氟丁腈橡胶的方法 |
CN109181025A (zh) * | 2018-09-01 | 2019-01-11 | 成都市水泷头化工科技有限公司 | 一种用于运动鞋鞋底的防滑天然橡胶材料及制备方法 |
CN109306094B (zh) * | 2018-10-18 | 2021-01-05 | 中轻联(大连)包装研究院有限公司 | 石墨烯橡胶母料的制备方法 |
CN109651816B (zh) * | 2018-11-20 | 2021-06-15 | 兴业皮革科技股份有限公司 | 一种石墨烯基聚硅氧烷的复配乳化方法 |
CN109679161B (zh) * | 2018-11-27 | 2020-07-24 | 北京化工大学 | 一种阻隔危险化学品溶剂的羧基丁腈橡胶/氧化石墨烯纳米复合材料及其制备方法 |
CN111410779B (zh) * | 2019-01-07 | 2021-07-13 | 北京化工大学 | 一种氧化石墨烯增强型吸水膨胀橡胶的制备方法及吸水膨胀橡胶 |
CN109468792B (zh) * | 2019-01-09 | 2020-12-01 | 牟子琪 | 一种具有杀菌作用的防缠绕洗衣辊 |
CN109735114B (zh) * | 2019-01-09 | 2020-07-28 | 华南理工大学 | 滚筒洗衣机门密封圈用硅橡胶纳米复合材料及其制备方法 |
CN111621069A (zh) * | 2019-02-27 | 2020-09-04 | 北京化工大学 | 一种用于太空气球的氧化石墨烯和/或层状硅酸盐天然橡胶复合材料及其制备方法 |
CN111218068A (zh) * | 2019-04-23 | 2020-06-02 | 烟台桑尼橡胶有限公司 | 一种含石墨烯的高耐磨橡胶坝、气盾坝配方及其制备工艺 |
CN109988366B (zh) * | 2019-04-24 | 2021-09-28 | 青岛科技大学 | 一种go/iir高导热复合材料制备方法 |
CN110229387A (zh) * | 2019-05-30 | 2019-09-13 | 都江堰市云觅农情科技有限公司 | 一种石墨烯轮胎的复合橡胶材料及其制备方法 |
CN110294875A (zh) * | 2019-06-12 | 2019-10-01 | 李承忠 | 一种复合橡胶减震垫的制备方法 |
CN110256759B (zh) * | 2019-06-20 | 2022-04-05 | 福建宸琦新材料科技有限公司 | 一种鞋用环保耐磨防滑泡沫复合材料及其制备方法 |
CN110372385B (zh) * | 2019-07-16 | 2021-08-24 | 河北工业大学 | 一种轻质石墨烯碳泡沫的制备方法 |
CN110372921B (zh) * | 2019-07-16 | 2021-06-15 | 河北工业大学 | 一种橡胶剥离石墨烯复合导电橡胶的制备方法 |
GB201910948D0 (en) * | 2019-07-31 | 2019-09-11 | Anaphite Ltd | Composites materials |
CN112442217B (zh) * | 2019-09-05 | 2022-09-06 | 北京化工大学 | 一种高导热橡胶纳米复合材料及制备方法 |
CN110819014A (zh) * | 2019-11-14 | 2020-02-21 | 四川大学 | 一种氧化石墨烯和丁基橡胶复合材料的制备方法 |
CN110845793B (zh) * | 2019-11-22 | 2022-04-22 | 万华化学(宁波)有限公司 | 一种高阻隔性的聚丙烯/尼龙复合材料及其制备方法、高分子材料制件及其应用 |
CN111303500B (zh) * | 2020-03-25 | 2022-06-07 | 太原工业学院 | 一种氧化石墨烯/丁腈胶乳纳米复合材料的制备方法 |
CN111500072B (zh) * | 2020-04-30 | 2022-07-05 | 江苏润集科技有限公司 | 一种自修复电磁屏蔽电缆用电缆料及其制备方法 |
CN111499935B (zh) * | 2020-05-22 | 2022-03-29 | 中北大学 | 改性氧化石墨烯/天然橡胶高导热复合材料 |
CN111592701A (zh) * | 2020-06-28 | 2020-08-28 | 北京石墨烯研究院 | 氧化石墨烯/羧基化丁苯橡胶母粒及其制备方法和应用 |
CN111896151A (zh) * | 2020-08-04 | 2020-11-06 | 工科思维技术(深圳)有限公司 | 一种具有压敏性能的智能建筑传感器的制备方法 |
CN112201485B (zh) * | 2020-09-01 | 2021-08-10 | 华南理工大学 | 金属有机框架化合物/石墨烯电极材料及制备方法与应用 |
CN113512243B (zh) * | 2021-04-26 | 2022-08-23 | 慕思健康睡眠股份有限公司 | 一种改性纳米石墨烯乳胶浆料及其制备方法和应用 |
CN113980291B (zh) * | 2021-11-17 | 2023-12-15 | 北京化工大学 | 一种杜仲胶乳的制备方法、杜仲胶乳、杜仲胶基复合材料及制备方法 |
CN113980368B (zh) * | 2021-11-24 | 2023-07-14 | 浙江工业大学 | 黑滑石/氧化石墨烯/橡胶纳米复合材料及其制备方法 |
CN114213805A (zh) * | 2021-12-07 | 2022-03-22 | 中国科学院金属研究所 | 一种高韧性、高阻尼石墨烯/丁苯橡胶/环氧树脂复合材料及其制备方法 |
CN114805965B (zh) * | 2022-04-28 | 2023-09-05 | 绍兴华运输送设备有限公司 | 一种用于托辊的耐永久压缩密封圈及其制备方法 |
CN115160792B (zh) * | 2022-07-28 | 2024-03-08 | 北京化工大学 | 一种取向型高导热石墨烯/硅橡胶复合材料及其制备方法 |
CN116444870A (zh) * | 2023-03-27 | 2023-07-18 | 中北大学 | 一种高石墨烯含量超细天然橡胶粉末母胶的高效低成本制备方法以及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100096595A1 (en) * | 2006-10-06 | 2010-04-22 | The Trustees Of Princeton University | Functional graphene-polymer nanocomposites for gas barrier applications |
CN101864098A (zh) * | 2010-06-03 | 2010-10-20 | 四川大学 | 聚合物/石墨烯复合材料的原位还原制备方法 |
CN102532629A (zh) * | 2011-12-30 | 2012-07-04 | 北京化工大学 | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102161785B (zh) * | 2011-03-10 | 2013-02-13 | 四川大学 | 一种石墨烯/聚合物纳米复合材料的制备方法 |
CN102558628B (zh) * | 2012-01-19 | 2014-07-30 | 北京化工大学 | 轮胎气密层和内胎用氧化石墨烯/聚合物组合物及制备方法 |
CN102604175B (zh) * | 2012-02-23 | 2014-04-16 | 北京化工大学 | 制备氧化石墨烯/白炭黑/橡胶纳米复合材料的方法 |
-
2011
