JPWO2013080989A1 - 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 - Google Patents

二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 Download PDF

Info

Publication number
JPWO2013080989A1
JPWO2013080989A1 JP2013547178A JP2013547178A JPWO2013080989A1 JP WO2013080989 A1 JPWO2013080989 A1 JP WO2013080989A1 JP 2013547178 A JP2013547178 A JP 2013547178A JP 2013547178 A JP2013547178 A JP 2013547178A JP WO2013080989 A1 JPWO2013080989 A1 JP WO2013080989A1
Authority
JP
Japan
Prior art keywords
positive electrode
binder
secondary battery
polymer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013547178A
Other languages
English (en)
Other versions
JP6156149B2 (ja
Inventor
真弓 福峯
真弓 福峯
佳 小林
佳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2013080989A1 publication Critical patent/JPWO2013080989A1/ja
Application granted granted Critical
Publication of JP6156149B2 publication Critical patent/JP6156149B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】 優れた耐電解液性を有するバインダー組成物、該バインダーを用いた正極を使用して、優れた高温サイクル特性を有する二次電池を提供すること。【解決手段】 本発明に係る二次電池正極用バインダー組成物は、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPF6が1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100〜500%であることを特徴とする。【選択図】 なし

Description

本発明は、リチウムイオン二次電池等の二次電池に使用される正極を形成するために用いられる二次電池正極用バインダー組成物に関する。
近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、ニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化、高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化、高性能化が要求されている。
リチウムイオン二次電池の構成材料である正極活物質としては、鉄、マンガン、コバルト、クロム及び銅などの遷移金属を含有する活物質が用いられている。これらの活物質を用いた二次電池は充放電を繰り返すと、遷移金属イオンが電解液中に溶出し、結果として電池容量やサイクル特性が低下することがあり、大きな課題となっている。
また、正極から溶出した遷移金属イオンが負極表面において還元され析出することにより、樹状の金属析出物を形成し、これがセパレーターを破損することで、電池としての安全性が低下することも大きな問題とされている。
リチウムイオン二次電池に用いられる電極は、通常、電極活物質層が集電体に積層された構造を有しており、電極活物質層には、電極活物質の他に、電極活物質同士及び電極活物質と集電体とを結着させるためポリマーバインダー(以下において「バインダー」と記載することがある。)が用いられている。電極は、通常、水や有機液体等の液状媒体にバインダーとなる重合体を分散または溶解させたバインダー組成物に活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。
ポリマーバインダーには、特に正極用のポリマーバインダーとして、ポリフッ化ビニリデンなどのフッ素系のポリマーが、有機電解液に対して溶解しにくいため、これまで好適なものとして使用されている。
しかしながら、ポリフッ化ビニリデンなどのフッ素系ポリマーは、集電体に対する接着力が弱く、充放電を繰り返すうちに電極活物質層と集電体との間の電気的接合が劣化して電池容量が減少する問題があった。また、集電体との接着力を高める目的でポリフッ化ビニリデンなどのフッ素系ポリマーの量を多くすると、電池の内部抵抗が上昇して容量が低下する問題があった。
また、ポリフッ化ビニリデン(PVDF)などのフッ素系ポリマーと、水素化アクリロニトリル−ブタジエンゴム(H−NBR)とを併用することが提案されている(特許文献1及び特許文献2)。
特許文献1及び2によれば、PVDFとH−NBRとを含むバインダーを用いることで、二次電池のサイクル特性及び出力特性が向上することが記載されている。
特開平9−63590号公報 特開2005−123047号公報
しかしながら、本発明者らの検討によれば、特許文献1では、充分なサイクル特性が得られる程度にバインダーの結着力を高めるためには、電極活物質層中のバインダーの含有率が2質量%以上必要であることが分かった。特に比表面積が大きく粒子径の小さい電極活物質を用いる場合には、バインダーと結着する面積が増えるために更に多くのバインダー量が必要とされる。その為、絶縁成分であるバインダー量が増えることで電極の抵抗が上がり、電池の出力特性・サイクル特性が共に悪化するおそれがあった。
また、特許文献1及び2で提案されているバインダーを用いた場合、導電剤と電極活物質の分散性が不十分であり、電極活物質層を形成するスラリー組成物の安定性が乏しく、平滑な電極を得ることが難しい。
さらに、高温での動作において、バインダーが電解液に対して膨潤し、電子ネットワークが切断され、その結果、電極の内部抵抗が上がり、電池のサイクル特性、特に高温におけるサイクル特性(以下、「高温サイクル特性」と記載することがある。)が悪化するおそれがあった。
本発明の目的は上記事情を鑑み、少量でも優れた結着性を有し、優れた耐電解液性を示すバインダー組成物、優れた安定性を示すスラリー組成物、高い平滑性、結着性及び耐電解液性を有する正極、及び優れたサイクル特性(特に高温サイクル特性)を有する二次電池を提供することにある。
このような課題の解決を目的とした本発明の要旨は以下の通りである。
〔1〕ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100〜500%であることを特徴とする二次電池正極用バインダー組成物。
〔2〕前記(メタ)アクリル酸エステル重合単位の含有割合が5〜50質量%である上記〔1〕に記載の二次電池正極用バインダー組成物。
〔3〕前記ニトリル基を有する重合単位の含有割合が2〜50質量%である上記〔1〕または〔2〕に記載の二次電池正極用バインダー組成物。
〔4〕前記親水性基を有する重合単位の含有割合が0.05〜20質量%である上記〔1〕〜〔3〕のいずれかに記載の二次電池正極用バインダー組成物。
〔5〕前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数が4〜10である上記〔1〕〜〔4〕のいずれかに記載の二次電池正極用バインダー組成物。
〔6〕前記バインダーの溶解度パラメーター(SP値)が、9.0(cal/cm1/2以上、11(cal/cm1/2未満である上記〔1〕〜〔5〕のいずれかに記載の二次電池正極用バインダー組成物。
〔7〕前記バインダーのヨウ素価が、3〜60mg/100mgである上記〔1〕〜〔6〕のいずれかに記載の二次電池正極用バインダー組成物。
〔8〕前記バインダーのガラス転移温度が25℃以下である上記〔1〕〜〔7〕のいずれかに記載の二次電池正極用バインダー組成物。
〔9〕上記〔1〕〜〔8〕のいずれかに記載の二次電池正極用バインダー組成物及び正極活物質を含有してなる二次電池正極用スラリー組成物。
〔10〕上記〔9〕に記載の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる二次電池正極。
〔11〕正極、負極、セパレーター及び電解液を有する二次電池であって、
前記正極が、上記〔10〕に記載の二次電池正極である二次電池。
〔12〕上記〔9〕に記載の二次電池正極用スラリー組成物を集電体の少なくとも片面に塗布、乾燥する工程を有する二次電池正極の製造方法。
本発明のバインダー組成物を用いることにより、正極活物質層を形成するためのスラリー組成物が優れた安定性を有する。また、正極活物質層中において正極活物質が均一に分散するため、高い平滑性、結着性及び耐電解液性を有する正極を得ることができる。その結果、該正極を用いた二次電池は高温サイクル特性に優れる。
二次電池正極用バインダー組成物
本発明の二次電池正極用バインダー組成物(「正極用バインダー組成物」と記載することがある。)は、特定のバインダーを含有する。
(バインダー)
前記バインダーは、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有し、電解液(エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した溶液)に対する膨潤度が、100〜500%である。
前記バインダーを構成する重合体中に(メタ)アクリル酸エステル重合単位を含むことで、正極活物質層を形成するための二次電池正極用スラリー組成物(以下において、「正極用スラリー組成物」と記載することがある。)中において、バインダーが溶解し安定性の高い正極用スラリー組成物を得ることができる。さらには電解液に対する安定性も高く、特に高温サイクル特性に優れる。
また、バインダーは、(メタ)アクリル酸エステル重合単位を好ましくは5〜50質量%、より好ましくは10〜40質量%、特に好ましくは20〜35質量%含む。前記(メタ)アクリル酸エステル重合単位の含有割合が5質量%未満である場合には、分散媒への溶解性が低下して活物質を均一に正極用スラリー組成物中に分散できず分散性が悪化することがある。そのため、スラリー安定性、二次電池正極の均一性および二次電池のサイクル特性等の低下の原因となるおそれがある。また、前記(メタ)アクリル酸エステル重合単位の含有割合が50質量%を超える場合には、二次電池正極の強度が低下し、電解液に対する膨潤度が上昇し、電極柔軟性も悪化することがある。さらには、二次電池のサイクル特性等の低下の原因となるおそれがある。
バインダー中の(メタ)アクリル酸エステル重合単位の含有割合を上記範囲とすることで、後述するバインダーの分散媒や正極用スラリー組成物における分散媒(例えばN−メチルピロリドン、以下「NMP」と記載することがある。)中でバインダーが溶解し安定性の高い正極用スラリー組成物を得ることができる。さらには電解液に対する安定性も高く、特に高温サイクル特性に優れる。
また、前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数は、好ましくは2〜12、より好ましくは4〜12、さらに好ましくは4〜10の範囲である。前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数を上記範囲とすることで、バインダーが電解液に対して溶出しにくく、得られる正極用スラリー組成物は高いスラリー安定性を示す。さらには、得られる電極は均一性が高く、柔軟性に優れる。
前記バインダーを構成する重合体中に親水性基を有する重合単位を含むことで、正極用スラリー組成物中において、正極活物質を安定的に分散させることができるため、正極用スラリー組成物のスラリー安定性が向上し、正極用スラリー組成物のゲル化を防止できる。
また、バインダーは、親水性基を有する重合単位を好ましくは0.05〜20質量%、より好ましくは0.05〜10質量%、さらに好ましくは0.1〜8質量%、特に好ましくは1〜6質量%含む。前記親水性基を有する重合単位の含有割合が0.05質量%未満である場合には、正極活物質間及び正極活物質層と後述する集電体との間の結着性が低下し、正極の捲回・プレス等の製造工程において正極活物質層の一部の脱離(以下、「粉落ち」と記載することがある。)が発生し、セパレーターの破損や正極/負極間のショート等の原因となるおそれがある。また、前記親水性基を有する重合単位の含有割合が20質量%を超える場合には、正極用スラリー組成物中においてバインダーと活物質間の相互作用が強すぎることにより、正極用スラリー組成物の粘度が著しく上昇することがある。また、バインダー製造時の重合安定性にも劣り、ゲルが発生しやすくなり、正極活物質を均一に正極用スラリー組成物中に分散できず分散性が低下することがある。
そこで、バインダー中の親水性基を有する重合単位の含有割合を上記範囲とすることで、正極活物質間及び正極活物質層と後述する集電体との間の結着性が向上し、正極の製造工程における正極活物質の一部が脱離すること(粉落ち)を低減できる。このようなバインダーによれば安定性の高い正極用スラリー組成物を得ることができ、さらには、電極の集電体への結着性が向上し、高温サイクル特性に優れる。
本発明における親水性基とは、水性溶媒中でプロトンを遊離する官能基あるいは前記官能基におけるプロトンがカチオンに置換された塩のことをいい、具体的には、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などが挙げられる。
また、前記バインダーを構成する重合体中にニトリル基を有する重合単位を含むことで、正極用スラリー組成物中における正極活物質の分散性が向上し、正極用スラリー組成物を長期間安定状態で保存することができる。この結果、均一な正極活物質層の製造が容易になる。また、リチウムイオンの伝導性が良好となるため、電池内における内部抵抗を小さくし、電池の出力特性を向上させることができる。
前記ニトリル基を有する重合単位の含有割合は、好ましくは2〜50質量%、より好ましくは2〜30質量%、さらに好ましくは10〜30質量%、特に好ましくは10〜25質量%である。前記ニトリル基を有する重合単位の含有割合が2質量%未満である場合には、NMPへの溶解性および正極活物質の分散性が低下し、スラリー安定性が低下することがある。その結果二次電池のサイクル特性が悪化する。また、前記ニトリル基を有する重合単位の含有割合が50質量%を超える場合には、電解液への溶解性が上昇し、二次電池のサイクル特性が悪化することがある。バインダー中にニトリル基を有する重合単位を上記範囲含むことで、正極活物質の分散性が向上し、安定性の高い正極用スラリー組成物を得ることができ、その結果、二次電池正極の均一性に優れる。また、電解液に対する安定性に優れるため、二次電池のサイクル特性に優れ、特に高温サイクル特性に優れる。
また、前記バインダーを構成する重合体中に、炭素数4以上の直鎖アルキレン重合単位を含むことで、正極用スラリー組成物中の導電剤の分散性が向上し、均一な二次電池正極の製造が容易になる。電極内に正極活物質や導電剤が均一に分散することにより内部抵抗が低減し、結果としてこの電極を用いた電池の高温サイクル特性、出力特性が向上する。さらに、前記直鎖アルキレン重合単位を導入することで、バインダーの電解液に対する膨潤度が適正化され、電池特性の向上が図られる。
上記の直鎖アルキレン重合単位の含有割合は、好ましくは20〜98質量%、より好ましくは20〜80質量%、特に好ましくは20〜70質量%である。
上記の直鎖アルキレン重合単位の炭素数は4以上であり、好ましくは4〜16、さらに好ましくは4〜12の範囲である。
上記のように、本発明に用いるバインダーは、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合体単位、親水性基を有する重合単位及び炭素数4以上の直鎖アルキレン重合単位を有する。このようなバインダーは、ニトリル基を有する重合単位を形成し得る単量体、親水性基を有する重合単位を形成し得る単量体、(メタ)アクリル酸エステル重合体単位を形成し得る単量体、炭素数4以上の直鎖アルキレン重合単位を形成し得る単量体を重合反応させて得られる。なお、炭素数4以上の直鎖アルキレン重合単位は、不飽和結合を有する構造単位(炭素数4以上の共役ジエンモノマーを形成し得る重合単位)を有する重合体を得た後に、これを水素添加反応して形成することができる。
以下、本発明に用いるバインダーの製造方法について説明する。
ニトリル基を有する重合単位を形成し得る単量体としては、α,β−エチレン性不飽和ニトリル単量体が挙げられる。α,β−エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β−エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α−クロロアクリロニトリル、α−ブロモアクリロニトリルなどのα−ハロゲノアクリロニトリル;メタクリロニトリルなどのα−アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
バインダー中への親水性基の導入は、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などを有する単量体を重合して行われる。
カルボン酸基を有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、及びこれらの誘導体などが挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
