WO2013080989A1 - 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 - Google Patents

二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 Download PDF

Info

Publication number
WO2013080989A1
WO2013080989A1 PCT/JP2012/080698 JP2012080698W WO2013080989A1 WO 2013080989 A1 WO2013080989 A1 WO 2013080989A1 JP 2012080698 W JP2012080698 W JP 2012080698W WO 2013080989 A1 WO2013080989 A1 WO 2013080989A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
binder
secondary battery
polymer
mass
Prior art date
Application number
PCT/JP2012/080698
Other languages
English (en)
French (fr)
Inventor
真弓 福峯
佳 小林
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020147014233A priority Critical patent/KR101959520B1/ko
Priority to US14/360,887 priority patent/US9601775B2/en
Priority to JP2013547178A priority patent/JP6156149B2/ja
Publication of WO2013080989A1 publication Critical patent/WO2013080989A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to the binder composition for secondary battery positive electrodes used in order to form the positive electrode used for secondary batteries, such as a lithium ion secondary battery.
  • portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used.
  • a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance.
  • mobile terminals are used in various places.
  • the battery is required to be smaller, thinner, lighter, and higher in performance as in the case of the portable terminal.
  • an active material containing a transition metal such as iron, manganese, cobalt, chromium and copper is used.
  • transition metal ions are eluted into the electrolytic solution, resulting in a decrease in battery capacity and cycle characteristics, which is a big problem.
  • transition metal ions eluted from the positive electrode are reduced and deposited on the negative electrode surface to form dendritic metal precipitates, which damage the separator, thereby reducing the safety of the battery. It is said that.
  • An electrode used in a lithium ion secondary battery usually has a structure in which an electrode active material layer is laminated on a current collector.
  • the electrode active material layer includes a pair of electrode active materials.
  • a polymer binder hereinafter sometimes referred to as “binder”.
  • An electrode is usually a slurry composition obtained by mixing an active material and, if necessary, a conductive agent such as conductive carbon, in a binder composition in which a polymer serving as a binder is dispersed or dissolved in a liquid medium such as water or an organic liquid. The slurry composition is applied to a current collector and dried.
  • a fluorine-based polymer such as polyvinylidene fluoride is particularly suitable as a polymer binder for a positive electrode because it is difficult to dissolve in an organic electrolyte.
  • fluorine-based polymers such as polyvinylidene fluoride have weak adhesion to the current collector, and as the battery is repeatedly charged and discharged, the electrical connection between the electrode active material layer and the current collector deteriorates, reducing the battery capacity. There was a problem to do. Further, when the amount of the fluorine-based polymer such as polyvinylidene fluoride is increased for the purpose of increasing the adhesive force with the current collector, there is a problem that the internal resistance of the battery increases and the capacity decreases.
  • Patent Document 1 and Patent Document 2 describe that the cycle characteristics and output characteristics of a secondary battery are improved by using a binder containing PVDF and H-NBR.
  • the binder content in the electrode active material layer is 2% by mass in order to increase the binding force of the binder to such an extent that sufficient cycle characteristics can be obtained. I found that it was necessary. In particular, when an electrode active material having a large specific surface area and a small particle diameter is used, a larger amount of binder is required because the area bound to the binder increases. As a result, the amount of the binder, which is an insulating component, increases, so that the resistance of the electrode increases, and both the output characteristics and cycle characteristics of the battery may be deteriorated.
  • the object of the present invention is to provide a binder composition that has excellent binding properties even in a small amount, exhibits excellent electrolytic solution resistance, a slurry composition that exhibits excellent stability, high smoothness, and binding properties.
  • Another object of the present invention is to provide a positive electrode having resistance to electrolytic solution and a secondary battery having excellent cycle characteristics (particularly high-temperature cycle characteristics).
  • a secondary battery positive electrode slurry composition comprising the secondary battery positive electrode binder composition and the positive electrode active material according to any one of [1] to [8].
  • a secondary battery positive electrode formed by forming a positive electrode active material layer comprising the slurry composition for a secondary battery positive electrode according to [9] above on a current collector.
  • a secondary battery having a positive electrode, a negative electrode, a separator, and an electrolyte solution The secondary battery whose said positive electrode is a secondary battery positive electrode as described in said [10].
  • a method for producing a secondary battery positive electrode comprising a step of applying and drying the slurry composition for a secondary battery positive electrode according to [9] above on at least one surface of a current collector.
  • the slurry composition for forming the positive electrode active material layer has excellent stability.
  • the positive electrode active material is uniformly dispersed in the positive electrode active material layer, a positive electrode having high smoothness, binding properties, and electrolytic solution resistance can be obtained.
  • the secondary battery using the positive electrode is excellent in high temperature cycle characteristics.
  • the secondary battery positive electrode binder composition of the present invention (sometimes referred to as “positive electrode binder composition”) contains a specific binder.
  • a slurry composition for a positive electrode of a secondary battery for forming a positive electrode active material layer by including a (meth) acrylic acid ester polymerized unit in the polymer constituting the binder (hereinafter referred to as “positive electrode slurry composition”).
  • the positive electrode slurry composition can be obtained in which the binder is dissolved and the stability is high. Furthermore, the stability with respect to the electrolytic solution is high, and the high temperature cycle characteristics are particularly excellent.
  • the binder preferably contains (meth) acrylic acid ester polymerized units in an amount of 5 to 50% by mass, more preferably 10 to 40% by mass, and particularly preferably 20 to 35% by mass.
  • the cycle characteristics and the like of the secondary battery are deteriorated.
  • the binder dispersion medium described later and the dispersion medium in the positive electrode slurry composition (for example, N-methylpyrrolidone, hereinafter referred to as “NMP”) are described.
  • NMP N-methylpyrrolidone
  • the positive electrode slurry composition can be obtained in which the binder is dissolved therein and the stability is high. Furthermore, the stability with respect to the electrolytic solution is high, and the high temperature cycle characteristics are particularly excellent.
  • the number of carbon atoms of the alkyl group bonded to the non-carbonyl oxygen atom of the (meth) acrylate polymer unit is preferably in the range of 2 to 12, more preferably 4 to 12, and still more preferably 4 to 10. .
  • the binder is difficult to elute from the electrolyte, and the resulting positive electrode slurry composition is High slurry stability. Furthermore, the obtained electrode has high uniformity and excellent flexibility.
  • the positive electrode active material can be stably dispersed in the positive electrode slurry composition. Stability is improved and gelation of the positive electrode slurry composition can be prevented.
  • the binder preferably has a polymer unit having a hydrophilic group in an amount of 0.05 to 20% by mass, more preferably 0.05 to 10% by mass, still more preferably 0.1 to 8% by mass, and particularly preferably 1 to Including 6% by mass.
  • the content ratio of the polymerization unit having the hydrophilic group is less than 0.05% by mass, the binding property between the positive electrode active materials and between the positive electrode active material layer and the current collector described later is reduced, In the manufacturing process such as winding and pressing of the positive electrode, part of the positive electrode active material layer is released (hereinafter sometimes referred to as “powder falling”), and the separator is broken or the positive electrode / negative electrode is short-circuited. There is a risk of causing this.
  • the content rate of the polymer unit having the hydrophilic group exceeds 20% by mass, the interaction between the binder and the active material is too strong in the positive electrode slurry composition. Viscosity may increase significantly.
  • the hydrophilic group in the present invention refers to a functional group that liberates protons in an aqueous solvent or a salt in which a proton in the functional group is substituted with a cation, specifically, a carboxylic acid group, a sulfonic acid group, Examples include phosphoric acid groups, hydroxyl groups, and salts thereof.
  • the dispersibility of the positive electrode active material in the positive electrode slurry composition is improved, and the positive electrode slurry composition can be maintained in a stable state for a long time. Can be saved. As a result, a uniform positive electrode active material layer can be easily manufactured. Moreover, since the lithium ion conductivity is good, the internal resistance in the battery can be reduced, and the output characteristics of the battery can be improved.
  • the content of the polymer unit having a nitrile group is preferably 2 to 50% by mass, more preferably 2 to 30% by mass, still more preferably 10 to 30% by mass, and particularly preferably 10 to 25% by mass.
  • the content ratio of the polymer unit having a nitrile group is less than 2% by mass, the solubility in NMP and the dispersibility of the positive electrode active material may be lowered, and the slurry stability may be lowered. As a result, the cycle characteristics of the secondary battery are deteriorated.
  • the content rate of the polymer unit which has the said nitrile group exceeds 50 mass%, the solubility to electrolyte solution rises and the cycling characteristics of a secondary battery may deteriorate.
  • the dispersibility of the positive electrode active material can be improved, and a highly stable positive electrode slurry composition can be obtained. Excellent in properties. Moreover, since it is excellent in stability with respect to the electrolytic solution, it is excellent in the cycle characteristics of the secondary battery, and particularly excellent in the high temperature cycle characteristics.
  • the dispersibility of the conductive agent in the positive electrode slurry composition is improved, and a uniform secondary battery positive electrode can be obtained. Easy to manufacture. By uniformly dispersing the positive electrode active material and the conductive agent in the electrode, the internal resistance is reduced, and as a result, the high temperature cycle characteristics and output characteristics of a battery using this electrode are improved. Furthermore, by introducing the linear alkylene polymer unit, the degree of swelling of the binder with respect to the electrolytic solution is optimized, and the battery characteristics are improved.
  • the content of the linear alkylene polymer unit is preferably 20 to 98% by mass, more preferably 20 to 80% by mass, and particularly preferably 20 to 70% by mass.
  • the number of carbon atoms of the above linear alkylene polymer unit is 4 or more, preferably 4 to 16, more preferably 4 to 12.
  • the binder used in the present invention has a polymer unit having a nitrile group, a (meth) acrylic acid ester polymer unit, a polymer unit having a hydrophilic group, and a linear alkylene polymer unit having 4 or more carbon atoms.
  • a binder is a monomer that can form a polymer unit having a nitrile group, a monomer that can form a polymer unit having a hydrophilic group, or a single monomer that can form a (meth) acrylate polymer unit.
  • a monomer capable of forming a linear alkylene polymer unit having 4 or more carbon atoms is a monomer that can form a polymer unit having a nitrile group, a monomer that can form a polymer unit having a hydrophilic group, or a single monomer that can form a (meth) acrylate polymer unit.
  • a linear alkylene polymer unit having 4 or more carbon atoms is obtained by obtaining a polymer having a structural unit having an unsaturated bond (a polymer unit capable of forming a conjugated diene monomer having 4 or more carbon atoms), and then hydrogenating the polymer. It can be formed by reaction.
  • Examples of the monomer capable of forming a polymer unit having a nitrile group include an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc. ⁇ -halogenoacrylonitrile, ⁇ -alkylacrylonitrile such as methacrylonitrile, and the like Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.
  • the introduction of the hydrophilic group into the binder is performed by polymerizing monomers having a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a hydroxyl group, and a salt thereof.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acids and derivatives thereof, dicarboxylic acids, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methyl allyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • generates a carboxyl group by hydrolysis can also be used.
  • the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acids such as monobutyl itaconate and dibutyl itaconate.
  • Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like. .
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 Ethylenic acid such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate Alkanol esters of unsaturated carboxylic acids; general formula CH 2 ⁇ CR 1 —COO— (C n H 2n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 is hydrogen Or an ester of a polyalkylene glycol represented by (meth) acrylic acid represented by 2-hydro; Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as cyethyl
  • the hydrophilic group is preferably a carboxylic acid group or a sulfonic acid group because it is excellent in the binding property between the positive electrode active materials and the binding property between the positive electrode active material layer and the current collector described later.
  • a carboxylic acid group is preferable because it efficiently captures transition metal ions that may be eluted from the positive electrode active material.
  • the method for introducing the linear alkylene polymer unit into the binder is not particularly limited, but a method in which a polymer unit capable of forming a conjugated diene monomer is introduced and then subjected to a hydrogenation reaction is simple and preferable.
  • the conjugated diene monomer is preferably a conjugated diene having 4 or more carbon atoms, and examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
  • Monomers capable of forming (meth) acrylate polymerized units include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate , Alkyl acrylates such as octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl Methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate DOO,
  • the solubility in NMP which is preferably used as a dispersion medium for the positive electrode slurry composition without eluting into the electrolytic solution, the flexibility of the positive electrode is improved, and when the wound cell is produced, Acrylic acid alkyl ester having 4 to 10 carbon atoms in the alkyl group bonded to the non-carbonyl oxygen atom because it can suppress peeling and is excellent in characteristics (cycle characteristics, etc.) of the secondary battery using the positive electrode.
  • butyl acrylate, 2-ethylhexyl acrylate and lauryl acrylate are preferable, and butyl acrylate and 2-ethylhexyl acrylate are more preferable.
  • the binder used in the present invention may contain polymer units of other monomers copolymerizable with the monomers forming these polymer units in addition to the above polymer units.
  • the content ratio of the polymerization units of such other monomers is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less with respect to the total monomer units.
  • Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene and tetrafluoroethylene; Non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene and dicyclopentadiene; ethylene, propylene, 1-butene, ⁇ -olefin compounds such as 4-methyl-1-pentene, 1-hexene, 1-octene; ⁇ , ⁇ such as methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, butoxyethyl (meth) acrylate -ethylene Al
  • NMP is used as a dispersion medium for the positive electrode slurry composition without eluting into the electrolyte solution, it exhibits solubility in NMP, and in addition, the positive electrode active material has excellent dispersibility and a uniform positive electrode is obtained. Therefore, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene are preferable.
  • the binder used in the present invention may contain a monomer copolymerizable with these in addition to the monomer components described above.
  • Monomers copolymerizable with these include vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl biether; methyl vinyl ketone, ethyl vinyl ketone and butyl And vinyl ketones such as vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole.
  • the binder used in the present invention is used in the state of a dispersion in which the binder is dispersed in a dispersion medium (water or organic solvent) or a dissolved solution (hereinafter, these are collectively referred to as “binder dispersion”). To do.)
  • the dispersion medium is not particularly limited as long as it can uniformly disperse or dissolve the binder.
  • organic solvent examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
  • Ketones methylene chloride, chloroform, carbon tetrachloride and other chlor aliphatic hydrocarbons; ethyl acetate, butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone, and other esters; acetonitrile, propionitrile, and other acylonitriles; tetrahydrofuran , Ethers such as ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N- Amides such as methylpyrrolidone and N, N-dimethylformamide can be mentioned.
  • These dispersion media may be used alone, or two or more of these dispersion media may be mixed and used as a mixed solvent.
  • it is industrially used at the time of preparing the positive electrode slurry composition described later is difficult to volatilize in production, and as a result, volatilization of the positive electrode slurry composition is suppressed, and the resulting positive electrode has smoothness.
  • water, N-methylpyrrolidone, cyclohexanone, toluene and the like are preferable.
  • the average particle diameter (dispersed particle diameter) of the binder dispersed in the form of particles is preferably 50 to 500 nm, more preferably 70 to 400 nm, and particularly preferably. 100 to 250 nm.
  • the average particle size of the binder is within this range, the strength and flexibility of the positive electrode obtained are good.
  • the solid content concentration of the binder dispersion is usually 15 to 70% by mass, preferably 20 to 65% by mass, and more preferably 30 to 60% by mass.
  • the solid content concentration is within this range, workability in producing the positive electrode slurry composition described later is good.
  • the glass transition temperature (Tg) of the binder used in the present invention is preferably 25 ° C. or lower, more preferably 15 ° C. or lower, and particularly preferably 0 ° C. or lower.
  • the lower limit of Tg of the binder is not particularly limited, but is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 45 ° C. or higher, and particularly preferably ⁇ 40 ° C. or higher.
  • the secondary battery positive electrode of the present invention has excellent strength and flexibility, so that powder falling off in the positive electrode manufacturing process is suppressed, and the secondary battery using the positive electrode has a high temperature. Cycle characteristics can be improved.
  • the glass transition temperature of the binder can be adjusted by combining various monomers.
  • the swelling degree of the binder with respect to the electrolyte solution described later is 100 to 500%, preferably 110 to 400%, more preferably 120 to 300%.
  • the solubility of the binder in the electrolytic solution can be suppressed and the binder has excellent binding properties. Therefore, the high-temperature cycle characteristics of the secondary battery can be improved.
  • the degree of swelling for a solution in which is dissolved at a concentration of 1.0 mol / L is employed.
  • the binder When the swelling degree of the binder with respect to the electrolytic solution is less than 100%, the binder may not sufficiently contain the electrolytic solution in the secondary battery positive electrode. Normally, the binder itself contains Li conductivity by including an electrolyte in the electrode. However, if the binder does not swell with respect to the electrolyte, the binder itself does not become a Li conduction path and resistance increases. As a result, the cycle characteristics and output characteristics of the secondary battery using the electrode may be deteriorated. Further, when the swelling degree of the binder with respect to the electrolytic solution exceeds 500%, the binder is excessively swollen into the electrolytic solution in the secondary battery positive electrode, whereby the conductive network is cut and the resistance is increased. The cycle characteristics and output characteristics of the used secondary battery may deteriorate.
  • the degree of swelling of the binder can be adjusted to the above range by adjusting the type and ratio of all polymerized units constituting the binder.
  • a method of adjusting the length of an alkyl chain bonded to a non-carbonyl oxygen atom in the polymerized unit can be mentioned.
  • the degree of swelling of the binder can be adjusted to the above range by adjusting the type and ratio of all polymerized units constituting the binder, but the binder solubility parameter (hereinafter referred to as “SP value”) is used as the index. It can also be used.
  • the solubility parameter (hereinafter referred to as “SP value”) is preferably 9.0 (cal / cm 3 ) 1/2 or more and less than 11 (cal / cm 3 ) 1/2 , more preferably 9 to 10.5 ( and a method using a polymer or a copolymer of cal / cm 3 ) 1/2 , more preferably 9.5 to 10 (cal / cm 3 ) 1/2 as a binder.
  • the SP value in the above range, it is possible to impart appropriate swelling property to the electrolytic solution while maintaining the solubility of the binder in the dispersion medium and the dispersion medium for the positive electrode slurry composition described later. Thereby, the uniformity of the obtained secondary battery positive electrode is further improved, and the cycle characteristics of the secondary battery using the secondary battery positive electrode can be improved.
  • the SP value is J.P. Brandrup, E .; H. Immergut and E.M. A. It can be determined according to the method described in Grulk edition “Polymer Handbook” VII Solidity Parameter Values, p675-714 (John Wiley & Sons, 4th edition, 1999). Those not described in this publication can be determined according to the “molecular attraction constant method” proposed by Small.
  • This method is a method for obtaining the SP value ( ⁇ ) according to the following equation from the characteristic value of the functional group (atomic group) constituting the compound molecule, that is, the statistics of the molecular attractive constant (G) and the molecular volume.
  • G molecular attractive constant
  • the iodine value of the binder is preferably about 3 to 60 mg / 100 mg, more preferably 3 to 20 mg / 100 mg, still more preferably 7 to 15 mg / 100 mg, and particularly preferably 8 to 10 mg / 100 mg.
  • the iodine value of the binder exceeds 60 mg / 100 mg, the stability at the oxidation potential is low due to the unsaturated bond contained in the binder, and the long-term cycle characteristics of the battery may be inferior.
  • the iodine value of the binder is less than 3 mg / 100 mg, the flexibility of the binder may be lowered. As a result, powder fall etc. occur and it is inferior to safety and long-term characteristics.
  • the binder When the iodine value of the binder is in the above range, the binder is chemically structurally stable with respect to a high potential, the electrode structure can be maintained even in a long-term cycle, and the high-temperature cycle characteristics are excellent.
  • the iodine value is determined according to JIS K6235;
  • the weight average molecular weight in terms of polystyrene by gel permeation chromatography of the binder used in the present invention is preferably 10,000 to 700,000, more preferably 50,000 to 500,000, particularly preferably 100,000 to 300,000.
  • the positive electrode can be made flexible, and it is easy to adjust the viscosity to be easily applied during the production of the positive electrode slurry composition.
  • the method for producing the binder used in the present invention is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization reaction any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the linear alkylene polymer unit is formed by introducing a polymer unit capable of forming a conjugated diene monomer having 4 or more carbon atoms and then hydrogenating it.
  • the method for hydrogenation reaction is not particularly limited. Polymerization capable of forming unsaturated polymer (polymer unit having nitrile group, (meth) acrylate polymer unit, polymer unit having hydrophilic group and conjugated diene monomer) obtained by the above polymerization method by hydrogenation reaction In the polymer comprising the unit), only the carbon-carbon unsaturated bond derived from the polymerized unit capable of forming the conjugated diene monomer can be selectively hydrogenated to obtain the binder used in the present invention.
  • the iodine value of the binder used for this invention can be made into the range mentioned above by hydrogenation reaction.
  • the binder used in the present invention is preferably a hydrogenated acrylonitrile-butadiene copolymer having a hydrophilic group (hereinafter sometimes referred to as “hydrogenated NBR”).
  • a known method may be used. Either the hydration method or the aqueous layer hydrogenation method is possible, but the aqueous layer hydrogenation method is preferable because the content of impurities (for example, a coagulant or metal described later) is small in the obtained binder.
  • the binder used in the present invention is produced by the oil layer hydrogenation method, it is preferably carried out by the following method. That is, first, a dispersion of an unsaturated polymer prepared by emulsion polymerization is coagulated by salting out, dissolved in an organic solvent through filtration and drying. Subsequently, the unsaturated polymer dissolved in the organic solvent is subjected to a hydrogenation reaction (oil layer hydrogenation method) to obtain a hydride, and the obtained hydride solution is coagulated, filtered and dried. A binder to be used is obtained.
  • the caprate in the binder finally obtained in each step of coagulation, filtration and drying by salting out the dispersion of the unsaturated polymer is used. It is preferable to prepare such that the amount is 0.01 to 0.4% by mass.
  • a known coagulant such as magnesium sulfate, sodium chloride, calcium chloride, or aluminum sulfate can be used in coagulation by salting out of the dispersion, but preferably an alkali such as magnesium sulfate, magnesium chloride, or magnesium nitrate.
  • the amount of caprate contained in the unsaturated polymer can be reduced. Therefore, it is preferable to use an alkaline earth metal salt or a Group 13 metal salt as the coagulant, more preferably an alkaline earth metal salt, and finally by controlling the amount of use and the solidification temperature, The amount of caprate in the obtained binder can be within the above range.
  • the amount of the coagulant used is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, particularly preferably 10 to 50 parts by weight, based on 100 parts by weight of the unsaturated polymer to be hydrogenated. It is.
  • the coagulation temperature is preferably 10 to 80 ° C.
  • the solvent for the oil layer hydrogenation method is not particularly limited as long as it is a liquid organic compound that dissolves the unsaturated polymer, but benzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, cyclohexanone, and acetone are preferable. used.
  • any known selective hydrogenation catalyst can be used without limitation, and a palladium-based catalyst and a rhodium-based catalyst are preferable, and a palladium-based catalyst (such as palladium acetate, palladium chloride, and palladium hydroxide) is used. More preferred. Two or more of these may be used in combination, but when a rhodium catalyst and a palladium catalyst are used in combination, it is preferable to use a palladium catalyst as the main active ingredient.
  • These catalysts are usually used by being supported on a carrier. Examples of the carrier include silica, silica-alumina, alumina, diatomaceous earth, activated carbon and the like.
  • the amount of catalyst used is preferably 10 to 5000 ppm, more preferably 100 to 3000 ppm, in terms of the amount of metal in the hydrogenation catalyst, relative to the amount of unsaturated polymer to be hydrogenated.
  • the hydrogenation reaction temperature of the oil layer hydrogenation method is preferably 0 to 200 ° C., more preferably 10 to 100 ° C., and the hydrogen pressure is preferably 0.1 to 30 MPa, more preferably 0.2 to 20 MPa.
  • the reaction time is preferably 1 to 50 hours, more preferably 2 to 25 hours.
  • the binder used in the present invention is produced by the aqueous layer hydrogenation method
  • the dispersion of the unsaturated polymer prepared by emulsion polymerization is diluted with water as necessary to carry out the hydrogenation reaction.
  • the aqueous layer hydrogenation method hydrogen is supplied to a reaction system in the presence of a hydrogenation catalyst to hydrogenate (I) an aqueous layer direct hydrogenation method, and in the presence of an oxidizing agent, a reducing agent and an activator.
  • a hydrogenation catalyst hydrogen is supplied to a reaction system in the presence of a hydrogenation catalyst to hydrogenate (I) an aqueous layer direct hydrogenation method, and in the presence of an oxidizing agent, a reducing agent and an activator.
  • II water layer indirect hydrogenation methods in which hydrogenation is carried out by reduction.
  • the concentration of the unsaturated polymer in the aqueous layer is preferably 40% by mass or less in order to prevent aggregation.
  • the hydrogenation catalyst used is not particularly limited as long as it is a compound that is difficult to decompose with water.
  • palladium catalysts include palladium salts of carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid and phthalic acid; palladium chloride, dichloro (cyclooctadiene) palladium, dichloro (norbornadiene) ) Palladium chloride such as palladium and ammonium hexachloropalladium (IV); Iodide such as palladium iodide; Palladium sulfate dihydrate and the like.
  • carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid and phthalic acid
  • palladium chloride dichloro (cyclooctadiene) palladium, dichloro (norbornadiene)
  • Palladium chloride such as palladium and ammonium hexachloropalladium (IV)
  • Iodide such as palladium iod
  • the amount of the hydrogenation catalyst used may be determined as appropriate, but is preferably 5 to 6000 ppm, more preferably 10 to 4000 ppm, in terms of the amount of metal in the hydrogenation catalyst, relative to the amount of unsaturated polymer to be hydrogenated. is there.
  • the reaction temperature in the aqueous layer direct hydrogenation method is preferably 0 to 300 ° C, more preferably 20 to 150 ° C, and particularly preferably 30 to 100 ° C. If the reaction temperature is too low, the reaction rate may decrease. Conversely, if the reaction temperature is too high, side reactions such as a hydrogenation reaction of a nitrile group may occur.
  • the hydrogen pressure is preferably 0.1 to 30 MPa, more preferably 0.5 to 20 MPa.
  • the reaction time is selected in consideration of the reaction temperature, hydrogen pressure, target hydrogenation rate, and the like.
  • the concentration of the unsaturated polymer in the aqueous layer is preferably 1 to 50% by mass, more preferably 1 to 40% by mass.
  • oxidizing agent used in the water layer indirect hydrogenation method examples include oxygen, air, and hydrogen peroxide.
  • the amount of these oxidizing agents used is preferably a molar ratio to the carbon-carbon double bond (oxidizing agent: carbon-carbon double bond), preferably 0.1: 1 to 100: 1, more preferably 0.8: 1. In the range of 5: 1.
  • reducing agent used in the aqueous layer indirect hydrogenation method hydrazines such as hydrazine, hydrazine hydrate, hydrazine acetate, hydrazine sulfate, and hydrazine hydrochloride, or compounds that liberate hydrazine are used.
  • the amount of these reducing agents used is preferably a molar ratio to the carbon-carbon double bond (reducing agent: carbon-carbon double bond), preferably 0.1: 1 to 100: 1, more preferably 0.8: It is in the range of 1-5: 1.
  • activator used in the water layer indirect hydrogenation method ions of metals such as copper, iron, cobalt, lead, nickel, iron and tin are used.
  • the amount of these activators to be used is a molar ratio to the carbon-carbon double bond (activator: carbon-carbon double bond), preferably 1: 1000 to 10: 1, more preferably 1:50 to 1: 2.
  • the reaction in the water layer indirect hydrogenation method is carried out by heating within the range from 0 ° C. to the reflux temperature, whereby the hydrogenation reaction is carried out.
  • the heating range at this time is preferably 0 to 250 ° C., more preferably 20 to 100 ° C., and particularly preferably 40 to 80 ° C.
  • the direct hydrogenation method and the indirect hydrogenation method in the aqueous layer it is preferable to perform solidification by salting out, filtration and drying after the hydrogenation.
  • the salting out is performed in the same manner as the salting out of the dispersion of the unsaturated polymer in the oil layer hydrogenation method, in order to control the amount of caprate in the binder after the hydrogenation reaction.
  • a Group 13 metal salt is preferably used, and an alkaline earth metal salt is particularly preferably used.
  • the filtration and drying steps subsequent to coagulation can be performed by known methods.
  • the method for producing the binder used in the present invention is particularly preferably a method in which the hydrogenation reaction is carried out in two or more stages. Even when the same amount of hydrogenation catalyst is used, the hydrogenation reaction efficiency can be increased by carrying out the hydrogenation reaction in two or more stages. That is, when the polymerization unit capable of forming a conjugated diene monomer is converted into a linear alkylene structural unit, the iodine value of the binder can be further reduced.
  • the hydrogenation reaction rate (hydrogenation ratio) (%) in the first stage should be 50% or more, more preferably 70% or more. Is preferred. That is, when the value obtained by the following formula is the hydrogenation reaction rate (%), this value is preferably 50% or more, and more preferably 70% or more.
  • the amount of carbon-carbon double bond can be analyzed using NMR.
  • the hydrogenation reaction catalyst in the dispersion is removed.
  • an adsorbent such as activated carbon or ion exchange resin can be added to adsorb the hydrogenation reaction catalyst with stirring, and then the dispersion can be filtered or centrifuged. It is also possible to leave the hydrogenation reaction catalyst in the dispersion without removing it.
  • the binder used in the present invention has a polymerized unit having a hydrophilic group.
  • the method for introducing a polymer unit having a hydrophilic group in the binder is not particularly limited, and a method for introducing a hydrophilic group into a polymer constituting the binder (having a hydrophilic group) in the above-described binder production process.
  • Unsaturation comprising a monomer copolymerization method), a polymer unit having the above-mentioned nitrile group, a polymer unit capable of forming the above-mentioned (meth) acrylate polymer unit, and the above-mentioned conjugated diene monomer
  • a polymer obtained by hydrogenation of the polymer and subjected to a hydrogenation reaction (hereinafter sometimes referred to as “hydrogenated polymer”) is obtained, and then the hydrogenated polymer and the ethylenically unsaturated carboxylic acid or its And a method of mixing with an anhydride (method of acid-modifying a hydrogenated polymer).
  • a method of copolymerizing a monomer having a hydrophilic group is preferable because it is simple in the process.
  • the binder includes a hydrophilic group
  • the positive electrode active material is excellent in dispersibility and a uniform positive electrode can be obtained.
  • the resistance in a positive electrode is reduced, As a result, the secondary battery which shows the outstanding cycling characteristics can be obtained.
  • the binding property with the current collector is improved, the positive electrode structure can be maintained even after repeated charge and discharge, and the cycle characteristics are excellent.
  • a binder used in the present invention by mixing an ethylenically unsaturated carboxylic acid or its anhydride with a polymer after the hydrogenation reaction (hydrogenated polymer) (hereinafter referred to as “acid-modified binder”)
  • acid-modified binder a polymer after the hydrogenation reaction
  • the method for producing the hydrogenated polymer (method for acid-modifying the hydrogenated polymer) will be described in detail.
  • the ethylenically unsaturated carboxylic acid or anhydride thereof used for producing the acid-modified binder is not particularly limited, but the ethylenically unsaturated dicarboxylic acid or anhydride thereof having 4 to 10 carbon atoms, particularly anhydrous Maleic acid is preferred.
  • ethylenically unsaturated carboxylic acid examples include ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid: Ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid: Ethylenically unsaturated dicarboxylic acid anhydrides such as maleic anhydride, itaconic anhydride and citraconic anhydride: Monomethyl maleate, monoethyl maleate, monopropyl maleate, mono-n-butyl maleate, monoisobutyl maleate, mono-n-pentyl maleate, mono-n-hexyl maleate, mono-2-ethylhexyl maleate, Monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, mono-n-butyl fumarate, monoisobutyl fumarate, mono-n-pentyl fumarate, mono-
  • the acid-modified binder can be obtained, for example, by subjecting a hydrogenated polymer to an ethylenically unsaturated carboxylic acid or an anhydride thereof to an ene type addition reaction.
  • the ene type addition reaction usually occurs by kneading a hydrogenated polymer and an ethylenically unsaturated carboxylic acid or an anhydride thereof at a high temperature without using a radical generator.
  • a radical generator used, in addition to the generation of a gel, an ethylenically unsaturated carboxylic acid or anhydride thereof and a hydrogenated polymer cause a radical type addition reaction, so that an ene type addition reaction cannot be performed.
  • the amount of the ethylenically unsaturated carboxylic acid or anhydride thereof is not particularly limited, but is usually 0.05 to 10 parts by mass of the ethylenically unsaturated carboxylic acid or anhydride thereof with respect to 100 parts by mass of the hydrogenated polymer.
  • the amount is preferably 0.2 to 6 parts by mass.
  • an ene type addition reaction for example, when an open type kneader such as a roll type kneader is used, molten ethylenically unsaturated carboxylic acid such as maleic anhydride or its anhydride is scattered, It may not be possible to carry out a simple addition reaction.
  • a continuous kneader such as a single-screw extruder, a same-direction twin-screw extruder, a different-direction rotary twin-screw extruder, etc. is used, the binder remaining at the outlet of the extruder is gelled, so that the die head
  • the addition reaction cannot be performed efficiently, such as clogging. Further, a large amount of unreacted ethylenically unsaturated carboxylic acid or anhydride thereof may remain in the binder.
  • the heat-sealed kneader can be arbitrarily selected from batch-type heat-sealed kneaders such as a pressure kneader, Banbury mixer, Brabender, etc. Among them, a pressure kneader is preferable.
  • a specific process is performed at a temperature at which the ene-type addition reaction does not substantially occur. Specifically, an ethylenically unsaturated carboxylic acid or anhydride thereof and a hydrogenated polymer are pre-kneaded at 60 to 170 ° C., preferably 100 to 150 ° C., and the ethylenically unsaturated carboxylic acid or anhydride thereof is washed with water. Disperse uniformly in the addition polymer.
  • the hydrogenated polymer may slip in the kneader and the ethylenically unsaturated carboxylic acid or its anhydride and the hydrogenated polymer may not be sufficiently mixed.
  • the pre-kneading temperature is excessively high, the ethylenically unsaturated carboxylic acid or anhydride thereof thrown into the kneader may be scattered in a large amount, and the ene type addition reaction rate may be lowered.
  • the temperature of the mixture of the hydrogenated polymer and the ethylenically unsaturated carboxylic acid or its anhydride during kneading is usually kept at 200 to 280 ° C., preferably 220 to 260 ° C.
  • the method for maintaining the temperature is not particularly limited, but is usually achieved by flowing warm water or steam through the jacket of the kneader, or using shear heat generation.
  • the jacket temperature is usually maintained at 70 to 250 ° C., preferably 130 to 200 ° C.
  • the shearing heat generation the kneader, the shear rate 30 ⁇ 1000 s -1, it is preferable that preferably mixing continues at 300 ⁇ 700 s -1.
  • shearing heat generation it is preferable because the temperature of the mixture can be easily controlled.
  • the kneading time in the heat-sealed kneader is not particularly limited, but is usually 120 seconds to 120 minutes, preferably 180 seconds to 60 minutes.
  • the ene type addition reaction may not sufficiently proceed. Moreover, when too high, generation
  • the shear rate is excessively high, it is difficult to control the temperature of the mixture by shearing heat generation, the temperature of the mixture becomes too high, and generation of gels and burned products occurs, which is not preferable as an industrial production method. . On the other hand, if the shear rate is excessively low, the temperature of the mixture becomes too low, so that a sufficient ene-type addition reaction cannot be expected.
  • an increase in the gelation of the binder can be prevented by adding an anti-aging agent during kneading.
  • an anti-aging agent is not particularly limited, amine type, amine ketone type, phenol type, benzimidazole type and other anti-aging agents for binders can be used.
  • amine-based antioxidants include phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamide) diphenylamine, N, N-di-2-naphthyl-p-phenylenediamine, N, N-diphenyl-p-phenylenediamine, N-phenyl-N-isopropyl-p-phenylenediamine, N-phenyl-N- (1,3- And dimethylbutyl) -p-phenylenediamine and N-phenyl-N- (3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine.
  • Examples of the amine ketone type antioxidant include 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline and the like.
  • phenolic antioxidants examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2-methylenebis (4-ethyl- 6-tert-butylphenol), 2,2-methylenebis (4-methyl-6-tert-butylphenol), 4,4-butylidenebis (3-methyl-6-tert-butylphenol), 4,4-thiobis (3-methyl) -6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, and the like.
  • benzimidazole antioxidant examples include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, metal salt of 2-mercaptomethylbenzimidazole, and the like.
  • anti-aging agents are usually used in an amount of 0.01 to 5 parts by mass, preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the binder.
  • 80% or more of the charged amount of the ethylenically unsaturated carboxylic acid or anhydride used for the ene type addition reaction is usually added to the hydrogenated polymer to obtain the binder used in the present invention.
  • the unreacted ethylenically unsaturated carboxylic acid or its anhydride remaining in the binder can be reduced to 5% or less of the charged amount. Therefore, this method is extremely useful for industrially stable production.
  • a binder containing 0.05 to 20% by mass of a polymer unit having a hydrophilic group can be obtained by the production method described above.
  • the binder used in the present invention is preferably obtained through a particulate metal removal step of removing particulate metals contained in the binder dispersion in the binder production step.
  • the content of the particulate metal component contained in the binder is 10 ppm or less, it is possible to prevent metal ion crosslinking over time between the polymers in the positive electrode slurry composition described later, and to prevent an increase in viscosity. Furthermore, there is little concern about self-discharge increase due to internal short circuit of the secondary battery or dissolution / precipitation during charging, and the cycle characteristics and safety of the battery are improved.
  • the method for removing the particulate metal component from the binder dispersion in the particulate metal removal step is not particularly limited.
  • a method of removing by magnetic force is preferable.
  • the method for removing by magnetic force is not particularly limited as long as it is a method capable of removing a metal component, but in consideration of productivity and removal efficiency, it is preferably performed by arranging a magnetic filter in the production line of the binder.
  • the dispersant used in the above polymerization method may be one used in ordinary synthesis, and specific examples include sodium dodecylbenzenesulfonate, sodium dodecylphenylethersulfonate, and the like.
  • Benzene sulfonates alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate; fatty acid salts such as sodium laurate; polyoxyethylene lauryl ether sulfate sodium Salts, ethoxy sulfate salts such as polyoxyethylene nonyl phenyl ether sulfate sodium salt; alkane sulfonate salts; alkyl ether phosphate sodium salts; Nonionic emulsifiers such as oxyethylene nonylphenyl ether, polyoxyethylene sorbitan lauryl ester, polyoxyethylene-polyoxypropylene block copolymer; gelatin, maleic anhydride-styrene copolymer, polyvinylpyrrolidone
  • benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate
  • alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate
  • oxidation resistance is more preferable.
  • it is a benzenesulfonate such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • the addition amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the pH when the binder used in the present invention is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12.
  • the pH of the binder is in the above range, the storage stability of the binder is improved, and further, the mechanical stability is improved.
  • the pH adjuster for adjusting the pH of the binder is an alkali metal hydroxide such as lithium hydroxide, sodium hydroxide or potassium hydroxide, or an alkaline earth metal oxide such as calcium hydroxide, magnesium hydroxide or barium hydroxide.
  • Hydroxides such as hydroxides of metals belonging to group IIIA in the long periodic table such as aluminum hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate, alkaline earth metal carbonates such as magnesium carbonate, etc.
  • organic amines examples include alkylamines such as ethylamine, diethylamine, and propylamine; alcohol amines such as monomethanolamine, monoethanolamine, and monopropanolamine; ammonia such as aqueous ammonia; Is mentioned.
  • alkali metal hydroxides are preferable from the viewpoints of binding properties and operability, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are particularly preferable.
  • the binder further includes other bonds.
  • An adhesive component may be included.
  • various resin components can be used in combination.
  • polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid, polyacrylonitrile, polyacrylate, polymethacrylate, or the like may be used. it can.
  • a copolymer containing 50% or more of the above resin component can also be used.
  • polyacrylic acid derivatives such as acrylic acid-styrene copolymer and acrylic acid-acrylate copolymer; acrylonitrile-styrene copolymer, acrylonitrile A polyacrylonitrile derivative such as an acrylate copolymer can also be used.
  • PVDF polyacrylonitrile derivative because the strength of the positive electrode and the resistance to electrolytic solution are excellent.
  • the soft polymers exemplified below can also be used as other binders.
  • Acrylic acid such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copolymer
  • Silicon-containing soft polymers such as dimethylpolysiloxane, diphenylpolysiloxane, dihydroxypolysiloxane; Liquid polyethylene, polypropylene, poly-1-butene, ethylene / ⁇ -olefin copolymer, propylene
  • Olefinic soft polymers of Vinyl-based soft polymers such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, vinyl acetate / styrene copolymer; Epoxy-based soft polymers such as polyethylene oxide, polypropylene oxide, epichlorohydrin rubber; Fluorine-containing soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber; And other soft polymers such as natural rubber, polypeptide, protein, polyester thermoplastic elastomer, vinyl chloride thermoplastic elastomer, polyamide thermoplastic elastomer, and the like. These soft polymers may have a cross-linked structure or may have a functional group introduced by modification. These may be used alone or in combination of two or more. Among these, a polyacrylonitrile derivative is preferable for improving the dispersibility of the positive electrode active material.
  • the binder composition for a secondary battery positive electrode of the present invention contains the above-mentioned binder, and in addition, an additive is added to improve the applicability of the positive electrode slurry composition described later and the charge / discharge characteristics of the secondary battery. be able to.
  • additives include cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, polyacrylates such as sodium polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, acrylic acid-vinyl alcohol copolymer, Examples include methacrylic acid-vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, and partially saponified polyvinyl acetate.
  • cellulose polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose
  • polyacrylates such as sodium polyacrylate
  • polyvinyl alcohol polyethylene oxide
  • polyvinyl pyrrolidone acrylic acid-vinyl alcohol copolymer
  • methacrylic acid-vinyl alcohol copolymer maleic acid-vinyl alcohol copolymer
  • modified polyvinyl alcohol polyethylene glycol
  • the use ratio of these additives is preferably less than 300% by mass, more preferably 30% by mass or more and 250% by mass or less, and particularly preferably 40% by mass or more and 200% by mass with respect to the total solid content of the binder composition. It is as follows. If it is this range, the secondary battery positive electrode excellent in smoothness can be obtained.
  • an isothiazoline compound or a chelate compound can be added. In addition to the method of adding these additives to the binder composition, these additives can also be added to the slurry composition for a secondary battery positive electrode of the present invention described later.
  • the manufacturing method of the binder composition for secondary battery positive electrodes of this invention is not limited sometimes, It manufactures by adding an additive to the above-mentioned binder dispersion liquid as needed, and mixing.
  • the method of mixing the additive with the binder dispersion is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • Secondary battery positive electrode slurry composition The secondary battery positive electrode slurry composition of the present invention (sometimes referred to as "positive electrode slurry composition") is a secondary battery positive electrode binder composition and a positive electrode active material. Containing. Below, the aspect which uses the slurry composition for secondary battery positive electrodes of this invention as a slurry composition for lithium ion secondary battery positive electrodes is demonstrated.
  • the positive electrode active material an active material capable of occluding and releasing lithium ions is used.
  • the electrode active material for the positive electrode of the lithium ion secondary battery (positive electrode active material) is largely divided into an inorganic compound and an organic compound. Separated.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity of the obtained secondary battery.
  • the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, and Ni—Mn—Al.
  • Li 2 MbO 3 (0 ⁇ x ⁇ 1, Ma is an average
  • Mb is one or more transition metals having an oxidation state of 4+).
  • Li a [Mn 2 ⁇ x Md x ] O 4 (wherein a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal)
  • Li a was replaced Mn with Fe Fe x Mn 2-x O 4-z (0 ⁇ a ⁇ 1,0 ⁇ x ⁇ 1,0 ⁇ z ⁇ 0.1) , since the cost is inexpensive
  • LiNi 0.5 Mn 1.5 O 4 or the like in which Mn is replaced with Ni can replace all of Mn 3+ which is considered to be a structural deterioration factor, and the electrochemical reaction from Ni 2+ to Ni 4+ Therefore, a high operating voltage and a high capacity can be obtained, which is preferable.
  • Mc is one or more transition metals having an average oxidation state of 3+
  • Mc Mn, Co, etc., 0 ⁇ y ⁇ 2
  • An olivine type lithium phosphate compound represented by Mn or Co may be partially substituted with other metals, and examples of metals that can be substituted include Fe, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo. Can be mentioned.
  • a positive electrode active material having a polyanion structure such as Li 2 MeSiO 4 (where Me is Fe, Mn), LiFeF 3 having a perovskite structure, Li 2 Cu 2 O 4 having an orthorhombic structure, and the like.
  • a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the particle diameter of the positive electrode active material used in the present invention is appropriately selected in consideration of other constituent elements of the battery.
  • the 50% volume cumulative diameter is Usually, the thickness is 0.1 to 50 ⁇ m, preferably 0.4 to 30 ⁇ m, and more preferably 1 to 20 ⁇ m. When the 50% volume cumulative diameter is within this range, a secondary battery having excellent output characteristics and a large charge / discharge capacity can be obtained, and a positive electrode slurry composition and a positive electrode for forming a positive electrode active material layer can be obtained. Easy to handle when manufacturing.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
  • the BET specific surface area of the positive electrode active material is preferably 0.1 to 10 m 2 / g, more preferably 0.2 to 1.0 m 2 / g.
  • the “BET specific surface area” means a BET specific surface area determined by a nitrogen adsorption method, and is a value measured according to ASTM D3037-81.
  • the positive electrode active material used in the present invention has a charging average voltage of less than 3.9 V with respect to lithium metal from the viewpoint of the high structural stability of the positive electrode active material itself during a long-term cycle and the oxidation stability of the electrolytic solution. It is preferable.
  • the charging average voltage refers to a potential (plateau) at which the secondary battery is charged to the upper limit voltage by the constant current method and lithium is desorbed at that time.
  • the upper limit voltage is a voltage that exceeds the voltage and may cause expansion and heat generation of the battery, which is the limit of ensuring safety.
  • the total content (solid content equivalent amount) of the binder composition and the positive electrode active material is 100 parts by mass (solid content equivalent amount) of the positive electrode slurry composition.
  • the amount is preferably 10 to 90 parts by mass, and more preferably 30 to 80 parts by mass.
  • the content of the binder composition relative to the total amount of the positive electrode active material (solid content equivalent amount) is preferably 0.1 to 5 parts by mass, and more preferably 0. 5 to 2 parts by mass.
  • the dispersion medium in the positive electrode slurry composition is not particularly limited as long as it can uniformly dissolve or disperse the binder composition, and either water or an organic solvent can be used.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Tetrahydrofuran, Ethers such as ethylene glycol diethyl ether; alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N-methyl Amides such as lupyrrolidone and N, N-dimethylformamide may be mentioned.
  • These dispersion media may be used alone or in combination of two or more as a mixed solvent.
  • a positive electrode active material and a conductive agent described later are excellent in dispersibility, and a solvent having a low boiling point and high volatility is preferable because it can be removed in a short time and at a low temperature.
  • a mixed solvent thereof is preferable.
  • the solid content concentration of the positive electrode slurry composition is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass.
  • the slurry composition for positive electrodes it is preferable to contain a electrically conductive agent.
  • a electrically conductive agent conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used.
  • the content of the conductive agent in the positive electrode slurry composition is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material.
  • the positive electrode slurry composition preferably contains a thickener.
  • thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Examples include polyacrylic acid, oxidized starch, phosphate starch, casein, and various modified starches.
  • the blending amount of the thickener is preferably 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the coating property and the adhesion with the current collector are good.
  • “(modified) poly” means “unmodified poly” or “modified poly”