- 2011-12-30 CN CN2011104540005A patent/CN102532629B/zh active Active
-
2012
- 2012-12-13 WO PCT/CN2012/086495 patent/WO2013097605A1/zh active Application Filing
-
2014
- 2014-06-29 US US14/318,691 patent/US9376537B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100096595A1 (en) * | 2006-10-06 | 2010-04-22 | The Trustees Of Princeton University | Functional graphene-polymer nanocomposites for gas barrier applications |
CN101864098A (zh) * | 2010-06-03 | 2010-10-20 | 四川大学 | 聚合物/石墨烯复合材料的原位还原制备方法 |
CN102532629A (zh) * | 2011-12-30 | 2012-07-04 | 北京化工大学 | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
KIM, J.S. ET AL.: "Water-Borne Graphene-Derived Conductive SBR Prepared by Latex Heterocoagulation", MACROMOLECULAR RESEARCH, vol. 18, no. 6, 2010, pages 558 - 565, XP055073507 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3183287A1 (en) | 2014-08-21 | 2017-06-28 | Samsuri, Azemi B | Rubber products based on improved nbr masterbatch |
WO2016095370A1 (zh) * | 2014-12-17 | 2016-06-23 | 福州大学 | 一种管道内衬用高阻隔性tpu薄膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US9376537B2 (en) | 2016-06-28 |
CN102532629B (zh) | 2013-06-05 |
CN102532629A (zh) | 2012-07-04 |
US20140316028A1 (en) | 2014-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013097605A1 (zh) | 完全剥离的氧化石墨烯/橡胶纳米复合材料的制备方法 | |
CN102604175B (zh) | 制备氧化石墨烯/白炭黑/橡胶纳米复合材料的方法 | |
CN103275368B (zh) | 机械共混制备氧化石墨烯/白炭黑/橡胶纳米复合材料的方法 | |
CN102786726B (zh) | 一种含氧化石墨烯的高性能xnbr橡胶硫化胶及其制备方法 | |
Wu et al. | Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding | |
Fawaz et al. | Synthesis of polymer nanocomposites: review of various techniques | |
Luo et al. | Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks | |
JP3826301B2 (ja) | 改質炭酸カルシウム及びこれを含むポリマー組成物並びにそれらの製造方法 | |
Liu et al. | Improving thermal conductivity of styrene-butadiene rubber composites by incorporating mesoporous silica@ solvothermal reduced graphene oxide hybrid nanosheets with low graphene content | |
CN105906854A (zh) | 石墨烯改性天然乳胶聚合物及其改性方法 | |
CN114591545B (zh) | 水相协同聚沉工艺制备石墨烯母胶及长寿命重型车辆负重轮轮胎的成型方法 | |
Zhu et al. | Enhanced comprehensive performance of SSBR/BR with self-assembly reduced graphene oxide/silica nanocomposites | |
WO2004087794A1 (en) | Compound powder, its preparation method and use | |
CA2632637A1 (en) | Nanocomposite material comprising rubber and modified layered double hydroxide, process for its preparation and use thereof | |
Yang et al. | Vulcanization, interfacial interaction, and dynamic mechanical properties of in-situ organic amino modified kaolinite/SBR nanocomposites based on latex compounding method | |
JP2020506147A (ja) | 優れた分散性を有するアルミノシリケートナノ粒子の製造方法、前記アルミノシリケートナノ粒子を含むゴム補強材およびこれを含むタイヤ用ゴム組成物 | |
CN104710661A (zh) | 羧基丁腈橡胶/石墨烯纳米复合材料及其制备方法 | |
TW593446B (en) | Rubber pellets comprising silicatic and oxidic fillers | |
CN114716737B (zh) | 一种二氧化硅/石墨烯改性的橡胶复合材料的制备方法 | |
Wipatkrut et al. | Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites | |
CN107793678A (zh) | 一种含石墨烯的抗冲蚀氟橡胶纳米复合材料及制备方法 | |
He et al. | Bis (2-hydroxyethyl) terephthalate from depolymerized waste polyester modified graphene as a novel functional crosslinker for electrical and thermal conductive polyurethane composites | |
CN108219195B (zh) | 一种可用于熔体加工的氧化石墨烯复合物及其制备方法 | |
CN112980217B (zh) | 一种改性GO-SiO2复合填料的制备方法及其在橡胶中的应用 | |
CN110577675B (zh) | 一种石墨烯/二氧化硅/天然橡胶复合材料及其制备方法、应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12861864 Country of ref document: EP Kind code of ref document: A1 |