JP6477398B2 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Download PDF

Info

Publication number
JP6477398B2
JP6477398B2 JP2015194187A JP2015194187A JP6477398B2 JP 6477398 B2 JP6477398 B2 JP 6477398B2 JP 2015194187 A JP2015194187 A JP 2015194187A JP 2015194187 A JP2015194187 A JP 2015194187A JP 6477398 B2 JP6477398 B2 JP 6477398B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrode
particulate polymer
aqueous secondary
binder composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015194187A
Other languages
English (en)
Other versions
JP2017069062A (ja
Inventor
徳一 山本
徳一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015194187A priority Critical patent/JP6477398B2/ja
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to CN201680054939.3A priority patent/CN108140838B/zh
Priority to PL16850668T priority patent/PL3358661T3/pl
Priority to KR1020187007975A priority patent/KR102661643B1/ko
Priority to EP16850668.1A priority patent/EP3358661B1/en
Priority to HUE16850668A priority patent/HUE055448T2/hu
Priority to US15/762,241 priority patent/US10593948B2/en
Priority to PCT/JP2016/004360 priority patent/WO2017056489A1/ja
Publication of JP2017069062A publication Critical patent/JP2017069062A/ja
Application granted granted Critical
Publication of JP6477398B2 publication Critical patent/JP6477398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関するものである。
リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
ここで、リチウムイオン二次電池などの二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることにより形成される。
そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。具体的には、例えば、粒子径の異なる2種類の粒子状重合体を結着材として含むバインダー組成物を使用することで、電極活物質などの電極合材層を構成する成分同士の結着性および電極合材層と集電体との結着性(ピール強度)を高め、二次電池の性能を向上させることが提案されている。
より具体的には、例えば特許文献1では、一次粒子の最頻粒子径が0.01μm以上0.25μm未満である粒子状重合体と、一次粒子の最頻粒子径が0.25μm以上3μm未満である粒子状重合体とを所定の割合で混合してなる結着材を用いることにより、電極のピール強度を高めることが提案されている。
特開2003−100298号公報
しかし、近年では二次電池の更なる性能向上が求められているところ、上記従来のバインダー組成物には、バインダー組成物を用いて作製した電極のピール強度を高めつつ、当該電極を備える非水系二次電池の電池特性(例えば、サイクル特性など)を更に向上させるという点において改善の余地があった。
そこで、本発明は、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することを目的とする。
また、本発明は、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を提供することを目的とする。
更に、本発明は、サイクル特性等の電池特性に優れる非水系二次電池を提供することを目的とする。
本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の組成および平均粒子径を有する第一の粒子状重合体と、所定の組成および平均粒子径を有する第二の粒子状重合体とを結着材として併用することにより、結着性に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池電極用バインダー組成物が得られることを見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体とを含むことを特徴とする。このように、所定の組成および体積平均粒子径を有する第一の粒子状重合体と、所定の組成および体積平均粒子径を有する第二の粒子状重合体とを含有させれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる電極を形成することができる。
なお、本発明において、「体積平均粒子径」とは、レーザー回折法にて測定した粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(D50)を指す。
ここで、本発明の非水系二次電池電極用バインダー組成物は、前記第二の粒子状重合体が、芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で更に含有することが好ましい。第二の粒子状重合体が芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で含有していれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができると共に非水系二次電池のサイクル特性を更に向上させることができる。
更に、本発明の非水系二次電池電極用バインダー組成物は、前記第一の粒子状重合体が天然ゴムであることが好ましい。第一の粒子状重合体として天然ゴムを使用すれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができると共に非水系二次電池のサイクル特性を更に向上させることができる。
そして、本発明の非水系二次電池電極用バインダー組成物は、前記第一の粒子状重合体の含有量が、前記第一の粒子状重合体と前記第二の粒子状重合体との合計含有量の50質量%以上90質量%以下であることが好ましい。第一の粒子状重合体の含有量を上記範囲内にすれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制しつつ、電極のピール強度を十分に向上させることができる。
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池電極用バインダー組成物の何れかとを含むことを特徴とする。このように、第一の粒子状重合体と第二の粒子状重合体とを含むバインダー組成物を含有させれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる電極を形成することができる。
