JP6958105B2 - ガラス物品の製造方法及び溶融炉 - Google Patents

ガラス物品の製造方法及び溶融炉 Download PDF

Info

Publication number
JP6958105B2
JP6958105B2 JP2017157964A JP2017157964A JP6958105B2 JP 6958105 B2 JP6958105 B2 JP 6958105B2 JP 2017157964 A JP2017157964 A JP 2017157964A JP 2017157964 A JP2017157964 A JP 2017157964A JP 6958105 B2 JP6958105 B2 JP 6958105B2
Authority
JP
Japan
Prior art keywords
bottom wall
wall portion
glass
molten glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017157964A
Other languages
English (en)
Other versions
JP2019034871A (ja
Inventor
仁 金谷
洋司 門谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017157964A priority Critical patent/JP6958105B2/ja
Priority to US16/639,794 priority patent/US11530152B2/en
Priority to CN201880051698.6A priority patent/CN111032584B/zh
Priority to KR1020197035382A priority patent/KR102497517B1/ko
Priority to PCT/JP2018/027953 priority patent/WO2019035327A1/ja
Publication of JP2019034871A publication Critical patent/JP2019034871A/ja
Application granted granted Critical
Publication of JP6958105B2 publication Critical patent/JP6958105B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

本発明は、ガラス物品の製造方法及び溶融炉に関する。
板ガラスなどのガラス物品の製造方法には、溶融ガラスを得るための溶融工程が含まれる。この溶融工程では、溶融炉の底壁部に設けられた電極による通電加熱によって溶融ガラスを加熱する場合がある(例えば、特許文献1を参照)。
特開2003−183031号公報
電極による通電加熱を用いる場合、溶融ガラスの通電予定領域(設計上、通電が予定されている溶融ガラスの領域)において、溶融ガラスと接している底壁部が高温になりやすい。これに伴い、底壁部のうち通電予定領域に対応する部分に溶融ガラスが滲み込み、電気が流れやすくなる。その結果、底壁部のうち通電予定領域に対応する部分でガラスが対流し、浸食が進行しやすくなる。また、底壁部のうち通電予定領域に対応する部分が溶損する原因にもなる。特に、溶融ガラスとして電気抵抗率の高いガラス組成を用いた場合に、浸食や溶損が重大な問題となりやすい。
本発明は、溶融炉の底壁部において、浸食を抑制すると共に溶損を防止することを課題とする。
上記の課題を解決するために創案された本発明は、底壁部に設けられた電極で通電加熱する溶融炉の炉内で、溶融ガラスを形成する溶融工程を備えるガラス物品の製造方法において、底壁部は、複数の耐火煉瓦の積層構造を有し、底壁部のうち溶融ガラスの通電予定領域に対応する部分において、炉内側から見た一層目の耐火煉瓦と二層目の耐火煉瓦との間の隙間における温度が、溶融ガラスの粘度が10Pa・sである温度以下となるように、積層構造が形成されていることを特徴とする。このような構成によれば、底壁部のうち溶融ガラスの通電予定領域に対応する部分において、一層目の耐火煉瓦と二層目の耐火煉瓦との間の隙間にガラスが滲み込んでも、隙間の温度は溶融ガラスの粘度が10Pa・sである温度以下であるので、ガラスはほとんど流動することなく、電気も流れにくい。このため、底壁部内でのガラスの対流を抑制することができ、底壁部の浸食を抑制できる。また、底壁部の溶損も防止することができる。