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the positive electrode slurry composition may further contain other components such as a reinforcing material, a leveling agent, and an electrolytic solution additive having a function of suppressing electrolytic solution decomposition. It may be contained in the secondary battery positive electrode. These are not particularly limited as long as they do not affect the battery reaction.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • a reinforcing material By using a reinforcing material, a tough and flexible positive electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the content of the reinforcing material in the positive electrode slurry composition is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material. By being included in the said range, a high capacity
  • the leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the content of the leveling agent in the positive electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material.
  • the productivity, smoothness, and battery characteristics during the production of the positive electrode are excellent.
  • the surfactant By containing the surfactant, the dispersibility of the positive electrode active material and the like in the positive electrode slurry composition can be improved, and the smoothness of the positive electrode obtained thereby can be improved.
  • the electrolytic solution additive vinylene carbonate used in the positive electrode slurry composition and the electrolytic solution can be used.
  • the content of the electrolytic solution additive in the positive electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material.
  • the electrolytic solution additive is in the above range, the high temperature cycle characteristics and the high temperature characteristics are excellent.
  • Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nano fine particles, the thixotropy of the positive electrode slurry composition can be controlled, and the leveling property of the positive electrode obtained thereby can be improved.
  • the content of the nanoparticles in the positive electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material.
  • the nanoparticles are in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
  • the slurry composition for a secondary battery positive electrode is obtained by mixing the binder composition, the positive electrode active material, a conductive agent used as necessary, and the like.
  • the amount of the dispersion medium used when preparing the positive electrode slurry composition is such that the solid content concentration of the positive electrode slurry composition is usually in the range of 1 to 80% by mass, preferably 5 to 50% by mass. .
  • the binder composition is preferably dispersed uniformly.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • the viscosity of the positive electrode slurry composition is usually 10 to 50,000 mPa ⁇ s, preferably 100 to 10,000 mPa ⁇ s, at room temperature when the positive electrode production method described later is carried out by the wet forming method (II). More preferably, it is in the range of 300 to 2,000 mPa ⁇ s.
  • the positive electrode production method described later is carried out by the dry molding method (III)
  • it is usually 10 to 3,000 mPa ⁇ s, preferably 30 to 1. , 500 mPa ⁇ s, more preferably in the range of 50 to 1,000 mPa ⁇ s.
  • the viscosity of the positive electrode slurry composition is within this range, a uniform electrode can be obtained in the wet molding method, and the cycle characteristics of the resulting battery are also improved. In the dry molding method, the productivity of composite particles described later can be increased. Further, the higher the viscosity of the positive electrode slurry composition, the larger the spray droplets, and the larger the weight average particle diameter of the resulting composite particles.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the secondary battery positive electrode (sometimes referred to as “positive electrode”) of the present invention is formed by forming a positive electrode active material layer comprising the slurry composition for a secondary battery positive electrode of the present invention on a current collector. Become.
  • the manufacturing method of the secondary battery positive electrode of the present invention is not particularly limited. Specifically, (I) a method of forming the positive electrode slurry composition into a sheet, laminating the obtained sheet on a current collector, and forming a positive electrode active material layer (sheet forming method), (II) A method of forming a positive electrode active material layer by applying the slurry composition for positive electrode on at least one side, preferably both sides of the current collector, and drying the mixture (wet molding method), and (III) composite particles from the positive electrode slurry composition Examples thereof include a method (dry molding method) that is prepared, supplied onto a current collector and sheet-molded to form a positive electrode active material layer.
  • (II) wet molding method or (III) dry molding method is preferable.
  • the wet molding method is excellent in the production efficiency of the secondary battery positive electrode, and
  • the dry molding method is excellent in that the capacity of the obtained secondary battery positive electrode can be increased and the internal resistance can be reduced.
  • the method for applying the positive electrode slurry composition onto the current collector is not particularly limited.
  • the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the composite particles in the dry molding method refer to particles in which the binder composition, the positive electrode active material, and the like contained in the positive electrode slurry composition are integrated.
  • the composite particles suitably used in the present invention are produced by granulating the binder composition of the present invention, the positive electrode active material, and a conductive agent used as necessary.
  • the granulation method of the composite particles is not particularly limited, and is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion type drying method, or a melt granulation method.
  • the spray-drying granulation method is preferable because composite particles in which the binder composition and the conductive agent are unevenly distributed near the surface can be easily obtained.
  • the secondary battery positive electrode of the present invention can be obtained with high productivity. Moreover, the internal resistance of the secondary battery positive electrode can be further reduced.
  • the slurry composition for secondary battery positive electrode of the present invention is spray dried and granulated to obtain composite particles.
  • Spray drying is performed by spraying and drying the positive electrode slurry composition in hot air.
  • An atomizer is mentioned as an apparatus used for spraying the slurry composition for positive electrodes.
  • the rotating disk method the positive electrode slurry composition is introduced almost at the center of the high-speed rotating disk, and the positive electrode slurry composition is released out of the disk by the centrifugal force of the disk. It is a method to form.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 40,000 rpm, preferably 15,000 to 40,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks.
  • the slurry composition for the positive electrode is introduced from the center of the spray plate, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the positive electrode slurry composition is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the positive electrode slurry composition to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the minor axis diameter L s and the major axis diameter L l are values measured from a transmission electron micrograph image.
  • the volume average particle diameter of the composite particles suitably used in the present invention is usually in the range of 5 to 500 ⁇ m, preferably 7 to 300 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution analyzer.
  • the feeder used in the step of supplying the composite particles onto the current collector is not particularly limited, but is preferably a quantitative feeder capable of supplying the composite particles quantitatively.
  • the quantitative feeder preferably used in the present invention has a CV value of preferably 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the current collector and the supplied composite particles are pressurized with a pair of rolls to form a positive electrode active material layer on the current collector.
  • the composite particles heated as necessary are formed into a sheet-like positive electrode active material layer by a pair of rolls.
  • the temperature of the supplied composite particles is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When composite particles in this temperature range are used, there is no slip of the composite particles on the surface of the press roll, and the composite particles are continuously and uniformly supplied to the press roll. A positive electrode active material layer with little variation can be obtained.
  • the temperature at the time of molding is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder used in the present invention, and more preferably 20 ° C. or more higher than the melting point or glass transition temperature.
  • the forming speed is usually larger than 0.1 m / min, preferably 35 to 70 m / min.
  • the press linear pressure between the press rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to 10 kN / cm.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the current collector is continuously supplied between a pair of rolls, and the composite particles are supplied to at least one of the rolls so that the composite particles are supplied to the gap between the current collector and the rolls.
  • the positive electrode active material layer can be formed by pressurization.
  • the current collector is transported in the horizontal direction, the composite particles are supplied onto the current collector, and the supplied composite particles are leveled with a blade or the like as necessary.
  • the positive electrode active material layer can be formed by supplying between a pair of rolls and applying pressure.
  • the positive electrode active material is subjected to pressure treatment using a die press or a roll press. It is preferable to have a step of reducing the porosity of the layer.
  • a preferable range of the porosity is 5 to 30%, more preferably 7 to 20%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, it is difficult to obtain a high volume capacity, and there arises a problem that the positive electrode active material layer easily peels off from the current collector. Further, when a curable polymer is used for the positive electrode binder composition, it is preferably cured.
  • the thickness of the positive electrode active material layer in the secondary battery positive electrode of the present invention is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and cycle characteristics are high.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • the current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material.
  • a metal material is preferable because it has heat resistance.
  • aluminum is particularly preferable as the current collector used for the secondary battery positive electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector, and among them, it is preferable to form a conductive adhesive layer.
  • the secondary battery of the present invention is a secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the positive electrode is the secondary battery positive electrode.
  • the negative electrode is formed by laminating a negative electrode active material layer containing a negative electrode active material and a secondary battery negative electrode binder composition on a current collector.
  • the negative electrode active material used in the present invention is a material that transfers electrons within the secondary battery negative electrode.
  • Specific examples of negative electrode active materials for lithium ion secondary batteries include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; high conductivity such as polyacene Examples include molecules. Crystalline carbonaceous materials such as graphite, natural graphite, and mesocarbon microbeads (MCMB) are preferable.
  • a negative electrode active material metals, such as silicon, tin, zinc, manganese, iron, nickel, these alloys, the oxide or sulfate of the said metal or alloy can be used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicone, and the like can be used.
  • the said negative electrode active material can be used individually or in combination of 2 or more types.
  • the shape of the negative electrode active material is preferably a granulated particle.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery, but is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m. Further, the 50% volume cumulative diameter of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics.
  • the tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass.
  • the density of the negative electrode active material layer of secondary battery negative electrode is preferably 1.6 ⁇ 1.9g / cm 3, more preferably 1.65 ⁇ 1.85g / cm 3.
  • the density of the negative electrode active material layer is in the above range, a high-capacity battery can be obtained.
  • the binder composition for secondary battery negative electrode is not particularly limited, and a known one can be used.
  • resins such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, acrylic soft heavy
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polyacrylic acid derivatives polyacrylonitrile derivatives
  • acrylic soft heavy A soft polymer such as a polymer, a diene soft polymer, an olefin soft polymer, or a vinyl soft polymer can be used. These may be used alone or in combination of two or more.
  • the negative electrode further contains other components such as the above-described conductive agent, thickener, reinforcing material, leveling agent, and electrolyte additive having functions such as electrolyte solution decomposition suppression. Also good. These are not particularly limited as long as they do not affect the battery reaction.
  • the current collector used for the above-described positive electrode of the secondary battery can be used, and is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability. Copper is particularly preferred for the battery negative electrode.
  • the thickness of the negative electrode active material layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m. When the thickness of the negative electrode active material layer is in the above range, both load characteristics and energy density are high.
  • the negative electrode can be produced in the same manner as the above-described secondary battery positive electrode.
  • the separator is a porous substrate having pores
  • usable separators include (a) a porous separator having pores, and (b) a porous separator in which a polymer coat layer is formed on one or both sides. Or (c) a porous separator in which a porous resin coat layer containing an inorganic ceramic powder is formed.
  • Non-limiting examples of these include solids such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • the electrolytic solution used in the present invention is not particularly limited.
  • a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
  • the amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered and the battery charging and discharging characteristics are lowered.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. As the additive, carbonate compounds such as vinylene carbonate (VC) are preferable.
  • VC vinylene carbonate
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
  • the manufacturing method of the secondary battery of the present invention is not particularly limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the glass transition temperature (Tg) of the binder was measured based on JIS K 7121; 1987 using a differential scanning calorimeter (DSC6220SII manufactured by Nanotechnology).
  • SP value ⁇ Binder solubility parameter (SP value)>
  • ⁇ Swelling degree of binder> The NMP solution of the binder was cast on a polytetrafluoroethylene sheet and dried to obtain a cast film. 4 cm 2 of this cast film was cut out and weighed (weight A before immersion), and then immersed in an electrolytic solution at a temperature of 60 ° C. The soaked film was pulled up after 72 hours and wiped with towel paper, and the weight (weight B after soaking) was measured immediately.
  • the degree of swelling of the electrolyte solution of the binder is calculated from the following formula and evaluated according to the following criteria. It shows that it is excellent in electrolyte solution resistance and a battery characteristic (high temperature cycling characteristic), so that a swelling degree is low.
  • Viscosity change rate (%) (BA) / A ⁇ 100 A: Less than 10% B: 10% or more and less than 50% C: 50% or more and less than 100% D: 100% or more and less than 200% E: 200% or more and less than 500% F: 500% or more
  • Example 1 [Production of binder composition for positive electrode]
  • 240 parts of ion-exchanged water, 2.5 parts of sodium alkylbenzenesulfonate, 20 parts of acrylonitrile, 30 parts of 2-ethylhexyl acrylate and 5 parts of methacrylic acid were placed in this order, and the inside of the bottle was replaced with nitrogen.
  • 45 parts of 1,3-butadiene was injected, 0.25 part of ammonium persulfate was added, and a polymerization reaction was carried out at a reaction temperature of 40 ° C.
  • a polymer comprising a polymer unit having a group and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed of 4.1% by mass.
  • the binder had a glass transition temperature of ⁇ 35 ° C. and an SP value of 10.0 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 200%.
  • An aluminum foil having a thickness of 20 ⁇ m was prepared as a current collector.
  • the positive electrode slurry composition is applied on an aluminum foil with a comma coater so that the film thickness after drying is about 65 ⁇ m, dried at 60 ° C. for 20 minutes, 120 ° C. for 20 minutes, and then heated at 150 ° C. for 2 hours.
  • a positive electrode raw material was obtained.
  • This positive electrode original fabric was rolled by a roll press to produce a positive electrode comprising a positive electrode active material layer having a density of 2.5 g / cm 3 and an aluminum foil.
  • the positive electrode had a thickness of 70 ⁇ m. Electrode flexibility was measured using the produced positive electrode. The results are shown in Table 1.
  • the slurry composition for the negative electrode was applied on a copper foil having a thickness of 20 ⁇ m, which was a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer having a thickness of 80 ⁇ m.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by dry method, porosity 55%) was cut into a square of 5 ⁇ 5 cm 2 .
  • Example 2 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 30 ° C., and the SP value was 10.1 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 280%.
  • Example 3 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 10 ° C.
  • the SP value was 10.3 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 350%.
  • Example 4 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was 30 ° C.
  • the SP value was 10 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 195%.
  • Example 5 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 29.9% by mass of linear alkylene polymer units having 4 or more carbon atoms, 1.9% by mass of unhydrogenated butadiene polymer units, and 1,2-addition polymerization.
  • the unit was formed of 3.2 mass%.
  • the glass transition temperature of the binder was ⁇ 40 ° C.
  • the SP value was 10.3 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 9 mg / 100 mg.
  • the swelling degree of the binder was 360%.
  • Example 6 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 330 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 37 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 56.5% by mass of linear alkylene polymer unit having 4 or more carbon atoms, 2.6% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed from 5.9% by mass.
  • the glass transition temperature of the binder was ⁇ 38 ° C.
  • the SP value was 9.9 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 12 mg / 100 mg.
  • the swelling degree of the binder was 155%.
  • Example 7 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a unit, a polymer unit having a hydrophilic group, and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 30 ° C., and the SP value was 10.1 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 280%.
  • Example 8 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • the monomer unit derived from 1,3-butadiene is 29.9% by mass of linear alkylene polymer units having 4 or more carbon atoms, 1.9% by mass of unhydrogenated butadiene polymer units, and 1,2-addition polymerization.
  • the unit was formed of 3.2 mass%.
  • the glass transition temperature of the binder was 30 ° C.
  • the SP value was 10.4 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 9 mg / 100 mg.
  • the swelling degree of the binder was 395%.
  • Example 9 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 30 ° C., and the SP value was 10.1 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 280%.
  • Example 10 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 36 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • % by mass and 30% by mass of (meth) acrylic acid ester polymerized units (butyl acrylate monomer units).
  • the monomer unit derived from 1,3-butadiene is 52.3% by mass of linear alkylene polymer unit having 4 or more carbon atoms, 2.3% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed from 5.4% by mass.
  • the binder had a glass transition temperature of ⁇ 36 ° C. and an SP value of 9.3 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 11 mg / 100 mg.
  • the swelling degree of the binder was 120%.
  • Example 11 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • acrylonitrile monomer unit 10% by weight (acrylonitrile monomer unit), 55% by weight monomer unit derived from 1,3-butadiene, and 5 polymer units (methacrylic acid monomer unit) having a hydrophilic group (carboxylic acid group).
  • the monomer unit derived from 1,3-butadiene is 47.9% by mass of linear alkylene polymer units having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer units, and 1,2-addition polymerization. The unit was formed from 5% by mass.
  • the glass transition temperature of the binder was ⁇ 39 ° C., and the SP value was 9.6 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg. Furthermore, the swelling degree of the binder was 120%.
  • Example 12 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 34.3% by mass of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed with 3.6 mass%.
  • the binder had a glass transition temperature of ⁇ 20 ° C. and an SP value of 10.4 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 430%.
  • Example 13 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 39.3% by mass of linear alkylene polymer units having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer units, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 30 ° C., and the SP value was 10.0 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 250%.
  • An aluminum foil having a thickness of 20 ⁇ m was prepared as a current collector.
  • the positive electrode slurry composition is applied on an aluminum foil with a comma coater so that the film thickness after drying is about 65 ⁇ m, dried at 60 ° C. for 20 minutes, 120 ° C. for 20 minutes, and then heated at 150 ° C. for 2 hours.
  • a positive electrode raw material was obtained.
  • This positive electrode original fabric was rolled by a roll press to produce a positive electrode comprising a positive electrode active material layer having a density of 2.5 g / cm 3 and an aluminum foil.
  • the positive electrode had a thickness of 70 ⁇ m. Electrode flexibility was measured using the produced positive electrode. The results are shown in Table 1.
  • the positive electrode is cut into a disk shape with a diameter of 16 mm, and a separator made of a disk-shaped porous polypropylene film having a diameter of 18 mm and a thickness of 25 ⁇ m, a metallic lithium used as the negative electrode, and an expanded metal are sequentially laminated on the surface of the positive electrode active material layer.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A lithium ion coin battery (half cell) having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • the slurry composition for the negative electrode was applied on a copper foil having a thickness of 20 ⁇ m, which was a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer having a thickness of 80 ⁇ m.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by dry method, porosity 55%) was cut into a square of 5 ⁇ 5 cm 2 .
  • Comparative Example 1 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • binder composition for positive electrode To polymerization can A, 8.8 parts of 2-ethylhexyl acrylate, 1 part of acrylonitrile, 0.12 part of sodium lauryl sulfate and 79 parts of ion-exchanged water were added, 0.2 parts of ammonium persulfate as a polymerization initiator, and 10 parts of ion-exchanged water. The mixture was heated to 60 ° C.
  • the binder was a polymer having a nitrile group with respect to the total amount of the polymer.
  • Comparative Example 2 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 36 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • acrylonitrile monomer unit 60% by weight monomer unit derived from 1,3-butadiene, and 5 polymer units (methacrylic acid monomer unit) having a hydrophilic group (carboxylic acid group). It contained mass%.
  • the monomer unit derived from 1,3-butadiene is 52.3% by mass of linear alkylene polymer unit having 4 or more carbon atoms, 2.3% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed from 5.4% by mass.
  • the glass transition temperature of the binder was ⁇ 28 ° C., and the SP value was 10.6 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 11 mg / 100 mg. Furthermore, the swelling degree of the binder was 495%.
  • Comparative Example 3 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a polymer comprising a polymer unit having a polymer unit and a polymer unit capable of forming a conjugated diene monomer was obtained.
  • the polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • acrylonitrile monomer unit 43% by weight (acrylonitrile monomer unit), 45% by weight monomer unit derived from 1,3-butadiene, and 2 polymer units (methacrylic acid monomer unit) having a hydrophilic group (carboxylic acid group).
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization. The unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 10 ° C., and the SP value of the binder was 11.1 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg.
  • the swelling degree of the binder was 760%.
  • Comparative Example 4 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the binder was a polymer unit having a nitrile group with respect to the total amount of the polymer.
  • the monomer unit derived from 1,3-butadiene is 38.8% by weight of linear alkylene polymer unit having 4 or more carbon atoms, 2.1% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed of 4.1% by mass.
  • the glass transition temperature of the binder was ⁇ 15 ° C., and the SP value was 11.5 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 10 mg / 100 mg. Furthermore, the swelling degree of the binder was 965%.
  • Example 5 Except having used the following binder composition as a binder composition for positive electrodes, operation similar to Example 1 was performed, the slurry composition for positive electrodes and the positive electrode were obtained, and the battery was produced. The results of each evaluation are shown in Table 1.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 40 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents were returned to room temperature, the inside of the system was made into a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion.
  • 320 parts of NMP was added to 100 parts of this binder aqueous dispersion, and water was evaporated under reduced pressure to obtain an NMP solution of the binder as a positive electrode binder composition.
  • 100 g of the NMP solution was solidified with 1 liter of methanol, it was vacuum-dried overnight at 60 ° C. to obtain a dried product, which was analyzed by NMR.
  • the monomer unit derived from 1,3-butadiene is 69.6% by mass of linear alkylene polymer unit having 4 or more carbon atoms, 3.2% by mass of unhydrogenated butadiene polymer unit, and 1,2-addition polymerization.
  • the unit was formed with 7.2 mass%.
  • the binder had a glass transition temperature of ⁇ 38 ° C. and an SP value of 9.0 (cal / cm 3 ) 1/2 .
  • the iodine value of the binder was 15 mg / 100 mg.
  • the swelling degree of the binder was 80%.
  • Examples 1 to 3, 5, 7, 9, and 11 to 13 having excellent balance of slurry stability, electrode flexibility, and high temperature cycle characteristics are preferable, and slurry stability, electrode flexibility, and high temperature cycle characteristics are preferable.
  • Examples 1, 2, 7 and 13 are particularly preferred because of their particularly excellent balance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 【課題】 優れた耐電解液性を有するバインダー組成物、該バインダーを用いた正極を使用して、優れた高温サイクル特性を有する二次電池を提供すること。 【解決手段】 本発明に係る二次電池正極用バインダー組成物は、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100~500%であることを特徴とする。 

Description

二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
 本発明は、リチウムイオン二次電池等の二次電池に使用される正極を形成するために用いられる二次電池正極用バインダー組成物に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、ニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化、高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化、高性能化が要求されている。
 リチウムイオン二次電池の構成材料である正極活物質としては、鉄、マンガン、コバルト、クロム及び銅などの遷移金属を含有する活物質が用いられている。これらの活物質を用いた二次電池は充放電を繰り返すと、遷移金属イオンが電解液中に溶出し、結果として電池容量やサイクル特性が低下することがあり、大きな課題となっている。
 また、正極から溶出した遷移金属イオンが負極表面において還元され析出することにより、樹状の金属析出物を形成し、これがセパレーターを破損することで、電池としての安全性が低下することも大きな問題とされている。
 リチウムイオン二次電池に用いられる電極は、通常、電極活物質層が集電体に積層された構造を有しており、電極活物質層には、電極活物質の他に、電極活物質同士及び電極活物質と集電体とを結着させるためポリマーバインダー(以下において「バインダー」と記載することがある。)が用いられている。電極は、通常、水や有機液体等の液状媒体にバインダーとなる重合体を分散または溶解させたバインダー組成物に活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。
 ポリマーバインダーには、特に正極用のポリマーバインダーとして、ポリフッ化ビニリデンなどのフッ素系のポリマーが、有機電解液に対して溶解しにくいため、これまで好適なものとして使用されている。
 しかしながら、ポリフッ化ビニリデンなどのフッ素系ポリマーは、集電体に対する接着力が弱く、充放電を繰り返すうちに電極活物質層と集電体との間の電気的接合が劣化して電池容量が減少する問題があった。また、集電体との接着力を高める目的でポリフッ化ビニリデンなどのフッ素系ポリマーの量を多くすると、電池の内部抵抗が上昇して容量が低下する問題があった。
 また、ポリフッ化ビニリデン(PVDF)などのフッ素系ポリマーと、水素化アクリロニトリル-ブタジエンゴム(H-NBR)とを併用することが提案されている(特許文献1及び特許文献2)。
 特許文献1及び2によれば、PVDFとH-NBRとを含むバインダーを用いることで、二次電池のサイクル特性及び出力特性が向上することが記載されている。
特開平9-63590号公報 特開2005-123047号公報
 しかしながら、本発明者らの検討によれば、特許文献1では、充分なサイクル特性が得られる程度にバインダーの結着力を高めるためには、電極活物質層中のバインダーの含有率が2質量%以上必要であることが分かった。特に比表面積が大きく粒子径の小さい電極活物質を用いる場合には、バインダーと結着する面積が増えるために更に多くのバインダー量が必要とされる。その為、絶縁成分であるバインダー量が増えることで電極の抵抗が上がり、電池の出力特性・サイクル特性が共に悪化するおそれがあった。
 また、特許文献1及び2で提案されているバインダーを用いた場合、導電剤と電極活物質の分散性が不十分であり、電極活物質層を形成するスラリー組成物の安定性が乏しく、平滑な電極を得ることが難しい。
 さらに、高温での動作において、バインダーが電解液に対して膨潤し、電子ネットワークが切断され、その結果、電極の内部抵抗が上がり、電池のサイクル特性、特に高温におけるサイクル特性(以下、「高温サイクル特性」と記載することがある。)が悪化するおそれがあった。
 本発明の目的は上記事情を鑑み、少量でも優れた結着性を有し、優れた耐電解液性を示すバインダー組成物、優れた安定性を示すスラリー組成物、高い平滑性、結着性及び耐電解液性を有する正極、及び優れたサイクル特性(特に高温サイクル特性)を有する二次電池を提供することにある。
 このような課題の解決を目的とした本発明の要旨は以下の通りである。
〔1〕ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100~500%であることを特徴とする二次電池正極用バインダー組成物。
〔2〕前記(メタ)アクリル酸エステル重合単位の含有割合が5~50質量%である上記〔1〕に記載の二次電池正極用バインダー組成物。
〔3〕前記ニトリル基を有する重合単位の含有割合が2~50質量%である上記〔1〕または〔2〕に記載の二次電池正極用バインダー組成物。
〔4〕前記親水性基を有する重合単位の含有割合が0.05~20質量%である上記〔1〕~〔3〕のいずれかに記載の二次電池正極用バインダー組成物。
〔5〕前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数が4~10である上記〔1〕~〔4〕のいずれかに記載の二次電池正極用バインダー組成物。
〔6〕前記バインダーの溶解度パラメーター(SP値)が、9.0(cal/cm1/2以上、11(cal/cm1/2未満である上記〔1〕~〔5〕のいずれかに記載の二次電池正極用バインダー組成物。
〔7〕前記バインダーのヨウ素価が、3~60mg/100mgである上記〔1〕~〔6〕のいずれかに記載の二次電池正極用バインダー組成物。
〔8〕前記バインダーのガラス転移温度が25℃以下である上記〔1〕~〔7〕のいずれかに記載の二次電池正極用バインダー組成物。
〔9〕上記〔1〕~〔8〕のいずれかに記載の二次電池正極用バインダー組成物及び正極活物質を含有してなる二次電池正極用スラリー組成物。
〔10〕上記〔9〕に記載の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる二次電池正極。
〔11〕正極、負極、セパレーター及び電解液を有する二次電池であって、
 前記正極が、上記〔10〕に記載の二次電池正極である二次電池。
〔12〕上記〔9〕に記載の二次電池正極用スラリー組成物を集電体の少なくとも片面に塗布、乾燥する工程を有する二次電池正極の製造方法。
 本発明のバインダー組成物を用いることにより、正極活物質層を形成するためのスラリー組成物が優れた安定性を有する。また、正極活物質層中において正極活物質が均一に分散するため、高い平滑性、結着性及び耐電解液性を有する正極を得ることができる。その結果、該正極を用いた二次電池は高温サイクル特性に優れる。
二次電池正極用バインダー組成物
 本発明の二次電池正極用バインダー組成物(「正極用バインダー組成物」と記載することがある。)は、特定のバインダーを含有する。
(バインダー)
 前記バインダーは、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有し、電解液(エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した溶液)に対する膨潤度が、100~500%である。
 前記バインダーを構成する重合体中に(メタ)アクリル酸エステル重合単位を含むことで、正極活物質層を形成するための二次電池正極用スラリー組成物(以下において、「正極用スラリー組成物」と記載することがある。)中において、バインダーが溶解し安定性の高い正極用スラリー組成物を得ることができる。さらには電解液に対する安定性も高く、特に高温サイクル特性に優れる。
 また、バインダーは、(メタ)アクリル酸エステル重合単位を好ましくは5~50質量%、より好ましくは10~40質量%、特に好ましくは20~35質量%含む。前記(メタ)アクリル酸エステル重合単位の含有割合が5質量%未満である場合には、分散媒への溶解性が低下して活物質を均一に正極用スラリー組成物中に分散できず分散性が悪化することがある。そのため、スラリー安定性、二次電池正極の均一性および二次電池のサイクル特性等の低下の原因となるおそれがある。また、前記(メタ)アクリル酸エステル重合単位の含有割合が50質量%を超える場合には、二次電池正極の強度が低下し、電解液に対する膨潤度が上昇し、電極柔軟性も悪化することがある。さらには、二次電池のサイクル特性等の低下の原因となるおそれがある。
 バインダー中の(メタ)アクリル酸エステル重合単位の含有割合を上記範囲とすることで、後述するバインダーの分散媒や正極用スラリー組成物における分散媒(例えばN-メチルピロリドン、以下「NMP」と記載することがある。)中でバインダーが溶解し安定性の高い正極用スラリー組成物を得ることができる。さらには電解液に対する安定性も高く、特に高温サイクル特性に優れる。
 また、前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数は、好ましくは2~12、より好ましくは4~12、さらに好ましくは4~10の範囲である。前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数を上記範囲とすることで、バインダーが電解液に対して溶出しにくく、得られる正極用スラリー組成物は高いスラリー安定性を示す。さらには、得られる電極は均一性が高く、柔軟性に優れる。
 前記バインダーを構成する重合体中に親水性基を有する重合単位を含むことで、正極用スラリー組成物中において、正極活物質を安定的に分散させることができるため、正極用スラリー組成物のスラリー安定性が向上し、正極用スラリー組成物のゲル化を防止できる。
 また、バインダーは、親水性基を有する重合単位を好ましくは0.05~20質量%、より好ましくは0.05~10質量%、さらに好ましくは0.1~8質量%、特に好ましくは1~6質量%含む。前記親水性基を有する重合単位の含有割合が0.05質量%未満である場合には、正極活物質間及び正極活物質層と後述する集電体との間の結着性が低下し、正極の捲回・プレス等の製造工程において正極活物質層の一部の脱離(以下、「粉落ち」と記載することがある。)が発生し、セパレーターの破損や正極/負極間のショート等の原因となるおそれがある。また、前記親水性基を有する重合単位の含有割合が20質量%を超える場合には、正極用スラリー組成物中においてバインダーと活物質間の相互作用が強すぎることにより、正極用スラリー組成物の粘度が著しく上昇することがある。また、バインダー製造時の重合安定性にも劣り、ゲルが発生しやすくなり、正極活物質を均一に正極用スラリー組成物中に分散できず分散性が低下することがある。
 そこで、バインダー中の親水性基を有する重合単位の含有割合を上記範囲とすることで、正極活物質間及び正極活物質層と後述する集電体との間の結着性が向上し、正極の製造工程における正極活物質の一部が脱離すること(粉落ち)を低減できる。このようなバインダーによれば安定性の高い正極用スラリー組成物を得ることができ、さらには、電極の集電体への結着性が向上し、高温サイクル特性に優れる。
 本発明における親水性基とは、水性溶媒中でプロトンを遊離する官能基あるいは前記官能基におけるプロトンがカチオンに置換された塩のことをいい、具体的には、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などが挙げられる。
 また、前記バインダーを構成する重合体中にニトリル基を有する重合単位を含むことで、正極用スラリー組成物中における正極活物質の分散性が向上し、正極用スラリー組成物を長期間安定状態で保存することができる。この結果、均一な正極活物質層の製造が容易になる。また、リチウムイオンの伝導性が良好となるため、電池内における内部抵抗を小さくし、電池の出力特性を向上させることができる。
 前記ニトリル基を有する重合単位の含有割合は、好ましくは2~50質量%、より好ましくは2~30質量%、さらに好ましくは10~30質量%、特に好ましくは10~25質量%である。前記ニトリル基を有する重合単位の含有割合が2質量%未満である場合には、NMPへの溶解性および正極活物質の分散性が低下し、スラリー安定性が低下することがある。その結果二次電池のサイクル特性が悪化する。また、前記ニトリル基を有する重合単位の含有割合が50質量%を超える場合には、電解液への溶解性が上昇し、二次電池のサイクル特性が悪化することがある。バインダー中にニトリル基を有する重合単位を上記範囲含むことで、正極活物質の分散性が向上し、安定性の高い正極用スラリー組成物を得ることができ、その結果、二次電池正極の均一性に優れる。また、電解液に対する安定性に優れるため、二次電池のサイクル特性に優れ、特に高温サイクル特性に優れる。
 また、前記バインダーを構成する重合体中に、炭素数4以上の直鎖アルキレン重合単位を含むことで、正極用スラリー組成物中の導電剤の分散性が向上し、均一な二次電池正極の製造が容易になる。電極内に正極活物質や導電剤が均一に分散することにより内部抵抗が低減し、結果としてこの電極を用いた電池の高温サイクル特性、出力特性が向上する。さらに、前記直鎖アルキレン重合単位を導入することで、バインダーの電解液に対する膨潤度が適正化され、電池特性の向上が図られる。
 上記の直鎖アルキレン重合単位の含有割合は、好ましくは20~98質量%、より好ましくは20~80質量%、特に好ましくは20~70質量%である。
 上記の直鎖アルキレン重合単位の炭素数は4以上であり、好ましくは4~16、さらに好ましくは4~12の範囲である。
 上記のように、本発明に用いるバインダーは、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合体単位、親水性基を有する重合単位及び炭素数4以上の直鎖アルキレン重合単位を有する。このようなバインダーは、ニトリル基を有する重合単位を形成し得る単量体、親水性基を有する重合単位を形成し得る単量体、(メタ)アクリル酸エステル重合体単位を形成し得る単量体、炭素数4以上の直鎖アルキレン重合単位を形成し得る単量体を重合反応させて得られる。なお、炭素数4以上の直鎖アルキレン重合単位は、不飽和結合を有する構造単位(炭素数4以上の共役ジエンモノマーを形成し得る重合単位)を有する重合体を得た後に、これを水素添加反応して形成することができる。
 以下、本発明に用いるバインダーの製造方法について説明する。
 ニトリル基を有する重合単位を形成し得る単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 バインダー中への親水性基の導入は、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などを有する単量体を重合して行われる。
 カルボン酸基を有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、及びこれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。
 また、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
 スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 水酸基を有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 これらの中でも、正極活物質同士の結着性及び正極活物質層と後述する集電体との結着性に優れることから、親水性基は、カルボン酸基またはスルホン酸基であることが好ましく、特に正極活物質から溶出することがある遷移金属イオンを効率良く捕捉するという理由からカルボン酸基であることが好ましい。
 バインダー中への直鎖アルキレン重合単位の導入方法は、特に限定はされないが、共役ジエンモノマーを形成し得る重合単位を導入後にこれを水素添加反応させる方法が簡便であり、好ましい。
 共役ジエンモノマーとしては、炭素数4以上の共役ジエンが好ましく、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 (メタ)アクリル酸エステル重合単位を形成し得る単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
 これらの中でも、電解液に溶出せずに正極用スラリー組成物の分散媒として好ましく用いられるNMPへの溶解性を示すこと、正極の柔軟性が向上し、捲回セルを作製したときに正極の剥がれを抑制することができ、該正極を用いた二次電池の特性(サイクル特性等)に優れることから、非カルボニル性酸素原子に結合するアルキル基の炭素数が4~10のアクリル酸アルキルエステルが好ましく、その中でも、具体的には、好ましくはブチルアクリレート、2-エチルヘキシルアクリレートおよびラウリルアクリレート、より好ましくは、ブチルアクリレート、2-エチルヘキシルアクリレートである。
 また、本発明に用いるバインダーは、上記重合単位以外に、これらの重合単位を形成する単量体と共重合可能な他の単量体の重合単位を含有していてもよい。このような他の単量体の重合単位の含有割合は、全単量体単位に対して、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
 このような共重合可能な他の単量体としては、たとえば、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。
 その中でも、電解液に溶出せずに正極用スラリー組成物の分散媒としてNMPを用いた場合にNMPへの溶解性を示すこと、加えて正極活物質の分散性に優れ、均一な正極が得られることからスチレン、α-メチルスチレンなどの芳香族ビニル化合物が好ましい。
 さらに、本発明に用いるバインダーは、上述した単量体成分以外に、これらと共重合可能な単量体を含んでいてもよい。これらと共重合可能な単量体としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;が挙げられる。これらの単量体を、適宜の手法により、グラフト共重合させることにより、前記構成のバインダーが得られる。
 本発明に用いるバインダーは、分散媒(水または有機溶媒)に上記バインダーが分散された分散液または溶解された溶液の状態で使用される(以下、これらを総称して「バインダー分散液」と記載することがある。)。分散媒としては、バインダーを均一に分散または溶解し得るものであれば、特に制限されない。本発明においては、環境の観点に優れ、乾燥速度が速いという観点から分散媒として水を用いることが好ましい。また、有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類が挙げられる。
 これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、後述の正極用スラリー組成物作製時に工業上使用されていること、製造上揮発しにくいこと、その結果、正極用スラリー組成物の揮発を抑えられ、得られる正極の平滑性が向上することから、水、若しくはN-メチルピロリドン、シクロヘキサノンやトルエン等が好ましい。
 バインダーが分散媒に粒子状で分散している場合において、粒子状で分散しているバインダーの平均粒径(分散粒子径)は、好ましくは50~500nm、より好ましくは70~400nm、特に好ましくは100~250nmである。バインダーの平均粒径がこの範囲であると、得られる正極の強度および柔軟性が良好となる。
 バインダーが分散媒に粒子状で分散している場合において、バインダー分散液の固形分濃度は、通常15~70質量%であり、20~65質量%が好ましく、30~60質量%がさらに好ましい。固形分濃度がこの範囲であると、後述する正極用スラリー組成物を製造する際における作業性が良好である。
 本発明に用いるバインダーのガラス転移温度(Tg)は、好ましくは25℃以下、より好ましくは15℃以下、特に好ましくは0℃以下である。バインダーのTgの下限は特に限定されないが、好ましくは-50℃以上、より好ましくは-45℃以上、特に好ましくは-40℃以上である。バインダーのTgが上記範囲にあることにより、本発明の二次電池正極が優れた強度と柔軟性を有するため、正極の製造工程における粉落ちを抑制し、該正極を用いた二次電池の高温サイクル特性を向上させることができる。なお、バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
 また、後述する電解液に対するバインダーの膨潤度は100~500%、好ましくは110~400%、より好ましくは120~300%である。バインダーの膨潤度を上記範囲とすることで、電解液に対するバインダーの溶解性を抑制できバインダーの結着性に優れるため、二次電池の高温サイクル特性の向上が図られる。
 ここでは、膨潤度の指標として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解した溶液に対する膨潤度を採用する。
 電解液に対するバインダーの膨潤度が100%未満である場合には、二次電池正極内でバインダーが十分に電解液を含むことができないことがある。通常、バインダーは電極内で電解液を含むことにより、バインダー自体もLi伝導性を示すが、バインダーが電解液に対して膨潤しない場合には、バインダー自体がLi伝導経路とならず抵抗が大きくなり、結果として当該電極を用いた二次電池のサイクル特性、出力特性が低下することがある。また、前記バインダーの電解液に対する膨潤度が500%を超える場合には、二次電池正極内でバインダーが電解液に膨潤しすぎることで導電ネットワークが切断され抵抗が上昇し、結果として当該電極を用いた二次電池のサイクル特性、出力特性が低下することがある。
 バインダーの膨潤度は、バインダーを構成する全重合単位の種類やその比率を調整することにより、上記範囲に調整することができる。例えば、(メタ)アクリル酸エステル重合単位でいえば、当該重合単位中の非カルボニル性酸素原子に結合するアルキル鎖の長さ等を調整する方法が挙げられる。
 バインダーの膨潤度は、バインダーを構成する全重合単位の種類やその比率を調整することにより上記範囲に調整可能であるが、バインダーの溶解度パラメータ(以下、「SP値」という。)をその指標として用いることもできる。例えば、溶解度パラメータ(以下「SP値」という)を好ましくは9.0(cal/cm1/2以上、11(cal/cm1/2未満、より好ましくは9~10.5(cal/cm1/2、さらに好ましくは、9.5~10(cal/cm1/2である重合体または共重合体をバインダーとして用いる方法が挙げられる。前記SP値を、上記範囲にすることにより、後述するバインダーの分散媒や正極用スラリー組成物における分散媒への溶解性を維持しながら、電解液への適度な膨潤性をもたせることができる。それにより、得られる二次電池正極の均一性がより向上し、それを用いた二次電池のサイクル特性を向上させることができる。
 ここで、SP値は、J.Brandrup,E.H.ImmergutおよびE.A.Grulk編"Polymer Handbook" VII Solubility Parameter Values,p675-714(John Wiley & Sons社、第4版1999年発行)に記載される方法に従って求めることができる。この刊行物に記載のないものについてはSmallが提案した「分子引力定数法」に従って求めることができる。この方法は、化合物分子を構成する官能基(原子団)の特性値、すなわち、分子引力定数(G)の統計と分子容とから次式に従ってSP値(δ)を求める方法である。
 δ=ΣG/V=dΣG/M
 ΣG:分子引力定数Gの総計
 V:比容
 M:分子量
 d:比重
 前記バインダーのヨウ素価は、好ましくは3~60mg/100mg程度であり、より好ましくは3~20mg/100mg、更に好ましくは7~15mg/100mg、特に好ましくは8~10mg/100mgである。バインダーのヨウ素価が60mg/100mgを超えると、バインダーに含まれる不飽和結合により酸化電位での安定性が低く電池の長期サイクル特性に劣ることがある。また逆に、バインダーのヨウ素価が3mg/100mg未満であると、バインダーの柔軟性が低下することがある。その結果、粉落ち等が発生し、安全性、長期特性に劣る。バインダーのヨウ素価が上記範囲にあることにより、高電位に対してバインダーが化学構造的に安定であり、長期サイクルにおいても電極構造を維持することができ、高温サイクル特性に優れる。ヨウ素価はJIS K6235;2006に従って求められる。
 本発明に用いるバインダーのゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値の重量平均分子量は、好ましくは10,000~700,000、より好ましくは50,000~500,000、特に好ましくは100,000~300,000である。バインダーの重量平均分子量を上記範囲とすることで、正極に柔軟性を持たせることができ、更に正極用スラリー組成物の製造時に塗工しやすい粘度に調整することが容易である。
 本発明に用いるバインダーの製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
 直鎖アルキレン重合単位は、炭素数4以上の共役ジエンモノマーを形成し得る重合単位を導入後に、これを水素添加反応させて形成される。水素添加反応させる方法は特に限定されない。水素添加反応により、上記重合法により得られた不飽和重合体(ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合体単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体)中の共役ジエンモノマーを形成し得る重合単位に由来する炭素-炭素不飽和結合のみを選択的に水素化し、本発明に用いるバインダーを得ることができる。また、水素添加反応により、本発明に用いるバインダーのヨウ素価を上述した範囲とすることができる。本発明に用いるバインダーは、親水性基を有する水素化アクリロニトリル・ブタジエン共重合体(以下において「水添NBR」と記載することがある。)が好ましい。
 不飽和重合体中の共役ジエンモノマーを形成し得る重合単位に由来する炭素-炭素不飽和結合のみを選択的に水素化する選択的水素化方法としては、公知の方法によればよく、油層水素化法、水層水素化法のいずれも可能であるが、得られるバインダー中に不純物(例えば、後述する凝固剤や金属等)の含有量が少ないことから、水層水素化法が好ましい。
 本発明に用いるバインダーの製造を油層水素化法で行う場合には、次の方法により行うことが好ましい。すなわち、まず、乳化重合により調整した不飽和重合体の分散液を塩析により凝固させ、濾別および乾燥を経て、有機溶媒に溶解する。次いで、有機溶媒に溶解させた不飽和重合体について水素添加反応(油層水素化法)を行い、水素化物とし、得られた水素化物溶液を凝固、濾別および乾燥を行うことにより、本発明に用いるバインダーを得る。
 なお、乳化剤として、カプリン酸アルカリ金属塩を用いる場合には、不飽和重合体の分散液の塩析による凝固、濾別および乾燥の各工程において、最終的に得られるバインダー中におけるカプリン酸塩の量が0.01~0.4質量%となるように調製することが好ましい。たとえば、分散液の塩析による凝固において、硫酸マグネシウム、塩化ナトリウム、塩化カルシウム、硫酸アルミニウムなど公知の凝固剤を使用することができるが、好適には、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウムなどのアルカリ土類金属塩;または、硫酸アルミニウムなどの第13族金属塩;を用いることにより、不飽和重合体中に含有されるカプリン酸塩の量を低減させることができる。そのため、凝固剤として、アルカリ土類金属塩または第13族金属塩を用いることが好ましく、アルカリ土類金属塩を用いることがより好ましく、その使用量や凝固温度を制御することにより、最終的に得られるバインダー中におけるカプリン酸塩の量を上記範囲とすることができる。凝固剤の使用量は、水素化する不飽和重合体の量を100質量部とした場合に、好ましくは1~100質量部、より好ましくは5~50質量部、特に好ましくは10~50質量部である。凝固温度は10~80℃が好ましい。
 油層水素化法の溶媒としては、不飽和重合体を溶解する液状有機化合物であれば特に限定されないが、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、シクロヘキサノンおよびアセトンなどが好ましく使用される。
 油層水素化法の触媒としては、公知の選択的水素化触媒であれば限定なく使用でき、パラジウム系触媒およびロジウム系触媒が好ましく、パラジウム系触媒(酢酸パラジウム、塩化パラジウムおよび水酸化パラジウムなど)がより好ましい。これらは2種以上併用してもよいが、ロジウム系触媒とパラジウム系触媒とを組み合わせて用いる場合には、パラジウム系触媒を主たる活性成分とすることが好ましい。これらの触媒は、通常、担体に担持させて使用される。担体としては、シリカ、シリカ-アルミナ、アルミナ、珪藻土、活性炭などが例示される。触媒使用量は、水素化する不飽和重合体の量に対して、水素化触媒の金属量換算で、好ましくは10~5000ppm、より好ましくは100~3000ppmである。
 油層水素化法の水素化反応温度は、好ましくは0~200℃、より好ましくは10~100℃であり、水素圧力は、好ましくは0.1~30MPa、より好ましくは0.2~20MPaであり、反応時間は、好ましくは1~50時間、より好ましくは2~25時間である。
 あるいは、本発明に用いるバインダーの製造を水層水素化法で行う場合には、乳化重合により調製した不飽和重合体の分散液に、必要に応じて水を加えて希釈し、水素添加反応を行うことが好ましい。
 ここで、水層水素化法には、水素化触媒存在下の反応系に水素を供給して水素化する(I)水層直接水素化法と、酸化剤、還元剤および活性剤の存在下で還元して水素化する(II)水層間接水素化法とがある。
 (I)水層直接水素化法においては、水層の不飽和重合体の濃度(分散液状態での濃度)は、凝集を防止するために40質量%以下とすることが好ましい。
 また、用いる水素化触媒としては、水で分解しにくい化合物であれば特に限定されない。水素化触媒の具体例として、パラジウム触媒では、ギ酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、フタル酸などのカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウムなどのパラジウム塩素化物;ヨウ化パラジウムなどのヨウ素化物;硫酸パラジウム・二水和物などが挙げられる。これらの中でもカルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウムおよびヘキサクロロパラジウム(IV)酸アンモニウムが特に好ましい。水素化触媒の使用量は、適宜定めればよいが、水素化する不飽和重合体の量に対して、水素化触媒の金属量換算で、好ましくは5~6000ppm、より好ましくは10~4000ppmである。
 水層直接水素化法における反応温度は、好ましくは0~300℃、より好ましくは20~150℃、特に好ましくは30~100℃である。反応温度が低すぎると反応速度が低下するおそれがあり、逆に、高すぎるとニトリル基の水素添加反応などの副反応が起こる可能性がある。水素圧力は、好ましくは0.1~30MPa、より好ましくは0.5~20MPaである。反応時間は反応温度、水素圧、目標の水素化率などを勘案して選定される。
 一方、(II)水層間接水素化法では、水層の不飽和重合体の濃度(分散液状態での濃度)は、好ましくは1~50質量%、より好ましくは1~40質量%とする。
 水層間接水素化法で用いる酸化剤としては、酸素、空気、過酸化水素などが挙げられる。これら酸化剤の使用量は、炭素-炭素二重結合に対するモル比(酸化剤:炭素-炭素二重結合)で、好ましくは0.1:1~100:1、より好ましくは0.8:1~5:1の範囲である。
 水層間接水素化法で用いる還元剤としては、ヒドラジン、ヒドラジン水和物、酢酸ヒドラジン、ヒドラジン硫酸塩、ヒドラジン塩酸塩などのヒドラジン類またはヒドラジンを遊離する化合物が用いられる。これらの還元剤の使用量は、炭素-炭素二重結合に対するモル比(還元剤:炭素-炭素二重結合)で、好ましくは0.1:1~100:1、より好ましくは0.8:1~5:1の範囲である。
 水層間接水素化法で用いる活性剤としては、銅、鉄、コバルト、鉛、ニッケル、鉄、スズなどの金属のイオンが用いられる。これらの活性剤の使用量は、炭素-炭素二重結合に対するモル比(活性剤:炭素-炭素二重結合)で、好ましくは1:1000~10:1、より好ましくは1:50~1:2である。
 水層間接水素化法における反応は、0℃から還流温度までの範囲内で加熱することにより行い、これにより水素化反応が行われる。この際における加熱範囲は、好ましくは0~250℃、より好ましくは20~100℃、特に好ましくは40~80℃である。
 水層での直接水素化法、間接水素化法のいずれにおいても、水素化に続いて、塩析による凝固、濾別、乾燥を行うことが好ましい。塩析は、前記油層水素化法における不飽和重合体の分散液の塩析と同様に、水素添加反応後のバインダー中におけるカプリン酸塩の量を制御するために、上述したアルカリ土類金属塩または第13族金属塩を用いることが好ましく、アルカリ土類金属塩を用いることが特に好ましい。また、凝固に続く濾別および乾燥の工程はそれぞれ公知の方法により行うことができる。
 また、本発明に用いるバインダーの製造方法は、水素添加反応を2段階以上に分けて実施する方法が特に好ましい。同一量の水素化触媒を用いても、水素添加反応を2段階以上に分けて実施することにより、水素添加反応効率を高めることができる。即ち、共役ジエンモノマーを形成し得る重合単位を直鎖アルキレン構造単位へ転換する際に、バインダーのヨウ素価を、より低くすることが可能となる。
 また、2段階以上に分けて水素添加反応を行なう場合、第1段階の水素添加反応率(水添率) (%)で、50%以上、より好ましくは70%以上の水素化を達成することが好ましい。即ち、下式で得られる数値を水素添加反応率(%)とするとき、この数値が50%以上となることが好ましく、70%以上となることがより好ましい。
 水素添加反応率(水添率)(%)
=100×(水素添加反応前の炭素-炭素二重結合量-水素添加反応後の炭素-炭素二重結合量)/(水素添加反応前の炭素-炭素二重結合量)
 なお、炭素-炭素二重結合量は、NMRを用いて分析することができる。
 水素添加反応終了後、分散液中の水素添加反応触媒を除去する。その方法として、例えば、活性炭、イオン交換樹脂等の吸着剤を添加して攪拌下で水素添加反応触媒を吸着させ、次いで分散液をろ過又は遠心分離する方法を採ることができる。水素添加反応触媒を除去せずに分散液中に残存させることも可能である。
 また、本発明に用いるバインダーは、親水性基を有する重合単位を有する。バインダー中に親水性基を有する重合単位を導入する方法は、特に限定されず、上述したバインダーの製造工程において、バインダーを構成する重合体中に親水性基を導入する方法(親水性基を有する単量体を共重合させる方法)や、上述のニトリル基を有する重合単位、上述の(メタ)アクリル酸エステル重合体単位、および上述の共役ジエンモノマーを形成し得る重合単位を含んでなる不飽和重合体に水素添加して水素添加反応を行った重合体(以下において「水添重合体」と記載することがある。)を得、その後、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを混合する方法(水添重合体を酸変性する方法)が挙げられる。この中でも、親水性基を有する単量体を共重合させる方法が、工程上簡便であり好ましい。バインダーが親水性基を含むことで、正極活物質の分散性に優れ、均一な正極を得ることができる。また、正極内の抵抗が低減され、その結果、優れたサイクル特性を示す二次電池を得ることができる。さらに、集電体との結着性が良好となり、充放電を繰り返しても正極構造を維持することができ、サイクル特性に優れる。
 以下において、水素添加反応終了後の重合体(水添重合体)にエチレン性不飽和カルボン酸またはその無水物を混合して本発明に用いるバインダー(以下において、「酸変性されたバインダー」と記載することがある。)を製造する方法(水添重合体を酸変性する方法)について詳述する。
 酸変性されたバインダーを製造するために用いられるエチレン性不飽和カルボン酸またはその無水物は、特に限定されないが、その炭素数が4~10のエチレン性不飽和ジカルボン酸またはその無水物、特に無水マレイン酸が好適である。
 エチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸:
 マレイン酸、フマル酸、イタコン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸:
 無水マレイン酸、無水イタコン酸、無水シトラコン酸等のエチレン性不飽和ジカルボン酸無水物:
 マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノ-n-ブチル、マレイン酸モノイソブチル、マレイン酸モノ-n-ペンチル、マレイン酸モノ-n-ヘキシル、マレイン酸モノ-2-エチルヘキシル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノ-n-ブチル、フマル酸モノイソブチル、フマル酸モノ-n-ペンチル、フマル酸モノ-n-ヘキシル、フマル酸モノ-2-エチルヘキシル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノ-n-ブチル、イタコン酸モノイソブチル、イタコン酸モノ-n-ペンチル、イタコン酸モノ-n-ヘキシル、イタコン酸モノ-2-エチルヘキシル、シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノ-n-ブチル、シトラコン酸モノイソブチル、シトラコン酸モノ-n-ペンチル、シトラコン酸モノ-n-ヘキシル、シトラコン酸モノ-2-エチルヘキシル、メサコン酸モノメチル、メサコン酸モノエチル、メサコン酸モノプロピル、メサコン酸モノ-n-ブチル、メサコン酸モノイソブチル、メサコン酸モノ-n-ペンチル、メサコン酸モノ-n-ヘキシル、メサコン酸モノ-2-エチルヘキシル、グルタコン酸モノメチル、グルタコン酸モノエチル、グルタコン酸モノプロピル、グルタコン酸モノ-n-ブチル、グルタコン酸モノイソブチル、グルタコン酸モノイソブチル、グルタコン酸モノ-n-ペンチル、グルタコン酸モノ-n-ヘキシル、グルタコン酸モノ-2-エチルヘキシル、アリルマロン酸モノメチル、アリルマロン酸モノエチル、アリルマロン酸モノプロピル、アリルマロン酸モノ-n-ブチル、アリルマロン酸モノイソブチル、アリルマロン酸モノ-n-ペンチル、アリルマロン酸モノ-n-ヘキシル、アリルマロン酸モノ-2-エチルヘキシル、テラコン酸モノメチル、テラコン酸モノエチル、テラコン酸モノプロピル、テラコン酸モノ-n-ブチル、テラコン酸モノイソブチル、テラコン酸モノ-n-ペンチル、テラコン酸モノ-n-ヘキシル、テラコン酸モノ-2-エチルヘキシル等の不飽和ジカルボン酸モノアルキルエステル等が挙げられる。
 酸変性されたバインダーは、例えば、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを、エン型付加反応させることによって得られる。
 エン型付加反応は、通常、ラジカル発生剤を使用することなく、高温下で、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを混練することによって起こる。ラジカル発生剤を使用すると、ゲルの発生に加えてエチレン性不飽和カルボン酸またはその無水物と水添重合体とがラジカル型付加反応を起こすので、エン型付加反応させることができなくなる。
 エチレン性不飽和カルボン酸またはその無水物の使用量は特に限定されないが、通常、水添重合体100質量部に対して、エチレン性不飽和カルボン酸またはその無水物0.05~10質量部、好ましくは、0.2~6質量部である。
 エン型付加反応においては、例えばロール型混練機のような開放型混練機を用いた場合には、融解した無水マレイン酸等のようなエチレン性不飽和カルボン酸またはその無水物が飛散し、十分な付加反応を行うことができないことがある。また、単軸押出機、同方向二軸押出機、異方向回転二軸押出機等のような連続式混練機を用いた場合は、押出機出口に滞留するバインダーがゲル化することによりダイヘッドの詰まりが発生する等、効率よく付加反応を行うことができないことがある。また、バインダー中に多量に未反応のエチレン性不飽和カルボン酸またはその無水物が残存することがある。
 エン型付加反応では、加熱密閉混練機を用いることが好ましい。加熱密閉混練機としては、加圧ニーダー、バンバリーミキサー、ブラベンダー等のようなバッチ式加熱密閉混練機の中から任意に選ぶことができ、中でも、加圧ニーダーが好ましい。
 上記の製造方法においては、まず、エチレン性不飽和カルボン酸またはその無水物を、水添重合体にエン型付加反応により付加させる前に、実質的にエン型付加反応が起こらない温度において、具体的には、60~170℃、好ましくは100~150℃において、エチレン性不飽和カルボン酸またはその無水物と水添重合体とを予混練し、エチレン性不飽和カルボン酸またはその無水物を水添重合体中に均一に分散させる。この予混練の温度が過度に低いと、水添重合体が混練機内でスリップして、エチレン性不飽和カルボン酸またはその無水物と水添重合体との混合が十分に行えない場合がある。また、予混練の温度が過度に高いと、混練機中に投入するエチレン性不飽和カルボン酸またはその無水物が大量に飛散することがあり、エン型付加反応率が低下する場合がある。
 次に、エン型付加反応を行うべく、混練中の水添重合体とエチレン性不飽和カルボン酸またはその無水物との混合物の温度を通常200~280℃、好ましくは220~260℃に保つ。前記温度を保つ方法は、特に限定されないが、通常は、混練機のジャケットに温水やスチームを流す方法、または、せん断発熱を利用することにより達せられる。
 加熱密閉混練機のジャケットに温水やスチームを流す場合は、ジャケット温度を、通常、70~250℃、好ましくは130~200℃に維持する。また、せん断発熱を利用する場合は、混練機により、せん断速度30~1000s-1、好ましくは300~700s-1で混練を続けることが好ましい。特に、せん断発熱を利用する場合は、上記混合物の温度の制御を容易に行うことができるので好ましい。加熱密閉混練機中の混練時間は、特に限定されないが、通常、120秒~120分、好ましくは180秒~60分である。
 混練中の上記混合物の温度が過度に低いと、エン型付加反応が十分に進行しない場合がある。また、過度に高い場合は、ゲル化や焼け物の発生等が起こり、その結果、製品にゲルが混入することがある。また、せん断速度が過度に大きいと、せん断発熱による上記混合物の温度の制御が難しく、混合物の温度が高くなりすぎて、ゲルや焼け物の発生等が起こるため、工業的な製造方法として好ましくない。また、せん断速度が過度に小さいと、上記混合物の温度が低くなりすぎるため、充分なエン型付加反応が期待できない。
 エン型付加反応においては、混練するに際して、老化防止剤を添加することにより、バインダーのゲル化の上昇を防止することができる。老化防止剤の種類は、特に限定されないが、アミン系、アミンケトン系、フェノール系、ベンゾイミダゾール系、その他バインダー用の老化防止剤を使用することができる。
 アミン系老化防止剤の例としては、フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルフォニルアミド)ジフェニルアミン、N,N-ジ-2-ナフチル-p-フェニレンジアミン、N,N-ジフェニル-p-フェニレンジアミン、N-フェニル-N-イソプロピル-p-フェニレンジアミン、N-フェニル-N-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン等が挙げられる。
 アミンケトン系老化防止剤の例としては、2,2,4-トリメチル-1,2-ジヒドロキノリン、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン等が挙げられる。
 フェノール系老化防止剤の例としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4-チオビス(3-メチル-6-tert-ブチルフェノール)、2,5-ジ-tert-ブチルハイドロキノン、2,5-ジ-tert-アミルハイドロキノン等が挙げられる。
 ベンゾイミダゾール系老化防止剤の例としては、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾールの金属塩等が挙げられる。
 これら老化防止剤の使用量は、バインダー100質量部に対して、通常、0.01~5質量部、好ましくは0.1~2質量部である。
 上述した製造方法によれば、通常、エン型付加反応に使用するエチレン性不飽和カルボン酸またはその無水物の仕込量の80%以上を水添重合体に付加させて本発明に用いるバインダーを得ることができ、また、バインダー中に残存する未反応のエチレン性不飽和カルボン酸またはその無水物を仕込量の5%以下にすることができる。従って、この方法は、工業的に安定に生産する上で極めて有用である。本発明においては、上述した製造方法により、親水性基を有する重合単位を0.05~20質量%含むバインダーを得ることができる。
 本発明に用いるバインダーは、バインダーの製造工程において、バインダー分散液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。バインダーに含まれる粒子状金属成分の含有量が10ppm以下であることにより、後述する正極用スラリー組成物中のポリマー間の経時での金属イオン架橋を防止し、粘度上昇を防ぐことができる。さらに二次電池の内部短絡や充電時の溶解・析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。
 前記粒子状金属除去工程におけるバインダー分散液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいによる除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるため磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくはバインダーの製造ライン中に磁気フィルターを配置することで行われる。
 本発明に用いるバインダーの製造工程において、上記の重合法に用いられる分散剤は、通常の合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸-スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子などが例示され、これらは単独でも2種類以上を併用して用いても良い。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。分散剤の添加量は任意に設定でき、単量体総量100質量部に対して通常0.01~10質量部程度である。
 本発明に用いるバインダーが分散媒に分散している時のpHは、5~13が好ましく、更には5~12、最も好ましくは10~12である。バインダーのpHが上記範囲にあることにより、バインダーの保存安定性が向上し、さらには、機械的安定性が向上する。
 前記バインダーのpHを調整するpH調整剤は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化バリウムなどのアルカリ土類金属酸化物、水酸化アルミニウムなどの長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸マグネシウムなどのアルカリ土類金属炭酸塩などの炭酸塩;などが例示され、有機アミンとしては、エチルアミン、ジエチルアミン、プロピルアミンなどのアルキルアミン類;モノメタノールアミン、モノエタノールアミン、モノプロパノールアミンなどのアルコールアミン類;アンモニア水などのアンモニア類;などが挙げられる。これらの中でも、結着性や操作性の観点からアルカリ金属水酸化物が好ましく、特に水酸化ナトリウム、水酸化カリウム、水酸化リチウムが好ましい。
 また、前記バインダーには、上記ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び直鎖アルキレン重合単位をそれぞれ有する重合体のほかに、さらにその他の結着剤成分が含まれていてもよい。その他の結着剤成分としては、様々な樹脂成分を併用することができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレートなどを用いることができる。また、上記樹脂成分を50%以上含む共重合体も用いることができ、例えばアクリル酸-スチレン共重合体、アクリル酸-アクリレート共重合体等のポリアクリル酸誘導体;アクリロニトリル-スチレン共重合体、アクリロニトリル-アクリレート共重合体等のポリアクリロニトリル誘導体も用いることができる。これらの中でも、PVDFまたはポリアクリロニトリル誘導体を用いることが、正極の強度及び耐電解液性に優れることから好ましい。
 更に、下に例示する軟質重合体も、その他の結着剤として使用することができる。
ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
 ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
 液状ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
 ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
 ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
 フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴムなどのフッ素含有軟質重合体;
 天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体;などが挙げられる。
 これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、ポリアクリロニトリル誘導体が正極活物質の分散性を向上させるために好ましい。
(添加剤)
 本発明の二次電池正極用バインダー組成物は、上記のバインダーを含有し、その他に、後述する正極用スラリー組成物の塗布性や二次電池の充放電特性を向上させるために添加剤を加えることができる。これらの添加剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ポリアクリル酸ナトリウムなどのポリアクリル酸塩、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸-ビニルアルコール共重合体、メタクリル酸-ビニルアルコール共重合体、マレイン酸-ビニルアルコール共重合体、変性ポリビニルアルコール、ポリエチレングリコール、エチレン-ビニルアルコール共重合体、ポリ酢酸ビニル部分ケン化物などが挙げられる。これらの添加剤の使用割合は、バインダー組成物の固形分合計質量に対して、好ましくは300質量%未満、より好ましくは30質量%以上250質量%以下、特に好ましくは40質量%以上200質量%以下である。この範囲であれば、平滑性が優れた二次電池正極を得ることができる。また、添加剤として、イソチアゾリン系化合物やキレート化合物を加えることもできる。これらの添加剤は、バインダー組成物に添加する方法以外に、後述する本発明の二次電池正極用スラリー組成物に添加することもできる。
(二次電池正極用バインダー組成物の製造方法)
 本発明の二次電池正極用バインダー組成物の製造方法は、時に限定されず、上述のバインダー分散液に、必要に応じて添加剤を添加し、混合することで製造される。バインダー分散液に、添加剤を混合する方法は特に限定されず、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
二次電池正極用スラリー組成物
 本発明の二次電池正極用スラリー組成物(「正極用スラリー組成物」と記載することがある。)は、上記二次電池正極用バインダー組成物及び正極活物質を含有する。以下においては、本発明の二次電池正極用スラリー組成物を、リチウムイオン二次電池正極用スラリー組成物として用いる態様について説明する。
(正極活物質)
 正極活物質としては、リチウムイオンの吸蔵放出可能な活物質が用いられ、リチウムイオン二次電池正極用電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
 遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でも得られる二次電池のサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物、LiMaOとLiMbOの固溶体である、xLiMaO・(1-x)LiMbO (0<x<1、Maは平均酸化状態が3+である一つ以上の遷移金属、Mbは平均酸化状態が4+である一つ以上の遷移金属)等が挙げられる。二次電池のサイクル特性を向上させるという観点からは、LiCoOを用いることが好ましく、二次電池のエネルギー密度を向上させるという観点からは、LiMaOとLiMbOの固溶体が好ましい。また、LiMaOとLiMbOの固溶体としては、特に、xLiMaO・(1-x)LiMbO(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等、Mb=Mn、Zr、Ti等)が好ましく、中でもxLiMaO・(1-x)LiMnO(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等)が好ましい。
 スピネル構造を有するリチウム含有複合金属酸化物としては、マンガン酸リチウム(LiMn)のMnの一部を他の遷移金属で置換したLi[Mn2-xMd]O(ここでMdは平均酸化状態が4+である1つ以上の遷移金属、Md=Ni,Co,Fe,Cu,Cr等、0<x<1、0≦a≦1)等が挙げられる。中でも、MnをFeで置換したLiFeMn2-x4-z(0≦a≦1、0<x<1、0≦z≦0.1)は、コストが安価であることから好ましく、MnをNiで置換したLiNi0.5Mn1.5などは構造劣化の因子と考えられているMn3+を全て置換することができ、Ni2+からNi4+への電気化学反応をすることから高い作動電圧で、かつ、高い容量を有することができるので、好ましい。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、LiMcPO(式中、Mcは平均酸化状態が3+である1つ以上の遷移金属、Mc=Mn,Co等、0≦y≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。MnまたはCoは他の金属で一部置換されていてもよく、置換しうる金属としてはFe,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoなどが挙げられる。
 その他、LiMeSiO(ここでMeは、Fe,Mn)等のポリアニオン構造を有する正極活物質や、ペロブスカイト構造を有するLiFeF、斜方昌構造を有するLiCuなどが挙げられる。
 有機化合物としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 本発明で用いる正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1~50μm、好ましくは0.4~30μm、更に好ましくは1~20μmである。50%体積累積径がこの範囲であると、出力特性に優れ、充放電容量が大きい二次電池を得ることができ、かつ、正極活物質層を形成するための正極用スラリー組成物および正極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
 正極活物質のBET比表面積は、好ましくは0.1~10m/g、より好ましくは0.2~1.0m/gである。正極活物質のBET比表面積を上記範囲とすることで、活物質構造中へのLiの挿入脱離がしやすく、且つ安定した正極用スラリー組成物を得ることができる。なお、本発明において、「BET比表面積」とは、窒素吸着法によるBET比表面積のことをいい、ASTM D3037-81に準じて、測定される値である。
 また、正極活物質自体の長期サイクル時の構造安定性が高いことと、電解液の酸化安定性の観点から、本発明に用いる正極活物質はリチウム金属に対する充電平均電圧が3.9V未満であることが好ましい。なお、本発明において、充電平均電圧は、定電流法によって、二次電池を上限電圧まで充電し、その際のリチウムの脱離が起こっている電位(プラトー)をいう。上限電圧は、該電圧を超えると電池の膨張、発熱が起こるおそれがあり、安全性確保の限界になる電圧をいう。
 本発明の二次電池正極用スラリー組成物における、バインダー組成物及び正極活物質の合計含有量(固形分相当量)は、正極用スラリー組成物100質量部(固形分相当量)に対して、好ましくは10~90質量部であり、さらに好ましくは30~80質量部である。また正極活物質の総量に対するバインダー組成物の含有量(固形分相当量)は、正極活物質の総量100質量部に対して、好ましくは0.1~5質量部であり、さらに好ましくは0.5~2質量部である。正極用スラリー組成物における正極活物質及びバインダー組成物の合計含有量とバインダー組成物の含有量が上記範囲であると、得られる正極用スラリー組成物の粘度が適正化され、塗工を円滑に行えるようになり、また得られた正極に関して抵抗が高くなることなく、十分な密着強度が得られる。その結果、極板プレス工程における正極活物質からのバインダー組成物の剥がれを抑制することができる。
 正極用スラリー組成物における分散媒としては、バインダー組成物を均一に溶解または分散し得るものであれば特に制限されず、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類が挙げられる。
 これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、正極活物質や後述する導電剤の分散性に優れ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、シクロヘキサノン、トルエン等に加えて、これらの混合溶媒が好ましい。
 正極用スラリー組成物の固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~80質量%程度である。
(導電剤)
 正極用スラリー組成物においては、導電剤を含有することが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電剤を含有することにより、正極活物質同士の電気的接触を向上させることができ、二次電池に用いる場合に放電レート特性を改善することができる。正極用スラリー組成物における導電剤の含有量は、正極活物質の総量100質量部に対して、好ましくは1~20質量部、より好ましくは1~10質量部である。
(増粘剤)
 正極用スラリー組成物においては、増粘剤を含有することが好ましい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。
 増粘剤の配合量は、正極活物質100質量部に対して、0.5~1.5質量部が好ましい。増粘剤の配合量が上記範囲であると、塗工性、集電体との密着性が良好である。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。
(他の成分)
 正極用スラリー組成物には、上記成分のほかに、さらに補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよく、後述の二次電池正極中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な正極を得ることができ、優れた長期サイクル特性を示すことができる。正極用スラリー組成物における補強材の含有量は、正極活物質の総量100質量部に対して通常0.01~20質量部、好ましくは1~10質量である。上記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、正極の平滑性を向上させることができる。正極用スラリー組成物中のレベリング剤の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。レベリング剤が上記範囲であることにより正極作製時の生産性、平滑性及び電池特性に優れる。界面活性剤を含有させることにより正極用スラリー組成物中の正極活物質等の分散性を向上することができ、さらにそれにより得られる正極の平滑性を向上させることができる。
 電解液添加剤としては、正極用スラリー組成物中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。正極用スラリー組成物中の電解液添加剤の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。電解液添加剤が、上記範囲であることにより高温サイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することにより正極用スラリー組成物のチキソ性をコントロールすることができ、さらにそれにより得られる正極のレベリング性を向上させることができる。正極用スラリー組成物中のナノ微粒子の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。
(二次電池正極用スラリー組成物の製造)
 二次電池正極用スラリー組成物は、上記バインダー組成物、正極活物質および必要に応じ用いられる導電剤等を混合して得られる。正極用スラリー組成物を調製するときに使用する分散媒の量は、正極用スラリー組成物の固形分濃度が、通常1~80質量%、好ましくは5~50質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、上記バインダー組成物が均一に分散するため好適である。
 混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
 正極用スラリー組成物の粘度は、室温において、後述する正極の製造方法を(II)の湿式成形法で行う場合には、通常10~50,000mPa・s、好ましくは100~10,000mPa・s、より好ましくは300~2,000mPa・sの範囲であり、後述する正極の製造方法を(III)の乾式成形法で行う場合には、通常10~3,000mPa・s、好ましくは30~1,500mPa・s、より好ましくは50~1,000mPa・sの範囲である。正極用スラリー組成物の粘度がこの範囲にあると、湿式成形法においては均一な電極を得ることができ、得られる電池のサイクル特性も向上する。また乾式成形法においては、後述する複合粒子の生産性を上げることができる。また、正極用スラリー組成物の粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
二次電池正極
 本発明の二次電池正極(「正極」と記載することがある。)は、本発明の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる。
(二次電池正極の製造方法)
 本発明の二次電池正極の製造方法は、特に限定されない。具体的には、(I)上記正極用スラリー組成物をシート成形し、得られたシートを集電体上に積層し、正極活物質層を形成する方法(シート成形法)、(II)上記正極用スラリー組成物を集電体の少なくとも片面、好ましくは両面に塗布、乾燥し、正極活物質層を形成する方法(湿式成形法)、及び(III)上記正極用スラリー組成物から複合粒子を調製し、これを集電体上に供給してシート成形し、正極活物質層を形成する方法(乾式成形法)等が挙げられる。これらの中でも、(II)湿式成形法、又は(III)乾式成形法が好ましい。(II)湿式成形法は二次電池正極の生産効率に優れており、(III)乾式成形法は得られる二次電池正極の容量を高くでき、且つ内部抵抗を低減できる点で優れている。
 (II)湿式成形法において、正極用スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5~30分であり、乾燥温度は通常40~180℃である。
 (III)乾式成形法における複合粒子は、上記正極用スラリー組成物に含まれるバインダー組成物や正極活物質等が一体化した粒子をさす。複合粒子を用いて正極活物質層を形成することにより、得られる二次電池正極の結着性をより高くできると共に、内部抵抗を低減することができる。
 本発明に好適に用いる複合粒子は、本発明のバインダー組成物、正極活物質及び必要に応じて用いられる導電剤等を造粒することにより製造される。
 複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、及び溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近にバインダー組成物及び導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の二次電池正極を高い生産性で得ることができる。また、二次電池正極の内部抵抗をより低減することができる。
 噴霧乾燥造粒法では、本発明の二次電池正極用スラリー組成物を噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中に正極用スラリー組成物を噴霧して乾燥することにより行う。正極用スラリー組成物の噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央に正極用スラリー組成物を導入し、円盤の遠心力によって正極用スラリー組成物が円盤の外に放たれ、その際に正極用スラリー組成物を霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~40,000rpm、好ましくは15,000~40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。正極用スラリー組成物は噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、正極用スラリー組成物を加圧してノズルから霧状にして乾燥する方式である。
 噴霧される正極用スラリー組成物の温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。
 噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 本発明に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をL、長軸径をL、L=(L+L)/2とし、(1-(L-L)/L)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lおよび長軸径Lは、透過型電子顕微鏡写真像より測定される値である。
 本発明に好適に用いる複合粒子の体積平均粒子径は、通常5~500μm、好ましくは7~300μm、より好ましくは10~100μmの範囲である。体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
 本発明において、複合粒子を集電体上に供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
 次いで、集電体と供給された複合粒子とを一対のロールで加圧して、集電体上に正極活物質層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の正極活物質層に成形される。供給される複合粒子の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、正極活物質層を得ることができる。
 成形時の温度は、通常0~200℃であり、本発明に用いるバインダーの融点又はガラス転移温度より高いことが好ましく、融点又はガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35~70m/分である。またプレス用ロール間のプレス線圧は、通常0.2~30kN/cm、好ましくは0.5~10kN/cmである。
 上記製法では、前記一対のロールの配置は特に限定されないが、略水平又は略垂直に配置されることが好ましい。略水平に配置する場合は、集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により正極活物質層を形成できる。略垂直に配置する場合は、集電体を水平方向に搬送させ、集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により正極活物質層を形成できる。
 本発明の二次電池正極を製造するに際して、集電体上に上記正極用スラリー組成物からなる正極活物質層を形成後、金型プレスやロールプレスなどを用い、加圧処理により正極活物質層の空隙率を低くする工程を有することが好ましい。空隙率の好ましい範囲は5~30%、より好ましくは7~20%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難く、正極活物質層が集電体から剥がれ易く不良を発生し易いといった問題を生じる。さらに、正極用バインダー組成物に硬化性の重合体を用いる場合は、硬化させることが好ましい。
 本発明の二次電池正極における正極活物質層の厚みは、通常5~300μmであり、好ましくは10~250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す。
 本発明において、正極活物質層における正極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。正極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(集電体)
 本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池正極に用いる集電体としてはアルミニウムが特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層と集電体との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよく、中でも、導電性接着剤層を形成するのが好ましい。
二次電池
 本発明の二次電池は、正極、負極、セパレーター及び電解液を備えてなる二次電池であって、正極が、上記二次電池正極である。
(負極)
 負極は、負極活物質及び二次電池負極用バインダー組成物を含む負極活物質層が、集電体上に積層されてなる。
(負極活物質)
 本発明に用いる負極活物質は、二次電池負極内で電子の受け渡しをする物質である。
リチウムイオン二次電池用負極活物質としては、具体的には、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性炭素質材料である。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩を使用できる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコーン等も使用できる。上記負極活物質は、単独または2種類以上を組み合わせて使用することができる。
 負極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
 負極活物質の体積平均粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが通常0.1~100μm、好ましくは1~50μm、より好ましくは5~20μmである。また、負極活物質の50%体積累積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1~50μm、好ましくは15~30μmである。
 負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 負極活物質層における、負極活物質の含有割合は、好ましくは85~99質量%、より好ましくは88~97質量%である。負極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
 本発明において、二次電池負極の負極活物質層の密度は、好ましくは1.6~1.9g/cmであり、より好ましくは1.65~1.85g/cmである。負極活物質層の密度が上記範囲にあることにより、高容量の電池を得ることができる。
(二次電池負極用バインダー組成物)
 二次電池負極用バインダー組成物としては、特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
 負極には、上記成分のほかに、さらに前述の、導電剤、増粘剤、補強材、レベリング剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 集電体は、前述の二次電池正極に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、二次電池負極用としては銅が特に好ましい。
 負極活物質層の厚みは、通常5~300μmであり、好ましくは10~250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
 負極は、前述の二次電池正極と同様に製造することができる。
(セパレーター)
 セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
(電解液)
 本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類、1,2-ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。
(二次電池の製造方法)
 本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価する。
<バインダーのガラス転移温度>
 バインダーのガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製 DSC6220SII)を用いて、JIS K 7121;1987に基づいて測定した。
<バインダーの溶解度パラメータ(SP値)>
 SP値(δ)は、バインダーの重合単位を構成する各単量体の官能基(原子団)の特性値、すなわち、分子引力定数(G)の統計と分子容とからとから次式に従って計算によって求めた。
 δ=ΣG/V=dΣG/M
 ΣG:分子引力定数Gの総計
 V:比容
 M:分子量
 d:比重
<バインダーのヨウ素価>
 バインダーのNMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥した。乾燥したバインダーのヨウ素価をJIS K6235;2006に従って測定した。
<バインダーの膨潤度>
 バインダーのNMP溶液をポリテトラフルオロエチレン製シートにキャストし、乾燥してキャストフィルムを得た。このキャストフィルム4cmを切り取って重量(浸漬前重量A)を測定し、その後、温度60℃の電解液中に浸漬した。浸漬したフィルムを72時間後に引き上げ、タオルペーパーで拭きとってすぐに重量(浸漬後重量B)を測定した。バインダーの電解液膨潤度を下記の式より算出し、以下の基準で評価する。膨潤度が低いほど耐電解液性と電池特性(高温サイクル特性)に優れることを示す。なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 膨潤度(%)=B/A×100(%)
<スラリー安定性>
 JIS Z8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により正極用スラリー組成物の粘度を測定し、測定開始後1分の値を求め、これをスラリー粘度Aとした。また、正極用スラリー組成物作製1日後のスラリー粘度Bを測定した。正極用スラリー組成物の粘性変化率を下記の式より算出し、以下の基準で評価する。粘性変化率が低いほどスラリー安定性に優れることを示す。
 粘性変化率(%)=(B-A)/A×100
  A:10%未満
  B:10%以上50%未満
  C:50%以上100%未満
  D:100%以上200%未満
  E:200%以上500%未満
  F:500%以上
<電極柔軟性>
 正極の正極活物質層側に径の異なる棒を載置し、正極を棒に巻き付けて正極活物質層が割れるかどうかを評価した。棒の直径が小さいほど、正極の捲回性に優れることを示す。捲回性に優れると、正極活物質層の剥がれを抑制することができるため、二次電池のサイクル特性に優れる。
 A:1.2mmφで割れない
 B:1.5mmφで割れない
 C:2mmφで割れない
 D:3mmφで割れない
 E:4mmφで割れない
<高温サイクル特性>
 5セルのリチウムイオン二次電池を45℃雰囲気下、0.5Cの定電流法によって4.2Vに充電し、3.0Vまで放電する充放電を、200サイクル繰り返した。200サイクル終了時の電気容量と5サイクル終了時の電気容量の比(=200サイクル終了時の電気容量/5サイクル終了時の電気容量×100)(%)で表される充放電容量保持率を求めた。この値が大きいほど高温サイクル特性に優れることを示す。なお、実施例13においては、10セルのハーフセルコイン型リチウムイオン二次電池を用いた場合の高温サイクル特性も評価した。
(実施例1)
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、2-エチルヘキシルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(2-エチルヘキシルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-35℃であり、SP値は10.0(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、200%であった。
〔正極用スラリー組成物および正極の製造〕
 正極活物質として層状構造を有するコバルト酸リチウム(LiCoO)(粒子径:12μm)100部と、アセチレンブラック(HS-100:電気化学工業)2.0部と、前記バインダーのNMP溶液を固形分相当量で1.0部(固形分濃度8.0%)と、適量のNMPとをプラネタリーミキサーにて攪拌し、正極用スラリー組成物を調製した。作製した正極用スラリー組成物を用いてスラリー安定性の評価を行った。結果を表1に示す。
 集電体として、厚さ20μmのアルミ箔を準備した。上記正極用スラリー組成物をコンマコーターでアルミ箔上に乾燥後の膜厚が65μm程度になるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.5g/cmの正極活物質層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。作製した正極を用いて電極柔軟性の測定を行った。結果を表1に示す。
〔負極用のスラリー組成物および負極の製造〕
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
 上記混合液に、スチレン-ブタジエン共重合体(ガラス転移点温度が-15℃)を含む40%水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
 上記負極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極活物質層を有する負極を得た。
〔セパレーターの用意〕
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
〔リチウムイオン二次電池の製造(フルセル)〕
 電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF溶液を充填した。このLiPF溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、高温サイクル特性を評価した。結果を表1に示す。
(実施例2)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例3)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、エチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(エチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-10℃であり、SP値は10.3(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、350%であった。
(実施例4)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ラウリルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ラウリルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は30℃であり、SP値は10(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、195%であった。
(実施例5)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート40部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン35部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を35質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を40質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位29.9質量%と未水添ブタジエン重合単位1.9質量%と1,2-付加重合単位3.2質量%とから形成されていた。また、バインダーのガラス転移温度は-40℃であり、SP値は10.3(cal/cm1/2であった。なお、バインダーのヨウ素価は9mg/100mgであった。さらに、バインダーの膨潤度は、360%であった。
(実施例6)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート10部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン65部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は330mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は37mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を65質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位56.5質量%と未水添ブタジエン重合単位2.6質量%と1,2-付加重合単位5.9質量%とから形成されていた。また、バインダーのガラス転移温度は-38℃であり、SP値は9.9(cal/cm1/2であった。なお、バインダーのヨウ素価は12mg/100mgであった。さらに、バインダーの膨潤度は、155%であった。
(実施例7)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、アクリルアミド-2-メチルプロパンスルホン酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(スルホン酸基)を有する重合単位(アクリルアミド-2-メチルプロパンスルホン酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例8)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、メチルメタクリレート40部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン35部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を35質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(メチルメタクリレート単量体単位)を40質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位29.9質量%と未水添ブタジエン重合単位1.9質量%と1,2-付加重合単位3.2質量%とから形成されていた。また、バインダーのガラス転移温度は30℃であり、SP値は10.4(cal/cm1/2であった。なお、バインダーのヨウ素価は9mg/100mgであった。さらに、バインダーの膨潤度は、395%であった。
(実施例9)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例10)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル5部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン60部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は300mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は36mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を5質量%、1,3-ブタジエン由来の単量体単位を60質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位52.3質量%と未水添ブタジエン重合単位2.3質量%と1,2-付加重合単位5.4質量%とから形成されていた。また、バインダーのガラス転移温度は-36℃であり、SP値は9.3(cal/cm1/2であった。なお、バインダーのヨウ素価は11mg/100mgであった。さらに、バインダーの膨潤度は、120%であった。
(実施例11)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル10部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン55部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を10質量%、1,3-ブタジエン由来の単量体単位を55質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位47.9質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位5質量%とから形成されていた。また、バインダーのガラス転移温度は-39℃であり、SP値は9.6(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、120%であった。
(実施例12)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル25部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン40部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を25質量%、1,3-ブタジエン由来の単量体単位を40質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位34.3質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位3.6質量%とから形成されていた。また、バインダーのガラス転移温度は-20℃であり、SP値は10.4(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、430%であった。
(実施例13)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸4.5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45.5部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3-ブタジエン由来の単量体単位を45.5質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を4.5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位39.3質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-30℃であり、SP値は10.0(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。バインダーの膨潤度は250%であった。
〔正極用スラリー組成物および正極の製造〕
 正極活物質として層状構造を有するコバルト酸リチウム(LiCoO)(粒子径:12μm)100部と、アセチレンブラック(HS-100:電気化学工業)2.0部と、前記バインダーのNMP固形分量1.0部(固形分濃度8.0%)と、適量のNMPとをプラネタリーミキサーにて攪拌し、正極用スラリー組成物を調製した。作製した正極用スラリー組成物を用いてスラリー安定性の評価を行った。結果を表1に示す。
 集電体として、厚さ20μmのアルミ箔を準備した。上記正極用スラリー組成物をコンマコーターでアルミ箔上に乾燥後の膜厚が65μm程度になるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.5g/cmの正極活物質層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。作製した正極を用いて電極柔軟性の測定を行った。結果を表1に示す。
〔リチウムイオン二次電池の製造(ハーフセル)〕
 前記正極を直径16mmの円盤状に切り抜き、この正極の正極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのリチウムイオンコイン電池(ハーフセル)を作製した。 なお、電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。このリチウムイオン二次電池を用いて高温サイクル特性を評価した。結果を表1に示す。
〔負極用のスラリー組成物および負極の製造〕
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
 上記混合液に、スチレン-ブタジエン共重合体(ガラス転移点温度が-15℃)を含む40%水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
 上記負極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極活物質層を有する負極を得た。
〔セパレーターの用意〕
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
〔リチウムイオン二次電池の製造(フルセル)〕
 電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF溶液を充填した。このLiPF溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、高温サイクル特性を評価した。結果を表1に示す。
(比較例1)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 重合缶Aに、2-エチルヘキシルアクリレート8.8部、アクリロニトリル1部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2-エチルヘキシルアクリレート79.2部、アクリロニトリル9部、メタクリル酸2.0部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、重合体の水分散液を得た。
 このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させたが、NMPに溶解せず、その後の評価を実施することができなかった。該水分散液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を10質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を2質量%、(メタ)アクリル酸エステル重合単位(2-エチルヘキシルアクリレート単量体単位)を88質量%含んでいた。また、バインダーのガラス転移温度は-50℃未満であり、SP値は9.8(cal/cm1/2であった。なお、バインダーのヨウ素価は0mg/100mgであった。さらに、バインダーの膨潤度は、110%であった。
(比較例2)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル35部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン60部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は300mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は36mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を35質量%、1,3-ブタジエン由来の単量体単位を60質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位52.3質量%と未水添ブタジエン重合単位2.3質量%と1,2-付加重合単位5.4質量%とから形成されていた。また、バインダーのガラス転移温度は-28℃であり、SP値は10.6(cal/cm1/2であった。なお、バインダーのヨウ素価は11mg/100mgであった。さらに、バインダーの膨潤度は、495%であった。
(比較例3)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル43部、エチルアクリレート10部、メタクリル酸2部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を43質量%、1,3-ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を2質量%、(メタ)アクリル酸エステル重合単位(エチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-10℃であり、バインダーのSP値は11.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、760%であった。
(比較例4)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル55部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を55質量%、1,3-ブタジエン由来の単量体単位を45質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2-付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は-15℃であり、SP値は11.5(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、965%であった。
(比較例5)
 正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル5部、ブチルアクリレート10部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン80部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は350mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は40mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を5質量%、1,3-ブタジエン由来の単量体単位を80質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3-ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位69.6質量%と未水添ブタジエン重合単位3.2質量%と1,2-付加重合単位7.2質量%とから形成されていた。また、バインダーのガラス転移温度は-38℃であり、SP値は9.0(cal/cm1/2であった。なお、バインダーのヨウ素価は15mg/100mgであった。さらに、バインダーの膨潤度は、80%であった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果に示すように、実施例1~13のバインダー組成物を用いた場合には、スラリー安定性に優れたスラリー組成物が得られた。一方、比較例1のバインダー組成物を用いた場合には、NMPに溶解せずスラリー組成物を得ることができなかった。そのため、比較例1においては、スラリー安定性、電極柔軟性及び高温サイクル特性の評価ができなかった。
 また、実施例1~3、5~7および9~13のバインダー組成物を用いた正極は、比較例2および4のバインダー組成物を用いた正極よりも電極柔軟性に優れる。
 さらにまた、実施例1~13のバインダー組成物を用いた電池は、比較例2~5のバインダー組成物を用いた電池よりも高温サイクル特性に優れる。
 すなわち、実施例1~13のバインダー組成物は、比較例1~5のバインダー組成物に比べて、スラリー安定性、電極柔軟性および高温サイクル特性のバランスに優れる。
 本発明においては、スラリー安定性、電極柔軟性および高温サイクル特性のバランスに優れる実施例1~3、5、7、9、11~13が好ましく、さらにスラリー安定性、電極柔軟性および高温サイクル特性のバランスが特に優れる実施例1、2、7および13が特に好ましい。

Claims (12)

  1.  ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、
     エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100~500%であることを特徴とする二次電池正極用バインダー組成物。
  2.  前記(メタ)アクリル酸エステル重合単位の含有割合が5~50質量%である請求項1に記載の二次電池正極用バインダー組成物。
  3.  前記ニトリル基を有する重合単位の含有割合が2~50質量%である請求項1または2に記載の二次電池正極用バインダー組成物。
  4.  前記親水性基を有する重合単位の含有割合が0.05~20質量%である請求項1~3のいずれかに記載の二次電池正極用バインダー組成物。
  5.  前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数が4~10である請求項1~4のいずれかに記載の二次電池正極用バインダー組成物。
  6.  前記バインダーの溶解度パラメーター(SP値)が、9.0(cal/cm1/2以上、11(cal/cm1/2未満である請求項1~5のいずれかに記載の二次電池正極用バインダー組成物。
  7.  前記バインダーのヨウ素価が、3~60mg/100mgである請求項1~6のいずれかに記載の二次電池正極用バインダー組成物。
  8.  前記バインダーのガラス転移温度が25℃以下である請求項1~7のいずれかに記載の二次電池正極用バインダー組成物。
  9.  請求項1~8のいずれかに記載の二次電池正極用バインダー組成物及び正極活物質を含有してなる二次電池正極用スラリー組成物。
  10.  請求項9に記載の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる二次電池正極。
  11.  正極、負極、セパレーター及び電解液を有する二次電池であって、
     前記正極が、請求項10に記載の二次電池正極である二次電池。
  12.  請求項9に記載の二次電池正極用スラリー組成物を集電体の少なくとも片面に塗布、乾燥する工程を有する二次電池正極の製造方法。
PCT/JP2012/080698 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 WO2013080989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147014233A KR101959520B1 (ko) 2011-11-28 2012-11-28 2 차 전지 정극용 바인더 조성물, 2 차 전지 정극용 슬러리 조성물, 2 차 전지 정극 및 2 차 전지
US14/360,887 US9601775B2 (en) 2011-11-28 2012-11-28 Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
JP2013547178A JP6156149B2 (ja) 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-258637 2011-11-28
JP2011258637 2011-11-28
JP2011258638 2011-11-28
JP2011-258638 2011-11-28
JP2012-017060 2012-01-30
JP2012017060 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013080989A1 true WO2013080989A1 (ja) 2013-06-06

Family

ID=48535440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080698 WO2013080989A1 (ja) 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Country Status (4)

Country Link
US (1) US9601775B2 (ja)
JP (1) JP6156149B2 (ja)
KR (1) KR101959520B1 (ja)
WO (1) WO2013080989A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098116A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池
JP2015191732A (ja) * 2014-03-27 2015-11-02 日本ゼオン株式会社 二次電池電極用導電材ペースト、二次電池正極用スラリー、二次電池用正極の製造方法および二次電池
CN106104859A (zh) * 2014-04-02 2016-11-09 日本瑞翁株式会社 锂离子二次电池正极用浆料、锂离子二次电池正极用浆料的制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池
JP2016192267A (ja) * 2015-03-31 2016-11-10 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017022598A1 (ja) * 2015-08-05 2017-02-09 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム、架橋性ゴム組成物、およびゴム架橋物
JPWO2015005117A1 (ja) * 2013-07-08 2017-03-02 三洋化成工業株式会社 リチウムイオン電池活物質被覆用樹脂、リチウムイオン電池活物質被覆用樹脂組成物及びリチウムイオン電池用被覆活物質
JPWO2016129426A1 (ja) * 2015-02-12 2017-07-20 富士フイルム株式会社 全固体二次電池、それに用いる固体電解質組成物、これを用いた電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2017150048A1 (ja) 2016-03-03 2017-09-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
JPWO2017010093A1 (ja) * 2015-07-14 2018-04-26 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2018123624A1 (ja) 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2018168502A1 (ja) * 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US20180301744A1 (en) * 2015-06-24 2018-10-18 Zeon Corporation Composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing composition for electrochemical device electrode
WO2019021891A1 (ja) 2017-07-28 2019-01-31 日本ゼオン株式会社 電気化学素子用電極および電気化学素子、並びに電気化学素子用電極の製造方法
WO2019044452A1 (ja) * 2017-08-29 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019054173A1 (ja) 2017-09-15 2019-03-21 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2019131210A1 (ja) 2017-12-28 2019-07-04 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2019131211A1 (ja) 2017-12-28 2019-07-04 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP2019527457A (ja) * 2016-07-26 2019-09-26 ハッチンソンHutchinson リチウムイオン電池セルのアノード、その製造方法及びそれを備えた電池
WO2020075626A1 (ja) * 2018-10-10 2020-04-16 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子
WO2020137591A1 (ja) 2018-12-27 2020-07-02 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2020137594A1 (ja) 2018-12-27 2020-07-02 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2020241383A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用導電材ペースト組成物、二次電池正極用スラリー組成物、二次電池用正極及びその製造方法、並びに二次電池
WO2020241322A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池、並びに全固体二次電池用スラリー組成物の製造方法
WO2020241384A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法
US10964947B2 (en) 2015-06-29 2021-03-30 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2021085044A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
WO2021085344A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
WO2021085141A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021085343A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
WO2021131484A1 (ja) 2019-12-26 2021-07-01 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、および固体電解質含有層、並びに、全固体二次電池および全固体二次電池の製造方法
US11145866B2 (en) 2016-09-06 2021-10-12 Zeon Corporation Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
WO2022044815A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 全固体二次電池用バインダー組成物の製造方法、全固体二次電池用スラリー組成物の製造方法、固体電解質含有層の製造方法、および全固体二次電池の製造方法
WO2022113859A1 (ja) 2020-11-27 2022-06-02 日本ゼオン株式会社 電気化学素子用ペースト、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2022113703A1 (ja) 2020-11-27 2022-06-02 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
WO2022138004A1 (ja) 2020-12-25 2022-06-30 日本ゼオン株式会社 電気化学素子正極用組成物、電気化学素子正極用スラリー組成物、電気化学素子用正極、および電気化学素子
WO2022249933A1 (ja) 2021-05-27 2022-12-01 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
WO2023162609A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池
US11784313B2 (en) 2015-09-30 2023-10-10 Zeon Corporation Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2024070249A1 (ja) * 2022-09-29 2024-04-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2794475T3 (da) 2011-12-21 2020-04-27 Univ California Forbundet korrugeret carbonbaseret netværk
HUE045037T2 (hu) * 2012-03-02 2019-12-30 Zeon Corp Pozitív elektród szekunder akkumulátorhoz és szekunder akkumulátor
ES2934222T3 (es) 2012-03-05 2023-02-20 Univ California Condensador con electrodos hechos de una red a base de carbono corrugado interconectado
KR101739299B1 (ko) * 2013-09-24 2017-06-08 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
KR102234295B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
JP6181590B2 (ja) * 2014-04-02 2017-08-16 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR102443607B1 (ko) 2014-06-16 2022-09-16 더 리전트 오브 더 유니버시티 오브 캘리포니아 하이브리드 전기화학 전지
US10290873B2 (en) * 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
CN114678597A (zh) * 2014-10-27 2022-06-28 日立化成株式会社 锂离子电池
ES2935063T3 (es) 2014-11-18 2023-03-01 Univ California Material compuesto poroso interconectado de red corrugada a base de carbono (ICCN)
JP6415008B2 (ja) * 2015-02-20 2018-10-31 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
KR101673763B1 (ko) 2015-04-30 2016-11-07 현대자동차주식회사 전고체 리튬이온 전지 양극 및 이를 포함하는 전고체 리튬이온 전지
US10930928B2 (en) 2015-06-22 2021-02-23 Alliance For Sustainable Energy, Llc Magnesium metal devices and methods of making the same
JP7017081B2 (ja) * 2015-09-16 2022-02-08 日本ゼオン株式会社 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
IL259749B (en) 2015-12-22 2022-08-01 Univ California Thin cellular graphene
CA3009208A1 (en) 2016-01-22 2017-07-27 The Regents Of The University Of California High-voltage devices
JP6975429B2 (ja) 2016-03-23 2021-12-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California 高電圧用及び太陽電池用の装置及び方法
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
EP3355384A1 (en) * 2017-01-31 2018-08-01 Universite De Liege Flexible thin-films for battery electrodes
JP7479154B2 (ja) 2017-07-03 2024-05-08 アランセオ・ドイチュランド・ゲーエムベーハー 全固体リチウムイオン電池のカソード及び前記カソードを含む全固体リチウムイオン電池
KR102563188B1 (ko) 2017-07-14 2023-08-02 더 리전트 오브 더 유니버시티 오브 캘리포니아 슈퍼 커패시터 적용을 위한 탄소 나노 입자로부터 고전도성의 다공성 그래핀으로의 단순 루트
US20210344043A1 (en) * 2018-08-31 2021-11-04 Zeon Corporation Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixed material layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, electrode for all-solid-state secondary battery, solid electrolyte layer for all-solid-state secondary battery, and all-solid-state secondary battery
KR102306446B1 (ko) * 2018-12-28 2021-09-28 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN113710721A (zh) * 2019-04-19 2021-11-26 三菱化学株式会社 环氧树脂组合物、固化性树脂组合物、固化物、粘接剂
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
US10938032B1 (en) * 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
JP6911987B1 (ja) * 2020-08-31 2021-07-28 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2024046966A1 (en) * 2022-08-30 2024-03-07 Arlanxeo Deutschland Gmbh HNBR CATHODE BINDERS FOR BATTERY CELLS USING γ-VALEROLACTONE AS PROCESSING SOLVENT

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JPH11288720A (ja) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd 二次電池用バインダー組成物、電池電極用スラリー、電池用電極および二次電池
JPH11297328A (ja) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd リチウムイオン二次電池用電極および二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire
JP2003223895A (ja) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd 二次電池電極用スラリー組成物、二次電池電極および二次電池
WO2004095613A1 (ja) * 2003-04-24 2004-11-04 Zeon Corporation リチウムイオン二次電池電極用バインダー
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598153B2 (ja) 1995-08-28 2004-12-08 ソニー株式会社 非水電解質二次電池
JP4502311B2 (ja) 2003-10-17 2010-07-14 日立マクセル株式会社 リチウム二次電池の製造方法
JP4748439B2 (ja) 2004-07-30 2011-08-17 日立化成工業株式会社 リチウム電池電極用バインダ樹脂組成物、電極および電池
KR101077870B1 (ko) * 2010-02-26 2011-10-28 주식회사 엘지화학 접착력이 우수한 이차전지용 바인더

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JPH11288720A (ja) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd 二次電池用バインダー組成物、電池電極用スラリー、電池用電極および二次電池
JPH11297328A (ja) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd リチウムイオン二次電池用電極および二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire
JP2003223895A (ja) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd 二次電池電極用スラリー組成物、二次電池電極および二次電池
WO2004095613A1 (ja) * 2003-04-24 2004-11-04 Zeon Corporation リチウムイオン二次電池電極用バインダー
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015005117A1 (ja) * 2013-07-08 2017-03-02 三洋化成工業株式会社 リチウムイオン電池活物質被覆用樹脂、リチウムイオン電池活物質被覆用樹脂組成物及びリチウムイオン電池用被覆活物質
WO2015098116A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池
CN105814718A (zh) * 2013-12-27 2016-07-27 日本瑞翁株式会社 二次电池电极用导电材料糊、二次电池正极用浆料的制造方法、二次电池用正极的制造方法以及二次电池
JP2015191732A (ja) * 2014-03-27 2015-11-02 日本ゼオン株式会社 二次電池電極用導電材ペースト、二次電池正極用スラリー、二次電池用正極の製造方法および二次電池
CN106104859A (zh) * 2014-04-02 2016-11-09 日本瑞翁株式会社 锂离子二次电池正极用浆料、锂离子二次电池正极用浆料的制造方法、锂离子二次电池用正极的制造方法及锂离子二次电池
KR20160140631A (ko) * 2014-04-02 2016-12-07 니폰 제온 가부시키가이샤 리튬이온 이차전지 정극용 슬러리, 리튬이온 이차전지 정극용 슬러리의 제조 방법, 리튬이온 이차전지용 정극의 제조 방법, 및 리튬이온 이차전지
KR102375011B1 (ko) 2014-04-02 2022-03-15 니폰 제온 가부시키가이샤 리튬이온 이차전지 정극용 슬러리, 리튬이온 이차전지 정극용 슬러리의 제조 방법, 리튬이온 이차전지용 정극의 제조 방법, 및 리튬이온 이차전지
US10566628B2 (en) 2014-04-02 2020-02-18 Zeon Corporation Slurry for lithium ion secondary battery positive electrode-use, method for producing slurry for lithium ion secondary battery positive electrode-use, method for producing positive electrode for lithium ion secondary battery-use, and lithium ion secondary battery
CN106104859B (zh) * 2014-04-02 2019-07-16 日本瑞翁株式会社 锂离子二次电池正极用浆料及其制造方法、锂离子二次电池以及其正极的制造方法
JPWO2016129426A1 (ja) * 2015-02-12 2017-07-20 富士フイルム株式会社 全固体二次電池、それに用いる固体電解質組成物、これを用いた電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
US10868329B2 (en) 2015-02-12 2020-12-15 Fujifilm Corporation All solid state secondary battery, solid electrolyte composition used therefor, electrode sheet for battery using the same, and method for manufacturing electrode sheet for battery and all solid state secondary battery
US10312522B2 (en) 2015-03-27 2019-06-04 Zeon Corporation Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016192267A (ja) * 2015-03-31 2016-11-10 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
CN115084525A (zh) * 2015-06-24 2022-09-20 日本瑞翁株式会社 电化学元件电极用组合物
US20180301744A1 (en) * 2015-06-24 2018-10-18 Zeon Corporation Composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing composition for electrochemical device electrode
US10964947B2 (en) 2015-06-29 2021-03-30 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US10388961B2 (en) 2015-07-14 2019-08-20 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JPWO2017010093A1 (ja) * 2015-07-14 2018-04-26 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
EP3920285A1 (en) 2015-07-14 2021-12-08 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JPWO2017022598A1 (ja) * 2015-08-05 2018-05-24 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム、架橋性ゴム組成物、およびゴム架橋物
WO2017022598A1 (ja) * 2015-08-05 2017-02-09 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム、架橋性ゴム組成物、およびゴム架橋物
KR20180037201A (ko) * 2015-08-05 2018-04-11 니폰 제온 가부시키가이샤 니트릴기 함유 고포화 공중합체 고무, 가교성 고무 조성물, 및 고무 가교물
KR102577552B1 (ko) * 2015-08-05 2023-09-11 니폰 제온 가부시키가이샤 니트릴기 함유 고포화 공중합체 고무, 가교성 고무 조성물, 및 고무 가교물
US10851225B2 (en) 2015-08-05 2020-12-01 Zeon Corporation Nitrile group-containing highly saturated copolymer rubber, cross-linkable rubber composition, and cross-linked rubber
US11784313B2 (en) 2015-09-30 2023-10-10 Zeon Corporation Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2017150048A1 (ja) 2016-03-03 2017-09-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US11145864B2 (en) 2016-03-03 2021-10-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN107325225A (zh) * 2016-04-29 2017-11-07 成都中科来方能源科技股份有限公司 锂离子电池负极水性粘合剂及其制备方法
JP2019527457A (ja) * 2016-07-26 2019-09-26 ハッチンソンHutchinson リチウムイオン電池セルのアノード、その製造方法及びそれを備えた電池
US11145866B2 (en) 2016-09-06 2021-10-12 Zeon Corporation Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
WO2018123624A1 (ja) 2016-12-28 2018-07-05 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
US11462738B2 (en) 2016-12-28 2022-10-04 Zeon Corporation Slurry composition including lithium titanium oxide and nitrile butadiene rubber and method of producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7031655B2 (ja) 2017-03-13 2022-03-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2018168502A1 (ja) * 2017-03-13 2020-01-16 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2018168502A1 (ja) * 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US11387463B2 (en) 2017-07-28 2022-07-12 Zeon Corporation Electrode for electrochemical device, electrochemical device, and method of producing electrode for electrochemical device
WO2019021891A1 (ja) 2017-07-28 2019-01-31 日本ゼオン株式会社 電気化学素子用電極および電気化学素子、並びに電気化学素子用電極の製造方法
JPWO2019044452A1 (ja) * 2017-08-29 2020-08-13 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7234927B2 (ja) 2017-08-29 2023-03-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019044452A1 (ja) * 2017-08-29 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019054173A1 (ja) 2017-09-15 2019-03-21 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
US11742489B2 (en) 2017-12-28 2023-08-29 Zeon Corporation Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode and method of producing same, positive electrode for secondary battery, and secondary battery
WO2019131211A1 (ja) 2017-12-28 2019-07-04 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2019131210A1 (ja) 2017-12-28 2019-07-04 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JPWO2020075626A1 (ja) * 2018-10-10 2021-09-24 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子
US12021215B2 (en) 2018-10-10 2024-06-25 Zeon Corporation Conductive paste for electrode mixed material layer, slurry for electrode mixed material layer, electrode for electrochemical device, and electrochemical device
WO2020075626A1 (ja) * 2018-10-10 2020-04-16 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子
US11949106B2 (en) 2018-12-27 2024-04-02 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
US11949107B2 (en) 2018-12-27 2024-04-02 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2020137594A1 (ja) 2018-12-27 2020-07-02 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2020137591A1 (ja) 2018-12-27 2020-07-02 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2020241322A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池、並びに全固体二次電池用スラリー組成物の製造方法
US11811065B2 (en) 2019-05-31 2023-11-07 Zeon Corporation Method of producing slurry composition for secondary battery positive electrode, method of producing positive electrode for secondary battery, and method of producing secondary battery
US12113221B2 (en) 2019-05-31 2024-10-08 Zeon Corporation Binder composition for secondary battery positive electrode, conductive material paste composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode for secondary battery and method of producing same, and secondary battery
WO2020241383A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用導電材ペースト組成物、二次電池正極用スラリー組成物、二次電池用正極及びその製造方法、並びに二次電池
WO2020241384A1 (ja) 2019-05-31 2020-12-03 日本ゼオン株式会社 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法
WO2021085141A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021085343A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
WO2021085344A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
WO2021085044A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
WO2021131484A1 (ja) 2019-12-26 2021-07-01 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、および固体電解質含有層、並びに、全固体二次電池および全固体二次電池の製造方法
WO2022044815A1 (ja) 2020-08-31 2022-03-03 日本ゼオン株式会社 全固体二次電池用バインダー組成物の製造方法、全固体二次電池用スラリー組成物の製造方法、固体電解質含有層の製造方法、および全固体二次電池の製造方法
WO2022113859A1 (ja) 2020-11-27 2022-06-02 日本ゼオン株式会社 電気化学素子用ペースト、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2022113703A1 (ja) 2020-11-27 2022-06-02 日本ゼオン株式会社 電気化学素子用電極及び電気化学素子
WO2022138004A1 (ja) 2020-12-25 2022-06-30 日本ゼオン株式会社 電気化学素子正極用組成物、電気化学素子正極用スラリー組成物、電気化学素子用正極、および電気化学素子
WO2022249933A1 (ja) 2021-05-27 2022-12-01 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池
WO2023162609A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池
WO2024070249A1 (ja) * 2022-09-29 2024-04-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Also Published As

Publication number Publication date
KR101959520B1 (ko) 2019-03-18
KR20140106522A (ko) 2014-09-03
JPWO2013080989A1 (ja) 2015-04-27
US20150050554A1 (en) 2015-02-19
JP6156149B2 (ja) 2017-07-05
US9601775B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6569788B2 (ja) 二次電池用正極及び二次電池
JP6156149B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP6044773B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP5974578B2 (ja) 二次電池正極用複合粒子、二次電池用正極及び二次電池
KR101941428B1 (ko) 2 차 전지 정극용 바인더 조성물, 2 차 전지 정극용 슬러리 조성물, 2 차 전지 정극 및 2 차 전지
JP5782861B2 (ja) 二次電池用正極及び二次電池
JP5652322B2 (ja) 全固体二次電池の製造方法
JP6877862B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6369473B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
US20110091774A1 (en) Porous film and secondary battery electrode
JP2014011002A (ja) 電気化学素子電極用スラリー組成物及び電気化学素子電極
JP5834959B2 (ja) バインダー組成物及びその製造方法、スラリー組成物、二次電池用正極の製造方法、並びに二次電池
JP2014165131A (ja) リチウムイオン二次電池正極用スラリー組成物の製造方法、リチウムイオン二次電池用正極の製造方法、及び、リチウムイオン二次電池
JP2013206846A (ja) 二次電池多孔膜用スラリー組成物
JP5978837B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014157061A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014233

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2013547178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14360887

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12854478

Country of ref document: EP

Kind code of ref document: A1