JP5978837B2 - リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP5978837B2
JP5978837B2 JP2012169769A JP2012169769A JP5978837B2 JP 5978837 B2 JP5978837 B2 JP 5978837B2 JP 2012169769 A JP2012169769 A JP 2012169769A JP 2012169769 A JP2012169769 A JP 2012169769A JP 5978837 B2 JP5978837 B2 JP 5978837B2
Authority
JP
Japan
Prior art keywords
water
active material
polymer
weight
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012169769A
Other languages
English (en)
Other versions
JP2014029788A (ja
Inventor
智一 佐々木
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2012169769A priority Critical patent/JP5978837B2/ja
Publication of JP2014029788A publication Critical patent/JP2014029788A/ja
Application granted granted Critical
Publication of JP5978837B2 publication Critical patent/JP5978837B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池に関する。
近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、溶媒に電極活物質および必要に応じて導電性カーボン等の導電材を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。
前記の溶媒として、従来は、有機溶媒を使用することが多かった。しかし、有機溶媒を使用することには、有機溶媒のリサイクルに費用を要したり、有機溶媒を使用することにより安全性確保を要したりするという課題がある。そのため、近年では、溶媒として水を用いて電極を製造することが検討されている(特許文献1〜3参照)。
特開2011−134575号公報 特開2003−308841号公報 特開2003−217573号公報
リチウムイオン二次電池においては、高温におけるサイクル特性(以下、適宜「高温サイクル特性」ということがある。)及び低温における出力特性(以下、適宜「低温特性」ということがある。)などの電池特性を改善することが求められる。ここで、前記のように電極はスラリー組成物を用いて製造されるので、スラリー組成物の性状はリチウムイオン二次電池の性能に影響を及ぼすものと考えられる。そこで、スラリー組成物の性状を制御することにより、リチウムイオン二次電池の性能を改善しうる技術の開発が求められている。
本発明は前記の課題に鑑みて創案されたもので、高温サイクル特性及び低温特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用のスラリー組成物、並びに、それを用いたリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することを目的とする。
本発明者は前記の課題を解決するべく鋭意検討した。その結果、本発明者は、水を含むリチウムイオン二次電池用のスラリー組成物が、エチレン性不飽和カルボン酸単量体単位及びフッ素含有(メタ)アクリル酸エステル単量体単位を所定の割合で含む水溶性重合体重合体と、ビニルピロリドン系重合体とを組み合わせて含むことにより、リチウムイオン二次電池の高温サイクル特性及び低温特性を改善できることを見出し、本発明を完成させた。
すなわち、本発明は以下の通りである。
〔1〕 電極活物質、エチレン性不飽和カルボン酸単量体単位20重量%〜70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位1重量%〜30重量%を含む水溶性重合体、ビニルピロリドン系重合体、及び水を含む、リチウムイオン二次電池電極用のスラリー組成物。
〔2〕 前記ビニルピロリドン系重合体の1重量%水溶液粘度が、2,000mPa・s〜20,000mPa・sである、〔1〕記載のスラリー組成物。
〔3〕 前記エチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、〔1〕又は〔2〕記載のスラリー組成物。
〔4〕 前記水溶性重合体及びビニルピロリドン系重合体の1重量%水溶液粘度が、500mPa・s〜10,000mPa・sである、〔1〕〜〔3〕のいずれか一項に記載のスラリー組成物。
〔5〕 前記水溶性重合体とビニルピロリドン系重合体との量比が、水溶性重合体/ビニルピロリドン=50.0/50.0〜95.0/5.0である、〔1〕〜〔4〕のいずれか一項に記載のスラリー組成物。
〔6〕 前記水溶性重合体と前記ビニルピロリドン系重合体の合計の量が、電極活物質100重量部に対し、0.5重量部〜10重量部である、〔1〕〜〔5〕のいずれか一項に記載のスラリー組成物。
〔7〕 更に粒子状バインダーを含む、〔1〕〜〔6〕のいずれか一項に記載のスラリー組成物。
〔8〕 〔1〕〜〔7〕のいずれか一項に記載のスラリー組成物の膜を集電体上に形成し、前記の膜を乾燥して得られる、リチウムイオン二次電池用電極。
〔9〕 正極、負極及び電解液を備えるリチウムイオン二次電池であって、
前記正極及び負極の一方又は両方が〔8〕記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。
本発明によれば、高温サイクル特性及び低温特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用のスラリー組成物、並びに、それを用いたリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することができる。
以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸のことを意味する。また、(メタ)アクリレートとは、アクリレート及びメタクリレートのことを意味する。さらに、(メタ)アクリロニトリルとは、アクリロニトリル及びメタクリロニトリルのことを意味する。
さらに、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。
[1.リチウムイオン二次電池用のスラリー組成物]
本発明のスラリー組成物は、リチウムイオン二次電池電極用のスラリー組成物であって、電極活物質、水溶性重合体、ビニルピロリドン系重合体及び水を含む。また、本発明のスラリー組成物は、粒子状バインダーを含むことが好ましい。
[1.1.電極活物質]
電極活物質のうち、正極用の電極活物質(以下、適宜「正極活物質」ということがある。)としては、通常、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、例えば、無機化合物からなるものが挙げられる。
無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。
スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)、又は、マンガン酸リチウムのMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。
正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
正極活物質の粒子の体積平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、リチウムイオン二次電池の容量の低下を抑制できる。また、本発明のスラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。ここで、体積平均粒子径は、レーザー回折法で測定された粒度分布において小径側から計算した累積体積が50%となる粒子径を採用する。
正極活物質の量は、電極活物質層における正極活物質の割合で、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の量を上記範囲とすることにより、リチウムイオン二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との密着強度を向上させることができる。
電極活物質のうち、負極用の電極活物質(以下、適宜「負極活物質」ということがある。)は、負極において電子の受け渡しをする物質である。負極活物質として、通常は、リチウムイオンを吸蔵及び放出しうる物質を用いる。
好適な負極活物質を挙げると、例えば、炭素が挙げられる。炭素としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック等が挙げられ、中でも天然黒鉛を用いることが好ましい。
また、負極活物質としては、スズ、ケイ素、ゲルマニウム及び鉛からなる群より選ばれる少なくとも1種を含む負極活物質を用いることが好ましい。これらの元素を含む負極活物質は、不可逆容量が小さいからである。この中でも、ケイ素を含む負極活物質が好ましい。ケイ素を含む負極活物質を用いることにより、リチウムイオン二次電池の電気容量を大きくすることが可能となる。
負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、前記の負極活物質のうち、2種類以上を組み合わせて用いてよい。中でも、炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いることが好ましい。炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質においては、高電位で金属ケイ素及びケイ素系活物質の一方又は両方へのLiの挿入及び脱離が起こり、低電位で炭素へのLiの挿入及び脱離が起こると推測される。このため、膨張及び収縮が抑制されるので、リチウムイオン二次電池のサイクル特性を向上させることができる。
ケイ素系活物質としては、例えば、SiO、SiO、SiO(0.01≦x<2)、SiC、SiOC等が挙げられ、SiO、SiC及びSiOCが好ましい。中でも、負極活物質自体の膨らみが抑制される点から、ケイ素系活物質としてSiOを用いることが特に好ましい。SiOは、SiO及びSiOの一方又は両方と金属ケイ素とから形成される化合物である。このSiOは、例えば、SiOと金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを、冷却及び析出させることにより、製造しうる。
炭素と金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて用いる場合、金属ケイ素及びケイ素系活物質の一方又は両方は導電性カーボンと複合化されていることが好ましい。導電性カーボンとの複合化により、負極活物質自体の膨らみを抑制することができる。
複合化の方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングすることにより複合化する方法;導電性カーボンと金属ケイ素及びケイ素系活物質の一方又は両方とを含む混合物を造粒することにより複合化する方法;等が挙げられる。
金属ケイ素及びケイ素系活物質の一方又は両方をカーボンによりコーティングする方法としては、例えば、金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して不均化する方法;金属ケイ素及びケイ素系活物質の一方又は両方に熱処理を施して化学蒸着する方法;等が挙げられる。
これらの方法の具体例を挙げると、SiOに、少なくとも有機物ガス及び有機蒸気の一方又は両方を含む雰囲気下で、通常900℃以上、好ましくは1000℃以上、より好ましくは1050℃以上、更に好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下、より好ましくは1200℃以下の温度域で、熱処理を施す方法が挙げられる。この方法によれば、SiOをケイ素及び二酸化ケイ素の複合体に不均化し、その表面にカーボンを化学蒸着することができる。