上記の構成において、底壁部のうち溶融ガラスの通電予定領域に対応する部分は、底壁部の他の部分よりも積層構造の総厚みが薄いことが好ましい。このようにすれば、溶融ガラスの通電予定領域に対応する部分で底壁部の放熱が高まるので、当該部分で底壁部の内部温度を低減することができる。従って、隙間の温度を溶融ガラスの粘度が10Pa・sである温度以下に制御しやすい。また、他の部分では、放熱を抑制できるので、エネルギー効率を高めることができる。
上記の構成において、溶融ガラスが、無アルカリガラスであってもよい。すなわち、無アルカリガラスは高い電気抵抗率を有するガラスであるが、本発明であれば底壁部が漏電しにくい構成であるため、このような高い電気抵抗率を有するガラスでも問題なく使用することができる。
溶融ガラスが無アルカリガラスの場合、隙間の温度は、1300℃以下であることが好ましい。
上記の構成において、炉内で溶融ガラスを通電加熱する電極が設けられた底壁部を備えた溶融炉において、底壁部は、複数の耐火煉瓦の積層構造を有し、底壁部のうち溶融ガラスの通電予定領域に対応する部分において、炉内側から見た一層目の耐火煉瓦と二層目の耐火煉瓦との間の隙間における温度が、溶融ガラスの粘度が10Pa・sである温度以下となるように、積層構造が形成されていることを特徴とする。このような構成によれば、上記の対応する構成と同様の効果を享受することができる。
以上のような本発明によれば、溶融炉の底壁部において、浸食を抑制できると共に溶損を防止できる。
ガラス物品の製造装置を示す側面図である。 図1のガラス物品の製造装置の溶融炉を示す断面図である。 図2の溶融炉の底壁部周辺を拡大して示す拡大断面図である。 溶融炉の底壁部の平面図の一例である。 溶融炉の底壁部の平面図の一例である。
以下、本実施形態に係るガラス物品の製造方法及び溶融炉について図面を参照しながら説明する。
図1に示すように、本製造方法に用いられるガラス物品の製造装置は、上流側から順に、溶融炉1と、清澄室2と、均質化室(攪拌室)3と、ポット4と、成形装置5とを備え、これら各部1〜5が移送管6〜9によって接続されている。ここで、清澄室2などの「室」及び「ポット」という用語には、槽状構造を有するものや、管状構造を有するものが含まれるものとする。
溶融炉1は、溶融ガラスGmを得る溶融工程を行うための空間である。ここで、溶融ガラスGmとしては、無アルカリガラスを使用することができる。無アルカリガラスからなる溶融ガラスGmの電気抵抗率は、一般的に高く、例えば溶融炉1の加熱温度1500℃において100Ω・cm以上となる。なお、溶融ガラスGmは、無アルカリガラスに限定されない。
清澄室2は、溶融炉1から供給された溶融ガラスGmを清澄剤などの働きによって清澄(泡抜き)する清澄工程を行うための空間である。
均質化室3は、清澄された溶融ガラスGmを攪拌翼3aにより攪拌し、均一化する均質化工程を行うための空間である。
ポット4は、溶融ガラスGmを成形に適した状態(例えば粘度)に調整する状態調整工程を行うための空間である。なお、ポット4は省略してもよい。
成形装置5は、溶融ガラスGmを所望の形状に成形する成形工程を行うためのものである。本実施形態では、成形装置5は、オーバーフローダウンドロー法によって溶融ガラスGmを板状に成形し、ガラス物品としてのガラス板を製造する。
成形装置5は、断面形状(紙面と直交する断面形状)が略楔形状をなし、成形装置5の上部にオーバーフロー溝(図示省略)が形成されている。移送管9によって溶融ガラスGmをオーバーフロー溝に供給した後、溶融ガラスGmをオーバーフロー溝から溢れ出させて、成形装置5の両側の側壁面(紙面の表裏面側に位置する側面)に沿って流下させる。そして、その流下させた溶融ガラスGmを側壁面の下頂部で融合させ、板状に成形する。成形された板ガラスは、例えば、厚みが0.01〜10mm(好ましくは0.1〜3mm)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。なお、成形装置5は、スロットダウンドロー法などの他のダウンドロー法や、フロート法を実行するものであってもよい。
