WO2013084832A1 - 無アルカリガラスの製造方法 - Google Patents

無アルカリガラスの製造方法 Download PDF

Info

Publication number
WO2013084832A1
WO2013084832A1 PCT/JP2012/081201 JP2012081201W WO2013084832A1 WO 2013084832 A1 WO2013084832 A1 WO 2013084832A1 JP 2012081201 W JP2012081201 W JP 2012081201W WO 2013084832 A1 WO2013084832 A1 WO 2013084832A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mgo
alkali
refractory
heating
Prior art date
Application number
PCT/JP2012/081201
Other languages
English (en)
French (fr)
Inventor
博文 徳永
小池 章夫
学 西沢
知之 ▲辻▼村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280060288.0A priority Critical patent/CN103987666B/zh
Priority to EP12855878.0A priority patent/EP2789587A1/en
Priority to KR1020147014871A priority patent/KR101973829B1/ko
Publication of WO2013084832A1 publication Critical patent/WO2013084832A1/ja
Priority to US14/298,199 priority patent/US20140287905A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2211/00Heating processes for glass melting in glass melting furnaces
    • C03B2211/40Heating processes for glass melting in glass melting furnaces using oxy-fuel burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing alkali-free glass suitable as various display substrate glasses and photomask substrate glasses.
  • non-alkali means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 2000 ppm or less.
  • the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
  • alkali metal oxide When alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the content of alkali metal oxide is extremely low. The oxide content is 2000 ppm or less.
  • the strain point When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
  • BHF buffered hydrofluoric acid
  • ITO various acids used for etching metal electrodes
  • ITO various acids used for etching metal electrodes
  • resistant to alkali of resist stripping solution Resistant to alkali of resist stripping solution.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • a glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
  • Patent Document 1 discloses a glass containing 0 to 5% by weight of B 2 O 3
  • Patent Document 2 discloses a glass containing 0 to 5 mol% of B 2 O 3
  • No. 3 discloses a glass containing 0 to 8 mol% of B 2 O 3 .
  • the glass described in Patent Document 1 has a high devitrification temperature because it contains CaO in an amount of 11 mol% or more, and also contains a large amount of impurity phosphorus in limestone, which is a raw material for CaO. There is a risk of causing a leakage current. Further, since the glass described in Patent Document 2 contains 15 mol% or more of SrO, the average thermal expansion coefficient at 50 to 300 ° C. exceeds 50 ⁇ 10 ⁇ 7 / ° C.
  • the glass described in Patent Document 3 is “glass containing 55 to 67% by weight of SiO 2 and 6 to 14% by weight of Al 2 O 3 ” (group a) and “49 to 50% of SiO 2.
  • an alkali-free glass described in Patent Document 4 has been proposed.
  • the alkali-free glass described in Patent Document 4 has a high strain point, can be molded by a float process, and is suitable for applications such as a display substrate and a photomask substrate.
  • Alkali-free glass used for applications such as display substrates and photomask substrates specifically, plate glass with non-alkali glass composition is prepared so that the raw materials of each component become target components, and this is used in a melting kiln. Continuously charged, heated to a predetermined temperature and dissolved. This molten glass can be obtained by forming it into a predetermined plate thickness and cutting it after slow cooling.
  • a heating means at the time of melting the raw material it is common to heat to a predetermined temperature by a combustion flame of a burner disposed above the melting furnace, but as an additional heating means, There is a method in which a heating electrode is provided so as to be immersed in the molten glass, and the molten glass in the melting furnace is energized and heated by applying a DC voltage or an AC voltage to the heating electrode (see Patent Documents 5 to 6).
  • a heating electrode is provided so as to be immersed in the molten glass, and the molten glass in the melting furnace is energized and heated by applying a DC voltage or an AC voltage to the heating electrode.
  • Erosion of the refractory constituting the melting furnace is likely to occur particularly near the interface between the molten glass and the upper space. For this reason, the combined use of energization heating that heats only the molten glass without raising the atmospheric temperature of the upper space is effective in suppressing erosion of the refractory.
  • an electric current may flow not only from molten glass but to the refractory which comprises a melting kiln from the heating electrode provided in the melting kiln. If a current flows through the refractory constituting the melting furnace, it is not possible to use all of the charged electricity for current heating of the molten glass, which is not preferable from the viewpoint of utilization efficiency of the charged electricity. Further, when an electric current flows through the refractory constituting the melting kiln, the electric current also flows through a metal member (for example, a metal frame) around the melting kiln and there is a risk of electric shock. In addition, current heating of the refractory material may occur, and the temperature of the refractory material may rise and melt.
  • a metal member for example, a metal frame
  • the object of the present invention is to solve the above-mentioned drawbacks and to provide a method suitable for the production of alkali-free glass having a high strain point, low viscosity and low devitrification, and particularly easy to float. is there.
  • a glass raw material is prepared so as to have the following glass composition (1) or (2), put into a melting furnace, heated to a temperature of 1400 to 1800 ° C. to form a molten glass, and then melted. It is a method for producing alkali-free glass that forms glass into a plate shape, For heating in the melting furnace, heating by a combustion flame of a burner and electric heating of the molten glass by a heating electrode arranged to be immersed in the molten glass in the melting furnace are used in combination.
  • the electrical resistivity at 1400 ° C. of the molten glass is Rg ( ⁇ cm), and the electrical resistivity at 1400 ° C.
  • Glass composition (1) SiO 2 66 to 69% in terms of mol% based on oxide, Al 2 O 3 12-15%, B 2 O 3 0-1.5%, MgO 6-9.5%, CaO 7-9%, SrO 0.5-3%, BaO 0-1%, ZrO 2 0-2%, and Containing 200 to 2000 ppm of alkali metal oxide, MgO + CaO + SrO + BaO 3 is 16 to 18.2%, MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, MgO / (MgO + CaO) is 0.40 or more and less than 0.52, and MgO / (MgO + SrO) is 0.45 or more, When the alkali metal oxides R 2 O [ppm] and B 2
  • Glass composition (2) SiO 2 66 to 69% in terms of mol% based on oxide, Al 2 O 3 12-15%, B 2 O 3 0-1.5%, MgO 6-9.5%, CaO 7-9%, SrO 0.5-3%, BaO 0-1%, ZrO 2 0-2%, and Contains 600 to 2000 ppm of alkali metal oxide, MgO + CaO + SrO + BaO 3 is 16 to 18.2%, MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, MgO / (MgO + CaO) is 0.40 or more and less than 0.52, and MgO / (MgO + SrO) is 0.45 or more.
  • the strain point is 735 ° C. or higher
  • the average thermal expansion coefficient at 50 to 350 ° C. is 30 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C.
  • the glass viscosity is 10 a is temperature T 2 which is a 2 dPa ⁇ s is 1710 ° C. or less
  • alkali-free glass devitrification temperature is 1330 ° C. or less Can be preferably produced.
  • the alkali-free glass produced by the method of the present invention is particularly suitable for a display substrate, a photomask substrate and the like for high strain point use, and is a glass that is particularly easy to float.
  • the alkali-free glass produced by the method of the present invention can also be used as a magnetic disk glass substrate.
  • the heating in the melting furnace is combined with the heating by the combustion flame of the burner and the electric heating of the molten glass in the melting furnace to constitute the melting furnace at the time of high temperature heating of 1400 to 1800 ° C. Erosion of refractories can be suppressed. Thereby, it is suppressed that the component of a refractory melts into a molten glass, and the quality of the alkali free glass manufactured improves.
  • the heating in the melting furnace is combined with the heating by the combustion flame of the burner and the electric heating of the molten glass in the melting furnace to constitute the melting furnace at the time of high temperature heating of 1400 to 1800 ° C.
  • Erosion of refractories can be suppressed. Thereby, it is suppressed that the component of a refractory melts into a molten glass, and the quality of the alkali free glass manufactured improves.
  • an electric current flows into the refractory material which comprises a melting kiln from a heating electrode. Thereby
  • FIG. 1 is a graph showing measurement results of electrical resistivity of molten glass (glass 1) and refractories (refractory 1, refractory 2) in Examples.
  • FIG. 2 is a graph showing measurement results of electrical resistivity of molten glass (glass 2) and refractory (refractory 1, refractory 2) in the examples.
  • a glass raw material prepared so as to have the following glass composition (1) or (2) is used.
  • Glass composition (1) SiO 2 66 to 69% in terms of mol% based on oxide, Al 2 O 3 12-15%, B 2 O 3 0-1.5%, MgO 6-9.5%, CaO 7-9%, SrO 0.5-3%, BaO 0-1%, ZrO 2 0-2%, and Containing 200 to 2000 ppm of alkali metal oxide, MgO + CaO + SrO + BaO 3 is 16 to 18.2%, MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, MgO / (MgO + CaO) is 0.40 or more and less than 0.52, and MgO / (MgO + SrO) is 0.45 or more, When the alkali metal oxides R 2 O [ppm] and B 2 O 3 [%] are set, 600 ⁇ R 2 O + B 2
  • the composition range of each component will be described. If the SiO 2 content is less than 66% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. Preferably it is 67% or more. However, if it exceeds 69%, the solubility decreases and the devitrification temperature increases.
  • Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient and raises the strain point. However, if it is less than 12%, this effect does not appear, and other components that increase the expansion increase. As a result, thermal expansion increases. Preferably it is 13.5% or more. However, if it exceeds 15%, the solubility of the glass may be deteriorated or the devitrification temperature may be increased. Preferably it is 14.5% or less.
  • B 2 O 3 can be added up to 1.5% in order to improve the melting reactivity of the glass and lower the devitrification temperature.
  • the amount is too large, the strain point becomes low and the photoelastic constant becomes high. Therefore, 1% or less is preferable. Further, considering the environmental load, it is preferable that it is not substantially contained (that is, it is not contained except for impurities inevitably mixed as impurities, the same applies hereinafter).
  • MgO has the characteristics that it does not increase expansion in alkaline earths and does not excessively lower the strain point and improves the solubility, but if it is less than 6%, this effect does not appear sufficiently. Preferably it is 7% or more. However, if it exceeds 9.5%, the devitrification temperature may increase. Preferably it is 8.5% or less.
  • CaO has the characteristics that it does not increase the swelling in alkaline earth next to MgO and does not excessively lower the strain point than MgO, and further improves the solubility. It does not appear enough. Preferably it is 7.5% or more. However, if it exceeds 9%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ) as a CaO raw material, may be mixed. Preferably it is 8.5% or less.
  • SrO improves the solubility without increasing the devitrification temperature of the glass, but if less than 0.5%, this effect does not appear sufficiently. Preferably it is 1% or more. However, compared to MgO and CaO, the expansion coefficient tends to increase, and if it exceeds 3%, the expansion coefficient may increase.
  • BaO is not essential, but can be contained because of improved solubility and low photoelastic constant. However, compared with MgO and CaO, there is a tendency to increase the expansion coefficient. If it is too much, the expansion and density of the glass are excessively increased, so the content is made 1% or less. It is preferable not to contain substantially.
  • ZrO 2 may be contained up to 2% in order to lower the glass melting temperature or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ⁇ of the glass increases. Preferably it is 1.5% or less, and it is more preferable not to contain substantially.
  • MgO, CaO, SrO, and BaO are less than 16% in total, solubility is poor. Preferably it is 17% or more. However, if it is more than 18.2%, there is a risk that the thermal expansion coefficient cannot be reduced. Preferably it is 18% or less.
  • MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, preferably 0.37 or more.
  • MgO / (MgO + CaO) is 0.40 or more and less than 0.52, preferably 0.45 or more and less than 0.52.
  • MgO / (MgO + SrO) is 0.45 or more, preferably 0.5 or more.
  • an alkali metal oxide is contained in the glass raw material at 200 to 2000 ppm, preferably 600 to 2000 ppm (mol).
  • Alkali-free glass has lower alkali metal oxide content than alkali glass such as soda lime glass, and less alkali metal ions are present in molten glass. Not suitable.
  • the electrical resistivity of the molten glass decreases.
  • the electrical conductivity of the molten glass is improved, and current heating is possible.
  • the present inventors have found that when B 2 O 3 is contained, the viscosity of the glass is lowered and the electrical resistivity of the molten glass is reduced, and the reduction effect is greater as the content of the alkali metal oxide is smaller. I found out that Therefore, the inventors conducted experiments and calculations on the relationship between the content of B 2 O 3 and the alkali metal oxide of the alkali-free glass of the present invention at 1300 to 1800 ° C. and the electrical resistivity of the molten glass, As a result, the relationship between B 2 O 3 [%] and alkali metal oxide R 2 O [ppm] for satisfying Rb> Rg described later was found.
  • Equation 1 600 ⁇ R 2 O + B 2 O 3 ⁇ 10000 / (9.14 ⁇ EXP (0.0045 ⁇ R 2 O)) Formula 1. That is, in the alkali-free glass of the present invention, when the contents of B 2 O 3 and the alkali metal oxide satisfy Formula 1, Rb> Rg can be easily achieved. Here, when the content of the alkali metal oxide is increased, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. This causes a problem when used as a substrate glass for various displays.
  • the content of the metal oxide is 2000 ppm or less, preferably 1500 ppm or less, more preferably 1300 ppm or less, and even more preferably 1000 ppm or less, such a problem does not occur.
  • the glass raw material used in the present invention preferably contains an alkali metal oxide of 1500 ppm or less, more preferably 1300 ppm or less, still more preferably 1000 ppm or less, further preferably 700 to 900 ppm, more preferably 700 to 800 ppm. More preferred.