ここで、本発明の非水系二次電池電極用スラリー組成物は、前記電極活物質のタップ密度が1.1g/cm3以下であることが好ましい。電極活物質のタップ密度が1.1g/cm3以下であれば、非水系二次電池の充放電に伴う膨れが生じ難い電極を形成することができる。なお、通常、タップ密度の低い電極活物質を用いて形成した電極はピール強度が低下し易い傾向があるが、第一の粒子状重合体と第二の粒子状重合体とを含むバインダー組成物を使用すれば、電極のピール強度を十分に向上させることができる。
なお、本発明において、「タップ密度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物の何れかを用いて形成した電極合材層を備えることを特徴とする。このように、上述した非水系二次電池電極用スラリー組成物を使用して電極合材層を形成すれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極が得られる。
そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方が上述した非水系二次電池用電極であることを特徴とする。このように、上述した非水系二次電池用電極を使用すれば、サイクル特性等の電池特性を十分に向上させることができる。
本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
また、本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用電極を提供することができる。
更に、本発明によれば、サイクル特性等の電池特性に優れる非水系二次電池を提供することができる。
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の非水系二次電池電極用バインダー組成物は、非水系二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明の非水系二次電池電極用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極を形成する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した非水系二次電池用電極を用いたことを特徴とする。
なお、本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物は、非水系二次電池の負極を形成する際に特に好適に用いることができる。
(非水系二次電池電極用バインダー組成物)
本発明の非水系二次電池電極用バインダー組成物は、互いに組成が異なる第一の粒子状重合体および第二の粒子状重合体を含み、任意に、二次電池の電極に配合され得るその他の成分を更に含有する。また、本発明の非水系二次電池電極用バインダー組成物は、通常、水などの分散媒を更に含有する。そして、本発明の非水系二次電池電極用バインダー組成物は、第一の粒子状重合体が、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、第二の粒子状重合体が、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有する。また、本発明の非水系二次電池電極用バインダー組成物は、第一の粒子状重合体の体積平均粒子径が0.6μm以上2.5μm以下であり、第二の粒子状重合体の体積平均粒子径が0.01μm以上0.5μm以下である。
そして、本発明の非水系二次電池電極用バインダー組成物は、所定の組成および体積平均粒子径を有する第一の粒子状重合体と、所定の組成および体積平均粒子径を有する第二の粒子状重合体との双方を含有しているので、電極の電極合材層の形成に用いた際に、電極活物質同士および電極活物質と集電体とを良好に結着させることができる。従って、本発明の非水系二次電池電極用バインダー組成物を使用すれば、ピール強度に優れる電極が得られる。また、上記第一の粒子状重合体および第二の粒子状重合体を含むバインダー組成物を用いて形成した電極を使用すれば、非水系二次電池に優れた電池特性、特にはサイクル特性を発揮させることができる。
<第一の粒子状重合体>
第一の粒子状重合体は、バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する(即ち、結着材として機能する)。
[第一の粒子状重合体の組成]
そして、第一の粒子状重合体は、繰り返し単位として脂肪族共役ジエン単量体単位を含有することを必要とし、任意に、脂肪族共役ジエン単量体単位以外の単量体単位(以下、「その他の単量体単位」ということがある。)を更に含有する。
[[脂肪族共役ジエン単量体単位]]
ここで、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエンなどが挙げられる。中でも、脂肪族共役ジエン単量体としては、1,3−ブタジエンおよびイソプレンが好ましく、イソプレンがより好ましい。なお、脂肪族共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、第一の粒子状重合体中の脂肪族共役ジエン単量体単位の割合は、第一の粒子状重合体中の全繰り返し単位の量を100質量%とした場合に、90質量%超100質量%以下である必要があり、92質量%以上であることが好ましく、95質量%以上であることがより好ましい。脂肪族共役ジエン単量体単位の含有割合を90質量%超とすることで、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができる。
なお、脂肪族共役ジエン単量体は、通常、重合反応によって少なくともシス−1,4結合、トランス−1,4結合およびビニル結合の単量体単位を形成し得る。具体的には、例えば1,3−ブタジエンは、通常、重合反応によってシス−1,4結合、トランス−1,4結合および1,2結合(ビニル結合)の単量体単位を形成し得る。また、例えばイソプレンは、通常、重合反応によってシス−1,4結合およびトランス−1,4結合の単量体単位、並びに、1,2結合および3,4結合(ビニル結合)の単量体単位を形成し得る。そして、第一の粒子状重合体の脂肪族共役ジエン単量体単位においては、シス−1,4結合の割合が90モル%以上100モル%以下であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることが更に好ましい。第一の粒子状重合体の脂肪族共役ジエン単量体単位(100モル%)中のシス−1,4結合の単量体単位の割合が上記範囲の下限値以上であれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させると共に、当該電極を用いた二次電池のサイクル特性を更に向上させることができる。なお、脂肪族共役ジエン単量体単位中のシス−1,4結合の単量体単位の割合は、JIS K6239のIR法に準拠して求めることができる。
[[その他の単量体単位]]
第一の粒子状重合体が含有し得る、上述した脂肪族共役ジエン単量体単位以外のその他の単量体単位としては、特に限定されることなく、上述した脂肪族共役ジエン単量体と共重合可能な既知の単量体に由来する繰り返し単位が挙げられる。具体的には、その他の単量体単位としては、特に限定されることなく、例えば芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、親水性基含有単量体単位などが挙げられる。
なお、これらの単量体は一種単独で、または、2種以上を組み合わせて用いることができる。また、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
ここで、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、スチレンスルホン酸およびその塩、α−メチルスチレン、ブトキシスチレン、並びに、ビニルナフタレンなどが挙げられる。
また、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、イソブチルアクリレート、n−ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、イソブチルメタクリレート、n−ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
更に、親水性基含有単量体単位を形成し得る親水性基含有単量体としては、親水性基を有する重合可能な単量体が挙げられる。具体的には、親水性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体が挙げられる。
そして、カルボン酸基を有する単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
モノカルボン酸誘導体としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。
ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
また、カルボン酸基を有する単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β−エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
なお、本発明において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
リン酸基を有する単量体としては、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
なお、本発明において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
水酸基を有する単量体としては、(メタ)アリルアルコール、3−ブテン−1−オール、5−ヘキセン−1−オールなどのエチレン性不飽和アルコール;アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピル、マレイン酸ジ−2−ヒドロキシエチル、マレイン酸ジ−4−ヒドロキシブチル、イタコン酸ジ−2−ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH2=CR1−COO−(Cq2qO)p−H(式中、pは2〜9の整数、qは2〜4の整数、R1は水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシフタレート、2−ヒドロキシエチル−2’−(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2−ヒドロキシエチルビニルエーテル、2−ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル−2−ヒドロキシエチルエーテル、(メタ)アリル−2−ヒドロキシプロピルエーテル、(メタ)アリル−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシブチルエーテル、(メタ)アリル−3−ヒドロキシブチルエーテル、(メタ)アリル−4−ヒドロキシブチルエーテル、(メタ)アリル−6−ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル−2−クロロ−3−ヒドロキシプロピルエーテル、(メタ)アリル−2−ヒドロキシ−3−クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル−2−ヒドロキシエチルチオエーテル、(メタ)アリル−2−ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
そして、第一の粒子状重合体のその他の単量体単位の含有割合は、好ましくは0質量%以上10質量%未満、より好ましくは8質量%以下、更に好ましくは5質量%以下である。その他の単量体単位の含有割合が10質量%未満であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。
ここで、上述した組成を有する第一の粒子状重合体は、上述した単量体を含む単量体組成物を人工的に重合することにより調製した重合体であってもよいし、天然ゴムであってもよい。中でも、電極のピール強度および二次電池のサイクル特性を更に向上させる観点からは、第一の粒子状重合体は天然ゴムからなることが好ましい。即ち、バインダー組成物は、天然ゴムのラテックスなどを用いて調製することが好ましい。
なお、単量体組成物を人工的に重合することにより第一の粒子状重合体を調製する場合には、単量体組成物中の各単量体の割合は、通常、所望の重合体における各単量体単位の割合と同様とする。そして、第一の粒子状重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
[体積平均粒子径]
また、第一の粒子状重合体は、体積平均粒子径が0.6μm以上2.5μm以下であることが必要であり、第一の粒子状重合体の体積平均粒子径は、0.7μm以上であることが好ましく、0.8μm以上であることがより好ましく、2.0μm以下であることが好ましく、1.5μm以下であることがより好ましい。第一の粒子状重合体の体積平均粒子径が上記範囲内であれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができる。また、第一の粒子状重合体の体積平均粒子径が上記上限値以下であれば、二次電池に優れたサイクル特性を発揮させることができる。
なお、第一の粒子状重合体として天然ゴムを用いる場合には、第一の粒子状重合体の体積平均粒子径は、沈降分離や分級などを用いて調整することができる。また、単量体組成物を人工的に重合することにより第一の粒子状重合体を調製する場合には、第一の粒子状重合体の体積平均粒子径は、乳化剤の使用量などの重合条件を変更することにより調整することができる。
<第二の粒子状重合体>
第二の粒子状重合体は、バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する(即ち、上述した第一の粒子状重合体と共に結着材として機能する)。
[第二の粒子状重合体の組成]
そして、第二の粒子状重合体は、繰り返し単位として脂肪族共役ジエン単量体単位を含有することを必要とし、任意に、芳香族ビニル単量体単位と、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位以外の単量体単位(以下、「任意の単量体単位」ということがある。)との少なくとも一方を更に含有する。なお、第二の粒子状重合体は、脂肪族共役ジエン単量体単位と芳香族ビニル単量体単位とを含有することが好ましい。
[[脂肪族共役ジエン単量体単位]]
ここで、第二の粒子状重合体の脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、上述した第一の粒子状重合体の脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の脂肪族共役ジエン単量体単位を形成する脂肪族共役ジエン単量体としては、1,3−ブタジエンおよびイソプレンが好ましく、1,3−ブタジエンがより好ましい。なお、脂肪族共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、第二の粒子状重合体中の脂肪族共役ジエン単量体単位の割合は、第二の粒子状重合体中の全繰り返し単位の量を100質量%とした場合に、20質量%以上60質量%以下である必要があり、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましい。脂肪族共役ジエン単量体単位の含有割合を上記範囲内とすれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができると共に、当該電極を備える二次電池に優れたサイクル特性を発揮させることができる。特に、脂肪族共役ジエン単量体単位の含有割合を25質量%以上とすることで、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。また、脂肪族共役ジエン単量体単位の含有割合を55質量%以下とすることで、バインダー組成物を用いて作製した電極を備える二次電池のサイクル特性を更に向上させることができる。
[[芳香族ビニル単量体単位]]
ここで、第二の粒子状重合体の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、上述した第一の粒子状重合体のその他の単量体単位を形成し得る芳香族ビニル単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の芳香族ビニル単量体単位を形成する芳香族ビニル単量体としては、スチレンおよびスチレンスルホン酸塩が好ましく、スチレンがより好ましい。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
そして、第二の粒子状重合体中の芳香族ビニル単量体単位の割合は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、70質量%以下であることが好ましく、68質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。芳香族ビニル単量体単位の含有割合を上記下限値以上とすれば、バインダー組成物を用いて作製した電極を備える二次電池のサイクル特性を更に向上させることができる。また、芳香族ビニル単量体単位の含有割合を上記上限値以下とすれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。
[[任意の単量体単位]]
第二の粒子状重合体が含有し得る、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位以外の任意の単量体単位としては、特に限定されることなく、上述した脂肪族共役ジエン単量体および芳香族ビニル単量体と共重合可能な既知の単量体に由来する繰り返し単位が挙げられる。具体的には、任意の単量体単位としては、特に限定されることなく、例えば(メタ)アクリル酸エステル単量体単位、親水性基含有単量体単位などが挙げられる。
なお、これらの単量体は一種単独で、または、2種以上を組み合わせて用いることができる。
ここで、第二の粒子状重合体の(メタ)アクリル酸エステル単量体単位および親水性基含有単量体単位を形成し得る(メタ)アクリル酸エステル単量体および親水性基含有単量体としては、上述した第一の粒子状重合体のその他の単量体単位を形成し得る(メタ)アクリル酸エステル単量体および親水性基含有単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルメタクリレート、2−エチルヘキシルアクリレートが好ましい。また、親水性基含有単量体単位を形成する親水性基含有単量体としては、カルボン酸基を有する単量体および水酸基を有する単量体が好ましく、イタコン酸および2−ヒドロキシエチルアクリレート(アクリル酸−2−ヒドロキシエチル)がより好ましい。
そして、第二の粒子状重合体の任意の単量体単位の含有割合は、好ましくは0質量%以上10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下である。
なお、上述した組成を有する第二の粒子状重合体は、特に限定されることなく、上述した単量体を含む単量体組成物を重合することにより調製することができる。ここで、単量体組成物中の各単量体の割合は、通常、所望の重合体における各単量体単位の割合と同様とする。そして、第二の粒子状重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
[体積平均粒子径]
また、第二の粒子状重合体は、体積平均粒子径が0.01μm以上0.5μm以下であることが必要であり、第二の粒子状重合体の体積平均粒子径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.4μm以下であることが好ましく、0.3μm以下であることがより好ましい。第二の粒子状重合体の体積平均粒子径が上記下限値以上であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。また、第二の粒子状重合体の体積平均粒子径が上記上限値以下であれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができると共に当該電極を備える二次電池のサイクル特性を十分に向上させることができる。
なお、第二の粒子状重合体の体積平均粒子径は、乳化剤の使用量などの重合条件を変更することにより調整することができる。
<粒子状重合体の含有割合>
そして、本発明の非水系二次電池電極用バインダー組成物中の第一の粒子状重合体の含有量は、第一の粒子状重合体と第二の粒子状重合体との合計含有量の50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。第一の粒子状重合体と第二の粒子状重合体との合計含有量に対する第一の粒子状重合体の含有量の割合が上記下限値以上であれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。また、第一の粒子状重合体の含有量の割合が上記上限値以下であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。
なお、本発明の非水系二次電池電極用バインダー組成物は、上述した第一の粒子状重合体および第二の粒子状重合体以外の任意の重合体を結着材として含有していてもよい。
<分散媒>
本発明の非水系二次電池電極用バインダー組成物が含有する分散媒としては、特に限定されることなく、水が挙げられる。なお、分散媒は、任意の化合物の水溶液や、少量の有機溶媒と水との混合溶液であってもよい。
<その他の成分>
本発明の非水系二次電池電極用バインダー組成物は、上記成分の他に、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製方法>
そして、本発明の非水系二次電池電極用バインダー組成物は、特に限定されることなく、例えば第一の粒子状重合体を含む分散液と、第二の粒子状重合体を含む分散液と、任意のその他の成分とを混合して調製することができる。なお、粒子状重合体の分散液を用いてバインダー組成物を調製する場合には、分散液が含有している液分をそのままバインダー組成物の分散媒として利用してもよい。
(非水系二次電池電極用スラリー組成物)
本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述したバインダー組成物とを含み、任意にその他の成分を更に含有する。即ち、本発明の非水系二次電池電極用スラリー組成物は、通常、電極活物質と、上述した第一の粒子状重合体および第二の粒子状重合体と、分散媒とを含有し、任意に、その他の成分を更に含有する。そして、本発明の非水系二次電池電極用スラリー組成物は、上述したバインダー組成物を含んでいるので、電極の電極合材層の形成に用いた際に、電極活物質同士および電極活物質と集電体とを良好に結着させることができる。従って、本発明の非水系二次電池電極用スラリー組成物を使用すれば、ピール強度に優れる電極が得られる。また、上記バインダー組成物を含むスラリー組成物を用いて形成した電極を使用すれば、非水系二次電池に優れた電池特性、特にはサイクル特性を発揮させることができる。
なお、以下では、一例として非水系二次電池電極用スラリー組成物がリチウムイオン二次電池負極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極活物質>
電極活物質は、二次電池の電極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池用の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
具体的には、リチウムイオン二次電池用の負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
そして、炭素質材料としては、例えば、易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
更に、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
[電極活物質の性状]
そして、電極活物質は、タップ密度が1.1g/cm3以下であることが好ましく、1.05g/cm3以下であることがより好ましく、1.03g/cm3以下であることが更に好ましい。電極活物質は充放電に伴って膨張および収縮するが、電極活物質のタップ密度を上記上限値以下とすれば、充放電に伴う膨れが生じ難い電極を形成することができる。なお、電極活物質のタップ密度は、通常、0.7g/cm3以上であり、0.75g/cm3以上であることが好ましく、0.8g/cm3以上であることがより好ましい。
ここで、タップ密度の低い電極活物質は、一般に、微細な凹凸を有するものが多い。そのため、結着材として粒子径の小さい粒子状重合体のみを用いた場合には、タップ密度の低い電極活物質の凹部内に粒子状重合体が入り込んでしまい、電極活物質を良好に結着させることができない虞がある。一方で、結着材として粒子径の大きい粒子状重合体のみを用いた場合には、電極活物質と粒子状重合体との接触面積が減少してしまい、電極活物質を良好に結着させることができない虞がある。しかし、本発明の非水系二次電池電極用スラリー組成物は、上述した所定の組成および体積平均粒子径を有する第一の粒子状重合体および第二の粒子状重合体を含んでいるので、タップ密度の低い電極活物質を使用した場合であっても、ピール強度に優れる電極を形成することができる。
<バインダー組成物>
バインダー組成物としては、上述した第一の粒子状重合体および第二の粒子状重合体を含む非水系二次電池電極用バインダー組成物を用いることができる。
なお、バインダー組成物の配合量は、特に限定されることなく、例えば電極活物質100質量部当たり、固形分換算で、第一の粒子状重合体および第二の粒子状重合体の合計量が0.5質量部以上4.0質量部以下となる量とすることができる。
<その他の成分>
スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、スラリー組成物は、カーボンブラック等の導電材を更に含有していてもよい。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
上述したスラリー組成物は、上記各成分を水などの分散媒中に分散または溶解させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより、スラリー組成物を調製することができる。なお、上記各成分と分散媒との混合は、通常、室温〜80℃の範囲で、10分〜数時間行うことができる。また、スラリー組成物の調製に用いる分散媒としては、バインダー組成物と同様のものを用いることができる。そして、スラリー組成物の調製に用いる分散媒には、バインダー組成物が含有していた分散媒も含まれ得る。
(非水系二次電池用電極)
本発明の非水系二次電池用電極は、上記非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備えるものであり、通常は、集電体と、集電体上に形成された電極合材層とを有している。そして、電極合材層には、少なくとも、電極活物質と、第一の粒子状重合体および第二の粒子状重合体に由来する重合体とが含有されている。なお、電極合材層中に含まれている各成分は、上記非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、第一の粒子状重合体および第二の粒子状重合体は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
そして、本発明の非水系二次電池用電極では、本発明の非水系二次電池電極用バインダー組成物を含むスラリー組成物を使用しているので、電極合材層と集電体とが良好に結着する。従って、本発明の非水系二次電池用電極はピール強度に優れている。また、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用バインダー組成物を含むスラリー組成物を使用して形成しているので、当該電極を使用すれば、サイクル特性等の電池特性に優れる二次電池が得られる。
<電極の製造方法>
なお、本発明の非水系二次電池用電極は、例えば、上述したスラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造される。
[塗布工程]
上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える二次電池用電極を得ることができる。
なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させることができる。また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
(非水系二次電池)
本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極および負極の少なくとも一方として本発明の非水系二次電池用電極を用いたものである。そして、本発明の非水系二次電池は、本発明の非水系二次電池用電極を備えているので、サイクル特性等の電池特性に優れている。
なお、本発明の二次電池は、本発明の二次電池用電極を負極として用いたものであることが好ましい。また、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
上述のように、本発明の非水系二次電池用電極が、正極および負極の少なくとも一方として用いられる。即ち、リチウムイオン二次電池の正極が本発明の電極であり負極が他の既知の負極であってもよく、リチウムイオン二次電池の負極が本発明の電極であり正極が他の既知の正極であってもよく、そして、リチウムイオン二次電池の正極および負極の両方が本発明の電極であってもよい。
なお、本発明の非水系二次電池用電極以外の既知の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5〜15質量%することが好ましく、2〜13質量%とすることがより好ましく、5〜10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加することができる。
<セパレータ>
セパレータとしては、特に限定されることなく、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<二次電池の製造方法>
本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
そして、実施例および比較例において、粒子状重合体の体積平均粒子径、負極活物質のタップ密度、負極のピール強度、および、二次電池のサイクル特性は、下記の方法で測定および評価した。
<体積平均粒子径>
固形分濃度0.1質量%に調整した粒子状重合体の水分散液について、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS−230」)により粒子径分布(体積基準)を測定した。そして、得られた粒子径分布において小径側から計算した累積体積が50%となる粒子径を求め、粒子状重合体の体積平均粒子径(D50)とした。
<タップ密度>
負極活物質のタップ密度は、パウダテスタ(登録商標)(ホソカワミクロン社製、製品名「PT−D」)を用いて測定した。具体的には、まず、測定容器に充填した負極活物質の粉体を容器上面にてすり切った。次いで、測定容器に測定器付属のキャップを取り付け、取り付けたキャップの上縁まで負極活物質の粉体を追加充填し、高さ1.8cmから180回繰り返し落下させることにより、タッピングを行った。タッピング終了後にキャップを外し、容器上面にて負極活物質の粉体を再びすり切った。タッピング後にすり切った試料を秤量し、この状態の嵩密度を固め嵩密度、即ちタップ密度(g/cm3)として測定した。
<ピール強度>
作製した負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極合材層の表面を下にして、負極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
A:ピール強度が24N/m以上
B:ピール強度が19N/m以上24N/m未満
C:ピール強度が14N/m以上19N/m未満
D:ピール強度が14N/m未満
<サイクル特性>
作製した容量800mAhのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、25℃の環境下で、1Cの充電レートにて4.35Vまで充電し、1Cの放電レートにて3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。更に、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の容量C1を測定した。そして、容量維持率ΔC=(C1/C0)×100(%)を算出し、下記の基準で評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、サイクル特性に優れていることを示す。
A:容量維持率ΔCが80%以上
B:容量維持率ΔCが75%以上80%未満
C:容量維持率ΔCが70%以上75%未満
D:容量維持率ΔCが70%未満
(実施例1)
<第一の粒子状重合体の準備>
第一の粒子状重合体として体積平均粒子径が0.9μmの天然ゴム(NR)の粒子を含有する天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」、固形分濃度62%)を準備した。
<第二の粒子状重合体の調製>
脂肪族共役ジエン単量体としての1,3−ブタジエン33部、芳香族ビニル単量体としてのスチレン62部、カルボン酸基を有する単量体としてのイタコン酸4部、連鎖移動剤としてのtert−ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.3部の混合物を入れた容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
また、重合開始から4時間後(混合物の70%を耐圧容器Bへと添加した後)に、水酸基を有する単量体としての2−ヒドロキシエチルアクリレート(アクリル酸−2−ヒドロキシエチル)1部を1時間30分に亘って耐圧容器Bに加えた。
重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し、反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、体積平均粒子径が0.15μmの第二の粒子状重合体を含む水分散液(固形分濃度:40%)を得た。
<バインダー組成物の調製>
天然ゴムラテックスと水分散液とを、第一の粒子状重合体と第二の粒子状重合体とが、固形分比率で、第一の粒子状重合体:第二の粒子状重合体=70:30になるように容器へ投入した。そして、スリーワンモーターにより1時間撹拌して、非水系二次電池電極用バインダー組成物を得た。
<スラリー組成物の調製>
ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(日立化成社製、製品名「MAG−E」)70部および天然黒鉛(日本カーボン社製、製品名「604A」)25.6部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、粘度調整剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC−350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、更に25℃で15分間混合して混合液を得た。得られた混合液に、非水系二次電池電極用バインダー組成物を固形分相当で2.2部、およびイオン交換水を入れ、最終固形分濃度が48%となるように調整した。更に10分間混合した後、減圧下で脱泡処理することにより、流動性の良い非水系二次電池負極用スラリー組成物を得た。
<負極の作製>
得られた非水系二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
そして、負極のピール強度を評価した。結果を表1に示す。
<正極の作製>
正極活物質としての体積平均粒子径12μmのLiCoO2を100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS−100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN−メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、非水系二次電池正極用スラリー組成物を得た。
得られた非水系二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
そして、得られた正極原反を、ロールプレス機を用いて圧延することにより、正極合材層を備える正極を得た。
<セパレータの準備>
単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を、120cm×5.5cmに切り抜いた。
<二次電池の作製>
得られたプレス後の正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出したセパレータを、正極がセパレータの長手方向左側に位置するように配置した。更に、得られたプレス後の負極を50cm×5.2cmの長方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うように、かつ、負極がセパレータの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、更にアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。
そして、リチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例2)
天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体(ポリイソプレン)のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
イソプレンゴム(日本ゼオン株式会社製、製品名「Nipol IR2200」)をトルエンに溶解し、濃度25%のイソプレンゴム溶液を準備した。
続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホスクシネートナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%の水溶液を調製した。
上記イソプレンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
最後に、上層部分を100メッシュの金網で濾過して、第一の粒子状重合体としてポリイソプレン(IR)の粒子を含むラテックスを調製した。得られたポリイソプレンのラテックスの固形分濃度は60%、体積平均粒子径は1.2μmであった。
(実施例3)
天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
ブタジエンゴム(日本ゼオン株式会社製、製品名「Nipol BR1220」)をトルエンに溶解し、濃度25%のブタジエンゴム溶液を準備した。
続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホスクシネートナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%水溶液を調製した。
上記ブタジエンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
最後に、上層部分を100メッシュの金網で濾過して、第一の粒子状重合体としてポリブタジエン(BR)の粒子を含むラテックスを調製した。得られたポリブタジエンのラテックスの固形分濃度は60%、体積平均粒子径は1.1μmであった。
(実施例4)
天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を固形分濃度が10%になるまで希釈し、30日間静置した。その後、全体の15%の量の上澄みを除去し、第一の粒子状重合体として体積平均粒子径が2.3μmの天然ゴム(NR)の粒子を含有するラテックスを得た。
(実施例5)
第二の粒子状重合体の調製時に、1,3−ブタジエンの量を24部に変更し、スチレンの量を71部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例6)
第二の粒子状重合体の調製時に、1,3−ブタジエンの量を53部に変更し、スチレンの量を42部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例7)
第二の粒子状重合体の調製時に、tert−ドデシルメルカプタンの量を0.4部に変更し、ラウリル硫酸ナトリウムの量を0.5部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例8)
第二の粒子状重合体の調製時に、tert−ドデシルメルカプタンの量を0.2部に変更し、ラウリル硫酸ナトリウムの量を0.1部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例9〜10)
バインダー組成物の調製時に、天然ゴムラテックスと水分散液との混合比率を、それぞれ、第一の粒子状重合体:第二の粒子状重合体=55:45(実施例9)、第一の粒子状重合体:第二の粒子状重合体=90:10(実施例10)になるように変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例1)
天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を固形分濃度が10%になるまで希釈し、30日間静置した。その後、全体の20%の量の上澄みを除去し、第一の粒子状重合体として体積平均粒子径が3.0μmの天然ゴム(NR)の粒子を含有するラテックスを得た。
(比較例2)
第二の粒子状重合体の調製時に、1,3−ブタジエンの量を15部に変更し、スチレンの量を80部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例3)
第二の粒子状重合体の調製時に、1,3−ブタジエンの量を70部に変更し、スチレンの量を25部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例4)
バインダー組成物の調製時に第一の粒子状重合体を使用せずに第二の粒子状重合体のみを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例5)
天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
脂肪族共役ジエン単量体としての1,3−ブタジエン95部、芳香族ビニル単量体としてのスチレン5部、連鎖移動剤としてのtert−ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.2部の混合物を入れた容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し、反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、第一の粒子状重合体として体積平均粒子径が0.25μmのスチレン−ブタジエン共重合体(SBR)の粒子を含む水分散液(固形分濃度:40%)を得た。
(比較例6)
第二の粒子状重合体として以下のようにして調製した第二の粒子状重合体(ポリイソプレン)を使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第二の粒子状重合体の調製>
イソプレンゴム(日本ゼオン株式会社製、製品名「Nipol IR2200」)をトルエンに溶解し、濃度25%のイソプレンゴム溶液を準備した。
続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンジナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%の水溶液を調製した。
上記イソプレンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
最後に、上層部分を100メッシュの金網で濾過して、第二の粒子状重合体としてポリイソプレン(IR)の粒子を含むラテックスを調製した。得られたポリイソプレンのラテックスの固形分濃度は60%、体積平均粒子径は1.2μmであった。
なお、以下に示す表1中、
「NR」は、天然ゴムを示し、
「IR」は、ポリイソプレンを示し、
「BR」は、ポリブタジエンを示し、
「SBR」は、スチレン−ブタジエン共重合体を示し、
「IP」は、イソプレン単位を示し、
「BD」は、1,3−ブタジエン単位を示し、
「ST」は、スチレン単位を示し、
「IA」は、イタコン酸単位を示し、
「2−HEA」は、2−ヒドロキシエチルアクリレート単位を示す。
Figure 0006477398
表1より、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体とを併用した実施例1〜10では、ピール強度に優れる負極およびサイクル特性に優れる二次電池が得られることが分かる。また、表1より、体積平均粒子径が2.5μmよりも大きい第一の粒子状重合体を用いた比較例1では、二次電池のサイクル特性が低下してしまうことが分かる。更に、表1より、脂肪族共役ジエン単量体単位の含有割合が上記範囲外の第二の粒子状重合体を用いた比較例2および3、第二の粒子状重合体のみを使用した比較例4、体積平均粒子径が0.6μmよりも小さい第一の粒子状重合体を用いた比較例5、並びに、体積平均粒子径が0.5μmよりも大きく且つ脂肪族共役ジエン単量体単位の含有割合が上記範囲外の第二の粒子状重合体を用いた比較例6では、負極のピール強度が低下すると共に二次電池のサイクル特性が低下してしまうことが分かる。
本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
また、本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用電極を提供することができる。
更に、本発明によれば、サイクル特性等の電池特性に優れる非水系二次電池を提供することができる。

Claims (8)

  1. 脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、
    脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体と、
    を含む、非水系二次電池電極用バインダー組成物。
  2. 前記第二の粒子状重合体が、芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で更に含有する、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3. 前記第一の粒子状重合体が天然ゴムである、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4. 前記第一の粒子状重合体の含有量が、前記第一の粒子状重合体と前記第二の粒子状重合体との合計含有量の50質量%以上90質量%以下である、請求項1〜3の何れかに記載の非水系二次電池電極用バインダー組成物。
  5. 電極活物質と、請求項1〜4の何れかに記載の非水系二次電池電極用バインダー組成物とを含む、非水系二次電池電極用スラリー組成物。
  6. 前記電極活物質のタップ密度が1.1g/cm3以下である、請求項5に記載の非水系二次電池電極用スラリー組成物。
  7. 請求項5または6に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  8. 正極、負極、電解液およびセパレータを備え、
    前記正極および負極の少なくとも一方が請求項7に記載の非水系二次電池用電極である、非水系二次電池。
JP2015194187A 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Active JP6477398B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015194187A JP6477398B2 (ja) 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
PL16850668T PL3358661T3 (pl) 2015-09-30 2016-09-27 Kompozycja wiążąca elektrody niewodnej baterii akumulatorowej, kompozycja zawiesinowa elektrody niewodnej baterii akumulatorowej, elektroda niewodnej baterii akumulatorowej i niewodna bateria akumulatorowa
KR1020187007975A KR102661643B1 (ko) 2015-09-30 2016-09-27 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
EP16850668.1A EP3358661B1 (en) 2015-09-30 2016-09-27 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
CN201680054939.3A CN108140838B (zh) 2015-09-30 2016-09-27 非水系二次电池电极用粘结剂组合物、浆料组合物、电极以及非水系二次电池
HUE16850668A HUE055448T2 (hu) 2015-09-30 2016-09-27 Nem vizes szekunder akkumulátor elektród kötõanyag készítmény, nem vizes szekunder akkumulátor elektród zagykészítmény, nem vizes szekunder akkumulátor elektród és nem vizes szekunder akkumulátor
US15/762,241 US10593948B2 (en) 2015-09-30 2016-09-27 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
PCT/JP2016/004360 WO2017056489A1 (ja) 2015-09-30 2016-09-27 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015194187A JP6477398B2 (ja) 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Publications (2)

Publication Number Publication Date
JP2017069062A JP2017069062A (ja) 2017-04-06
JP6477398B2 true JP6477398B2 (ja) 2019-03-06

Family

ID=58495103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015194187A Active JP6477398B2 (ja) 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Country Status (1)

Country Link
JP (1) JP6477398B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117813346A (zh) * 2021-08-26 2024-04-02 日本瑞翁株式会社 胶乳组合物和浸渍成型体
WO2024024912A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329169B2 (ja) * 1999-07-01 2009-09-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用
JP4273687B2 (ja) * 2001-09-21 2009-06-03 日本ゼオン株式会社 二次電池電極用バインダー組成物および二次電池
CN103460453A (zh) * 2011-02-15 2013-12-18 Jsr株式会社 蓄电设备用电极、电极用浆料、电极用粘结剂组合物以及蓄电设备

Also Published As

Publication number Publication date
JP2017069062A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6828686B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP6798545B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7020118B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JPWO2017056466A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2017170281A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2018180101A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
JP6996504B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019044166A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
JP6996503B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6481581B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US10784502B2 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
KR102661643B1 (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
WO2019181870A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2024004724A1 (ja) 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250