移送管6〜9は、例えば白金又は白金合金からなる円筒管で構成されており、溶融ガラスGmを横方向(略水平方向)に移送する。移送管6〜9は、必要に応じて通電加熱される。
図2に示すように、溶融炉1は、通電加熱を含む加熱によって、ガラス原料(カレットを含んでもよい)Grを溶融して溶融ガラスGmを形成する。図2中、矢印Xは、溶融ガラスGmの流れ方向を示している。溶融炉1は、耐火煉瓦(例えば、ジルコニア系電鋳煉瓦やアルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、AZS(Al−Zr−Si)系電鋳煉瓦、デンス焼成煉瓦など)で構成された壁部によって炉内の溶融空間を区画形成する。本実施形態では、溶融炉1は、ガラス原料Grの溶融空間が一つだけのシングルメルターであるが、複数の溶融空間を連ねたマルチメルターであってもよい。
溶融炉1の底壁部10には、通電加熱のために、溶融ガラスGmに浸漬された状態で複数の電極11が設けられている。本実施形態では、溶融炉1内には、電極11以外の他の加熱手段が設けられておらず、電極11の通電加熱(電気エネルギー)のみでガラス原料Grを溶融(全電気溶融)するようになっている。電極11は、例えば、棒状のモリブデン(Mo)から形成される。なお、溶融炉1は、全電気溶融に限らず、ガス燃焼と電気加熱を併用してガラス原料Grを溶融するものであってもよい。ガス燃焼と電気加熱を併用する場合、溶融炉1の上部に複数のガスバーナーが設けられる。
溶融炉1には、原料供給手段としてのスクリューフィーダ12が設けられている。スクリューフィーダ12は、溶融ガラスGmの液面Gm1の一部にガラス原料(固体原料)Grに覆われていない部分が形成されるようにガラス原料Grを順次供給する。すなわち、溶融炉1は、いわゆるセミホットトップタイプである。なお、溶融炉1は、溶融ガラスGmの液面Gm1の全部がガラス原料Grに覆われた、いわゆるコールドトップタイプでもよい。また、原料供給手段は、プッシャーや振動フィーダなどであってもよい。
溶融炉1には、溶融炉1内の気体を外部に排出するための気体排出路としての煙道13が設けられている。煙道13内には、気体を外部に送るためのファン13aが設けられている。ファン13aは設けなくてもよい。なお、本実施形態では、溶融炉1内の気体は空気であるが、これに限定されない。
図3に示すように、溶融炉1の底壁部10に設けられた電極11は、底壁部10を上下方向に沿って貫通して炉内に至っている。図3中、矢印Yは、溶融ガラスGmの流れ方向Xと直交する幅方向を示している。ここで、「上下方向に沿う」とは、鉛直方向から僅かに傾斜した場合も含む意味である。
電極11の外周面は、筒状の電極ホルダ14の内周面に保持されている。電極ホルダ14の外周面は、溶融炉1の底壁部10と密着した状態で、底壁部10に設けられた保持穴15の内周面に保持されている。電極ホルダ14の上端面は、炉内の溶融状態にある溶融ガラスGmと接触している。
電極ホルダ14は、例えば、鉄材(例えばステンレス鋼)などの金属で形成される。電極ホルダ14は、モリブデンの昇華等による電極11の損耗を防止するために、水などの冷媒が流通可能な冷却層(図示なし)を内部に有している。
溶融炉1の底壁部10は、溶融ガラスGmの通電予定領域Eに対応する部分を含む第一底壁部16と、第一底壁部16を除く他の部分である第二底壁部17とを備える。電極11は、第一底壁部16に設けられており、第二底壁部17には設けられていない。第一底壁部16及び第二底壁部17は、複数の耐火煉瓦18〜21の積層構造を有する。なお、第二底壁部17は、積層構造の最下層の耐火煉瓦21の下面に配置された絶縁材(図示なし)をさらに有してもよい。また、第一底壁部16も、積層構造の最下層の耐火煉瓦20の下面に配置された絶縁材(図示なし)をさらに有してもよい。