モノカルボン酸誘導体としては、2−エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。
また、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β−エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
リン酸基を有する単量体としては、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
水酸基を有する単量体としては、(メタ)アリルアルコール、3−ブテン−1−オール、5−ヘキセン−1−オールなどのエチレン性不飽和アルコール;アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、マレイン酸ジ−2−ヒドロキシエチル、マレイン酸ジ−4−ヒドロキシブチル、イタコン酸ジ−2−ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR−COO−(C2nO)−H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシフタレート、2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2−ヒドロキシエチルビニルエーテル、2−ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル−2−ヒドロキシエチルエーテル、(メタ)アリル−2−ヒドロキシプロピルエーテル、(メタ)アリル−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシブチルエーテル、(メタ)アリル−3−ヒドロキシブチルエーテル、(メタ)アリル−4−ヒドロキシブチルエーテル、(メタ)アリル−6−ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル−2−クロロ−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシ−3−クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル−2−ヒドロキシエチルチオエーテル、(メタ)アリル−2−ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
これらの中でも、正極活物質同士の結着性及び正極活物質層と後述する集電体との結着性に優れることから、親水性基は、カルボン酸基またはスルホン酸基であることが好ましく、特に正極活物質から溶出することがある遷移金属イオンを効率良く捕捉するという理由からカルボン酸基であることが好ましい。
バインダー中への直鎖アルキレン重合単位の導入方法は、特に限定はされないが、共役ジエンモノマーを形成し得る重合単位を導入後にこれを水素添加反応させる方法が簡便であり、好ましい。
共役ジエンモノマーとしては、炭素数4以上の共役ジエンが好ましく、たとえば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどが挙げられる。これらのなかでも、1,3−ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
(メタ)アクリル酸エステル重合単位を形成し得る単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
これらの中でも、電解液に溶出せずに正極用スラリー組成物の分散媒として好ましく用いられるNMPへの溶解性を示すこと、正極の柔軟性が向上し、捲回セルを作製したときに正極の剥がれを抑制することができ、該正極を用いた二次電池の特性(サイクル特性等)に優れることから、非カルボニル性酸素原子に結合するアルキル基の炭素数が4〜10のアクリル酸アルキルエステルが好ましく、その中でも、具体的には、好ましくはブチルアクリレート、2−エチルヘキシルアクリレートおよびラウリルアクリレート、より好ましくは、ブチルアクリレート、2−エチルヘキシルアクリレートである。
また、本発明に用いるバインダーは、上記重合単位以外に、これらの重合単位を形成する単量体と共重合可能な他の単量体の重合単位を含有していてもよい。このような他の単量体の重合単位の含有割合は、全単量体単位に対して、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
このような共重合可能な他の単量体としては、たとえば、スチレン、α−メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o−トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン化合物;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β−エチレン性不飽和カルボン酸のアルコキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N−メチロール(メタ)アクリルアミド、N,N’−ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。
その中でも、電解液に溶出せずに正極用スラリー組成物の分散媒としてNMPを用いた場合にNMPへの溶解性を示すこと、加えて正極活物質の分散性に優れ、均一な正極が得られることからスチレン、α−メチルスチレンなどの芳香族ビニル化合物が好ましい。
さらに、本発明に用いるバインダーは、上述した単量体成分以外に、これらと共重合可能な単量体を含んでいてもよい。これらと共重合可能な単量体としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;が挙げられる。これらの単量体を、適宜の手法により、グラフト共重合させることにより、前記構成のバインダーが得られる。
本発明に用いるバインダーは、分散媒(水または有機溶媒)に上記バインダーが分散された分散液または溶解された溶液の状態で使用される(以下、これらを総称して「バインダー分散液」と記載することがある。)。分散媒としては、バインダーを均一に分散または溶解し得るものであれば、特に制限されない。本発明においては、環境の観点に優れ、乾燥速度が速いという観点から分散媒として水を用いることが好ましい。また、有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類が挙げられる。
これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、後述の正極用スラリー組成物作製時に工業上使用されていること、製造上揮発しにくいこと、その結果、正極用スラリー組成物の揮発を抑えられ、得られる正極の平滑性が向上することから、水、若しくはN−メチルピロリドン、シクロヘキサノンやトルエン等が好ましい。
バインダーが分散媒に粒子状で分散している場合において、粒子状で分散しているバインダーの平均粒径(分散粒子径)は、好ましくは50〜500nm、より好ましくは70〜400nm、特に好ましくは100〜250nmである。バインダーの平均粒径がこの範囲であると、得られる正極の強度および柔軟性が良好となる。
バインダーが分散媒に粒子状で分散している場合において、バインダー分散液の固形分濃度は、通常15〜70質量%であり、20〜65質量%が好ましく、30〜60質量%がさらに好ましい。固形分濃度がこの範囲であると、後述する正極用スラリー組成物を製造する際における作業性が良好である。
本発明に用いるバインダーのガラス転移温度(Tg)は、好ましくは25℃以下、より好ましくは15℃以下、特に好ましくは0℃以下である。バインダーのTgの下限は特に限定されないが、好ましくは−50℃以上、より好ましくは−45℃以上、特に好ましくは−40℃以上である。バインダーのTgが上記範囲にあることにより、本発明の二次電池正極が優れた強度と柔軟性を有するため、正極の製造工程における粉落ちを抑制し、該正極を用いた二次電池の高温サイクル特性を向上させることができる。なお、バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
また、後述する電解液に対するバインダーの膨潤度は100〜500%、好ましくは110〜400%、より好ましくは120〜300%である。バインダーの膨潤度を上記範囲とすることで、電解液に対するバインダーの溶解性を抑制できバインダーの結着性に優れるため、二次電池の高温サイクル特性の向上が図られる。
ここでは、膨潤度の指標として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解した溶液に対する膨潤度を採用する。
電解液に対するバインダーの膨潤度が100%未満である場合には、二次電池正極内でバインダーが十分に電解液を含むことができないことがある。通常、バインダーは電極内で電解液を含むことにより、バインダー自体もLi伝導性を示すが、バインダーが電解液に対して膨潤しない場合には、バインダー自体がLi伝導経路とならず抵抗が大きくなり、結果として当該電極を用いた二次電池のサイクル特性、出力特性が低下することがある。また、前記バインダーの電解液に対する膨潤度が500%を超える場合には、二次電池正極内でバインダーが電解液に膨潤しすぎることで導電ネットワークが切断され抵抗が上昇し、結果として当該電極を用いた二次電池のサイクル特性、出力特性が低下することがある。
バインダーの膨潤度は、バインダーを構成する全重合単位の種類やその比率を調整することにより、上記範囲に調整することができる。例えば、(メタ)アクリル酸エステル重合単位でいえば、当該重合単位中の非カルボニル性酸素原子に結合するアルキル鎖の長さ等を調整する方法が挙げられる。
バインダーの膨潤度は、バインダーを構成する全重合単位の種類やその比率を調整することにより上記範囲に調整可能であるが、バインダーの溶解度パラメータ(以下、「SP値」という。)をその指標として用いることもできる。例えば、溶解度パラメータ(以下「SP値」という)を好ましくは9.0(cal/cm1/2以上、11(cal/cm1/2未満、より好ましくは9〜10.5(cal/cm1/2、さらに好ましくは、9.5〜10(cal/cm1/2である重合体または共重合体をバインダーとして用いる方法が挙げられる。前記SP値を、上記範囲にすることにより、後述するバインダーの分散媒や正極用スラリー組成物における分散媒への溶解性を維持しながら、電解液への適度な膨潤性をもたせることができる。それにより、得られる二次電池正極の均一性がより向上し、それを用いた二次電池のサイクル特性を向上させることができる。
ここで、SP値は、J.Brandrup,E.H.ImmergutおよびE.A.Grulk編"Polymer Handbook" VII Solubility Parameter Values,p675−714(John Wiley & Sons社、第4版1999年発行)に記載される方法に従って求めることができる。この刊行物に記載のないものについてはSmallが提案した「分子引力定数法」に従って求めることができる。この方法は、化合物分子を構成する官能基(原子団)の特性値、すなわち、分子引力定数(G)の統計と分子容とから次式に従ってSP値(δ)を求める方法である。
δ=ΣG/V=dΣG/M
ΣG:分子引力定数Gの総計
V:比容
M:分子量
d:比重
前記バインダーのヨウ素価は、好ましくは3〜60mg/100mg程度であり、より好ましくは3〜20mg/100mg、更に好ましくは7〜15mg/100mg、特に好ましくは8〜10mg/100mgである。バインダーのヨウ素価が60mg/100mgを超えると、バインダーに含まれる不飽和結合により酸化電位での安定性が低く電池の長期サイクル特性に劣ることがある。また逆に、バインダーのヨウ素価が3mg/100mg未満であると、バインダーの柔軟性が低下することがある。その結果、粉落ち等が発生し、安全性、長期特性に劣る。バインダーのヨウ素価が上記範囲にあることにより、高電位に対してバインダーが化学構造的に安定であり、長期サイクルにおいても電極構造を維持することができ、高温サイクル特性に優れる。ヨウ素価はJIS K6235;2006に従って求められる。
本発明に用いるバインダーのゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値の重量平均分子量は、好ましくは10,000〜700,000、より好ましくは50,000〜500,000、特に好ましくは100,000〜300,000である。バインダーの重量平均分子量を上記範囲とすることで、正極に柔軟性を持たせることができ、更に正極用スラリー組成物の製造時に塗工しやすい粘度に調整することが容易である。
本発明に用いるバインダーの製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’−アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
直鎖アルキレン重合単位は、炭素数4以上の共役ジエンモノマーを形成し得る重合単位を導入後に、これを水素添加反応させて形成される。水素添加反応させる方法は特に限定されない。水素添加反応により、上記重合法により得られた不飽和重合体(ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合体単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体)中の共役ジエンモノマーを形成し得る重合単位に由来する炭素−炭素不飽和結合のみを選択的に水素化し、本発明に用いるバインダーを得ることができる。また、水素添加反応により、本発明に用いるバインダーのヨウ素価を上述した範囲とすることができる。本発明に用いるバインダーは、親水性基を有する水素化アクリロニトリル・ブタジエン共重合体(以下において「水添NBR」と記載することがある。)が好ましい。
不飽和重合体中の共役ジエンモノマーを形成し得る重合単位に由来する炭素−炭素不飽和結合のみを選択的に水素化する選択的水素化方法としては、公知の方法によればよく、油層水素化法、水層水素化法のいずれも可能であるが、得られるバインダー中に不純物(例えば、後述する凝固剤や金属等)の含有量が少ないことから、水層水素化法が好ましい。
本発明に用いるバインダーの製造を油層水素化法で行う場合には、次の方法により行うことが好ましい。すなわち、まず、乳化重合により調整した不飽和重合体の分散液を塩析により凝固させ、濾別および乾燥を経て、有機溶媒に溶解する。次いで、有機溶媒に溶解させた不飽和重合体について水素添加反応(油層水素化法)を行い、水素化物とし、得られた水素化物溶液を凝固、濾別および乾燥を行うことにより、本発明に用いるバインダーを得る。
なお、乳化剤として、カプリン酸アルカリ金属塩を用いる場合には、不飽和重合体の分散液の塩析による凝固、濾別および乾燥の各工程において、最終的に得られるバインダー中におけるカプリン酸塩の量が0.01〜0.4質量%となるように調製することが好ましい。たとえば、分散液の塩析による凝固において、硫酸マグネシウム、塩化ナトリウム、塩化カルシウム、硫酸アルミニウムなど公知の凝固剤を使用することができるが、好適には、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウムなどのアルカリ土類金属塩;または、硫酸アルミニウムなどの第13族金属塩;を用いることにより、不飽和重合体中に含有されるカプリン酸塩の量を低減させることができる。そのため、凝固剤として、アルカリ土類金属塩または第13族金属塩を用いることが好ましく、アルカリ土類金属塩を用いることがより好ましく、その使用量や凝固温度を制御することにより、最終的に得られるバインダー中におけるカプリン酸塩の量を上記範囲とすることができる。凝固剤の使用量は、水素化する不飽和重合体の量を100質量部とした場合に、好ましくは1〜100質量部、より好ましくは5〜50質量部、特に好ましくは10〜50質量部である。凝固温度は10〜80℃が好ましい。
油層水素化法の溶媒としては、不飽和重合体を溶解する液状有機化合物であれば特に限定されないが、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、シクロヘキサノンおよびアセトンなどが好ましく使用される。
油層水素化法の触媒としては、公知の選択的水素化触媒であれば限定なく使用でき、パラジウム系触媒およびロジウム系触媒が好ましく、パラジウム系触媒(酢酸パラジウム、塩化パラジウムおよび水酸化パラジウムなど)がより好ましい。これらは2種以上併用してもよいが、ロジウム系触媒とパラジウム系触媒とを組み合わせて用いる場合には、パラジウム系触媒を主たる活性成分とすることが好ましい。これらの触媒は、通常、担体に担持させて使用される。担体としては、シリカ、シリカ−アルミナ、アルミナ、珪藻土、活性炭などが例示される。触媒使用量は、水素化する不飽和重合体の量に対して、水素化触媒の金属量換算で、好ましくは10〜5000ppm、より好ましくは100〜3000ppmである。
油層水素化法の水素化反応温度は、好ましくは0〜200℃、より好ましくは10〜100℃であり、水素圧力は、好ましくは0.1〜30MPa、より好ましくは0.2〜20MPaであり、反応時間は、好ましくは1〜50時間、より好ましくは2〜25時間である。
あるいは、本発明に用いるバインダーの製造を水層水素化法で行う場合には、乳化重合により調製した不飽和重合体の分散液に、必要に応じて水を加えて希釈し、水素添加反応を行うことが好ましい。
ここで、水層水素化法には、水素化触媒存在下の反応系に水素を供給して水素化する(I)水層直接水素化法と、酸化剤、還元剤および活性剤の存在下で還元して水素化する(II)水層間接水素化法とがある。
(I)水層直接水素化法においては、水層の不飽和重合体の濃度(分散液状態での濃度)は、凝集を防止するために40質量%以下とすることが好ましい。
また、用いる水素化触媒としては、水で分解しにくい化合物であれば特に限定されない。水素化触媒の具体例として、パラジウム触媒では、ギ酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、フタル酸などのカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウムなどのパラジウム塩素化物;ヨウ化パラジウムなどのヨウ素化物;硫酸パラジウム・二水和物などが挙げられる。これらの中でもカルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウムおよびヘキサクロロパラジウム(IV)酸アンモニウムが特に好ましい。水素化触媒の使用量は、適宜定めればよいが、水素化する不飽和重合体の量に対して、水素化触媒の金属量換算で、好ましくは5〜6000ppm、より好ましくは10〜4000ppmである。
水層直接水素化法における反応温度は、好ましくは0〜300℃、より好ましくは20〜150℃、特に好ましくは30〜100℃である。反応温度が低すぎると反応速度が低下するおそれがあり、逆に、高すぎるとニトリル基の水素添加反応などの副反応が起こる可能性がある。水素圧力は、好ましくは0.1〜30MPa、より好ましくは0.5〜20MPaである。反応時間は反応温度、水素圧、目標の水素化率などを勘案して選定される。
一方、(II)水層間接水素化法では、水層の不飽和重合体の濃度(分散液状態での濃度)は、好ましくは1〜50質量%、より好ましくは1〜40質量%とする。
水層間接水素化法で用いる酸化剤としては、酸素、空気、過酸化水素などが挙げられる。これら酸化剤の使用量は、炭素−炭素二重結合に対するモル比(酸化剤:炭素−炭素二重結合)で、好ましくは0.1:1〜100:1、より好ましくは0.8:1〜5:1の範囲である。
水層間接水素化法で用いる還元剤としては、ヒドラジン、ヒドラジン水和物、酢酸ヒドラジン、ヒドラジン硫酸塩、ヒドラジン塩酸塩などのヒドラジン類またはヒドラジンを遊離する化合物が用いられる。これらの還元剤の使用量は、炭素−炭素二重結合に対するモル比(還元剤:炭素−炭素二重結合)で、好ましくは0.1:1〜100:1、より好ましくは0.8:1〜5:1の範囲である。
水層間接水素化法で用いる活性剤としては、銅、鉄、コバルト、鉛、ニッケル、鉄、スズなどの金属のイオンが用いられる。これらの活性剤の使用量は、炭素−炭素二重結合に対するモル比(活性剤:炭素−炭素二重結合)で、好ましくは1:1000〜10:1、より好ましくは1:50〜1:2である。
水層間接水素化法における反応は、0℃から還流温度までの範囲内で加熱することにより行い、これにより水素化反応が行われる。この際における加熱範囲は、好ましくは0〜250℃、より好ましくは20〜100℃、特に好ましくは40〜80℃である。
水層での直接水素化法、間接水素化法のいずれにおいても、水素化に続いて、塩析による凝固、濾別、乾燥を行うことが好ましい。塩析は、前記油層水素化法における不飽和重合体の分散液の塩析と同様に、水素添加反応後のバインダー中におけるカプリン酸塩の量を制御するために、上述したアルカリ土類金属塩または第13族金属塩を用いることが好ましく、アルカリ土類金属塩を用いることが特に好ましい。また、凝固に続く濾別および乾燥の工程はそれぞれ公知の方法により行うことができる。
また、本発明に用いるバインダーの製造方法は、水素添加反応を2段階以上に分けて実施する方法が特に好ましい。同一量の水素化触媒を用いても、水素添加反応を2段階以上に分けて実施することにより、水素添加反応効率を高めることができる。即ち、共役ジエンモノマーを形成し得る重合単位を直鎖アルキレン構造単位へ転換する際に、バインダーのヨウ素価を、より低くすることが可能となる。
また、2段階以上に分けて水素添加反応を行なう場合、第1段階の水素添加反応率(水添率) (%)で、50%以上、より好ましくは70%以上の水素化を達成することが好ましい。即ち、下式で得られる数値を水素添加反応率(%)とするとき、この数値が50%以上となることが好ましく、70%以上となることがより好ましい。
水素添加反応率(水添率)(%)
=100×(水素添加反応前の炭素−炭素二重結合量−水素添加反応後の炭素−炭素二重結合量)/(水素添加反応前の炭素−炭素二重結合量)
なお、炭素−炭素二重結合量は、NMRを用いて分析することができる。
水素添加反応終了後、分散液中の水素添加反応触媒を除去する。その方法として、例えば、活性炭、イオン交換樹脂等の吸着剤を添加して攪拌下で水素添加反応触媒を吸着させ、次いで分散液をろ過又は遠心分離する方法を採ることができる。水素添加反応触媒を除去せずに分散液中に残存させることも可能である。
また、本発明に用いるバインダーは、親水性基を有する重合単位を有する。バインダー中に親水性基を有する重合単位を導入する方法は、特に限定されず、上述したバインダーの製造工程において、バインダーを構成する重合体中に親水性基を導入する方法(親水性基を有する単量体を共重合させる方法)や、上述のニトリル基を有する重合単位、上述の(メタ)アクリル酸エステル重合体単位、および上述の共役ジエンモノマーを形成し得る重合単位を含んでなる不飽和重合体に水素添加して水素添加反応を行った重合体(以下において「水添重合体」と記載することがある。)を得、その後、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを混合する方法(水添重合体を酸変性する方法)が挙げられる。この中でも、親水性基を有する単量体を共重合させる方法が、工程上簡便であり好ましい。バインダーが親水性基を含むことで、正極活物質の分散性に優れ、均一な正極を得ることができる。また、正極内の抵抗が低減され、その結果、優れたサイクル特性を示す二次電池を得ることができる。さらに、集電体との結着性が良好となり、充放電を繰り返しても正極構造を維持することができ、サイクル特性に優れる。
以下において、水素添加反応終了後の重合体(水添重合体)にエチレン性不飽和カルボン酸またはその無水物を混合して本発明に用いるバインダー(以下において、「酸変性されたバインダー」と記載することがある。)を製造する方法(水添重合体を酸変性する方法)について詳述する。
酸変性されたバインダーを製造するために用いられるエチレン性不飽和カルボン酸またはその無水物は、特に限定されないが、その炭素数が4〜10のエチレン性不飽和ジカルボン酸またはその無水物、特に無水マレイン酸が好適である。
エチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸:
マレイン酸、フマル酸、イタコン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸:
無水マレイン酸、無水イタコン酸、無水シトラコン酸等のエチレン性不飽和ジカルボン酸無水物:
マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノ−n−ブチル、マレイン酸モノイソブチル、マレイン酸モノ−n−ペンチル、マレイン酸モノ−n−ヘキシル、マレイン酸モノ−2−エチルヘキシル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノ−n−ブチル、フマル酸モノイソブチル、フマル酸モノ−n−ペンチル、フマル酸モノ−n−ヘキシル、フマル酸モノ−2−エチルヘキシル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノ−n−ブチル、イタコン酸モノイソブチル、イタコン酸モノ−n−ペンチル、イタコン酸モノ−n−ヘキシル、イタコン酸モノ−2−エチルヘキシル、シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノ−n−ブチル、シトラコン酸モノイソブチル、シトラコン酸モノ−n−ペンチル、シトラコン酸モノ−n−ヘキシル、シトラコン酸モノ−2−エチルヘキシル、メサコン酸モノメチル、メサコン酸モノエチル、メサコン酸モノプロピル、メサコン酸モノ−n−ブチル、メサコン酸モノイソブチル、メサコン酸モノ−n−ペンチル、メサコン酸モノ−n−ヘキシル、メサコン酸モノ−2−エチルヘキシル、グルタコン酸モノメチル、グルタコン酸モノエチル、グルタコン酸モノプロピル、グルタコン酸モノ−n−ブチル、グルタコン酸モノイソブチル、グルタコン酸モノイソブチル、グルタコン酸モノ−n−ペンチル、グルタコン酸モノ−n−ヘキシル、グルタコン酸モノ−2−エチルヘキシル、アリルマロン酸モノメチル、アリルマロン酸モノエチル、アリルマロン酸モノプロピル、アリルマロン酸モノ−n−ブチル、アリルマロン酸モノイソブチル、アリルマロン酸モノ−n−ペンチル、アリルマロン酸モノ−n−ヘキシル、アリルマロン酸モノ−2−エチルヘキシル、テラコン酸モノメチル、テラコン酸モノエチル、テラコン酸モノプロピル、テラコン酸モノ−n−ブチル、テラコン酸モノイソブチル、テラコン酸モノ−n−ペンチル、テラコン酸モノ−n−ヘキシル、テラコン酸モノ−2−エチルヘキシル等の不飽和ジカルボン酸モノアルキルエステル等が挙げられる。
酸変性されたバインダーは、例えば、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを、エン型付加反応させることによって得られる。
エン型付加反応は、通常、ラジカル発生剤を使用することなく、高温下で、水添重合体とエチレン性不飽和カルボン酸またはその無水物とを混練することによって起こる。ラジカル発生剤を使用すると、ゲルの発生に加えてエチレン性不飽和カルボン酸またはその無水物と水添重合体とがラジカル型付加反応を起こすので、エン型付加反応させることができなくなる。
エチレン性不飽和カルボン酸またはその無水物の使用量は特に限定されないが、通常、水添重合体100質量部に対して、エチレン性不飽和カルボン酸またはその無水物0.05〜10質量部、好ましくは、0.2〜6質量部である。
エン型付加反応においては、例えばロール型混練機のような開放型混練機を用いた場合には、融解した無水マレイン酸等のようなエチレン性不飽和カルボン酸またはその無水物が飛散し、十分な付加反応を行うことができないことがある。また、単軸押出機、同方向二軸押出機、異方向回転二軸押出機等のような連続式混練機を用いた場合は、押出機出口に滞留するバインダーがゲル化することによりダイヘッドの詰まりが発生する等、効率よく付加反応を行うことができないことがある。また、バインダー中に多量に未反応のエチレン性不飽和カルボン酸またはその無水物が残存することがある。
エン型付加反応では、加熱密閉混練機を用いることが好ましい。加熱密閉混練機としては、加圧ニーダー、バンバリーミキサー、ブラベンダー等のようなバッチ式加熱密閉混練機の中から任意に選ぶことができ、中でも、加圧ニーダーが好ましい。
上記の製造方法においては、まず、エチレン性不飽和カルボン酸またはその無水物を、水添重合体にエン型付加反応により付加させる前に、実質的にエン型付加反応が起こらない温度において、具体的には、60〜170℃、好ましくは100〜150℃において、エチレン性不飽和カルボン酸またはその無水物と水添重合体とを予混練し、エチレン性不飽和カルボン酸またはその無水物を水添重合体中に均一に分散させる。この予混練の温度が過度に低いと、水添重合体が混練機内でスリップして、エチレン性不飽和カルボン酸またはその無水物と水添重合体との混合が十分に行えない場合がある。また、予混練の温度が過度に高いと、混練機中に投入するエチレン性不飽和カルボン酸またはその無水物が大量に飛散することがあり、エン型付加反応率が低下する場合がある。
次に、エン型付加反応を行うべく、混練中の水添重合体とエチレン性不飽和カルボン酸またはその無水物との混合物の温度を通常200〜280℃、好ましくは220〜260℃に保つ。前記温度を保つ方法は、特に限定されないが、通常は、混練機のジャケットに温水やスチームを流す方法、または、せん断発熱を利用することにより達せられる。
加熱密閉混練機のジャケットに温水やスチームを流す場合は、ジャケット温度を、通常、70〜250℃、好ましくは130〜200℃に維持する。また、せん断発熱を利用する場合は、混練機により、せん断速度30〜1000s−1、好ましくは300〜700s−1で混練を続けることが好ましい。特に、せん断発熱を利用する場合は、上記混合物の温度の制御を容易に行うことができるので好ましい。加熱密閉混練機中の混練時間は、特に限定されないが、通常、120秒〜120分、好ましくは180秒〜60分である。
混練中の上記混合物の温度が過度に低いと、エン型付加反応が十分に進行しない場合がある。また、過度に高い場合は、ゲル化や焼け物の発生等が起こり、その結果、製品にゲルが混入することがある。また、せん断速度が過度に大きいと、せん断発熱による上記混合物の温度の制御が難しく、混合物の温度が高くなりすぎて、ゲルや焼け物の発生等が起こるため、工業的な製造方法として好ましくない。また、せん断速度が過度に小さいと、上記混合物の温度が低くなりすぎるため、充分なエン型付加反応が期待できない。
エン型付加反応においては、混練するに際して、老化防止剤を添加することにより、バインダーのゲル化の上昇を防止することができる。老化防止剤の種類は、特に限定されないが、アミン系、アミンケトン系、フェノール系、ベンゾイミダゾール系、その他バインダー用の老化防止剤を使用することができる。
アミン系老化防止剤の例としては、フェニル−1−ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4−ビス(α,α−ジメチルベンジル)ジフェニルアミン、p−(p−トルエンスルフォニルアミド)ジフェニルアミン、N,N−ジ−2−ナフチル−p−フェニレンジアミン、N,N−ジフェニル−p−フェニレンジアミン、N−フェニル−N−イソプロピル−p−フェニレンジアミン、N−フェニル−N−(1,3−ジメチルブチル)−p−フェニレンジアミン、N−フェニル−N−(3−メタクリロイルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミン等が挙げられる。
アミンケトン系老化防止剤の例としては、2,2,4−トリメチル−1,2−ジヒドロキノリン、6−エトキシ−1,2−ジヒドロ−2,2,4−トリメチルキノリン等が挙げられる。
フェノール系老化防止剤の例としては、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,2−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4−チオビス(3−メチル−6−tert−ブチルフェノール)、2,5−ジ−tert−ブチルハイドロキノン、2,5−ジ−tert−アミルハイドロキノン等が挙げられる。
ベンゾイミダゾール系老化防止剤の例としては、2−メルカプトベンゾイミダゾール、2−メルカプトメチルベンゾイミダゾール、2−メルカプトメチルベンゾイミダゾールの金属塩等が挙げられる。
これら老化防止剤の使用量は、バインダー100質量部に対して、通常、0.01〜5質量部、好ましくは0.1〜2質量部である。
上述した製造方法によれば、通常、エン型付加反応に使用するエチレン性不飽和カルボン酸またはその無水物の仕込量の80%以上を水添重合体に付加させて本発明に用いるバインダーを得ることができ、また、バインダー中に残存する未反応のエチレン性不飽和カルボン酸またはその無水物を仕込量の5%以下にすることができる。従って、この方法は、工業的に安定に生産する上で極めて有用である。本発明においては、上述した製造方法により、親水性基を有する重合単位を0.05〜20質量%含むバインダーを得ることができる。
本発明に用いるバインダーは、バインダーの製造工程において、バインダー分散液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。バインダーに含まれる粒子状金属成分の含有量が10ppm以下であることにより、後述する正極用スラリー組成物中のポリマー間の経時での金属イオン架橋を防止し、粘度上昇を防ぐことができる。さらに二次電池の内部短絡や充電時の溶解・析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。
前記粒子状金属除去工程におけるバインダー分散液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいによる除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるため磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくはバインダーの製造ライン中に磁気フィルターを配置することで行われる。
本発明に用いるバインダーの製造工程において、上記の重合法に用いられる分散剤は、通常の合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸−スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子などが例示され、これらは単独でも2種類以上を併用して用いても良い。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。分散剤の添加量は任意に設定でき、単量体総量100質量部に対して通常0.01〜10質量部程度である。
本発明に用いるバインダーが分散媒に分散している時のpHは、5〜13が好ましく、更には5〜12、最も好ましくは10〜12である。バインダーのpHが上記範囲にあることにより、バインダーの保存安定性が向上し、さらには、機械的安定性が向上する。
前記バインダーのpHを調整するpH調整剤は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化バリウムなどのアルカリ土類金属酸化物、水酸化アルミニウムなどの長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸マグネシウムなどのアルカリ土類金属炭酸塩などの炭酸塩;などが例示され、有機アミンとしては、エチルアミン、ジエチルアミン、プロピルアミンなどのアルキルアミン類;モノメタノールアミン、モノエタノールアミン、モノプロパノールアミンなどのアルコールアミン類;アンモニア水などのアンモニア類;などが挙げられる。これらの中でも、結着性や操作性の観点からアルカリ金属水酸化物が好ましく、特に水酸化ナトリウム、水酸化カリウム、水酸化リチウムが好ましい。
また、前記バインダーには、上記ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び直鎖アルキレン重合単位をそれぞれ有する重合体のほかに、さらにその他の結着剤成分が含まれていてもよい。その他の結着剤成分としては、様々な樹脂成分を併用することができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸、ポリアクリロニトリル、ポリアクリレート、ポリメタクリレートなどを用いることができる。また、上記樹脂成分を50%以上含む共重合体も用いることができ、例えばアクリル酸−スチレン共重合体、アクリル酸−アクリレート共重合体等のポリアクリル酸誘導体;アクリロニトリル−スチレン共重合体、アクリロニトリル−アクリレート共重合体等のポリアクリロニトリル誘導体も用いることができる。これらの中でも、PVDFまたはポリアクリロニトリル誘導体を用いることが、正極の強度及び耐電解液性に優れることから好ましい。
更に、下に例示する軟質重合体も、その他の結着剤として使用することができる。
ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素含有軟質重合体;
天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体;などが挙げられる。
これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、ポリアクリロニトリル誘導体が正極活物質の分散性を向上させるために好ましい。
(添加剤)
本発明の二次電池正極用バインダー組成物は、上記のバインダーを含有し、その他に、後述する正極用スラリー組成物の塗布性や二次電池の充放電特性を向上させるために添加剤を加えることができる。これらの添加剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマー、ポリアクリル酸ナトリウムなどのポリアクリル酸塩、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸−ビニルアルコール共重合体、メタクリル酸−ビニルアルコール共重合体、マレイン酸−ビニルアルコール共重合体、変性ポリビニルアルコール、ポリエチレングリコール、エチレン−ビニルアルコール共重合体、ポリ酢酸ビニル部分ケン化物などが挙げられる。これらの添加剤の使用割合は、バインダー組成物の固形分合計質量に対して、好ましくは300質量%未満、より好ましくは30質量%以上250質量%以下、特に好ましくは40質量%以上200質量%以下である。この範囲であれば、平滑性が優れた二次電池正極を得ることができる。また、添加剤として、イソチアゾリン系化合物やキレート化合物を加えることもできる。これらの添加剤は、バインダー組成物に添加する方法以外に、後述する本発明の二次電池正極用スラリー組成物に添加することもできる。
(二次電池正極用バインダー組成物の製造方法)
本発明の二次電池正極用バインダー組成物の製造方法は、時に限定されず、上述のバインダー分散液に、必要に応じて添加剤を添加し、混合することで製造される。バインダー分散液に、添加剤を混合する方法は特に限定されず、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
二次電池正極用スラリー組成物
本発明の二次電池正極用スラリー組成物(「正極用スラリー組成物」と記載することがある。)は、上記二次電池正極用バインダー組成物及び正極活物質を含有する。以下においては、本発明の二次電池正極用スラリー組成物を、リチウムイオン二次電池正極用スラリー組成物として用いる態様について説明する。
(正極活物質)
正極活物質としては、リチウムイオンの吸蔵放出可能な活物質が用いられ、リチウムイオン二次電池正極用電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。
無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でも得られる二次電池のサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。
リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物、LiMaOとLiMbOの固溶体である、xLiMaO・(1−x)LiMbO (0<x<1、Maは平均酸化状態が3+である一つ以上の遷移金属、Mbは平均酸化状態が4+である一つ以上の遷移金属)等が挙げられる。二次電池のサイクル特性を向上させるという観点からは、LiCoOを用いることが好ましく、二次電池のエネルギー密度を向上させるという観点からは、LiMaOとLiMbOの固溶体が好ましい。また、LiMaOとLiMbOの固溶体としては、特に、xLiMaO・(1−x)LiMbO(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等、Mb=Mn、Zr、Ti等)が好ましく、中でもxLiMaO・(1−x)LiMnO(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等)が好ましい。
スピネル構造を有するリチウム含有複合金属酸化物としては、マンガン酸リチウム(LiMn)のMnの一部を他の遷移金属で置換したLi[Mn2−xMd]O(ここでMdは平均酸化状態が4+である1つ以上の遷移金属、Md=Ni,Co,Fe,Cu,Cr等、0<x<1、0≦a≦1)等が挙げられる。中でも、MnをFeで置換したLiFeMn2−x4−z(0≦a≦1、0<x<1、0≦z≦0.1)は、コストが安価であることから好ましく、MnをNiで置換したLiNi0.5Mn1.5などは構造劣化の因子と考えられているMn3+を全て置換することができ、Ni2+からNi4+への電気化学反応をすることから高い作動電圧で、かつ、高い容量を有することができるので、好ましい。
オリビン型構造を有するリチウム含有複合金属酸化物としては、LiMcPO(式中、Mcは平均酸化状態が3+である1つ以上の遷移金属、Mc=Mn,Co等、0≦y≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。MnまたはCoは他の金属で一部置換されていてもよく、置換しうる金属としてはFe,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoなどが挙げられる。
その他、LiMeSiO(ここでMeは、Fe,Mn)等のポリアニオン構造を有する正極活物質や、ペロブスカイト構造を有するLiFeF、斜方昌構造を有するLiCuなどが挙げられる。
有機化合物としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
本発明で用いる正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1〜50μm、好ましくは0.4〜30μm、更に好ましくは1〜20μmである。50%体積累積径がこの範囲であると、出力特性に優れ、充放電容量が大きい二次電池を得ることができ、かつ、正極活物質層を形成するための正極用スラリー組成物および正極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
正極活物質のBET比表面積は、好ましくは0.1〜10m/g、より好ましくは0.2〜1.0m/gである。正極活物質のBET比表面積を上記範囲とすることで、活物質構造中へのLiの挿入脱離がしやすく、且つ安定した正極用スラリー組成物を得ることができる。なお、本発明において、「BET比表面積」とは、窒素吸着法によるBET比表面積のことをいい、ASTM D3037−81に準じて、測定される値である。
また、正極活物質自体の長期サイクル時の構造安定性が高いことと、電解液の酸化安定性の観点から、本発明に用いる正極活物質はリチウム金属に対する充電平均電圧が3.9V未満であることが好ましい。なお、本発明において、充電平均電圧は、定電流法によって、二次電池を上限電圧まで充電し、その際のリチウムの脱離が起こっている電位(プラトー)をいう。上限電圧は、該電圧を超えると電池の膨張、発熱が起こるおそれがあり、安全性確保の限界になる電圧をいう。
本発明の二次電池正極用スラリー組成物における、バインダー組成物及び正極活物質の合計含有量(固形分相当量)は、正極用スラリー組成物100質量部(固形分相当量)に対して、好ましくは10〜90質量部であり、さらに好ましくは30〜80質量部である。また正極活物質の総量に対するバインダー組成物の含有量(固形分相当量)は、正極活物質の総量100質量部に対して、好ましくは0.1〜5質量部であり、さらに好ましくは0.5〜2質量部である。正極用スラリー組成物における正極活物質及びバインダー組成物の合計含有量とバインダー組成物の含有量が上記範囲であると、得られる正極用スラリー組成物の粘度が適正化され、塗工を円滑に行えるようになり、また得られた正極に関して抵抗が高くなることなく、十分な密着強度が得られる。その結果、極板プレス工程における正極活物質からのバインダー組成物の剥がれを抑制することができる。
正極用スラリー組成物における分散媒としては、バインダー組成物を均一に溶解または分散し得るものであれば特に制限されず、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミドなどのアミド類が挙げられる。
これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、正極活物質や後述する導電剤の分散性に優れ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN−メチルピロリドン、シクロヘキサノン、トルエン等に加えて、これらの混合溶媒が好ましい。
正極用スラリー組成物の固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10〜80質量%程度である。
(導電剤)
正極用スラリー組成物においては、導電剤を含有することが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電剤を含有することにより、正極活物質同士の電気的接触を向上させることができ、二次電池に用いる場合に放電レート特性を改善することができる。正極用スラリー組成物における導電剤の含有量は、正極活物質の総量100質量部に対して、好ましくは1〜20質量部、より好ましくは1〜10質量部である。
(増粘剤)
正極用スラリー組成物においては、増粘剤を含有することが好ましい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。
増粘剤の配合量は、正極活物質100質量部に対して、0.5〜1.5質量部が好ましい。増粘剤の配合量が上記範囲であると、塗工性、集電体との密着性が良好である。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。
(他の成分)
正極用スラリー組成物には、上記成分のほかに、さらに補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよく、後述の二次電池正極中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な正極を得ることができ、優れた長期サイクル特性を示すことができる。正極用スラリー組成物における補強材の含有量は、正極活物質の総量100質量部に対して通常0.01〜20質量部、好ましくは1〜10質量である。上記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。
レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、正極の平滑性を向上させることができる。正極用スラリー組成物中のレベリング剤の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01〜10質量部である。レベリング剤が上記範囲であることにより正極作製時の生産性、平滑性及び電池特性に優れる。界面活性剤を含有させることにより正極用スラリー組成物中の正極活物質等の分散性を向上することができ、さらにそれにより得られる正極の平滑性を向上させることができる。
電解液添加剤としては、正極用スラリー組成物中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。正極用スラリー組成物中の電解液添加剤の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01〜10質量部である。電解液添加剤が、上記範囲であることにより高温サイクル特性及び高温特性に優れる。その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することにより正極用スラリー組成物のチキソ性をコントロールすることができ、さらにそれにより得られる正極のレベリング性を向上させることができる。正極用スラリー組成物中のナノ微粒子の含有量は、正極活物質の総量100質量部に対して、好ましくは0.01〜10質量部である。ナノ微粒子が上記範囲であることによりスラリー安定性、生産性に優れ、高い電池特性を示す。
(二次電池正極用スラリー組成物の製造)
二次電池正極用スラリー組成物は、上記バインダー組成物、正極活物質および必要に応じ用いられる導電剤等を混合して得られる。正極用スラリー組成物を調製するときに使用する分散媒の量は、正極用スラリー組成物の固形分濃度が、通常1〜80質量%、好ましくは5〜50質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、上記バインダー組成物が均一に分散するため好適である。
混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
正極用スラリー組成物の粘度は、室温において、後述する正極の製造方法を(II)の湿式成形法で行う場合には、通常10〜50,000mPa・s、好ましくは100〜10,000mPa・s、より好ましくは300〜2,000mPa・sの範囲であり、後述する正極の製造方法を(III)の乾式成形法で行う場合には、通常10〜3,000mPa・s、好ましくは30〜1,500mPa・s、より好ましくは50〜1,000mPa・sの範囲である。正極用スラリー組成物の粘度がこの範囲にあると、湿式成形法においては均一な電極を得ることができ、得られる電池のサイクル特性も向上する。また乾式成形法においては、後述する複合粒子の生産性を上げることができる。また、正極用スラリー組成物の粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
二次電池正極
本発明の二次電池正極(「正極」と記載することがある。)は、本発明の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる。
(二次電池正極の製造方法)
本発明の二次電池正極の製造方法は、特に限定されない。具体的には、(I)上記正極用スラリー組成物をシート成形し、得られたシートを集電体上に積層し、正極活物質層を形成する方法(シート成形法)、(II)上記正極用スラリー組成物を集電体の少なくとも片面、好ましくは両面に塗布、乾燥し、正極活物質層を形成する方法(湿式成形法)、及び(III)上記正極用スラリー組成物から複合粒子を調製し、これを集電体上に供給してシート成形し、正極活物質層を形成する方法(乾式成形法)等が挙げられる。これらの中でも、(II)湿式成形法、又は(III)乾式成形法が好ましい。(II)湿式成形法は二次電池正極の生産効率に優れており、(III)乾式成形法は得られる二次電池正極の容量を高くでき、且つ内部抵抗を低減できる点で優れている。
(II)湿式成形法において、正極用スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5〜30分であり、乾燥温度は通常40〜180℃である。
(III)乾式成形法における複合粒子は、上記正極用スラリー組成物に含まれるバインダー組成物や正極活物質等が一体化した粒子をさす。複合粒子を用いて正極活物質層を形成することにより、得られる二次電池正極の結着性をより高くできると共に、内部抵抗を低減することができる。
本発明に好適に用いる複合粒子は、本発明のバインダー組成物、正極活物質及び必要に応じて用いられる導電剤等を造粒することにより製造される。
複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、及び溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近にバインダー組成物及び導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の二次電池正極を高い生産性で得ることができる。また、二次電池正極の内部抵抗をより低減することができる。
噴霧乾燥造粒法では、本発明の二次電池正極用スラリー組成物を噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中に正極用スラリー組成物を噴霧して乾燥することにより行う。正極用スラリー組成物の噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央に正極用スラリー組成物を導入し、円盤の遠心力によって正極用スラリー組成物が円盤の外に放たれ、その際に正極用スラリー組成物を霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000〜40,000rpm、好ましくは15,000〜40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。正極用スラリー組成物は噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、正極用スラリー組成物を加圧してノズルから霧状にして乾燥する方式である。
噴霧される正極用スラリー組成物の温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80〜250℃、好ましくは100〜200℃である。
噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
本発明に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をL、長軸径をL、L=(L+L)/2とし、(1−(L−L)/L)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lおよび長軸径Lは、透過型電子顕微鏡写真像より測定される値である。
本発明に好適に用いる複合粒子の体積平均粒子径は、通常5〜500μm、好ましくは7〜300μm、より好ましくは10〜100μmの範囲である。体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することができる。
本発明において、複合粒子を集電体上に供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
次いで、集電体と供給された複合粒子とを一対のロールで加圧して、集電体上に正極活物質層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の正極活物質層に成形される。供給される複合粒子の温度は、好ましくは40〜160℃、より好ましくは70〜140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、正極活物質層を得ることができる。
成形時の温度は、通常0〜200℃であり、本発明に用いるバインダーの融点又はガラス転移温度より高いことが好ましく、融点又はガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35〜70m/分である。またプレス用ロール間のプレス線圧は、通常0.2〜30kN/cm、好ましくは0.5〜10kN/cmである。
上記製法では、前記一対のロールの配置は特に限定されないが、略水平又は略垂直に配置されることが好ましい。略水平に配置する場合は、集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により正極活物質層を形成できる。略垂直に配置する場合は、集電体を水平方向に搬送させ、集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により正極活物質層を形成できる。
本発明の二次電池正極を製造するに際して、集電体上に上記正極用スラリー組成物からなる正極活物質層を形成後、金型プレスやロールプレスなどを用い、加圧処理により正極活物質層の空隙率を低くする工程を有することが好ましい。空隙率の好ましい範囲は5〜30%、より好ましくは7〜20%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難く、正極活物質層が集電体から剥がれ易く不良を発生し易いといった問題を生じる。さらに、正極用バインダー組成物に硬化性の重合体を用いる場合は、硬化させることが好ましい。
本発明の二次電池正極における正極活物質層の厚みは、通常5〜300μmであり、好ましくは10〜250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す。
本発明において、正極活物質層における正極活物質の含有割合は、好ましくは90〜99.9質量%、より好ましくは95〜99質量%である。正極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(集電体)
本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池正極に用いる集電体としてはアルミニウムが特に好ましい。集電体の形状は特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層と集電体との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよく、中でも、導電性接着剤層を形成するのが好ましい。
二次電池
本発明の二次電池は、正極、負極、セパレーター及び電解液を備えてなる二次電池であって、正極が、上記二次電池正極である。
(負極)
負極は、負極活物質及び二次電池負極用バインダー組成物を含む負極活物質層が、集電体上に積層されてなる。
(負極活物質)
本発明に用いる負極活物質は、二次電池負極内で電子の受け渡しをする物質である。
リチウムイオン二次電池用負極活物質としては、具体的には、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性炭素質材料である。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩を使用できる。加えて、金属リチウム、Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金、リチウム遷移金属窒化物、シリコーン等も使用できる。上記負極活物質は、単独または2種類以上を組み合わせて使用することができる。
負極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
負極活物質の体積平均粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが通常0.1〜100μm、好ましくは1〜50μm、より好ましくは5〜20μmである。また、負極活物質の50%体積累積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1〜50μm、好ましくは15〜30μmである。
負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
負極活物質層における、負極活物質の含有割合は、好ましくは85〜99質量%、より好ましくは88〜97質量%である。負極活物質の含有割合を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
本発明において、二次電池負極の負極活物質層の密度は、好ましくは1.6〜1.9g/cmであり、より好ましくは1.65〜1.85g/cmである。負極活物質層の密度が上記範囲にあることにより、高容量の電池を得ることができる。
(二次電池負極用バインダー組成物)
二次電池負極用バインダー組成物としては、特に制限されず公知のものを用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。これらは単独で使用しても、これらを2種以上併用してもよい。
負極には、上記成分のほかに、さらに前述の、導電剤、増粘剤、補強材、レベリング剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
集電体は、前述の二次電池正極に使用される集電体を用いることができ、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、二次電池負極用としては銅が特に好ましい。
負極活物質層の厚みは、通常5〜300μmであり、好ましくは10〜250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
負極は、前述の二次電池正極と同様に製造することができる。
(セパレーター)
セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
(電解液)
本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類、1,2−ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。
上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。
(二次電池の製造方法)
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価する。
<バインダーのガラス転移温度>
バインダーのガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製 DSC6220SII)を用いて、JIS K 7121;1987に基づいて測定した。
<バインダーの溶解度パラメータ(SP値)>
SP値(δ)は、バインダーの重合単位を構成する各単量体の官能基(原子団)の特性値、すなわち、分子引力定数(G)の統計と分子容とからとから次式に従って計算によって求めた。
δ=ΣG/V=dΣG/M
ΣG:分子引力定数Gの総計
V:比容
M:分子量
d:比重
<バインダーのヨウ素価>
バインダーのNMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥した。乾燥したバインダーのヨウ素価をJIS K6235;2006に従って測定した。
<バインダーの膨潤度>
バインダーのNMP溶液をポリテトラフルオロエチレン製シートにキャストし、乾燥してキャストフィルムを得た。このキャストフィルム4cmを切り取って重量(浸漬前重量A)を測定し、その後、温度60℃の電解液中に浸漬した。浸漬したフィルムを72時間後に引き上げ、タオルペーパーで拭きとってすぐに重量(浸漬後重量B)を測定した。バインダーの電解液膨潤度を下記の式より算出し、以下の基準で評価する。膨潤度が低いほど耐電解液性と電池特性(高温サイクル特性)に優れることを示す。なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
膨潤度(%)=B/A×100(%)
<スラリー安定性>
JIS Z8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により正極用スラリー組成物の粘度を測定し、測定開始後1分の値を求め、これをスラリー粘度Aとした。また、正極用スラリー組成物作製1日後のスラリー粘度Bを測定した。正極用スラリー組成物の粘性変化率を下記の式より算出し、以下の基準で評価する。粘性変化率が低いほどスラリー安定性に優れることを示す。
粘性変化率(%)=(B−A)/A×100
A:10%未満
B:10%以上50%未満
C:50%以上100%未満
D:100%以上200%未満
E:200%以上500%未満
F:500%以上
<電極柔軟性>
正極の正極活物質層側に径の異なる棒を載置し、正極を棒に巻き付けて正極活物質層が割れるかどうかを評価した。棒の直径が小さいほど、正極の捲回性に優れることを示す。捲回性に優れると、正極活物質層の剥がれを抑制することができるため、二次電池のサイクル特性に優れる。
A:1.2mmφで割れない
B:1.5mmφで割れない
C:2mmφで割れない
D:3mmφで割れない
E:4mmφで割れない
<高温サイクル特性>
5セルのリチウムイオン二次電池を45℃雰囲気下、0.5Cの定電流法によって4.2Vに充電し、3.0Vまで放電する充放電を、200サイクル繰り返した。200サイクル終了時の電気容量と5サイクル終了時の電気容量の比(=200サイクル終了時の電気容量/5サイクル終了時の電気容量×100)(%)で表される充放電容量保持率を求めた。この値が大きいほど高温サイクル特性に優れることを示す。なお、実施例13においては、10セルのハーフセルコイン型リチウムイオン二次電池を用いた場合の高温サイクル特性も評価した。
(実施例1)
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、2−エチルヘキシルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(2−エチルヘキシルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−35℃であり、SP値は10.0(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、200%であった。
〔正極用スラリー組成物および正極の製造〕
正極活物質として層状構造を有するコバルト酸リチウム(LiCoO)(粒子径:12μm)100部と、アセチレンブラック(HS−100:電気化学工業)2.0部と、前記バインダーのNMP溶液を固形分相当量で1.0部(固形分濃度8.0%)と、適量のNMPとをプラネタリーミキサーにて攪拌し、正極用スラリー組成物を調製した。作製した正極用スラリー組成物を用いてスラリー安定性の評価を行った。結果を表1に示す。
集電体として、厚さ20μmのアルミ箔を準備した。上記正極用スラリー組成物をコンマコーターでアルミ箔上に乾燥後の膜厚が65μm程度になるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.5g/cmの正極活物質層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。作製した正極を用いて電極柔軟性の測定を行った。結果を表1に示す。
〔負極用のスラリー組成物および負極の製造〕
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
上記混合液に、スチレン−ブタジエン共重合体(ガラス転移点温度が−15℃)を含む40%水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
上記負極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極活物質層を有する負極を得た。
〔セパレーターの用意〕
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
〔リチウムイオン二次電池の製造(フルセル)〕
電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF溶液を充填した。このLiPF溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。
得られたリチウムイオン二次電池について、高温サイクル特性を評価した。結果を表1に示す。
(実施例2)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例3)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、エチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(エチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−10℃であり、SP値は10.3(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、350%であった。
(実施例4)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ラウリルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ラウリルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は30℃であり、SP値は10(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、195%であった。
(実施例5)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート40部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン35部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を35質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を40質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位29.9質量%と未水添ブタジエン重合単位1.9質量%と1,2−付加重合単位3.2質量%とから形成されていた。また、バインダーのガラス転移温度は−40℃であり、SP値は10.3(cal/cm1/2であった。なお、バインダーのヨウ素価は9mg/100mgであった。さらに、バインダーの膨潤度は、360%であった。
(実施例6)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート10部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン65部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は330mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は37mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を65質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位56.5質量%と未水添ブタジエン重合単位2.6質量%と1,2−付加重合単位5.9質量%とから形成されていた。また、バインダーのガラス転移温度は−38℃であり、SP値は9.9(cal/cm1/2であった。なお、バインダーのヨウ素価は12mg/100mgであった。さらに、バインダーの膨潤度は、155%であった。
(実施例7)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、アクリルアミド−2−メチルプロパンスルホン酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(スルホン酸基)を有する重合単位(アクリルアミド−2−メチルプロパンスルホン酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例8)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、メチルメタクリレート40部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン35部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を35質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(メチルメタクリレート単量体単位)を40質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位29.9質量%と未水添ブタジエン重合単位1.9質量%と1,2−付加重合単位3.2質量%とから形成されていた。また、バインダーのガラス転移温度は30℃であり、SP値は10.4(cal/cm1/2であった。なお、バインダーのヨウ素価は9mg/100mgであった。さらに、バインダーの膨潤度は、395%であった。
(実施例9)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−30℃であり、SP値は10.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、280%であった。
(実施例10)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル5部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン60部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は300mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は36mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を5質量%、1,3−ブタジエン由来の単量体単位を60質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位52.3質量%と未水添ブタジエン重合単位2.3質量%と1,2−付加重合単位5.4質量%とから形成されていた。また、バインダーのガラス転移温度は−36℃であり、SP値は9.3(cal/cm1/2であった。なお、バインダーのヨウ素価は11mg/100mgであった。さらに、バインダーの膨潤度は、120%であった。
(実施例11)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル10部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン55部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を10質量%、1,3−ブタジエン由来の単量体単位を55質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位47.9質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位5質量%とから形成されていた。また、バインダーのガラス転移温度は−39℃であり、SP値は9.6(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、120%であった。
(実施例12)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル25部、ブチルアクリレート30部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン40部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を25質量%、1,3−ブタジエン由来の単量体単位を40質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位34.3質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位3.6質量%とから形成されていた。また、バインダーのガラス転移温度は−20℃であり、SP値は10.4(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、430%であった。
(実施例13)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、ブチルアクリレート30部、メタクリル酸4.5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45.5部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を20質量%、1,3−ブタジエン由来の単量体単位を45.5質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を4.5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を30質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位39.3質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−30℃であり、SP値は10.0(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。バインダーの膨潤度は250%であった。
〔正極用スラリー組成物および正極の製造〕
正極活物質として層状構造を有するコバルト酸リチウム(LiCoO)(粒子径:12μm)100部と、アセチレンブラック(HS−100:電気化学工業)2.0部と、前記バインダーのNMP固形分量1.0部(固形分濃度8.0%)と、適量のNMPとをプラネタリーミキサーにて攪拌し、正極用スラリー組成物を調製した。作製した正極用スラリー組成物を用いてスラリー安定性の評価を行った。結果を表1に示す。
集電体として、厚さ20μmのアルミ箔を準備した。上記正極用スラリー組成物をコンマコーターでアルミ箔上に乾燥後の膜厚が65μm程度になるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.5g/cmの正極活物質層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。作製した正極を用いて電極柔軟性の測定を行った。結果を表1に示す。
〔リチウムイオン二次電池の製造(ハーフセル)〕
前記正極を直径16mmの円盤状に切り抜き、この正極の正極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのリチウムイオンコイン電池(ハーフセル)を作製した。 なお、電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とをEC:EMC=3:7(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。このリチウムイオン二次電池を用いて高温サイクル特性を評価した。結果を表1に示す。
〔負極用のスラリー組成物および負極の製造〕
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
上記混合液に、スチレン−ブタジエン共重合体(ガラス転移点温度が−15℃)を含む40%水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
上記負極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極活物質層を有する負極を得た。
〔セパレーターの用意〕
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
〔リチウムイオン二次電池の製造(フルセル)〕
電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF溶液を充填した。このLiPF溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。
得られたリチウムイオン二次電池について、高温サイクル特性を評価した。結果を表1に示す。
(比較例1)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
重合缶Aに、2−エチルヘキシルアクリレート8.8部、アクリロニトリル1部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し90分攪拌した後に、別の重合缶Bに2−エチルヘキシルアクリレート79.2部、アクリロニトリル9部、メタクリル酸2.0部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌して作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに逐次添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了し、その後4%NaOH水溶液でpH調整し、重合体の水分散液を得た。
このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させたが、NMPに溶解せず、その後の評価を実施することができなかった。該水分散液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を10質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を2質量%、(メタ)アクリル酸エステル重合単位(2−エチルヘキシルアクリレート単量体単位)を88質量%含んでいた。また、バインダーのガラス転移温度は−50℃未満であり、SP値は9.8(cal/cm1/2であった。なお、バインダーのヨウ素価は0mg/100mgであった。さらに、バインダーの膨潤度は、110%であった。
(比較例2)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル35部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン60部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は300mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は36mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を35質量%、1,3−ブタジエン由来の単量体単位を60質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位52.3質量%と未水添ブタジエン重合単位2.3質量%と1,2−付加重合単位5.4質量%とから形成されていた。また、バインダーのガラス転移温度は−28℃であり、SP値は10.6(cal/cm1/2であった。なお、バインダーのヨウ素価は11mg/100mgであった。さらに、バインダーの膨潤度は、495%であった。
(比較例3)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル43部、エチルアクリレート10部、メタクリル酸2部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を43質量%、1,3−ブタジエン由来の単量体単位を45質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を2質量%、(メタ)アクリル酸エステル重合単位(エチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−10℃であり、バインダーのSP値は11.1(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、760%であった。
(比較例4)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル55部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を55質量%、1,3−ブタジエン由来の単量体単位を45質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位38.8質量%と未水添ブタジエン重合単位2.1質量%と1,2−付加重合単位4.1質量%とから形成されていた。また、バインダーのガラス転移温度は−15℃であり、SP値は11.5(cal/cm1/2であった。なお、バインダーのヨウ素価は10mg/100mgであった。さらに、バインダーの膨潤度は、965%であった。
(比較例5)
正極用バインダー組成物として、下記のバインダー組成物を用いたこと以外は、実施例1と同様の操作を行い、正極用スラリー組成物および正極を得、電池を作製した。各評価の結果を表1に示す。
〔正極用バインダー組成物の製造〕
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル5部、ブチルアクリレート10部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、1,3−ブタジエン80部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位及び共役ジエンモノマーを形成し得る重合単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は350mg/100mgであった。
前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は40mg/100mgであった。
次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、正極用バインダー組成物として、上記バインダーのNMP溶液を得た。該NMP溶液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥し、乾燥体を得、NMRで分析したところ、バインダーは、重合体全量に対して、ニトリル基を有する重合単位(アクリロニトリル単量体単位)を5質量%、1,3−ブタジエン由来の単量体単位を80質量%、親水性基(カルボン酸基)を有する重合単位(メタクリル酸単量体単位)を5質量%、(メタ)アクリル酸エステル重合単位(ブチルアクリレート単量体単位)を10質量%含んでいた。ここで、前記1,3−ブタジエン由来の単量体単位は炭素数4以上の直鎖アルキレン重合単位69.6質量%と未水添ブタジエン重合単位3.2質量%と1,2−付加重合単位7.2質量%とから形成されていた。また、バインダーのガラス転移温度は−38℃であり、SP値は9.0(cal/cm1/2であった。なお、バインダーのヨウ素価は15mg/100mgであった。さらに、バインダーの膨潤度は、80%であった。
Figure 2013080989
表1の結果に示すように、実施例1〜13のバインダー組成物を用いた場合には、スラリー安定性に優れたスラリー組成物が得られた。一方、比較例1のバインダー組成物を用いた場合には、NMPに溶解せずスラリー組成物を得ることができなかった。そのため、比較例1においては、スラリー安定性、電極柔軟性及び高温サイクル特性の評価ができなかった。
また、実施例1〜3、5〜7および9〜13のバインダー組成物を用いた正極は、比較例2および4のバインダー組成物を用いた正極よりも電極柔軟性に優れる。
さらにまた、実施例1〜13のバインダー組成物を用いた電池は、比較例2〜5のバインダー組成物を用いた電池よりも高温サイクル特性に優れる。
すなわち、実施例1〜13のバインダー組成物は、比較例1〜5のバインダー組成物に比べて、スラリー安定性、電極柔軟性および高温サイクル特性のバランスに優れる。
本発明においては、スラリー安定性、電極柔軟性および高温サイクル特性のバランスに優れる実施例1〜3、5、7、9、11〜13が好ましく、さらにスラリー安定性、電極柔軟性および高温サイクル特性のバランスが特に優れる実施例1、2、7および13が特に好ましい。

Claims (12)

  1. ニトリル基を有する重合単位、(メタ)アクリル酸エステル重合単位、親水性基を有する重合単位、及び炭素数4以上の直鎖アルキレン重合単位を含有するバインダーであって、
    エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを20℃での容積比がEC:DEC=1:2となるように混合してなる混合溶媒に、LiPFが1.0mol/Lの濃度で溶解した電解液に対する膨潤度が、100〜500%であることを特徴とする二次電池正極用バインダー組成物。
  2. 前記(メタ)アクリル酸エステル重合単位の含有割合が5〜50質量%である請求項1に記載の二次電池正極用バインダー組成物。
  3. 前記ニトリル基を有する重合単位の含有割合が2〜50質量%である請求項1または2に記載の二次電池正極用バインダー組成物。
  4. 前記親水性基を有する重合単位の含有割合が0.05〜20質量%である請求項1〜3のいずれかに記載の二次電池正極用バインダー組成物。
  5. 前記(メタ)アクリル酸エステル重合単位の非カルボニル性酸素原子に結合するアルキル基の炭素数が4〜10である請求項1〜4のいずれかに記載の二次電池正極用バインダー組成物。
  6. 前記バインダーの溶解度パラメーター(SP値)が、9.0(cal/cm1/2以上、11(cal/cm1/2未満である請求項1〜5のいずれかに記載の二次電池正極用バインダー組成物。
  7. 前記バインダーのヨウ素価が、3〜60mg/100mgである請求項1〜6のいずれかに記載の二次電池正極用バインダー組成物。
  8. 前記バインダーのガラス転移温度が25℃以下である請求項1〜7のいずれかに記載の二次電池正極用バインダー組成物。
  9. 請求項1〜8のいずれかに記載の二次電池正極用バインダー組成物及び正極活物質を含有してなる二次電池正極用スラリー組成物。
  10. 請求項9に記載の二次電池正極用スラリー組成物からなる正極活物質層を集電体上に形成してなる二次電池正極。
  11. 正極、負極、セパレーター及び電解液を有する二次電池であって、
    前記正極が、請求項10に記載の二次電池正極である二次電池。
  12. 請求項9に記載の二次電池正極用スラリー組成物を集電体の少なくとも片面に塗布、乾燥する工程を有する二次電池正極の製造方法。
JP2013547178A 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池 Active JP6156149B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011258637 2011-11-28
JP2011258638 2011-11-28
JP2011258637 2011-11-28
JP2011258638 2011-11-28
JP2012017060 2012-01-30
JP2012017060 2012-01-30
PCT/JP2012/080698 WO2013080989A1 (ja) 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Publications (2)

Publication Number Publication Date
JPWO2013080989A1 true JPWO2013080989A1 (ja) 2015-04-27
JP6156149B2 JP6156149B2 (ja) 2017-07-05

Family

ID=48535440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013547178A Active JP6156149B2 (ja) 2011-11-28 2012-11-28 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池

Country Status (4)

Country Link
US (1) US9601775B2 (ja)
JP (1) JP6156149B2 (ja)
KR (1) KR101959520B1 (ja)
WO (1) WO2013080989A1 (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160077074A1 (en) 2011-12-21 2016-03-17 The Regents Of The University Of California Interconnected corrugated carbon-based network
KR101762604B1 (ko) * 2012-03-02 2017-07-28 제온 코포레이션 2 차 전지용 정극 및 2 차 전지
CN104541349A (zh) 2012-03-05 2015-04-22 加州大学评议会 具有由互连波纹状碳基网络制成的电极的电容器
CN105359309B (zh) * 2013-07-08 2018-07-03 三洋化成工业株式会社 锂离子电池活性物质包覆用树脂、锂离子电池活性物质包覆用树脂组合物和锂离子电池用包覆活性物质
KR101739299B1 (ko) * 2013-09-24 2017-06-08 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
CN105814718B (zh) * 2013-12-27 2020-06-02 日本瑞翁株式会社 电极用导电材料糊、正极用浆料的制造方法、正极的制造方法以及二次电池
JP6394027B2 (ja) * 2014-03-27 2018-09-26 日本ゼオン株式会社 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池の製造方法
KR102234295B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
KR102375011B1 (ko) * 2014-04-02 2022-03-15 니폰 제온 가부시키가이샤 리튬이온 이차전지 정극용 슬러리, 리튬이온 이차전지 정극용 슬러리의 제조 방법, 리튬이온 이차전지용 정극의 제조 방법, 및 리튬이온 이차전지
JP6181590B2 (ja) * 2014-04-02 2017-08-16 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
AU2015277264B2 (en) 2014-06-16 2019-08-15 The Regents Of The University Of California Hybrid electrochemical cell
US10290873B2 (en) * 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2016068142A1 (ja) * 2014-10-27 2016-05-06 日立化成株式会社 リチウムイオン電池
CA2968139C (en) 2014-11-18 2023-01-10 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (iccn) composite
JP6607871B2 (ja) 2015-02-12 2019-11-20 富士フイルム株式会社 全固体二次電池、それに用いる固体電解質組成物、これを用いた電池用電極シート、ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2016132872A1 (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6791127B2 (ja) 2015-03-27 2020-11-25 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウム
JP2016192267A (ja) * 2015-03-31 2016-11-10 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
KR101673763B1 (ko) 2015-04-30 2016-11-07 현대자동차주식회사 전고체 리튬이온 전지 양극 및 이를 포함하는 전고체 리튬이온 전지
US10930928B2 (en) 2015-06-22 2021-02-23 Alliance For Sustainable Energy, Llc Magnesium metal devices and methods of making the same
WO2016208190A1 (ja) * 2015-06-24 2016-12-29 日本ゼオン株式会社 電気化学素子電極用組成物、電気化学素子用電極および電気化学素子、並びに電気化学素子電極用組成物の製造方法
PL3316360T3 (pl) 2015-06-29 2022-01-10 Zeon Corporation Kompozycja środka wiążącego dla elektrody baterii akumulatorowej, kompozycja zawiesiny dla elektrody baterii akumulatorowej, elektroda do baterii akumulatorowej i bateria akumulatorowa
US10388961B2 (en) 2015-07-14 2019-08-20 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
KR102577552B1 (ko) * 2015-08-05 2023-09-11 니폰 제온 가부시키가이샤 니트릴기 함유 고포화 공중합체 고무, 가교성 고무 조성물, 및 고무 가교물
US10797343B2 (en) * 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
EP3358651B1 (en) 2015-09-30 2022-05-11 Zeon Corporation Conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, undercoat layer-including current collector for secondary battery electrodes, electrode for secondary batteries, and secondary battery
CA3006997A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
IL260398B (en) 2016-01-22 2022-08-01 Univ California high voltage devices
CN108780891B (zh) 2016-03-03 2023-10-20 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、导电材料糊组合物、浆料组合物、电极和二次电池
BR112018069339B1 (pt) 2016-03-23 2023-12-05 The Regents Of The University Of California Sistema eletroquímico, e, método para fabricar um sistema eletroquímico
CN107325225B (zh) * 2016-04-29 2019-12-03 四川茵地乐科技有限公司 锂离子电池负极水性粘合剂及其制备方法
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
FR3054728B1 (fr) * 2016-07-26 2018-08-17 Hutchinson Anode pour cellule de batterie lithium-ion, son procede de fabrication et cette batterie l'incorporant
EA201990587A1 (ru) 2016-08-31 2019-07-31 Дзе Риджентс Оф Дзе Юнивёрсити Оф Калифорния Устройства, содержащие материалы на основе углерода, и их производство
US11145866B2 (en) 2016-09-06 2021-10-12 Zeon Corporation Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
CN110088947B (zh) 2016-12-28 2022-11-04 日本瑞翁株式会社 非水系二次电池负极用浆料组合物及其制造方法、非水系二次电池用负极以及非水系二次电池
EP3355384A1 (en) * 2017-01-31 2018-08-01 Universite De Liege Flexible thin-films for battery electrodes
KR102569975B1 (ko) * 2017-03-13 2023-08-22 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 도전재 페이스트 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
EP3649691B1 (en) 2017-07-03 2022-09-14 ARLANXEO Deutschland GmbH Cathode of an all-solid-state lithium-ion battery and all-solid-state lithium-ion battery containing said cathode
CN110892572B (zh) 2017-07-14 2023-02-17 加利福尼亚大学董事会 用碳纳米点制备高导电多孔石墨烯用于超级电容器应用的简单方法
EP3660953A4 (en) 2017-07-28 2021-04-21 Zeon Corporation ELECTRODE FOR ELECTROCHEMICAL ELEMENT AS WELL AS A METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL ELEMENT
PL3678237T3 (pl) * 2017-08-29 2024-03-18 Zeon Corporation Kompozycja środka wiążącego do elektrody niewodnej baterii akumulatorowej, kompozycja zawiesiny do elektrody niewodnej baterii akumulatorowej, elektroda do niewodnej baterii akumulatorowej i niewodna bateria akumulatorowa
JP7192774B2 (ja) 2017-09-15 2022-12-20 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
KR20200103650A (ko) 2017-12-28 2020-09-02 니폰 제온 가부시키가이샤 이차 전지 정극용 바인더 조성물, 이차 전지 정극용 슬러리 조성물 및 그 제조 방법, 이차 전지용 정극, 그리고 이차 전지
JP7218729B2 (ja) 2017-12-28 2023-02-07 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
EP3846264A4 (en) * 2018-08-31 2022-06-15 Zeon Corporation Binding composition for a solid -state sectoral battery, inflammation composition for an electrode mixing layer of a solid -colored sectoral battery, inflammation composition for a solid electrolyyday layer of a solid -colored salary battery, electrode for solid -colored salicry, fixed electrolystic layer for solid body older battery
WO2020075626A1 (ja) * 2018-10-10 2020-04-16 日本ゼオン株式会社 電極合材層用導電性ペースト、電極合材層用スラリー、電気化学素子用電極、および電気化学素子
KR20210110295A (ko) 2018-12-27 2021-09-07 니폰 제온 가부시키가이샤 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극, 및 이차 전지
JPWO2020137594A1 (ja) 2018-12-27 2021-11-18 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
KR102306446B1 (ko) * 2018-12-28 2021-09-28 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
JPWO2020241322A1 (ja) 2019-05-31 2020-12-03
JPWO2020241384A1 (ja) 2019-05-31 2020-12-03
KR20220015380A (ko) 2019-05-31 2022-02-08 니폰 제온 가부시키가이샤 이차 전지 정극용 바인더 조성물, 이차 전지 정극용 도전재 페이스트 조성물, 이차 전지 정극용 슬러리 조성물, 이차 전지용 정극 및 그 제조 방법, 그리고 이차 전지
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US20220384815A1 (en) 2019-10-31 2022-12-01 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, and secondary battery
EP4053209A1 (en) 2019-10-31 2022-09-07 Zeon Corporation Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery and method for producing paste for secondary batteries
WO2021085343A1 (ja) 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
JPWO2021085141A1 (ja) 2019-10-31 2021-05-06
JPWO2021131484A1 (ja) 2019-12-26 2021-07-01
CN115836413A (zh) 2020-08-31 2023-03-21 日本瑞翁株式会社 全固态二次电池用粘结剂组合物的制造方法、全固态二次电池用浆料组合物的制造方法、含固态电解质层的制造方法以及全固态二次电池的制造方法
JP6911987B1 (ja) * 2020-08-31 2021-07-28 日本ゼオン株式会社 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
CN116508123A (zh) 2020-11-27 2023-07-28 日本瑞翁株式会社 电化学元件用电极和电化学元件
EP4254565A1 (en) 2020-11-27 2023-10-04 Zeon Corporation Paste for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JPWO2022138004A1 (ja) 2020-12-25 2022-06-30
EP4350813A1 (en) 2021-05-27 2024-04-10 Zeon Corporation Binder composition for all-solid-state secondary batteries, slurry composition for all-solid-state secondary batteries, functional layer for all-solid-state secondary batteries, and all-solid-state secondary battery
WO2023162609A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池
WO2024046966A1 (en) * 2022-08-30 2024-03-07 Arlanxeo Deutschland Gmbh HNBR CATHODE BINDERS FOR BATTERY CELLS USING γ-VALEROLACTONE AS PROCESSING SOLVENT
WO2024070249A1 (ja) * 2022-09-29 2024-04-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JPH11288720A (ja) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd 二次電池用バインダー組成物、電池電極用スラリー、電池用電極および二次電池
JPH11297328A (ja) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd リチウムイオン二次電池用電極および二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire
JP2003223895A (ja) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd 二次電池電極用スラリー組成物、二次電池電極および二次電池
WO2004095613A1 (ja) * 2003-04-24 2004-11-04 Zeon Corporation リチウムイオン二次電池電極用バインダー
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598153B2 (ja) 1995-08-28 2004-12-08 ソニー株式会社 非水電解質二次電池
JP4502311B2 (ja) 2003-10-17 2010-07-14 日立マクセル株式会社 リチウム二次電池の製造方法
JP4748439B2 (ja) 2004-07-30 2011-08-17 日立化成工業株式会社 リチウム電池電極用バインダ樹脂組成物、電極および電池
KR101077870B1 (ko) * 2010-02-26 2011-10-28 주식회사 엘지화학 접착력이 우수한 이차전지용 바인더

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157677A (ja) * 1994-10-07 1996-06-18 Nippon Zeon Co Ltd 電極用バインダー
JPH11288720A (ja) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd 二次電池用バインダー組成物、電池電極用スラリー、電池用電極および二次電池
JPH11297328A (ja) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd リチウムイオン二次電池用電極および二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire
JP2003223895A (ja) * 2002-01-31 2003-08-08 Nippon Zeon Co Ltd 二次電池電極用スラリー組成物、二次電池電極および二次電池
WO2004095613A1 (ja) * 2003-04-24 2004-11-04 Zeon Corporation リチウムイオン二次電池電極用バインダー
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池

Also Published As

Publication number Publication date
US20150050554A1 (en) 2015-02-19
US9601775B2 (en) 2017-03-21
KR20140106522A (ko) 2014-09-03
JP6156149B2 (ja) 2017-07-05
WO2013080989A1 (ja) 2013-06-06
KR101959520B1 (ko) 2019-03-18

Similar Documents

Publication Publication Date Title
JP6156149B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP6569788B2 (ja) 二次電池用正極及び二次電池
JP6044773B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP5974578B2 (ja) 二次電池正極用複合粒子、二次電池用正極及び二次電池
KR101941428B1 (ko) 2 차 전지 정극용 바인더 조성물, 2 차 전지 정극용 슬러리 조성물, 2 차 전지 정극 및 2 차 전지
JP5782861B2 (ja) 二次電池用正極及び二次電池
JP6191597B2 (ja) 二次電池用セパレータ
JP5652322B2 (ja) 全固体二次電池の製造方法
JP6877862B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2014011002A (ja) 電気化学素子電極用スラリー組成物及び電気化学素子電極
JP6369473B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5834959B2 (ja) バインダー組成物及びその製造方法、スラリー組成物、二次電池用正極の製造方法、並びに二次電池
JP2014165131A (ja) リチウムイオン二次電池正極用スラリー組成物の製造方法、リチウムイオン二次電池用正極の製造方法、及び、リチウムイオン二次電池
JP2013206846A (ja) 二次電池多孔膜用スラリー組成物
JP2014149935A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
WO2014157061A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250