また、別の具体例としては、次の方法も挙げられる。すなわち、金属ケイ素及びケイ素系活物質の一方又は両方に、不活性ガス雰囲気下で、通常900℃以上、好ましくは1000℃以上、より好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下で熱処理を施して不均化して、ケイ素複合物を得る。こうして得られたケイ素複合物を、好ましくは0.1μm〜50μmの粒度まで粉砕する。粉砕したケイ素複合物を、不活性ガス気流下で、800℃〜1400℃で加熱する。この加熱したケイ素複合物に、少なくとも有機物ガス及び有機蒸気の一方又は両方を含む雰囲気下で、通常800℃以上、好ましくは900℃以上、より好ましくは1000℃以上、また、通常1400℃以下、好ましくは1300℃以下、より好ましくは1200℃以下で熱処理を施して、表面にカーボンを化学蒸着する。
また、更に別の具体例としては、次の方法も挙げられる。すなわち、金属ケイ素及びケイ素系活物質の一方又は両方に、通常500℃〜1200℃、好ましくは500℃〜1000℃、より好ましくは500℃〜900℃の温度域で、有機物ガス及び有機蒸気の一方又は両方で化学蒸着処理を施す。これに、不活性ガス雰囲気下で、通常900℃以上、好ましくは1000℃以上、より好ましくは1100℃以上、また、通常1400℃以下、好ましくは1300℃以下で熱処理を施して、不均化する。
炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いる場合、負極活物質において、全炭素原子量100重量部に対してケイ素原子の量が0.1重量部〜50重量部であることが好ましい。これにより、導電パスが良好に形成されて、負極における導電性を良好にできる。
炭素と、金属ケイ素及びケイ素系活物質の一方又は両方とを組み合わせて含む負極活物質を用いる場合、炭素と金属ケイ素及びケイ素系活物質の一方又は両方との重量比(「炭素の重量」/「金属ケイ素及びケイ素系活物質の重量」)は、好ましくは50/50以上、より好ましくは70/30以上であり、好ましくは97/3以下、より好ましくは90/10以下である。これにより、リチウムイオン二次電池のサイクル特性を改善することができる。
負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、リチウムイオン二次電池用電極(以下、適宜「電極」ということがある。)の成形時に、より高密度な電極が形成できる。
負極活物質の粒子の体積平均粒子径は、リチウムイオン二次電池の他の構成要件との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。
負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。負極活物質の比表面積は、例えばBET法により測定しうる。
負極活物質の量は、電極活物質層における負極活物質の割合で、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の量を上記範囲とすることにより、高い容量を示しながらも柔軟性、密着性を示す負極を実現できる。
[1.2.水溶性重合体及びビニルピロリドン系重合体]
本発明のスラリー組成物は、水溶性重合体及びビニルピロリドン系重合体を含む。これらの重合体は、スラリー組成物の粘度を調整する作用を有し、特にビニルピロリドン系重合体はスラリー組成物の粘度を効果的に向上させうる。また、これらの重合体は、電極活物質層において、電極活物質同士の間並びに電極活物質と集電体との間に介在することにより、電極活物質及び集電体を結着する作用も奏しうる。特に、水溶性重合体が、高い結着性を発揮しうる。さらに、これらの重合体は、電極活物質層において電極活物質を覆う安定した層を形成し、電解液の分解を抑制する作用を奏しうる。
[1.2.1.水溶性重合体]
水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を含む。エチレン性不飽和カルボン酸単量体単位とは、エチレン性不飽和カルボン酸単量体を重合して形成される構造を有する構造単位である。
エチレン性不飽和カルボン酸単量体の例としては、エチレン性不飽和モノカルボン酸単量体及びその誘導体、エチレン性不飽和ジカルボン酸単量体及びその酸無水物並びにそれらの誘導体が挙げられる。エチレン性不飽和モノカルボン酸単量体の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。エチレン性不飽和モノカルボン酸単量体の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、及びβ−ジアミノアクリル酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。エチレン性不飽和ジカルボン酸単量体の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体が好ましい。得られる水溶性重合体の水に対する溶解性をより高めることができるからである。また、エチレン性不飽和カルボン酸単量体及びエチレン性不飽和カルボン酸単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
水溶性重合体において、エチレン性不飽和カルボン酸単量体単位の割合は、通常20重量%以上、好ましくは25重量%以上、より好ましくは30重量%以上であり、通常70重量%以下、好ましくは60重量%以下、より好ましくは50重量%以下である。エチレン性不飽和カルボン酸単量体単位の割合が前記範囲の下限値以上であることにより、電極活物質層と集電体との密着強度を高めることができる。また、前記範囲の上限値以下であることにより、電極活物質層の柔軟性を高めることができる。ここで、水溶性重合体におけるエチレン性不飽和カルボン酸単量体単位の割合は、通常、水溶性重合体の全単量体におけるエチレン性不飽和カルボン酸単量体の比率(仕込み比)に一致する。
水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位を含む。フッ素含有(メタ)アクリル酸エステル単量体単位とは、フッ素含有(メタ)アクリル酸単量体を重合して形成される構造を有する構造単位である。
フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
Figure 0005978837
前記の式(I)において、Rは、水素原子またはメチル基を表す。
前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ)アクリル酸2,2,2−トリフルオロエチル、(メタ)アクリル酸β−(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3−テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4−ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H−パーフルオロ−1−ノニル、(メタ)アクリル酸1H,1H,11H−パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2、2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。また、フッ素含有(メタ)アクリル酸エステル単量体及びフッ素含有(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
水溶性重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の割合は、通常1重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上であり、通常30重量%以下、好ましくは25重量%以下、より好ましくは20重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の割合が前記範囲の下限値以上であることにより、リチウムイオン二次電池の低温特性等の出力特性を良好にできる。また、前記範囲の上限値以下であることにより、リチウムイオン二次電池のサイクル特性を改善して電池寿命を長くできる。ここで、水溶性重合体におけるフッ素含有(メタ)アクリル酸エステル単量体単位の割合は、通常、水溶性重合体の全単量体におけるフッ素含有(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。
水溶性重合体は、上述したエチレン性不飽和カルボン酸単量体単位及びフッ素含有(メタ)アクリル酸エステル単量体単位以外に、任意の構造単位を含んでいてもよい。
例えば、水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位以外の、(メタ)アクリル酸エステル単量体単位を含んでいてもよい。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して形成される構造を有する構造単位である。ただし、(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有(メタ)アクリル酸エステル単量体として(メタ)アクリル酸エステル単量体とは区別する。
(メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。また、(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
水溶性重合体において、(メタ)アクリル酸エステル単量体単位の割合は、好ましくは20重量%以上、より好ましくは25重量%以上、特に好ましくは30重量%以上であり、また、好ましくは70重量%以下、より好ましくは65重量%以下、特に好ましくは60重量%以下である。(メタ)アクリル酸エステル単量体単位の量が上記範囲の下限値以上であることにより、電極活物質層の集電体への密着強度を高くすることができる。また、前記範囲の上限値以下であることにより、電極の柔軟性を高めることができる。ここで、水溶性重合体における(メタ)アクリル酸エステル単量体単位の割合は、通常、水溶性重合体の全単量体における(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。
また、例えば、水溶性重合体は、架橋性単量体単位を含んでいてもよい。架橋性単量体単位は、架橋性単量体を重合して得られる構造単位である。架橋性単量体単位を含むことにより、水溶性重合体を架橋させることができるので、水溶性重合体で形成される被膜の強度及び安定性を高めることができる。
架橋性単量体としては、重合した際に架橋構造を形成しうる単量体を用いうる。架橋性単量体の例としては、1分子あたり2以上の反応性基を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N−メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o−アリルフェニルグリシジルエーテル等の不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5−エポキシ−2−ペンテン、3,4−エポキシ−1−ビニルシクロヘキセン、1,2−エポキシ−5,9−シクロドデカジエン等のジエンまたはポリエンのモノエポキシド;3,4−エポキシ−1−ブテン、1,2−エポキシ−5−ヘキセン、1,2−エポキシ−9−デセン等のアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル−4−ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル−4−メチル−3−ペンテノエート、3−シクロヘキセンカルボン酸のグリシジルエステル、4−メチル−3−シクロヘキセンカルボン酸のグリシジルエステル等の不飽和カルボン酸のグリシジルエステル類;などが挙げられる。
熱架橋性の架橋性基としてN−メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N−メチロール(メタ)アクリルアミド等のメチロール基を有する(メタ)アクリルアミド類などが挙げられる。
熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3−((メタ)アクリロイルオキシメチル)オキセタン、3−((メタ)アクリロイルオキシメチル)−2−トリフロロメチルオキセタン、3−((メタ)アクリロイルオキシメチル)−2−フェニルオキセタン、2−((メタ)アクリロイルオキシメチル)オキセタン、及び2−((メタ)アクリロイルオキシメチル)−4−トリフロロメチルオキセタンなどが挙げられる。
熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリン、及び2−イソプロペニル−5−エチル−2−オキサゾリンなどが挙げられる。
2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン−トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン−ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンなどが挙げられる。
中でも特に、架橋性単量体としては、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましい。
水溶性重合体において、架橋性単量体単位の含有割合は、通常0.1%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、通常2重量%以下、好ましくは1.5重量%以下、より好ましくは1重量%以下である。架橋性単量体単位の含有割合を前記範囲内とすることにより、膨潤度を抑制し、電極の耐久性を高めることができる。ここで、水溶性重合体における架橋性単量体単位の割合は、通常、水溶性重合体の全単量体における架橋性単量体の比率(仕込み比)と一致する。
さらに、例えば、水溶性重合体は、反応性界面活性剤単量体単位を含んでいてもよい。反応性界面活性剤単量体単位は、反応性界面活性剤単量体を重合して得られる構造単位である。反応性界面活性剤単量体単位は、水溶性重合体の一部を構成し、且つ界面活性剤として機能しうる。
反応性界面活性剤単量体は、他の単量体と共重合しうる重合性の基を有し、且つ、界面活性基(親水性基及び疎水性基)を有する単量体である。通常、反応性界面活性剤単量体は重合性不飽和基を有し、この基が重合後に疎水性基としても作用する。反応性界面活性剤単量体が有する重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
反応性界面活性剤単量体は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤単量体は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。
アニオン系の親水性基の例としては、−SOM、−COOM、及び−PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオン;などが挙げられる。
カチオン系の親水基の例としては、−Cl、−Br、−I、及び−SOORなどが挙げられる。ここでRは、アルキル基を示す。Rの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。
ノニオン系の親水基の例としては、−OHが挙げられる。
好適な反応性界面活性剤単量体の例としては、下記の式(II)で表される化合物が挙げられる。
Figure 0005978837
式(II)において、Rは2価の結合基を表す。Rの例としては、−Si−O−基、メチレン基及びフェニレン基が挙げられる。
式(II)において、Rは親水性基を表す。Rの例としては、−SONHが挙げられる。
式(II)において、nは1以上100以下の整数を表す。
好適な反応性界面活性剤の別の例としては、エチレンオキシドを重合して形成される構造を有する構造単位及びブチレンオキシドを重合して形成される構造を有する構造単位を有し、さらに末端に、末端二重結合を有するアルケニル基及び−SONHを有する化合物(例えば、商品名「ラテムルPD−104」及び「ラテムルPD−105」、花王株式会社製)を挙げることができる。
反応性界面活性剤単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
水溶性重合体において、反応性界面活性剤単位の含有割合は、通常0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、通常5重量%以下、好ましくは4重量%以下、より好ましくは2重量%以下である。反応性界面活性剤単位の含有割合を前記範囲の下限値以上とすることにより、スラリー組成物の分散性を向上させることができる。また、上限値以下とすることにより、電極の耐久性を向上させることができる。
水溶性重合体が有しうる任意の構造単位のさらなる例としては、下記の単量体を重合して形成される構造を有する構造単位が挙げられる。即ち、スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等の芳香族ビニル単量体;アクリルアミド等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体;の1以上を重合して形成される構造を有する構造単位が挙げられる。
水溶性重合体の重量平均分子量は、好ましくは1000以上、より好ましくは5000以上、特に好ましくは10000以上であり、好ましくは1000000以下、より好ましくは750000以下、特に好ましくは500000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより、水溶性重合体の強度を高くして電極の耐久性を向上させることができる。また、上限値以下とすることにより、集電体と電極活物質層との密着強度を高めることができる。
ここで、水溶性重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリスチレン換算の値として求めうる。
水溶性重合体は、例えば、上述した単量体を含む単量体組成物を、水系溶媒中で重合して、製造しうる。この際、単量体組成物中の各単量体の比率は、通常、水溶性重合体における構造単位(例えば、エチレン性不飽和カルボン酸単量体単位及びフッ素含有(メタ)アクリル酸単量体単位)の比率と同様にする。
水系溶媒としては、水溶性重合体の分散が可能なものであれば格別限定されることはない。通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ−ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3−メトキシー3メチル−1−ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3−ジオキソラン(75)、1,4−ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、重合体の分散体が容易に得られやすいという観点から特に好ましい。また、主溶媒として水を使用して、重合体の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いうる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いうる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明のスラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。
乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分子量調整剤、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。
分子量調整剤としては、例えば、t−ドデシルメルカプタン(TDM)、α−メチルスチレン二量体(α−MSD)、ターピノーレン、アリルアルコール、アリルアミン、アリルスルホン酸ソーダ(カリウム)、メタアリルスルホン酸ソーダ(カリウム)等を挙げることができる。中でも、t−ドデシルメルカプタン及びα−メチルスチレン二量体が好ましく、t−ドデシルメルカプタンが特に好ましい。
分子量調整剤の量は、単量体組成物100重量部に対して、通常0.01重量部以上、好ましくは0.05重量部以上であり、通常2重量部以下、好ましくは1.5重量部以下である。分子量調整剤の量を当該範囲内とすることにより、水溶性重合体の分子量を所望の範囲に調整することができる。
重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’−アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。
重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択しうる。通常、重合温度は約30℃以上、重合時間は0.5時間〜30時間程度である。
また、アミン類などの添加剤を重合助剤として用いてもよい。
重合により、通常は水系溶媒に水溶性重合体が溶解した溶液が得られる。こうして得られた溶液から重合体を取り出してもよいが、通常は、水系溶媒に溶解した状態の重合体を用いて本発明のスラリー組成物を製造する。
水溶性重合体を水系溶媒中に含む前記の溶液は、通常は酸性である。そこで、必要に応じて、pH7〜pH13にアルカリ化してもよい。これにより、溶液の取り扱い性を向上させることができ、また、本発明のスラリー組成物の塗工性を改善することができる。pH7〜pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1.2.2.ビニルピロリドン系重合体]
ビニルピロリドン系重合体は、N−ビニル−2−ピロリドン単量体を重合して形成される構造を有する構造単位(以下、適宜「ビニルピロリドン単位」ということがある。)を含む重合体である。ビニルピロリドン系重合体は、N−ビニル−2−ピロリドン単量体の単独重合体であってもよく、N−ビニル−2−ピロリドン単量体とそれ以外の任意の単量体との共重合体であってもよい。
ビニルピロリドン系重合体において、ビニルピロリドン単位の割合は、好ましくは1重量%以上、より好ましくは3重量%以上、特に好ましくは5重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下、特に好ましくは40重量%以下である。ビニルピロリドン単位の割合が前記範囲の下限値以上であることにより、増粘性をより向上させることができる。また、上限値以下であることにより、電解液に対する耐久性を確保することができる。ここで、ビニルピロリドン系重合体におけるビニルピロリドン単位の割合は、通常、ビニルピロリドン系重合体の全単量体におけるN−ビニル−2−ピロリドン単量体の比率(仕込み比)に一致する。
ビニルピロリドン系重合体は、上述したビニルピロリドン単位以外に、任意の構造単位を含んでいてもよい。例えば、ビニルピロリドン系重合体は、(メタ)アクリル酸エステル単量体単位を含んでいてもよい。ビニルピロリドン系重合体が(メタ)アクリル酸エステル単量体単位を含むことにより、電極の柔軟性を向上させることができる。
(メタ)アクリル酸エステル単量体単位に対応する(メタ)アクリル酸エステル単量体の例としては、水溶性重合体の説明の項において挙げた例示物と同様の例が挙げられる。また、(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ビニルピロリドン系重合体において、(メタ)アクリル酸エステル単量体単位の割合は、好ましくは20重量%以上、より好ましくは25重量%以上、特に好ましくは30重量%以上であり、好ましくは75重量%以下、より好ましくは70重量%以下、特に好ましくは65重量%以下である。(メタ)アクリル酸エステル単量体単位の割合が前記範囲の下限値以上であることにより、電極の柔軟性を向上させることができる。また、上限値以下であることにより、電解液に対する耐久性を確保することができる。ここで、ビニルピロリドン系重合体における(メタ)アクリル酸エステル単量体単位の割合は、通常、ビニルピロリドン系重合体の全単量体における(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。
また、例えば、ビニルピロリドン系重合体は、下記式(III)で表される単量体を重合して形成される構造を有する構造単位(以下、適宜「構造単位(A)」ということがある。)を含んでいてもよい。ビニルピロリドン系重合体が構造単位(A)を含むことにより、低温特性を向上させることができる。
Figure 0005978837
式(III)において、Rは、水素原子またはメチル基を表す。
式(III)において、Rは、炭素数1〜3のアルキレン基を表す。
式(III)において、Rは、それぞれ独立に、メチル基またはエチル基を表す。
式(III)で表される単量体としては、例えば、ジメチルアミノメチルアクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノプロピルアクリレート、ジメチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルメタクリレートそれぞれのジメチル硫酸塩及びジエチル硫酸塩が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ビニルピロリドン系重合体において、構造単位(A)の割合は、好ましくは30重量%以上、より好ましくは35重量%以上、特に好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、特に好ましくは70重量%以下である。構造単位(A)の割合が前記範囲の下限値以上であることにより、低温特性を向上させることができる。また、上限値以下であることにより、分散性を確保することができる。ここで、ビニルピロリドン系重合体における構造単位(A)の割合は、通常、ビニルピロリドン系重合体の全単量体における式(III)で表される単量体の比率(仕込み比)に一致する。
さらに、例えば、ビニルピロリドン系重合体は、下記式(IV)で表される単量体を重合して形成される構造を有する構造単位(以下、適宜「構造単位(B)」ということがある。)を含んでいてもよい。ビニルピロリドン系重合体が構造単位(B)を含むことにより、分散性を向上させることができる。
Figure 0005978837
式(IV)において、Rは、式(III)と同様に定義されるものを表す。
式(IV)において、Rは、炭素数1〜4のアルキレン基を表す。
式(IV)において、mは、1〜300の整数を表す。mが大きいほど電極活物質層の強度を高めることができるため、mは、好ましくは10以上である。他方、ビニルピロリドン系重合体の水に対する溶解性を高める観点から、mは、好ましくは280以下、より好ましくは270以下である。
式(IV)で表される単量体としては、例えば、式(IV)においてmが1〜300の整数である(メタ)アクリロキシアルキルジメチルポリシロキサンが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ここで、式(IV)で表される単量体として、長鎖シリコーン鎖を有するものと、短鎖シリコーン鎖を有するものとを組み合わせて用いた場合には、スラリー組成物の分散性が向上し、保存安定性が向上する。したがって、式(IV)で表される単量体としては、長鎖シリコーン鎖を有するものと、短鎖シリコーン鎖を有するものとを組み合わせて用いることが好ましい。ここで、式(IV)で表される単量体のうち、長鎖シリコーン鎖を有するものは、例えば、式(IV)において、mが、好ましくは60以上、より好ましくは100以上であり、好ましくは300以下、より好ましくは280以下である。さらに、短鎖シリコーン鎖を有するものは、例えば、式(IV)において、mが、通常1以上、好ましくは5以上であり、好ましくは60以下、より好ましくは40以下である。
式(IV)で表される単量体において、長鎖シリコーン鎖を有する単量体と短鎖シリコーン鎖を有する単量体との比率は、「(長鎖シリコーン鎖を有する単量体)/(短鎖シリコーン鎖を有する単量体)」で表される重量比で、好ましくは10/90以上、より好ましくは20/80以上であり、好ましくは70/30以下、より好ましくは50/50以下である。長鎖シリコーン鎖を有する単量体と短鎖シリコーン鎖を有する単量体との比率が前記範囲の下限値以上であることにより、分散性を向上することができる。また、上限値以下であることにより、電解液に対する耐久性を向上させることができる。
ビニルピロリドン系重合体において、構造単位(B)の割合は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下、特に好ましくは20重量%以下である。構造単位(B)の割合が前記範囲の下限値以上であることにより、分散性を向上させることができる。また、上限値以下であることにより、電解液に対する耐久性を向上させることができる。ここで、ビニルピロリドン系重合体における構造単位(B)の割合は、通常、ビニルピロリドン系重合体の全単量体における式(IV)で表される単量体の比率(仕込み比)に一致する。
ビニルピロリドン系重合体が有しうる任意の構造単位の更なる例としては、下記の任意の単量体を重合して形成される構造を有する構造単位が挙げられる。即ち、アクリロニトリル、スチレン、メチルスチレン、クロロスチレン、ビニルトルエン、酢酸ビニル、ポリプロピレングリコールモノ(メタ)アクリレート、アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ダイアセトンアクリルアミド、の1以上を重合して形成される構造を有する構造単位が挙げられる。
ビニルピロリドン系重合体の1重量%水溶液の粘度は、好ましくは2,000mPa・s以上、より好ましくは3,000mPa・s以上、特に好ましくは5,000mPa・s以上であり、好ましくは20,000mPa・s以下、より好ましくは15,000mPa・s以下、特に好ましくは10,000mPa・s以下である。前記の粘度を上記範囲の下限値以上とすることにより電極活物質層と集電体との密着強度を高めることができる。また、上限値以下とすることにより本発明のスラリー組成物の分散安定性を向上させることができる。前記の粘度は、例えば、ビニルピロリドン系重合体の分子量によって調整しうる。ここで、粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
ビニルピロリドン系重合体の重量平均分子量は、好ましくは10000以上、より好ましくは15000以上、特に好ましくは20000以上であり、好ましくは2000000以下、より好ましくは1500000以下、特に好ましくは1000000以下である。ビニルピロリドン系重合体の重量平均分子量を上記範囲の下限値以上とすることにより、電極活物質層と集電体との密着強度を高めることができる。また、上限値以下とすることにより本発明のスラリー組成物の分散安定性を向上させることができる。
ここで、ビニルピロリドン系重合体の重量平均分子量は、水溶性重合体の重量平均分子量と同様の方法で測定しうる。
ビニルピロリドン系重合体は、例えば、N−ビニル−2−ピロリドン単量体及び必要に応じて任意の単量体を含む単量体組成物を、親水性溶媒中で重合することにより製造しうる。
親水性溶媒とは、水に対する溶解度が10g/水100g(25℃)以上である有機溶媒をいう。かかる親水性溶媒の例としては、炭素数1〜4の脂肪族1価〜4価アルコール、エチルセロソルブ、ブチルセロソルブ、ジオキサン、酢酸メチル、ジメチルホルムアミド等が挙げられる。なかでも、1〜2価のアルコールが好ましい。
1価のアルコールとしては、例えば、メタノール、エタノール、イソプロパノール等が挙げられる。また、2価のアルコールとしては、例えば、プロピレングリコール等があげられる。これらの中でも、安全性を考慮すれば、エタノール及びイソプロパノールが特に好ましい。
重合反応は、例えば、前記の単量体組成物を親水性溶媒に溶解させ、チッ素ガス等の不活性ガス気流下で加熱しながら撹拌して行う。また通常、前記の親水性溶媒には、重合開始剤を含ませておく。
重合開始剤としては、一般に溶液重合法に用いられている任意の重合開始剤を用いうる。重合開始剤の具体例としては、過酸化ベンゾイル、過酸化ラウロイル等の過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物などが挙げられる。また、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合に際して、親水性溶媒の量は、単量体組成物の濃度が30重量%〜70重量%となるようにすることが好ましい。単量体組成物の濃度が50重量%を超える場合には、単量体組成物を複数回に分けて反応系に添加して重合を行なうことが、急激な重合熱の発生を避け、安全に重合を行なう観点から、好ましい。
重合温度は、重合開始剤の種類によって異なるため一概には決定することができないが、通常は、重合開始剤の10時間半減期温度とすることが好ましい。また特に、親水性溶媒の還流温度に近いことが、より再現性の高い重合を行なうことができるので、好ましい。
重合時間は、重合を十分に進行させて未反応の単量体の量を抑制する観点から、好ましくは8時間以上、より好ましくは12時間〜36時間である。
ここで、未反応の単量体が存在するか否かは、例えばPSDB法等の方法により二重結合が存在するか否かを確認することで行いうる。
水溶性重合体とビニルピロリドン系重合体との量比は、「水溶性重合体/ビニルピロリドン」で、好ましくは50.0/50.0以上、より好ましくは60.0/40.0以上、特に好ましくは70.0/30.0以上であり、好ましくは95.0/5.0以下、より好ましくは92.0/8.0以下、特に好ましくは90.0/10.0以下である。前記の量比を前記範囲の下限値以上とすることにより、リチウムイオン二次電池のサイクル特性を高めて電池寿命を延ばすことができる。また、上限値以下とすることにより電極活物質層の柔軟性を高めることができる。
[1.2.3.水溶性重合体及びビニルピロリドン系重合体の物性]
水溶性重合体及びビニルピロリドン系重合体の1重量%水溶液粘度は、好ましくは500mPa・s以上、より好ましくは750mPa・s以上、特に好ましくは1,000mPa・s以上であり、好ましくは10,000mPa・s以下、より好ましくは7.500mPa・s以下、特に好ましくは5,000mPa・s以下である。ここで、水溶性重合体及びビニルピロリドン系重合体の1重量%水溶液粘度とは、水溶性重合体及びビニルピロリドン系重合体を合計で1重量%の濃度で含む水溶液の粘度をいう。前記の粘度を上記範囲の下限値以上とすることにより電極活物質層と集電体との密着強度を高めることができる。また、上限値以下とすることにより本発明のスラリー組成物の分散安定性を向上させることができる。前記の粘度は、例えば、水溶性重合体及びビニルピロリドン系重合体の分子量、並びに、水溶性重合体とビニルピロリドン系重合体との量比によって調整しうる。
[1.2.4.水溶性重合体及びビニルピロリドン系重合体の量]
水溶性重合体とビニルピロリドン系重合体の合計の量は、電極活物質100重量部に対し、好ましくは0.5重量部以上、より好ましくは0.8重量部以上、特に好ましくは1重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下、特に好ましくは5重量部以下である。水溶性重合体とビニルピロリドン系重合体の合計の量が前記範囲の下限値以上であることにより、電極活物質層と集電体との密着強度を高めることができる。また、上限値以下であることにより、リチウムイオン二次電池の低温特性等の出力特性を良好にできる。
[1.3.水]
本発明のスラリー組成物は水を含む。水は溶媒又は分散媒として機能し、電極活物質を分散させたり、水溶性重合体を溶解させたりしうる。
溶媒としては、水以外の溶媒を水とを組み合わせて用いてもよい。例えば、粒子状バインダー、水溶性重合体及びビニルピロリドン系重合体を溶解しうる液体を水と組み合わせると、粒子状バインダー、水溶性重合体及びビニルピロリドン系重合体が電極活物質の表面に吸着することにより、電極活物質の分散が安定化するので、好ましい。
水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN−メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
溶媒の量は、本発明のスラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明のスラリー組成物の固形分(即ち、スラリー組成物の乾燥を経て電極活物質層の構成成分として残留する物質)の濃度が、好ましくは30重量%以上、より好ましくは35重量%以上であり、好ましくは75重量%以下、より好ましくは70重量%以下となる量に調整して用いられる。
[1.4.粒子状バインダー]
本発明のスラリー組成物は、更に粒子状バインダーを含むことが好ましい。粒子状バインダーを含むことにより、電極活物質層の結着性が向上し、撒回時、運搬時等の取扱い時に電極にかかる機械的な力に対する強度を向上させることができる。また、電極活物質が電極活物質層から脱落し難くなることから、異物による短絡等の危険性が小さくなる。さらに電極活物質層において電極活物質を安定して保持できるようになるので、サイクル特性及び高温保存特性等の耐久性を改善することができる。また、粒子状であることで、粒子状バインダーは電極活物質に対して面ではなく点で結着しうる。このため、電極活物質の表面の大部分はバインダーで覆われないので、電解液と電極活物質との間でイオンのやり取りをする場の広さを広くできる。したがって、内部抵抗を下げて、リチウムイオン二次電池の出力特性を改善できる。
粒子状バインダーとしては、様々な重合体を用いうるが、通常は、非水溶性の重合体を用いる。粒子状バインダーを形成する重合体としては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いてもよい。
さらに、以下に例示する軟質重合体の粒子を、粒子状バインダーとして使用してもよい。すなわち、軟質重合体としては、例えば、
(i)ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
(ii)ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
(iii)ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
(iv)ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
(v)液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
(vi)ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
(vii)ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
(viii)フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素含有軟質重合体;
(ix)天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体;などが挙げられる。これらの中でも、ジエン系軟質重合体及びアクリル系軟質重合体が好ましい。また、これらの軟質重合体は、架橋構造を有したものであってもよく、変性により官能基を導入したものであってもよい。
さらに、粒子状バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
粒子状バインダーを形成する重合体の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。粒子状バインダーを形成する重合体の重量平均分子量が上記範囲にあると、電極の強度及び電極活物質の分散性を良好にし易い。
粒子状バインダーのガラス転移温度は、好ましくは−75℃以上、より好ましくは−55℃以上、特に好ましくは−35℃以上であり、通常40℃以下、好ましくは30℃以下、より好ましくは20℃以下、特に好ましくは15℃以下である。粒子状バインダーのガラス転移温度が上記範囲であることにより、電極の柔軟性及び捲回性、電極活物質層と集電体との結着性などの特性が高度にバランスされ好適である。粒子状バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
粒子状バインダーの体積平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状バインダーの体積平均粒径が上記範囲にあることで、得られる電極の強度および柔軟性を良好にできる。
粒子状バインダーの量は、電極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。粒子状バインダーの量を前記範囲の下限値以上とすることにより、リチウムイオン二次電池のサイクル特性を向上させて、電池寿命を延ばすことができる。また、上限値以下にすることにより、リチウムイオン二次電池の低温特性等の出力特性を良好にできる。
粒子状バインダーの製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、乳化重合法などの、いずれの方法を用いてもよい。中でも、水中で重合をすることができ、そのまま本発明のスラリー組成物の材料として使用できるので、乳化重合法および懸濁重合法が好ましい。また、粒子状バインダーを製造する際、その反応系には分散剤を含ませることが好ましい。
[1.5.任意の成分]
本発明のスラリー組成物は、上述した電極活物質、水溶性重合体、ビニルピロリドン系重合体、水及び粒子状バインダー以外に任意の成分を含みうる。その例を挙げると、導電材、補強材、レベリング剤、ナノ粒子及び電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
導電材は、電極活物質同士の電気的接触を向上させうる成分である。導電材を含むことにより、リチウムイオン二次電池の放電レート特性を改善することができる。
導電材としては、例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどが挙げられる。導電材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
導電材の量は、電極活物質の量100重量部に対して、好ましくは1重量部〜20重量部、より好ましくは1重量部〜10重量部である。
補強材としては、例えば、各種の無機及び有機の球状、板状、棒状又は繊維状のフィラーを使用しうる。補強材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。補強材を用いることにより、強靭で柔軟な電極を得ることができ、優れた長期サイクル特性を示すリチウムイオン二次電池を実現できる。
補強材の量は、電極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強材の量を上記範囲とすることにより、リチウムイオン二次電池は高い容量と高い負荷特性を示すことができる。
レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。レベリング剤を用いることにより、本発明のスラリー組成物の塗布時に発生するはじきを防止したり、電極の平滑性を向上させたりすることができる。
レベリング剤の量は、電極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。レベリング剤が上記範囲であることにより電極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより本発明のスラリー組成物において電極活物質の分散性を向上することができ、さらにそれにより得られる電極の平滑性を向上させることができる。
ナノ粒子としては、例えば、フュームドシリカ及びフュームドアルミナなどの粒子が挙げられる。ナノ粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ナノ粒子を含む場合には本発明のスラリー組成物のチキソ性を調整することができるので、それにより得られる電極のレベリング性を向上させることができる。
ナノ粒子の量は、電極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。ナノ粒子が上記範囲であることにより、本発明のスラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
電解液添加剤の量は、電極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れたリチウムイオン二次電池を実現できる。
[1.6.スラリー組成物の物性]
上述した構成を有するので、本発明のスラリー組成物は、通常、以下の利点を有する。
本発明のスラリー組成物は、分散性に優れる。すなわち、本発明のスラリー組成物においては、電極活物質、粒子状バインダー、導電材等の成分が均一に分散している。そのため、本発明のスラリー組成物を用いて製造される電極活物質層においても、前記の成分を均一に分散させることができるので、リチウムイオン二次電池の特性を改善することができる。
また、本発明のスラリー組成物は、分散安定性に優れる。すなわち、本発明のスラリー組成物は長期間にわたって高い分散性を維持することができる。また、本発明のスラリー組成物は、経時的な粘度の変化を生じ難い。したがって、本発明のスラリー組成物は、保存による性状の変化を生じ難いので、長期間の保存が可能である。
このように優れた分散性及び分散安定性が得られる理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。すなわち、水溶性重合体及びビニルピロリドン系重合体が有するカルボニル基及びカルボキシル基等の極性基の作用により、水溶性重合体及びビニルピロリドン系重合体は水に対して高い親和性を有し、且つ、電極活物質に対しても高い親和性を有する。そのため、スラリー組成物においては、水溶性重合体及びビニルピロリドン系重合体の一部は水中に遊離しているが、別の一部は電極活物質の表面に吸着する。電極活物質に吸着した水溶性重合体及びビニルピロリドン系重合体の表面を安定な被膜で覆うので、電極活物質の水中での分散性が向上する。また、前記の被膜は安定であり、時間の経過及び温度の変化によって破壊され難い。さらに、水溶性重合体及びビニルピロリドン系重合体は水に対して高い親和性を有するので、水溶性が高く、沈殿を生じ難い。そのため、本発明のスラリー組成物は分散性及び分散安定性に優れると考えられる。
また、本発明のスラリー組成物は、水溶性重合体及びビニルピロリドン系重合体を含むため、粘度を高めることができる。特に、ビニルピロリドン系重合体の作用により、スラリー組成物の粘度を効果的に高めることができる。このため、スラリー組成物の粘度を適切に調節できるので、スラリー組成物の塗布性を良好にすることができる。
[1.7.スラリー組成物の製造方法]
本発明のスラリー組成物は、例えば、電極活物質、水溶性重合体、ビニルピロリドン系重合体及び水、並びに必要に応じて粒子状バインダー及び任意の成分を混合して製造しうる。この際の具体的な手順は任意である。例えば、電極活物質、水溶性重合体、ビニルピロリドン系重合体、水、粒子状バインダー及び導電材を含むスラリー組成物を製造する場合には、水に電極活物質、水溶性重合体、ビニルピロリドン系重合体、粒子状バインダー及び導電材を同時に混合する方法;水に水溶性重合体及びビニルピロリドン系重合体を溶解した後、水に分散させた粒子状バインダーを混合し、その後で電極活物質及び導電材を混合する方法;水に分散させた粒子状バインダーに電極活物質及び導電材を混合し、この混合物に水に溶解させた水溶性重合体及びビニルピロリドン系重合体を混合する方法;などが挙げられる。
混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、ロールミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。
[2.リチウムイオン二次電池用電極]
本発明のスラリー組成物の膜を集電体上に形成し、前記の膜を乾燥することを含む製造方法により、本発明の電極(リチウムイオン二次電池用電極)を得ることができる。
[2.1.集電体]
集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、正極に用いる集電体としてはアルミニウムが好ましく、負極に用いる集電体としては銅が好ましい。前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
集電体の形状は特に制限されないが、厚さ0.001mm〜0.5mm程度のシート状のものが好ましい。
集電体は、電極活物質層との密着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極活物質層の密着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
[2.2.スラリー組成物の塗布]
集電体を用意した後で、集電体上に、本発明のスラリー組成物の膜を形成する。この際、通常は、本発明のスラリー組成物を塗布することにより、スラリー組成物の膜を形成する。また、スラリー組成物は、集電体の片面に塗布してもよく、両面に塗布してもよい。
塗布方法に制限は無く、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
また、スラリー組成物の膜の厚みは、目的とする電極活物質層の厚みに応じて適宜に設定しうる。
本発明のスラリー組成物が優れた塗布性を有するので、前記の塗布により均一な膜を容易に形成することが可能である。また、本発明のスラリー組成物が分散性及び分散安定性に優れるので、通常、得られた膜は組成の均一性に優れる。さらに、水溶性重合体及びビニルピロリドン系重合体を含むことにより、本発明のスラリー組成物は、高い粘度を有する。したがって、本発明のスラリー組成物の膜においては対流が生じにくいので、マイグレーションが抑制される。
[2.3.膜の乾燥]
スラリー組成物の膜を形成した後、乾燥により、この膜から水等の液体を除去する。これにより、電極活物質、水溶性重合体及びビニルピロリドン系重合体を含む電極活物質層が集電体の表面に形成され、電極が得られる。
乾燥方法としては、例えば、温風、熱風、低湿風等の風による乾燥;真空乾燥;(遠)赤外線又は電子線などの照射による乾燥法、が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。
乾燥温度及び乾燥時間は、スラリー組成物の膜から水を除去できる温度と時間が好ましい。具体的な範囲を挙げると、乾燥時間は通常1分〜30分であり、乾燥温度は通常40℃〜180℃である。
[2.4.任意の工程]
スラリー組成物の膜を乾燥させた後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、電極活物質層に加圧処理を施すことが好ましい。加圧処理により、電極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、電極活物質層を集電体から剥がれ難くすることができる。また、上限値以下とすることにより高い充電効率及び放電効率が得られる。
さらに、電極活物質層が架橋反応等の硬化反応により硬化しうる重合体を含む場合は、電極活物質層の形成後に前記重合体を硬化させてもよい。
[2.5.電極に係るその他の事項]
上述した要領で形成される電極活物質層の厚みは、要求される電池性能に応じて任意に設定しうる。
例えば、正極活物質層の厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは通常300μm以下、より好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。
また、例えば、負極活物質層の厚みは、好ましくは5μm以上、より好ましくは20μm以上、特に好ましくは30μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、更に好ましくは300μm以下、特に好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
電極活物質層における水分量は、1000ppm以下であることが好ましく、500ppm以下であることがより好ましい。電極活物質層の水分量を上記範囲内とすることにより、耐久性に優れる電極を実現できる。水分量は、カールフィッシャー法等の既知の方法により測定しうる。このような低い水分量は、水溶性重合体及びビニルピロリドン系重合体中の構造単位の組成を適宜調整することにより達成しうる。
本発明の電極において、集電体と電極活物質層との密着強度は強い。このように強い密着強度が得られる理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。すなわち、水溶性重合体及びビニルピロリドン系重合体が有するカルボニル基及びカルボキシル基は高い極性を有する。そのため、水溶性重合体及びビニルピロリドン系重合体は、電極活物質及び集電体の表面に存在する極性基に対して強い相互作用を生じうるので、電極活物質及び集電体に対して強固に結着しうる。特に、水溶性重合体の作用により、高い結着性が発現しうると考えられる。そのため、水溶性重合体及びビニルピロリドン系重合体はバインダーとして作用でき、水溶性重合体及びビニルピロリドン系重合体が電極活物質同士の結着、並びに、電極活物質及び集電体との結着の強度を高くして、集電体と電極活物質層との密着強度を向上させていると推察される。また、本発明のスラリー組成物が高い分散性を有しているので、電極活物質層においても構成成分の組成は位置によらず均一になっていると考えられる。そのため、電極活物質層においては集電体との密着強度が局所的に弱くなる部分が生じ難い。したがって、当該部分を起点として集電体と電極活物質層とが剥れることがないので、これによっても集電体と電極活物質層との密着強度を向上させることが可能になっていると推察される。
さらに、本発明の電極は、高い柔軟性を有し、折り曲げても破損を生じにくい。このように高い柔軟性を有する理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。すなわち、水溶性重合体及びビニルピロリドン系重合体は柔軟性の高い重合体であり、特にビニルピロリドン系重合体は剛性が低く柔軟性に優れる。また、前記のように本発明のスラリー組成物を用いて形成された電極活物質層は組成の均一性を高めることができるので、電極活物質層に局所的に強度が弱い部分が生じることを抑制できる。このため、当該部分を起点とした破損の発生を防止できるので、電極を折り曲げても破損し難くできるものと推察される。
[3.リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、正極、負極及び電解液を備える。また、本発明のリチウムイオン二次電池は、セパレーターを備えていてもよい。ただし、前記の負極及び正極の一方又は両方は、本発明の電極である。本発明の電極を備えることにより、本発明のリチウムイオン二次電池は、サイクル特性及び出力特性に優れ、中でも高温サイクル特性及び低温特性を顕著に改善することができる。本発明のリチウムイオン二次電池がサイクル特性及び出力特性に優れる理由は定かでは無いが、本発明者の検討によれば、以下の理由によるものと推察される。
本発明の電極においては、電極活物質層と集電体との密着強度が高い。そのため、充放電により電極活物質が膨張及び収縮を繰り返しても、電極活物質層と集電体とが剥れ難い。また、水溶性重合体は電解液中においても高い結着性を有するので、電極活物質層同士の接触並びに電極活物質と導電材との接触も損なわれ難い。このため、充放電による導電パスの切断が生じ難いので、充放電に伴う抵抗の増加の程度が低い。
ここで、ビニルピロリドン系重合体は、上述したようにスラリー組成物の粘度を効果的に高めて塗布性を改善する。そのため、ビニルピロリドン系重合体は、電極活物質層と集電体との密着強度を高めてサイクル特性の向上に寄与する。しかし、ビニルピロリドン系重合体は、電解液に溶解し易い。そのため、電解液中においては、ビニルピロリドン系重合体だけでは電極活物質と集電体との密着強度を十分には高められず、サイクル特性を十分に高められないことが考えられる。これに対し、本発明では、ビニルピロリドン系重合体に組み合わせて水溶性重合体を用いることで、電解液中での接着性を高くして、サイクル特性を効果的に向上させている。
また、本発明の電極においては、水溶性重合体及びビニルピロリドン系重合体の一部は電極活物質の表面に付着している。すなわち、電極活物質の表面の少なくとも一部は、水溶性重合体及びビニルピロリドン系重合体の被膜により覆われていると考えられる。この被膜により、電解液の分解を抑制することができる。したがって、電解液の分解によるガスの発生を抑制し、極板の膨らみを防止できるので、充放電に伴う電極の抵抗の上昇を抑制できる。
このような理由により、本発明のリチウムイオン二次電池は、優れたサイクル特性を発現しうるものと推察される。
さらに、水溶性重合体はフッ素含有(メタ)アクリル酸エステル単量体単位を有し、ビニルピロリドン系重合体はビニルピロリドン単位を有するので、高いイオン伝導性を有する。よって、水溶性重合体及びビニルピロリドン系重合体も高いイオン伝導性を有する。そのため、水溶性重合体及びビニルピロリドン系重合体の被膜が電極活物質の表面を覆っても、その被膜による抵抗上昇の程度は低くできる。したがって、電極の抵抗を抑制できる。
さらに、一般にフッ素含有(メタ)アクリル酸エステル単量体単位を含む重合体は電解液とのなじみが悪くなる傾向があるが、本発明に係る水溶性重合体においては、エチレン性不飽和カルボン酸単量体の作用、及び、ビニルピロリドン系重合体の作用により電解液とのなじみを悪くさせることはないと考えられる。したがって、電極活物質層に電解液が容易に進入できるので、電解液と電極活物質との間での電気反応の場を容易に広くすることができ、電池の内部抵抗を抑制できる。
このような理由により、本発明のリチウムイオン二次電池は、優れた出力特性を発現しうるものと推察される。
[3.1.電解液]
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用しうる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
電解液に使用する溶媒としては、支持電解質を溶解させうるものを用いうる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。
[3.2.セパレーター]
セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
[3.3.リチウムイオン二次電池の製造方法]
本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価項目]
(1)密着強度
実施例及び比較例で製造した電極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、電極活物質層の表面を下にして、電極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、測定値の平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、電極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
(2)柔軟性
実施例及び比較例で製造した電極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片の電極活物質層を外側にし、集電体側を内側にして、様々な曲げ径をもつSUS棒に試験片を巻き付け、電極活物質層にひびが入らない最小曲げ径を目視にて観察した。この曲げ径が小さいほど、柔軟性に優れていることを示す。
(3)分散安定性
実施例及び比較例で製造したリチウムイオン二次電池電極用のスラリー組成物について、B型粘度計により、60rpmにおける粘度η0を測定した。また、そのスラリー組成物を室温で7日間保管し、保管後の60rpmにおける粘度η1を測定した。Δη(%)=η1/η0×100を算出した。Δηの値が小さいほど、分散安定性に優れることを示す。
(4)サイクル特性
実施例及び比較例におけるラミネート型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置した。その後、この二次電池を25℃の環境下で、1Cの定電流法にて4.2Vに充電し3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、この二次電池を60℃環境下で、前記の充放電と同様に充放電を繰り返し、1000サイクル後の容量C2を測定した。高温サイクル特性は、ΔC=C2/C0×100(%)で示す容量維持率にて評価した。この容量維持率が高いほど、高温サイクル特性に優れることを示す。
(5)低温特性
実施例及び比較例におけるラミネート型セルのリチウムイオン二次電池を作製し、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの定電流法にて5時間かけて充電する操作を行い、その時の電圧V0を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。低温特性は、ΔV=V0−V1で示す電圧変化にて評価した、この電圧変化が小さいほど、低温特性に優れることを示す。
[実施例1]
(1−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、メタクリル酸(エチレン性不飽和カルボン酸単量体)35部、2,2,2−トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)15部、エチルアクリレート(任意の単量体)50部、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.1部、t−ドデシルメルカプタン(分子量調節剤)0.1部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に10%アンモニア水を添加してpH8に調整し、所望の水溶性重合体を含む水溶液を得た。
(1−2.粒子状バインダーの製造)
攪拌機付き5MPa耐圧容器に、アクリル酸2−エチルヘキシル76部、アクリロニトリル20部、イタコン酸4部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、及び重合開始剤として過硫酸カリウム0.8部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダーを含む混合物を得た。上記粒子状バインダーを含む混合物に5%水酸化ナトリウム水溶液を添加してpH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った後、その混合物を30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
(1−3.正極の製造)
正極活物質として体積平均粒子径12μmのLiCoOを100部、導電材としてアセチレンブラック(電気化学工業社製「HS−100」)を2部、上記工程(1−1)の水溶性重合体を含む水溶液を固形分相当で2.55部、及びビニルピロリドン系重合体(大阪有機工業化学株式会社製「コスカットGA468」)の1%水溶液を固形分相当で0.45部、バインダーとして上記工程(1−2)のアクリレート重合体の40%水分散体を固形分相当で2部、並びにイオン交換水を混合した。イオン交換水の量は、全固形分濃度が40%となる量とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。この正極用スラリー組成物について、上述した要領で、分散安定性を評価した。
ここで、前記コスカットGA468の構造は、下記式で表される通りである。
Figure 0005978837
上記の正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が130μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。この正極について、上述した要領で、密着強度及び柔軟性を評価した。
(1−4.負極用バインダー組成物の製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2−ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に5%水酸化ナトリウム水溶液を添加してpH8に調整した。その後、加熱減圧蒸留によって粒子状バインダーを含む混合物から未反応単量体の除去を行った後、その混合物を30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
(1−5.負極用スラリー組成物の製造)
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積5.5m/gの人造黒鉛(体積平均粒子径:24.5μm)100部、カルボキシメチルセルロース(日本製紙ケミカル社製「MAC−350HC」)の2%水溶液を固形分相当で1部入れ、さらにイオン交換水で固形分濃度65%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度60%に調整した後、さらに25℃で15分間混合し、混合液を得た。上記混合液に、上記工程(1−4)の粒子状バインダーを含む水分散液を固形分相当で1.0部、及びイオン交換水を入れ、最終固形分濃度52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
(1−6.負極の製造)
上記工程(1−5)で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
(1−7.セパレーターの用意)
単層のポリプロピレン製セパレーター(セルガード社製「セルガード2500」)を、5×5cmの正方形に切り抜いた。
(1−8.リチウムイオン二次電池)
電池の外装として、アルミ包材外装を用意した。上記工程(1−3)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記工程(1−7)で得られた正方形のセパレーターを配置した。さらに、上記工程(1−6)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5体積比、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。このリチウムイオン二次電池について、上述した容量で、高温サイクル特性及び低温特性を評価した。
[実施例2]
上記工程(1−1)においてメタクリル酸の量を22部に変更し、エチルアクリレートの量を63部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例3]
上記工程(1−1)においてメタクリル酸の量を65部に変更し、エチルアクリレートの量を20部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例4]
上記工程(1−1)において2,2,2−トリフルオロエチルメタクリレートの量を3部に変更し、エチルアクリレートの量を62部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例5]
上記工程(1−1)において2,2,2−トリフルオロエチルメタクリレートの量を28部に変更し、エチルアクリレートの量を37部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例6]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体を含む水溶液の量を固形分相当で2.82部に変更し、ビニルピロリドン系重合体の1%水溶液の量を固形分相当で0.18部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例7]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体を含む水溶液の量を固形分相当で1.56部に変更し、ビニルピロリドン系重合体の1%水溶液の量を固形分相当で1.44部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例8]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体を含む水溶液の量を固形分相当で0.68部に変更し、ビニルピロリドン系重合体の1%水溶液の量を固形分相当で0.12部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例9]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体を含む水溶液の量を固形分相当で7.225部に変更し、ビニルピロリドン系重合体の1%水溶液の量を固形分相当で1.275部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例10]
上記工程(1−3)において、ビニルピロリドン系重合体として第一工業製薬社製「ピッツコール」を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。ここで、前記ピッツコールは、N−ビニル−2−ピロリドンの単独重合体である。
[実施例11]
上記工程(1−3)において、ビニルピロリドン系重合体として第一工業製薬社製「クリージャス」を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。ここで、前記クリージャスは、N−ビニル−2−ピロリドンの単独重合体である。
[実施例12]
上記工程(1−3)において、正極活物質として体積平均粒子径12μmのLiNi0.8Co0.1Mn0.1を100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例13]
上記工程(1−3)において、正極活物質として体積平均粒子径5μmのLiFePOを100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例14]
上記工程(1−3)において、バインダーを使用しなかったこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例15]
(15−1.粒子状バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2−ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
(15−2.負極用スラリー組成物の製造)
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積5.5m/gの人造黒鉛(平均粒子径:24.5μm)100部、上記工程(1−1)の水溶性重合体を含む水溶液を固形分相当で2.55部、及びビニルピロリドン系重合体(大阪有機工業化学株式会社製「コスカットGA468」)の1%水溶液を固形分相当で0.45部入れ、更にイオン交換水を加えて固形分濃度65%に調整した後、25℃で60分間混合した。次に、イオン交換水を加えて固形分濃度60%に調整した後、さらに25℃で15分間混合し混合液を得た。上記混合液に、上記工程(15−1)の粒子状バインダーを含む水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリー組成物を得た。この負極用スラリー組成物について、上述した要領で、分散安定性を評価した。
(15−3.負極の製造)
上記工程(15−2)で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。この負極について、上述した要領で、密着強度及び柔軟性を評価した。
(15−4.正極の製造)
上記工程(1−1)の水溶性重合体及びビニルピロリドン系重合体の代わりに、カルボキシメチルセルロース(日本製紙ケミカル社製「MAC350HC」)を固形分相当で1部用いたこと以外は、実施例1の工程(1−3)と同様にして、正極を得た。
(15−5.リチウムイオン二次電池)
負極として上記工程(15−3)で得たものを用い、正極として上記工程(15−4)で得たものを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造した。このリチウムイオン二次電池について、上述した要領で、高温サイクル特性及び低温特性を評価した。
[実施例16]
負極活物質として、比表面積5.5m/gの人造黒鉛(体積平均粒子径:24.5μm)90部及びSiOC(体積平均粒子径:5μm)10部を組み合わせて用いたこと以外は実施例15と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例17]
負極活物質として、SiOC(体積平均粒子径:5μm)100部を用いたこと以外は実施例15と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例18]
体積平均粒子径3μm、BET比表面積12m/gの酸化珪素粉末(SiO:x=1.02)を、窒化珪素製トレイに200g仕込んだ。その後、雰囲気を保持できる処理炉内に静置した。次に処理炉にアルゴンガスを流入させて処理炉内をアルゴン置換した。アルゴンガスを流速2NL/分で流入させつつ300℃/時間の昇温速度で1200℃まで昇温し、3時間保持した。保持終了後、降温を開始し、室温まで冷ました。室温到達後、粉末を回収した。得られた粉末は、体積平均粒子径3.5μm、BET比表面積11m/gの粉末であった。この粉末についてCu−Kα線によるX線回折パターンを測定したところ、測定されたX線回折パターンには2θ=28.4°付近のSi(111)に帰属される回折線が存在していた。この回折線の半価幅からシェーラー法(Scherrer法)により分析したところ、得られた粉末が、二酸化珪素中に分散した珪素の結晶子の大きさが40nmである珪素複合体粉末であることが確認された。
このようにして得た珪素複合粉末を負極活物質として用いたこと以外は実施例15と同様にして、リチウムイオン二次電池を製造し、評価した。
[実施例19]
内温800℃の流動層内に多結晶珪素微粒子を導入し、モノシランを送入することで製造した粒状多結晶珪素を、ジェットミルを用いて粉砕した。その後、粉砕により得られた粉末を分級機にて分級し、体積平均粒子径D50=10.2μmの多結晶珪素粉末を得た。X線回折線の半値全幅よりシェーラー法で分析したところ、結晶子の大きさが44nmであることを確認した。
このようにして得た多結晶珪素粉末を負極活物質として用いたこと以外は実施例15と同様にして、リチウムイオン二次電池を製造し、評価した。
[比較例1]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体及びビニルピロリドン系重合体の代わりに、カルボキシメチルセルロース(日本製紙ケミカル社製「MAC350HC」)を固形分相当で1部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[比較例2]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体を含む水溶液を用いないで、ビニルピロリドン系重合体の量を3部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[比較例3]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体及びビニルピロリドン系重合体の代わりに、ポリアクリル酸ナトリウム(和光純薬社製;重量平均分子量250000)を固形分相当で3部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[比較例4]
上記工程(1−3)において、上記工程(1−1)の水溶性重合体の代わりにポリアクリル酸ナトリウム(重量平均分子量250000)を固形分相当で1.5部用い、ビニルピロリドン系重合体の量を1.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、評価した。
[結果]
各実施例及び比較例の結果を表1〜表5に示す。ここで、下記の表における略称の意味は、以下の通りである。
LCO:LiCoO
NMC:LiNi0.8Co0.1Mn0.1
LFP:LiFePO
Si系活物質A:珪素複合体粉末
Si系活物質B:多結晶珪素粉末
C単量体:エチレン性不飽和カルボン酸単量体
MAA:メタクリル酸
F単量体:フッ素含有(メタ)アクリル酸エステル単量体
3FM:2,2,2−トリフルオロエチルメタクリレート
EA:エチルアクリレート
TDM:t−ドデシルメルカプタン
ピロリドン系重合体:ビニルピロリドン系重合体
コスカット:大阪有機工業化学株式会社製「コスカットGA468」
ピッツコール:第一工業製薬社製「ピッツコール」
クリージャス:第一工業製薬社製「クリージャス」
CMC:カルボキシメチルセルロース
PAA−Na:ポリアクリル酸ナトリウム
ACR:アクリル樹脂
SBR:スチレンブタジエンゴム
Figure 0005978837
Figure 0005978837
Figure 0005978837
Figure 0005978837
Figure 0005978837
[検討]
前記の実施例及び比較例のうち、実施例1〜14及び比較例1〜4はスラリー組成物を正極に適用したものであり、実施例15〜19はスラリー組成物を負極に適用したものである。前記の表から、本発明により高温サイクル特性及び低温特性に優れるリチウムイオン二次電池を実現できることが分かる。また、実施例及び比較例を対比することにより、本発明のスラリー組成物は分散安定性に優れることが分かる。さらに、本発明のスラリー組成物を用いて製造された電極は、密着強度及び柔軟性に優れることが分かる。

Claims (7)

  1. 電極活物質、エチレン性不飽和カルボン酸単量体単位20重量%〜70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位1重量%〜30重量%を含む水溶性重合体、ビニルピロリドン系重合体、及び水を含み、
    前記水溶性重合体と前記ビニルピロリドン系重合体の合計の量が、電極活物質100重量部に対し、0.5重量部〜10重量部であり、
    前記水溶性重合体と前記ビニルピロリドン系重合体との量比が、水溶性重合体/ビニルピロリドン系重合体で、50.0/50.0〜95.0/5.0である、リチウムイオン二次電池電極用のスラリー組成物。
  2. 前記ビニルピロリドン系重合体の1重量%水溶液粘度が、2,000mPa・s〜20,000mPa・sである、請求項1記載のスラリー組成物。
  3. 前記エチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、請求項1又は2記載のスラリー組成物。
  4. 前記水溶性重合体及びビニルピロリドン系重合体の1重量%水溶液粘度が、500mPa・s〜10,000mPa・sである、請求項1〜3のいずれか一項に記載のスラリー組成物。
  5. 更に粒子状バインダーを含む、請求項1〜のいずれか一項に記載のスラリー組成物。
  6. 請求項1〜のいずれか一項に記載のスラリー組成物の膜を集電体上に形成し、前記の膜を乾燥して得られる、リチウムイオン二次電池用電極。
  7. 正極、負極及び電解液を備えるリチウムイオン二次電池であって、
    前記正極及び負極の一方又は両方が請求項記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。
JP2012169769A 2012-07-31 2012-07-31 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池 Expired - Fee Related JP5978837B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169769A JP5978837B2 (ja) 2012-07-31 2012-07-31 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169769A JP5978837B2 (ja) 2012-07-31 2012-07-31 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2014029788A JP2014029788A (ja) 2014-02-13
JP5978837B2 true JP5978837B2 (ja) 2016-08-24

Family

ID=50202239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169769A Expired - Fee Related JP5978837B2 (ja) 2012-07-31 2012-07-31 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP5978837B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152115A1 (ja) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2016134218A (ja) * 2015-01-16 2016-07-25 日本電気株式会社 リチウムイオン二次電池
US10513604B2 (en) 2015-03-18 2019-12-24 Hitachi Chemical Company, Ltd. Binder resin composition, electrode for lithium ion secondary battery and lithium ion secondary battery
JP7192774B2 (ja) 2017-09-15 2022-12-20 日本ゼオン株式会社 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2020158224A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極及び非水電解質二次電池
WO2024024410A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池
CN117673371A (zh) * 2024-01-31 2024-03-08 中节能万润股份有限公司 一种无负极锂金属电池用集流体制备方法及集流体和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682401B2 (ja) * 2000-07-31 2011-05-11 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
JP4412443B2 (ja) * 2000-12-27 2010-02-10 日本ゼオン株式会社 リチウムイオン二次電池負極用増粘剤およびリチウムイオン二次電池
CN100370643C (zh) * 2004-12-27 2008-02-20 深圳市比克电池有限公司 锂离子电池正极片制造方法、用该方法制造的正极片和锂离子电池
KR20080064590A (ko) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 리튬 전지용 애노드 및 이를 채용한 리튬 전지
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
JP5230278B2 (ja) * 2008-06-13 2013-07-10 三洋電機株式会社 非水電解質二次電池用負極、それを備えた非水電解質二次電池及び非水電解質二次電池用負極の製造方法
WO2010092815A1 (ja) * 2009-02-13 2010-08-19 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR101049829B1 (ko) * 2009-10-28 2011-07-15 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20130012015A (ko) * 2010-03-29 2013-01-30 제온 코포레이션 리튬 이온 이차 전지
CN103140964B (zh) * 2010-09-30 2016-04-27 旭硝子株式会社 非水系二次电池用正极合剂、使用其的非水系二次电池用正极及二次电池
JP5570393B2 (ja) * 2010-11-11 2014-08-13 東洋化学株式会社 電極用バインダー

Also Published As

Publication number Publication date
JP2014029788A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6361655B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
US10297819B2 (en) Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP6451732B2 (ja) 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
JP6237622B2 (ja) リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6168058B2 (ja) 二次電池用負極、二次電池、スラリー組成物、及び製造方法
JP6048070B2 (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP5978837B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6327251B2 (ja) リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP2014222649A (ja) 二次電池用多孔膜組成物、二次電池用電極、二次電池用セパレータ及び二次電池
JP6233131B2 (ja) 二次電池多孔膜用組成物、二次電池用多孔膜及び二次電池
JP2014203805A (ja) リチウムイオン二次電池負極用粒子状バインダー、リチウムイオン二次電池負極用スラリー組成物およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees