WO2024004724A1 - 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 - Google Patents

電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 Download PDF

Info

Publication number
WO2024004724A1
WO2024004724A1 PCT/JP2023/022504 JP2023022504W WO2024004724A1 WO 2024004724 A1 WO2024004724 A1 WO 2024004724A1 JP 2023022504 W JP2023022504 W JP 2023022504W WO 2024004724 A1 WO2024004724 A1 WO 2024004724A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive material
polymer
binder composition
content
Prior art date
Application number
PCT/JP2023/022504
Other languages
English (en)
French (fr)
Inventor
章人 中井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024004724A1 publication Critical patent/WO2024004724A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5398Phosphorus bound to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for electrochemical devices, a conductive material dispersion for electrochemical devices, a slurry for electrochemical device electrodes, an electrode for electrochemical devices, and an electrochemical device.
  • Electrochemical devices such as lithium ion secondary batteries, lithium ion capacitors, and electric double layer capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvements in battery components such as electrodes have been studied with the aim of further improving the performance of electrochemical devices.
  • an electrode used in an electrochemical element usually includes a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed, for example, by applying a slurry containing an electrode active material and a binder composition containing a binding material onto the current collector, and drying the applied slurry.
  • Patent Document 1 discloses a binder composition for a non-aqueous secondary battery positive electrode that includes a first binding material, which includes iron and at least one of ruthenium and rhodium, and the total of iron, ruthenium, and rhodium.
  • a binder composition for a non-aqueous secondary battery positive electrode is disclosed in which the content is 5 ⁇ 10 ⁇ 3 parts by mass or less per 100 parts by mass of the first binder.
  • Patent Document 1 by using the above-mentioned binder composition, a positive electrode is provided that provides a nonaqueous secondary battery with excellent life characteristics even when aging treatment is performed under low temperature and low depth of charge conditions. It is possible to create
  • conductive materials have been used to form electrode composite material layers.
  • a conductive material dispersion obtained by mixing a conductive material and a binder composition is used.
  • the conventional binder composition for electrochemical elements described above has room for improvement from the viewpoint of improving the dispersibility of the conductive material.
  • the above-mentioned conventional binder composition for electrochemical elements has the ability to firmly adhere the electrode composite layer formed using the binder composition to the current collector (i.e., to provide the electrode with excellent peel strength). ) is required.
  • the electrodes produced using the conventional binder compositions for electrochemical devices have room for improvement in terms of reducing the amount of gas generated during repeated charging and discharging.
  • the present invention enables the preparation of a conductive material dispersion liquid with sufficiently high dispersibility of the conductive material, and also enables the production of electrodes with excellent peel strength and reduced gas generation for use in electrochemical devices.
  • the present invention aims to provide a binder composition. Further, the present invention provides a conductive material dispersion liquid for an electrochemical device and an electrochemical device electrode that can produce an electrode with sufficiently high dispersibility of the conductive material, excellent peel strength, and reduced gas generation amount.
  • the purpose is to provide slurry for Furthermore, an object of the present invention is to provide an electrode for an electrochemical device that has excellent peel strength and a reduced amount of gas generation, and an electrochemical device that includes the electrode for an electrochemical device.
  • the present inventor conducted extensive studies with the aim of solving the above problems.
  • the present inventor has developed a polymer containing a nitrile group-containing monomer unit, an alkylene structural unit, and a hydrophilic group-containing monomer unit, and N-methyl-2-pyrrolidone (hereinafter referred to as "NMP").
  • NMP N-methyl-2-pyrrolidone
  • triphenylphosphine sulfide the content of triphenylphosphine sulfide is within a predetermined range, and the content of triphenylphosphine sulfide and a hydrophilic group-containing monomer.
  • the binder composition for electrochemical devices of the present invention comprises a nitrile group-containing monomer unit, an alkylene structural unit, and an alkylene structural unit. , a polymer containing a hydrophilic group-containing monomer unit, N-methyl-2-pyrrolidone, and triphenylphosphine sulfide, the binder composition comprising the triphenylphosphine sulfide.
  • the amount of the triphenylphosphine sulfide is 2 ppm or more and 100 ppm or less with respect to the content of the polymer, and (a) the content of the triphenylphosphine sulfide with respect to the content of the polymer is
  • the content of the hydrophilic group-containing monomer unit is (b)
  • the following relational expression 0.004(%) ⁇ (a)/(b) ⁇ 100(%) ⁇ 0.150(%) It is characterized by satisfying the following.
  • the binder composition for an electrochemical device in which the content of the hydrophilic group-containing monomer unit satisfies a predetermined relationship, the dispersibility of the conductive material in the conductive material dispersion can be sufficiently improved. Further, by using the binder composition for electrochemical elements, it is possible to produce an electrode that has excellent peel strength and reduces the amount of gas generated.
  • containing a monomer unit means "a repeating unit derived from the monomer is contained in a polymer obtained using the monomer.” Further, the proportion of each monomer unit and/or structural unit contained in the polymer can be measured using nuclear magnetic resonance (NMR) methods such as 1 H-NMR and 13 C-NMR. In the present invention, the "triphenylphosphine sulfide content" can be measured by gas chromatography.
  • the content of monovalent cations is preferably 100 mass ppm or less based on the content of the polymer. If the content of monovalent cations is 100 mass ppm or less based on the content of the polymer, crosslinking of hydrophilic group-containing monomer units in the polymer through monovalent cations is prevented. Therefore, the viscosity of the binder composition for electrochemical devices can be stabilized.
  • the "content of monovalent cations" can be measured using the method described in Examples.
  • the conductive material dispersion liquid for electrochemical elements of the present invention is suitable for the electrochemical dispersion according to [1] or [2] above. It is characterized by containing at least a binder composition for an element and a conductive material. As described above, the conductive material dispersion for electrochemical devices containing at least the binder composition for electrochemical devices of the present invention and a conductive material has sufficiently high dispersibility of the conductive material. By using the conductive material dispersion for electrochemical devices, it is possible to produce an electrode that has excellent peel strength and a reduced amount of gas generation.
  • the conductive material is a carbon nanotube. If carbon nanotubes are used as the conductive material, the resistance of the electrode composite layer can be lowered and the device characteristics of the electrochemical device can be improved.
  • the present invention aims to advantageously solve the above problems, and [5] the slurry for electrochemical device electrodes of the present invention is suitable for use in electrochemical device electrodes according to [3] or [4] above. It is characterized by containing at least a conductive material dispersion liquid and an electrode active material.
  • the slurry for electrochemical element electrodes containing at least the above-mentioned conductive material dispersion liquid for electrochemical elements and an electrode active material, it is possible to produce an electrode that has excellent peel strength and reduces the amount of gas generated. Can be done.
  • the electrode for an electrochemical device of the present invention is an electrode assembly formed using the slurry for an electrochemical device electrode described above. It is characterized by comprising a material layer.
  • An electrode including an electrode composite layer formed using the slurry for electrochemical device electrodes described above has excellent peel strength and a reduced amount of gas generation.
  • the present invention aims to advantageously solve the above problems.
  • the electrochemical device of the present invention is characterized by comprising the above-mentioned electrode for an electrochemical device.
  • An electrochemical device including the above-mentioned electrode for an electrochemical device has excellent device characteristics.
  • a conductive material dispersion liquid with sufficiently high dispersibility of the conductive material and furthermore, it is possible to prepare an electrode having excellent peel strength and a reduced amount of gas generation for electrochemical devices.
  • a binder composition can be provided.
  • a conductive material dispersion liquid for an electrochemical element which can produce an electrode having sufficiently high dispersibility of the conductive material, excellent peel strength, and reduced gas generation amount.
  • a slurry for device electrodes can be provided.
  • the binder composition for an electrochemical device of the present invention is mixed with a conductive material to form a conductive material dispersion for an electrochemical device of the present invention containing the conductive material and the binder composition for an electrochemical device. It can be used to prepare slurry for electrochemical device electrodes.
  • the slurry for electrochemical device electrodes of the present invention prepared using the conductive material dispersion for electrochemical devices can be used when producing electrodes for electrochemical devices such as lithium ion secondary batteries.
  • the electrochemical device of the present invention is characterized by comprising the electrode for an electrochemical device of the present invention produced using the slurry for an electrochemical device electrode.
  • Binder composition for electrochemical devices contains a polymer and triphenylphosphine sulfide in N-methyl-2-pyrrolidone (NMP) as a solvent.
  • the polymer contains a nitrile group-containing monomer unit, an alkylene structural unit, and a hydrophilic group-containing monomer unit, and the content of triphenylphosphine sulfide is relative to the content of the polymer.
  • the mass is 2 ppm or more and 100 mass ppm or less
  • the content of triphenylphosphine sulfide with respect to the content of the polymer is (a)
  • the content of hydrophilic group-containing monomer units with respect to the content of the polymer is (b).
  • the following relational expression 0.004(%) ⁇ (a)/(b) ⁇ 100(%) ⁇ 0.150(%) It is characterized by satisfying the following.
  • the binder composition of the present invention may further contain, as an optional component, a component used in the field of electrochemical devices in addition to the components described above.
  • the polymer contains predetermined monomer units and structural units, the content of triphenylphosphine sulfide is within a predetermined range, and the content of triphenylphosphine sulfide and hydrophilicity are Since the content of the group-containing monomer unit satisfies a predetermined relationship, the use of the binder composition can sufficiently improve the dispersibility of the conductive material in the conductive material dispersion. Further, by using the binder composition of the present invention, it is possible to produce an electrode that has excellent peel strength and a reduced amount of gas generation.
  • the binder composition of the present invention contains triphenylphosphine sulfide in an amount of 2 mass ppm or more and 100 mass ppm or less based on the content of the polymer, the conductive material dispersion When preparing the conductive material, gelation due to thickening of the polymer is suppressed, and as a result, the dispersibility of the conductive material in the conductive material dispersion is increased.
  • gelation of the polymer is also suppressed in the electrochemical device electrode slurry containing the conductive material dispersion, so that the electrode composite layer formed using the electrochemical device electrode slurry can be used as a current collector. It can be firmly adhered to.
  • triphenylphosphine sulfide reduces the amount of water retained by the polymer, thereby reducing the amount of gas generated by the electrode.
  • the polymer is a component that can hold components contained in the electrode composite material layer so that they do not separate from the electrode composite material layer in the electrode composite material layer formed using the electrode slurry.
  • the polymer contains a nitrile group-containing monomer unit, an alkylene structural unit, and a hydrophilic group-containing monomer unit, and optionally further contains other monomer units.
  • the nitrile group-containing monomer unit is a repeating unit derived from a nitrile group-containing monomer. Even if it is a monomer unit containing a nitrile group, a unit that can correspond to a hydrophilic group-containing monomer unit, that is, a monomer unit containing a hydrophilic group such as an acidic group and a hydroxyl group, is not covered by the present invention. It is not included in the "nitrile group-containing monomer unit" which is a constituent element of the polymer.
  • examples of the nitrile group-containing monomer that can form the nitrile group-containing monomer unit include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group, but examples include acrylonitrile; ⁇ -chloroacrylonitrile; Examples include ⁇ -halogenoacrylonitrile such as ⁇ -bromoacrylonitrile; ⁇ -alkyl acrylonitrile such as methacrylonitrile and ⁇ -ethyl acrylonitrile; and the like.
  • the nitrile group-containing monomer is preferably acrylonitrile and methacrylonitrile, and more preferably acrylonitrile.
  • the nitrile group-containing monomers can be used alone or in combination of two or more in any ratio.
  • the content of the nitrile group-containing monomer unit in the polymer is 10% by mass or more, when the total repeating units (the sum of monomer units and structural units) in the polymer are 100% by mass.
  • the content is preferably 30% by mass or more, more preferably 55% by mass or less. If the content of the nitrile group-containing monomer unit in the polymer is within the above range, the dispersibility of the conductive material in the conductive material dispersion liquid or slurry for electrodes can be further improved.
  • the alkylene structural unit is a repeating unit composed only of an alkylene structure represented by the general formula: -C n H 2n - [where n is an integer of 2 or more].
  • the alkylene structural unit may be linear or branched, but it is preferable that the alkylene structural unit is linear, that is, a linear alkylene structural unit.
  • the number of carbon atoms in the alkylene structural unit is preferably 4 or more (that is, n in the above general formula is an integer of 4 or more).
  • the method of introducing the alkylene structural unit into the polymer is not particularly limited, but for example, the following methods (1) and (2): (1) Method of converting conjugated diene monomer units into alkylene structural units by preparing a polymer from a monomer composition containing a conjugated diene monomer and hydrogenating the polymer (2) 1 - Methods for preparing polymers from monomer compositions containing olefin monomers. Among these, method (1) is preferred because it allows easy production of the polymer.
  • conjugated diene monomers include carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, and 1,3-pentadiene.
  • Examples include 4 or more conjugated diene compounds. Among these, conjugated diene compounds having 4 or more carbon atoms are preferred, and 1,3-butadiene is more preferred. That is, the alkylene structural unit is preferably a structural unit (conjugated diene hydride unit) obtained by hydrogenating a conjugated diene monomer unit, and is preferably a structural unit obtained by hydrogenating a conjugated diene monomer unit having 4 or more carbon atoms.
  • the structural unit is a structural unit (conjugated diene hydride unit having 4 or more carbon atoms) obtained by hydrogenating a 1,3-butadiene monomer unit (1,3-butadiene hydride unit).
  • examples of the 1-olefin monomer include ethylene, propylene, and 1-butene. Note that the conjugated diene monomer and 1-olefin monomer can be used alone or in combination of two or more in any ratio.
  • the content ratio of alkylene structural units in the polymer should be 30% by mass or more when the total repeating units (the sum of monomer units and structural units) in the polymer are 100% by mass. Preferably, it is 40% by mass or more, more preferably 50% by mass or more, preferably 90% by mass or less, more preferably 85% by mass or less, and 80% by mass or less. It is even more preferable that there be. If the content ratio of the alkylene structural unit in the polymer is within the above-mentioned range, the dispersibility of the conductive material can be further improved in the conductive material dispersion liquid or slurry for electrodes.
  • the hydrophilic group-containing monomer unit is a repeating unit derived from a hydrophilic group-containing monomer.
  • examples of the hydrophilic group-containing monomer that can form the hydrophilic group-containing monomer unit include carboxylic acid-containing monomers, hydroxyl group-containing monomers, sulfonic acid group-containing monomers, and phosphoric acid group-containing monomers. Containing monomers may be mentioned.
  • Examples of the carboxylic acid group-containing monomer include monocarboxylic acids and derivatives thereof, dicarboxylic acids and anhydrides thereof, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethyl acrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, etc.
  • Examples of dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, and dodecyl maleate. , octadecyl maleate, fluoroalkyl maleate, and other maleic acid esters.
  • acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methylmaleic anhydride, dimethylmaleic anhydride, and the like.
  • an acid anhydride that generates a carboxyl group by hydrolysis can also be used.
  • monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acids such as monobutyl itaconate, dibutyl itaconate, and the like.
  • hydroxyl group-containing monomers examples include ethylenically unsaturated alcohols such as (meth)allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol; 2-hydroxyethyl acrylate, and 2-hydroxyethyl acrylate; -Ethylenic compounds such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate, etc.
  • ethylenically unsaturated alcohols such as (meth)allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol
  • 2-hydroxyethyl acrylate and 2-hydroxyethyl acrylate
  • -Ethylenic compounds such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate
  • sulfonic acid group-containing monomers examples include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, styrenesulfonic acid, ethyl (meth)acrylate-2-sulfonate, and 2-acrylamide-2-methylpropane.
  • examples include sulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like.
  • Examples of the phosphate group-containing monomer include 2-(meth)acryloyloxyethyl phosphate, methyl-2-(meth)acryloyloxyethyl phosphate, and ethyl-(meth)acryloyloxyethyl phosphate.
  • carboxylic acid is preferred from the viewpoint of ensuring the dispersibility of the conductive material in the electrode slurry, increasing the dispersibility of the electrode active material, and improving the adhesion of the electrode composite material layer to the current collector.
  • Group-containing monomers, hydroxyl group-containing monomers, and sulfonic acid group-containing monomers are preferred, and carboxylic acid group-containing monomers and hydroxyl group-containing monomers are more preferred.
  • the hydrophilic group-containing monomers can be used alone or in combination of two or more in any ratio.
  • the content of hydrophilic group-containing monomer units in the polymer is 5% by mass when the total repeating units (total of monomer units and structural units) in the polymer are 100% by mass. It is preferably at least 10% by mass, more preferably at least 10% by mass, and preferably at most 30% by mass.
  • the electrode active material can be well dispersed while ensuring the dispersibility of the conductive material in the electrode slurry.
  • the content of hydrophilic group-containing monomer units in the polymer is below the above upper limit, the dispersibility of the conductive material will not be excessively impaired, and deterioration due to unevenness and charge concentration of the electrode composite layer will be suppressed. can do.
  • polymer units include, for example, (meth)acrylic acid ester monomer units, aromatic vinyl monomer units, and the like. Among these, (meth)acrylic acid ester monomer units are preferred as other monomer units.
  • Examples of (meth)acrylic acid ester monomers that can form (meth)acrylic acid ester monomer units include (meth)acrylic acid alkyl ester monomers having one ethylenically unsaturated bond. can be mentioned.
  • Examples of the (meth)acrylic acid alkyl ester monomer include those having a linear alkyl group and those having a branched alkyl group.
  • (meth)acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t- Examples include methacrylic acid alkyl esters such as butyl methacrylate, pentyl methacrylate, hexy
  • (meth)acrylic acid alkyl esters in which the alkyl group is a linear alkyl group are preferred from the viewpoint of imparting appropriate affinity with the electrolytic solution to the resulting electrode composite material layer, and butyl acrylate and methyl methacrylate are preferred. is more preferable.
  • the monomers that can form other monomer units can be used alone or in combination of two or more in any ratio.
  • the content ratio of other monomer units in the polymer is 10% by mass or less, when the amount of all repeating units (the sum of monomer units and structural units) in the polymer is 100% by mass. It is preferably 5% or less, more preferably 0% by mass (that is, the polymer contains a nitrile group-containing monomer unit, an alkylene structural unit, and a hydrophilic group-containing monomer unit). It is particularly preferable to include only
  • the iodine value of the polymer is preferably 120 mg/100 mg or less, more preferably 100 mg/100 mg or less, even more preferably 60 mg/100 mg or less.
  • the device characteristics of the electrochemical device can be improved by using the binder composition of the present invention.
  • the lower limit of the iodine value of the polymer is not particularly limited, but is, for example, 1 mg/100 mg or more.
  • the "iodine value" can be measured using the method described in Examples.
  • the weight average molecular weight of the polymer is preferably 10,000 or more, preferably 15,000 or more, preferably 100,000 or less, and more preferably 80,000 or less. , 50,000 or less is more preferable. If the weight average molecular weight of the polymer is within the above range, the viscosity of the binder composition can be stabilized. In the present invention, the "weight average molecular weight" can be measured using the method described in Examples.
  • the method for preparing the above-mentioned polymer is not particularly limited, but for example, a monomer composition containing the above-mentioned monomer is optionally polymerized in the presence of a chain transfer agent such as t-dodecyl mercaptan to form a polymer. After obtaining, it can be prepared by hydrogenating (hydrogenating) the obtained polymer.
  • a chain transfer agent such as t-dodecyl mercaptan
  • the content ratio of each monomer in the monomer composition used for preparing the polymer can be determined according to the content ratio of each repeating unit in the polymer.
  • the polymerization method is not particularly limited, and any method such as solution polymerization, suspension polymerization, bulk polymerization, and emulsion polymerization can be used.
  • the polymerization reaction any reaction such as ionic polymerization, radical polymerization, living radical polymerization, etc. can be used.
  • the hydrogenation method for the polymer is not particularly limited, and includes general methods using catalysts such as oil layer hydrogenation method, water layer direct hydrogenation method, and water layer indirect hydrogenation method (for example, International Publication No. 2013/080989 etc.) can be used.
  • the content of triphenylphosphine sulfide is at least 2 ppm by mass, preferably at least 3 ppm by mass, and preferably at least 5 ppm by mass, based on the content of the polymer. It is more preferably 100 mass ppm or less, preferably 90 mass ppm or less, and more preferably 60 mass ppm or less.
  • the content of triphenylphosphine sulfide is equal to or higher than the above lower limit with respect to the content of the polymer, the dispersibility of the conductive material is improved in the conductive material dispersion liquid or slurry for electrodes using the binder composition, and The amount of gas generated at the electrode can be sufficiently reduced. Moreover, if the content of triphenylphosphine sulfide is below the above-mentioned upper limit with respect to the content of the polymer, the peel strength of the electrode can be sufficiently increased.
  • the content of triphenylphosphine sulfide relative to the content of the polymer is (a)
  • the content of hydrophilic group-containing monomer units relative to the content of the polymer is (a).
  • the value represented by ⁇ (a)/(b) ⁇ 100(%) is preferably 0.005(%) or more, and preferably 0.040(%) or more. It is more preferable that it is 0.130 (%) or less, and it is more preferable that it is 0.100 (%) or less. If the value expressed by ⁇ (a)/(b) ⁇ 100(%) is 0.004(%) or more, the dispersibility of the conductive material is sufficient in the conductive material dispersion using the binder composition. can be increased to In addition, if the value expressed by ⁇ (a)/(b) ⁇ 100(%) is 0.150(%) or less, the amount of gas generated can be sufficiently reduced in the electrode made using the binder composition. can be reduced.
  • binder composition of the present invention may contain other than the polymer, NMP, and triphenylphosphine sulfide are not particularly limited.
  • Other components include, for example, binders other than polymers (polyvinylidene fluoride, polyacrylate, etc.), reinforcing materials, leveling agents, viscosity modifiers, and electrolyte additives. These are not particularly limited as long as they do not affect the battery reaction, and known ones, such as those described in International Publication No. 2012/115096, can be used.
  • the binder composition of the present invention may contain a solvent other than NMP. Note that these other components may be used alone or in combination of two or more in any ratio.
  • the binder composition of the present invention may contain a monovalent cation.
  • the content of monovalent cations contained in the binder composition is preferably 100 mass ppm or less, more preferably 90 mass ppm or less, and 60 mass ppm or less, based on the content of the polymer. It is preferably less than ppm. If the content of monovalent cations contained in the binder composition is 100 mass ppm or less with respect to the content of the polymer, the hydrophilic group-containing monomer in the polymer can be absorbed through the monovalent cations. Since crosslinking of the units can be suppressed, the viscosity of the binder composition can be stabilized.
  • the monovalent cation is derived from, for example, a component that can be used when preparing a polymer. Monovalent cations are not particularly limited, and examples thereof include potassium (K) and sodium (Na).
  • the binder composition of the present invention is not particularly limited. For example, after preparing a polymer according to the above-mentioned polymer preparation method, triphenylphosphine sulfide and NMP are added and mixed, and then, the polymer is prepared. It can be prepared by removing the solvent used in In addition, when blending the other components mentioned above, they may be mixed by a known method before or after removing the solvent.
  • the mixing method is not particularly limited, and any known mixing method can be used.
  • the conductive material dispersion for electrochemical elements of the present invention contains at least the above-described binder composition of the present invention and a conductive material, and optionally contains other components. It may further contain other components. Since the conductive material dispersion of the present invention contains the binder composition of the present invention, the dispersibility of the conductive material is sufficiently high. Furthermore, since the conductive material dispersion of the present invention contains the binder composition of the present invention, by using the conductive material dispersion, an electrode with excellent peel strength and reduced gas generation can be produced. be able to.
  • the conductive material dispersion of the present invention is an intermediate product for preparing the slurry for electrochemical device electrodes of the present invention, which will be described later, and usually does not contain an electrode active material. Furthermore, the polymer and triphenylphosphine sulfide contained in the conductive material dispersion of the present invention are derived from the binder composition of the present invention, and their preferred abundance ratio is the same as that of the binder composition of the present invention. be.
  • the conductive material is not particularly limited, and includes carbon black (for example, acetylene black, Ketjen black (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include cup-stacked carbon nanotubes) conductive materials such as carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, single-layer or multilayer graphene, and carbon nonwoven sheets obtained by firing nonwoven fabrics made of polymer fibers. Carbon materials, fibers or foils of various metals, etc. can be used. These may be used alone or in combination of two or more. Among these, carbon nanotubes (hereinafter sometimes abbreviated as "CNT”) are used as a conductive material from the viewpoint of obtaining an electrochemical device with further improved device characteristics by lowering the resistance of the electrode composite layer. is preferred.
  • CNT carbon nanotubes
  • CNTs are not particularly limited, and those synthesized using known CNT synthesis methods such as arc discharge method, laser ablation method, and chemical vapor deposition method (CVD method) can be used.
  • the BET specific surface area of the CNTs is preferably 100 m 2 /g or more, more preferably 150 m 2 /g or more, even more preferably 200 m 2 /g or more, and 2500 m 2 /g or less. It is preferable that In the present invention, the "BET specific surface area" refers to the nitrogen adsorption specific surface area measured using the BET method, and can be measured in accordance with ASTM D3037-81.
  • Other components that may be included in the conductive material dispersion are not particularly limited, and include the same components as other components that may be included in the binder composition of the present invention. Note that the other components may be used alone or in combination of two or more in any ratio.
  • the ratio of the binder composition to the conductive material is not particularly limited.
  • the resulting conductive material dispersion preferably contains 10 parts by mass or more and 100 parts by mass or less, preferably 15 parts by mass or more and 50 parts by mass or less of the polymer per 100 parts by mass of the conductive material. They may be mixed in such proportions as to
  • the conductive material dispersion of the present invention can be prepared by mixing the above-mentioned components using a known method.
  • mixing can be performed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment dispersion machine, a crusher, an ultrasonic dispersion machine, a homogenizer, a planetary mixer, and a film mix.
  • the solid content concentration of the conductive material dispersion liquid may be, for example, 1% by mass or more and 25% by mass or less.
  • the electrochemical element electrode slurry of the present invention (hereinafter also simply referred to as “electrode slurry”) is a composition containing the above-described conductive material dispersion of the present invention and an electrode active material. That is, the electrode slurry of the present invention contains a polymer, triphenylphosphine sulfide, NMP, a conductive material, and an electrode active material, and optionally contains the other components mentioned above. Since the slurry composition for electrodes of the present invention contains the conductive material dispersion liquid of the present invention, if the slurry for electrodes is used, an electrode with excellent peel strength and a reduced amount of gas generation can be obtained. can be created.
  • the polymer, triphenylphosphine sulfide, and conductive material contained in the electrode slurry of the present invention are derived from the binder composition and conductive material dispersion of the present invention, and their preferred abundance ratios are determined according to the present invention. This is the same as the binder composition and conductive material dispersion.
  • the slurry for electrodes of this invention is slurry for lithium ion secondary battery electrodes is demonstrated below as an example, this invention is not limited to the following example.
  • the electrode active material (positive electrode active material, negative electrode active material) to be added to the electrode slurry is not particularly limited, and known electrode active materials can be used.
  • the positive electrode active material used in a lithium ion secondary battery is not particularly limited, and includes metal oxides containing lithium (Li).
  • the positive electrode active material is preferably a positive electrode active material containing at least one selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe) in addition to lithium (Li).
  • Such positive electrode active materials include lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), and lithium-containing composite oxide of Co-Ni-Mn.
  • Ni-Mn-Al lithium-containing composite oxide Ni-Co-Al lithium-containing composite oxide, olivine-type lithium manganese phosphate (LiMnPO 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), Li 1+x Mn Lithium-excess spinel compound represented by 2-x O 4 (0 ⁇ X ⁇ 2), Li[Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ]O 2 , LiNi 0.5 Mn 1 .5 O 4 , Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 and the like.
  • the electrode active materials can be used alone or in combination of two or more in any ratio.
  • the particle size of the electrode active material is not particularly limited, and can be the same as that of conventionally used electrode active materials.
  • the amount of the electrode active material in the electrode slurry is not particularly limited, and can be within the conventionally used range.
  • the method for preparing the electrode slurry of the present invention is not particularly limited.
  • the slurry for an electrode can be prepared by mixing the conductive material dispersion of the present invention and an electrode active material. Note that the mixing method is not particularly limited, and the same method as the mixing method in preparing the conductive material dispersion of the present invention described above can be used.
  • the electrode for an electrochemical device of the present invention includes an electrode mixture layer formed using the slurry for an electrode of the present invention described above. More specifically, the electrode of the present invention usually includes the electrode mixture layer on a current collector. Since the electrode of the present invention has an electrode mixture layer formed from the electrode slurry of the present invention described above, it has excellent peel strength and reduces the amount of gas generated.
  • the current collector is made of an electrically conductive and electrochemically durable material.
  • the current collector is not particularly limited, and any known current collector can be used.
  • a current collector included in the positive electrode of a lithium ion secondary battery a current collector made of aluminum or an aluminum alloy can be used.
  • aluminum and aluminum alloys may be used in combination, or different types of aluminum alloys may be used in combination.
  • Aluminum and aluminum alloys are excellent current collector materials because they are heat resistant and electrochemically stable.
  • the method for manufacturing the electrode of the present invention is not particularly limited.
  • the electrode of the present invention can be manufactured, for example, by applying the above-described slurry for an electrode of the present invention on at least one surface of a current collector and drying it to form an electrode mixture layer. More specifically, the manufacturing method includes a step of applying the electrode slurry of the present invention to at least one surface of a current collector (coating step), and a step of applying the electrode slurry of the present invention to at least one surface of the current collector. (drying step) to form an electrode mixture layer on the current collector.
  • the method for applying the electrode slurry of the present invention onto a current collector is not particularly limited, and any known method can be used. Specifically, as a coating method, a comma coater method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, etc. can be used. At this time, the electrode slurry may be applied only to one surface of the current collector, or may be applied to both surfaces of the current collector. The thickness of the electrode slurry film on the current collector before drying after coating can be appropriately set depending on the thickness of the electrode composite material layer obtained by drying.
  • the method for drying the electrode slurry on the current collector is not particularly limited, and any known method can be used, such as a drying method using warm air, hot air, low humidity air, vacuum drying method, infrared rays or electron beam, etc.
  • An example of this is a drying method using irradiation.
  • the electrode composite material layer may be subjected to pressure treatment using a mold press, a roll press, or the like.
  • the pressure treatment can further improve the binding property between the electrode composite material layer and the current collector.
  • the electrochemical device of the present invention includes the electrode for electrochemical device of the present invention described above. Further, since the electrochemical device of the present invention includes the electrode for electrochemical device of the present invention, it has excellent device characteristics.
  • the electrochemical device of the present invention may be, for example, an electric double layer capacitor or a non-aqueous secondary battery such as a lithium ion secondary battery. Among these, the electrochemical device of the present invention is preferably a nonaqueous secondary battery, and more preferably a lithium ion secondary battery.
  • This lithium ion secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the electrode of the present invention is used as at least one of the positive electrode and the negative electrode.
  • Electrodes other than the above-mentioned electrodes of the present invention that can be used in the lithium ion secondary battery as the electrochemical device of the present invention are not particularly limited, and known electrodes can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as a supporting electrolyte for a lithium ion secondary battery.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferred, and LiPF 6 is particularly preferred, since they are easily soluble in solvents and exhibit a high degree of dissociation.
  • one type of electrolyte may be used alone, or two or more types may be used in combination in any ratio.
  • the lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte, but examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and ethylmethyl carbonate (EMC); Esters such as ⁇ -butyrolactone and methyl formate; Ethers such as 1,2-dimethoxyethane and tetrahydrofuran; Sulfur-containing compounds such as sulfolane and dimethyl sulfoxide etc. are preferably used. Alternatively, a mixture of these solvents may be used.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC) and ethylmethyl carbonate (EMC)
  • Esters such as ⁇ -butyrolactone and methyl formate
  • carbonates because they have a high dielectric constant and a wide stable potential range, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • known additives such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), and ethylmethylsulfone may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP-A No. 2012-204303 can be used. Among these, polyolefins are preferred because they can reduce the overall film thickness of the separator, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
  • a microporous membrane made of a resin of the type (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
  • a lithium ion secondary battery as an electrochemical element is produced by, for example, stacking a positive electrode and a negative electrode with a separator interposed therebetween, then rolling or folding this according to the battery shape as necessary and placing it in a battery container. It can be manufactured by injecting an electrolyte into a battery container and sealing it. In order to prevent the occurrence of pressure rise inside the lithium ion secondary battery, overcharging and discharging, etc., fuses, overcurrent prevention elements such as PTC elements, expanded metal, lead plates, etc. may be provided as necessary. .
  • the shape of the lithium ion secondary battery may be, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, or the like.
  • the polymer is a hydrogenated polymer obtained by hydrogenating a polymer containing conjugated diene monomer units, unhydrogenated conjugated diene monomer units and hydrogenated
  • the total content ratio of the alkylene structural units as conjugated diene monomer units corresponds to the ratio of the conjugated diene monomers to the total monomers used for polymerization of the polymer (feeding ratio).
  • the iodine value of the polymer was measured in accordance with JIS K6235.
  • Mw weight average molecular weight
  • Detector Differential refractometer detector RID-10A (manufactured by Shimadzu Corporation)
  • Standard polymer TSK standard polystyrene (manufactured by Tosoh Corporation)
  • ICP-AES inductively coupled plasma emission spectroscopy
  • Binder viscosity change rate (%) ⁇ ( ⁇ 1 / ⁇ 0 ) ⁇ 100 A: Binder viscosity change rate is less than 10% B: Binder viscosity change rate is 10% or more and less than 30% C: Binder viscosity change rate is 30% or more
  • ⁇ Dispersibility of conductive material> The viscosity of the conductive material dispersions prepared in Examples and Comparative Examples was measured using a rheometer (MCR302 manufactured by Anton Paar) at a temperature of 25° C. and a shear rate of 2.5 s ⁇ 1 . Using this viscosity, the dispersibility of the conductive material dispersion liquid was evaluated according to the following criteria. At the same solid content concentration (or very close solid content concentration), the lower the viscosity of the conductive material dispersion liquid, the better the conductive material is dispersed.
  • Viscosity is less than 1000 mPa ⁇ s
  • B Viscosity is 1000 mPa ⁇ s or more and less than 3000 mPa ⁇ s
  • C Viscosity is 3000 mPa ⁇ s or more and less than 10000 mPa ⁇ s
  • D Viscosity is 10000 mPa ⁇ s or more
  • the positive electrode for lithium ion secondary batteries prepared in Examples and Comparative Examples was cut into a rectangular shape with a length of 100 mm and a width of 10 mm to use as a test piece, and cellophane tape was placed on the surface of the positive electrode composite layer with the side with the positive electrode composite layer facing down. (Compliant with JIS Z1522) was pasted, and one end of the current collector was pulled vertically at a pulling speed of 100 mm/min to measure the stress when peeled off (note that the cellophane tape was fixed on the test stand). . The measurement was carried out three times, and the average value was determined and used as the peel strength, which was evaluated according to the following criteria.
  • peel strength is 30 N/m or more
  • B Peel strength is 25 N/m or more and less than 30 N/m
  • C Peel strength is 20 N/m or more and less than 25 N/m
  • D Peel strength is less than 20 N/m
  • the cell volume change rate ⁇ X before and after a high temperature cycle test in which charging and discharging were repeated 1000 cycles was calculated using the following formula, and evaluated using the following criteria. The smaller the value of this cell volume change rate ⁇ X, the smaller the amount of gas generated from the electrode, indicating that the electrode has an excellent ability to suppress gas generation.
  • Cell volume change rate ⁇ X (%) (X1-X0)/X0 ⁇ 100 A: Cell volume change rate is less than 20% B: Cell volume change rate is 20% or more and less than 30% C: Cell volume change rate is 30% or more and less than 40% D: Cell volume change rate is 40% or more
  • Example 1 ⁇ Preparation of polymer>
  • 200 parts of ion-exchanged water, 25 parts of a 10% concentration sodium dodecylbenzenesulfonate aqueous solution, 30 parts of acrylonitrile as a nitrile group-containing monomer, 10 parts of methacrylic acid as a hydrophilic group-containing monomer, and 2.50 parts of t-dodecylmercaptan as a chain transfer agent was sequentially charged.
  • 60 parts of 1,3-butadiene as a conjugated diene monomer was charged.
  • the aqueous dispersion and palladium catalyst (1% palladium acetate in acetone solution) were placed in an autoclave so that the palladium content was 3,000 ppm based on the solid weight contained in the aqueous dispersion of the obtained polymer precursor.
  • a solution in which an equal weight of ion-exchanged water was mixed was added to perform a hydrogenation reaction at a hydrogen pressure of 3 MPa and a temperature of 55° C. for 3 hours to obtain a reaction solution.
  • a strongly acidic cation exchange resin manufactured by Purolite, "C100" in an amount equal to the mass of solids contained in the solution was added, and the mixture was shaken at room temperature (25°C) for 2 hours.
  • the mixture was stirred in a bowl and then filtered through a 200-mesh filter cloth to obtain an aqueous dispersion of the desired polymer (hydrogenated nitrile rubber). Thereafter, it was concentrated using an evaporator until the solid content concentration was 40%.
  • ⁇ Preparation of binder composition 50 parts of an aqueous dispersion of the above polymer (equivalent to 20 parts as solid content), 0.0010 part of triphenylphosphine sulfide (50 ppm based on the amount of polymer), and 300 parts of N-methyl-2-pyrrolidone (NMP). After all water was evaporated under reduced pressure, NMP was evaporated to obtain a binder composition having a polymer concentration of 8%. Using the obtained binder composition, the iodine value of the polymer, the weight average molecular weight, the value of ⁇ (a)/(b) ⁇ 100(%), the content of monovalent cations, and the binder viscosity change rate was evaluated. The results are shown in Table 1.
  • a ternary active material LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • polyfluoride as a binder.
  • 1.0 part of vinylidene, 1.0 part of the conductive material dispersion obtained above (solid content equivalent), and NMP were added, mixed in a planetary mixer (60 rpm, 30 minutes), and the positive electrode A slurry was prepared.
  • the amount of NMP added is determined when the viscosity of the resulting positive electrode slurry (measured using a single cylindrical rotational viscometer according to JIS Z8803:1991, temperature: 25°C, rotation speed: 60 rpm) is in the range of 4000 to 5000 mPa ⁇ s. Adjusted to be within.
  • ⁇ Preparation of negative electrode> A mixture of 90 parts of spherical artificial graphite (volume average particle size: 12 ⁇ m) as a negative electrode active material and 10 parts of SiOx (volume average particle size: 10 ⁇ m), 1 part of styrene-butadiene polymer as a negative electrode binder, One part of carboxymethylcellulose as a thickener and an appropriate amount of water as a dispersion medium were stirred in a planetary mixer to prepare a slurry for a negative electrode. Next, a copper foil with a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode slurry obtained as described above was applied to one side of a copper foil so that the coating amount after drying was 10 mg/cm 2 , and dried at 60° C. for 20 minutes and at 120° C. for 20 minutes. Thereafter, heat treatment was performed at 150° C. for 2 hours to obtain a negative electrode original fabric.
  • This negative electrode original fabric was rolled with a roll press to produce a sheet negative electrode consisting of a negative electrode composite material layer having a density of 1.6 g/cm 3 and copper foil.
  • the sheet-like negative electrode was then cut into pieces with a width of 50.0 mm and a length of 52 cm to obtain a negative electrode for a lithium ion secondary battery.
  • the positive electrode and negative electrode produced as described above were wound using a core with a diameter of 20 mm, with the electrode mixture layers facing each other, with a 15 ⁇ m thick separator (microporous polypropylene membrane) interposed. , a rolled body was obtained. Then, the obtained wound body was compressed from one direction at a speed of 10 mm/sec until it had a thickness of 4.5 mm. The wound body after compression had an elliptical shape in plan view, and the ratio of the major axis to the minor axis (major axis/minor axis) was 7.7.
  • This lithium ion secondary battery was in the form of a pouch with a width of 35 mm, a height of 60 mm, and a thickness of 5 mm, and the nominal capacity of the battery was 700 mAh.
  • the amount of gas generated from the electrode was evaluated. The results are shown in Table 1.
  • Example 2 A binder composition and a conductive material dispersion were prepared in the same manner as in Example 1, except that the amount of triphenylphosphine sulfide was changed to 0.0018 parts (90 ppm relative to the amount of polymer) when preparing the binder composition. , a positive electrode slurry, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A binder composition and a conductive material dispersion were prepared in the same manner as in Example 1, except that the amount of triphenylphosphine sulfide was changed to 0.0001 part (5 ppm relative to the amount of polymer) when preparing the binder composition. , a positive electrode slurry, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 When preparing the polymer, a binder composition, a conductive material dispersion, A positive electrode slurry, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 When preparing the polymer, the amount of acrylonitrile was 31 parts, the amount of methacrylic acid was 7 parts, the amount of 1,3-butadiene was 62 parts, and the amount of triphenylphosphine sulfide was 0.0018 parts (relative to the amount of polymer). 90 ppm). Other than that, a binder composition, a conductive material dispersion, a slurry for a positive electrode, a positive electrode, a negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 When preparing the polymer, a binder composition, a conductive material dispersion, A positive electrode slurry, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative example 2 A binder composition and a conductive material were prepared in the same manner as in Example 1, except that the amount of triphenylphosphine sulfide was changed to 0.0032 parts (160 ppm relative to the amount of nitrile polymer) when preparing the binder composition. A dispersion liquid, a slurry for a positive electrode, a positive electrode, a negative electrode, and a lithium ion secondary battery were prepared. Then, various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 shows that when the amount of triphenylphosphine sulfide contained in the binder composition exceeds a predetermined amount, the dispersibility of the conductive material decreases and the peel strength decreases. Furthermore, from Comparative Example 3, it is found that when the amount of triphenylphosphine sulfide and the amount of hydrophilic group-containing monomer units contained in the binder composition do not satisfy the predetermined relationship, gas generation at the electrode is not suppressed. I understand. Furthermore, from Comparative Example 4, it can be seen that when the binder composition does not contain a polymer having a predetermined composition, the dispersibility of the conductive material is reduced.
  • a conductive material dispersion liquid with sufficiently high dispersibility of the conductive material and furthermore, it is possible to prepare an electrode having excellent peel strength and a reduced amount of gas generation for electrochemical devices.
  • a binder composition can be provided.
  • a conductive material dispersion liquid for an electrochemical element which can produce an electrode having sufficiently high dispersibility of the conductive material, excellent peel strength, and reduced gas generation amount.
  • a slurry for device electrodes can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位とを含む重合体と、N-メチル-2-ピロリドンと、トリフェニルホスフィンスルフィドとを含む電気化学素子用バインダー組成物であって、トリフェニルホスフィンスルフィドの含有量が、重合体の含有量に対して2質量ppm以上100質量ppm以下であり、重合体の含有量に対するトリフェニルホスフィンスルフィドの含有量を(a)、前記重合体の含有量に対する親水性基含有単量体単位の含有量を(b)としたときに、関係式:0.004(%)≦{(a)/(b)}×100(%)≦0.150(%) を満たす。

Description

電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
 本発明は、電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子に関するものである。
 リチウムイオン二次電池、リチウムイオンキャパシタ及び電気二重層キャパシタなどの電気化学素子は、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、電気化学素子の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、電気化学素子に用いられる電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、この電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを含むスラリーを集電体上に塗布し、塗布したスラリーを乾燥させることにより形成される。
 そこで、電気化学素子の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。
 例えば特許文献1では、第1の結着材を含む非水系二次電池正極用バインダー組成物であって、鉄と、ルテニウム及びロジウムの少なくとも一方とを含み、鉄と、ルテニウム及びロジウムとの合計含有量が、第1の結着材100質量部当たり5×10-3質量部以下である、非水系二次電池正極用バインダー組成物が開示されている。特許文献1によれば、上記のバインダー組成物を用いることで、低温及び低充電深度条件下においてエージング処理を実施した場合であっても優れた寿命特性を有する非水系二次電池が得られる正極を作製可能である。
国際公開第2016/103730号
 そして、近年では、電極合材層の形成に導電材が用いられている。ここで、導電材を用いた電極合材層の形成に際しては、導電材とバインダー組成物とを混合して得られた導電材分散液が用いられている。
 しかしながら、上記従来の電気化学素子用バインダー組成物は、導電材の分散性を高めるという観点から、改善の余地があった。また、上記従来の電気化学素子用バインダー組成物には、当該バインダー組成物を用いて形成される電極合材層を集電体に強固に密着させること(すなわち、電極に優れたピール強度を発揮させること)が求められる。さらに、上記従来の電気化学素子用バインダー組成物を用いて作製した電極は、充放電の繰り返しに伴い発生するガス量を低減するという点でも改善の余地があった。
 そこで、本発明は、導電材の分散性が十分に高い導電材分散液を調製可能であり、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用バインダー組成物を提供することを目的とする。
 また、本発明は、導電材の分散性が十分に高く、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用導電材分散液及び電気化学素子電極用スラリーを提供することを目的とする。
 さらに、本発明は、ピール強度に優れ、かつ、ガス発生量が低減された電気化学素子用電極、及び当該電気化学素子用電極を備える電気化学素子を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位とを含む重合体と、N-メチル-2-ピロリドン(以下、「NMP」と略記する場合がある。)と、トリフェニルホスフィンスルフィドとを含み、トリフェニルホスフィンスルフィドの含有量が所定の範囲内であり、かつ、トリフェニルホスフィンスルフィドの含有量と、親水性基含有単量体単位の含有量とが所定の関係を満たすバインダー組成物を用いることで、導電材分散液中の導電材の分散性を十分に高め得ることを見出した。また、当該バインダー組成物を用いることで、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製可能であることを新たに見出し、本発明を完成させた。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、[1]本発明の電気化学素子用バインダー組成物は、ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位とを含む重合体と、N-メチル-2-ピロリドンと、トリフェニルホスフィンスルフィドとを含む電気化学素子用バインダー組成物であって、前記トリフェニルホスフィンスルフィドの含有量が、前記重合体の含有量に対して2質量ppm以上100質量ppm以下であり、前記重合体の含有量に対する前記トリフェニルホスフィンスルフィドの含有量を(a)、前記重合体の含有量に対する前記親水性基含有単量体単位の含有量を(b)としたときに、下記関係式:
 0.004(%)≦{(a)/(b)}×100(%)≦0.150(%)
を満たすことを特徴とする。このように、所定の組成を有する重合体と、NMPと、トリフェニルホスフィンスルフィドとを含み、トリフェニルホスフィンスルフィドの含有量が所定の範囲内であり、かつ、トリフェニルホスフィンスルフィドの含有量と、親水性基含有単量体単位の含有量とが所定の関係を満たす電気化学素子用バインダー組成物によれば、導電材分散液中の導電材の分散性を十分に高めることができる。また、当該電気化学素子用バインダー組成物を用いれば、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製することができる。
 なお、本発明において、「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。また、重合体がそれぞれの単量体単位及び/又は構造単位を含有する割合は、H-NMR及び13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
 そして、本発明において、「トリフェニルホスフィンスルフィドの含有量」は、ガスクロマトグラフィーにより測定することができる。
 ここで、[2]本発明の電気化学素子用バインダー組成物は、1価の陽イオンの含有量が、前記重合体の含有量に対して100質量ppm以下であることが好ましい。1価の陽イオンの含有量が重合体の含有量に対して100質量ppm以下であれば、1価の陽イオンを介して重合体中の親水性基含有単量体単位が架橋するのを抑制することができるため、電気化学素子用バインダー組成物の粘度を安定化させることができる。
 なお、本発明において、「1価の陽イオンの含有量」は、実施例に記載の方法を用いて測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[3]本発明の電気化学素子用導電材分散液は、上述した[1]又は[2]の電気化学素子用バインダー組成物と、導電材とを少なくとも含むことを特徴とする。このように、本発明の電気化学素子用バインダー組成物と、導電材とを少なくとも含む電気化学素子用導電材分散液は、導電材の分散性が十分に高い。そして、当該電気化学素子用導電材分散液を用いることで、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製することができる。
 そして、[4]本発明の電気化学素子用導電材分散液は、前記導電材がカーボンナノチューブであることが好ましい。導電材としてカーボンナノチューブを用いれば、電極合材層の抵抗を低くして、電気化学素子の素子特性を向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[5]本発明の電気化学素子電極用スラリーは、上述した[3]又は[4]の電気化学素子用導電材分散液と、電極活物質とを少なくとも含むことを特徴とする。上述した電気化学素子用導電材分散液と、電極活物質とを少なくとも含む電気化学素子電極用スラリーを用いれば、ピール強度に優れており、かつ、ガス発生量が低減された電極を作製することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[6]本発明の電気化学素子用電極は、上述した電気化学素子電極用スラリーを用いて形成した電極合材層を備えることを特徴とする。上述した電気化学素子電極用スラリーを用いて形成した電極合材層を備える電極は、ピール強度に優れており、ガス発生量が低減されている。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、[7]本発明の電気化学素子は、上述した電気化学素子用電極を備えることを特徴とする。上述した電気化学素子用電極を備える電気化学素子は、素子特性に優れる。
 本発明によれば、導電材の分散性が十分に高い導電材分散液を調製可能であり、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用バインダー組成物を提供することができる。
 また、本発明によれば、導電材の分散性が十分に高く、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用導電材分散液及び電気化学素子電極用スラリーを提供することができる。
 さらに、本発明によれば、ピール強度に優れ、かつ、ガス発生量が低減された電気化学素子用電極、及び当該電気化学素子用電極を備える電気化学素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子用バインダー組成物は、例えば、導電材と混合し、導電材と電気化学素子用バインダー組成物とを含む本発明の電気化学素子用導電材分散液にしてから電気化学素子電極用スラリーの調製に用いることができる。
 そして、電気化学素子用導電材分散液を用いて調製した本発明の電気化学素子電極用スラリーは、リチウムイオン二次電池等の電気化学素子の電極を作製する際に用いることができる。
 さらに、本発明の電気化学素子は、電気化学素子電極用スラリーを用いて作製した本発明の電気化学素子用電極を備えることを特徴とする。
(電気化学素子用バインダー組成物)
 本発明の電気化学素子用バインダー組成物(以下、単に「バインダー組成物」ともいう。)は、溶媒であるN-メチル-2-ピロリドン(NMP)中に、重合体と、トリフェニルホスフィンスルフィドとを含み、重合体が、ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位とを含み、トリフェニルホスフィンスルフィドの含有量が、重合体の含有量に対して質量2ppm以上100質量ppm以下であり、重合体の含有量に対するトリフェニルホスフィンスルフィドの含有量を(a)、重合体の含有量に対する親水性基含有単量体単位の含有量を(b)としたときに、下記関係式:
0.004(%)≦{(a)/(b)}×100(%)≦0.150(%)
を満たすことを特徴とする。
 なお、本発明のバインダー組成物は、任意成分として、上述した成分以外に、その他の成分として、電気化学素子の分野で用いられる成分を更に含有していてもよい。
 そして、本発明のバインダー組成物は、重合体が所定の単量体単位及び構造単位を含み、トリフェニルホスフィンスルフィドの含有量が所定の範囲内であり、トリフェニルホスフィンスルフィドの含有量と親水性基含有単量体単位の含有量とが所定の関係を満たしているため、当該バインダー組成物を用いれば、導電材分散液中の導電材の分散性を十分に高めることができる。また、本発明のバインダー組成物を用いれば、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製することができる。
 なお、本発明のバインダー組成物を用いることで、導電材分散液中の導電材の分散性を十分に高めることができ、しかも、ピール強度に優れ、ガス発生量が低減された電極を作製可能である理由は明らかではないが、以下のとおりであると推察される。
 本発明のバインダー組成物は、トリフェニルホスフィンスルフィドを重合体の含有量に対して2質量ppm以上100質量ppm以下の量で含有しているため、トリフェニルホスフィンスルフィドの寄与により、導電材分散液を調製する際に、重合体の増粘によるゲル化が抑制され、結果として、導電材分散液中の導電材の分散性が高まる。また、当該導電材分散液を含む電気化学素子電極用スラリーにおいても重合体のゲル化が抑制されるため、かかる電気化学素子電極用スラリーを用いて形成される電極合材層は、集電体に対して強固に密着し得る。さらに、トリフェニルホスフィンスルフィドにより重合体の水分保持量が少なくなるため、電極のガス発生量が低減される。
<重合体>
 重合体は、電極用スラリーを使用して形成した電極合材層において、電極合材層に含まれる成分が電極合材層から脱離しないように保持し得る成分である。
 そして、重合体は、上述したように、ニトリル基含有単量体単位、アルキレン構造単位、及び親水性基含有単量体単位を含有し、任意に、その他の単量体単位を更に含有する。
[ニトリル基含有単量体単位]
 ニトリル基含有単量体単位は、ニトリル基含有単量体由来の繰り返し単位である。ニトリル基を含有する単量体単位であっても、親水性基含有単量体単位に該当し得る単位、すなわち、酸性基及び水酸基等の親水性基を含有する単量体単位は、本発明の重合体の構成要件である「ニトリル基含有単量体単位」には含まない。
 ここで、ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。
 これらの中でも、重合体の結着力を高める観点からは、ニトリル基含有単量体としては、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
 なお、ニトリル基含有単量体は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いることができる。
 そして、重合体中におけるニトリル基含有単量体単位の含有割合は、重合体中の全繰り返し単位(単量体単位と構造単位との合計)を100質量%とした場合に、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、55質量%以下であることが好ましい。重合体中のニトリル基含有単量体単位の含有割合が上記範囲内であれば、導電材分散液や電極用スラリーにおいて、導電材の分散性を更に高めることができる。
[アルキレン構造単位]
 アルキレン構造単位は、一般式:-C2n-[但し、nは2以上の整数]で表されるアルキレン構造のみで構成される繰り返し単位である。
 そして、アルキレン構造単位は、直鎖状であっても分岐状であってもよいが、アルキレン構造単位は直鎖状、すなわち直鎖アルキレン構造単位であることが好ましい。また、アルキレン構造単位の炭素数は4以上である(すなわち、上記一般式のnが4以上の整数である)ことが好ましい。
 ここで、重合体へのアルキレン構造単位の導入方法は、特に限定されないが、例えば以下の(1)、(2)の方法:
(1)共役ジエン単量体を含む単量体組成物から重合体を調製し、当該重合体に水素添加することで、共役ジエン単量体単位をアルキレン構造単位に変換する方法
(2)1-オレフィン単量体を含む単量体組成物から重合体を調製する方法
が挙げられる。これらの中でも、(1)の方法が重合体の製造が容易であり好ましい。
 そして、共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。中でも、炭素数4以上の共役ジエン化合物が好ましく、1,3-ブタジエンがより好ましい。
 すなわち、アルキレン構造単位は、共役ジエン単量体単位を水素化して得られる構造単位(共役ジエン水素化物単位)であることが好ましく、炭素数4以上の共役ジエン単量体単位を水素化して得られる構造単位(炭素数が4以上の共役ジエン水素化物単位)であることがより好ましく、1,3-ブタジエン単量体単位を水素化して得られる構造単位(1,3-ブタジエン水素化物単位)であることが更に好ましい。
 また、1-オレフィン単量体としては、例えば、エチレン、プロピレン、1-ブテンなどが挙げられる。
 なお、共役ジエン単量体や1-オレフィン単量体は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いることができる。
 そして、重合体中におけるアルキレン構造単位の含有割合は、重合体中の全繰り返し単位(単量体単位と構造単位との合計)を100質量%とした場合に、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。重合体中のアルキレン構造単位の含有割合が上述した範囲内であれば、導電材分散液や電極用スラリーにおいて、導電材の分散性を一層高めることができる。
[親水性基含有単量体単位]
 親水性基含有単量体単位は、親水性基含有単量体由来の繰り返し単位である。ここで、親水性基含有単量体単位を形成し得る親水性基含有単量体としては、カルボン酸含有単量体、ヒドロキシル基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体が挙げられる。
 カルボン酸基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基を有する単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステル及びジエステルも挙げられる。
 ヒドロキシル基含有単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR-COO-(C2qO)p-H(式中、pは2~9の整数、qは2~4の整数、Rは水素又はメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味し、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 スルホン酸基含有単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基含有単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 これらの中でも、電極用スラリー中での導電材の分散性を確保しつつ電極活物質の分散性を高めて、電極合材層の集電体への密着性を向上させる観点からは、カルボン酸基含有単量体、ヒドロキシル基含有単量体、スルホン酸基含有単量体が好ましく、カルボン酸基含有単量体、ヒドロキシル基含有単量体がより好ましい。
 なお、親水性基含有単量体は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いることができる。
 そして、重合体中における親水性基含有単量体単位の含有割合は、重合体中の全繰り返し単位(単量体単位と構造単位との合計)を100質量%とした場合に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、30質量%以下であることが好ましい。親水性基含有単量体単位の含有割合が上記下限値以上であれば、電極用スラリー中での導電材の分散性を確保しつつ、電極活物質を良好に分散させることができる。また、重合体中の親水性基含有単量体単位の含有割合が上記上限値以下であれば、導電材の分散性が過度に損なわれず、電極合材層の凹凸及び電荷集中による劣化を抑制することができる。
[その他の単量体単位]
 重合体が含み得るその他の単量体単位としては、特に限定されることなく、例えば、(メタ)アクリル酸エステル単量体単位及び芳香族ビニル単量体単位などが挙げられる。中でも、その他の単量体単位としては(メタ)アクリル酸エステル単量体単位が好ましい。
 (メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、エチレン性不飽和結合の数が1つである(メタ)アクリル酸アルキルエステル単量体が挙げられる。(メタ)アクリル酸アルキルエステル単量体としては、直鎖状アルキル基を有するものと分岐鎖状アルキル基を有するものとが挙げられる。例えば、(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。これらの中でも、得られる電極合材層に適度な電解液との親和性を付与する観点から、アルキル基が直鎖状アルキル基である(メタ)アクリル酸アルキルエステルが好ましく、ブチルアクリレート及びメチルメタクリレートがより好ましい。
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸及びその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンなどが挙げられる。中でも、芳香族ビニル単量体としては、導電材分散液の分散性をより高める観点から、スチレンが好ましい。
 その他の単量体単位を形成し得る単量体は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いることができる。
 そして、重合体中におけるその他の単量体単位の含有割合は、重合体中の全繰り返し単位(単量体単位と構造単位との合計)の量を100質量%とした場合、10質量%以下であることが好ましく、5%以下であることがより好ましく、0質量%である(すなわち、重合体は、ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位のみを含む)ことが特に好ましい。
[ヨウ素価]
 そして、重合体は、ヨウ素価が120mg/100mg以下であることが好ましく、100mg/100mg以下であることがより好ましく、60mg/100mg以下であることが更に好ましい。重合体のヨウ素価が120mg/100mg以下であれば、本発明のバインダー組成物を用いることで、電気化学素子の素子特性を向上させることができる。なお、重合体のヨウ素価の下限値は、特に限定されないが、例えば、1mg/100mg以上である。
 なお、本発明において、「ヨウ素価」は、実施例に記載の方法を用いて測定することができる。
[重量平均分子量]
 また、重合体は、重量平均分子量が10,000以上であることが好ましく、15,000以上であることが好ましく、100,000以下であることが好ましく、80,000以下であることがより好ましく、50,000以下であることが更に好ましい。重合体の重量平均分子量が上記範囲内であれば、バインダー組成物の粘度を安定化させることができる。
 なお、本発明において、「重量平均分子量」は、実施例に記載の方法を用いて測定することができる。
[重合体の調製方法]
 上述した重合体の調製方法は特に限定されないが、例えば、上述した単量体を含む単量体組成物を、任意に、t-ドデシルメルカプタン等の連鎖移動剤の存在下において重合して重合体を得た後、得られた重合体を水素化(水素添加)することで調製することができる。
 ここで、重合体の調製に用いる単量体組成物中の各単量体の含有割合は、重合体中の各繰り返し単位の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。
 さらに、重合体の水素化方法は、特に制限なく、触媒を用いる一般的な方法である、油層水素化法、水層直接水素化法、及び、水層間接水素化法(例えば、国際公開第2013/080989号等参照)等を使用することができる。
<トリフェニルホスフィンスルフィド>
 本発明のバインダー組成物において、トリフェニルホスフィンスルフィドの含有量は、重合体の含有量に対して2質量ppm以上であり、3質量ppm以上であることが好ましく、5質量ppm以上であることがより好ましく、100質量ppm以下であり、90質量ppm以下であることが好ましく、60質量ppm以下であることがより好ましい。トリフェニルホスフィンスルフィドの含有量が重合体の含有量に対して上記下限値以上であれば、バインダー組成物を用いた導電材分散液や電極用スラリーにおいて、導電材の分散性を向上させると共に、電極におけるガス発生量を十分に低減させることができる。また、トリフェニルホスフィンスルフィドの含有量が重合体の含有量に対して上記上限値以下であれば、電極のピール強度を十分に高めることができる。
 ここで、本発明のバインダー組成物は、上述したように、重合体の含有量に対するトリフェニルホスフィンスルフィドの含有量を(a)、重合体の含有量に対する親水性基含有単量体単位の含有量を(b)としたときに、下記関係式:
 0.004(%)≦{(a)/(b)}×100(%)≦0.150(%)
を満たす。
 そして、上記関係式において、{(a)/(b)}×100(%)で表される値は、0.005(%)以上であることが好ましく、0.040(%)以上であることがより好ましく、0.130(%)以下であることが好ましく、0.100(%)以下であることがより好ましい。{(a)/(b)}×100(%)で表される値が0.004(%)以上であれば、バインダー組成物を用いた導電材分散液において、導電材の分散性を十分に高めることができる。また、{(a)/(b)}×100(%)で表される値が0.150(%)以下であれば、バインダー組成物を用いて作製した電極において、ガス発生量を十分に低減することができる。
<その他の成分>
 本発明のバインダー組成物が、重合体、NMP及びトリフェニルホスフィンスルフィド以外に含み得るその他の成分としては、特に限定されない。その他の成分として、例えば、重合体以外の結着材(ポリフッ化ビニリデン、ポリアクリレート等)、補強材、レベリング剤、粘度調整剤、電解液添加剤が挙げられる。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また本発明のバインダー組成物は、NMP以外の溶媒を含んでいてもよい。
 なお、これらその他の成分は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いてもよい。
 さらに、本発明のバインダー組成物は、1価の陽イオンを含んでいてもよい。その際、バインダー組成物に含まれる1価の陽イオンの含有量は、重合体の含有量に対して100質量ppm以下であることが好ましく、90質量ppm以下であることがより好ましく、60質量ppm以下であることが好ましい。バインダー組成物に含まれる1価の陽イオンの含有量が重合体の含有量に対して100質量ppm以下であれば、1価の陽イオンを介して重合体中の親水性基含有単量体単位が架橋するのを抑制することができるため、バインダー組成物の粘度を安定化させることができる。
 なお、1価の陽イオンは、例えば、重合体を調製する際に用い得る成分に由来するものである。そして、1価の陽イオンとしては、特に限定されず、例えば、カリウム(K)、ナトリウム(Na)などが挙げられる。
<電気化学素子用バインダー組成物の調製方法>
 本発明のバインダー組成物は、特に限定されることなく、例えば、上述した重合体の調製方法に従い重合体を調製した後、トリフェニルホスフィンスルフィド及びNMPを加えて混合し、次いで、重合体の調製に使用した溶媒を除去することにより調製することができる。なお、上述したその他の成分を配合する場合には、溶媒を除去する前又は除去した後に既知の方法で混合すればよい。混合方法としては、特に限定されることなく、既知の混合方法により混合することができる。
(電気化学素子用導電材分散液)
 本発明の電気化学素子用導電材分散液(以下、単に、「導電材分散液」ともいう。)は、上述した本発明のバインダー組成物と、導電材とを少なくとも含み、任意に、その他の成分を更に含有していてもよい。
 そして、本発明の導電材分散液は、本発明のバインダー組成物を含んでいるため、導電材の分散性が十分に高い。また、本発明の導電材分散液は、本発明のバインダー組成物を含んでいるため、当該導電材分散液を用いれば、ピール強度に優れており、ガス発生量が低減された電極を作製することができる。
 なお、本発明の導電材分散液は、後述する本発明の電気化学素子電極用スラリーを調製するための中間製造物であり、通常は電極活物質を含まない。
 また、本発明の導電材分散液が含む重合体及びトリフェニルホスフィンスルフィドは、本発明のバインダー組成物に由来するものであり、それらの好適な存在比は、本発明のバインダー組成物と同様である。
<導電材>
 導電材としては、特に限定されることなく、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、単層又は多層カーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織シートなどの導電性炭素材料、並びに各種金属のファイバー又は箔などを用いることができる。これらは1種を単独で、又は、2種以上を組み合わせて用いてもよい。
 これらの中でも、電極合材層の抵抗を低くして、素子特性が更に向上した電気化学素子を得る観点からは、導電材として、カーボンナノチューブ(以下、「CNT」と略記する場合がある。)が好ましい。
 CNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて合成したものを使用することができる。
 ここで、CNTは、BET比表面積が100m/g以上であることが好ましく、150m/g以上であることがより好ましく、200m/g以上であることが更に好ましく、2500m/g以下であることが好ましい。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指し、ASTM D3037-81に準拠して測定することができる。
<その他の成分>
 導電材分散液が含み得るその他の成分としては、特に限定されず、本発明のバインダー組成物が含み得るその他の成分と同様の成分が挙げられる。なお、その他の成分は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いてもよい。
<導電材分散液中におけるバインダー組成物と導電材との比率>
 ここで、バインダー組成物と導電材とを混合して導電材分散液を得るに際し、バインダー組成物と導電材との量比は特に限定されない。導電材とバインダー組成物は、例えば、得られる導電材分散液が、導電材100質量部当たり、重合体を好ましくは10質量部以上100質量部以下、好ましくは15質量部以上50質量部以下含有するような量比で混合すればよい。
 <導電材分散液の調製方法>
 本発明の導電材分散液は、上述した各成分を、既知の方法で混合することで調製することができる。
 なお、混合は、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて行うことができる。
 なお、導電材分散液の固形分濃度は、例えば、1質量%以上25質量%以下であり得る。
(電気化学素子電極用スラリー)
 本発明の電気化学素子電極用スラリー(以下、単に「電極用スラリー」ともいう。)は、上述した本発明の導電材分散液と、電極活物質とを含む組成物である。すなわち、本発明の電極用スラリーは、重合体と、トリフェニルホスフィンスルフィドと、NMPと、導電材と、電極活物質とを含有し、任意に上述したその他の成分を含有する。
 そして、本発明の電極用スラリー組成物は、本発明の導電材分散液を含んでいるので、当該電極用スラリーを用いれば、ピール強度に優れており、かつ、ガス発生量が低減された電極を作製することができる。
 なお、本発明の電極用スラリーが含む重合体、トリフェニルホスフィンスルフィド及び導電材は、本発明のバインダー組成物及び導電材分散液に由来するものであり、それらの好適な存在比は、本発明のバインダー組成物及び導電材分散液と同様である。
 なお、以下では、一例として、本発明の電極用スラリーがリチウムイオン二次電池電極用スラリーである場合について説明するが、本発明は下記の一例に限定されない。
<電極活物質>
 電極用スラリーに配合する電極活物質(正極活物質、負極活物質)としては、特に限定されることなく、既知の電極活物質を用いることができる。
 例えばリチウムイオン二次電池に用いられる正極活物質としては、特に限定されず、リチウム(Li)を含有する金属酸化物が挙げられる。そして正極活物質としては、リチウム(Li)に加え、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及び鉄(Fe)からなる群から選択される少なくとも1つ含む正極活物質が好ましい。このような正極活物質としては、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸マンガンリチウム(LiMnPO)、オリビン型リン酸鉄リチウム(LiFePO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5、Li[Ni0.5Co0.2Mn0.3]Oなどが挙げられる。
 なお、電極活物質は、1種を単独で、又は、2種以上を任意の比率で組み合わせて用いることができる。
 また、電極活物質の粒径は、特に限定されることなく、従来使用されている電極活物質と同様とすることができる。
 さらに、電極用スラリー中の電極活物質の量も、特に限定されず、従来使用されている範囲内とすることができる。
<電気化学素子電極用スラリーの調製方法>
 本発明の電極用スラリーを調製する方法は特に限定されない。電極用スラリーは、本発明の導電材分散液と、電極活物質とを混合することにより調製することができる。
 なお、混合方法は、特に限定されることなく、上述した本発明の導電材分散液の調製における混合方法と同様の方法を用いることができる。
(電気化学素子用電極)
 本発明の電気化学素子用電極(以下、単に「電極」ともいう。)は、上述した本発明の電極用スラリーを用いて形成した電極合材層を備える。より具体的には、本発明の電極は、通常、集電体上に上記電極合材層を備える。
 そして、本発明の電極は、電極合材層が上述した本発明の電極用スラリーから形成されているので、ピール強度に優れており、ガス発生量が低減されている。
<集電体>
 集電体は、電気導電性を有し、かつ、電気化学的に耐久性のある材料からなる。集電体としては、特に限定されず既知の集電体とを用いることができる。例えば、リチウムイオン二次電池の正極が備える集電体としては、アルミニウム又はアルミニウム合金からなる集電体を用い得る。この際、アルミニウムとアルミニウム合金とを組み合わせて用いてもよく、種類が異なるアルミニウム合金を組み合わせて用いてもよい。アルミニウム及びアルミニウム合金は耐熱性を有し、電気化学的に安定であるため、優れた集電体材料である。
<電気化学素子用電極の製造方法>
 本発明の電極の製造方法は特に限定されない。本発明の電極は、例えば、上述した本発明の電極用スラリーを、集電体の少なくとも一方の面に塗布し、乾燥して電極合材層を形成することで製造することができる。より詳細には、当該製造方法は、本発明の電極用スラリーを集電体の少なくとも一方の面に塗布する工程(塗布工程)と、集電体の少なくとも一方の面に塗布された電極用スラリーを乾燥させて集電体上に電極合材層を形成する工程(乾燥工程)とを含む。
[塗布工程]
 本発明の電極用スラリーを集電体上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的には、塗布方法としては、コンマコーター法、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、電極用スラリーを集電体の一方の表面上のみに塗布してもよいし、集電体の両方の表面上に塗布してもよい。塗布後乾燥前の集電体上の電極用スラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
[乾燥工程]
 集電体上の電極用スラリーを乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の電極用スラリーを乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える電気化学素子用電極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との結着性をより向上させることができる。
(電気化学素子)
 本発明の電気化学素子は、上述した本発明の電気化学素子用電極を備える。そして、本発明の電気化学素子は、本発明の電気化学素子用電極を備えているため、素子特性に優れている。なお、本発明の電気化学素子は、例えば、電気二重層キャパシタ又はリチウムイオン二次電池等の非水系二次電池であり得る。中でも、本発明の電気化学素子は、非水系二次電池であることが好ましく、リチウムイオン二次電池であることがより好ましい。
 ここで、以下では、本発明の電気化学素子の一例として、リチウムイオン二次電池について説明する。このリチウムイオン二次電池は、正極と、負極と、電解液と、セパレータとを備える。そして、正極及び負極の少なくとも一方として、本発明の電極を用いたものである。
<電極>
 本発明の電気化学素子としてのリチウムイオン二次電池に使用し得る、上述した本発明の電極以外の電極としては、特に限定されることなく、既知の電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)やエチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
 電気化学素子としてのリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」、「ppm」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 また、重合体が、共役ジエン単量体単位を含む重合物を水素化して成る水素化重合体である場合に、水素化重合体における、未水添の共役ジエン単量体単位と、水素化された共役ジエン単量体単位としてのアルキレン構造単位との合計含有割合は、重合物の重合に用いた全単量体に占める、共役ジエン単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種の測定及び評価は、下記の方法に従って実施した。
<ヨウ素価>
 重合体のヨウ素価は、JIS K6235に準拠して測定した。
<重量平均分子量>
 重合体の重量平均分子量(Mw)は、濃度10mMのLiBr-DMF溶液を使用し、下記の測定条件でゲル浸透クロマトグラフィー(GPC)より測定した。
・分離カラム:Shodex KD-806M(昭和電工株式会社製)
・検出器:示差屈折計検出器 RID-10A(株式会社島津製作所製)
・溶離液の流速:0.3mL/分
・カラム温度:40℃
・標準ポリマー:TSK 標準ポリスチレン(東ソー株式会社製)
<{(a)/(b)}×100[%]の値>
 実施例、比較例で調製したバインダー組成物中の重合体及びトリフェニルホスフィンスルフィドの含有量から、重合体の含有量に対するトリフェニルホスフィンスルフィドの含有量(a)、重合体の含有量に対する当該重合体中の親水性基含有単量体単位の含有量(b)を求めた。そして、{(a)/(b)}×100[%]の値を求めた。
<1価の陽イオンの含有量>
 固形分換算で約0.5gのバインダー組成物を採取し、約7mLの濃硫酸に溶解させた後、約3mLの濃硝酸を徐々に添加して湿式分解した。分解後、酸を濃縮し、超純水で10mLに定容し、誘導結合プラズマ発光分光分析法(ICP-AES)を用いてカリウムイオン、ナトリウムイオンの量をそれぞれ測定した。そして、測定値からバインダー組成物中に含まれていたカリウム、ナトリウムの総量を算出し、得られた総量をバインダー組成物中に含まれる1価の陽イオン量とした。そして、バインダー組成物中の重合体Aの含有量に対する1価の陽イオンの含有量を求めた。
<バインダー粘性変化率>
 実施例、比較例で調製したバインダー組成物について、スラリー作製1時間後のバインダーをJIS Z8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により測定し、測定開始後1分の値を求め、これをバインダー組成物の粘度(η)とした。また、バインダー組成物作製1週間後のバインダー組成物の粘度の値を求め、これをバインダー組成物の粘度(η)とした。
 バインダー粘性変化率を下記式より算出し、以下の基準で評価した。バインダー粘性変化率が低いほど、バインダー組成物は粘度安定性に優れていることを示す。
 バインダー粘性変化率(%)={(η/η)}×100
 A:バインダー粘性変化率が10%未満
 B:バインダー粘性変化率が10%以上30%未満
 C:バインダー粘性変化率が30%以上
<導電材の分散性>
 実施例、比較例で調製した導電材分散液について、レオメーター(Anton Paar社製 MCR302)にて、温度25℃、せん断速度2.5s-1の条件下で粘度を測定した。この粘度を用いて、導電材分散液の分散性を下記の基準で評価した。同一の固形分濃度(又は極めて近い値の固形分濃度)においては、導電材分散液の粘度が低いほど、導電材が良好に分散していることを示す。
 A:粘度が1000mPa・s未満
 B:粘度が1000mPa・s以上3000mPa・s未満
 C:粘度が3000mPa・s以上10000mPa・s未満
 D:粘度が10000mPa・s以上
<剥離ピール強度>
 実施例、比較例で作製したリチウムイオン二次電池用正極を長さ100mm、幅10mmの長方形に切り出して試験片とし、正極合材層を有する面を下にして正極合材層表面にセロハンテープ(JISZ1522に準拠するもの)を貼り付け、集電体の一端を垂直方向に引張り速度100mm/分で引っ張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている)。測定を3回行い、その平均値を求めてこれを剥離ピール強度とし、以下の基準により評価した。剥離ピール強度の値が大きいほど、正極合材層と集電体の密着性に優れることを示す。
 A:剥離ピール強度が30N/m以上
 B:剥離ピール強度が25N/m以上30N/m未満
 C:剥離ピール強度が20N/m以上25N/m未満
 D:剥離ピール強度が20N/m未満
<電極のガス発生量>
 実施例、比較例で作製した二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cで4.35Vまで充電し0.1Cで2.75Vまで放電する充放電の操作を行った。この電池のセルを流動パラフィンに浸漬し、セルの体積X0を測定した。さらに、60℃環境下で、前記と同様の条件で充放電の操作を1000サイクル繰り返した。1000サイクル後の電池のセルを流動パラフィンに浸漬し、セルの体積X1を測定した。充放電を1000サイクル繰り返す高温サイクル試験の前後でのセル体積変化率ΔXを下記式により算出し、以下の基準により評価した。このセル体積変化率ΔXの値が小さいほど、電極からのガス発生量が少なく、電極がガスの発生を抑制する能力に優れていることを示す。
 セル体積変化率ΔX(%)=(X1-X0)/X0×100
 A:セル体積変化率が20%未満
 B:セル体積変化率が20%以上30%未満
 C:セル体積変化率が30%以上40%未満
 D:セル体積変化率が40%以上
(実施例1)
<重合体の調製>
 反応器に、イオン交換水200部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、ニトリル基含有単量体としてのアクリロニトリル30部、親水性基含有単量体としてのメタクリル酸10部、及び連鎖移動剤としてのt-ドデシルメルカプタン2.50部を順に仕込んだ。次いで、内部の気体を窒素で3回置換した後、共役ジエン単量体としての1,3-ブタジエン60部を仕込んだ。そして、反応器を10℃に保ち、重合開始剤としてのクメンハイドロパーオキサイド0.03部、還元剤、及びキレート剤適量を仕込み、攪拌しながら重合反応を継続し、重合転化率が80%になった時点で、重合停止剤としての濃度10%のハイドロキノン水溶液0.1部を加えて重合反応を停止した。次いで、水温80℃で残留単量体を除去し、重合体の前駆体の水分散液を得た。
 得られた重合体の前駆体の水分散液に含有される固形分重量に対するパラジウム含有量が3,000ppmになるように、オートクレーブ中に、水分散液とパラジウム触媒(1%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度55℃で3時間水素添加反応を行い、反応液を得た。得られた反応液に対して、液中に含有される固形分質量と同質量部の強酸性カチオン交換樹脂(Purolite社製、「C100」)を加え、室温(25℃)で2時間にわたり振とう器にて攪拌し、その後、200メッシュのろ布でろ過することにより、目的の重合体(水素化ニトリルゴム)の水分散液を得た。その後、エバポレータを用いて、固形分濃度が40%となるまで濃縮した。
<バインダー組成物の調製>
 上記重合体の水分散液50部(固形分として20部相当)と、トリフェニルホスフィンスルフィド0.0010部(重合体の量に対して50ppm)と、N-メチル-2-ピロリドン(NMP)300部とを加え、減圧下に水をすべて蒸発させたのち、NMPを蒸発させて、バインダー組成物として、重合体の濃度が8%のバインダー組成物を得た。得られたバインダー組成物を用いて、重合体のヨウ素価、重量平均分子量、{(a)/(b)}×100(%)の値、1価の陽イオンの含有量及びバインダー粘性変化率を評価した。結果を表1に示す。
<導電材分散液の調製>
 導電材としてのカーボンナノチューブ(比表面積:280m/g)4.0部と、上記で得られたバインダー組成物1.0部(固形分換算量)と、当該バインダー組成物に含まれるNMPの量との合計が100部となる量のNMPとを、ディスパーを用いて攪拌し(3000rpm、10分)、その後、薄膜旋回型高速ミキサー(プライミクス社、製品名「フィルミックス、56-50型」)を用いて、周速40m/秒で10分間、分散処理を実施して、固形分濃度が5.0%の導電材分散液を調製した。そして、得られた導電材分散液を用いて、導電材の分散性の評価を行った。結果を表1に示す。
<正極用スラリーの調製>
 正極活物質として層状構造を有する三元系活物質(LiNi0.6Co0.2Mn0.2)(体積平均粒子径:10μm)98.0部と、結着材としてのポリフッ化ビニリデン1.0部と、上記で得られた導電材分散液1.0部(固形分換算量)と、NMPとを添加し、プラネタリーミキサーにて混合(60rpm、30分)して、正極用スラリーを調製した。なお、NMPの添加量は、得られる正極用スラリーの粘度(JISZ8803:1991に準じて単一円筒形回転粘度計により測定。温度:25℃、回転数:60rpm)が4000~5000mPa・sの範囲内となるように調整した。
<正極の作製>
 集電体として、厚さ20μmのアルミ箔を準備した。上述のようにして得た正極用スラリーをコンマコーターでアルミ箔の片面に乾燥後の目付量が20mg/cmになるように塗布し、90℃で20分、120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、正極合材層(密度:3.2g/cm)とアルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅:48.0mm、長さ:47cmに切断して、リチウムイオン二次電池用正極とした。この正極について、剥離ピール強度を評価した。結果を表1に示す。
<負極の作製>
 負極活物質としての球状人造黒鉛(体積平均粒子径:12μm)90部とSiOx(体積平均粒子径:10μm)10部との混合物と、負極用結着材としてのスチレンブタジエン重合体1部と、増粘剤としてのカルボキシメチルセルロース1部と、分散媒としての適量の水とをプラネタリーミキサーにて撹拌し、負極用スラリーを調製した。
 次に、集電体として、厚さ15μmの銅箔を準備した。上述のようにして得た負極用スラリーを銅箔の片面に乾燥後の塗布量が10mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cmの負極合材層と、銅箔とからなるシート状負極を作製した。そして、シート状負極を幅50.0mm、長さ52cmに切断して、リチウムイオン二次電池用負極とした。
<リチウムイオン二次電池の製造>
 上述のようにして作製した正極と負極とを、電極合材層同士が向かい合うようにし、厚さ15μmのセパレータ(ポリプロピレン製の微多孔膜)を介在させて、直径20mmの芯を用いて捲回し、捲回体を得た。そして、得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、電解液(濃度1.0MのLiPF溶液(溶媒は、エチレンカーボネート/エチルメチルカーボネート=3/7(質量比)の混合溶媒にフルオロエチレンカーボネート5質量%を添加した混合溶液であり、添加剤としてビニレンカーボネート2体積%を添加))を準備した。
 その後、圧縮後の捲回体をアルミ製ラミネートケース内に3.2gの電解液とともに収容した。そして、リチウムイオン二次電池用負極の所定の箇所にニッケルリード線を接続し、リチウムイオン二次電池用正極の所定の箇所にアルミニウムリード線を接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池を得た。このリチウムイオン二次電池は、幅35mm、高さ60mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhであった。
 得られたリチウムイオン二次電池について、電極のガス発生量を評価した。結果を表1に示す。
(実施例2)
 バインダー組成物の調製に際し、トリフェニルホスフィンスルフィドの量を0.0018部(重合体の量に対して90ppm)に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例3)
 バインダー組成物の調製に際し、トリフェニルホスフィンスルフィドの量を0.0001部(重合体の量に対して5ppm)に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例4)
 重合体の調製に際し、強酸性カチオン交換樹脂(Purolite社製、「C100」)量を0.5質量部に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例5)
 重合体の調製に際し、アクリロニトリルの量を31部、メタクリル酸の量を7部、1,3-ブタジエンの量を62部、トリフェニルホスフィンスルフィドの量を0.0018部(重合体の量に対して90ppm)に変更した。それ以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例6)
 重合体の調製に際し、強酸性カチオン交換樹脂(Purolite社製、「C100」)量を0.2質量部に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例1)
 バインダー組成物の調製に際し、トリフェニルホスフィンスルフィドを使用しなかった以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例2)
 バインダー組成物の調製に際し、トリフェニルホスフィンスルフィドの量を0.0032部(ニトリル系重合体の量に対して160ppm)に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例3)
 重合体の調製に際し、アクリロニトリルの量を24部、メタクリル酸の量を30部、1,3-ブタジエンの量46部、トリフェニルホスフィンスルフィドの量を0.0002部(ニトリル系重合体の量に対して10ppm)に変更した。それ以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例4)
 重合体の調製に際し、アクリロニトリルの量を40部、メタクリル酸の量を0部に変更した以外は、実施例1と同様にして、バインダー組成物、導電材分散液、正極用スラリー、正極、負極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1より、実施例1~6のバインダー組成物によれば、導電材の分散性に優れた導電材分散液を調製することができ、当該導電材分散液を用いることで、ピール強度に優れ、かつ、ガス発生量が抑制されたリチウムイオン二次電池が得られることが分かる。
 一方、表1より、トリフェニルホスフィンスルフィドを含まないバインダー組成物を用いた比較例1では、導電材の分散性が低下し、電極のガス発生が抑制されていないことが分かる。また、比較例2より、バインダー組成物に含まれるトリフェニルホスフィンスルフィドの量が所定量を上回る場合には、導電材の分散性が低下すると共に、ピール強度が低下することが分かる。また、比較例3より、バインダー組成物に含まれるトリフェニルホスフィンスルフィドの量と親水性基含有単量体単位の量が所定の関係を満たさない場合、電極のガス発生が抑制されていないことが分かる。
 さらに、比較例4より、バインダー組成物が所定の組成を有する重合体を含まない場合には、導電材の分散性が低下することが分かる。
 本発明によれば、導電材の分散性が十分に高い導電材分散液を調製可能であり、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用バインダー組成物を提供することができる。
 また、本発明によれば、導電材の分散性が十分に高く、さらに、ピール強度に優れ、かつ、ガス発生量が低減された電極を作製し得る電気化学素子用導電材分散液及び電気化学素子電極用スラリーを提供することができる。
 さらに、本発明によれば、ピール強度に優れ、かつ、ガス発生量が低減された電気化学素子用電極、及び当該電気化学素子用電極を備える電気化学素子を提供することができる。

Claims (7)

  1.  ニトリル基含有単量体単位と、アルキレン構造単位と、親水性基含有単量体単位とを含む重合体と、
     N-メチル-2-ピロリドンと、
     トリフェニルホスフィンスルフィドとを含む電気化学素子用バインダー組成物であって、
     前記トリフェニルホスフィンスルフィドの含有量が、前記重合体の含有量に対して2質量ppm以上100質量ppm以下であり、
     前記重合体の含有量に対する前記トリフェニルホスフィンスルフィドの含有量を(a)、前記重合体の含有量に対する前記親水性基含有単量体単位の含有量を(b)としたときに、下記関係式:
     0.004(%)≦{(a)/(b)}×100(%)≦0.150(%)
    を満たす、電気化学素子用バインダー組成物。
  2.  1価の陽イオンの含有量が、前記重合体の含有量に対して100質量ppm以下である、請求項1に記載の電気化学素子用バインダー組成物。
  3.  請求項1に記載の電気化学素子用バインダー組成物と、導電材とを少なくとも含む、電気化学素子用導電材分散液。
  4.  前記導電材がカーボンナノチューブである、請求項3に記載の電気化学素子用導電材分散液。
  5.  請求項3に記載の電気化学素子用導電材分散液と、電極活物質とを少なくとも含む、電気化学素子電極用スラリー。
  6.  請求項5に記載の電気化学素子電極用スラリーを用いて形成した電極合材層を備える、電気化学素子用電極。
  7.  請求項6に記載の電気化学素子用電極を備える、電気化学素子。
PCT/JP2023/022504 2022-06-27 2023-06-16 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 WO2024004724A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022102980 2022-06-27
JP2022-102980 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024004724A1 true WO2024004724A1 (ja) 2024-01-04

Family

ID=89382200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022504 WO2024004724A1 (ja) 2022-06-27 2023-06-16 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子

Country Status (1)

Country Link
WO (1) WO2024004724A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119260A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 非水電解質電池
US20140199592A1 (en) * 2011-08-11 2014-07-17 Arizona Board Of Regents On Behalf Of The Universi Of Arizona High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119260A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 非水電解質電池
US20140199592A1 (en) * 2011-08-11 2014-07-17 Arizona Board Of Regents On Behalf Of The Universi Of Arizona High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them

Similar Documents

Publication Publication Date Title
CN110383547B (zh) 正极用粘结剂组合物、正极用组合物、正极及二次电池
JP7184076B2 (ja) カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池
JP6638658B2 (ja) 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池、並びに、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池の製造方法
JP6589857B2 (ja) 電解液を備えるリチウムイオン二次電池用正極の製造方法
JP7218729B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JPWO2017056404A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6870770B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP6996504B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2022045217A1 (ja) 電気化学素子用電極及び電気化学素子
JP6996503B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN113195561B (zh) 二次电池电极用粘结剂组合物、二次电池电极用导电材料糊组合物、二次电池电极用浆料组合物、二次电池用电极、以及二次电池
WO2021200126A1 (ja) 導電材分散液、二次電池正極用スラリー、二次電池用正極及び二次電池
WO2021085343A1 (ja) 二次電池用ペースト、二次電池正極用スラリー、二次電池用正極、二次電池、および二次電池用ペーストの製造方法
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7400712B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2017056489A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020241383A1 (ja) 二次電池正極用バインダー組成物、二次電池正極用導電材ペースト組成物、二次電池正極用スラリー組成物、二次電池用正極及びその製造方法、並びに二次電池
WO2024004724A1 (ja) 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2019181870A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
JP6870771B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP6927393B1 (ja) 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子
JP7218730B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2020241384A1 (ja) 二次電池正極用スラリー組成物の製造方法、二次電池用正極の製造方法、及び、二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831170

Country of ref document: EP

Kind code of ref document: A1