第一底壁部16において、炉内側から見た一層目の耐火煉瓦18と二層目の耐火煉瓦19の隙間Cにおける温度は、溶融ガラスの粘度が10Pa・sである温度以下とされている。これにより、第一底壁部16の浸食を抑制すると共に溶損を防止することが可能となる。より確実に浸食を抑制すると共に溶損を防止する観点では、隙間Cの温度は、粘度が10Pa・sである温度以下であることが好ましく、粘度が10Pa・sである温度以下であることがより好ましい。一方、エネルギー効率の観点から、隙間Cの温度は、粘度が1013Pa・sである温度以上とすることが好ましい。溶融ガラスGmが無アルカリガラスの場合、隙間Cの温度は、1300℃以下とすることが好ましく、1200℃以下とすることがより好ましく、1100℃以下とすることが最も好ましい。なお、熱源となる溶融ガラスGmの大部分は炉内側に存在するので、隙間Cの温度が粘度が10Pa・sである温度以下であれば、二層目の耐火煉瓦19と三層目の耐火煉瓦20との間の隙間等、隙間Cよりも炉内から離れる位置における隙間の温度も粘度が10Pa・sである温度以下となる。
本実施形態では、隙間Cの温度を粘度が10Pa・sである温度以下にするために、第一底壁部16の積層構造の総厚みT1が、第二底壁部17の積層構造の総厚みT2よりも薄くなっている。これにより、第二底壁部17に比べて第一底壁部16における放熱が大きくなるので、隙間Cの温度を粘度が10Pa・sである温度以下に維持することができる。
第一底壁部16の積層構造の総厚みT1は、250〜450mmであることが好ましい。また、一層目の耐火煉瓦18の厚みT3は、75〜225mmであることが好ましい。二層目以降の耐火煉瓦19の厚みは、例えば25〜375mmとすることができる。第二底壁部17の積層構造の総厚みT2は、300〜700mmであることが好ましい。なお、第一底壁部16の積層数は特に限定されず、二層であってもよいし、四層以上であってもよい。
第一底壁部16(又は第一底壁部16及び第二底壁部17)を構成する耐火煉瓦の材質は、耐熱性や熱伝導率等を考慮して選択することが好ましい。溶融ガラスGmの電気抵抗率が低い場合(1500℃で100Ω・cm未満)、第一底壁部16の一層目の耐火煉瓦18としては、例えば、電鋳煉瓦が用いられる。一方、溶融ガラスGmの電気抵抗率が高い場合(1500℃で100Ω・cm以上)、第一底壁部16の一層目の耐火煉瓦18としては、例えば、高電気抵抗電鋳煉瓦及び/又はデンス焼成煉瓦が用いられる。第一底壁部16において、一層目と二層目以降の耐火煉瓦の煉瓦材質は、同じであってもよいし、異なっていてもよい。
隙間Cの温度を粘度が10Pa・sである温度以下にする観点では、第一底壁部16の底面16aにおける温度は400℃以下となることが好ましい。一方、エネルギー効率の観点では、第一底壁部16の底面16aにおける温度は300℃以上となることが好ましい。通常の溶融炉(底壁部を薄くしていない炉)における底壁部の底面における温度は、底壁部内部の蓄熱により、100〜200℃程度である。このため、第二底壁部17の底面の温度は、100〜200℃程度とすればよい。なお、隙間C及び/又は第一底壁部16の底面16aに熱電対等の温度センサを設けてもよい。
積層構造の総厚みが第二底壁部17よりも薄い第一底壁部16は、図4に示すように、溶融炉1における溶融ガラスGmの流れ方向Xの上流側(例えば、流れ方向Xの全長の約1/2以内)のみに設けられる場合もあるし、図5に示すように、溶融炉1における溶融ガラスGmの流れ方向Xの略全域に設けられる場合もある。図4の構成の場合は、ガス燃焼と電気加熱とを併用した溶融とされる場合が多く、図5の構成の場合は、全電気溶融とされる場合が多い。なお、図4及び図5では、第一底壁部16の領域を明確にするために、第一底壁部16に相当する部分にハッチングを付している。従って、これら図のハッチングは断面を示すものではない。
ここで、図4に示すように、溶融炉1の幅が広い場合、電極11は、炉の幅方向Yに間隔を置いて複数対(図示例は二対)配置し、その電極対を流れ方向Xに間隔を置いて複数組配置してもよい。また、図5に示すように、溶融炉1の幅が狭い場合、電極11は、炉の幅方向Yに間隔を置いて一対配置し、その電極対を流れ方向Xに間隔を置いて複数組配置してもよい。また、図示を省略するが、電極11は、流れ方向Xに間隔を置いて一対又は複数対配置し、その電極対を炉の幅方向Yに間隔を置いて複数組配置してもよい。これら電極11の配置態様は、あくまで一例であり、溶融ガラスGmの溶融条件に応じて適宜変更することができる。
次に、以上のように構成された製造装置によるガラス物品の製造方法を説明する。
本製造方法は、上述のように、溶融工程と、清澄工程と、均質化工程と、状態調整工程と、成形工程とを備える。なお、清澄工程、均質化工程、状態調整工程及び成形工程は上述の製造装置の構成に併せて説明した通りであるので、以下では溶融工程について説明する。
図3に示すように、溶融工程では、底壁部10に設けられた電極11によって、溶融ガラスGmを通電加熱する。これに伴って炉内の溶融ガラスGmの粘度は、例えば10〜10Pa・s程度となる。この際、第一底壁部16において、一層目の耐火煉瓦18と二層目の耐火煉瓦19との間の隙間Cにおける温度が、粘度が10Pa・sである温度以下になるように、第一底壁部16の積層構造が形成されている。これにより、第一底壁部16の浸食を抑制できると共に溶損を防止できる。これは、下記の理由によるものである。
隙間Cにおける温度が、粘度が10Pa・sである温度以下になるように、第一底壁部16の積層構造を形成すれば、滲み込んで隙間Cに到達したガラスは、粘度が高いことから、ほとんど流動しない。このため、第一底壁部16内でのガラスの対流を抑制することができ、第一底壁部16の浸食を抑制することができる。また、ガラスの温度が低下するのに伴い、ガラスの電気抵抗率が上昇するので、隙間に滲み込んだガラスには電気が流れにくい。このため、第一底壁部16の溶損も防止することができる。
ここで、第二底壁部17は、電極11が設けられていない部分であるので、隙間の温度に拘わらず、滲み込んだガラスに電気が流れにくく、それに伴うガラスの対流も少ない。このため、第二底壁部17において、炉内側から見た一層目の耐火煉瓦18と二層目の耐火煉瓦19との間の隙間における温度が、溶融ガラスの粘度が10Pa・sである温度を超えても特に問題はない。勿論、第二底壁部17において、炉内側から見た一層目の耐火煉瓦18と二層目の耐火煉瓦19との間の隙間における温度が、溶融ガラスの粘度が10Pa・sである温度以下であってもよい。
なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
上記の実施形態では、底壁部10のうち、溶融ガラスGmの通電予定領域Eに対応する部分を含む第一底壁部16の総厚みT1を、その他の部分である第二底壁部17の総厚みT2に比べて薄くする場合を説明したが、第二底壁部17を第一底壁部16と同様に薄くし、底壁部10全体を薄くしてもよい。
上記の実施形態では、底壁部10のうち、溶融ガラスGmの通電予定領域Eに対応する部分を含む第一底壁部16の総厚みT1を薄くすることにより、第一底壁部16における隙間Cの温度を粘度が10Pa・sである温度以下とするが、これに限定されない。例えば、第一底壁部16において、一層目の耐火煉瓦18の厚さT3を厚くすることにより、第一底壁部16における隙間Cの温度を粘度が10Pa・sである温度以下としてもよい。
上記の実施形態では、成形装置5で成形されるガラス物品が板ガラスである場合を説明したが、これに限定されない。例えば、成形装置5で成形されるガラス物品は、例えば、光学ガラス部品、ガラス管、ガラスブロック、ガラス繊維などであってもよいし、任意の形状であってよい。
本発明の実施例として、図1〜図3に示すガラス物品の製造装置により、ガラス板を製造した。その際の試験条件は、以下の通りである。
ガラス板:日本電気硝子社製のディスプレイ用のガラス基板(製品名:OA−11)に準じた無アルカリガラス
溶融炉1での加熱温度:1500℃
一層目の耐火煉瓦18:デンスジルコン焼成煉瓦、厚さ150mm
二層目の耐火煉瓦19:断熱煉瓦、厚さ175mm
第一底壁部の積層構造の総厚みT1:325mm
第二底壁部の積層構造の総厚みT2:500mm
第一底壁部16において、炉内側から見た一層目の耐火煉瓦18と二層目の耐火煉瓦19の隙間Cにおける温度は、1000〜1200℃とし、換言すると、溶融ガラスの粘度が概ね10〜10Pa・sである温度とした。
溶解炉1を7年間稼働させた後、第一底壁部16において、一層目の耐火煉瓦18を目視で確認したところ、浸食及び溶損を検出できなかった。したがって、本発明によれば、溶融炉の底壁部において、浸食の抑制と共に溶損の防止が可能となるものと推認される。
1 溶融炉
2 清澄室
3 均質化室
4 ポット
5 成形装置
6〜9 移送管
10 底壁部
11 電極
12 スクリューフィーダ
13 煙道
14 電極ホルダ
16 第一底壁部
17 第二底壁部
18 一層目の耐火煉瓦
19 二層目の耐火煉瓦
C 隙間
E 通電予定領域
Gm 溶融ガラス
Gr ガラス原料
T1 第一底壁部の積層構造の総厚み
T2 第二底壁部の積層構造の総厚み

Claims (5)

  1. 底壁部に設けられた電極で通電加熱する溶融炉の炉内で、溶融ガラスを形成する溶融工程を備えるガラス物品の製造方法であって、
    前記底壁部は、複数の耐火煉瓦の積層構造を有し、
    前記底壁部のうち前記溶融ガラスの通電予定領域に対応する部分において、前記炉内側から見た一層目の耐火煉瓦と二層目の耐火煉瓦との間の隙間における温度が、前記溶融ガラスの粘度が10Pa・sである温度以下となるように、前記積層構造が形成されていることを特徴とするガラス物品の製造方法。
  2. 前記底壁部のうち前記溶融ガラスの前記通電予定領域に対応する部分が、前記底壁部の他の部分よりも前記積層構造の総厚みが薄いことを特徴とする請求項1に記載のガラス物品の製造方法。
  3. 前記溶融ガラスが、無アルカリガラスであることを特徴とする請求項1又は2に記載のガラス物品の製造方法。
  4. 前記隙間の温度が、1300℃以下であることを特徴とする請求項3に記載のガラス物品の製造方法。
  5. 炉内で溶融ガラスを通電加熱する電極が設けられた底壁部を備えた溶融炉であって、
    前記底壁部は、複数の耐火煉瓦の積層構造を有し、
    前記底壁部のうち前記溶融ガラスの通電予定領域に対応する部分において、前記炉内側から見た一層目の耐火煉瓦と二層目の耐火煉瓦との間の隙間における温度が、前記溶融ガラスの粘度が10Pa・sである温度以下となるように、前記積層構造が形成されていることを特徴とする溶融炉。
JP2017157964A 2017-08-18 2017-08-18 ガラス物品の製造方法及び溶融炉 Active JP6958105B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017157964A JP6958105B2 (ja) 2017-08-18 2017-08-18 ガラス物品の製造方法及び溶融炉
US16/639,794 US11530152B2 (en) 2017-08-18 2018-07-25 Method for manufacturing glass article, and melting furnace
CN201880051698.6A CN111032584B (zh) 2017-08-18 2018-07-25 玻璃物品的制造方法以及熔融炉
KR1020197035382A KR102497517B1 (ko) 2017-08-18 2018-07-25 유리 물품의 제조 방법 및 용융로
PCT/JP2018/027953 WO2019035327A1 (ja) 2017-08-18 2018-07-25 ガラス物品の製造方法及び溶融炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017157964A JP6958105B2 (ja) 2017-08-18 2017-08-18 ガラス物品の製造方法及び溶融炉

Publications (2)

Publication Number Publication Date
JP2019034871A JP2019034871A (ja) 2019-03-07
JP6958105B2 true JP6958105B2 (ja) 2021-11-02

Family

ID=65362640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157964A Active JP6958105B2 (ja) 2017-08-18 2017-08-18 ガラス物品の製造方法及び溶融炉

Country Status (5)

Country Link
US (1) US11530152B2 (ja)
JP (1) JP6958105B2 (ja)
KR (1) KR102497517B1 (ja)
CN (1) CN111032584B (ja)
WO (1) WO2019035327A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958105B2 (ja) * 2017-08-18 2021-11-02 日本電気硝子株式会社 ガラス物品の製造方法及び溶融炉
WO2022075016A1 (ja) * 2020-10-08 2022-04-14 Agc株式会社 ガラス溶解装置、ガラスの製造方法、及び溶融ガラスの素地替え方法
CN113666614A (zh) * 2021-08-18 2021-11-19 天津中玻北方新材料有限责任公司 一种玻璃熔窑池壁在线更换方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598308A (en) * 1922-11-01 1926-08-31 Cole French Com Pany Method of and apparatus for fining glass
US2186223A (en) * 1937-11-04 1940-01-09 Hartford Empire Co Glass melting furnace and method of construction thereof
US3757020A (en) * 1970-05-28 1973-09-04 Toledo Eng Co Inc Electric glass furnace structure
US4348767A (en) * 1980-12-29 1982-09-07 Owens-Corning Fiberglas Corporation Wedge shaped electrode block
JPH0646237B2 (ja) * 1987-08-21 1994-06-15 動力炉・核燃料開発事業団 溶融槽が分割された高放射性廃棄物ガラス固化用電気溶融炉
JPH04317424A (ja) * 1991-04-11 1992-11-09 Nippon Sheet Glass Co Ltd 高粘性ガラスの素地上げ方法
FR2778910A1 (fr) * 1998-05-19 1999-11-26 Saint Gobain Isover Four, notamment a verre, utilisation et procede utilisant le four
JP3823544B2 (ja) * 1998-06-24 2006-09-20 旭硝子株式会社 溶融ガラスの減圧脱泡装置およびその製作方法
JP4587257B2 (ja) * 2001-10-24 2010-11-24 Hoya株式会社 ガラス、ガラス基板ブランクスおよびガラス基板それぞれの製造方法
JP2003183031A (ja) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd ガラス繊維製造用電気溶融炉及び繊維用ガラスの溶融方法
DE10346337B4 (de) * 2003-10-06 2014-06-12 Schott Ag Aggregat, ausgebildet als Schmelz- oder Läuteraggregat, Verteilersystem oder Rinnensystem für konduktiv beheizbare Glasschmelzen
FR2910467B1 (fr) * 2006-12-21 2010-02-05 Saint Gobain Ct Recherches Produit fritte dope a base de zircon et de zircone
CN102442756A (zh) 2010-09-30 2012-05-09 旭硝子株式会社 熔融玻璃的导管结构、及使用该导管结构的减压脱泡装置
JPWO2012091133A1 (ja) * 2010-12-28 2014-06-09 旭硝子株式会社 清澄槽、ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法及びガラス製品の製造装置
KR101973829B1 (ko) * 2011-12-06 2019-04-29 에이지씨 가부시키가이샤 무알칼리 유리의 제조 방법
JP2014005180A (ja) * 2012-06-26 2014-01-16 Asahi Glass Co Ltd 電極の挿入方法、ガラス製品の製造方法、ガラス溶融槽の製造方法、及びガラス溶融槽
JP6030953B2 (ja) * 2012-12-28 2016-11-24 Agcセラミックス株式会社 高ジルコニア質電鋳耐火物
US20220081367A1 (en) * 2013-01-07 2022-03-17 Vince Alessi Thermoset ceramic compositions, inorganic polymer coatings, inorganic polymer mold tooling, inorganic polymer hydraulic fracking proppants, methods of preparation and applications therefore
JP6128710B2 (ja) * 2013-02-15 2017-05-17 コーニング インコーポレイテッド ジルコニア量の少ないディスプレイ品質ガラス板の大量生産
CN105121363B (zh) * 2013-04-24 2018-06-12 旭硝子株式会社 熔融玻璃的导管结构、使用该导管结构的装置及方法
JP6458448B2 (ja) * 2014-10-29 2019-01-30 日本電気硝子株式会社 ガラス製造装置及びガラス製造方法
US10570045B2 (en) * 2015-05-22 2020-02-25 John Hart Miller Glass and other material melting systems
KR102599281B1 (ko) * 2015-06-10 2023-11-07 코닝 인코포레이티드 용융 유리 컨디셔닝 장치 및 방법
JP6958105B2 (ja) * 2017-08-18 2021-11-02 日本電気硝子株式会社 ガラス物品の製造方法及び溶融炉
KR102652430B1 (ko) * 2017-12-01 2024-03-29 코닝 인코포레이티드 유리 생산 장치 및 방법
JPWO2021117618A1 (ja) * 2019-12-10 2021-06-17

Also Published As

Publication number Publication date
KR20200043311A (ko) 2020-04-27
CN111032584B (zh) 2023-03-03
JP2019034871A (ja) 2019-03-07
US20210130214A1 (en) 2021-05-06
US11530152B2 (en) 2022-12-20
WO2019035327A1 (ja) 2019-02-21
CN111032584A (zh) 2020-04-17
KR102497517B1 (ko) 2023-02-08

Similar Documents

Publication Publication Date Title
JP6049225B2 (ja) ガラス製造装置および方法
US8695378B2 (en) Apparatus for making glass and methods
JP6958105B2 (ja) ガラス物品の製造方法及び溶融炉
WO2019230277A1 (ja) ガラス物品の製造方法
KR101971755B1 (ko) 용융 유리 제조 장치, 용융 유리 제조 방법 및 그것들을 사용한 판유리의 제조 방법
JP2018193268A (ja) ガラス物品の製造方法及び生地漏れ検出装置
JP2007131525A (ja) 平坦ガラス、特にガラスセラミックになり易いフロートガラスの製造方法
JP2016153344A (ja) フロートガラス製造方法、フロートガラス製造装置、およびフロートガラス
JP7174360B2 (ja) ガラス物品の製造方法、溶解炉及びガラス物品の製造装置
JP6792825B2 (ja) ガラス物品の製造方法及び溶融炉
JP6943136B2 (ja) ガラス溶解炉、及びガラス物品の製造方法
JP4741217B2 (ja) ガラス溶融体精錬装置
JP6498546B2 (ja) ガラス板の製造方法、および、熔解槽
KR102696607B1 (ko) 유리 물품의 제조 방법
KR101225926B1 (ko) 유리 용해로
JP6749123B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
KR100790788B1 (ko) 연속식 유리 용융로
KR20190078512A (ko) 유리 기판 제조 장치 및 유리 기판의 제조 방법
AU2023211869A1 (en) Electric glass furnace, methods for the melting and manufacture of glass by means of said furnace
JP2017178726A (ja) ガラス基板の製造方法
JP2023178699A (ja) ガラス溶融炉及びガラス物品の製造方法
KR20240116924A (ko) 유리 이송 장치, 유리 물품의 제조 장치 및 유리 물품의 제조 방법
JP2019116416A (ja) ガラス基板製造装置、及びガラス基板の製造方法
JP2015196609A (ja) ガラス基板の製造方法およびガラス基板の製造装置
KR20060112086A (ko) 전기용융로용 전극조립체

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150