WO2024024410A1 - 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池 - Google Patents

非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池 Download PDF

Info

Publication number
WO2024024410A1
WO2024024410A1 PCT/JP2023/024650 JP2023024650W WO2024024410A1 WO 2024024410 A1 WO2024024410 A1 WO 2024024410A1 JP 2023024650 W JP2023024650 W JP 2023024650W WO 2024024410 A1 WO2024024410 A1 WO 2024024410A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
slurry composition
polymer
mass
Prior art date
Application number
PCT/JP2023/024650
Other languages
English (en)
French (fr)
Inventor
祐作 松尾
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024024410A1 publication Critical patent/WO2024024410A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for a non-aqueous secondary battery positive electrode, a positive electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries have the characteristics of being small, lightweight, and have a high energy density, as well as being able to be repeatedly charged and discharged. Yes, and used for a wide range of purposes. Therefore, in recent years, improvements in battery components such as electrodes have been studied with the aim of further improving the performance of secondary batteries.
  • electrodes for secondary batteries usually include an electrode mixture layer.
  • the electrode mixture layer collects a slurry-like composition (slurry composition) made by dispersing, for example, an electrode active material and a polymer that plays a role as a binder in a dispersion medium. It is formed by applying it onto the electric body and drying it.
  • slurry composition a slurry-like composition made by dispersing, for example, an electrode active material and a polymer that plays a role as a binder in a dispersion medium. It is formed by applying it onto the electric body and drying it.
  • Patent Document 1 discloses that the binder contains 50 to 95% by mass of structural units derived from ethylenically unsaturated carboxylic acid ester monomers and 5 to 50% by mass of structural units derived from ethylenically unsaturated carboxylic acid salt monomers. % by mass and a weight average molecular weight of 500,000 or more.
  • a positive electrode aqueous composition containing a water-soluble polymer as the binder, a compound having an olivine structure such as lithium iron phosphate as a positive electrode active material, and water as a dispersion medium, It can be used as a slurry composition for forming positive electrodes for secondary batteries, and the positive electrode aqueous composition has excellent electrode formability, substrate adhesion, and flexibility without impairing dispersibility or viscosity adjustment function. has been reported to improve.
  • the above-mentioned prior art slurry compositions still had room for improvement in dispersibility.
  • the slurry composition of the prior art has the advantage of improving the adhesion of the positive electrode composite layer to be formed, thereby improving the adhesion between the positive electrode composite layer and the current collector and the mutual interaction of the components within the positive electrode composite layer.
  • the electrode mixture layer of the electrode for a secondary battery is required to be able to easily remove water, that is, to have excellent water drainage properties.
  • the positive electrode composite layer formed using the slurry composition of the prior art has room for improvement in water drainage performance.
  • an object of the present invention is to provide a slurry composition for a non-aqueous secondary battery positive electrode that has excellent dispersibility and can exhibit excellent adhesiveness and water removal properties in the positive electrode composite material layer. Furthermore, an object of the present invention is to provide a positive electrode for a nonaqueous secondary battery that includes a positive electrode composite material layer that can exhibit excellent adhesiveness and water drainage. Further, an object of the present invention is to provide a non-aqueous secondary battery including the positive electrode for a non-aqueous secondary battery.
  • the present inventor conducted extensive studies with the aim of solving the above problems.
  • the present inventor has discovered that at least a portion of the surface of the olivine-type lithium iron phosphate particles is coated with a carbon coat layer, and the content of weak acid groups on the surface is within a predetermined range.
  • a slurry composition for a non-aqueous secondary battery positive electrode containing olivine-type lithium iron phosphate particles and a polymer containing acidic group-containing monomer units in a predetermined ratio has excellent dispersibility, and the slurry
  • the present invention was completed based on the discovery that the adhesiveness and water drainage of a positive electrode composite layer formed using the composition can be improved.
  • an object of the present invention is to advantageously solve the above-mentioned problems.
  • the carbon coat layer-coated olivine-type lithium iron phosphate particles, and a polymer This is a slurry composition for a positive electrode of a non-aqueous secondary battery, in which the content of weak acid groups on the surface of lithium particles is 5 ⁇ mol/g or more and 15 ⁇ mol/g or less.
  • the carbon coat layer-coated olivine-type phosphorus particles have a content of weak acid groups on the surface within a predetermined range.
  • a slurry composition for a positive electrode of a non-aqueous secondary battery containing lithium iron oxide particles and a polymer containing acidic group-containing monomer units in a predetermined ratio has excellent dispersibility, and can be used using the slurry composition.
  • the formed positive electrode composite material layer can exhibit excellent adhesiveness and water drainage.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type lithium iron phosphate particles can be measured using the method described in the Examples of this specification.
  • when a polymer "contains a monomer unit" it means "a repeating unit derived from the monomer is contained in the polymer obtained using the monomer”. means.
  • the content ratio (mass %) of each monomer unit contained in the polymer can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR.
  • NMR nuclear magnetic resonance
  • the G/D ratio of the carbon coat layer is 0.4 or more and 0.770 or less. If the G/D ratio of the carbon coat layer of the carbon coat layer-coated olivine-type lithium iron phosphate particles is within the above predetermined range, the dispersibility of the slurry composition for a non-aqueous secondary battery positive electrode is further improved, The internal resistance of a non-aqueous secondary battery can be reduced. In the present invention, the G/D ratio of the carbon coat layer can be measured using the method described in the Examples of this specification.
  • the acidic group-containing monomer unit is a carboxylic acid group-containing monomer unit and a sulfonic acid group-containing monomer unit. It is preferable to contain at least one of the units. If the polymer X contains at least one of a carboxylic acid group-containing monomer unit and a sulfonic acid group-containing monomer unit as the acidic group-containing monomer unit, the adhesiveness of the positive electrode composite layer can be further improved. can.
  • the polymer It is preferable to further contain the following. If the polymer X further contains a hydroxyl group-containing acrylic acid ester monomer unit at the above-mentioned predetermined content ratio, the adhesiveness of the formed positive electrode composite layer can be further improved.
  • the weight average molecular weight of the polymer X is preferably 50,000 or more and less than 500,000. If the weight average molecular weight of the polymer It can be further improved. Note that the weight average molecular weight of the polymer X can be measured using the method described in the Examples of this specification.
  • the slurry composition for a non-aqueous secondary battery positive electrode according to any one of [1] to [5] above preferably further contains a particulate polymer Y containing a hydrophilic group. If the slurry composition for a nonaqueous secondary battery positive electrode further contains a particulate polymer Y containing a hydrophilic group, the dispersibility of the slurry composition and the positive electrode composition formed using the slurry composition will be improved. The adhesion of the material layer can be further improved.
  • the content of the particulate polymer Y is such that the content of the particulate polymer Y is based on 100 parts by mass of the olivine-type lithium iron phosphate particles coated with the carbon coat layer. It is preferably 0.5 parts by mass or more and 5 parts by mass or less. If the content of the particulate polymer Y containing a hydrophilic group in the slurry composition for a non-aqueous secondary battery positive electrode is within the above-mentioned predetermined range, the dispersibility of the slurry composition and the slurry composition will be improved. It is possible to further improve the adhesion of the positive electrode composite material layer formed using the present invention, and to ensure a sufficiently high flexibility of the positive electrode composite material layer.
  • the slurry composition for a non-aqueous secondary battery positive electrode according to any one of [1] to [7] above may further contain a conductive material containing at least one of carbon nanotubes and particulate conductive material.
  • the present invention aims to advantageously solve the above-mentioned problems, and the present invention provides a slurry composition for a non-aqueous secondary battery positive electrode according to [9] any one of [1] to [8] above.
  • This is a positive electrode for a non-aqueous secondary battery, including a positive electrode composite material layer formed using a material.
  • the positive electrode for a non-aqueous secondary battery of the present invention is formed using any of the above-mentioned slurry compositions for a positive electrode for a non-aqueous secondary battery, and has a positive electrode composite layer that can exhibit excellent adhesiveness and water drainage. We are prepared.
  • the purpose of the present invention is to advantageously solve the above problems, and the present invention provides a non-aqueous secondary battery comprising the positive electrode for a non-aqueous secondary battery according to [10] above [9]. be. Since the non-aqueous secondary battery of the present invention includes any of the above-described positive electrodes for non-aqueous secondary batteries, for example, the internal resistance is reduced and the battery characteristics are excellent.
  • a slurry composition for a nonaqueous secondary battery positive electrode that has excellent dispersibility and can exhibit excellent adhesiveness and water removal properties in the positive electrode composite material layer. Further, according to the present invention, it is possible to provide a positive electrode for a non-aqueous secondary battery that includes a positive electrode composite material layer that can exhibit excellent adhesiveness and water drainage. According to the present invention, it is possible to provide a non-aqueous secondary battery including the positive electrode for a non-aqueous secondary battery.
  • the slurry composition for a non-aqueous secondary battery positive electrode of the present invention (hereinafter sometimes abbreviated as “slurry composition”) is a non-aqueous secondary battery electrode (non-aqueous) such as a lithium ion secondary battery. It can be used when forming an electrode mixture layer included in an electrode for aqueous secondary batteries.
  • the non-aqueous secondary battery of the present invention (hereinafter sometimes abbreviated as "secondary battery”) has a positive electrode composite layer formed from the slurry composition for a positive electrode of a non-aqueous secondary battery of the present invention. It is characterized by using a positive electrode for non-aqueous secondary batteries (hereinafter sometimes abbreviated as "positive electrode”).
  • the slurry composition of the present invention is formed by coating at least a part of the surface of olivine-type lithium iron phosphate particles (hereinafter sometimes abbreviated as "olivine-type LFP particles”) with a carbon coat layer.
  • olivine-type LFP particles Carbon coat layer-coated olivine-type lithium iron phosphate particles (hereinafter sometimes abbreviated as "carbon coat layer-coated olivine-type LFP particles”) having a content of weak acid groups within a predetermined range, and acidic group-containing monomers. It is characterized by containing a polymer X having a content ratio of mer units within a predetermined range.
  • the slurry composition of the present invention has excellent dispersibility.
  • the slurry composition of the present invention it is possible to form a positive electrode composite material layer having a uniform structure. Further, the slurry composition of the present invention can exhibit excellent adhesiveness and water drainage in a positive electrode composite layer formed using the slurry composition. As described above, the positive electrode composite layer formed using the slurry composition of the present invention has a uniform structure and is also excellent in adhesiveness and water removal properties. The internal resistance of a secondary battery manufactured using this method can be reduced.
  • the slurry composition of the present invention may further contain a particulate polymer Y and a conductive material in addition to the carbon coat layer-covered olivine-type LFP particles and the polymer X described above.
  • the slurry composition of the present invention usually further contains a dispersion medium such as water. That is, the slurry composition of the present invention is usually a slurry-like composition formed by dispersing or dissolving components such as the carbon coat layer-coated olivine-type LFP particles and polymer X in a dispersion medium such as water. be.
  • the slurry composition of the present invention may further contain components other than the above-described carbon coat layer-covered olivine-type LFP particles, polymer X, particulate polymer Y, conductive material, and dispersion medium.
  • the carbon coat layer-covered olivine-type LFP particles are a material that can function as a positive electrode active material of a secondary battery.
  • Carbon coat layer coated olivine type LFP particles are particles formed by at least part of the surface of olivine type lithium iron phosphate (LiFePO 4 ) particles being coated with a carbon coat layer.
  • the entire surface of the olivine type LFP particles may be coated with the carbon coat layer, or only a part of the olivine type LFP particles may be coated with the carbon coat layer. You can leave it there.
  • the carbon coat layer that covers at least a portion of the LFP particles is a layer made of carbon, and is not particularly limited, but may be, for example, a layer made of amorphous carbon, or a layer made of crystalline carbon. It may be a layer made of a mixture of amorphous carbon and crystalline carbon.
  • Carbon coat layer-coated olivine type LFP particles can be produced by forming a carbon coat layer on the surface of olivine type LFP particles.
  • a method for forming the carbon coat layer for example, a vapor phase method such as a CVD (Chemical Vapor Deposition) method in which a vapor phase coating material is deposited on the surface of olivine-type LFP particles in an inert gas atmosphere; A liquid phase method in which a solution diluted with a solvent is mixed with olivine-type LFP particles, and then the coating material is fired and carbonized in an inert gas atmosphere; A known method such as a solid phase method in which the mixture is kneaded without stirring, then fired and carbonized in an inert gas atmosphere can be appropriately employed.
  • CVD Chemical Vapor Deposition
  • a compound (gas) that can be decomposed by heat, plasma, etc. to form a carbon coat layer on the surface of the olivine-type LFP particles can be used.
  • Such compounds include various hydrocarbon compounds such as unsaturated aliphatic hydrocarbons such as ethylene, acetylene and propylene; saturated aliphatic hydrocarbons such as methane, ethane and propane; aromatic hydrocarbons such as benzene, toluene and naphthalene; can be mentioned. These compounds may be used alone or as a mixed gas containing two or more of them in any ratio. Conditions such as temperature, pressure, and time in the CVD method can be appropriately selected depending on the type of coating raw material used and the desired coating amount.
  • the coating raw material for the liquid phase method compounds that are soluble in various solvents and can be thermally decomposed to form a carbon coat layer on the surface of the olivine-type LFP particles can be used.
  • Suitable examples of such compounds include pitches such as coal tar pitch, petroleum pitch, and wood tar pitch. These can be used alone or in combination of two or more in any ratio.
  • the firing temperature and time in the liquid phase method can be appropriately selected depending on the type of coating raw material and the like. Firing in the liquid phase method can be performed, for example, at 800 to 1600° C. for 2 to 3 hours.
  • the coating raw material for the solid phase method one or more of the same materials as for the liquid phase method can be used.
  • the firing temperature and time in the solid phase method can be appropriately selected depending on the type of coating raw material, etc., and can be within the same range as for the firing in the liquid phase method, for example.
  • additives for example, additives effective for amorphous carbonization of the above-mentioned coating material
  • additives effective for amorphous carbonization of the above-mentioned coating material may be added to the above-mentioned coating material as necessary. etc. may be blended.
  • olivine-type LFP particles covered with a carbon coat layer.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles needs to be 5 ⁇ mol/g or more, preferably 6.5 ⁇ mol/g or more, and 8.0 ⁇ mol/g or more. It is more preferable that it is 10 ⁇ mol/g or more, it is necessary that it is 15 ⁇ mol/g or less, it is preferably 13.5 ⁇ mol/g or less, and it is preferably 12.0 ⁇ mol/g or less. More preferred.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles is equal to or higher than the above lower limit, it is presumed that the interaction with the polymer X increases, but the dispersibility of the slurry composition is sufficiently improved. can be done.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles is at most the above upper limit, the water removal properties of the formed positive electrode composite layer can be sufficiently improved. Thereby, by suppressing the generation of gas inside the cells of the secondary battery, the electrode reaction can be made uniform, so that the internal resistance of the secondary battery can be reduced.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles is below the above upper limit, aggregation of the particles is suppressed, so that the dispersibility of the slurry composition cannot be sufficiently improved.
  • the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles can be controlled by the above-described method for forming the carbon coat layer, treatment after forming the carbon coat layer, and the like. For example, when adjusting the content of weak acid groups on the surface of the obtained carbon coat layer-covered olivine type LFP particles after forming a carbon coat layer on the surface of the olivine type LFP particles, the following treatment may be performed. can.
  • the carbon coat layer-covered olivine-type LFP particles by firing the carbon coat layer-covered olivine-type LFP particles in a nitrogen atmosphere at a temperature of 600°C or more and 800°C or less, the content of weak acid groups on the surface of the carbon-coat layer-covered olivine-type LFP particles can be reduced. . Furthermore, by firing the carbon coat layer-covered olivine-type LFP particles in an oxygen atmosphere at a temperature of 300°C or more and 500°C or less, the content of weak acid groups on the surface of the carbon-coat layer-covered olivine-type LFP particles can be increased. .
  • the weak acid group present on the surface of the carbon coat layer-covered olivine-type LFP particles is not particularly limited, but includes, for example, a phenolic hydroxyl group (phenolic hydroxyl group).
  • the G/D ratio of the carbon coat layer of the carbon coat layer-coated olivine-type LFP particles is preferably 0.4 or more, more preferably 0.60 or more, and even more preferably 0.670 or more. , more preferably 0.690 or more, preferably 0.770 or less, more preferably 0.740 or less, and even more preferably 0.710 or less. If the G/D ratio of the carbon coat layer of the carbon coat layer-coated olivine-type LFP particles is equal to or higher than the above lower limit, there will be fewer defects in the carbon coat layer, and the electron conductivity of the carbon coat layer will improve, thereby improving the performance of secondary batteries. Internal resistance can be reduced.
  • the hydrophilicity of the carbon coat layer will improve due to the presence of a moderate amount of defects in the carbon coat layer. This is presumed to be because the interaction with the polymer X is further enhanced, and the dispersibility of the slurry composition can be further improved.
  • the particle diameter of the olivine-type LFP particles coated with a carbon coat layer is not particularly limited, and can be adjusted as appropriate within a range that provides the desired effect of the present invention.
  • the diameter is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the "average particle diameter" of the carbon coat layer-covered olivine-type LFP particles is the cumulative volume calculated from the small diameter side in the particle size distribution (volume basis) measured by a laser diffraction particle size measuring device manufactured by Malvern. means the particle diameter D50 at which 50%.
  • Polymer X is a component that can function as a dispersant for favorably dispersing components such as the positive electrode active material and the conductive material in the slurry composition. Furthermore, the polymer X can also function as a binder in the positive electrode composite layer formed using the slurry composition.
  • Polymer X contains acidic group-containing monomer units in a predetermined content ratio. Moreover, the polymer X may further contain a hydroxyl group-containing acrylic acid ester monomer unit in addition to the acidic group-containing monomer unit. Furthermore, the polymer May contain.
  • the polymer X is usually water-soluble, although it is not particularly limited.
  • the polymer is "water-soluble" when the insoluble content is 5.0% by mass when 0.5g (solid content equivalent) of the polymer is dissolved in 100g of water at a temperature of 25°C. It means less than.
  • acidic group-containing monomer unit examples include carboxylic acid group-containing monomers, sulfonic acid group-containing monomers, and phosphoric acid group-containing monomers. can be mentioned.
  • Examples of the carboxylic acid group-containing monomer include monocarboxylic acids and their derivatives, dicarboxylic acids and their acid anhydrides, and their derivatives.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethyl acrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, etc.
  • Examples of dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, and dodecyl maleate. , octadecyl maleate, fluoroalkyl maleate, and other maleic acid esters.
  • acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methylmaleic anhydride, dimethylmaleic anhydride, and the like.
  • an acid anhydride that generates a carboxyl group by hydrolysis can also be used.
  • monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyhydric carboxylic acids such as monobutyl itaconate, dibutyl itaconate, and the like.
  • the hydrogen atom in the carboxylic acid group in the carboxylic acid group-containing monomer mentioned above may be substituted with an inorganic ion or an organic ion, and it may be in the form of an inorganic salt or an organic salt. That is, the carboxylic acid group-containing monomer may be in the form of a carboxylate salt.
  • the sulfonic acid group-containing monomer examples include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, styrenesulfonic acid, ethyl (meth)acrylate-2-sulfonate, and 2-acrylamide-2-methylpropane. Examples include sulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like.
  • the hydrogen atom in the sulfonic acid group in the sulfonic acid group-containing monomer mentioned above may be substituted with an inorganic ion or an organic ion, and it may be in the form of an inorganic salt or an organic salt. That is, the sulfonic acid group-containing monomer may be in the form of a sulfonate.
  • the phosphate group-containing monomer examples include 2-(meth)acryloyloxyethyl phosphate, methyl-2-(meth)acryloyloxyethyl phosphate, and ethyl-(meth)acryloyloxyethyl phosphate.
  • the hydrogen atom in the phosphoric acid group in the phosphoric acid group-containing monomer mentioned above may be substituted with an inorganic ion or an organic ion, and it may be in the form of an inorganic salt or an organic salt. That is, the phosphate group-containing monomer may be in the form of a phosphate.
  • these acidic group-containing monomers may be used alone or in combination of two or more in any ratio. From the viewpoint of further improving the adhesiveness of the positive electrode composite layer to be formed, it is preferable to use a carboxylic acid group-containing monomer or a sulfonic acid group-containing monomer as the acidic group-containing monomer.
  • the content ratio of the acidic group-containing monomer units in the polymer X needs to be 3% by mass or more, when the total monomer units contained in the polymer It is preferably at least 4.5% by mass, even more preferably at least 5% by mass, even more preferably at least 6% by mass, and even more preferably at least 8% by mass. It is even more preferable that the content be 40% by mass or less, preferably 35% by mass or less, and more preferably 30% by mass or less. If the content of the acidic group-containing monomer unit in the polymer can sufficiently improve performance. Further, if the content of the acidic group-containing monomer unit in the polymer X is 3% by mass or more, the adhesiveness of the positive electrode composite layer to be formed can be sufficiently improved.
  • the content of the acidic group-containing monomer unit in the polymer X is 3% by mass or more, the formation of Water drainage properties of the positive electrode composite layer can be sufficiently improved.
  • the content of acidic group-containing monomer units in polymer X is 40% by mass or less, the flexibility of polymer
  • the adhesiveness of the positive electrode composite material layer can be sufficiently improved by ensuring a sufficiently high adhesiveness.
  • hydroxyl group-containing acrylic ester monomer that can form the hydroxyl group-containing acrylic ester monomer unit in the polymer X include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 4-acrylic acid.
  • the hydroxyl group-containing acrylic ester monomers include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 4-hydroxybutyl acrylate. It is preferable to use alkanol esters of acrylic acid (acrylic acid hydroxyalkyl ester monomers) such as the following.
  • the content ratio of hydroxyl group-containing acrylic ester monomer units in polymer X is preferably 55% by mass or more, when the total monomer units contained in polymer X is 100% by mass, and It is more preferably .5% by mass or more, even more preferably 60% by mass or more, even more preferably 70% by mass or more, preferably 90% by mass or less, and 85% by mass or less. is more preferable, and even more preferably 80% by mass or less. If the content of the hydroxyl group-containing acrylic acid ester monomer unit in the polymer X is equal to or higher than the above lower limit, the flexibility of the polymer can be ensured to be sufficiently high to further improve the adhesiveness of the positive electrode composite material layer. On the other hand, if the content of the hydroxyl group-containing acrylic acid ester monomer units in the polymer The adhesion of the positive electrode composite material layer can be ensured to be sufficiently high.
  • Polymer X may further contain other monomer units. Other monomer units in the polymer units, nitrile group-containing monomer units, etc. are preferred.
  • hydroxyl group-containing methacrylic acid ester monomer unit examples include alkanols of methacrylic acid such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
  • Esters also referred to as “methacrylic acid hydroxyalkyl ester monomers”
  • General formula: CH 2 C(CH 3 )-COO-(C s H 2s O) r -H (wherein r is 2 to esters of polyalkylene glycol and methacrylic acid (also referred to as “methacrylic acid polyalkylene glycol ester monomer”); .
  • these may be used individually by 1 type, and may use 2 or more types in arbitrary ratios.
  • the hydroxyl group-containing methacrylic acid ester monomers include alkanol esters of methacrylic acid such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate. (methacrylic acid hydroxyalkyl ester monomer) is preferably used.
  • the content ratio of the hydroxyl group-containing methacrylic acid ester monomer units in the polymer X is preferably 5% by mass or more, when the total monomer units contained in the polymer X is 100% by mass, It is more preferably .5% by mass or more, even more preferably 10% by mass or more, preferably 30% by mass or less, more preferably 27.5% by mass or less, and 25% by mass or less. It is more preferable that If the content of the hydroxyl group-containing methacrylic acid ester monomer unit in the polymer It can be further improved.
  • the total content of hydroxyl group-containing acrylic ester monomer units and hydroxyl group-containing methacrylic ester monomer units in polymer X is, when the total monomer units contained in polymer X is 100% by mass, It is preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, preferably 97% by mass or less, and 95.5% by mass or less. It is more preferably 94% by mass or less. If the total content of the hydroxyl group-containing acrylic ester monomer units and the hydroxyl group-containing methacrylic ester monomer units in the polymer The adhesiveness of the positive electrode composite material layer can be further improved.
  • the total content of the hydroxyl group-containing acrylic ester monomer units and the hydroxyl group-containing methacrylic ester monomer units in the polymer can be ensured to be sufficiently high, so that the dispersibility of the slurry composition and the adhesiveness of the positive electrode composite layer to be formed can be ensured to be sufficiently high.
  • unsaturated carboxylic acid amide monomers that can form unsaturated carboxylic acid amide monomer units
  • unsaturated carboxylic acids such as (meth)acrylic acid are dehydrated with ammonia, primary amines or secondary amines.
  • a compound having a condensed chemical structure can be used.
  • Specific examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N-isopropylacrylamide, N-isobutylacrylamide, and the like. These may be used alone or in combination of two or more in any ratio.
  • acrylamide and methacrylamide it is preferable to use acrylamide and methacrylamide, and it is preferable to use acrylamide, from the viewpoint of further improving the adhesiveness of the positive electrode composite layer formed by increasing the interaction between molecules through hydrogen bonding in the polymer X. More preferred.
  • the content ratio of unsaturated carboxylic acid amide monomer units in the polymer X can be 0% by mass or more, when the total monomer units contained in the polymer X is 100% by mass, It is preferably at least 2% by mass, preferably at least 20% by mass, and preferably at most 20% by mass. Further, the content of the unsaturated carboxylic acid amide monomer unit in the polymer X may be 10% by mass or less when the total monomer units contained in the polymer X is 100% by mass. However, it may be 5% by mass or less. Note that, as a matter of course, the polymer X does not need to contain unsaturated carboxylic acid amide monomer units.
  • nitrile group-containing monomer unit examples of the nitrile group-containing monomer that can form the nitrile group-containing monomer unit include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group, but examples include acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromo Examples thereof include ⁇ -halogenoacrylonitrile such as acrylonitrile; ⁇ -alkylacrylonitrile such as methacrylonitrile and ⁇ -ethyl acrylonitrile; and the like.
  • acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is more preferred. These may be used alone or in combination of two or more in any ratio.
  • the content ratio of the nitrile group-containing monomer units in the polymer X can be 0% by mass or more, and 1% by mass when the total monomer units contained in the polymer It is preferably at least 2% by mass, preferably at most 10% by mass, and preferably at most 5% by mass. Further, the content ratio of the nitrile group-containing monomer units in the polymer X may be 2% by mass or less, when the total monomer units contained in the polymer X is 100% by mass, It may be 1% by mass or less. Note that, of course, the polymer X does not need to contain a nitrile group-containing monomer unit.
  • Polymer X is not particularly limited, but can be prepared, for example, as follows.
  • the above-mentioned acidic group-containing monomer, hydroxyl group-containing acrylic ester monomer, and other monomers are mixed in a solvent such as water.
  • a polymerization accelerator is added to the resulting mixture.
  • a polymerization initiator is added to start the polymerization reaction.
  • one or more cycles of adding a polymerization accelerator, adding a polymerization initiator, and polymerizing may be performed as necessary.
  • the polymerization temperature is, for example, preferably 35°C or more and 65°C or less, more preferably 40°C or more and 55°C or less.
  • the time for the polymerization reaction between the addition of the polymerization initiator and the addition of the polymerization promoter is, for example, preferably 5 minutes or more and 40 minutes or less, and more preferably 10 minutes or more and 30 minutes or less.
  • the above-mentioned operation is preferably performed under a nitrogen atmosphere.
  • a chain transfer agent may be used as a polymerization aid during the polymerization reaction.
  • a reaction terminator is used to stop the polymerization reaction.
  • the product is cooled and placed in an air atmosphere, and then an aqueous lithium hydroxide solution or the like is added to adjust the pH of the product to 7.0 or more and 9.0 or less.
  • the polymerization initiator is not particularly limited, and known polymerization initiators can be used.
  • Examples of the polymerization initiator include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Among these, it is preferable to use potassium persulfate.
  • the polymerization initiator each time may be the same or different. Incidentally, the amount of the polymerization initiator used can be adjusted as appropriate within the range in which the desired effects of the present invention can be obtained.
  • the polymerization accelerator examples include L-ascorbic acid and sodium hydrogen sulfite.
  • the polymerization accelerator each time may be the same or different.
  • L-ascorbic acid be present in the polymerization system as a polymerization accelerator at the start of the polymerization reaction.
  • the amount of the polymerization accelerator used can be adjusted as appropriate within the range in which the desired effects of the present invention can be obtained.
  • the weight average molecular weight (Mw) of the polymer More preferably, it is less than 500,000, more preferably less than 400,000, even more preferably less than 300,000. If the weight average molecular weight (Mw) of the polymer If it is less than that, the dispersibility of the slurry composition can be further improved.
  • the weight average molecular weight (Mw) of the polymer X can be controlled by the polymerization conditions in the above-mentioned method for preparing the polymer It can be controlled by the amount added, the time and temperature of the polymerization reaction, etc.
  • (Mw/Mn) is preferably 1.5 or more, more preferably 1.8 or more, even more preferably 2.2 or more, and 3 or more. More preferably, it is 10 or less, more preferably 7 or less, and even more preferably 4 or less.
  • the molecular weight distribution (Mw/Mn) of the polymer X can be controlled by the polymerization conditions in the above-mentioned method for preparing the polymer It can be controlled by the type and amount added, as well as the time and temperature of the polymerization reaction.
  • the content of the polymer X in the slurry composition is equal to or higher than the above lower limit, the dispersibility of the slurry composition and the adhesiveness of the positive electrode composite layer to be formed can be further improved.
  • the content of the polymer X in the slurry composition is below the above upper limit, the internal resistance of the secondary battery can be reduced.
  • the particulate polymer Y is a component that can function as a binder in the positive electrode composite material layer together with the above-mentioned polymer X.
  • the particulate polymer Y shall be a polymer different from the polymer X mentioned above.
  • the particulate polymer Y preferably contains a hydrophilic group. If a particulate polymer containing a hydrophilic group is used as the particulate polymer Y, the dispersibility of the slurry composition and the adhesion of the formed positive electrode composite layer can be further improved.
  • the method of introducing the hydrophilic group into the particulate polymer Y is not particularly limited, but for example, the particles obtained by using a hydrophilic group-containing monomer during polymerization of the particulate polymer Y A method of forming a hydrophilic group-containing monomer unit in the polymer Y can be adopted.
  • Hydrophilic group-containing monomers that can form hydrophilic group-containing monomer units in the particulate polymer Y include carboxylic acid group-containing monomers, sulfonic acid group-containing monomers, and phosphoric acid group-containing monomers. Examples include acidic group-containing monomers such as monomers, hydroxyl group-containing monomers, and the like.
  • acidic group-containing monomers carboxylic acid group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, etc.
  • various acidic group-containing monomers that can be used for the preparation of the above-mentioned polymer Monomers can be used.
  • hydroxyl group-containing monomers examples include 2-hydroxyethyl acrylate (2-hydroxyethyl acrylate), 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and di-maleate.
  • (meth)allyl ethers of polyhydric phenols and their halogen-substituted products (meth)allyl thioethers of alkylene glycols such as (meth)allyl-2-hydroxyethyl thioether and (meth)allyl-2-hydroxypropyl thioether; etc. can be mentioned.
  • (meth)allyl means allyl and/or methallyl
  • (meth)acryloyl” means acryloyl and/or methacryloyl.
  • hydrophilic group-containing monomers one type may be used alone, or two or more types may be used in combination in any ratio.
  • acidic group-containing monomers carboxylic acid group-containing monomers, , a sulfonic acid group-containing monomer, a phosphoric acid group-containing monomer, etc.
  • an acidic group-containing monomer and a monomer containing an acidic group it is more preferable to use a hydroxyl group-containing monomer together, and even more preferable to use a carboxylic acid group-containing monomer and a hydroxyl group-containing monomer together.
  • the content ratio of the hydrophilic group-containing monomer units in the particulate polymer Y is 1% by mass or more and 10% by mass or less, when the total monomer units contained in the particulate polymer Y is 100% by mass. It is preferable that If the content ratio of the hydrophilic group-containing monomer unit in the particulate polymer Y is within the above-described predetermined range, the dispersibility of the slurry composition and the adhesion of the formed positive electrode composite layer can be further improved. can be done.
  • the particulate polymer Y contains acidic group-containing monomer units (carboxylic acid-containing monomer units, sulfonic acid group-containing monomer units, and phosphoric acid group-containing monomer units) as hydrophilic group-containing monomer units. unit) and a hydroxyl group-containing monomer unit, the content ratio of the hydrophilic group-containing monomer unit in the particulate polymer Y (i.e., the acidic group-containing monomer unit and the hydroxyl group-containing monomer unit)
  • the total content of monomeric units) is more preferably 2% by mass or more, and preferably 3% by mass or more, when the total monomer units contained in the particulate polymer Y is 100% by mass.
  • the particulate polymer Y contains acidic group-containing monomer units (carboxylic acid group-containing monomer units, sulfonic acid group-containing monomer units, and phosphoric acid group-containing monomer units) as hydrophilic group-containing monomer units. etc.), the content of acidic group-containing monomer units in the particulate polymer Y is 0% when the total monomer units contained in the particulate polymer Y is 100% by mass. It is preferably .5% by mass or more, more preferably 1% by mass or more, even more preferably 1.5% by mass or more, preferably 5% by mass or less, and 3% by mass or less.
  • the amount is 2.5% by mass or less, and even more preferably 2.5% by mass or less. If the content of the acidic group-containing monomer unit in the particulate polymer Y is at least the above lower limit, the dispersibility of the slurry composition and the adhesion of the formed positive electrode composite layer can be further improved. On the other hand, if the content rate of the acidic group-containing monomer unit in the particulate polymer Y is below the above upper limit, the flexibility of the positive electrode composite layer to be formed can be ensured to be sufficiently high.
  • the content ratio of the hydroxyl group-containing monomer unit in the particulate polymer Y is When the total monomer units contained in is 100% by mass, it is preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably 5% by mass or less, It is more preferably 2% by mass or less, and even more preferably 1.5% by mass or less. If the content of the acidic group-containing monomer units in the particulate polymer Y is equal to or higher than the above lower limit, the flexibility of the positive electrode composite layer to be formed can be improved.
  • the particulate polymer Y containing a hydrophilic group it is preferable to use, for example, an acrylic polymer containing a hydrophilic group or a conjugated diene polymer containing a hydrophilic group, and the cycle characteristics of the secondary battery can be sufficiently improved. It is more preferable to use an acrylic polymer containing a hydrophilic group from the viewpoint of ensuring a high level of water resistance.
  • the hydrophilic group-containing acrylic polymer is a copolymer containing at least a (meth)acrylic acid ester monomer unit in addition to the above-mentioned hydrophilic group-containing monomer unit.
  • the hydrophilic group-containing acrylic polymer further contains a nitrile group-containing monomer unit.
  • the hydrophilic group-containing acrylic polymer further contains monomer units other than hydrophilic group-containing monomer units, (meth)acrylic acid ester monomer units, and nitrile group-containing monomer units. You can stay there.
  • the content ratio of the hydrophilic group-containing monomer unit in the hydrophilic group-containing acrylic polymer is the same as the preferred range of the content ratio of the hydrophilic group-containing monomer unit in the polymer mentioned above. be able to.
  • Examples of (meth)acrylic acid ester monomers that can form the (meth)acrylic acid ester monomer unit in the hydrophilic group-containing acrylic polymer include methyl acrylate, ethyl acrylate, butyl acrylate, and methacrylic acid.
  • (Meth)acrylic acid alkyl esters such as methyl, ethyl methacrylate, and 2-ethylhexyl acrylate can be used. In addition, these may be used individually by 1 type, and may use 2 or more types in arbitrary ratios.
  • “(meth)acrylic” means acrylic and/or methacryl.
  • the content of (meth)acrylic acid ester monomer units in the hydrophilic group-containing acrylic polymer is based on 100% by mass of all monomer units contained in the hydrophilic group-containing acrylic polymer. In this case, it is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, preferably 90% by mass or less, and 85% by mass or less. It is more preferable that the amount is 80% by mass or less, and even more preferably 80% by mass or less. If the content ratio of the (meth)acrylic acid ester monomer unit in the hydrophilic group-containing acrylic polymer is within the above-mentioned predetermined range, the adhesion of the formed positive electrode composite layer can be further improved. .
  • nitrile group-containing monomer that can form the nitrile group-containing monomer unit in the hydrophilic group-containing acrylic polymer use the nitrile group-containing monomer that can be used to form the polymer X described above. Can be done.
  • the content of the nitrile group-containing monomer units in the hydrophilic group-containing acrylic polymer is 5% by mass when the total monomer units contained in the hydrophilic group-containing acrylic polymer is 100% by mass. It is preferably at least 10% by mass, more preferably at least 17% by mass, even more preferably at most 40% by mass, more preferably at most 35% by mass, More preferably, it is 26% by mass or less. If the content of the nitrile group-containing monomer unit in the hydrophilic group-containing acrylic polymer is within the above-mentioned predetermined range, the adhesiveness of the formed positive electrode composite layer can be further improved.
  • the hydrophilic group-containing conjugated diene polymer is a copolymer containing a conjugated diene monomer unit in addition to the above-mentioned hydrophilic group-containing monomer unit.
  • conjugated diene polymer examples include, without particular limitation, hydrophilic group-containing monomer units such as hydrophilic group-containing styrene-butadiene copolymers (hydrophilic group-containing SBR), aromatic vinyl monomers, etc.
  • hydrophilic group-containing monomer units such as hydrophilic group-containing styrene-butadiene copolymers (hydrophilic group-containing SBR), aromatic vinyl monomers, etc.
  • Copolymer containing mer unit and aliphatic conjugated diene monomer unit hydrophilic group-containing butadiene rubber (hydrophilic group-containing BR) (copolymer containing hydrophilic group-containing monomer unit and butadiene unit),
  • hydrophilic group-containing BR hydrophilic group-containing butadiene rubber
  • examples include hydrophilic group-containing acrylic rubber (hydrophilic group-containing NBR) (a copolymer containing a hydrophilic group-containing monomer unit, an acrylonitrile unit, and a butadiene unit), and hydrides thereof. These may be used alone or in combination of two or more in any ratio.
  • hydrophilic group-containing monomer units such as hydrophilic group-containing styrene-butadiene copolymer (hydrophilic group-containing SBR), aromatic vinyl It is preferred to use a copolymer containing a monomer unit and an aliphatic conjugated diene monomer unit.
  • the content ratio of hydrophilic group-containing monomer units in the hydrophilic group-containing conjugated diene polymer should be in the same range as the preferred range of the content ratio of hydrophilic group-containing monomer units in the polymer mentioned above. Can be done.
  • Conjugated diene monomer units that can form conjugated diene monomer units in the hydrophilic group-containing conjugated diene polymer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, Examples include conjugated diene compounds such as 1,3-pentadiene. One type of these may be used alone, or two or more types may be used in any ratio. Among them, 1,3-butadiene is preferred.
  • the content of conjugated diene monomer units in the hydrophilic group-containing conjugated diene polymer is 15% by mass or more, with the total monomer units contained in the hydrophilic group-containing conjugated diene polymer being 100% by mass. It is preferably 20% by mass or more, more preferably 25% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, 40% by mass or less. % or less is more preferable. If the content of the conjugated diene monomer units in the hydrophilic group-containing conjugated diene polymer is within the above-mentioned predetermined range, the adhesiveness of the formed positive electrode composite layer can be further improved.
  • the content of aromatic vinyl monomer units in the hydrophilic group-containing conjugated diene polymer is 30% by mass or more, with the total monomer units contained in the hydrophilic group-containing conjugated diene polymer being 100% by mass. It is preferably 45% by mass or more, more preferably 56% by mass or more, preferably 80% by mass or less, more preferably 75% by mass or less, and 71% by mass or less. It is more preferably less than % by mass. If the content ratio of the aromatic vinyl monomer unit in the hydrophilic group-containing conjugated diene polymer is within the above-mentioned predetermined range, the adhesiveness of the formed positive electrode composite layer can be further improved.
  • the polymerization mode of the particulate polymer A is not particularly limited, and for example, any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, an emulsion polymerization method, etc. may be used. Further, addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used as the polymerization reaction. As the emulsifier, dispersant, polymerization initiator, chain transfer agent, etc. that can be used in the polymerization, those commonly used can be used, and the amounts used can also be the amounts commonly used.
  • the content ratio of the particulate polymer Y in the slurry composition can be adjusted as appropriate within the range in which the desired effects of the present invention can be obtained. , preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the content of particulate polymer Y in the slurry composition is equal to or higher than the above lower limit, the dispersibility of the slurry composition and the adhesiveness of the positive electrode composite layer to be formed can be further improved.
  • the content of the polymer X in the slurry composition is below the above-mentioned upper limit, the flexibility of the positive electrode composite layer to be formed can be ensured to be sufficiently high.
  • the conductive material is a component having a function of ensuring electrical contact between the positive electrode active materials (olivine type LFP particles covered with the carbon coat layer) in the positive electrode composite material layer.
  • the conductive material for example, at least one of carbon nanotubes and particulate conductive materials can be used, preferably at least carbon nanotubes are used, and it is more preferred to use carbon nanotubes and particulate conductive materials in combination.
  • the internal resistance of the secondary battery can be reduced.
  • carbon nanotubes and particulate conductive materials are used together as conductive materials, the flexibility of the positive electrode composite layer can be improved while reducing the internal resistance of the secondary battery.
  • conductive materials other than carbon nanotubes and particulate conductive materials may be used.
  • fibrous conductive materials other than carbon nanotubes can be used.
  • Carbon nanotubes can reduce the internal resistance of a secondary battery by forming a conductive path in the positive electrode material layer. Furthermore, by using carbon nanotubes, the cycle characteristics and low-temperature characteristics of a secondary battery can also be improved.
  • the carbon nanotube is not particularly limited as long as it is a carbon nanotube (hereinafter sometimes abbreviated as "CNT") that can achieve the desired effects of the present invention.
  • Carbon nanotubes include single-walled (SW) carbon nanotubes and multi-walled (MW) carbon nanotubes, depending on the type of layer format.
  • the carbon nanotubes that can be used as the conductive material may be single-walled carbon nanotubes, multi-walled carbon nanotubes, or a combination thereof.
  • the average number of CNT layers is preferably 10 or less, more preferably 9 or less, even more preferably 8 or less, even more preferably 2 or less, and even more preferably 1.5 or less. Even more preferred. If the average number of CNT layers is below the above upper limit, the cycle characteristics of the secondary battery can be further improved. Note that the lower limit of the average number of CNT layers is not particularly limited and is usually 1 or more.
  • the average diameter of the CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, even more preferably 1.5 nm or more, even more preferably 2 nm or more, and even more preferably 2.5 nm or more. It is even more preferable that the particle size is 20 nm or less, more preferably 12 nm or less, even more preferably 8 nm or less, even more preferably 6 nm or less, even more preferably 4 nm or less. preferable. If the average diameter of the CNTs is equal to or larger than the above lower limit, the aggregation of the CNTs can be sufficiently suppressed, and the dispersibility of the CNTs as a conductive material can be sufficiently ensured. On the other hand, if the average diameter of the CNTs is below the above upper limit, a good conductive path will be formed in the positive electrode composite layer, further reducing the internal resistance of the secondary battery and further improving the cycle characteristics of the secondary battery. can be done.
  • the ratio of the G band peak intensity to the D band peak intensity (G/D ratio) in the Raman spectrum of CNT is preferably 0.6 or more, more preferably 1.2 or more, and 2.1 or more. It is more preferably 3.0 or more, even more preferably 3.6 or more. If the G/D ratio of CNT is equal to or higher than the above lower limit, the cycle characteristics of the secondary battery can be further improved. Note that the upper limit of the G/D ratio of CNT is not particularly limited, but is, for example, 200 or less.
  • the BET specific surface area of CNT is preferably 100 m 2 /g or more, more preferably 200 m 2 /g or more, even more preferably 250 m 2 /g or more, and 1200 m 2 /g or less. It is preferable that it is 1100 m 2 /g or less, and it is more preferable that it is 1000 m 2 /g or less. If the BET specific surface area of the CNT is within the above predetermined range, the internal resistance of the secondary battery can be further reduced.
  • the "BET specific surface area" of CNT refers to the nitrogen adsorption specific surface area measured using the BET method.
  • CNTs having the above-mentioned properties can be manufactured using known methods such as arc discharge method, laser ablation method, and super growth method without particular limitation.
  • the content of CNT in the slurry composition can be adjusted as appropriate within the range in which the desired effects of the present invention can be obtained, but for example, the content of CNT can be adjusted to 0.01 parts by mass based on 100 parts by mass of the olivine-type LFP particles covered with the carbon coat layer. It is preferably at least 0.05 parts by mass, even more preferably at least 0.1 parts by mass, preferably at most 2.5 parts by mass, and 1.5 parts by mass. It is more preferably at most 1.0 parts by mass, and even more preferably at most 1.0 parts by mass. If the content of CNT in the slurry composition is at least the above lower limit, the internal resistance of the secondary battery can be further reduced. On the other hand, if the content of CNT in the slurry composition is below the above-mentioned upper limit, the flexibility of the positive electrode composite layer to be formed can be ensured to be sufficiently high.
  • the particulate conductive material is a component that can function as a conductive material in the positive electrode composite material layer and can improve the flexibility of the electrode composite material layer.
  • the particulate conductive material is not particularly limited as long as it has a shape other than fibrous (e.g., spherical, plate-like, etc.), and carbon black (e.g., acetylene black, Ketjen black (registered trademark), (furnest black, etc.), and graphene. Note that these particulate conductive materials may be used alone or in combination of two or more types in any ratio.
  • the content of the particulate electrically conductive material in the slurry composition can be adjusted as appropriate within the range in which the desired effects of the present invention can be obtained. It is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1 part by mass or more, preferably 5 parts by mass or less, and 3 parts by mass or less. It is more preferable that it is, and it is even more preferable that it is 2 parts by mass or less.
  • the content of the particulate conductive material in the slurry composition is equal to or higher than the above lower limit, the flexibility of the positive electrode composite layer to be formed can be further improved.
  • the adhesiveness of the formed positive electrode composite layer can be ensured to be sufficiently high.
  • the mixing ratio of CNTs and particulate conductive material is not particularly limited, but for example, the content of CNTs in the total content of CNTs and particulate conductive material in the slurry composition is 1% by mass or more. It is preferably 2% by mass or more, more preferably 3% by mass or more, preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass. It is more preferable that it is the following. If the ratio of the content of CNT to the total content of CNT and particulate conductive material is at least the above lower limit, the internal resistance of the secondary battery can be further reduced. On the other hand, if the ratio of the content of CNT to the total content of CNT and particulate conductive material is below the above upper limit, the flexibility of the positive electrode composite layer can be further improved.
  • the slurry composition of the present invention usually contains a dispersion medium such as water.
  • a dispersion medium such as water.
  • a solvent such as water contained in the binder composition used for preparing the slurry composition can be used.
  • ⁇ Other ingredients> In addition to the above-mentioned polymer It may further contain the following components. These components are not particularly limited as long as they do not affect the battery reaction, and known components can be used. Furthermore, these components may be used alone or in combination of two or more in any ratio.
  • the slurry composition of the present invention is not particularly limited, and can be prepared, for example, by dispersing or dissolving each of the above-mentioned components in a dispersion medium. Specifically, each of the above components and the dispersion medium are mixed using a mixer such as a ball mill, sand mill, bead mill, pigment dispersion machine, crusher, ultrasonic dispersion machine, homogenizer, planetary mixer, film mix, etc.
  • a slurry composition can be prepared by: Here, water is usually used as the dispersion medium, but an aqueous solution of any compound, a mixed solution of a small amount of an organic medium and water, or the like may also be used.
  • the CNTs and the conductive material such as particulate conductive material are prepared in advance in a dispersion medium such as water.
  • a dispersion medium such as water.
  • the obtained dispersion liquid can be mixed with other components such as the electrode active material, the polymer X, and the particulate polymer Y.
  • the positive electrode of the present invention includes a positive electrode composite material layer formed using the slurry composition of the present invention described above, and usually has a structure in which the positive electrode composite material layer is formed on a current collector. Therefore, the positive electrode composite layer contains at least the carbon coat layer-covered olivine-type LFP particles as the positive electrode active material and the polymer X, and optionally further contains the particulate polymer Y and a conductive material. There is.
  • the components contained in the positive electrode composite layer are those contained in the slurry composition described above.
  • the preferred content ratio of each component is the same as the preferred content ratio of each component when the total solid content contained in the slurry composition is 100% by mass.
  • a suitable ratio of the content of CNT to the total content of CNT and particulate conductive material that may be included in the positive electrode composite layer is also determined by This is the same as the preferred ratio of the CNT content to the total content.
  • the positive electrode of the present invention may further include a conductive adhesive layer containing at least a conductive material and an adhesive between the current collector and the positive electrode composite layer.
  • the positive electrode composite material layer included in the electrode of the present invention is formed using the slurry composition of the present invention, it can exhibit excellent adhesiveness and water drainage. Furthermore, the positive electrode mixture layer included in the positive electrode of the present invention has a uniform structure because it is formed using the slurry composition of the present invention having excellent dispersibility. Therefore, the positive electrode of the present invention has a positive electrode composite material layer that has a uniform structure and is also excellent in water drainage, so that the internal resistance of the secondary battery can be reduced.
  • a material that has electrical conductivity and is electrochemically durable is used.
  • a current collector for example, a current collector made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum can be used. Note that these materials may be used alone or in combination of two or more in any ratio.
  • the current collector when manufacturing an electrode that further includes the above-mentioned conductive adhesive layer between the electrode composite material layer and the current collector, the current collector may be coated with a conductive adhesive on the base material for the current collector.
  • a current collector with a conductive adhesive layer formed of layers can be used.
  • the base material for the current collector for example, a current collector made of the metal material mentioned above can be used.
  • the method for forming the conductive adhesive layer on the current collector base material is not particularly limited.
  • a slurry composition also referred to as a "conductive adhesive” in which a conductive material and an adhesive are at least dispersed or dissolved in a dispersion medium or solvent such as water, and optionally a dispersant is further dispersed or dissolved.
  • the conductive material is not particularly limited, and for example, a conductive material that can be included in the slurry composition described above can be used.
  • the adhesive is not particularly limited, and particulate polymer Y that can be included in the slurry composition described above can be used.
  • the dispersant is not particularly limited, and for example, known dispersants such as carboxymethyl cellulose and its salts can be used.
  • the method of applying the conductive adhesive onto the current collector base material and the method of drying the applied conductive adhesive are not particularly limited, and known methods can be used.
  • the positive electrode mixture layer is formed, for example, through a process of applying a slurry composition onto a current collector (coating process) and a process of drying the slurry composition applied onto the current collector (drying process). Ru.
  • the method for applying the slurry composition onto the current collector is not particularly limited, and any known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. Further, the thickness of the slurry composition film on the current collector after coating and before drying can be appropriately set depending on the thickness of the positive electrode composite layer obtained by drying.
  • the method for drying the slurry composition applied on the current collector is not particularly limited, and any known method can be used, such as a drying method using hot air, hot air, low humidity air, vacuum drying method, infrared rays or electronic drying method. A drying method using irradiation with a ray or the like can be mentioned.
  • a drying method using irradiation with a ray or the like can be mentioned.
  • the electrode composite material layer may be subjected to pressure treatment using a mold press, a roll press, or the like. Pressure treatment can improve the peel strength of the electrode.
  • the secondary battery of the present invention includes the positive electrode of the present invention described above.
  • the secondary battery of the present invention includes the above-described positive electrode of the present invention, a negative electrode, a separator, and an electrolyte. Since the secondary battery of the present invention includes the positive electrode of the present invention described above, the internal resistance is reduced.
  • a non-aqueous secondary battery is a lithium ion secondary battery is demonstrated below as an example, this invention is not limited to the following example.
  • the negative electrode is not particularly limited, and any known negative electrode can be used.
  • the separator is not particularly limited, and includes, for example, a microporous membrane using polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride), polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, Examples include microporous membranes using resins such as polyimide amide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, woven or nonwoven fabrics using polyolefin fibers, and aggregates of particles made of insulating substances. . Among these, polyolefin-based Microporous membranes using resins (polyethylene, polypropylene, polybutene, polyvinyl chloride) are preferred.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • the solvent an organic solvent that can dissolve the electrolyte can be used.
  • carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and ethylmethyl carbonate (EMC); Esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • EMC ethylmethyl carbonate
  • Esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-
  • a lithium salt can be used as the electrolyte.
  • the lithium salt for example, compounds described in JP-A-2012-204303 can be used.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferred as electrolytes because they are easily soluble in organic solvents and exhibit a high degree of dissociation.
  • one type of electrolyte may be used alone, or two or more types may be used in combination in any ratio.
  • the lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted by changing the type of supporting electrolyte.
  • the secondary battery of the present invention can be manufactured using known assembly methods without any particular limitations.
  • the secondary battery of the present invention can be produced by, for example, winding or folding the positive electrode of the present invention, the negative electrode, and the separator of the present invention as necessary into a battery shape, and placing them in a battery container. It can be manufactured by injecting an electrolyte and sealing.
  • fuses, overcurrent prevention elements such as PTC elements, expanded metal, lead plates, etc. may be provided as necessary. good.
  • the shape of the secondary battery may be, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
  • battery members such as a positive electrode, a negative electrode, and a separator included in a secondary battery are usually arranged such that the positive electrode is in contact with one side of the separator and the negative electrode is in contact with the other side of the separator. More specifically, a positive electrode mixture layer is placed on one side of the separator, and a negative electrode mixture layer is placed on the other side of the separator so as to be in contact with the separator.
  • the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples.
  • “%” and “part” representing amounts are based on mass unless otherwise specified.
  • the content ratio of monomer units formed by polymerizing a certain monomer in the polymer is usually as follows, unless otherwise specified. , corresponds to the ratio of the certain monomer to the total monomers used for polymerization of the polymer (feeding ratio).
  • feeding ratio Various measurements and evaluations were performed according to the following methods.
  • MIBK methyl isobutyl ketone
  • the obtained dispersion liquid was centrifuged, and the obtained supernatant liquid was filtered using a syringe filter. A portion of the obtained filtrate was collected and titrated (back titration) with a 0.01M perchloric acid standard solution.
  • the acid amount A1 was calculated from the difference between the obtained titer and the titer in a blank test conducted in the same manner as above except that the carbon coat layer-coated olivine-type LFP particles as a sample were not placed in the container. .
  • the acid amount A1 corresponds to the total content of strong acid groups, medium acid groups, and weak acid groups contained on the surface of the carbon coat layer-covered olivine-type LFP particles.
  • the acid amount A2 was calculated from the difference between the obtained titer and the titer in a blank test conducted in the same manner as above except that the carbon coat layer-coated olivine-type LFP particles as a sample were not placed in the container. .
  • the acid amount A2 corresponds to the total content of strong acid groups and medium acid groups contained on the surface of the carbon coat layer-covered olivine-type LFP particles. ⁇ Calculation of weak acid group content>> Then, by subtracting the acid amount A2 from the acid amount A1, the content of weak acid groups on the surface of the carbon coat layer-covered olivine-type LFP particles was determined.
  • the G/D ratio of the carbon coat layer of the carbon coat layer-coated olivine-type lithium iron phosphate particles is determined by the peak intensity of the G band derived from the graphite structure detected near 1600 cm -1 in microlaser Raman spectroscopy, and the peak intensity of the G band derived from the graphite structure detected at around 1350 cm It was calculated by determining the ratio to the peak intensity of the D band derived from crystal defects detected near -1 . Note that the microlaser Raman spectroscopic analysis was performed under the following measurement conditions.
  • the eluent (0.1M Tris buffer (pH 9, 0.1M KCl)) was prepared as follows. 1) 0.8 L of ultrapure water was prepared, and 12.11 g of trishydroxymethylaminomethane and 7.46 g of potassium chloride were dissolved therein. 2) 0.1M hydrochloric acid was added dropwise to adjust the pH to 9.
  • the viscosity of the positive electrode slurry composition was measured according to JIS Z8803:1991 using a single cylindrical rotational viscometer (Brookfield B type viscometer) at a rotation speed of 60 rpm and a temperature of 25°C. , was confirmed to be within the range of 2,500 mPa ⁇ s to 3,500 mPa ⁇ s.
  • the dispersibility of the positive electrode slurry composition was evaluated based on the solid content concentration of the positive electrode slurry composition whose viscosity was within the above range according to the following criteria.
  • D Solid content concentration is less than 40% or does not disperse (no fluidity)
  • a positive electrode for a lithium ion secondary battery was cut into a rectangle with a width of 1.0 cm and a length of 10 cm to prepare a test piece.
  • Cellophane tape (specified in JIS Z1522) was pasted on the surface of the positive electrode composite layer side of this test piece, and then the cellophane tape was peeled off from one end of the test piece in a 90° direction at a speed of 50 mm/min. The stress at that time was measured. The measurement was carried out three times in total, and the average value was determined and used as the peel strength (N/m), which was evaluated according to the following criteria.
  • Peel strength is 20 N/m or more
  • B Peel strength is 15 N/m or more and less than 20 N/m
  • C Peel strength is 10 N/m or more and less than 15 N/m
  • D Peel strength is less than 10 N/m
  • the positive electrode for a lithium ion secondary battery was vacuum dried at 120°C for 10 hours, and then left for 10 minutes at a temperature of 25°C, a dew point of -60°C, and a humidity of 0.05%. Thereafter, the positive electrode mixture layer of the positive electrode for lithium ion secondary batteries was weighed to a weight of 0.1 to 0.2 g, and curled using a coulometric titration moisture meter (manufactured by Mitsubishi Chemical Analytech). The water content was measured by the Fisher method. Aquamicron AX was used as the anolyte, Aquamicron CXU was used as the catholyte, and the vaporization temperature was 170°C.
  • the water content was measured repeatedly three times, and the average value of the obtained values was taken as the measured value. Then, the water removal property of the positive electrode composite layer was evaluated based on the measured value of the water content according to the following criteria. Note that the smaller the measured value of the water content, the better the water removal property of the positive electrode composite material layer.
  • IV resistance is less than 10 ⁇
  • B IV resistance is 10 ⁇ or more and less than 15 ⁇
  • C IV resistance is 15 ⁇ or more and less than 20 ⁇
  • D IV resistance is 25 ⁇ or more
  • a carbon coat layer was formed on the surface of the olivine LFP particles using a solid phase method to obtain carbon coat layer-covered olivine LFP particles A.
  • the content of weak acid groups on the surface of the obtained carbon coat layer-covered olivine type LFP particles A was 10 ⁇ mol/g, and the G/D ratio of the carbon coat layer of the carbon coat layer coated olivine type LFP particles A was 0. It was 69. Further, the average particle diameter of the carbon coat layer-covered olivine-type LFP particles A was 1 ⁇ m.
  • the carbon coat layer coated olivine type LFP particles A obtained in Production Example 1 were fired at 400° C. in an oxygen (O 2 ) atmosphere to obtain carbon coat layer coated olivine type LFP particles B.
  • the content of weak acid groups on the surface of the obtained carbon coat layer coated olivine type LFP particles B was 13.5 ⁇ mol/g, and the G/D ratio of the carbon coat layer of the carbon coat layer coated olivine type LFP particles B was: It was 0.676. Further, the average particle diameter of the carbon coat layer-covered olivine-type LFP particles B was 1 ⁇ m.
  • Example 1 ⁇ Preparation of aqueous solution of polymer X> 770 parts of ion-exchanged water was put into a 10 L flask with a septum, heated to a temperature of 40° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL/min.
  • a hydrophilic group-containing acrylic polymer as particulate polymer Y was prepared as follows. 90 parts of ion-exchanged water and 0.5 parts of sodium lauryl sulfate as an emulsifier were added to a 1L flask (reaction vessel) equipped with a septum and equipped with a stirrer, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60°C. As a polymerization initiator, 0.3 parts of ammonium persulfate (APS) was dissolved in 20.0 parts of ion-exchanged water and added.
  • APS ammonium persulfate
  • emulsion container 30 parts of ion-exchanged water, 0.5 parts of sodium lauryl sulfate as an emulsifier, and 76 parts of 2-ethylhexyl acrylate as a (meth)acrylic acid ester monomer containing carboxylic acid groups.
  • 2.0 parts of itaconic acid as a monomer, 1.0 parts of 2-hydroxyethyl acrylate ( ⁇ -HEA) as a hydroxyl group-containing monomer, and 21 parts of acrylonitrile as a nitrile group-containing monomer were mixed.
  • a monomer composition was obtained. This monomer composition was continuously added to the 1 L flask with a septum over a period of 3 hours to carry out polymerization.
  • CNT dispersion 0.4 parts of carbon nanotubes (BET specific surface area: 250 m 2 /g) as conductive materials, 0.6 parts of carboxymethyl cellulose (Daicel 1220 manufactured by Daicel Corporation) (solid content equivalent), and 99 parts of ion-exchanged water. were stirred using a disper (3000 rpm, 10 minutes), and then mixed for 1 hour at a peripheral speed of 8 m/s using a bead mill using zirconia beads with a diameter of 1 mm, so that the solid content concentration was 1. A mass % CNT dispersion was prepared.
  • acetylene black dispersion 4.4 parts of acetylene black as a conductive material, 0.6 parts (solid content equivalent) of carboxymethyl cellulose (Daicel 1220 manufactured by Daicel Corporation), and 95 parts of ion-exchanged water were stirred using a disper ( (3000 rpm, 60 minutes), an acetylene black dispersion having a solid content concentration of 5% by mass was prepared.
  • a CNT dispersion liquid was added so that the amount of carbon nanotubes added was 0.1 part, and mixed with a planetary mixer (60 rpm, 10 minutes).
  • 1.8 parts (equivalent to solid content) of an aqueous dispersion of particulate polymer Y was added and mixed in a planetary mixer (40 rpm, 10 minutes) to prepare a positive electrode slurry composition.
  • the viscosity of the obtained positive electrode slurry composition (measured with a single cylindrical rotational viscometer (Brookfield B type viscometer) according to JIS Z8803:1991.
  • carboxymethyl cellulose (“Daicel 1220" manufactured by Daicel Corporation)
  • the conductive adhesive was applied onto aluminum foil as a base material for the current collector using a casting method at a molding speed of 20 m/min using a roll bar, and dried at 80°C to form a film with a thickness of 1 ⁇ m. A conductive adhesive layer was formed. As a result, a current collector with a conductive adhesive layer was obtained, in which the conductive adhesive layer was formed on the base material for the current collector.
  • the positive electrode slurry composition obtained as described above was applied to the conductive adhesive layer side of the current collector with a conductive adhesive layer using a comma coater so that the drying weight was 22 mg/cm 2 . After drying at 90° C. for 20 minutes and further at 120° C. for 20 minutes, the positive electrode material was heated at 60° C. for 10 hours to obtain a positive electrode material.
  • This positive electrode original fabric was rolled with a roll press to produce a sheet-like positive electrode consisting of a positive electrode composite material layer having a density of 2.5 g/cm 3 , a conductive adhesive layer, and aluminum foil.
  • the sheet-like positive electrode was then cut into pieces with a width of 48.0 mm and a length of 47 cm to obtain a positive electrode for a lithium ion secondary battery.
  • the adhesiveness and water drainage of the positive electrode composite layer were evaluated. The results are shown in Table 1.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery> In a 5 MPa pressure vessel equipped with a stirrer, 65 parts of styrene as an aromatic vinyl monomer, 35 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, and 2 itaconic acid as an ethylenically unsaturated carboxylic acid monomer. 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, 0.3 parts of t-dodecylmercaptan as a molecular weight regulator, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent.
  • a slurry composition for a negative electrode was prepared.
  • the above slurry composition for a negative electrode was applied to the surface of a 15 ⁇ m thick copper foil serving as a current collector using a comma coater so that the coating amount was 10 ⁇ 0.5 mg/cm 2 .
  • the copper foil coated with the negative electrode slurry composition was transported at a speed of 400 mm/min in an oven at a temperature of 80°C for 2 minutes, and then in an oven at a temperature of 110°C for 2 minutes.
  • the negative electrode slurry composition on the foil was dried to obtain a negative electrode original fabric in which a negative electrode composite layer was formed on the current collector.
  • This negative electrode material was rolled using a roll press to produce a sheet negative electrode consisting of a negative electrode composite material layer having a density of 1.6 g/cm 3 and copper foil.
  • the sheet-like negative electrode was then cut into pieces with a width of 50.0 mm and a length of 52 cm to obtain a negative electrode for a lithium ion secondary battery.
  • the produced positive electrode for a lithium ion secondary battery and the produced negative electrode for a lithium ion secondary battery were placed so that the electrode mixture layers faced each other, and a separator (microporous membrane made of polyethylene) with a thickness of 15 ⁇ m was interposed. It was wound using a core to obtain a wound body. Then, the obtained wound body was compressed from one direction at a speed of 10 mm/sec until it had a thickness of 4.5 mm. The wound body after compression had an elliptical shape in plan view, and the ratio of the major axis to the minor axis (major axis/minor axis) was 7.7.
  • solvent mixed solvent of ethylene carbonate
  • EMC ethyl methyl carbonate
  • This lithium ion secondary battery was in the form of a pouch with a width of 35 mm, a height of 60 mm, and a thickness of 5 mm, and the nominal capacity of the battery was 700 mAh.
  • the internal resistance of the obtained lithium ion secondary battery was evaluated. The results are shown in Table 1.
  • Example 2 Preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene Preparation of a black dispersion, preparation of a slurry composition for a positive electrode, preparation of a current collector with a conductive adhesive layer, preparation of a positive electrode for a lithium ion secondary battery, preparation of a negative electrode for a lithium ion secondary battery, and preparation of a negative electrode for a lithium ion secondary battery.
  • a second battery was fabricated, and various measurements and evaluations were performed. The results are shown in Table 1.
  • a hydrophilic group-containing styrene-butadiene copolymer (hydrophilic group-containing SBR) as particulate polymer Y was prepared as follows. In a 5 MPa pressure vessel equipped with a stirrer, 63 parts of styrene as an aromatic vinyl monomer, 34 parts of 1,3-butadiene as a conjugated diene monomer, 2 parts of itaconic acid as a monomer containing a carboxylic acid group, and hydroxyl group-containing 1 part of 2-hydroxyethyl acrylate as a monomer, 0.3 parts of t-dodecylmercaptan as a molecular weight regulator, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and as a polymerization initiator.
  • Examples 3-4, 7-8, Comparative Examples 3-4) When preparing an aqueous solution of polymer X, the type of monomer to be added and/or Or, in the same manner as in Example 1, except for changing the amount, preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene black dispersion, slurry composition for positive electrode.
  • preparation of an aqueous solution of polymer X preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene black dispersion, slurry composition for positive electrode.
  • Example 5 When preparing the positive electrode slurry composition, carbon coat layer-coated olivine-type LFP particles A (content of weak acid groups on the surface: 10 ⁇ mol/g, G/D ratio of carbon coat layer: 0.69, average particle diameter: 1 ⁇ m), carbon coat layer coated olivine type LFP particles B (content of weak acid groups on the surface: 13.5 ⁇ mol/g, G/D ratio of carbon coat layer: 0.676, average particle diameter: 1 ⁇ m) were used. Except for using, in the same manner as in Example 1, preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene black dispersion, preparation of slurry composition for positive electrode.
  • Example 1 Other than that, the same procedures as in Example 1 were carried out, including preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene black dispersion, preparation of slurry composition for positive electrode, and conductive
  • a current collector with a sticky adhesive layer fabricated a positive electrode for a lithium ion secondary battery, fabricated a negative electrode for a lithium ion secondary battery, and fabricated a lithium ion secondary battery, and conducted various measurements and evaluations. . The results are shown in Table 1.
  • Example 9 Except that when preparing the positive electrode slurry composition, the CNT dispersion was not added and the amount of acetylene black dispersion added was changed from 1.9 parts to 3.0 parts.
  • preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of acetylene black dispersion, preparation of slurry composition for positive electrode, and current collector with conductive adhesive layer preparation of a positive electrode for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery, and various measurements and evaluations were performed. The results are shown in Table 2.
  • Example 10 When preparing the positive electrode slurry composition, the acetylene black dispersion (an amount equivalent to 1.9 parts of acetylene black) was not added, and the amount of carbon nanotubes added was 0.1 part to 0.5 part. Preparation of an aqueous solution of polymer preparation, fabrication of current collector with conductive adhesive layer, fabrication of positive electrode for lithium ion secondary battery, fabrication of negative electrode for lithium ion secondary battery, fabrication of lithium ion secondary battery, and various measurements and evaluations. I did it. The results are shown in Table 2.
  • Example 2 Other than that, the same procedures as in Example 1 were carried out, including preparation of an aqueous solution of polymer X, preparation of particulate polymer Y, preparation of CNT dispersion, preparation of acetylene black dispersion, preparation of slurry composition for positive electrode, and conductive
  • a current collector with a sticky adhesive layer fabricated a positive electrode for a lithium ion secondary battery, fabricated a negative electrode for a lithium ion secondary battery, and fabricated a lithium ion secondary battery, and conducted various measurements and evaluations. . The results are shown in Table 2.
  • AA indicates an acrylic acid unit
  • NaSS indicates sodium styrene sulfonate unit
  • ⁇ -HEA indicates 2-hydroxyethyl acrylate unit
  • HEMA indicates 2-hydroxyethyl methacrylate unit
  • Aamid indicates an acrylamide unit
  • AN represents an acrylonitrile unit
  • ACR indicates a hydrophilic group-containing acrylic polymer
  • SBR indicates a styrene-butadiene copolymer containing a hydrophilic group
  • CNT indicates carbon nanotube
  • AcB indicates acetylene black.
  • Table 1 the description of the type of other monomer units in the polymer X in Example 4 "AN/Aamid” and the description of the content ratio "5/10" means that the polymer 5% by mass and 10% by mass of acrylamide units.
  • the slurry composition for a non-aqueous secondary battery positive electrode of Comparative Example 2 using carbon coat layer-coated olivine-type LFP particles with a surface weak acid group content exceeding a predetermined range had poor dispersibility; It can be seen that the positive electrode composite material layer formed using the above method has poor adhesion and water drainage properties. Furthermore, the slurry composition for a non-aqueous secondary battery positive electrode of Comparative Example 3 using a polymer in which the content ratio of acidic group-containing monomer units exceeds a predetermined range has poor dispersibility. It can be seen that the formed positive electrode composite material layer has poor adhesiveness and water drainage properties.
  • the slurry composition for a non-aqueous secondary battery positive electrode of Comparative Example 4 which uses a polymer in which the content ratio of acidic group-containing monomer units is less than the prescribed range, has poor dispersibility. It can be seen that the positive electrode composite material layer formed using this method is inferior in adhesiveness and water drainage.
  • a slurry composition for a nonaqueous secondary battery positive electrode that has excellent dispersibility and can exhibit excellent adhesiveness and water removal properties in the positive electrode composite material layer. Further, according to the present invention, it is possible to provide a positive electrode for a nonaqueous secondary battery that includes a positive electrode composite material layer that can exhibit excellent adhesiveness and water drainage. According to the present invention, it is possible to provide a non-aqueous secondary battery including the positive electrode for a non-aqueous secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、分散性に優れ、且つ、正極合材層に優れた接着性および水抜け性を発揮させ得る非水系二次電池正極用スラリー組成物を提供することを目的とする。本発明の非水系二次電池正極用スラリー組成物は、オリビン型リン酸鉄リチウム粒子の表面の少なくとも一部がカーボンコート層で被覆されてなるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子と、酸性基含有単量体単位を3質量%以上40質量%以下含有する重合体Xと、を含み、前記カーボンコート層被覆オリビン型リン酸鉄リチウム粒子の表面の弱酸基の含有量が5μmol/g以上15μmol/g以下であることを特徴とする。

Description

非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池
 本発明は、非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池に関する。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、二次電池用の電極は、通常、電極合材層を備えている。そして、電極合材層は、例えば、電極活物質と、結着材(バインダー)としての役割を担う重合体などとを分散媒に分散させてなるスラリー状の組成物(スラリー組成物)を集電体上に塗布し、乾燥させることにより形成される。
 そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられるスラリー組成物の成分の改良が試みられている(例えば、特許文献1参照)。
 例えば、特許文献1には、バインダーとして、エチレン性不飽和カルボン酸エステル単量体由来の構造単位を50~95質量%、エチレン性不飽和カルボン酸塩単量体由来の構造単位を5~50質量%含み、且つ、重量平均分子量が50万以上である水溶性高分子が開示されている。そして、特許文献1によると、上記バインダーとしての水溶性高分子、正極活物質としてのリン酸鉄リチウム等のオリビン構造を有する化合物、および、分散媒としての水などを含む正極水系組成物は、二次電池用の正極を形成するためのスラリー組成物として用いることができ、当該正極水系組成物は、分散性や粘度調整機能を損なうことなく、電極形成性、基材密着性や可とう性が向上することが報告されている。
国際公開第2012/008539号
 しかしながら、上記従来技術のスラリー組成物は、分散性に依然として改善の余地があった。
 さらに、上記従来技術のスラリー組成物には、形成される正極合材層の接着性を向上させて当該正極合材層と集電体との密着性および当該正極合材層内の成分同士(例えば正極活物質同士)の密着性を強固にする点にも改善の余地があった。
 また、二次電池のセル内部でのガスの発生を抑制して当該二次電池の内部抵抗を低減する観点から、二次電池を組み立てる前に、二次電池の形成に用いられる電極等の電池部材を乾燥させる場合がある。そのため、二次電池用電極の電極合材層は、水を除去しやすいこと、即ち、水抜け性に優れることが求められる。しかしながら、上記従来技術のスラリー組成物を用いて形成された正極合材層は、水抜け性にも改善の余地があった。
 そこで、本発明は、分散性に優れ、且つ、正極合材層に優れた接着性および水抜け性を発揮させ得る非水系二次電池正極用スラリー組成物を提供することを目的とする。
 さらに、本発明は、優れた接着性および水抜け性を発揮し得る正極合材層を備える非水系二次電池用正極を提供することを目的とする。
 そして、本発明は、当該非水系二次電池用正極を備える非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、オリビン型リン酸鉄リチウム粒子の表面の少なくとも一部がカーボンコート層で被覆されてなり、且つ、表面の弱酸基の含有量が所定の範囲内であるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子と、酸性基含有単量体単位を所定の割合で含有する重合体とを含む非水系二次電池正極用スラリー組成物であれば、分散性に優れると共に、当該スラリー組成物を用いて形成された正極合材層の接着性および水抜け性を向上させ得ることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[1]オリビン型リン酸鉄リチウム粒子の表面の少なくとも一部がカーボンコート層で被覆されてなるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子と、酸性基含有単量体単位を3質量%以上40質量%以下含有する重合体Xと、を含み、前記カーボンコート層被覆オリビン型リン酸鉄リチウム粒子の表面の弱酸基の含有量が5μmol/g以上15μmol/g以下である、非水系二次電池正極用スラリー組成物である。
 このように、オリビン型リン酸鉄リチウム粒子の表面の少なくとも一部がカーボンコート層で被覆されてなり、且つ、表面の弱酸基の含有量が所定の範囲内であるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子と、酸性基含有単量体単位を所定の割合で含有する重合体とを含む非水系二次電池正極用スラリー組成物は、分散性に優れると共に、当該スラリー組成物を用いて形成された正極合材層は優れた接着性および水抜け性を発揮することができる。
 なお、本発明において、カーボンコート層被覆オリビン型リン酸鉄リチウム粒子の表面の弱酸基の含有量は、本明細書の実施例に記載の方法を用いて測定することができる。
 また、本発明において、重合体が「単量体単位を含有する」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
 さらに、本発明において、重合体に含まれる各単量体単位の含有割合(質量%)は、1H-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
 [2]上記[1]の非水系二次電池正極用スラリー組成物において、前記カーボンコート層のG/D比が0.4以上0.770以下であることが好ましい。
 カーボンコート層被覆オリビン型リン酸鉄リチウム粒子が有するカーボンコート層のG/D比が上記所定の範囲内であれば、非水系二次電池正極用スラリー組成物の分散性を更に向上させると共に、非水系二次電池の内部抵抗を低減することができる。
 なお、本発明において、カーボンコート層のG/D比は、本明細書の実施例に記載の方法を用いて測定することができる。
 [3]上記[1]または[2]の非水系二次電池正極用スラリー組成物において、前記酸性基含有単量体単位が、カルボン酸基含有単量体単位およびスルホン酸基含有単量体単位の少なくとも一方を含有することが好ましい。
 重合体Xが酸性基含有単量体単位としてカルボン酸基含有単量体単位およびスルホン酸基含有単量体単位の少なくとも一方を含有すれば、正極合材層の接着性を更に向上させることができる。
 [4]上記[1]~[3]のいずれかの非水系二次電池正極用スラリー組成物において、前記重合体Xが、水酸基含有アクリル酸エステル単量体単位を55質量%以上90質量%以下更に含有することが好ましい。
 重合体Xが水酸基含有アクリル酸エステル単量体単位を上記所定の含有割合で更に含有すれば、形成される正極合材層の接着性を更に向上させることができる。
 [5]上記[1]~[4]のいずれかの非水系二次電池正極用スラリー組成物において、前記重合体Xの重量平均分子量が、50,000以上500,000未満であることが好ましい。
 重合体Xの重量平均分子量が上記所定の範囲内であれば、非水系二次電池正極用スラリー組成物の分散性、および当該スラリー組成物を用いて形成された正極合材層の接着性を更に向上させることができる。
 なお、重合体Xの重量平均分子量は、本明細書の実施例に記載の方法を用いて測定することができる。
 [6]上記[1]~[5]のいずれかの非水系二次電池正極用スラリー組成物は、親水性基を含有する粒子状重合体Yを更に含むことが好ましい。
 非水系二次電池正極用スラリー組成物が親水性基を含有する粒子状重合体Yを更に含んでいれば、当該スラリー組成物の分散性、および当該スラリー組成物を用いて形成された正極合材層の接着性を更に向上させることができる。
 [7]上記[6]の非水系二次電池正極用スラリー組成物において、前記粒子状重合体Yの含有量が、前記カーボンコート層被覆オリビン型リン酸鉄リチウム粒子100質量部に対して、0.5質量部以上5質量部以下であることが好ましい。
 非水系二次電池正極用スラリー組成物中の親水性基を含有する粒子状重合体Yの含有量が上記所定の範囲内であれば、当該スラリー組成物の分散性、および当該スラリー組成物を用いて形成された正極合材層の接着性を一層向上させつつ、当該正極合材層の柔軟性を十分に高く確保することができる。
 [8]上記[1]~[7]のいずれかの非水系二次電池正極用スラリー組成物は、カーボンナノチューブおよび粒子状導電材の少なくとも一方を含有する導電材を更に含むことができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[9]上記[1]~[8]のいずれかの非水系二次電池正極用スラリー組成物を用いて形成された正極合材層を備える、非水系二次電池用正極である。
 本発明の非水系二次電池用正極は、上述したいずれかの非水系二次電池正極用スラリー組成物を用いて形成され、優れた接着性および水抜け性を発揮し得る正極合材層を備えている。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[10]上記[9]の非水系二次電池用正極を備える、非水系二次電池である。
 本発明の非水系二次電池は、上述したいずれかの非水系二次電池用正極を備えているため、例えば内部抵抗が低減され、電池特性に優れている。
 本発明によれば、分散性に優れ、且つ、正極合材層に優れた接着性および水抜け性を発揮させ得る非水系二次電池正極用スラリー組成物を提供することができる。
 さらに、本発明によれば、優れた接着性および水抜け性を発揮し得る正極合材層を備える非水系二次電池用正極を提供することができる。
 そして、本発明によれば、当該非水系二次電池用正極を備える非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池正極用スラリー組成物(以下、「スラリー組成物」と略記する場合がある。)は、リチウムイオン二次電池等の非水系二次電池の電極(非水系二次電池用電極)が有する電極合材層を形成する際に用いることができる。そして、本発明の非水系二次電池(以下、「二次電池」と略記する場合がある。)は、本発明の非水系二次電池正極用スラリー組成物から形成した正極合材層を有する非水系二次電池用正極(以下、「正極」と略記する場合がある。)を用いたことを特徴とする。
(非水系二次電池電極用スラリー組成物)
 本発明のスラリー組成物は、オリビン型リン酸鉄リチウム粒子(以下、「オリビン型LFP粒子」と略記することがある。)の表面の少なくとも一部がカーボンコート層で被覆されてなり、表面の弱酸基の含有量が所定の範囲内であるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子(以下、「カーボンコート層被覆オリビン型LFP粒子」と略記することがある。)と、酸性基含有単量体単位の含有割合が所定の範囲内である重合体Xと、を含むことを特徴とする。そして、本発明のスラリー組成物は分散性に優れている。したがって、本発明のスラリー組成物を用いれば、均一な構造を有する正極合材層を形成することができる。また、本発明のスラリー組成物は、当該スラリー組成物を用いて形成される正極合材層に優れた接着性および水抜け性を発揮させることができる。このように、本発明のスラリー組成物を用いて形成された正極合材層は、均一な構造を有すると共に、接着性および水抜け性にも優れているため、当該正極合材層を備える正極を用いて製造された二次電池の内部抵抗を低減することができる。
 また、本発明のスラリー組成物は、上述したカーボンコート層被覆オリビン型LFP粒子および重合体Xに加えて、粒子状重合体Yおよび導電材を更に含んでいてもよい。
 なお、本発明のスラリー組成物は、通常、水等の分散媒を更に含んでいる。即ち、本発明のスラリー組成物は、通常、水等の分散媒中に、上述したカーボンコート層被覆オリビン型LFP粒子および重合体Xなどの成分が分散または溶解してなるスラリー状の組成物である。
 また、本発明のスラリー組成物は、上述したカーボンコート層被覆オリビン型LFP粒子、重合体X、粒子状重合体Y、導電材、および分散媒以外の成分を更に含んでいてもよい。
<カーボンコート層被覆オリビン型LFP粒子>
 カーボンコート層被覆オリビン型LFP粒子は、二次電池の正極活物質として機能し得る材料である。
 カーボンコート層被覆オリビン型LFP粒子は、オリビン型リン酸鉄リチウム(LiFePO)粒子の表面の少なくとも一部がカーボンコート層で被覆されてなる粒子である。ここで、カーボンコート層被覆オリビン型LFP粒子においては、オリビン型LFP粒子の表面の全体がカーボンコート層で被覆されていてもよいし、オリビン型LFP粒子の一部のみがカーボンコート層で被覆されていてもよい。また、LFP粒子の少なくとも一部を被覆するカーボンコート層は、炭素からなる層であり、特に限定されないが、例えば、非晶質炭素からなる層であってもよいし、結晶性炭素からなる層であってもよいし、非晶質炭素および結晶性炭素の混合物からなる層であってもよい。
 カーボンコート層被覆オリビン型LFP粒子は、オリビン型LFP粒子の表面に対して、カーボンコート層を形成することにより製造することができる。
 カーボンコート層の形成方法としては、例えば、オリビン型LFP粒子の表面に気相のコート原料を、不活性ガス雰囲気下において蒸着させるCVD(Chemical Vapor Deposition)法等の気相法;コート原料を適当な溶媒で希釈してなる溶液をオリビン型LFP粒子に混ぜ合わせた後、不活性ガス雰囲気下において、該コート原料を焼成および炭化させる液相法;オリビン型LFP粒子およびコート原料を、溶媒を用いずに混練した後、不活性ガス雰囲気下において焼成および炭化させる固相法;等の、公知の方法を適宜採用することができる。
 CVD法のコート原料としては、熱やプラズマ等により分解されて上記オリビン型LFP粒子の表面にカーボンコート層を形成し得る化合物(ガス)を用いることができる。かかる化合物としては、エチレン、アセチレン、プロピレン等の不飽和脂肪族炭化水素;メタン、エタン、プロパン等の飽和脂肪族炭化水素;ベンゼン、トルエン、ナフタレン等の芳香族炭化水素;等の各種炭化水素化合物が挙げられる。これら化合物は、1種のみを用いてもよいし、2種以上を任意の比率で含有する混合ガスとして用いてもよい。CVD法における温度、圧力、時間等の条件は、使用するコート原料の種類や所望のコート量に応じて適宜選択することができる。
 液相法のコート原料としては、各種溶媒に可溶であり、且つ、熱分解されて上記オリビン型LFP粒子の表面にカーボンコート層を形成し得る化合物を用いることができる。かかる化合物の好適例としては、コールタールピッチ、石油ピッチ、木タールピッチ等のピッチ類などが挙げられる。これらは、1種のみを単独で、あるいは2種以上を任意の比率で組み合わせて用いることができる。液相法における焼成の温度および時間は、コート原料の種類等に応じて適宜選択することができる。液相法における焼成は、例えば、800~1600℃にて、2~3時間行うことができる。
 固相法のコート原料としては、液相法と同様のものを、1種または2種以上用いることができる。固相法における焼成の温度および時間については、コート原料の種類等に応じて適宜選択することができ、例えば、液相法における焼成と同じ範囲内とすることができる。
 なお、カーボンコート層の形成方法として上述したいずれの方法を採用する場合においても、必要に応じて、上記コート原料に各種添加剤(例えば、上記コート原料の非晶質炭素化に有効な添加剤等)を配合してもよい。
 また、カーボンコート層被覆オリビン型LFP粒子としては、市販品を用いることもできる。
<<表面の弱酸基の含有量>>
 カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量は、5μmol/g以上であることが必要であり、6.5μmol/g以上であることが好ましく、8.0μmol/g以上であることがより好ましく、10μmol/g以上であることが更に好ましく、15μmol/g以下であることが必要であり、13.5μmol/g以下であることが好ましく、12.0μmol/g以下であることがより好ましい。カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量が上記下限以上であれば、重合体Xとの相互作用が高まるためと推察されるが、スラリー組成物の分散性を十分に向上させることができる。一方、カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量が上記上限以下であれば、形成される正極合材層の水抜け性を十分に向上させることができる。これにより、二次電池のセル内部でのガスの発生を抑制することで、電極反応を均一化し得るので、二次電池の内部抵抗を低減することができる。また、カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量が上記上限以下であれば、当該粒子同士の凝集が抑制されるため、スラリー組成物の分散性を十分に向上させることができる。
 なお、カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量は、上述したカーボンコート層の形成方法、および、カーボンコート層の形成後の処理などによって制御することができる。例えば、オリビン型LFP粒子の表面にカーボンコート層を形成した後に、得られたカーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量を調整する場合、次のような処理をすることができる。即ち、カーボンコート層被覆オリビン型LFP粒子を窒素雰囲気下にて600℃以上800℃以下で焼成することにより、当該カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量を減らすことができる。また、カーボンコート層被覆オリビン型LFP粒子を酸素雰囲気下にて300℃以上500℃以下で焼成することにより、当該カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量を増やすことができる。
 なお、カーボンコート層被覆オリビン型LFP粒子の表面に存在する弱酸基としては、特に限定されないが、例えば、フェノール性水酸基(フェノール性ヒドロキシ基)などが挙げられる。
<<カーボンコート層のG/D比>>
 カーボンコート層被覆オリビン型LFP粒子のカーボンコート層のG/D比は、0.4以上であることが好ましく、0.60以上であることがより好ましく、0.670以上であることが更に好ましく、0.690以上であることが一層好ましく、0.770以下であることが好ましく、0.740以下であることがより好ましく、0.710以下であることが更に好ましい。カーボンコート層被覆オリビン型LFP粒子のカーボンコート層のG/D比が上記下限以上であれば、カーボンコート層の欠陥が少ないため、カーボンコート層の電子伝導性が向上するので、二次電池の内部抵抗を低減することができる。一方、カーボンコート層被覆オリビン型LFP粒子のカーボンコート層のG/D比が上記上限以下であれば、カーボンコート層に欠陥が適度に存在することで、カーボンコート層の親水性が向上し、重合体Xとの相互作用が更に高まるためと推察されるが、スラリー組成物の分散性を更に向上させることができる。
<<平均粒子径>>
 カーボンコート層被覆オリビン型LFP粒子の粒子径は、特に限定されず、本発明の所望の効果が得られる範囲内で適宜調整可能であるが、例えば、カーボンコート層被覆オリビン型LFP粒子の平均粒子径は、好ましくは0.1μm以上5μm以下、特に好ましくは0.5μm以上2μm以下である。
 なお、本発明において、カーボンコート層被覆オリビン型LFP粒子の「平均粒子径」は、マルバーン社製レーザ回折式粒子径測定装置により測定される粒度分布(体積基準)において小径側から計算した累積体積が50%となる粒子径D50を意味する。
<重合体X>
 重合体Xは、スラリー組成物中において、正極活物質および導電材などの成分を良好に分散させるための分散剤として機能し得る成分である。また、重合体Xは、当該スラリー組成物を用いて形成した正極合材層中において結着材としても機能することができる。
 重合体Xは、酸性基含有単量体単位を所定の含有割合で含有する。また、重合体Xは、酸性基含有単量体単位以外に、水酸基含有アクリル酸エステル単量体単位を更に含有し得る。さらに、重合体Xは、酸性基含有単量体単位および水酸基含有アクリル酸エステル単量体単位以外の単量体単位(以下、「その他の単量体単位」と称することがある。)を更に含有し得る。
 なお、重合体Xは、特に限定されないが、通常、水溶性であるものとする。なお、本発明において、重合体が「水溶性」であるとは、温度25℃において重合体0.5g(固形分換算)を100gの水に溶解した際に、不溶分量が5.0質量%未満となることをいう。
<<酸性基含有単量体単位>>
 重合体X中の酸性基含有単量体単位を形成し得る酸性基含有単量体としては、カルボン酸基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体などが挙げられる。
 カルボン酸基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基を有する単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
 なお、上述したカルボン酸基含有単量体におけるカルボン酸基中、水素原子が無機イオンまたは有機イオンで置換され、無機塩または有機塩の形態になっていてもよい。即ち、カルボン酸基含有単量体は、カルボン酸塩の形態になっていてもよい。
 スルホン酸基含有単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、上述したスルホン酸基含有単量体におけるスルホン酸基中、水素原子が無機イオンまたは有機イオンで置換され、無機塩または有機塩の形態になっていてもよい。即ち、スルホン酸基含有単量体は、スルホン酸塩の形態になっていてもよい。
 リン酸基含有単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 なお、上述したリン酸基含有単量体におけるリン酸基中、水素原子が無機イオンまたは有機イオンで置換され、無機塩または有機塩の形態になっていてもよい。即ち、リン酸基含有単量体は、リン酸塩の形態になっていてもよい。
 なお、これらの酸性基含有単量体は1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 そして、形成される正極合材層の接着性を更に向上させる観点から、酸性基含有単量体としては、カルボン酸基含有単量体、スルホン酸基含有単量体を用いることが好ましい。
 重合体X中の酸性基含有単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、3質量%以上であることが必要であり、4質量%以上であることが好ましく、4.5質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、6質量%以上であることが一層好ましく、8質量%以上であることがより一層好ましく、40質量%以下であることが必要であり、35質量%以下であることが好ましく、30質量%以下であることがより好ましい。重合体X中の酸性基含有単量体単位の含有割合が3質量%以上であれば、カーボンコート層被覆オリビン型LFP粒子との相互作用が高まるためと推察されるが、スラリー組成物の分散性を十分に向上させることができる。また、重合体X中の酸性基含有単量体単位の含有割合が3質量%以上であれば、形成される正極合材層の接着性を十分に向上させることができる。さらに、重合体X中の酸性基含有単量体単位の含有割合が3質量%以上であれば、カーボンコート層被覆オリビン型LFP粒子との相互作用が高まるためと推察されるが、形成される正極合材層の水抜け性を十分に向上させることができる。一方、重合体X中の酸性基含有単量体単位の含有割合が40質量%以下であれば、重合体Xの柔軟性が高まるためと推察されるが、形成される正極合材層の柔軟性を十分に高く確保して、当該正極合材層の接着性を十分に向上させることができる。
<<水酸基含有アクリル酸エステル単量体単位>>
 重合体X中の水酸基含有アクリル酸エステル単量体単位を形成し得る水酸基含有アクリル酸エステル単量体としては、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-4-ヒドロキシブチル等のアクリル酸のアルカノールエステル類(「アクリル酸ヒドロキシアルキルエステル単量体」とも称する。);一般式:CH=CH-COO-(C2qO)-H(式中、pは2~9の整数、qは2~4の整数を示す。)で表されるポリアルキレングリコールとアクリル酸とのエステル類(「アクリル酸ポリアルキレングリコールエステル単量体」とも称する。);などが挙げられる。なお、これらは1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 中でも、正極合材層の接着性を更に向上させる観点から、水酸基含有アクリル酸エステル単量体としては、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-4-ヒドロキシブチル等のアクリル酸のアルカノールエステル類(アクリル酸ヒドロキシアルキルエステル単量体)を用いることが好ましい。
 重合体X中の水酸基含有アクリル酸エステル単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、55質量%以上であることが好ましく、57.5質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、70質量%以上であることが一層好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが一層好ましい。重合体X中の水酸基含有アクリル酸エステル単量体単位の含有割合が上記下限以上であれば、重合体Xの柔軟性が高まるためと推察されるが、形成される正極合材層の柔軟性を十分に高く確保して、当該正極合材層の接着性を更に向上させることができる。一方、重合体X中の水酸基含有アクリル酸エステル単量体単位の含有割合が上記上限以下であれば、重合体Xの柔軟性が過度に高まることを抑制できるためと推察されるが、形成される正極合材層の接着性を十分に高く確保することができる。
<<その他の単量体単位>>
 重合体Xは、その他の単量体単位を更に含んでいてもよい。
 重合体X中のその他の単量体単位としては、本発明の所望の効果が得られる限り、特に限定されないが、例えば、水酸基含有メタクリル酸エステル単量体単位、不飽和カルボン酸アミド単量体単位、ニトリル基含有単量体単位などが好ましい。
[水酸基含有メタクリル酸エステル単量体単位]
 重合体X中の水酸基含有メタクリル酸エステル単量体単位を形成し得る水酸基含有メタクリル酸エステル単量体としては、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル等のメタクリル酸のアルカノールエステル類(「メタクリル酸ヒドロキシアルキルエステル単量体」とも称する。);一般式:CH=C(CH)-COO-(C2sO)-H(式中、rは2~9の整数、sは2~4の整数を示す。)で表されるポリアルキレングリコールとメタクリル酸とのエステル類(「メタクリル酸ポリアルキレングリコールエステル単量体」とも称する。);などが挙げられる。なお、これらは1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 中でも、正極合材層の接着性を更に向上させる観点から、水酸基含有メタクリル酸エステル単量体としては、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル等のメタクリル酸のアルカノールエステル類(メタクリル酸ヒドロキシアルキルエステル単量体)を用いることが好ましい。
 重合体X中の水酸基含有メタクリル酸エステル単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、5質量%以上であることが好ましく、7.5質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、30質量%以下であることが好ましく、27.5質量%以下であることがより好ましく、25質量%以下であることが更に好ましい。重合体X中の水酸基含有メタクリル酸エステル単量体単位の含有割合が上記所定の範囲内であれば、形成される正極合材層の柔軟性を高めて、当該正極合材層の接着性を更に向上させることができる。
 重合体X中の水酸基含有アクリル酸エステル単量体単位および水酸基含有メタクリル酸エステル単量体単位の合計含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、97質量%以下であることが好ましく、95.5質量%以下であることがより好ましく、94質量%以下であることが更に好ましい。重合体X中の水酸基含有アクリル酸エステル単量体単位および水酸基含有メタクリル酸エステル単量体単位の合計含有割合が上記下限以上であれば、形成される正極合材層の柔軟性を高めて、当該正極合材層の接着性を更に向上させることができる。一方、重合体X中の水酸基含有アクリル酸エステル単量体単位および水酸基含有メタクリル酸エステル単量体単位の合計含有割合が上記上限以下であれば、上述した酸性基含有単量体単位の含有割合を十分に高く確保し得るため、スラリー組成物の分散性、および形成される正極合材層の接着性を十分に高く確保することができる。
[不飽和カルボン酸アミド単量体単位]
 不飽和カルボン酸アミド単量体単位を形成し得る不飽和カルボン酸アミド単量体としては、(メタ)アクリル酸等の不飽和カルボン酸が、アンモニア、第1級アミンまたは第2級アミンと脱水縮合してなる化学構造を有する化合物を用いることができる。不飽和カルボン酸アミド単量体の具体例としては、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-イソプロピルアクリルアミド、N-イソブチルアクリルアミド等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。中でも、重合体Xにおける水素結合による分子間の相互作用を高めて、形成される正極合材層の接着性を更に向上させる観点から、アクリルアミド、メタクリルアミドを用いることが好ましく、アクリルアミドを用いることがより好ましい。
 重合体X中の不飽和カルボン酸アミド単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、0質量%以上とすることができ、1質量%以上であることが好ましく、2質量%以上であることが好ましく、20質量%以下であることが好ましい。
 また、重合体X中の不飽和カルボン酸アミド単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、10質量%以下であってもよいし、5質量%以下であってもよい。
 なお、当然ながら、重合体Xは、不飽和カルボン酸アミド単量体単位を含まなくてもよい。
[ニトリル基含有単量体単位]
 ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。そして、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらの中でも、ニトリル基含有単量体としては、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
 これらは、1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 重合体X中のニトリル基含有単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、0質量%以上とすることができ、1質量%以上であることが好ましく、2質量%以上であることが好ましく、10質量%以下であることが好ましく、5質量%以下であることが好ましい。
 また、重合体X中のニトリル基含有単量体単位の含有割合は、重合体Xに含まれる全単量体単位を100質量%とした場合に、2質量%以下であってもよいし、1質量%以下であってもよい。
 なお、当然ながら、重合体Xは、ニトリル基含有単量体単位を含まなくてもよい。
<<重合体Xの調製方法>>
 重合体Xは、特に限定されないが、例えば、以下のように調製することができる。
 水等の溶媒中にて、上述した酸性基含有単量体、水酸基含有アクリル酸エステル単量体、およびその他の単量体を混合する。得られた混合物に対して重合促進剤を添加する。その後、重合開始剤を添加して、重合反応を開始する。その後、必要に応じて、重合促進剤の追加、重合開始剤の追加および重合のサイクルを、1または2以上行ってもよい。重合開始剤を添加して重合反応を開始する際に、重合温度は、例えば、35℃以上65℃以下であることが好ましく、40℃以上55℃以下であることがより好ましい。また、重合開始剤の添加と、重合促進剤の添加との間の重合反応の時間は、例えば、5分間以上40分間以下が好ましく、10分間以上30分間以下がより好ましい。なお、上述した操作は、窒素雰囲気下で行うことが好ましい。また、重合反応の際に、重合助剤として連鎖移動剤を用いてもよい。重合反応後、反応停止剤を用いて、重合反応を停止する。次いで、生成物を冷却し、空気雰囲気下に置いた後、水酸化リチウム水溶液などを添加して、生成物のpHを7.0以上9.0以下に調整する。
 重合開始剤としては、特に限定されず、既知の重合開始剤を用いることができる。重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。中でも、過硫酸カリウムを用いることが好ましい。重合開始剤の添加を複数回行う場合、各回の重合開始剤は同じでもよいし、異なっていてもよい。
 なお、重合開始剤の使用量は、本発明の所望の効果が得られる範囲内で適宜調整することができる。
 重合促進剤としては、例えば、L-アスコルビン酸、亜硫酸水素ナトリウム等が挙げられる。重合促進剤の添加を複数回行う場合、各回の重合促進剤は同じでもよいし、異なっていてもよい。特に、重合反応開始時に、重合促進剤としてL-アスコルビン酸が重合系内に存在することが好ましい。
 なお、重合促進剤の使用量は、本発明の所望の効果が得られる範囲内で適宜調整することができる。
<<重量平均分子量(Mw)>>
 重合体Xの重量平均分子量(Mw)は、50,000以上であることが好ましく、75,000以上であることがより好ましく、100,000以上であることが更に好ましく、150,000以上であることが一層好ましく、500,000未満であることが好ましく、400,000未満であることがより好ましく、300,000未満であることが更に好ましい。重合体Xの重量平均分子量(Mw)が上記下限以上であれば、形成される正極合材層の接着性を更に向上させることができる一方、重合体Xの重量平均分子量(Mw)が上記上限未満であれば、スラリー組成物の分散性を更に向上させることができる。
 なお、重合体Xの重量平均分子量(Mw)は、上述した重合体Xの調製方法における重合条件により制御可能であり、具体的には、重合開始剤、重合促進剤、連鎖移動剤等の種類および添加量、並びに、重合反応の時間および温度などによって制御することができる。
<<分子量分布(Mw/Mn)>>
 重合体Xの分子量分布は、(Mw/Mn)は、1.5以上であることが好ましく、1.8以上であることがより好ましく、2.2以上であることが更に好ましく、3以上であることが一層好ましく、10以下であることが好ましく、7以下であることがより好ましく、4以下であることが更に好ましい。
 なお、重合体Xの分子量分布(Mw/Mn)は、上述した重合体Xの調製方法における重合条件により制御可能であり、具体的には、重合開始剤、重合促進剤、連鎖移動剤等の種類および添加量、並びに、重合反応の時間および温度などによって制御することができる。
<<スラリー組成物中の含有量>>
 スラリー組成物中の重合体Xの含有量は、本発明の所望の効果が得られる範囲内で適宜調整可能であるが、例えば、カーボンコート層被覆オリビン型LFP粒子100質量部に対して、0.1質量部以上5質量部以下であることが好ましい。スラリー組成物中の重合体Xの含有量が上記下限以上であれば、スラリー組成物の分散性、および、形成される正極合材層の接着性を更に向上させることができる。一方、スラリー組成物中の重合体Xの含有量が上記上限以下であれば、二次電池の内部抵抗を低減することができる。
<粒子状重合体Y>
 粒子状重合体Yは、上述した重合体Xと共に、正極合材層中において結着材として機能し得る成分である。
 なお、粒子状重合体Yは、上述した重合体Xとは異なる重合体であるものとする。
 そして、粒子状重合体Yは、親水性基を含有することが好ましい。粒子状重合体Yとして親水性基を含有する粒子状重合体を用いれば、スラリー組成物の分散性、並びに、形成される正極合材層の接着性を更に向上させることができる。
 ここで、粒子状重合体Yへの親水性基の導入方法としては、特に限定されないが、例えば、粒子状重合体Yの重合の際に親水性基含有単量体を用いて、得られる粒子状重合体Y中に親水性基含有単量体単位を形成する方法を採用することができる。
<<親水性基含有単量体単位>>
 粒子状重合体Y中の親水性基含有単量体単位を形成し得る親水性基含有単量体としては、カルボン酸基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体などの酸性基含有単量体、並びに、水酸基含有単量体などが挙げられる。
 酸性基含有単量体(カルボン酸基含有単量体、スルホン酸基含有単量体およびリン酸基含有単量体など)としては、上述した重合体Xの調製に用い得る各種の酸性基含有単量体を使用することができる。
 水酸基含有単量体としては、アクリル酸-2-ヒドロキシエチル(2-ヒドロキシエチルアクリレート)、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR-COO-(C2qO)-H(式中、pは2~9の整数、qは2~4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味し、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 上述した親水性基含有単量体としては、1種を単独で用いてもよいし、2種以上を任意の比率で併用してもよい。
 そして、親水性基含有単量体としては、スラリー組成物の分散性および形成される正極合材層の接着性を一層向上させる観点から、酸性基含有単量体(カルボン酸基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体など)を用いることが好ましく、形成される正極合材層の接着性をより一層向上させる観点から、酸性基含有単量体と水酸基含有単量体とを併用することがより好ましく、カルボン酸基含有単量体と水酸基含有単量体とを併用することが更に好ましい。
-含有割合-
 粒子状重合体Y中の親水性基含有単量体単位の含有割合は、粒子状重合体Yに含まれる全単量体単位を100質量%とした場合に、1質量%以上10質量%以下であることが好ましい。粒子状重合体Y中の親水性基含有単量体単位の含有割合が上記所定の範囲内であれば、スラリー組成物の分散性、および、形成される正極合材層の接着性を一層向上させることができる。
 さらに、粒子状重合体Yが親水性基含有単量体単位として酸性基含有単量体単位(カルボン酸含有単量体単位、スルホン酸基含有単量体単位、およびリン酸基含有単量体単位など)と水酸基含有単量体単位との双方を含む場合、粒子状重合体Y中の親水性基含有単量体単位の含有割合(即ち、酸性基含有単量体単位および水酸基含有単量体単位の合計含有割合)は、粒子状重合体Yに含まれる全単量体単位を100質量%とした場合に、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、5質量%以下であることがより好ましく、4質量%以下であることが更に好ましい。粒子状重合体Y中の酸性基含有単量体単位および水酸基含有単量体単位の合計含有割合が上記所定の範囲内であれば、スラリー組成物の分散性、および、形成される正極合材層の接着性をより一層向上させることができる。
 なお、粒子状重合体Yが親水性基含有単量体単位として酸性基含有単量体単位(カルボン酸基含有単量体単位、スルホン酸基含有単量体単位、およびリン酸基含有単量体単位など)を含む場合、粒子状重合体Y中の酸性基含有単量体単位の含有割合は、粒子状重合体Yに含まれる全単量体単位を100質量%とした場合に、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、1.5質量%以上であることが更に好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2.5質量%以下であることが更に好ましい。粒子状重合体Y中の酸性基含有単量体単位の含有割合が上記下限以上であれば、スラリー組成物の分散性および形成される正極合材層の接着性を一層向上させることができる。一方、粒子状重合体Y中の酸性基含有単量体単位の含有割合が上記上限以下であれば、形成される正極合材層の柔軟性を十分に高く確保することができる。
 また、粒子状重合体Yが親水性基含有単量体単位として水酸基含有単量体単位を含む場合、粒子状重合体Y中の水酸基含有単量体単位の含有割合は、粒子状重合体Yに含まれる全単量体単位を100質量%とした場合に、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1.5質量%以下であることが更に好ましい。粒子状重合体Y中の酸性基含有単量体単位の含有割合が上記下限以上であれば、形成される正極合材層の柔軟性を向上させることができる。一方、粒子状重合体Y中の酸性基含有単量体単位の含有割合が上記上限以下であれば、スラリー組成物の分散性および形成される正極合材層の接着性を十分に高く確保することができる。
<<粒子状重合体Yの種類>>
 そして、親水性基を含有する粒子状重合体Yとしては、例えば、親水性基含有アクリル系重合体、親水性基含有共役ジエン系重合体を用いることが好ましく、二次電池のサイクル特性を十分に高く確保する観点から、親水性基含有アクリル系重合体を用いることがより好ましい。
-親水性基含有アクリル系重合体-
 親水性基含有アクリル系重合体は、上述した親水性基含有単量体単位に加えて、(メタ)アクリル酸エステル単量体単位を少なくとも含む共重合体である。なお、親水性基含有アクリル系重合体は、ニトリル基含有単量体単位を更に含むことが好ましい。また、親水性基含有アクリル系重合体は、親水性基含有単量体単位、(メタ)アクリル酸エステル単量体単位、およびニトリル基含有単量体単位以外の単量体単位を更に含んでいてもよい。
 なお、親水性基含有アクリル系重合体中の親水性基含有単量体単位の含有割合は、上述した重合体中の親水性基含有単量体単位の含有割合の好ましい範囲と同じ範囲とすることができる。
 親水性基含有アクリル系重合体中の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸アルキルエステルを用いることができる。なお、これらは、1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 なお、本明細書中において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 ここで、親水性基含有アクリル系重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、親水性基含有アクリル系重合体に含まれる全単量体単位を100質量%とした場合に、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。親水性基含有アクリル系重合体中の(メタ)アクリル酸エステル単量体単位の含有割合が上記所定の範囲内であれば、形成される正極合材層の接着性を一層向上させることができる。
 親水性基含有アクリル系重合体中のニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、上述した重合体Xの形成に用い得るニトリル基含有単量体を使用することができる。
 親水性基含有アクリル系重合体中のニトリル基含有単量体単位の含有割合は、親水性基含有アクリル系重合体に含まれる全単量体単位を100質量%とした場合に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、17質量%以上であることが更に好ましく、40質量%以下であることが好ましく、35質量%以下であることがより好ましく、26質量%以下であることが更に好ましい。親水性基含有アクリル系重合体中のニトリル基含有単量体単位の含有割合が上記所定の範囲内であれば、形成される正極合材層の接着性を一層向上させることができる。
-親水性基含有共役ジエン系重合体-
 親水性基含有共役ジエン系重合体は、上述した親水性基含有単量体単位に加えて、共役ジエン単量体単位を含む共重合体である。
 共役ジエン系重合体の具体例としては、特に限定されることなく、親水性基含有スチレン-ブタジエン共重合体(親水性基含有SBR)などの親水性基含有単量体単位、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体、親水性基含有ブタジエンゴム(親水性基含有BR)(親水性基含有単量体単位およびブタジエン単位を含む共重合体)、親水性基含有アクリルゴム(親水性基含有NBR)(親水性基含有単量体単位、アクリロニトリル単位およびブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。これらは、1種単独で用いてもよいし、2種以上を任意の比率で用いてもよい。
 中でも、形成される電極合材層の接着性を一層向上させる観点から、親水性基含有スチレン-ブタジエン共重合体(親水性基含有SBR)などの親水性基含有単量体単位、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む共重合体を用いることが好ましい。
 親水性基含有共役ジエン系重合体中の親水性基含有単量体単位の含有割合は、上述した重合体中の親水性基含有単量体単位の含有割合の好ましい範囲と同じ範囲とすることができる。
 親水性基含有共役ジエン系重合体中の共役ジエン単量体単位を形成し得る共役ジエン単量体単位としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの共役ジエン化合物が挙げられる。これらは1種を単独で用いてもよいし、2種以上を任意の比率で用いてもよい。中でも、1,3-ブタジエンが好ましい。
 親水性基含有共役ジエン系重合体中の共役ジエン単量体単位の含有割合は、親水性基含有共役ジエン系重合体に含まれる全単量体単位を100質量%として、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。親水性基含有共役ジエン系重合体中の共役ジエン単量体単位の含有割合が上記所定の範囲内であれば、形成される正極合材層の接着性をより一層向上させることができる。
 親水性基含有共役ジエン系重合体中の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらは1種を単独で用いてもよいし、2種以上を任意の比率で用いてもよい。中でも、スチレンが好ましい。
 親水性基含有共役ジエン系重合体中の芳香族ビニル単量体単位の含有割合は、親水性基含有共役ジエン系重合体に含まれる全単量体単位を100質量%として、30質量%以上であることが好ましく、45質量%以上であることがより好ましく、56質量%以上であることが更に好ましく、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、71質量%以下であることが更に好ましい。親水性基含有共役ジエン系重合体中の芳香族ビニル単量体単位の含有割合が上記所定の範囲内であれば、形成される正極合材層の接着性をより一層向上させることができる。
<<粒子状重合体Yの調製方法>>
 粒子状重合体Aの重合様式は、特に限定されることなく、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用され得る乳化剤、分散剤、重合開始剤、連鎖移動剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
<<スラリー組成物中の含有量>>
 スラリー組成物中の粒子状重合体Yの含有割合は、本発明の所望の効果が得られる範囲内で適宜調整可能であるが、例えば、カーボンコート層被覆オリビン型LFP粒子100質量部に対して、0.5質量部以上であることが好ましく、0.8質量部以上であることがより好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。スラリー組成物中の粒子状重合体Yの含有量が上記下限以上であれば、スラリー組成物の分散性、および、形成される正極合材層の接着性を一層向上させることができる。一方、スラリー組成物中の重合体Xの含有量が上記上限以下であれば、形成される正極合材層の柔軟性を十分に高く確保することができる。
<導電材>
 導電材は、正極合材層中で正極活物質(カーボンコート層被覆オリビン型LFP粒子)同士の電気的接触を確保する機能を有する成分である。
 導電材としては、例えば、カーボンナノチューブおよび粒子状導電材の少なくとも一方を用いることができ、少なくともカーボンナノチューブを用いることが好ましく、カーボンナノチューブと粒子状導電材とを併用することがより好ましい。
 導電材として少なくともカーボンナノチューブを用いれば、二次電池の内部抵抗を低減することができる。さらに、導電材としてカーボンナノチューブと粒子状導電材とを併用すれば、二次電池の内部抵抗を低減しつつ、正極合材層の柔軟性を向上させることができる。
 なお、導電材としては、カーボンナノチューブおよび粒子状導電材以外の導電材(その他の導電材)を用いてもよい。その他の導電材としては、例えば、カーボンナノチューブ以外の繊維状導電材などを用いることができる。
<<カーボンナノチューブ>>
 カーボンナノチューブは、正極合材層中において導電パスを形成することで、二次電池の内部抵抗を低減することができる。また、カーボンナノチューブを用いることで、二次電池のサイクル特性および低温特性を向上させることもできる。
 カーボンナノチューブとしては、本発明の所望の効果が得られるカーボンナノチューブ(以下、「CNT」と略記する場合がある。)であれば、特に限定されない。カーボンナノチューブとしては、層の形式の種類に応じて、単層(SW)カーボンナノチューブおよび多層(MW)カーボンナノチューブが挙げられる。そして、導電材として用い得るカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ、またはこれらの組合せのいずれであってもよい。
 CNTの平均層数は、10以下であることが好ましく、9以下であることがより好ましく、8以下であることが更に好ましく、2以下であることが一層好ましく、1.5以下であることがより一層好ましい。CNTの平均層数が上記上限以下であれば、二次電池のサイクル特性を更に向上させることができる。
 なお、CNTの平均層数の下限は、特に限定されることはなく、通常1以上である。
 CNTの平均直径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、1.5nm以上であることが更に好ましく、2nm以上であることが一層好ましく、2.5nm以上であることがより一層好ましく、20nm以下であることが好ましく、12nm以下であることがより好ましく、8nm以下であることが更に好ましく、6nm以下であることが一層好ましく、4nm以下であることがより一層好ましい。CNTの平均直径が上記下限以上であれば、CNTの凝集を十分に抑制して、導電材としてのCNTの分散性を十分に確保することができる。一方、CNTの平均直径が上記上限以下であれば、正極合材層中において良好な導電パスを形成し、二次電池の内部抵抗を更に低減すると共に、当該二次電池のサイクル特性を更に向上させることができる。
 CNTのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)は、0.6以上であることが好ましく、1.2以上であることがより好ましく、2.1以上であることが更に好ましく、3.0以上であることが一層好ましく、3.6以上であることがより一層好ましい。CNTのG/D比が上記下限以上であれば、二次電池のサイクル特性を更に向上させることができる。なお、CNTのG/D比の上限は、特に限定されないが、例えば200以下である。
 CNTのBET比表面積は、100m/g以上であることが好ましく、200m/g以上であることがより好ましく、250m/g以上であることが更に好ましく、1200m/g以下であることが好ましく、1100m/g以下であることがより好ましく、1000m/g以下であることが更に好ましい。CNTのBET比表面積が上記所定の範囲内であれば、二次電池の内部抵抗を更に低減することができる。
 なお、本発明において、CNTの「BET比表面積」は、BET法を用いて測定した窒素吸着比表面積を指す。
[カーボンナノチューブの製造方法]
 上述した性状を有するCNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、スーパーグロース法などの既知の手法を用いて製造することができる。
[スラリー組成物中の含有量]
 スラリー組成物中のCNTの含有量は、本発明の所望の効果が得られる範囲内で適宜調整可能であるが、例えば、カーボンコート層被覆オリビン型LFP粒子100質量部に対して、0.01質量部以上であることが好ましく、0.05質量以上であることがより好ましく、0.1質量部以上であることが更に好ましく、2.5質量部以下であることが好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることが更に好ましい。スラリー組成物中のCNTの含有量が上記下限以上であれば、二次電池の内部抵抗を更に低減することができる。一方、スラリー組成物中のCNTの含有量が上記上限以下であれば、形成される正極合材層の柔軟性を十分に高く確保することができる。
<<粒子状導電材>>
 粒子状導電材は、正極合材層中で導電材として機能し得ると共に、当該電極合材層の柔軟性を向上させ得る成分である。
 粒子状導電材としては、繊維状以外の形状(例えば、球状、板状等)を有する導電材であれば、特に限定されず、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネストブラック等)、およびグラフェンなどが挙げられる。なお、これらの粒子状導電材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[スラリー組成物中の含有量]
 スラリー組成物中の粒子状導電材の含有量は、本発明の所望の効果が得られる範囲内で適宜調整可能であるが、例えば、カーボンコート層被覆オリビン型LFP粒子100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、2質量部以下であることが更に好ましい。スラリー組成物中の粒子状導電材の含有量が上記下限以上であれば、形成される正極合材層の柔軟性を更に向上させることができる。一方、スラリー組成物中の粒子状導電材の含有量が上記上限以下であれば、形成される正極合材層の接着性を十分に高く確保することができる。
<<CNTと粒子状導電材との混合比>>
 CNTと粒子状導電材との混合比は、特に限定されないが、例えば、スラリー組成物中のCNTと粒子状導電材との合計含有量に占めるCNTの含有量の割合が1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。CNTと粒子状導電材との合計含有量に占めるCNTの含有量の割合が上記下限以上であれば、二次電池の内部抵抗を更に低減することができる。一方、CNTと粒子状導電材との合計含有量に占めるCNTの含有量の割合が上記上限以下であれば、正極合材層の柔軟性を更に向上させることができる。
<分散媒>
 本発明のスラリー組成物は、通常、水等の分散媒を含んでいる。
 なお、本発明のスラリー組成物の分散媒の少なくとも一部としては、例えば、スラリー組成物の調製に使用したバインダー組成物に含まれていた水等の溶媒を用いることができる。
<その他の成分>
 また、本発明のスラリー組成物は、上述した重合体X、粒子状重合体Y、導電材、および分散媒以外に、補強材、レベリング剤、粘度調整剤、電解液添加剤等の任意のその他の成分を更に含んでいてもよい。これらは、電池反応に影響を及ぼさないものであれば、特に限定されず、既知の成分を使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製方法>
 本発明のスラリー組成物は、特に限定されないが、例えば、上述した各成分を分散媒に分散または溶解させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより、スラリー組成物を調製することができる。
 ここで、分散媒としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
 また、本発明のスラリー組成物の調製の際に、例えば上述したCNTおよび粒子状導電材などの導電材を用いる場合、予め、水等の分散媒中にCNTおよび粒子状導電材などの導電材を分散させてなる分散液を調製した後、得られた分散液を、電極活物質、重合体X、および粒子状重合体Yなどの他の成分と混合することもできる。
(非水系二次電池用正極)
 本発明の正極は、上述した本発明のスラリー組成物を用いて形成された正極合材層を備え、通常は、正極合材層が集電体上に形成された構造を有している。したがって、正極合材層には、正極活物質としてのカーボンコート層被覆オリビン型LFP粒子と、重合体Xとが少なくとも含まれ、任意で、粒子状重合体Yおよび導電材などが更に含まれている。
 正極合材層中に含まれているカーボンコート層被覆オリビン型LFP粒子、重合体X、粒子状重合体Y、および導電材などの各成分は、上述したスラリー組成物中に含まれていたものであり、各成分の好適な含有割合は、スラリー組成物に含まれる全固形分を100質量%とした場合の各成分の好適な含有割合と同じである。
 また、正極合材層に含まれ得るCNTと粒子状導電材との合計含有量に占めるCNTの含有量の好適な割合も、上述したスラリー組成物に含まれ得るCNTと粒子状導電材との合計含有量に占めるCNTの含有量の好適な割合と同じである。
 なお、本発明の正極は、集電体と正極合材層との間に、導電材と接着剤とを少なくとも含む導電性接着剤層を更に備えていてもよい。
 そして、本発明の電極が備える正極合材層は、本発明のスラリー組成物を用いて形成されているため、優れた接着性および水抜け性を発揮することができる。
 また、本発明の正極が備える正極合材層は、分散性に優れた本発明のスラリー組成物を用いて形成されているため、均一な構造を有している。したがって、本発明の正極は、均一な構造を有すると共に、水抜け性にも優れた正極合材層を備えているため、二次電池の内部抵抗を低減することができる。
<集電体>
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料からなる集電体を用い得る。なお、これらの材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、例えば、電極合材層と集電体との間に上述した導電性接着剤層を更に備える電極を製造する場合、集電体としては、集電体用基材上に導電性接着剤層が形成されてなる導電性接着剤層付き集電体を用いることができる。
 集電体用基材としては、例えば、上述した金属材料からなる集電体を用いることができる。
 集電体用基材上に導電性接着剤層を形成する方法は、特に限定されることない。例えば、水等の分散媒または溶媒中に、導電材と接着剤とが少なくとも分散または溶解され、任意で分散剤が更に分散または溶解されてなるスラリー組成物(「導電性接着剤」とも称する。)を、集電体用基材上に塗布した後、乾燥することにより導電性接着剤層を形成することができる。
 導電材としては、特に限定されず、例えば、上述したスラリー組成物に含まれ得る導電材を用いることができる。また、接着剤としては、特に限定されず、上述したスラリー組成物に含まれ得る粒子状重合体Yを用いることができる。さらに、分散剤としては、特に限定されず、例えば、カルボキシメチルセルロースおよびその塩などの既知の分散剤を用いることができる。
 また、集電体用基材上に導電性接着剤を塗布する方法、および、塗布された導電性接着剤を乾燥する方法としては、特に限定されず、既知の方法を用いることができる。
<正極合材層>
 正極合材層は、例えば、スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥する工程(乾燥工程)とを経て形成される。
<<塗布工程>>
 スラリー組成物を、集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。また、塗布後乾燥前の集電体上のスラリー組成物膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
<<乾燥工程>>
 集電体上に塗布されたスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上に塗布されたスラリー組成物を乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを有する電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極のピール強度を向上させることができる。
(非水系二次電池)
 本発明の二次電池は、上述した本発明の正極を備える。例えば、本発明の二次電池は、上述した本発明の正極と、負極と、セパレータと、電解液とを備える。
 そして、本発明の二次電池は、上述した本発明の正極を備えているので、内部抵抗が低減されている。
 なお、以下では、一例として非水系二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<負極>
 負極としては、特に限定されることはなく、既知の負極を用いることができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を用いた微多孔膜、ポリオレフィン系の繊維を用いた織布または不織布、絶縁性物質よりなる粒子の集合体等が挙げられる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極合材層の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂を用いた微多孔膜が好ましい。
<電解液>
 電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
 ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。また、溶媒には、既知の添加剤、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)やエチルメチルスルホンなどを添加してもよい。
 電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載の化合物を用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導性が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導性を調節することができる。
 そして、本発明の二次電池は、特に制限されることなく、既知の組立方法を用いて製造することができる。具体的には、本発明の二次電池は、例えば、上述した本発明の正極と、負極と、セパレータとを必要に応じて電池形状に巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより、製造することができる。ここで、二次電池の内部圧力の上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。また、二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
 なお、二次電池が備える正極、負極、およびセパレータ等の電池部材は、通常、セパレータの片側に正極が、セパレータの他方の片側に負極が接するように配置される。より具体的には、セパレータの片側に正極合材層が、セパレータの他方の片側に負極合材層が、それぞれセパレータと接するように配置される。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 なお、複数種類の単量体を重合して得られる重合体において、ある単量体が重合して形成される単量体単位の当該重合体中における含有割合は、別に断らない限り、通常は、当該重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、各種の測定および評価は、以下の方法に従って行った。
<カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量>
<<強酸基、中酸基、および弱酸基の合計含有量の定量>
 容器内に、試料としてのカーボンコート層被覆オリビン型LFP粒子3gをはかり取り、0.01M水酸化テトラブチルアンモニウムのメチルイソブチルケトン(MIBK)溶液30mLを加え、密栓した。当該容器を超音波洗浄機中に入れて、槽温度を35℃以下に調節しながら、超音波分散処理を1時間行った。得られた分散液を遠心分離機にかけ、得られた上澄み液を、シリンジフィルターを用いてろ過した。得られたろ液の一部を分取し、0.01M過塩素酸標準液で滴定(逆滴定)した。得られた滴定量と、試料としてのカーボンコート層被覆オリビン型LFP粒子を容器に入れなかったこと以外は上記と同じ操作で行った空試験における滴定量との差から、酸量A1を算出した。酸量A1は、カーボンコート層被覆オリビン型LFP粒子の表面に含まれる強酸基、中酸基および弱酸基の合計含有量に相当する。
<<強酸基および中酸基の合計含有量の定量>>
 容器内に、試料としてのカーボンコート層被覆オリビン型LFP粒子3gをはかり取り、0.01MテトラエチルアミンのMIBK溶液30mLを加え、密栓した。当該容器を超音波洗浄機中に入れて、槽温度を35℃以下に調節しながら、超音波分散処理を1時間行った。得られた分散液を遠心分離機にかけ、得られた上澄み液を、シリンジフィルターを用いてろ過した。得られたろ液の一部を分取し、0.01M過塩素酸標準液で滴定(逆滴定)した。得られた滴定量と、試料としてのカーボンコート層被覆オリビン型LFP粒子を容器に入れなかったこと以外は上記と同じ操作で行った空試験における滴定量との差から、酸量A2を算出した。酸量A2は、カーボンコート層被覆オリビン型LFP粒子の表面に含まれる強酸基および中酸基の合計含有量に相当する。
<<弱酸基の含有量の算出>>
 そして、酸量A1から酸量A2を差し引くことで、カーボンコート層被覆オリビン型LFP粒子の表面の弱酸基の含有量を求めた。
<カーボンコート層のG/D比>
 カーボンコート層被覆オリビン型リン酸鉄リチウム粒子のカーボンコート層のG/D比は、顕微レーザーラマン分光分析において、1600cm-1付近に検出されるグラファイト構造に由来するGバンドのピーク強度と、1350cm-1付近に検出される結晶欠陥に由来するDバンドのピーク強度との比を求めることにより算出した。なお、顕微レーザーラマン分光分析は下記の測定条件にて行った。
<<測定条件>>
 励起波長:532nm
 グレーティング:600gr/mm
 対物レンズ :倍率×20,開口数(N.A.)0.45
 波数範囲:500cm-1~2850cm-1
 使用装置:RAMAN-11(ナノフォトン社製)
<重量平均分子量および分子量分布>
 得られた重合体Xについて、ゲル浸透クロマトグラフィー(GPC)を用いて、重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
 なお、溶離液(0.1Mトリス緩衝液(pH9,0.1M KCl))の調製は、以下の通りに行った。
  1)超純水0.8Lを用意し、トリスヒドロキシメチルアミノメタン12.11gと塩化カリウム7.46gを溶解させた。
  2)0.1M塩酸を滴下していき、pHを9に合わせた。
   3)pH調製後メスフラスコにて液量が1Lとなるまで、超純水にてメスアップした。
  試料の調製は、以下の通りに行った。
 まず、溶離液5mLに、重合体Xを固形分濃度が0.05wt%となるように加えて、25℃下にて、攪拌子を入れ、マグネティックスターラーを用いて300rpmで30分間攪拌した。得られた溶液を0.45μmメンブランフィルターろ過したものを測定試料とした。
 GPCの測定条件は、以下の通りとした。
  装置:Agilent 1260 Infinity II HPLC(アジレント・テクノロジー株式会社)
  カラム:TSKgel GMPWXL 13μm 300mm×7.8mm
  溶離液:0.1Mトリス緩衝液(pH9,0.1M KCl)
  流量:0.7mL/min
  検出器:1260 Infinity II RI検出器(アジレント・テクノロジー株式会社)
  カラム温度:40℃
  注入量:200μL
  分子量標準:標準ポリエチレンオキシド(PEO)
  試料濃度:0.05wt%(固形分濃度)
<スラリー組成物の分散性>
 正極用スラリー組成物の粘度を、JIS Z8803:1991に準じて、単一円筒形回転粘度計(ブルックフィールドB型粘度計)を用い、回転数:60rpm、温度:25℃の条件下で測定し、2500mPa・s~3500mPa・sの範囲内であることを確認した。粘度が上記範囲内である正極用スラリー組成物の固形分濃度の値から、下記の基準に従って、当該正極用スラリー組成物の分散性を評価した。なお、同種のスラリー組成物において同じ粘度範囲(2500mPa・s~3500mPa・s)での固形分濃度の値が大きいほど、スラリー組成物に含まれる固形分が良好に分散していること、即ち、スラリー組成物の分散性が優れていることを示す。
  A:固形分濃度が50%以上
  B:固形分濃度が45%以上50%未満
  C:固形分濃度が40%以上45%未満
  D:固形分濃度が40%未満または分散しない(流動性なし)
<正極合材層の接着性>
 リチウムイオン二次電池用正極を幅1.0cm×長さ10cmの矩形に切り出し、試験片とした。この試験片の正極合材層側の表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で90°方向に引き剥がしたときの応力を測定した。測定を計3回行い、その平均値を求めてこれをピール強度(N/m)とし、下記の基準で評価した。ピール強度が大きいほど、正極合材層が接着性に優れ、集電体と強固に密着していることを示す。
  A:ピール強度が20N/m以上
  B:ピール強度が15N/m以上20N/m未満
  C:ピール強度が10N/m以上15N/m未満
  D:ピール強度が10N/m未満
<正極合材層の水抜け性>
 リチウムイオン二次電池用正極を120℃で10時間真空乾燥させた後、温度25℃、露点-60℃、湿度0.05%で10分間放置した。その後、リチウムイオン二次電池用正極の正極合剤層を、重量が0.1~0.2gになるように秤量し、電量滴定式水分計(三菱化学アナリテック社製)を用いて、カールフィッシャー法により、水分量を測定した。陽極液としてはアクアミクロンAX、陰極液としてはアクアミクロンCXUを用い、気化温度は170℃とした。なお、水分量の測定は3回繰り返して行い、得られた値の平均値を測定値とした。そして、水分量の測定値から、下記の基準に従って、正極合材層の水抜け性を評価した。なお、水分量の測定値が小さいほど、正極合材層が水抜け性に優れていることを示す。
  A:500ppm以下
  B:500ppm以上600ppm未満
  C:600ppm以上700ppm未満
  D:700ppm以上
<内部抵抗>
 リチウムイオン二次電池を、25℃雰囲気下、1C(Cは、定格容量(mA)/1時間(h)で表される数値)でSOC(State Of Charge、充電深度)の50%まで充電した。その後、25℃の環境下において、SOCの50%を中心として0.2C、0.5C、1.0C、2.0C、3.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、下記の基準で評価した。IV抵抗の値が小さいほど、リチウムイオン二次電池の内部抵抗が少ないことを示す。
  A:IV抵抗が10Ω未満
  B:IV抵抗が10Ω以上15Ω未満
  C:IV抵抗が15Ω以上20Ω未満
  D:IV抵抗が25Ω以上
(製造例1)
 オリビン型LFP粒子の表面に対して、固相法を用いて、カーボンコート層を形成することで、カーボンコート層被覆オリビン型LFP粒子Aを得た。
 得られたカーボンコート層被覆オリビン型LFP粒子Aの表面の弱酸基の含有量は、10μmol/gであり、カーボンコート層被覆オリビン型LFP粒子Aのカーボンコート層のG/D比は、0.69であった。また、カーボンコート層被覆オリビン型LFP粒子Aの平均粒子径は、1μmであった。
(製造例2)
 製造例1で得られたカーボンコート層被覆オリビン型LFP粒子Aを、酸素(O)雰囲気下にて400℃で焼成することで、カーボンコート層被覆オリビン型LFP粒子Bを得た。
 得られたカーボンコート層被覆オリビン型LFP粒子Bの表面の弱酸基の含有量は、13.5μmol/gであり、カーボンコート層被覆オリビン型LFP粒子Bのカーボンコート層のG/D比は、0.676であった。また、カーボンコート層被覆オリビン型LFP粒子Bの平均粒子径は、1μmであった。
(製造例3)
 製造例1で得られたカーボンコート層被覆オリビン型LFP粒子Aを、窒素(N)雰囲気下にて700℃で焼成することで、カーボンコート層被覆オリビン型LFP粒子Cを得た。
 得られたカーボンコート層被覆オリビン型LFP粒子Cの表面の弱酸基の含有量は、5μmol/gであり、カーボンコート層被覆オリビン型LFP粒子Cのカーボンコート層のG/D比は、0.741であった。また、カーボンコート層被覆オリビン型LFP粒子Cの平均粒子径は、1μmであった。
(比較製造例1)
 製造例1で得られたカーボンコート層被覆オリビン型LFP粒子Aを、窒素(N)雰囲気下にて700℃で焼成することで、カーボンコート層被覆オリビン型LFP粒子Dを得た。なお、窒素雰囲気下での焼成は、上述した製造例3における窒素雰囲気下での焼成よりも長時間行った。
 得られたカーボンコート層被覆オリビン型LFP粒子Dの表面の弱酸基の含有量は、4.5μmol/gであり、カーボンコート層被覆オリビン型LFP粒子Dのカーボンコート層のG/D比は、0.752であった。また、カーボンコート層被覆オリビン型LFP粒子Dの平均粒子径は、1μmであった。
(比較製造例2)
 製造例1で得られたカーボンコート層被覆オリビン型LFP粒子Aを、酸素(O)雰囲気下にて400℃で焼成することで、カーボンコート層被覆オリビン型LFP粒子Eを得た。なお、酸素雰囲気下での焼成は、上述した製造例2における酸素雰囲気下での焼成よりも長時間行った。
 得られたカーボンコート層被覆オリビン型LFP粒子Eの表面の弱酸基の含有量は、17μmol/gであり、カーボンコート層被覆オリビン型LFP粒子Eのカーボンコート層のG/D比は、0.6667であった。また、カーボンコート層被覆オリビン型LFP粒子Eの平均粒子径は、1μmであった。
(実施例1)
<重合体Xの水溶液の調製>
 セプタム付き10Lフラスコに、イオン交換水770部を投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、エチレン性不飽和カルボン酸単量体としてのアクリル酸8部と、水酸基含有メタクリル酸エステル単量体としてのメタクリル酸2-ヒドロキシエチル(HEMA)17部と、水酸基含有アクリル酸エステル単量体としてのアクリル酸2-ヒドロキシエチル(β-HEA)75部とを混合して、シリンジでフラスコ内に注入した。その後、重合促進剤としてのL-アスコルビン酸ナトリウムの10.0%水溶液3部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの4.0%水溶液38部をシリンジでフラスコ内に追加した。反応開始1時間後に温度を55℃に昇温し、重合反応を進めた。2時間後、重合促進剤としての亜硫酸水素ナトリウムの10.0%水溶液0.5部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの4.0%水溶液5部をシリンジでフラスコ内に追加した。3時間後、重合促進剤としての亜硫酸水素ナトリウムの10.0%水溶液0.5部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの4.0%水溶液5部をシリンジでフラスコ内に追加した。4時間後、重合促進剤としての亜硫酸水素ナトリウムの10.0%水溶液0.5部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの4.0%水溶液5部をシリンジでフラスコ内に追加した。5時間後、重合促進剤としての亜硫酸水素ナトリウムの10.0%水溶液0.5部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの4.0%水溶液5部をシリンジでフラスコ内に追加した。6時間後、反応停止剤を添加し、フラスコを空気中に開放して重合反応を停止させた。その後、水酸化リチウムの8%水溶液を用いて生成物のpHを8に調整することにより、重合体Xの水溶液を得た。
 なお、上記重合反応における単量体の重合転化率は約100%であり、得られた重合体Xの組成(各単量体単位の含有割合)は、重合体Xの重合に用いた全単量体に占める各単量体の比率(仕込み比率)と同じであった。また、得られた重合体Xは本明細書の定義に従う水溶性であった。
<粒子状重合体Yの調製>
 以下のようにして、粒子状重合体Yとしての親水性基含有アクリル系重合体を調製した。
 撹拌機を備えたセプタム付き1Lフラスコ(反応容器)にイオン交換水90部、乳化剤としてラウリル硫酸ナトリウム0.5部を加え、気相部を窒素ガスで置換し、60℃に昇温した後、重合開始剤として過硫酸アンモニウム(APS)0.3部をイオン交換水20.0部に溶解させ加えた。
 一方、別の容器(エマルジョン容器)でイオン交換水30部、乳化剤としてラウリル硫酸ナトリウム0.5部、そして、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート76部、カルボン酸基含有単量体としてのイタコン酸2.0部、水酸基含有単量体としてのアクリル酸2-ヒドロキシエチル(β-HEA)1.0部、ニトリル基含有単量体としてのアクリロニトリル21部を混合して単量体組成物を得た。この単量体組成物を3時間かけて前記セプタム付き1Lフラスコに連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに80℃で2時間撹拌した。
 上記で得られた重合体を含む水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整し、粒子状重合体Y(親水性基含有アクリル系重合体)の水分散液を得た。
<CNT分散液の調製>
 導電材としてのカーボンナノチューブ(BET比表面積:250m2/g)0.4部と、カルボキシメチルセルロース(ダイセル社製「ダイセル1220」)0.6部(固形分換算量)と、イオン交換水99部とを、ディスパーを用いて撹拌し(3000rpm、10分間)、その後、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて1時間混合することにより、固形分濃度が1質量%のCNT分散液を調製した。
<アセチレンブラック分散液の調製>
 導電材としてのアセチレンブラック4.4部と、カルボキシメチルセルロース(ダイセル社製「ダイセル1220」)0.6部(固形分換算量)と、イオン交換水95部とを、ディスパーを用いて撹拌し(3000rpm、60分間)、固形分濃度が5質量%のアセチレンブラック分散液を調製した。
<正極用スラリー組成物の調製>
 正極活物質としてのカーボンコート層被覆オリビン型LFP粒子A(表面の弱酸基の含有量:10μmol/g、カーボンコート層のG/D比:0.69、平均粒子径:1μm)100部と、重合体Xの水溶液1.2部(固形分相当)と、イオン交換水とを添加し、固形分濃度を78%に調整し、プラネタリーミキサーにて混合(60rpm、50分間)した。
 次に、アセチレンブラックの添加量が1.9部になるようにアセチレンブラック分散液を添加し、プラネタリーミキサーにて混合(60rpm、10分間)した。次に、カーボンナノチューブの添加量が0.1部になるようにCNT分散液を添加し、プラネタリーミキサーにて混合(60rpm、10分間)した。最後に、粒子状重合体Yの水分散液を1.8部(固形分相当)添加し、プラネタリーミキサーにて混合(40rpm、10分間)し、正極用スラリー組成物を調製した。なお、正極用スラリー組成物の調製の際、得られる正極用スラリー組成物の粘度(JIS Z8803:1991に準じて単一円筒形回転粘度計(ブルックフィールドB型粘度計)により測定。温度:25℃、回転数:60rpm)が2500mPa・s~3500mPa・sの範囲内となるように水を添加して調整した。
 得られた正極用スラリー組成物の分散性を評価した。結果を表1に示す。
<導電性接着剤層付き集電体の作製>
 正極の製造に用いる集電体として、下記の方法により作製した導電性接着剤層付き集電体を用いた。
 導電性カーボン(グラファイト/アセチレンブラック=70/30(質量比))を70部、分散剤としてカルボキシメチルセルロース(ダイセル社製「ダイセル1220」)を8部添加し、ディスパーを使用して3000rpmで60分間撹拌した後、粒子状重合体Yの水分散液を固形分相当で22部添加して、さらにディスパーにて1500rpmで10分間撹拌して、導電性接着剤を調製した。
 導電性接着剤を、キャスト法を用いて、ロールバーにて20m/分の成形速度で、集電体用基材としてのアルミ箔の上に塗布し、80℃で乾燥して、厚さ1μmの導電性接着剤層を形成した。これにより集電体用基材上に導電性接着剤層が形成されてなる導電性接着剤層付き集電体を得た。
<リチウムイオン二次電池用正極の作製>
 導電性接着剤層付き集電体の導電性接着剤層側の面に、上述のようにして得た正極用スラリー組成物を、コンマコーターで、乾燥後の目付量が22mg/cm2になるように塗布し、90℃で20分間、さらに120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.5g/cm3の正極合材層と、導電性接着剤層と、アルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅48.0mm、長さ47cmに切断して、リチウムイオン二次電池用正極とした。
 得られたリチウムイオン二次電池用正極を用いて、正極合材層の接着性および水抜け性を評価した。結果を表1に示す。
<リチウムイオン二次電池用負極の作製>
 攪拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてのスチレン65部、脂肪族共役ジエン単量体としての1,3-ブタジエン35部、エチレン性不飽和カルボン酸単量体としてのイタコン酸2部、水酸基含有単量体としての2-ヒドロキシエチルアクリレート1部、分子量調整剤としてのt-ドデシルメルカプタン0.3部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてのイオン交換水150部、および、重合開始剤としての過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。
 モノマー消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、負極用結着材としての粒子状重合体の水分散液を得た。
 プラネタリーミキサーに、負極活物質としての人造黒鉛48.75部および天然黒鉛48.75部、並びに増粘剤としてのカルボキシメチルセルロース1部(固形分相当)を投入した。さらに、イオン交換水にて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上述のようにして得た負極用結着材としての粒子状重合体の水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極用スラリー組成物を調製した。
 上記の負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が10±0.5mg/cmとなるように塗布した。その後、負極用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上の負極用スラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。
 この負極原反をロールプレスで圧延し、密度が1.6g/cm3の負極合材層と銅箔とからなるシート状負極を作製した。そして、シート状負極を幅50.0mm、長さ52cmに切断して、リチウムイオン二次電池用負極とした。
<リチウムイオン二次電池の作製>
 作製したリチウムイオン二次電池用正極とリチウムイオン二次電池用負極とを電極合材層同士が向かい合うようにし、厚さ15μmのセパレータ(ポリエチレン製の微多孔膜)を介在させて、直径20mmの芯を用いて捲回し、捲回体を得た。そして、得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を準備した。
 その後、圧縮後の捲回体をアルミ製ラミネートケース内に3.2gの電解液とともに収容した。そして、二次電池用負極の所定の箇所にニッケルリード線を接続し、リチウムイオン二次電池用正極の所定の箇所にアルミニウムリード線を接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池を得た。このリチウムイオン二次電池は、幅35mm、高さ60mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhであった。
 得られたリチウムイオン二次電池の内部抵抗を評価した。結果を表1に示す。
(実施例2)
 粒子状重合体Yの調製を下記の通りにして行ったこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表1に示す。
<粒子状重合体Yの調製>
 以下のようにして、粒子状重合体Yとしての親水性基含有スチレン-ブタジエン共重合体(親水性基含有SBR)を調製した。
 攪拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてのスチレン63部、共役ジエン単量体としての1,3-ブタジエン34部、カルボン酸基含有単量体としてのイタコン酸2部、水酸基含有単量体としての2-ヒドロキシエチルアクリレート1部、分子量調整剤としてt-ドデシルメルカプタン0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてイオン交換水150部、および、重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。
 モノマー消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、粒子状重合体としての親水性基含有SBRの水分散液を得た。
(実施例3~4、7~8、比較例3~4)
 重合体Xの水溶液の調製の際に、得られる重合体Xの組成(各単量体単位の含有割合)が表1~2に示す通りになるように、添加する単量体の種類および/または量を変更したこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表1~2に示す。
(実施例5)
 正極用スラリー組成物の調製の際に、カーボンコート層被覆オリビン型LFP粒子A(表面の弱酸基の含有量:10μmol/g、カーボンコート層のG/D比:0.69、平均粒子径:1μm)に代えて、カーボンコート層被覆オリビン型LFP粒子B(表面の弱酸基の含有量:13.5μmol/g、カーボンコート層のG/D比:0.676、平均粒子径:1μm)を用いたこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表1に示す。
(実施例6)
 正極用スラリー組成物の調製の際に、カーボンコート層被覆オリビン型LFP粒子A(表面の弱酸基の含有量:10μmol/g、カーボンコート層のG/D比:0.69、平均粒子径:1μm)に代えて、カーボンコート層被覆オリビン型LFP粒子C(表面の弱酸基の含有量:5μmol/g、カーボンコート層のG/D比:0.741、平均粒子径:1μm)を用いたこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表1に示す。
(実施例9)
 正極用スラリー組成物の調製の際に、CNT分散液を添加せず、アセチレンブラックの添加量が1.9部から3.0部になるようにアセチレンブラック分散液の添加量を変更したこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表2に示す。
(実施例10)
 正極用スラリー組成物の調製の際に、アセチレンブラック分散液(アセチレンブラック1.9部に相当する量)を添加せず、カーボンナノチューブの添加量が0.1部から0.5部になるようにCNT分散液の添加量を変更したこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表2に示す。
(比較例1)
 正極用スラリー組成物の調製の際に、カーボンコート層被覆オリビン型LFP粒子A(表面の弱酸基の含有量:10μmol/g、カーボンコート層のG/D比:0.69、平均粒子径:1μm)に代えて、カーボンコート層被覆オリビン型LFP粒子D(表面の弱酸基の含有量:4.5μmol/g、カーボンコート層のG/D比:0.6667、平均粒子径:1μm)を用いたこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表2に示す。
(比較例2)
 正極用スラリー組成物の調製の際に、カーボンコート層被覆オリビン型LFP粒子A(表面の弱酸基の含有量:10μmol/g、カーボンコート層のG/D比:0.69、平均粒子径:1μm)に代えて、カーボンコート層被覆オリビン型LFP粒子E(表面の弱酸基の含有量:17μmol/g、カーボンコート層のG/D比:0.6667、平均粒子径:1μm)を用いたこと以外は、実施例1と同様にして、重合体Xの水溶液の調製、粒子状重合体Yの調製、CNT分散液の調製、アセチレンブラック分散液の調製、正極用スラリー組成物の調製、導電性接着剤層付き集電体の作製、リチウムイオン二次電池用正極の作製、リチウムイオン二次電池用負極の作製、およびリチウムイオン二次電池の作製を行い、各種の測定および評価を行った。結果を表2に示す。
 なお、以下に示す表1~2中、
「AA」は、アクリル酸単位を示し、
「NaSS」は、スチレンスルホン酸ナトリウム単位を示し、
「β-HEA」は、アクリル酸2-ヒドロキシエチル単位を示し、
「HEMA」は、メタクリル酸2-ヒドロキシエチル単位を示し、
「Aamid」は、アクリルアミド単位を示し、
「AN」は、アクリロニトリル単位を示し、
「ACR」は、親水性基含有アクリル系重合体を示し、
「SBR」は、親水性基含有スチレン-ブタジエン共重合体を示し、
「CNT」は、カーボンナノチューブを示し、
「AcB」は、アセチレンブラックを示す。
 また、表1中、実施例4における重合体X中のその他の単量体単位の種類の記載「AN/Aamid」および含有割合の記載「5/10」は、当該重合体Xがアクリロニトリル単位を5質量%含み、アクリルアミド単位を10質量%含むことを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~2より、表面の弱酸基の含有量が所定の範囲内であるカーボンコート層被覆オリビン型LFP粒子と、酸性基含有単量体単位の含有割合が所定の範囲内である重合体Xとを含む実施例1~10の非水系二次電池正極用スラリー組成物は分散性に優れると共に、当該スラリー組成物を用いて形成された正極合材層は優れた接着性および水抜け性を発揮し得ることが分かる。
 一方、表面の弱酸基の含有量が所定の範囲に満たないカーボンコート層被覆オリビン型LFP粒子を用いた比較例1の非水系二次電池正極用スラリー組成物は分散性に劣り、当該スラリー組成物を用いて形成された正極合材層は接着性および水抜け性に劣ることが分かる。
 また、表面の弱酸基の含有量が所定の範囲を超えるカーボンコート層被覆オリビン型LFP粒子を用いた比較例2の非水系二次電池正極用スラリー組成物は分散性に劣り、当該スラリー組成物を用いて形成された正極合材層は接着性および水抜け性に劣ることが分かる。
 さらに、酸性基含有単量体単位の含有割合が所定の範囲を超える重合体を用いた比較例3の非水系二次電池正極用スラリー組成物は分散性に劣り、当該スラリー組成物を用いて形成された正極合材層は接着性および水抜け性に劣ることが分かる。
 また、酸性基含有単量体単位の含有割合が所定の範囲に満たない重合体を用いた比較例4の非水系二次電池正極用スラリー組成物は分散性に劣り、当該スラリー組成物を用いて形成された正極合材層は接着性および水抜け性に劣ることが分かる。
 本発明によれば、分散性に優れ、且つ、正極合材層に優れた接着性および水抜け性を発揮させ得る非水系二次電池正極用スラリー組成物を提供することができる。
 また、本発明によれば、優れた接着性および水抜け性を発揮し得る正極合材層を備える非水系二次電池用正極を提供することができる。
 そして、本発明によれば、当該非水系二次電池用正極を備える非水系二次電池を提供することができる。

Claims (10)

  1.  オリビン型リン酸鉄リチウム粒子の表面の少なくとも一部がカーボンコート層で被覆されてなるカーボンコート層被覆オリビン型リン酸鉄リチウム粒子と、
     酸性基含有単量体単位を3質量%以上40質量%以下含有する重合体Xと、を含み、
     前記カーボンコート層被覆オリビン型リン酸鉄リチウム粒子の表面の弱酸基の含有量が5μmol/g以上15μmol/g以下である、非水系二次電池正極用スラリー組成物。
  2.  前記カーボンコート層のG/D比が0.4以上0.770以下である、請求項1に記載の非水系二次電池正極用スラリー組成物。
  3.  前記酸性基含有単量体単位が、カルボン酸基含有単量体単位およびスルホン酸基含有単量体単位の少なくとも一方を含有する、請求項1に記載の非水系二次電池正極用スラリー組成物。
  4.  前記重合体Xが、水酸基含有アクリル酸エステル単量体単位を55質量%以上90質量%以下更に含有する、請求項1に記載の非水系二次電池正極用スラリー組成物。
  5.  前記重合体Xの重量平均分子量が、50,000以上500,000未満である、請求項1に記載の非水系二次電池正極用スラリー組成物。
  6.  親水性基を含有する粒子状重合体Yを更に含む、請求項1に記載の非水系二次電池正極用スラリー組成物。
  7.  前記粒子状重合体Yの含有量が、前記カーボンコート層被覆オリビン型リン酸鉄リチウム粒子100質量部に対して、0.5質量部以上5質量部以下である、請求項6に記載の非水系二次電池正極用スラリー組成物。
  8.  カーボンナノチューブおよび粒子状導電材の少なくとも一方を含有する導電材を更に含む、請求項1に記載の非水系二次電池正極用スラリー組成物。
  9.  請求項1~8のいずれかに記載の非水系二次電池正極用スラリー組成物を用いて形成された正極合材層を備える、非水系二次電池用正極。
  10.  請求項9に記載の非水系二次電池用正極を備える、非水系二次電池。
PCT/JP2023/024650 2022-07-29 2023-07-03 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池 WO2024024410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022122332 2022-07-29
JP2022-122332 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024410A1 true WO2024024410A1 (ja) 2024-02-01

Family

ID=89706107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024650 WO2024024410A1 (ja) 2022-07-29 2023-07-03 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池

Country Status (1)

Country Link
WO (1) WO2024024410A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216272A (ja) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd 電極材料組成物及びリチウムイオン電池
JP2014029788A (ja) * 2012-07-31 2014-02-13 Nippon Zeon Co Ltd リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014109406A1 (ja) * 2013-01-11 2014-07-17 日本電気株式会社 リチウムイオン二次電池
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2015104830A1 (ja) * 2014-01-10 2015-07-16 株式会社日立製作所 リチウムイオン二次電池及びこれを備えた蓄電装置並びにリチウムイオン二次電池用負極材料スラリ及び負極
JP2019519901A (ja) * 2016-06-30 2019-07-11 ハイドロ−ケベック 電極材料およびそれらの調製のためのプロセス
CN111525100A (zh) * 2019-12-04 2020-08-11 南通鼎鑫电池有限公司 一种表面具有预压应力的多孔碳包覆LiFePO4正极材料的制备方法
JP2020144978A (ja) * 2019-03-04 2020-09-10 トヨタ自動車株式会社 非水系リチウムイオン二次電池の負極、およびそれを用いた非水系リチウムイオン二次電池
CN111769266A (zh) * 2020-06-23 2020-10-13 合肥国轩高科动力能源有限公司 一种硅基负极材料及包含该硅基负极材料的锂离子电池
JP2022008116A (ja) * 2020-06-26 2022-01-13 Jfeケミカル株式会社 炭素質被覆黒鉛粒子、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216272A (ja) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd 電極材料組成物及びリチウムイオン電池
JP2014029788A (ja) * 2012-07-31 2014-02-13 Nippon Zeon Co Ltd リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014109406A1 (ja) * 2013-01-11 2014-07-17 日本電気株式会社 リチウムイオン二次電池
JP2014160651A (ja) * 2013-01-28 2014-09-04 Nippon Zeon Co Ltd リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2015104830A1 (ja) * 2014-01-10 2015-07-16 株式会社日立製作所 リチウムイオン二次電池及びこれを備えた蓄電装置並びにリチウムイオン二次電池用負極材料スラリ及び負極
JP2019519901A (ja) * 2016-06-30 2019-07-11 ハイドロ−ケベック 電極材料およびそれらの調製のためのプロセス
JP2020144978A (ja) * 2019-03-04 2020-09-10 トヨタ自動車株式会社 非水系リチウムイオン二次電池の負極、およびそれを用いた非水系リチウムイオン二次電池
CN111525100A (zh) * 2019-12-04 2020-08-11 南通鼎鑫电池有限公司 一种表面具有预压应力的多孔碳包覆LiFePO4正极材料的制备方法
CN111769266A (zh) * 2020-06-23 2020-10-13 合肥国轩高科动力能源有限公司 一种硅基负极材料及包含该硅基负极材料的锂离子电池
JP2022008116A (ja) * 2020-06-26 2022-01-13 Jfeケミカル株式会社 炭素質被覆黒鉛粒子、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Similar Documents

Publication Publication Date Title
JP7184076B2 (ja) カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池
JPWO2017010093A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2017170281A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
JP7031655B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6911986B1 (ja) 電気化学素子用電極及び電気化学素子
JP6870770B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2018003707A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2017110654A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2019181660A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6996503B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020137591A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
JP7400712B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7334721B2 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2024024410A1 (ja) 非水系二次電池正極用スラリー組成物、非水系二次電池用正極および非水系二次電池
WO2020241383A1 (ja) 二次電池正極用バインダー組成物、二次電池正極用導電材ペースト組成物、二次電池正極用スラリー組成物、二次電池用正極及びその製造方法、並びに二次電池
JP6870771B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
US12034167B2 (en) Carbon nanotube dispersion liquid, slurry for secondary battery electrode, method of producing slurry for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2023189189A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2024004724A1 (ja) 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2021193665A1 (ja) 二次電池用正極及び二次電池
WO2024070249A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2022163321A1 (ja) 非水系電気化学素子
WO2020241384A1 (ja) 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法
WO2022113703A1 (ja) 電気化学素子用電極及び電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846143

Country of ref document: EP

Kind code of ref document: A1