  • Na 2 O, K 2 O , Li 2 O is preferably, Na 2 O, K 2 O is, the effect of lowering the electrical resistivity of the molten glass, the raw material cost, the balance viewpoints More preferably, Na 2 O is more preferable.
  • the glass of the present invention in order to during panel production does not cause deterioration of the characteristics of the metal or oxide thin film provided on the glass surface, it is preferred not to contain P 2 O 5 substantially. Furthermore, in order to facilitate recycling of the glass, it is preferable that PbO, As 2 O 3 , and Sb 2 O 3 are not substantially contained.
  • the alkali-free glass produced by the method of the present invention has relatively low solubility, it is preferable to use the following as a raw material for each component.
  • Silica sand can be used as the silicon source for SiO 2 , but the median particle size D 50 is 20 ⁇ m to 60 ⁇ m, preferably 20 ⁇ m to 27 ⁇ m, and the proportion of particles having a particle size of 2 ⁇ m or less is 0.3% by volume or less.
  • Use of silica sand with a proportion of particles of 100 ⁇ m or more of 2.5 vol% or less can dissolve silica sand while suppressing aggregation of silica sand, so that silica sand can be easily dissolved, there are few bubbles, homogeneity, and flatness. This is preferable because an alkali-free glass having a high value is obtained.
  • particle size in this specification is the equivalent sphere diameter of silica sand (meaning the primary particle size in the present invention), and specifically, in the particle size distribution of the powder measured by the laser diffraction / scattering method.
  • particle size refers to particle size.
  • “median particle diameter D 50 ” means that the volume frequency of particles larger than a certain particle diameter is 50% of that of the whole powder in the particle size distribution of the powder measured by the laser diffraction method.
  • the particle diameter occupied In other words, it refers to the particle diameter when the cumulative frequency is 50% in the particle size distribution of the powder measured by the laser diffraction method.
  • ratio of particles having a particle diameter of 2 ⁇ m or less and “ratio of particles having a particle diameter of 100 ⁇ m or more” in this specification are measured by measuring the particle size distribution by a laser diffraction / scattering method, for example.
  • the median particle size D 50 of silica sand is 25 ⁇ m or less, it is more preferable because dissolution of silica sand becomes easier. Further, the ratio of the particles having a particle diameter of 100 ⁇ m or more in the silica sand is particularly preferably 0% because the silica sand is more easily dissolved.
  • Alkaline earth metal source An alkaline earth metal compound can be used as the alkaline earth metal source.
  • Specific examples of the alkaline earth metal compound include carbonates such as MgCO 3 , CaCO 3 , BaCO 3 , SrCO 3 , (Mg, Ca) CO 3 (dolomite), MgO, CaO, BaO, SrO and the like.
  • Oxides and hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , Sr (OH) 2 can be exemplified, but some or all of the alkaline earth metal source is alkaline earth.
  • the undissolved amount of the SiO 2 component contained in the silica sand increases, the undissolved SiO 2 is taken into the bubbles when the bubbles are generated in the molten glass and gathers near the surface layer of the molten glass.
  • a difference in the composition ratio of SiO 2 occurs between the surface layer of the molten glass and the portion other than the surface layer, so that the homogeneity of the glass is lowered and the flatness is also lowered.
  • the content of the alkaline earth metal hydroxide is preferably 5 to 100 mol% (MO conversion) out of 100 mol% of the alkaline earth metal source (MO conversion, where M is an alkaline earth metal element). ), Preferably 15 to 100 mol% (in terms of MO), more preferably 30 to 100 mol% (in terms of MO), and even more preferably 60 to 100 mol% (in terms of MO). This is more preferable because the undissolved amount of the SiO 2 component at the time decreases. As the molar ratio of hydroxide in the alkaline earth metal source increases, the undissolved amount of the SiO 2 component at the time of melting the glass raw material decreases, so the higher the molar ratio of the hydroxide is, the better.
  • the alkaline earth metal source a mixture of an alkaline earth metal hydroxide and a carbonate, an alkaline earth metal hydroxide alone, or the like can be used.
  • the carbonate it is preferable to use at least one of MgCO 3 , CaCO 3 and (Mg, Ca) (CO 3 ) 2 (dolomite).
  • the alkaline earth metal hydroxide it is preferable to use at least one of Mg (OH) 2 and Ca (OH) 2 , and it is particularly preferable to use Mg (OH) 2 .
  • the alkali-free glass contains B 2 O 3, as the boron source B 2 O 3, can be used boron compound.
  • specific examples of the boron compound include orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and anhydrous boric acid (B 2 O 3 ). It is done. In the production of ordinary alkali-free glass, orthoboric acid is used because it is inexpensive and easily available.
  • a boron source containing boric anhydride in an amount of 10 to 100% by mass (in terms of B 2 O 3 ) out of 100% by mass of boron source (in terms of B 2 O 3 ).
  • the boric anhydride is more preferably 20 to 100% by mass, and further preferably 40 to 100% by mass.
  • orthoboric acid is preferable because it is inexpensive and easily available.
  • the alkali-free glass of the present invention improves the solubility, clarity, and formability of the glass, so that ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 can be added in a total amount of 5% or less.
  • the total amount is preferably 3% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.2% or less.
  • the glass raw material prepared so as to have the above composition is continuously charged into a melting kiln and heated to 1400 to 1800 ° C. for melting.
  • heating in the melting furnace heating by a burner flame and electric heating of the molten glass in the melting furnace are used in combination.
  • the burner is disposed above the melting kiln, and is heated by a combustion flame of fossil fuel, specifically, a liquid fuel such as heavy oil and kerosene, or a gaseous fuel such as LPG.
  • a combustion flame of fossil fuel specifically, a liquid fuel such as heavy oil and kerosene, or a gaseous fuel such as LPG.
  • the fuel can be mixed with oxygen gas and burned, or the fuel can be mixed with oxygen gas and air and burned.
  • the electric heating of the molten glass in the melting furnace is performed by applying a DC voltage or an AC voltage to a heating electrode provided on the bottom or side of the melting furnace so as to be immersed in the molten glass in the melting furnace.
  • a DC voltage or an AC voltage it is preferable to maintain the potential difference between the electrodes at 100 to 500 V when conducting heating by heating.
  • AC voltage from AC to DC that can be used as a commercial power source. Therefore, it is preferable to apply an AC voltage.
  • the potential difference between the electrodes is preferably 30 V or more, more preferably 40 V or more, and further preferably 100 V or more, and is preferably 480 V or less, and more preferably 450 V or less.
  • the potential difference between the electrodes is more preferably 30 to 480V, and further preferably 40 to 450V.
  • the frequency of the AC voltage is more preferably 30 to 80 Hz, and further preferably 50 to 60 Hz.
  • the material used for the heating electrode is required to be excellent in heat resistance and corrosion resistance to the molten glass because it is immersed in the molten glass in the melting furnace.
  • the material satisfying these include rhodium, iridium, osmium, hafnium, molybdenum, tungsten, platinum, and alloys thereof.
  • the heating amount T (J / h) by the electric heating when the total of the heating amount by the burner combustion flame and the heating amount by the electric heating of the molten glass in the melting furnace is T 0 (J / h), the heating amount T (J / h) by the electric heating.
  • T satisfies the following formula. 0.10 ⁇ T 0 ⁇ T ⁇ 0.40 ⁇ T 0
  • T is smaller than 0.10 ⁇ T 0 , there is a possibility that the effect of the combined use of the heated heating of the molten glass, that is, the effect of suppressing erosion of the refractory constituting the melting kiln may be insufficient.
  • T is larger than 0.40 ⁇ T 0 , the temperature at the bottom of the melting furnace rises, and refractory erosion may progress.
  • the melting kiln is heated to a high temperature of 1400 to 1800 ° C. when the glass raw material is melted, a refractory is used as a constituent material.
  • the refractory constituting the melting furnace is required to have corrosion resistance, mechanical strength, and oxidation resistance against molten glass.
  • a zirconia refractory containing 90% by mass or more of ZrO 2 has been preferably used since it has excellent corrosion resistance against molten glass.
  • the above zirconia refractory contains an alkali component (Na 2 O or K 2 O) in a total amount of 0.12% by mass or more as a component for reducing the viscosity of the matrix glass.
  • the electrical resistivity at 1400 ° C. of the molten glass is Rg ( ⁇ cm) and the electrical resistivity at 1400 ° C. of the refractory constituting the melting furnace is Rb ( ⁇ cm)
  • the glass raw material and the refractory constituting the melting furnace are selected.
  • the electrical resistivity of the molten glass and the refractory decreases as the temperature increases, but the decrease in the electrical resistivity with respect to the temperature increase is larger in the molten glass than in the refractory. Therefore, if the electrical resistivity at 1400 ° C.
  • the refractory always has a higher electrical resistivity than the molten glass at a higher temperature, that is, in the temperature range of 1400 to 1800 ° C. Become. And if it selects a glass raw material and the refractory which comprises a melting furnace so that it may become Rb> Rg, it will suppress that an electric current flows into the refractory which comprises a melting furnace from a heating electrode at the time of energization heating. .
  • the ratio of Rb to Rg preferably satisfies Rb / Rg> 1.00, more preferably satisfies Rb / Rg> 1.05, and Rb / Rg> It is more preferable to satisfy 1.10.
  • Rg can be adjusted by changing the content of the alkali metal oxide within the range of 200 to 2000 ppm, preferably 600 to 2000 ppm. Rg becomes low, so that there is much content of an alkali metal oxide. Rg can also be adjusted by changing the temperature T 2 at which the viscosity ⁇ of the alkali-free glass to be produced becomes 10 2 poise (dPa ⁇ s). Rg decreases as T 2 decreases.
  • Rb can be adjusted by changing the content of alkali components (Na 2 O, K 2 O). Moreover, Rb can be adjusted by changing the ratio of K 2 O in the alkali component. Rb increases as the content of alkali components (Na 2 O, K 2 O) decreases. Rb increases as the proportion of K 2 O in the alkali component increases.
  • refractories satisfying Rb> Rg are ZrO 2 85% to 91%, SiO 2 7.0% to 11.2%, and Al 2 O 3 0% by mass. 0.85-3.0%, P 2 O 5 0.05-1.0%, B 2 O 3 0.05-1.0%, and the total amount of K 2 O and Na 2 O
  • Rb> Rg ZrO 2 85% to 91%, SiO 2 7.0% to 11.2%, and Al 2 O 3 0% by mass. 0.85-3.0%, P 2 O 5 0.05-1.0%, B 2 O 3 0.05-1.0%, and the total amount of K 2 O and Na 2 O
  • a high zirconia molten cast refractory containing 01 to 0.12% and containing K 2 O in Na 2 O or more can be mentioned.
  • the high zirconia molten cast refractory having the above composition is a refractory consisting mainly of zirconia (ZrO 2 ) of 85 to 91% of the chemical component, and has a badelite crystal as a main constituent, It exhibits excellent corrosion resistance, has a low alkali component content, and mainly contains K 2 O having a large ionic radius and a low mobility as an alkali component, and therefore has an electrical resistivity in a temperature range of 1400 to 1800 ° C. large.
  • the composition range of each component will be described.
  • the higher the content of ZrO 2 in the refractory the better the corrosion resistance against molten glass, so 85% or more, preferably 88% or more.
  • the content of ZrO 2 is more than 91%, the amount of matrix glass becomes relatively small and the volume change associated with the transition (ie transformation) of the baderite crystal cannot be absorbed, and the heat cycle resistance deteriorates. 91% or less.
  • SiO 2 is an essential component for forming a matrix glass that relieves stress generated in the refractory, and in order to obtain a molten cast refractory having a practical size without cracks, it is necessary to contain 7.0% or more. is there. However, if the content of the SiO 2 component is more than 11.2%, the corrosion resistance to the molten glass becomes small, so it is 11.2% or less, preferably 10.0% or less.
  • Al 2 O 3 plays the role of adjusting the relationship between the temperature and viscosity of the matrix glass, and also has the effect of reducing the content of ZrO 2 in the matrix glass.
  • the content of ZrO 2 in the matrix glass is small, the precipitation of zircon (ZrO 2 ⁇ SiO 2 ) crystals found in conventional refractories in the matrix glass is suppressed, and the cumulative tendency of residual volume expansion is significantly reduced. .
  • the content of Al 2 O 3 in the refractory is set to 0.85% or more, preferably 1.0% or more.
  • Al 2 O 3 so that crystals such as mullite precipitate in the matrix glass and the matrix glass is not altered and cracks are not generated in the refractory.
  • the content of is set to 3.0% or less.
  • the content of Al 2 O 3 in the high zirconia molten cast refractory is 0.85 to 3.0%, preferably 1.0 to 3.0%.
  • heat cycle resistance that is, volume increase due to accumulation of residual volume expansion is suppressed within a practically no problem range.
  • chip-off phenomenon is remarkably improved.
  • B 2 O 3 and P 2 O 5 are included so that the viscosity of the matrix glass at 800 to 1250 ° C. is adjusted to an appropriate level even if the content of alkali components is small. Therefore, even when the thermal cycle that passes through the transition temperature range of the badelite crystal is repeatedly used during use, the residual volume expansion becomes small, and thus there is no tendency to cause cracks due to the accumulation of the residual volume expansion.
  • B 2 O 3 is contained mainly in the matrix glass with P 2 O 5, as well as soften the matrix glass in cooperation with the P 2 O 5 in place of the alkali components, the refractory at the temperature range of 1400 ⁇ 1800 ° C. It is a component that does not reduce the electrical resistivity.
  • the content of B 2 O 3 is 0.05% or more because the amount of matrix glass in the high zirconia molten cast refractory is small, the effect of adjusting the viscosity of the matrix glass is exhibited. However, if the content of B 2 O 3 is too large, a dense melt-cast refractory cannot be cast. Therefore, the content of B 2 O 3 is 0.05 to 1.0%, preferably 0.10 to 1. 0%.
  • P 2 O 5 is mostly contained in the matrix glass together with B 2 O 3 and the alkali component, and the volume change accompanying the transition of the badelite crystal is adjusted (soft) by adjusting the viscosity of the matrix glass in the transition temperature range of the badelite crystal. Prevents the occurrence of cracks due to the stress caused by. Further, P 2 O 5 and B 2 O 3 is, when the refractory is used in a glass melting furnace, which is no possibility of components for coloring glass even if the leach into the glass. Furthermore, when P 2 O 5 is added to the refractory raw material, the refractory raw material is easily melted, so that there is an advantage that the amount of electric power required to cast the refractory can be reduced.
  • the amount of the matrix glass in the high zirconia molten cast refractory is small, even if the content of P 2 O 5 in the refractory is small, the content of P 2 O 5 in the matrix glass is relatively In particular, the effect of adjusting the viscosity of the matrix glass can be obtained if 0.05% or more of P 2 O 5 is contained in the refractory. Further, if the content of P 2 O 5 is more than 1.0%, the property of the matrix glass is changed, and the residual volume expansion of the refractory tends to promote the generation of cracks accompanying the accumulation.
  • the content of P 2 O 5 in the refractory suitable for adjusting the viscosity is 0.05 to 1.0%, preferably 0.1 to 1.0%.
  • the content of the alkali component consisting of K 2 O and Na 2 O is 0.12 in total as an oxide so that the electrical resistivity of the refractory in the temperature range of 1400 to 1800 ° C. has a sufficiently large value. %, And more than 50%, preferably 70% or more of the alkali component is K 2 O having a low ion mobility in the glass.
  • the total amount of K 2 O and Na 2 O is less than 0.01%, since the fusion cast refractory becomes difficult to manufacture without cracking, the total amount of K 2 O and Na 2 O 0. 01% or more.
  • the content of K 2 O is made larger than the content of Na 2 O so that a high-zirconia molten cast refractory without cracks can be stably cast. It is preferable that the Na 2 O content is 0.008% or more and the K 2 O content is 0.02 to 0.10%.
  • the total content of Fe 2 O 3 and TiO 2 contained as impurities in the raw material is 0.55% or less, there is no problem of coloring in the melting furnace of the alkali-free glass having the above composition, Preferably, the total amount does not exceed 0.30%. Moreover, it is not necessary to contain alkaline earth oxides in the refractory, and the total content of alkaline earth oxides is preferably less than 0.10%.
  • the refractory constituting the melting furnace as chemical components, the ZrO 2 88 ⁇ 91%, the SiO 2 7.0 ⁇ 10%, the Al 2 O 3 1.0 ⁇ 3.0% , P 2 O 5 High zirconia molten cast refractories containing 0.10 to 1.0% and B 2 O 3 containing 0.10 to 1.0% are preferred.
  • glass raw materials prepared to have the above composition are continuously charged into a melting furnace, heated to 1400-1800 ° C. to form molten glass, and then the molten glass is formed into a plate shape by a float process.
  • alkali-free glass can be obtained. More specifically, an alkali-free glass can be obtained as a plate glass by forming it to a predetermined plate thickness by a float process, and cutting it after slow cooling.
  • the forming method for the plate glass is preferably a float method, a fusion method, a roll-out method, or a slot down draw method, and the float method is particularly preferable in consideration of productivity and enlargement of the plate glass.
  • the alkali-free glass obtained by the method of the present invention (hereinafter referred to as “the alkali-free glass of the present invention”) has a strain point of 735 ° C. or higher, preferably 737 ° C. or higher, more preferably 740 ° C. or higher. Heat shrinkage can be suppressed. Further, a solid phase crystallization method can be applied as a method for manufacturing a p-Si TFT. In addition, since the alkali-free glass of the present invention has a strain point of 735 ° C. or higher, it has a high strain point application (for example, a plate thickness of 0.7 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less.
  • a display substrate or an illumination substrate for organic EL or a thin display substrate or illumination substrate having a thickness of 0.3 mm or less, preferably 0.1 mm or less.
  • a sheet glass having a plate thickness of 0.7 mm or less, further 0.5 mm or less, further 0.3 mm or less, and further 0.1 mm or less the drawing speed at the time of forming tends to increase. Rises and the compaction of the glass tends to increase. In this case, compaction can be suppressed when the glass is a high strain point glass.
  • the alkali-free glass of the present invention preferably has a glass transition point of 760 ° C. or higher, more preferably 770 ° C. or higher, and further preferably 780 ° C. or higher.
  • the alkali-free glass of the present invention has an average coefficient of thermal expansion at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C., has high thermal shock resistance, and has high productivity during panel production. it can.
  • the average thermal expansion coefficient at 50 to 350 ° C. is preferably 35 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C.
  • the alkali-free glass of the present invention has a specific gravity of preferably 2.65 or less, more preferably 2.64 or less, and further preferably 2.62 or less.
  • the temperature T 2 at which the viscosity ⁇ becomes 10 2 poise is 1710 ° C. or less, preferably 1700 ° C. or less, more preferably 1690 ° C. or less. It is relatively easy to dissolve.
  • the alkali-free glass of the present invention has a temperature T 4 at which the viscosity ⁇ becomes 10 4 poise is 1340 ° C. or less, preferably 1335 ° C. or less, more preferably 1330 ° C. or less, and is suitable for float molding. Further, the alkali-free glass of the present invention has a devitrification temperature of 1330 ° C. or less, preferably less than 1300 ° C., more preferably 1290 ° C. or less, and can be easily molded by a float process. In this specification, the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
  • T 4 ⁇ devitrification temperature ⁇ 0 ° C. In consideration of prevention of devitrification at the time of forming the glass sheet, in the case of the float process, it is preferable to satisfy T 4 ⁇ devitrification temperature ⁇ 0 ° C., and further T 4 ⁇ devitrification temperature ⁇ 20 ° C.
  • the alkali-free glass of the present invention preferably has a Young's modulus of 84 GPa or more, more preferably 86 GPa or more, further 88 GPa or more, and further 90 GPa or more.
  • the alkali-free glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less. Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small.
  • the alkali-free glass of the present invention preferably has a photoelastic constant of 23 nm / MPa / cm or more, and more preferably 25 nm / MPa / cm or more, considering the ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method (measurement wavelength 546 nm).
  • the alkali-free glass of the present invention preferably has a relative dielectric constant of 5.6 or more.
  • the sensing sensitivity of the touch sensor is improved, the driving voltage is reduced, From the viewpoint of power saving, it is better that the glass substrate has a higher relative dielectric constant.
  • the relative dielectric constant is 5.8 or more, More preferably, it is 6.0 or more, More preferably, it is 6.2 or more, Most preferably, it is 6.4 or more.
  • the relative dielectric constant can be measured by the method described in JIS C-2141 (1992).
  • the ⁇ -OH value of the alkali-free glass can be appropriately selected according to the required characteristics of the alkali-free glass. In order to increase the strain point of the alkali-free glass, it is preferable that the ⁇ -OH value is low. For example, when the strain point is 735 ° C. or more, preferably 745 ° C. or more, the ⁇ -OH value is preferably 0.3 mm ⁇ 1 or less, more preferably 0.25 mm ⁇ 1 or less, and More preferably, it is 2 mm ⁇ 1 or less.
  • the ⁇ -OH value can be adjusted by various conditions at the time of melting the raw material, for example, the amount of water in the glass raw material, the water vapor concentration in the melting kiln, the residence time of the molten glass in the melting kiln, and the like.
  • a method for adjusting the amount of water in the glass raw material a method using a hydroxide instead of an oxide as a glass raw material (for example, magnesium hydroxide (Mg (OH) 2 instead of magnesium oxide (MgO) as a magnesium source) )).
  • Mg (OH) 2 magnesium hydroxide
  • MgO magnesium oxide
  • a method for adjusting the water vapor concentration in the melting furnace there are a method in which fossil fuel is mixed with oxygen gas and burned, and a method in which it is burned with oxygen gas and air at the time of combustion in a burner.
  • the electrical resistivity of the molten glass and refractory (zirconia electrocast refractory) in the temperature range of 1400 to 1800 ° C. was measured.
  • Molten glass (glasses 1 and 2) was prepared by mixing the raw materials of each component so as to have the following composition, and was melted at a temperature of 1600 ° C. using a platinum crucible.
  • the particle size of the silica sand in the raw material was such that the median particle size D 50 was 57 ⁇ m, the proportion of particles having a particle size of 2 ⁇ m or less was less than 0.1% by volume, and the proportion of particles having a particle size of 100 ⁇ m or more was less than 0.1% by volume. .
  • Magnesium hydroxide was used as the alkaline earth metal hydroxide and contained 6 mol% (MO conversion) of 100 mol% (MO conversion) of the alkaline earth metal source. In melting, the mixture was stirred using a platinum stirrer to homogenize the glass. The electrical resistivity was measured by the method described in the following document while the molten glass thus obtained was kept in the temperature range of 1400 to 1800 ° C. "Conductivity measurement method for ionic melt, Norio Ota, Mitsuo Miyanaga, Kenji Morinaga, Tsutomu Yanagase, Journal of the Japan Institute of Metals, Vol. 45 No.
  • zirconia-based electrocast refractories having the following chemical composition and mineral composition also have an electrical resistivity of “JIS C-2141 ( (1992) The measurement principle of volume resistivity (section 14) in “Testing method for ceramic materials for electrical insulation” was developed at high temperature (the sample was placed in an electric furnace and heated) and measured.
  • Glass 2 Composition (expressed as mol% based on oxide) SiO 2 68.4% Al 2 O 3 13.6% B 2 O 3 0.9% MgO 6.9% CaO 7.6% SrO 2.7% BaO 0% ZrO 2 0% MgO + CaO + SrO + BaO 17.1% MgO / (MgO + CaO + SrO + BaO) 0.40 MgO / (MgO + CaO) 0.47 MgO / (MgO + SrO) 0.72
  • the Na 2 O content was added in five ways of 400 ppm, 500 ppm, 600 ppm, 700 ppm, and 1000 ppm based on the oxide.
  • the refractory 1 has an electric resistivity Rb at 1400 ° C. of 1400 ° C. when the glass 2 (B 2 O 3 0%) has a Na 2 O content of 600 to 2000 ppm (mol).
  • Rb> Rg was satisfied with respect to the electrical resistivity Rg of the molten glass at.
  • the refractory 1 had a higher electrical resistivity than the molten glass.
  • a melting kiln is comprised with such a refractory 1, it will be thought that it is suppressed that an electric current flows into the refractory which comprises a melting kiln from a heating electrode at the time of energization heating.
  • the electrical resistivity Rb, Rg at 1400 ° C. was in a relationship of Rb ⁇ Rg.
  • refractory 2 has electrical resistivity Rb at 1400 ° C., when the content of Na 2 O of the glass 1 is any of 400 ⁇ 1000 ppm also, the electric resistivity Rg of the molten glass at 1400 ° C., Rb ⁇ The relationship was Rg. Even in the temperature range of 1400 to 1800 ° C., refractory 2 had a lower electrical resistivity than molten glass.
  • a melting kiln is configured with such a refractory 2, it is considered that a current flows from the heating electrode to the refractory constituting the melting kiln during energization heating.
  • the refractory 1 has an electric resistivity Rb at 1400 ° C.
  • the refractory 2 has an electrical resistivity Rb at 1400 ° C.
  • the glass 2 has an Na 2 O content of 400 to 1000 ppm, with respect to the electrical resistivity Rg of the molten glass at 1400 ° C., Rb ⁇
  • the relationship was Rg.
  • a mixture of raw materials of each component so as to have a target composition was put into a melting furnace composed of the refractory 1, and was melted at a temperature of 1500 to 1600 ° C.
  • heating by a burner flame and electric heating of the molten glass by a heating electrode arranged so as to be immersed in the molten glass in the melting furnace were used in combination.
  • an alternating voltage was applied to the heating electrode at a local current density of 0.5 A / cm 2 , a potential difference between the electrodes of 300 V, and a frequency of 50 Hz.
  • Table 1 shows the glass composition (unit: mol%), ⁇ OH value of glass (measured by the following procedure as an index of water content in glass, unit: mm ⁇ 1 ), average thermal expansion at 50 to 350 ° C. Dissolved as coefficient (unit: x10 -7 / ° C), strain point (unit: ° C), glass transition point (unit: ° C), specific gravity, Young's modulus (GPa) (measured by ultrasonic method), high temperature viscosity value A temperature T 2 (a temperature at which the glass viscosity ⁇ becomes 10 2 poise, unit: ° C.), and a temperature T that is a standard for moldability such as a float method, a fusion method, a roll-out method, and a slot down draw method.
  • all the glasses of the examples have a low average thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C. and a high strain point of 735 ° C. or higher. It turns out that it can endure enough.
  • the strain point is 735 ° C. or higher, it is suitable for high strain point applications (for example, a display substrate or lighting substrate for organic EL, or a thin display substrate or lighting substrate having a thickness of 100 ⁇ m or less). ing.
  • the temperature T 2 that is a measure of solubility is relatively low at 1710 ° C. or less and is easy to dissolve
  • the temperature T 4 that is a measure of moldability is 1340 ° C. or less
  • the devitrification temperature is 1330 ° C. or less, preferably Is less than 1330 ° C., and it is considered that there is no trouble such as devitrification during float forming.
  • a photoelastic constant is 31 nm / MPa / cm or less, and when used as a glass substrate of a liquid crystal display, a decrease in contrast can be suppressed. Further, the relative dielectric constant is 5.6 or more, and the sensing sensitivity of the touch sensor is improved when used as a glass substrate of an in-cell type touch panel.
  • the alkali-free glass of the present invention has a high strain point and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

 歪点が高く、低粘性、かつ、低失透性を有し、特にフロート成形が容易な無アルカリガラスの製造に好適な方法の提供。ガラス原料を溶解窯に投入し、1400~1800℃の温度に加熱して溶融ガラスにした後、該溶融ガラスをフロート法で板状に成形する無アルカリガラスの製造方法であって、前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、前記溶融ガラスの1400℃における電気抵抗率をRg(Ωcm)とし、前記溶解窯を構成する耐火物の1400℃における電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法。

Description

無アルカリガラスの製造方法
 本発明は、各種ディスプレイ用基板ガラスやフォトマスク用基板ガラスとして好適な無アルカリガラスの製造方法に関する。
 以下、本明細書において、「無アルカリ」と言った場合、アルカリ金属酸化物(Li2O、Na2O、K2O)の含有量が2000ppm以下であることを意味する。
 従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成するものでは、以下に示す特性が要求されてきた。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、アルカリ金属酸化物の含有量がきわめて低いこと、具体的には、アルカリ金属酸化物の含有量が2000ppm以下であること。
(2)薄膜形成工程で高温にさらされる際に、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えうるように、歪点が高いこと。
(3)半導体形成に用いる各種薬品に対して充分な化学耐久性を有すること。特にSiOxやSiNxのエッチングのためのバッファードフッ酸(BHF:フッ酸とフッ化アンモニウムの混合液)、およびITOのエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、レジスト剥離液のアルカリに対して耐久性のあること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)がないこと。
 上記の要求に加えて、近年では、以下のような状況にある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれる。
(6)ディスプレイの軽量化が要求され、基板ガラスの薄板化が望まれる。
(7)これまでのアモルファスシリコン(a-Si)タイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコン(p-Si)タイプの液晶ディスプレイが作製されるようになってきた(a-Si:約350℃→p-Si:350~550℃)。
(8)液晶ディスプレイ作製熱処理の昇降温速度を速くして、生産性を上げたり耐熱衝撃性を上げるために、ガラスの平均熱膨張係数の小さいガラスが求められる。
 一方、エッチングのドライ化が進み、耐BHF性に対する要求が弱くなってきている。これまでのガラスは、耐BHF性を良くするために、B23を6~10モル%含有するガラスが多く用いられてきた。しかし、B23は歪点を下げる傾向がある。B23を含有しないまたは含有量の少ない無アルカリガラスの例としては以下のようなものがある。
 特許文献1にはB23を0~5重量%含有するガラスが開示されており、特許文献2にはB23を0~5モル%含有するガラスが開示されており、特許文献3にはB23を0~8モル%含有するガラスが開示されている。
 しかしながら、特許文献1に記載のガラスは、CaOを11モル%以上含有するため失透温度が高く、またCaOの原料である石灰石中の不純物リンを多く含有し、ガラス基板上に作製するトランジスタにリーク電流を生じさせるおそれがある。
 また、特許文献2に記載のガラスは、SrOを15モル%以上含有するため、50~300℃での平均熱膨張係数が50×10-7/℃を超える。
 また、特許文献3に記載のガラスは、「SiO2を55~67重量%含有し、かつ、Al23を6~14重量%含有するガラス」(a群)と「SiO2を49~58重量%含有し、かつ、Al23を16~23重量%含有するガラス」(b群)とに分けられるが、a群はSiO2の含有量が多いため、SiO2原料であるケイ砂が融液中に熔けきらず未融ケイ砂として熔け残る問題があり、b群はAl23の含有量が多いため失透温度が著しく高くなる問題がある。
 特許文献1~3に記載のガラスにおける問題点を解決するため、特許文献4に記載の無アルカリガラスが提案されている。特許文献4に記載の無アルカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適であるとされている。
 ディスプレイ用基板、フォトマスク用基板等の用途に用いられる無アルカリガラス、具体的には、無アルカリガラス組成の板ガラスは、各成分の原料を目標成分になるように調合し、これを溶解窯に連続的に投入し、所定の温度に加熱して溶解する。この溶融ガラスを所定の板厚に成形し、徐冷後切断することによって得ることができる。
 歪点の高いガラスの場合、原料の溶解時に1400~1800℃という高温に加熱する必要がある。原料の溶解時における加熱手段としては、溶解窯の上方に配置したバーナーの燃焼炎による加熱で所定の温度に加熱することが一般的であるが、1400~1800℃という高温に加熱した場合、溶解窯を構成する耐火物が浸食されるおそれがある。耐火物の浸食が起こると、耐火物の成分が溶融ガラスに溶け込み、製造されるガラスの品質低下につながるので問題となる。
 上述したように、原料の溶解時における加熱手段としては、溶解窯の上方に配置したバーナーの燃焼炎により所定の温度に加熱することが一般的であるが、追加加熱手段として、溶解窯内の溶融ガラスに浸漬するように加熱電極を設けて、該加熱電極に直流電圧または交流電圧を印加することで溶解窯内の溶融ガラスを通電加熱する方法がある(特許文献5~6参照)。このような、バーナーの燃焼炎による加熱と、溶融ガラスの通電加熱と、の併用は、溶解窯を構成する耐火物の浸食を抑制するうえで有効である。溶解窯を構成する耐火物の浸食は、特に溶融ガラスと上部空間との界面付近で起こりやすい。このため、上部空間の雰囲気温度を上げずに溶融ガラスのみを加熱する通電加熱の併用は、耐火物の浸食を抑制するうえで有効である。
日本国特開昭62-113735号公報 日本国特開平5-232458号公報 日本国特開平8-109037号公報 日本国特開平10-45422号公報 日本国特開2005-132713号公報 日本国特表2009-523697号公報
 しかしながら、高品質のp-Si TFTの製造方法として固相結晶化法があるが、これを実施するためには、歪点をさらに高くすることが求められる。
 また、ガラス製造プロセス、特に溶解、成形における要請から、ガラスの粘性がさらに低く、低失透性を有することが求められている。
 但し、無アルカリガラスを通電加熱する場合、以下の点に留意する必要がある。
 ソーダライムガラスのようなアルカリガラスに比べて、無アルカリガラスはアルカリ金属酸化物の含有量が低いため、溶融ガラス中に存在するアルカリ金属イオンも少ないので、ソーダライムガラスのようなアルカリガラスに比べると、通電加熱時に電流が流れにくい。このため、溶解窯に設けた加熱電極から、溶融ガラスだけではなく、溶解窯を構成する耐火物にも電流が流れるおそれがある。
 溶解窯を構成する耐火物に電流が流れると、投入した電気量の全てを溶融ガラスの通電加熱に使用することができなくなるので、投入した電気量の利用効率の観点から好ましくない。また、溶解窯を構成する耐火物に電流が流れると、溶解窯周辺の金属部材(たとえば、金属フレーム)にも電流が流れて感電の危険性がある。また、耐火物の通電加熱が起こり、耐火物の温度が上昇して溶損するおそれもある。
 本発明の目的は、上記欠点を解決し、歪点が高く、低粘性、かつ、低失透性を有し、特にフロート成形が容易な無アルカリガラスの製造に好適な方法を提供することにある。
 本発明は、以下のガラス組成(1)または(2)となるように、ガラス原料を調製し、溶解窯に投入し、1400~1800℃の温度に加熱して溶融ガラスにした後、該溶融ガラスを板状に成形する無アルカリガラスの製造方法であって、
 前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、
 前記溶融ガラスの1400℃における電気抵抗率をRg(Ωcm)とし、前記溶解窯を構成する耐火物の1400℃における電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法を提供する。
ガラス組成(1):酸化物基準のモル%表示で
SiO2        66~69%、
Al23      12~15%、
23        0~1.5%、
MgO         6~9.5%、
CaO         7~9%、
SrO        0.5~3%、
BaO         0~1%、
ZrO2        0~2%、であり、かつ、
アルカリ金属酸化物を200~2000ppm含有し、
MgO+CaO+SrO+BaO が16~18.2%であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上であり、
アルカリ金属酸化物RO[ppm]、B[%]とするとき、600≦RO+B×10000/(9.14×EXP(0.0045×RO))を満たす。
 
ガラス組成(2):酸化物基準のモル%表示で
SiO2        66~69%、
Al23       12~15%、
23         0~1.5%、
MgO          6~9.5%、
CaO         7~9%、
SrO         0.5~3%、
BaO         0~1%、
ZrO2         0~2%、であり、かつ、
アルカリ金属酸化物を600~2000ppm含有し、
MgO+CaO+SrO+BaO が16~18.2%であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上である。
 本発明の方法によれば、歪点が735℃以上であって、50~350℃での平均熱膨張係数が30×10-7~40×10-7/℃であって、ガラス粘度が102dPa・sとなる温度T2が1710℃以下であって、ガラス粘度が104dPa・sとなる温度T4が1340℃以下であって、失透温度が1330℃以下である無アルカリガラスを好ましく製造することができる。
 本発明の方法により製造される無アルカリガラスは、特に高歪点用途のディスプレイ用基板、フォトマスク用基板等に好適であり、また、特にフロート成形が容易なガラスである。また、本発明の方法により製造される無アルカリガラスは、磁気ディスク用ガラス基板としても使用できる。
 本発明では、溶解窯での加熱に、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスの通電加熱と、を併用することにより、1400~1800℃という高温加熱時における溶解窯を構成する耐火物の浸食を抑制することができる。これにより、耐火物の成分が溶融ガラスに溶け込むことが抑制され、製造される無アルカリガラスの品質が向上する。
 本発明では、溶融ガラスの通電加熱時において、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制される。これにより、通電加熱時に投入する電気量の利用効率が向上する。また、溶解窯を構成する耐火物に電流が流れると、溶解窯周辺の金属部材(たとえば、金属フレーム)にも電流が流れて感電の危険性があり、耐火物の通電加熱が起こり、耐火物の温度が上昇して溶損するおそれもあるが、本発明ではこれらのおそれが解消されている。
図1は、実施例における溶融ガラス(ガラス1)、および、耐火物(耐火物1、耐火物2)の電気抵抗率の測定結果を示したグラフである。 図2は、実施例における溶融ガラス(ガラス2)、および、耐火物(耐火物1、耐火物2)の電気抵抗率の測定結果を示したグラフである。
 以下、本発明の無アルカリガラスの製造方法を説明する。
 本発明の無アルカリガラスの製造方法では、下記ガラス組成(1)または(2)となるように調合したガラス原料を用いる。
ガラス組成(1)
酸化物基準のモル%表示で
SiO2        66~69%、
Al23      12~15%、
23        0~1.5%、
MgO         6~9.5%、
CaO         7~9%、
SrO        0.5~3%、
BaO         0~1%、
ZrO2        0~2%、であり、かつ、
アルカリ金属酸化物を200~2000ppm含有し、
MgO+CaO+SrO+BaO が16~18.2%であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上であり、
アルカリ金属酸化物RO[ppm]、B[%]とするとき、600≦RO+B×10000/(9.14×EXP(0.0045×RO))を満たす。
 
ガラス組成(2)
 酸化物基準のモル%表示で
SiO2        66~69%、
Al23       12~15%、
23         0~1.5%、
MgO          6~9.5%、
CaO         7~9%、
SrO         0.5~3%、
BaO         0~1%、
ZrO2         0~2%、であり、かつ、
アルカリ金属酸化物を600~2000ppm含有し、
MgO+CaO+SrO+BaO が16~18.2%であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上である。
 次に各成分の組成範囲について説明する。SiO2は66%(モル%、以下特記しないかぎり同じ)未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇する。好ましくは67%以上である。しかし、69%超では、溶解性が低下し、失透温度が上昇する。
 Al23はガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げるが、12%未満ではこの効果があらわれず、また、ほかの膨張を上げる成分を増加させることになるため、結果的に熱膨張が大きくなる。好ましくは13.5%以上である。しかし、15%超ではガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがある。好ましくは14.5%以下である。
 B23は、ガラスの溶解反応性をよくし、また、失透温度を低下させるため1.5%まで添加できる。しかし、多すぎると歪点が低くなり、また光弾性定数が高くなる。したがって1%以下が好ましい。また、環境負荷を考慮すると実質的に含有しないこと(すなわち、不純物として不可避的に混入するものを除き含有しないこと。以下同様)が好ましい。
 MgOは、アルカリ土類の中では膨張を高くせず、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させるが、6%未満ではこの効果が十分あらわれない。好ましくは7%以上である。しかし、9.5%を超えると、失透温度が上昇するおそれがある。好ましくは8.5%以下である。
 CaOは、MgOに次いでアルカリ土類中では膨張を高くせず、かつMgOよりも歪点を過大には低下させないという特徴を有し、さらに溶解性も向上させるが、7%未満ではこの効果が十分あらわれない。好ましくは7.5%以上である。しかし、9%を超えると、失透温度が上昇したりCaO原料である石灰石(CaCO3)中の不純物であるリンが、多く混入するおそれがある。好ましくは8.5%以下である。
 SrOは、ガラスの失透温度を上昇させず溶解性を向上させるが、0.5%未満ではこの効果が十分あらわれない。好ましくは1%以上である。しかしながら、MgOおよびCaOに比べると膨張係数を増加させる傾向があり、3%を超えると膨脹係数が増大するおそれがある。
 BaOは必須ではないが溶解性向上、また光弾性定数が低くなるため、含有できる。しかしながら、MgOおよびCaOに比べると膨張係数を増加させる傾向があり、多すぎるとガラスの膨張と密度を過大に増加させるので1%以下とする。実質的に含有しないことが好ましい。
 ZrO2は、ガラス溶融温度を低下させるために、または焼成時の結晶析出を促進するために、2%まで含有してもよい。2%超ではガラスが不安定になる、またはガラスの比誘電率εが大きくなる。好ましくは1.5%以下であり、実質的に含有しないことがより好ましい。
 MgO、CaO、SrO、BaOは合量で16%よりも少ないと、溶解性に乏しい。好ましくは17%以上である。しかし、18.2%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。好ましくは18%以下である。
 下記3条件を満たすことにより、失透温度を上昇させることなしに、歪点を上昇させ、さらにガラスの粘性を下げることができる。
 MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、好ましくは0.37以上である。
 MgO/(MgO+CaO)が0.40以上0.52未満であり、好ましくは0.45以上0.52未満である。
 MgO/(MgO+SrO)が0.45以上であり、好ましくは0.5以上である。
 本発明の無アルカリガラスの製造方法では、溶解窯内の溶融ガラスを通電加熱するため、ガラス原料にアルカリ金属酸化物を200~2000ppm、好ましくは600~2000ppm(モル)含有させる。
 無アルカリガラスは、ソーダライムガラスのようなアルカリガラスに比べて、アルカリ金属酸化物の含有量が低く、溶融ガラス中に存在するアルカリ金属イオンも少ないため、導電性が低く、通電加熱には本来適していない。
 本発明では、ガラス原料にアルカリ金属酸化物を200ppm以上、好ましくは600ppm以上含有させることにより、溶融ガラス中でアルカリ金属イオンが増加する結果、溶融ガラスの電気抵抗率が低下する。その結果、溶融ガラスの導電性が向上しており、通電加熱が可能である。
 また本発明者らは、Bが含まれるとガラスの粘性が下がり、溶融ガラスの電気抵抗率が低減することを発見し、その低減効果はアルカリ金属酸化物の含有量が少ないほど大きくなることを発見した。そこで本発明者らは、1300~1800℃における本発明の無アルカリガラスのBおよびアルカリ金属酸化物の含有量と、溶融ガラスの電気抵抗率との関係について、実験および計算を行ない、その結果、後述するRb>RgとなるためのB[%]とアルカリ金属酸化物RO[ppm]の関係を見出した。これを式1に示す。
600≦RO+B×10000/(9.14×EXP(0.0045×RO)) 式1。
 即ち本発明の無アルカリガラスにおいては、Bとアルカリ金属酸化物の含有量が式1を満たすことにより、容易にRb>Rgとすることができる。
 ここで、アルカリ金属酸化物を含有量が高くなると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、各種ディスプレイ用基板ガラスとしての使用時に問題となるが、ガラス組成中のアルカリ金属酸化物を含有量が2000ppm以下、好ましくは1500ppm以下、より好ましくは1300ppm以下、さらに好ましくは1000ppm以下であれば、このような問題を生じることがない。
 本発明に用いるガラス原料は、アルカリ金属酸化物を好ましくは1500ppm以下、より好ましくは1300ppm以下、さらに好ましくは1000ppm以下含有し、さらには700~900ppm含有することが好ましく、700~800ppm含有することがより好ましい。
 また、アルカリ金属酸化物としては、Na2O、K2O、Li2Oが好ましく、Na2O、K2Oが、溶融ガラスの電気抵抗率を下げる効果と、原料コストと、バランスの観点からより好ましく、Na2Oがより好ましい。
 なお、本発明のガラスは、パネル製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、P25を実質的に含有しないことが好ましい。さらに、ガラスのリサイクルを容易にするため、PbO、As23、Sb23は実質的に含有しないことが好ましい。
 本発明の方法で製造する無アルカリガラスは、比較的溶解性が低いため、各成分の原料として下記を用いることが好ましい。
(珪素源)
 SiO2の珪素源としては珪砂を用いることができるが、メディアン粒径D50が20μm~60μm、好ましくは20μm~27μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用いることが、珪砂の凝集を抑えて溶解させることができるので、珪砂の溶解が容易になり、泡が少なく、均質性、平坦度が高い無アルカリガラスが得られることから好ましい。
 なお、本明細書における「粒径」とは珪砂の球相当径(本発明では一次粒径の意)であって、具体的にはレーザー回折/散乱法によって計測された粉体の粒度分布における粒径をいう。
 また、本明細書における「メディアン粒径D50」とは、レーザー回折法によって計測された粉体の粒度分布において、ある粒径より大きい粒子の体積頻度が、全粉体のそれの50%を占める粒子径をいう。言い換えると、レーザー回折法によって計測された粉体の粒度分布において、累積頻度が50%のときの粒子径をいう。
 また、本明細書における「粒径2μm以下の粒子の割合」及び「粒径100μm以上の粒子の割合」は、例えば、レーザー回折/散乱法によって粒度分布を計測することにより測定される。
 珪砂のメディアン粒径D50が25μm以下であれば、珪砂の溶解がより容易になるので、より好ましい。
 また、珪砂における粒径100μm以上の粒子の割合は、0%であることが珪砂の溶解がより容易になるので特に好ましい。
(アルカリ土類金属源)
 アルカリ土類金属源としては、アルカリ土類金属化合物を用いることができる。ここでアルカリ土類金属化合物の具体例としては、MgCO3、CaCO3、BaCO3、SrCO3、(Mg,Ca)CO3(ドロマイト)等の炭酸塩や、MgO、CaO、BaO、SrO等の酸化物や、Mg(OH)2、Ca(OH)2、Ba(OH)2、Sr(OH)2等の水酸化物を例示できるが、アルカリ土類金属源の一部または全部にアルカリ土類金属の水酸化物を含有させることが、ガラス原料の溶解時のSiO2成分の未溶解量が低下するので好ましい。珪砂中に含まれるSiO2成分の未溶解量が増大すると、この未溶解のSiO2が、溶融ガラス中に泡が発生した際にこの泡に取り込まれて溶融ガラスの表層近くに集まる。これにより、溶融ガラスの表層と表層以外の部分との間においてSiO2の組成比に差が生じて、ガラスの均質性が低下するとともに平坦性も低下する。
 アルカリ土類金属の水酸化物の含有量は、アルカリ土類金属源100モル%(MO換算。但しMはアルカリ土類金属元素である。)のうち、好ましくは5~100モル%(MO換算)、好ましくは15~100モル%(MO換算)、より好ましくは30~100モル%(MO換算)であり、さらに好ましくは60~100モル%(MO換算)であることが、ガラス原料の溶解時のSiO2成分の未溶解量が低下するのでより好ましい。
 アルカリ土類金属源中の水酸化物のモル比が増加するにつれて、ガラス原料の溶解時のSiO2成分の未溶解量が低下するので、上記水酸化物のモル比は高ければ高いほどよい。
 アルカリ土類金属源として、具体的には、アルカリ土類金属の水酸化物と炭酸塩との混合物、アルカリ土類金属の水酸化物単独、などを用いることができる。炭酸塩としては、MgCO3、CaCO3及び(Mg,Ca)(CO32(ドロマイト)のいずれか1種以上を用いることが好ましい。またアルカリ土類金属の水酸化物としては、Mg(OH)2またはCa(OH)2の少なくとも一方を用いることが好ましく、特にMg(OH)2を用いることが好ましい。
(ホウ素源)
 無アルカリガラスがB23を含有する場合、B23のホウ素源としては、ホウ素化合物を用いることができる。ここでホウ素化合物の具体例としては、オルトホウ酸(H3BO3)、メタホウ酸(HBO2)、四ホウ酸(H247)、無水ホウ酸(B23)等が挙げられる。通常の無アルカリガラスの製造においては、安価で、入手しやすい点から、オルトホウ酸が用いられる。
 本発明においては、ホウ素源として、無水ホウ酸を、ホウ素源100質量%(B23換算)のうち、10~100質量%(B23換算)含有するものを用いることが好ましい。無水ホウ酸を10質量%以上とすることにより、ガラス原料の凝集が抑えられ、泡の低減効果、均質性、平坦度の向上効果が得られる。無水ホウ酸は、20~100質量%がより好ましく、40~100質量%がさらに好ましい。
 無水ホウ酸以外のホウ素化合物としては、安価で、入手しやすい点から、オルトホウ酸が好ましい。
 本発明の無アルカリガラスは上記成分以外にガラスの溶解性、清澄性、成形性を改善するため、ZnO、Fe23、SO3、F、Cl、SnO2を総量で5%以下添加できる。好ましくは総量で3%以下、より好ましくは1%以下、さらに好ましくは0.5%以下、特に好ましくは0.2%以下添加できる。
 本発明では、上記組成となるように調合したガラス原料を溶解窯に連続的に投入し、1400~1800℃に加熱して溶解する。
 ここで、溶解窯での加熱には、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスの通電加熱と、を併用する。
 バーナーは、溶解窯の上方に配置されており、化石燃料の燃焼炎、具体的には、重油、灯油等の液体燃料や、LPG等の気体燃料等の燃焼炎により加熱を行う。これら燃焼の燃焼時には、燃料を酸素ガスと混合して燃焼させたり、燃料を酸素ガスおよび空気と混合して燃焼させたりすることができる。これらの方法を用いることにより、溶融ガラスに水分を含有させることができ、製造される無アルカリガラスのβ-OH値を調節することができる。
 一方、溶解窯内の溶融ガラスの通電加熱は、溶解窯内の溶融ガラスに浸漬するように、該溶解窯の底部または側面に設けられた加熱電極に直流電圧または交流電圧を印加することによって行う。但し、後述するように、通電加熱の実施時には電極間の電位差を100~500Vに保持することが好ましいが、このような直流電圧を印加するためには、商用電源として利用可能な交流から直流へと変換する必要があるので、交流電圧を印加することが好ましい。
 溶融ガラスの通電加熱時において、加熱電極には下記を満たすように交流電圧を印加することが、溶解窯内の溶融ガラスでの電気分解、および、それによる泡発生を抑制でき、かつ、通電加熱時の効率の点から好ましい。
局所電流密度:0.01~2.0A/cm2、好ましくは0.1~2.0A/cm2
電極間の電位差:20~500V、好ましくは100~500V
交流電圧の周波数:10~90Hz
 局所電流密度は、0.2~1.7A/cm2であることがより好ましく、0.3~1.0A/cm2であることがさらに好ましい。
 電極間の電位差は、30V以上、さらに40V以上、さらに100V以上であることが好ましく、480V以下、さらに450V以下であることが好ましい。電極間の電位差は、30~480Vであることがより好ましく、40~450Vであることがさらに好ましい。
 交流電圧の周波数は、30~80Hzであることがより好ましく、50~60Hzであることがさらに好ましい。
 加熱電極に使用する材料は、導電性に優れることに加えて、溶解窯内の溶融ガラスに浸漬することから、耐熱性、溶融ガラスに対する耐食性に優れることが求められる。
 これらの満たす材料としては、ロジウム、イリジウム、オスミウム、ハフニウム、モリブデン、タングステン、白金、および、これらの合金が例示される。
 本発明において、バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT0(J/h)とするとき、通電加熱による加熱量T(J/h)が下記式を満たすことが好ましい。
0.10×T0≦T≦0.40×T0
 Tが0.10×T0より小さいと、溶融ガラスの通電加熱の併用による効果、すなわち、溶解窯を構成する耐火物の浸食を抑制する効果が不十分となるおそれがある。
 Tが0.40×T0より大きいと、溶融窯底部の温度が上昇し、耐火物の浸食が進行する恐れがある。
 溶解窯は、ガラス原料の溶解時に1400~1800℃という高温に加熱されるため、耐火物を構成材料とする。溶解窯を構成する耐火物には、耐熱性に加えて、溶融ガラスに対する耐食性、機械的強度、耐酸化性が要求される。
溶解窯を構成する耐火物としては、溶融ガラスに対する耐食性に優れることから、ZrO2を90質量%以上含有するジルコニア系耐火物が好ましく用いられてきた。
 しかしながら、上記のジルコニア系耐火物には、マトリックスガラスの粘性を低減する成分としてアルカリ成分(Na2OやK2O)を合量で0.12質量%以上含有するため、1400~1800℃という高温に加熱した際には、該アルカリ成分の存在によりイオン導電性を示す。このため、通電加熱時に、溶解窯に設けた加熱電極から、溶融ガラスだけではなく、溶解窯を構成する耐火物にも電流が流れるおそれがある。
 本発明では、溶融ガラスの1400℃における電気抵抗率をRg(Ωcm)とし、溶解窯を構成する耐火物の1400℃における電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、ガラス原料、および、溶解窯を構成する耐火物を選択する。
 後述する実施例に示すように、溶融ガラスおよび耐火物の電気抵抗率は、温度の上昇に応じて低くなるが、温度上昇に対する電気抵抗率の低下は、耐火物よりも溶融ガラスのほうが大きい。このため、1400℃における電気抵抗率がRb>Rgの関係であれば、それよりも高い温度、すなわち、1400~1800℃の温度域では、常に耐火物のほうが溶融ガラスよりも電気抵抗率が大きくなる。
 そして、Rb>Rgとなるように、ガラス原料、および、溶解窯を構成する耐火物を選択すれば、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制される。
 本発明において、Rbと、Rgと、の比(Rb/Rg)が、Rb/Rg>1.00を満たすことが好ましく、Rb/Rg>1.05を満たすことがより好ましく、Rb/Rg>1.10を満たすことがさらに好ましい。
 なお、上述した組成の無アルカリガラスの場合、アルカリ金属酸化物の含有量を200~2000ppm、好ましくは600~2000ppmの範囲内で変えることで、Rgを調節することができる。アルカリ金属酸化物の含有量が多いほどRgは低くなる。
 また、製造される無アルカリガラスの粘度ηが102ポイズ(dPa・s)となる温度T2を変えることによっても、Rgを調節することができる。T2が低いほどRgは低くなる。
 後述する耐火物の好適組成の場合、アルカリ成分(Na2O,K2O)の含有量を変えることで、Rbを調節することができる。また、アルカリ成分におけるK2Oの割合を変えることで、Rbを調節することができる。アルカリ成分(Na2O,K2O)の含有量が低いほどRbが高くなる。アルカリ成分におけるK2Oの割合が高いほどRbが高くなる。
 上述した組成の無アルカリガラスに対して、Rb>Rgとなる耐火物としては、質量%でZrO2を85~91%、SiO2を7.0~11.2%、Al23を0.85~3.0%、P25を0.05~1.0%、B23を0.05~1.0%およびK2OとNa2Oをその合量で0.01~0.12%含み、かつK2OをNa2O以上に含む高ジルコニア質溶融鋳造耐火物が挙げられる。
 上記組成の高ジルコニア質溶融鋳造耐火物は、化学成分の85~91%という大部分がジルコニア(ZrO2)からなる耐火物であり、バデライト結晶を主な構成成分としていて、溶融ガラスに対して優れた耐食性を示すとともに、アルカリ成分の含有量が少なく、しかもアルカリ成分としてイオン半径が大きく移動度が小さいK2Oを主に含んでいるので、1400~1800℃の温度域における電気抵抗率が大きい。
 次に各成分の組成範囲について説明する。
 高ジルコニア質溶融鋳造耐火物としては、耐火物中のZrO2の含有量は多い方が溶融ガラスに対する耐食性が優れているので、85%以上、好ましくは88%以上とする。しかし、ZrO2の含有量が91%より多いと、マトリックスガラスの量が相対的に少なくなってバデライト結晶の転移(すなわち変態)にともなう体積変化を吸収できなくなり、耐熱サイクル抵抗性が劣化するので91%以下とされる。
 SiO2は、耐火物中に発生する応力を緩和するマトリックスガラスを形成する必須成分であり、亀裂のない実用寸法の溶融鋳造耐火物を得るために、7.0%以上含有している必要がある。しかし、SiO2成分の含有量が11.2%より多いと溶融ガラスに対する耐食性が小さくなるので11.2%以下としてあり、好ましくは10.0%以下とする。
 Al23は、マトリックスガラスの温度と粘性の関係を調整する役割を果たす他、マトリックスガラス中のZrO2の含有量を低減する効果を示す。マトリックスガラス中のZrO2の含有量が少ないと、従来の耐火物に認められるジルコン(ZrO2・SiO2)結晶のマトリックスガラス中における析出が抑制され、残存体積膨張の累積傾向が顕著に減少する。
 マトリックスガラス中のZrO2の含有量を有効に低減せしめるため、耐火物中のAl23の含有量は0.85%以上、好ましくは1.0%以上とする。また、耐火物を鋳造したり使用する際に、マトリックスガラス中にムライトなどの結晶が析出してマトリックスガラスが変質し、耐火物に亀裂が発生したりすることがないように、Al23の含有量は3.0%以下としてある。
 したがって、高ジルコニア質溶融鋳造耐火物におけるAl23の含有量は0.85~3.0%、好ましくは1.0~3.0%である。耐火物組成をこのような範囲に調整して鋳造した高ジルコニア質溶融鋳造耐火物では、耐熱サイクル抵抗性、すなわち残存体積膨張の累積による体積増加が実用的に問題のない範囲内に抑制されるとともに、チップオフ現象も顕著に改善される。
 また、少量のアルカリ成分の他にB23とP25が含まれていることによってアルカリ成分の含有量が少なくてもマトリックスガラスの800~1250℃における粘性が適度の大きさに調整されており、使用時にバデライト結晶の転移温度域を通過する熱サイクルを繰り返し受けても、残存体積膨張がわずかとなるので、残存体積膨張の累積によって亀裂を生じる傾向を示さない。
 B23はP25とともに主にマトリックスガラス中に含まれ、アルカリ成分の代わりにP25と共働してマトリックスガラスを軟らかくするとともに、1400~1800℃の温度域における耐火物の電気抵抗率を小さくしない成分である。
 B23の含有量は、高ジルコニア質溶融鋳造耐火物中のマトリックスガラスの量が少ないので0.05%以上あればマトリックスガラスの粘性を調整する効果を示す。しかし、B23の含有量が多すぎると緻密な溶融鋳造耐火物が鋳造できなくなるので、B23の含有量は0.05~1.0%、好ましくは0.10~1.0%とされる。
 P25はB23およびアルカリ成分とともにほとんどがマトリックスガラス中に含有されており、バデライト結晶の転移温度域におけるマトリックスガラスの粘性を調整(軟らかく)してバデライト結晶の転移に伴う体積変化によって生じる応力に起因する亀裂の発生を防止する。また、P25とB23は、耐火物がガラス溶解窯に使用される際、ガラス中に溶け出すことがあってもガラスを着色する恐れのない成分である。さらに、P25を耐火物原料に添加すると、耐火物原料の溶融が容易となるので、耐火物を鋳造するのに要する電力の消費量を少なくできる利点もある。
 ここで、高ジルコニア質溶融鋳造耐火物中にあるマトリックスガラスの量が少ないので、耐火物中のP25の含有量が少なくても、マトリックスガラス中におけるP25の含有量は相対的に多く、マトリックスガラスの粘性を調整する効果はP25が耐火物中に0.05%以上含まれていれば得られる。また、P25の含有量が1.0%より多いと、マトリックスガラスの性質が変って耐火物の残存体積膨張とその累積に伴う亀裂の発生を助長する傾向を示すので、マトリックスガラスの粘性の調整に適した耐火物中のP25の含有量は0.05~1.0%であり、好ましくは0.1~1.0%である。
 また、1400~1800℃の温度域における耐火物の電気抵抗率が充分大きな値となるように、K2OとNa2Oからなるアルカリ成分の含有量は酸化物としての合計量で0.12%以下とし、さらにアルカリ成分の50%以上、好ましくは70%以上をガラス中におけるイオン移動度が小さいK2Oとしている。しかし、K2OとNa2Oの合量が0.01%より少ないと、溶融鋳造耐火物を亀裂なく製造することが困難となるので、K2OとNa2Oの合量は0.01%以上とする。また、亀裂のない高ジルコニア質溶融鋳造耐火物を安定して鋳造できるようにK2Oの含有量をNa2Oの含有量より多くする。Na2Oの含有量を0.008%以上とし、K2Oの含有量を0.02~0.10%とするのが好ましい。
 また、原料中に不純物として含まれるFe23とTiO2の含有量は、その合量が0.55%以下であれば、上記組成の無アルカリガラスの溶解窯において着色の問題はなく、好ましくはその合量が0.30%を超えない量とされる。また、耐火物中にアルカリ土類酸化物を含有せしめる必要はなく、アルカリ土類酸化物の含有量は合計して0.10%未満であることが好ましい。
 溶解窯を構成する耐火物としては、化学成分として、ZrO2を88~91%、SiO2を7.0~10%、Al23を1.0~3.0%、P25を0.10~1.0%およびB23を0.10~1.0%含有するに含む高ジルコニア質溶融鋳造耐火物が好ましい。
 本発明では、上記組成となるように調合したガラス原料を溶解窯に連続的に投入し、1400~1800℃に加熱して溶融ガラスにした後、該溶融ガラスをフロート法により板状に成形することで、無アルカリガラスを得ることができる。より具体的には、フロート法により所定の板厚に成形し、徐冷後切断することによって、無アルカリガラスを板ガラスとして得ることができる。
 なお、板ガラスへの成形法は、フロート法、フュージョン法、ロールアウト法、スロットダウンドロー法が好ましく、特に生産性や板ガラスの大型化を考慮するとフロート法が好ましい。
 本発明の方法により得られる無アルカリガラス(以下、「本発明の無アルカリガラス」)は、歪点が735℃以上、好ましくは737℃以上、より好ましくは740℃以上であり、パネル製造時の熱収縮を抑えられる。また、p-Si TFTの製造方法として固相結晶化法を適用することができる。
 なお、本発明の無アルカリガラスは、歪点が735℃以上であることから、高歪点用途(例えば、板厚0.7mm以下、好ましくは0.5mm以下、より好ましくは0.3mm以下の有機EL用のディスプレイ用基板または照明用基板、あるいは板厚0.3mm以下、好ましくは0.1mm以下の薄板のディスプレイ用基板または照明用基板)に適している。板厚0.7mm以下、さらには0.5mm以下、さらには0.3mm以下、さらには0.1mm以下の板ガラスの成形では、成形時の引き出し速度が速くなる傾向があるため、ガラスの仮想温度が上昇し、ガラスのコンパクションが増大しやすい。この場合、高歪点ガラスであると、コンパクションを抑制することができる。
 また本発明の無アルカリガラスは、ガラス転移点が好ましくは760℃以上であり、より好ましくは770℃以上であり、さらに好ましくは780℃以上である。
 また本発明の無アルカリガラスは、50~350℃での平均熱膨張係数が30×10-7~40×10-7/℃であり、耐熱衝撃性が大きく、パネル製造時の生産性を高くできる。本発明の無アルカリガラスにおいて、50~350℃での平均熱膨張係数が35×10-7~40×10-7/℃であることが好ましい。
 さらに、本発明の無アルカリガラスは、比重が好ましくは2.65以下であり、より好ましくは2.64以下であり、さらに好ましくは2.62以下である。
 また、本発明の無アルカリガラスは、粘度ηが102ポイズ(dPa・s)となる温度T2が1710℃以下であり、好ましくは1700℃以下、より好ましくは1690℃以下になっているため、溶解が比較的容易である。
 さらに、本発明の無アルカリガラスは粘度ηが104ポイズとなる温度T4が1340℃以下、好ましくは1335℃以下、より好ましくは1330℃以下であり、フロート成形に適している。
 また、本発明の無アルカリガラスは失透温度が、1330℃以下、好ましくは1300℃未満、より好ましくは1290℃以下であり、フロート法による成形が容易である。
 本明細書における失透温度は、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面及び内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 板ガラス成形時の失透防止を考慮すると、フロート法の場合はT4-失透温度≧0℃、さらにはT4-失透温度≧20℃を満たすことが好ましい。
 また、本発明の無アルカリガラスは、ヤング率が84GPa以上、さらには86GPa以上、さらには88GPa以上、さらには90GPa以上が好ましい。
 また、本発明の無アルカリガラスは、光弾性定数が31nm/MPa/cm以下であることが好ましい。
 液晶ディスプレイパネル製造工程や液晶ディスプレイ装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーになり、液晶ディスプレイのコントラストが低下する現象が認められることがある。光弾性定数を31nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。好ましくは30nm/MPa/cm以下、より好ましくは29nm/MPa/cm以下、さらに好ましくは28.5nm/MPa/cm以下、特に好ましくは28nm/MPa/cm以下である。
 また、本発明の無アルカリガラスは、他の物性確保の容易性を考慮すると、光弾性定数が23nm/MPa/cm以上、さらには25nm/MPa/cm以上であることが好ましい。
 なお、光弾性定数は円盤圧縮法(測定波長546nm)により測定できる。
 また、本発明の無アルカリガラスは、比誘電率が5.6以上であることが好ましい。
 日本国特開2011-70092号公報に記載されているような、インセル型のタッチパネル(液晶ディスプレイパネル内にタッチセンサを内蔵したもの)の場合、タッチセンサのセンシング感度の向上、駆動電圧の低下、省電力化の観点から、ガラス基板の比誘電率が高いほうがよい。比誘電率を5.6以上とすることにより、タッチセンサのセンシング感度が向上する。好ましくは5.8以上、より好ましくは6.0以上、さらに好ましくは6.2以上、特に好ましくは6.4以上である。
 なお、比誘電率はJIS C-2141(1992年)に記載の方法で測定できる。
 無アルカリガラスのβ-OH値は、無アルカリガラスの要求特性に応じて適宜選択することができる。無アルカリガラスの歪点を高くするためには、β-OH値が低いことが好ましい。例えば、歪点を735℃以上、好ましくは745℃以上とする場合、β-OH値を0.3mm-1以下とすることが好ましく、0.25mm-1以下とすることがより好ましく、0.2mm-1以下とすることがさらに好ましい。
 β-OH値は、原料溶融時の各種条件、たとえば、ガラス原料中の水分量、溶解窯中の水蒸気濃度、溶解窯における溶融ガラスの滞在時間等によって調節することができる。ガラス原料中の水分量を調節する方法としては、ガラス原料として酸化物の代わりに水酸化物を用いる方法(例えば、マグネシウム源として酸化マグネシウム(MgO)の代わりに水酸化マグネシウム(Mg(OH)2)を用いる)がある。また、溶解窯中の水蒸気濃度を調節する方法としては、バーナーでの燃焼時に、化石燃料を酸素ガスと混合して燃焼させる方法、酸素ガスおよび空気と混合して燃焼させる方法がある。
 溶融ガラスと耐火物(ジルコニア系電鋳耐火物)の1400~1800℃の温度域における電気抵抗率を測定した。
 溶融ガラス(ガラス1、2)は、各成分の原料を以下に示す組成になるように調合し、白金坩堝を用いて1600℃の温度で溶解した。原料中の珪砂の粒度は、メディアン粒径D50が57μm、粒径2μm以下の粒子の割合が0.1体積%未満、粒径100μm以上の粒子の割合が0.1体積%未満であった。またアルカリ土類金属の水酸化物として水酸化マグネシウムを使用し、アルカリ土類金属源100モル%(MO換算)のうち、6モル%(MO換算)含有させた。溶解にあたっては、白金スターラを用い撹拌しガラスの均質化を行った。このようにして得られた溶融ガラスを1400~1800℃の温度域に保持した状態で電気抵抗率を、下記文献に記載の方法で測定した。
「イオン性融体の導電率測定法、大田能生、宮永光、森永健次、柳ヶ瀬勉、日本金属学会誌第45巻第10号(1981)1036~1043」
[ガラス1]
組成(酸化物基準のモル%表示)
SiO       68.7%
Al23      13.9%
23        0%
MgO         7.1%
CaO         8.0%
SrO        2.3%
BaO         0%
ZrO2        0%
MgO+CaO+SrO+BaO       17.4%
MgO/(MgO+CaO+SrO+BaO)  0.41
MgO/(MgO+CaO)          0.47
MgO/(MgO+SrO)          0.76
これらに加えて、Na2O含有量を酸化物基準で400ppm、500ppm、600ppm、700ppm、および、1000ppmの5通りに変えて添加した。また、上記5通りのそれぞれに対して、Fe23を550ppm添加した。
 また、化学組成、鉱物組成が下記のジルコニア系電鋳耐火物(耐火物1、耐火物2)についても、1400~1800℃の温度域に保持した状態で電気抵抗率を「JIS C-2141(1992年) 電気絶縁用セラミック材料試験方法」の体積抵抗率(第14節)の測定原理を高温に展開(試料を電気炉内に設置して加熱)して測定した。
[ガラス2]
組成(酸化物基準のモル%表示)
SiO2        68.4%
Al23      13.6%
23        0.9%
MgO         6.9%
CaO         7.6%
SrO        2.7%
BaO         0%
ZrO2        0%
MgO+CaO+SrO+BaO       17.1%
MgO/(MgO+CaO+SrO+BaO)  0.40
MgO/(MgO+CaO)          0.47
MgO/(MgO+SrO)          0.72
これらに加えて、Na2O含有量を酸化物基準で400ppm、500ppm、600ppm、700ppm、および、1000ppmの5通りに変えて添加した。また、上記5通りのそれぞれに対して、Fe23を550ppm添加した。
[耐火物1]
化学組成(質量%)
ZrO2   88
SiO2    9.3
Al23   1.5
25    0.1
23    0.8
Fe23   0.05
TiO2   0.15
Na2O   0.02
2O    0.04
鉱物組成(質量%)
バテライト 88
ガラス相  12
[耐火物2]
化学組成(質量%)
ZrO2   94.5
SiO2    4.0
Al23   0.8
25    0.10
23    0.8
Fe23   0.05
TiO2    0.15
Na2O    0.4
2O     0.01
鉱物組成(質量%)
バテライト 88
ガラス相  12
 電気抵抗率の測定結果を図1、2に示す。図1から明らかなように、耐火物1は、ガラス1(B 0%)のNa2O含有量が600~2000ppm(モル)の場合、1400℃における電気抵抗率Rbが、1400℃における溶融ガラスの電気抵抗率Rgに対して、Rb>Rgの関係を満たしていた。また、1400~1800℃の温度域においても、耐火物1のほうが溶融ガラスよりも電気抵抗率が高かった。このような耐火物1で溶解窯を構成すれば、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制されると考えられる。
 ガラス1のNa2O含有量が400ppm、500ppmの場合は、1400℃における電気抵抗率Rb,Rgが、Rb<Rgの関係となっていた。
 一方、耐火物2は1400℃における電気抵抗率Rbが、ガラス1のNa2O含有量が400~1000ppmのいずれの場合にも、1400℃における溶融ガラスの電気抵抗率Rgに対して、Rb<Rgの関係となっていた。また、1400~1800℃の温度域においても、耐火物2のほうが溶融ガラスよりも電気抵抗率が低かった。このような耐火物2で溶解窯を構成した場合、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れると考えられる。
 また図2から明らかなように、耐火物1は、ガラス2(B 1%)のNa2O含有量が400~2000ppm(モル)の場合、1400℃における電気抵抗率Rbが、1400℃における溶融ガラスの電気抵抗率Rgに対して、Rb>Rgの関係を満たしていた。また、1400~1800℃の温度域においても、耐火物1のほうが溶融ガラスよりも電気抵抗率が高かった。このような耐火物1で溶解窯を構成すれば、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制されると考えられる。
 一方、耐火物2は1400℃における電気抵抗率Rbが、ガラス2のNa2O含有量が400~1000ppmのいずれの場合にも、1400℃における溶融ガラスの電気抵抗率Rgに対して、Rb<Rgの関係となっていた。また、1400~1800℃の温度域においても、耐火物2のほうが溶融ガラスよりも電気抵抗率が低かった。このような耐火物2で溶解窯を構成した場合、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れると考えられる。
 各成分の原料を目標組成になるように調合したものを、上記耐火物1で構成される溶解窯に投入して、1500~1600℃の温度で溶解した。溶解窯の加熱には、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用した。なお、通電加熱時の際、局所電流密度0.5A/cm2、電極間の電位差300V、周波数50Hzで交流電圧を加熱電極に印加した。
 なお、バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT0(J/h)とするとき、通電加熱による加熱量T(J/h)は、T=0.30×T0の関係を満たしていた。
 次いで溶融ガラスを流し出し、板状に成形後徐冷した。
 表1には、ガラス組成(単位:モル%)と、ガラスのβOH値(ガラス中の水分含有量の指標として下記手順で測定、単位:mm-1)、50~350℃での平均熱膨張係数(単位:×10-7/℃)、歪点(単位:℃)、ガラス転移点(単位:℃)、比重、ヤング率(GPa)(超音波法により測定)、高温粘性値として、溶解性の目安となる温度T2(ガラス粘度ηが102ポイズとなる温度、単位:℃)、とフロート法、フュージョン法、ロールアウト法、スロットダウンドロー法等の成形性の目安となる温度T4(ガラス粘度ηが104ポイズとなる温度、単位:℃)、失透温度(単位:℃)、光弾性定数(単位:nm/MPa/cm)(円盤圧縮法(測定波長546nm)により測定)、および、比誘電率(JIS C-2141(1992年)に記載の方法により測定)を示す。尚、NaO含有量はそれぞれ700ppmである。
[βOH値の測定方法]
 ガラス試料について波長2.75~2.95μm光に対する吸光度を測定し、その最大値βmaxを該試料の厚さ(mm)で割ることでガラス中のβOH値を求める。
 なお、表1中、括弧書で示した値は計算値である。
Figure JPOXMLDOC01-appb-T000001
 
 表から明らかなように、実施例のガラスはいずれも、平均熱膨張係数は30×10-7~40×10-7/℃と低く、歪点も735℃以上と高く、高温での熱処理に充分耐えうることがわかる。
 また、歪点が735℃以上であることから、高歪点用途(例えば、有機EL用のディスプレイ用基板または照明用基板、もしくは板厚100μm以下の薄板のディスプレイ用基板または照明用基板)に適している。
 溶解性の目安となる温度T2も1710℃以下と比較的低く溶解が容易であり、成形性の目安となる温度T4が1340℃以下であり、かつ、失透温度が1330℃以下、好ましくは1330℃未満であり、フロート成形時に失透が生成するなどのトラブルがないと考えられる。
 光弾性定数が31nm/MPa/cm以下であり、液晶ディスプレイのガラス基板として使用した場合にコントラストの低下を抑制することができる。
 また、比誘電率が5.6以上であり、インセル型のタッチパネルのガラス基板として使用した場合にタッチセンサのセンシング感度が向上する。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2011年12月6日出願の日本特許出願2011-266720に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の無アルカリガラスは、歪点が高く、ディスプレイ用基板、フォトマスク用基板等の用途に好適である。また、太陽電池用基板等の用途にも好適である。

Claims (9)

  1.  以下のガラス組成となるように、ガラス原料を調製し、溶解窯に投入し、1400~1800℃の温度に加熱して溶融ガラスにした後、該溶融ガラスを板状に成形する無アルカリガラスの製造方法であって、
     前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、
     前記溶融ガラスの1400℃における電気抵抗率をRg(Ωcm)とし、前記溶解窯を構成する耐火物の1400℃における電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法。
    酸化物基準のモル%表示で
    SiO2        66~69%、
    Al23      12~15%、
    23        0~1.5%、
    MgO         6~9.5%、
    CaO         7~9%、
    SrO        0.5~3%、
    BaO         0~1%、
    ZrO2        0~2%、であり、かつ、
    アルカリ金属酸化物を200~2000ppm含有し、
    MgO+CaO+SrO+BaO が16~18.2%であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上であり、
    アルカリ金属酸化物RO[ppm]、B[%]とするとき、600≦RO+B×10000/(9.14×EXP(0.0045×RO))を満たすガラス組成。
  2.  以下のガラス組成となるように、ガラス原料を調製し、溶解窯に投入し、1400~1800℃の温度に加熱して溶融ガラスにした後、該溶融ガラスを板状に成形する無アルカリガラスの製造方法であって、
     前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、
     前記溶融ガラスの1400℃における電気抵抗率をRg(Ωcm)とし、前記溶解窯を構成する耐火物の1400℃における電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法。
    酸化物基準のモル%表示で
    SiO2        66~69%、
    Al23      12~15%、
    23        0~1.5%、
    MgO         6~9.5%、
    CaO         7~9%、
    SrO        0.5~3%、
    BaO         0~1%、
    ZrO2        0~2%、であり、かつ、
    アルカリ金属酸化物を600~2000ppm含有し、
    MgO+CaO+SrO+BaO が16~18.2%であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、MgO/(MgO+CaO)が0.40以上0.52未満であり、MgO/(MgO+SrO)が0.45以上であるガラス組成。
  3.  前記Rbと、前記Rgと、の比(Rb/Rg)が下記式を満たすように、前記ガラス原料、および、前記耐火物を選択する、請求項1または2に記載の無アルカリガラスの製造方法。
    Rb/Rg > 1.00
  4.  バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT0(J/h)とするとき、通電加熱による加熱量T(J/h)が下記式を満たす、請求項1~3のいずれか一項に記載の無アルカリガラスの製造方法。
    0.10×T0≦T≦0.40×T0
  5.  前記溶解窯を構成する耐火物は、該耐火物の化学成分として、質量%でZrO2を85~91%、SiO2を7.0~11.2%、Al23を0.85~3.0%、P25を0.05~1.0%、B23を0.05~1.0%およびK2OとNa20をその合量で0.01~0.12%含み、かつK2OをNa2O以上に含む高ジルコニア質溶融鋳造耐火物である、請求項1~4のいずれか一項に記載の無アルカリガラスの製造方法。
  6.  前記加熱電極には、局所電流密度が0.01~2.0A/cm2、電極間の電位差が100~500Vとなるように、周波数30~80Hzの交流電圧を印加する、請求項1~5のいずれか一項に記載の無アルカリガラスの製造方法。
  7.  前記ガラス原料におけるSiO2の珪素源として、メディアン粒径D50が20μm~60μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用いる、請求項1~6のいずれか一項に記載の無アルカリガラスの製造方法。
  8.  前記ガラス原料におけるMgO、CaO、SrOおよびBaOのアルカリ土類金属源として、アルカリ土類金属の水酸化物を、アルカリ土類金属源100モル%(MO換算。但しMはアルカリ土類金属元素である。以下同じ。)のうち、5~100モル%(MO換算)含有するものを用いる、請求項1~6のいずれか一項に記載の無アルカリガラスの製造方法。
  9.  前記ガラス原料におけるSiO2の珪素源として、メディアン粒径D50が20μm~60μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用い、前記ガラス原料におけるMgO、CaO、SrOおよびBaOのアルカリ土類金属源として、アルカリ土類金属の水酸化物を、アルカリ土類金属源100モル%(MO換算。但しMはアルカリ土類金属元素である。以下同じ。)のうち、5~100モル%(MO換算)含有するものを用いる、請求項1~6のいずれか一項に記載の無アルカリガラスの製造方法。
PCT/JP2012/081201 2011-12-06 2012-11-30 無アルカリガラスの製造方法 WO2013084832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280060288.0A CN103987666B (zh) 2011-12-06 2012-11-30 无碱玻璃的制造方法
EP12855878.0A EP2789587A1 (en) 2011-12-06 2012-11-30 Method for manufacturing alkali-free glass
KR1020147014871A KR101973829B1 (ko) 2011-12-06 2012-11-30 무알칼리 유리의 제조 방법
US14/298,199 US20140287905A1 (en) 2011-12-06 2014-06-06 Method for manufacturing alkali-free glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266720 2011-12-06
JP2011266720 2011-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/298,199 Continuation US20140287905A1 (en) 2011-12-06 2014-06-06 Method for manufacturing alkali-free glass

Publications (1)

Publication Number Publication Date
WO2013084832A1 true WO2013084832A1 (ja) 2013-06-13

Family

ID=48574199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081201 WO2013084832A1 (ja) 2011-12-06 2012-11-30 無アルカリガラスの製造方法

Country Status (7)

Country Link
US (1) US20140287905A1 (ja)
EP (1) EP2789587A1 (ja)
JP (1) JPWO2013084832A1 (ja)
KR (1) KR101973829B1 (ja)
CN (1) CN103987666B (ja)
TW (1) TW201332921A (ja)
WO (1) WO2013084832A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028828A (ja) * 2013-06-27 2015-02-12 旭硝子株式会社 磁気記録媒体用無アルカリガラス、および、これを用いた磁気記録媒体用ガラス基板
WO2015029870A1 (ja) * 2013-08-26 2015-03-05 旭硝子株式会社 無アルカリガラスの製造方法
WO2016159345A1 (ja) * 2015-04-03 2016-10-06 日本電気硝子株式会社 ガラス
JP2017065992A (ja) * 2015-09-30 2017-04-06 AvanStrate株式会社 ガラス基板の製造方法
KR20170065614A (ko) * 2014-09-30 2017-06-13 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
JP2020040878A (ja) * 2014-10-23 2020-03-19 Agc株式会社 無アルカリガラス
KR20200130266A (ko) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 무알칼리 유리 기판
JP2022009065A (ja) * 2017-03-22 2022-01-14 日本電気硝子株式会社 ガラス板及びその製造方法
WO2022118781A1 (ja) * 2020-12-02 2022-06-09 日本電気硝子株式会社 ガラス溶融炉監視方法、及びガラス物品製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943064B2 (ja) * 2012-02-27 2016-06-29 旭硝子株式会社 無アルカリガラスの製造方法
KR101555458B1 (ko) 2012-04-27 2015-09-23 아사히 가라스 가부시키가이샤 무알칼리 유리 및 그의 제조 방법
US9725349B2 (en) * 2012-11-28 2017-08-08 Corning Incorporated Glass manufacturing apparatus and methods
CN105121370B (zh) 2013-04-23 2017-08-08 旭硝子株式会社 无碱玻璃基板及其制造方法
JPWO2016104454A1 (ja) * 2014-12-25 2017-10-05 旭硝子株式会社 ガラス板
JP7182871B2 (ja) 2015-04-03 2022-12-05 日本電気硝子株式会社 ガラス
CN107406302A (zh) * 2015-05-18 2017-11-28 日本电气硝子株式会社 无碱玻璃基板
CN107709257A (zh) * 2015-06-30 2018-02-16 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
KR102403524B1 (ko) * 2016-08-23 2022-05-31 에이지씨 가부시키가이샤 무알칼리 유리
JP7333159B2 (ja) * 2016-12-26 2023-08-24 日本電気硝子株式会社 無アルカリガラス基板の製造方法
JP6958105B2 (ja) * 2017-08-18 2021-11-02 日本電気硝子株式会社 ガラス物品の製造方法及び溶融炉
JP7025720B2 (ja) * 2017-12-22 2022-02-25 日本電気硝子株式会社 ガラス物品の製造方法及びガラス溶融炉
JP6973268B2 (ja) * 2018-04-24 2021-11-24 株式会社デンソー 物理量計測装置
DE102019217977A1 (de) * 2019-11-21 2021-05-27 Schott Ag Glas, Verfahren zur Herstellung eines Glases und Glasschmelzanlage
CN112723716A (zh) * 2020-12-28 2021-04-30 彩虹显示器件股份有限公司 一种气电混合窑炉和设计方法
CN113470864B (zh) * 2021-09-01 2022-03-11 西安宏星电子浆料科技股份有限公司 一种低尺寸效应的厚膜电阻浆料

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113735A (ja) 1985-10-23 1987-05-25 コ−ニング グラス ワ−クス 平板デイスプレイ装置用ストロンチウムアルミノシリケ−トガラス基板
JPH05232458A (ja) 1991-08-12 1993-09-10 Corning Inc フラットパネルディスプレー装置
JPH06287059A (ja) * 1993-02-03 1994-10-11 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH08109037A (ja) 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JPH1045422A (ja) 1996-07-29 1998-02-17 Asahi Glass Co Ltd 無アルカリガラスおよびフラットディスプレイパネル
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途
JP2005132713A (ja) 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd 無アルカリガラスの製造方法及び無アルカリガラス
JP2005225738A (ja) * 2004-02-16 2005-08-25 Asahi Glass Co Ltd ガラスの電気加熱方法及び装置
JP2009523697A (ja) 2006-01-24 2009-06-25 ショット アクチエンゲゼルシャフト 溶融物の温度に影響を及ぼす場合の電極の防食のための方法及び装置
WO2010116960A1 (ja) * 2009-04-06 2010-10-14 旭硝子株式会社 高ジルコニア質耐火物及び溶融窯
WO2011001920A1 (ja) * 2009-07-02 2011-01-06 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP2011070092A (ja) 2009-09-28 2011-04-07 Sharp Corp 液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506332B (zh) * 2006-08-18 2012-10-24 新日本石油株式会社 生物质的处理方法、燃料电池用燃料、汽油、柴油机燃料、液化石油气和合成树脂

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113735A (ja) 1985-10-23 1987-05-25 コ−ニング グラス ワ−クス 平板デイスプレイ装置用ストロンチウムアルミノシリケ−トガラス基板
JPH05232458A (ja) 1991-08-12 1993-09-10 Corning Inc フラットパネルディスプレー装置
JPH06287059A (ja) * 1993-02-03 1994-10-11 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH08109037A (ja) 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JPH1045422A (ja) 1996-07-29 1998-02-17 Asahi Glass Co Ltd 無アルカリガラスおよびフラットディスプレイパネル
JP2000302475A (ja) * 1999-04-12 2000-10-31 Carl Zeiss:Fa アルカリ非含有アルミノ硼珪酸ガラスとその用途
JP2005132713A (ja) 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd 無アルカリガラスの製造方法及び無アルカリガラス
JP2005225738A (ja) * 2004-02-16 2005-08-25 Asahi Glass Co Ltd ガラスの電気加熱方法及び装置
JP2009523697A (ja) 2006-01-24 2009-06-25 ショット アクチエンゲゼルシャフト 溶融物の温度に影響を及ぼす場合の電極の防食のための方法及び装置
WO2010116960A1 (ja) * 2009-04-06 2010-10-14 旭硝子株式会社 高ジルコニア質耐火物及び溶融窯
WO2011001920A1 (ja) * 2009-07-02 2011-01-06 旭硝子株式会社 無アルカリガラスおよびその製造方法
JP2011070092A (ja) 2009-09-28 2011-04-07 Sharp Corp 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIO OHTA; AKIRA MIYANAGA; KENJI MORINAGA; TSUTOMU YANAGASE: "Study on the Measuring Method of the Electrical Conductivity of Ionic Solutions and Melts", JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 45, no. 10, 1981, pages 1036 - 1043

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028828A (ja) * 2013-06-27 2015-02-12 旭硝子株式会社 磁気記録媒体用無アルカリガラス、および、これを用いた磁気記録媒体用ガラス基板
WO2015029870A1 (ja) * 2013-08-26 2015-03-05 旭硝子株式会社 無アルカリガラスの製造方法
CN105492395A (zh) * 2013-08-26 2016-04-13 旭硝子株式会社 无碱玻璃的制造方法
CN109970318A (zh) * 2013-08-26 2019-07-05 Agc株式会社 无碱玻璃的制造方法
KR102419501B1 (ko) * 2014-09-30 2022-07-11 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
KR20170065614A (ko) * 2014-09-30 2017-06-13 코닝 인코포레이티드 유리 시트 내에 압축에 영향을 미치는 방법 및 유리 제조 시스템
JP2017530928A (ja) * 2014-09-30 2017-10-19 コーニング インコーポレイテッド ガラスシートの収縮に影響を与える方法及びガラス製造システム
JP2020040878A (ja) * 2014-10-23 2020-03-19 Agc株式会社 無アルカリガラス
WO2016159345A1 (ja) * 2015-04-03 2016-10-06 日本電気硝子株式会社 ガラス
JPWO2016159345A1 (ja) * 2015-04-03 2018-02-01 日本電気硝子株式会社 ガラス
JP7219538B2 (ja) 2015-04-03 2023-02-08 日本電気硝子株式会社 ガラス
JP2021063010A (ja) * 2015-04-03 2021-04-22 日本電気硝子株式会社 ガラス
JP2017065992A (ja) * 2015-09-30 2017-04-06 AvanStrate株式会社 ガラス基板の製造方法
JP2022009065A (ja) * 2017-03-22 2022-01-14 日本電気硝子株式会社 ガラス板及びその製造方法
JP7382014B2 (ja) 2017-03-22 2023-11-16 日本電気硝子株式会社 ガラス板及びその製造方法
KR20200130266A (ko) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 무알칼리 유리 기판
WO2022118781A1 (ja) * 2020-12-02 2022-06-09 日本電気硝子株式会社 ガラス溶融炉監視方法、及びガラス物品製造方法

Also Published As

Publication number Publication date
EP2789587A1 (en) 2014-10-15
TW201332921A (zh) 2013-08-16
CN103987666A (zh) 2014-08-13
KR20140107226A (ko) 2014-09-04
KR101973829B1 (ko) 2019-04-29
US20140287905A1 (en) 2014-09-25
CN103987666B (zh) 2016-05-25
JPWO2013084832A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5943064B2 (ja) 無アルカリガラスの製造方法
WO2013084832A1 (ja) 無アルカリガラスの製造方法
US11053160B2 (en) Alkali-free glass
JP5712922B2 (ja) 無アルカリガラスおよびその製造方法
TWI492913B (zh) E-glass and its manufacturing method
JP5817737B2 (ja) 無アルカリガラスおよび無アルカリガラスの製造方法
WO2012077609A1 (ja) 無アルカリガラスおよび無アルカリガラスの製造方法
WO2013183626A1 (ja) 無アルカリガラスおよびその製造方法
WO2015072429A1 (ja) 板ガラスの製造方法
WO2015029870A1 (ja) 無アルカリガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548218

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014871

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012855878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE