WO2017056489A1 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Download PDF

Info

Publication number
WO2017056489A1
WO2017056489A1 PCT/JP2016/004360 JP2016004360W WO2017056489A1 WO 2017056489 A1 WO2017056489 A1 WO 2017056489A1 JP 2016004360 W JP2016004360 W JP 2016004360W WO 2017056489 A1 WO2017056489 A1 WO 2017056489A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
particulate polymer
electrode
aqueous secondary
mass
Prior art date
Application number
PCT/JP2016/004360
Other languages
English (en)
French (fr)
Inventor
徳一 山本
広司 小林
ジュリアン デルマス
佳代子 滝澤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015194191A external-priority patent/JP6481581B2/ja
Priority claimed from JP2015194187A external-priority patent/JP6477398B2/ja
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to PL16850668T priority Critical patent/PL3358661T3/pl
Priority to CN201680054939.3A priority patent/CN108140838B/zh
Priority to US15/762,241 priority patent/US10593948B2/en
Priority to EP16850668.1A priority patent/EP3358661B1/en
Priority to KR1020187007975A priority patent/KR102661643B1/ko
Publication of WO2017056489A1 publication Critical patent/WO2017056489A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for non-aqueous secondary battery electrodes, a slurry composition for non-aqueous secondary battery electrodes, a non-aqueous secondary battery electrode, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • an electrode for a secondary battery such as a lithium ion secondary battery is usually provided with a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed, for example, by applying a slurry composition obtained by dispersing an electrode active material and a binder composition containing a binder in a dispersion medium on a current collector and drying it. Is done.
  • the binder composition used for forming the electrode mixture layer in order to achieve further performance improvement of the secondary battery.
  • the binders constituting the electrode mixture layer such as an electrode active material are bound to each other. It has been proposed to improve the performance of the secondary battery by improving the property and the binding property (peel strength) between the electrode mixture layer and the current collector.
  • Patent Document 1 a particulate polymer having a primary particle mode diameter of 0.01 ⁇ m or more and less than 0.25 ⁇ m, and a primary particle mode particle diameter of 0.25 ⁇ m or more and less than 3 ⁇ m. It has been proposed to increase the peel strength of an electrode by using a binder obtained by mixing a particulate polymer with a predetermined ratio.
  • the conventional binder composition described above includes a non-aqueous system provided with the electrode while increasing the peel strength of the electrode prepared using the binder composition.
  • battery characteristics for example, cycle characteristics
  • the present invention provides a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode for a non-aqueous secondary battery that has excellent peel strength and can exhibit excellent cycle characteristics for a non-aqueous secondary battery. And it aims at providing the slurry composition for non-aqueous secondary battery electrodes. Another object of the present invention is to provide an electrode for a non-aqueous secondary battery that has excellent peel strength and can exhibit excellent cycle characteristics in the non-aqueous secondary battery. Furthermore, an object of the present invention is to provide a non-aqueous secondary battery excellent in battery characteristics such as cycle characteristics.
  • the present inventor has intensively studied for the purpose of solving the above problems. And this inventor uses together the 1st particulate polymer which has a predetermined composition and an average particle diameter, and the 2nd particulate polymer which has a predetermined composition and an average particle diameter as a binder. Thus, it was found that a binder composition for a non-aqueous secondary battery electrode capable of exhibiting excellent cycle characteristics and excellent cycle characteristics in a non-aqueous secondary battery was obtained, and the present invention was completed. .
  • the present invention aims to advantageously solve the above problems, and the binder composition for a non-aqueous secondary battery electrode of the present invention comprises an aliphatic conjugated diene monomer unit in an amount of more than 90% by mass.
  • the first particulate polymer having a volume average particle size of 0.6 ⁇ m or more and 2.5 ⁇ m or less and an aliphatic conjugated diene monomer unit of 20% by mass or more and 60% by mass or less
  • a second particulate polymer having a volume average particle diameter of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the peel strength is increased. It is possible to form an electrode that is excellent and can exhibit excellent cycle characteristics in a non-aqueous secondary battery.
  • the “volume average particle diameter” refers to a particle diameter (D50) at which the cumulative volume calculated from the small diameter side is 50% in the particle diameter distribution (volume basis) measured by the laser diffraction method. .
  • the second particulate polymer further contains an aromatic vinyl monomer unit in a proportion of 10% by mass to 70% by mass. It is preferable. If the second particulate polymer contains an aromatic vinyl monomer unit in a proportion of 10% by mass or more and 70% by mass or less, the peel strength of the electrode produced using the binder composition is further improved. In addition, the cycle characteristics of the non-aqueous secondary battery can be further improved.
  • the first particulate polymer is preferably natural rubber. If natural rubber is used as the first particulate polymer, the peel strength of the electrode produced using the binder composition can be further improved and the cycle characteristics of the non-aqueous secondary battery can be further improved.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention further contains a protein, and the content of the protein is the first particulate form. The amount is preferably 4.0 ⁇ 10 ⁇ 4 parts by mass or more and 5.0 ⁇ 10 ⁇ 3 parts by mass or less per 100 parts by mass of the polymer.
  • the non-aqueous secondary battery can exhibit more excellent cycle characteristics.
  • the “protein content” can be measured by the Kjeldahl method.
  • the “protein content” is measured after removing the component, or by separately measuring the nitrogen content derived from the component. By subtracting, it can be obtained by the Kjeldahl method.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention is such that the content of the first particulate polymer is the sum of the first particulate polymer and the second particulate polymer. It is preferable that it is 20 mass% or more and 90 mass% or less of content. If the content of the first particulate polymer is within the above range, the peel strength of the electrode can be sufficiently improved while suppressing the stability of the slurry composition containing the binder composition from decreasing. .
  • the slurry composition for non-aqueous secondary battery electrodes of this invention is an electrode active material and the non-aqueous secondary battery electrode mentioned above. Any of the binder compositions for use. Thus, if the binder composition containing the first particulate polymer and the second particulate polymer is contained, the peel strength is excellent and the cycle characteristics excellent in the non-aqueous secondary battery are exhibited. Can be formed.
  • the tap density of the electrode active material is preferably 1.1 g / cm 3 or less.
  • the tap density of the electrode active material is 1.1 g / cm 3 or less, it is possible to form an electrode that is unlikely to swell due to charge / discharge of the non-aqueous secondary battery.
  • an electrode formed using an electrode active material having a low tap density tends to have a low peel strength, but a binder composition containing a first particulate polymer and a second particulate polymer Can be used to sufficiently improve the peel strength of the electrode.
  • the “tap density” can be measured using the measuring method described in the examples of the present specification.
  • the electrode for non-aqueous secondary batteries of this invention is either of the slurry composition for non-aqueous secondary battery electrodes mentioned above. It is characterized by comprising an electrode mixture layer formed by using. Thus, if the electrode mixture layer is formed using the slurry composition for a non-aqueous secondary battery electrode described above, the cycle strength excellent in peel strength and excellent non-aqueous secondary battery can be exhibited. An electrode for a non-aqueous secondary battery that can be obtained is obtained.
  • the non-aqueous secondary battery of this invention is equipped with a positive electrode, a negative electrode, electrolyte solution, and a separator, At least one of the said positive electrode and negative electrode Is the electrode for a non-aqueous secondary battery described above.
  • the electrode for non-aqueous secondary batteries described above is used, battery characteristics such as cycle characteristics can be sufficiently improved.
  • a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode for a non-aqueous secondary battery that has excellent peel strength and can exhibit excellent cycle characteristics for a non-aqueous secondary battery.
  • the slurry composition for non-aqueous secondary battery electrodes can be provided.
  • a nonaqueous secondary battery excellent in battery characteristics such as cycle characteristics can be provided.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention can be used when preparing a slurry composition for non-aqueous secondary battery electrodes.
  • the slurry composition for non-aqueous secondary battery electrodes prepared using the binder composition for non-aqueous secondary battery electrodes of the present invention is used for forming electrodes of non-aqueous secondary batteries such as lithium ion secondary batteries.
  • the non-aqueous secondary battery of the present invention is characterized by using a non-aqueous secondary battery electrode formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the binder composition for non-aqueous secondary battery electrodes and the slurry composition for non-aqueous secondary battery electrodes of the present invention can be particularly preferably used when forming a negative electrode of a non-aqueous secondary battery.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention includes a first particulate polymer and a second particulate polymer having different compositions from each other, and can optionally be blended in an electrode of a secondary battery. It contains further ingredients. Moreover, the binder composition for non-aqueous secondary battery electrodes of the present invention usually further contains a dispersion medium such as water.
  • the first particulate polymer contains an aliphatic conjugated diene monomer unit in a proportion of more than 90% by mass
  • the second particulate A polymer contains an aliphatic conjugated diene monomer unit in the ratio of 20 mass% or more and 60 mass% or less.
  • the volume average particle diameter of the first particulate polymer is 0.6 ⁇ m or more and 2.5 ⁇ m or less
  • the volume of the second particulate polymer is The average particle size is 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention comprises a first particulate polymer having a predetermined composition and a volume average particle size, and a second particle having a predetermined composition and a volume average particle size. Since both are contained in the shape polymer, the electrode active materials and the electrode active materials and the current collector can be favorably bound when used for forming the electrode mixture layer of the electrode. Therefore, if the binder composition for nonaqueous secondary battery electrodes of the present invention is used, an electrode having excellent peel strength can be obtained. In addition, if an electrode formed using a binder composition containing the first particulate polymer and the second particulate polymer is used, battery characteristics excellent in non-aqueous secondary batteries, particularly cycle characteristics, can be obtained. It can be demonstrated.
  • the binder composition for battery electrodes further contains a predetermined amount of protein.
  • the first particulate polymer is natural rubber, if a predetermined amount of protein is contained, the stability of the slurry composition prepared using the binder composition is improved, and a favorable electrode mixture layer is formed. This is because it is possible to sufficiently suppress the occurrence of side reactions (for example, protein degradation) caused by proteins in the secondary battery.
  • the first particulate polymer is an electrode manufactured by forming an electrode mixture layer on a current collector using a slurry composition for a non-aqueous secondary battery electrode prepared using a binder composition.
  • the component contained in the electrode mixture layer is held so as not to be detached from the electrode mixture layer (that is, functions as a binder).
  • the first particulate polymer is required to contain an aliphatic conjugated diene monomer unit as a repeating unit, and optionally, a monomer unit other than the aliphatic conjugated diene monomer unit (hereinafter, "Sometimes referred to as” other monomer units ").
  • the aliphatic conjugated diene monomer capable of forming the aliphatic conjugated diene monomer unit is not particularly limited, and 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene) 2,3-dimethyl-1,3-butadiene and the like. Among them, as the aliphatic conjugated diene monomer, 1,3-butadiene and isoprene are preferable, and isoprene is more preferable. In addition, an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the aliphatic conjugated diene monomer unit in the first particulate polymer is more than 90% by mass when the amount of all repeating units in the first particulate polymer is 100% by mass.
  • the amount must be 100% by mass or less, preferably 92% by mass or more, and more preferably 95% by mass or more.
  • the aliphatic conjugated diene monomer can usually form at least cis-1,4 bond, trans-1,4 bond and vinyl bond monomer units by a polymerization reaction.
  • 1,3-butadiene can usually form monomer units of cis-1,4 bond, trans-1,4 bond and 1,2 bond (vinyl bond) by polymerization reaction.
  • isoprene is usually obtained by polymerization reaction to give monomer units of cis-1,4 bonds and trans-1,4 bonds, and monomer units of 1,2 bonds and 3,4 bonds (vinyl bonds). Can be formed.
  • the ratio of cis-1,4 bonds is preferably 90 mol% or more and 100 mol% or less, and 95 mol% or more. More preferably, it is 99 mol% or more. If the ratio of the monomer units of cis-1,4 bonds in the aliphatic conjugated diene monomer units (100 mol%) of the first particulate polymer is not less than the lower limit of the above range, the binder composition In addition to further improving the peel strength of the electrode produced using the electrode, the cycle characteristics of the secondary battery using the electrode can be further improved.
  • the ratio of the cis-1,4 bond monomer unit in the aliphatic conjugated diene monomer unit can be determined according to the IR method of JIS K6239.
  • examples of the aromatic vinyl monomer capable of forming an aromatic vinyl monomer unit include styrene, styrene sulfonic acid and its salt, ⁇ -methyl styrene, butoxy styrene, and vinyl naphthalene.
  • Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl.
  • Alkyl acrylates such as acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate Esters: methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl Methacrylate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethy
  • examples of the hydrophilic group-containing monomer that can form a hydrophilic group-containing monomer unit include polymerizable monomers having a hydrophilic group.
  • examples of the hydrophilic group-containing monomer include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and a monomer having a hydroxyl group. Is mentioned.
  • monocarboxylic acid and its derivative examples include acrylic acid, methacrylic acid, and crotonic acid.
  • monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, and the like.
  • dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • generates a carboxyl group by hydrolysis can also be used.
  • monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acids such as monobutyl itaconate and dibutyl itaconate.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, Examples include 3-allyloxy-2-hydroxypropanesulfonic acid.
  • “(meth) allyl” means allyl and / or methallyl.
  • Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 Ethylenic acid such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate Unsaturated carboxylic acid alkanol esters; general formula: CH 2 ⁇ CR 1 —COO— (C q H 2q O) p —H (wherein p is an integer of 2 to 9, q is an integer of 2 to 4, esters R 1 is a polyalkylene glycol and (meth) acrylic acid represented by hydrogen or a methyl group); 2- hydro Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as c
  • the content ratio of other monomer units in the first particulate polymer is preferably 0% by mass or more and less than 10% by mass, more preferably 8% by mass or less, and further preferably 5% by mass or less. If the content rate of another monomer unit is less than 10 mass%, it can suppress that the stability of the slurry composition containing a binder composition falls.
  • the first particulate polymer having the above-described composition may be a polymer prepared by artificially polymerizing a monomer composition containing the above-described monomer, or natural rubber. It may be.
  • the first particulate polymer is preferably made of natural rubber. That is, the binder composition is preferably prepared using a natural rubber latex in which natural rubber particles are dispersed in a dispersion medium such as water.
  • the ratio of each monomer in the monomer composition is usually the desired polymer. It is the same as the ratio of each monomer unit in.
  • the polymerization mode of the first particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used.
  • addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used can also be generally used.
  • the first particulate polymer needs to have a volume average particle diameter of 0.6 ⁇ m or more and 2.5 ⁇ m or less, and the volume average particle diameter of the first particulate polymer is 0.7 ⁇ m or more. It is preferably 0.8 ⁇ m or more, more preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and further preferably 1.0 ⁇ m or less. If the volume average particle diameter of the first particulate polymer is within the above range, the peel strength of the electrode produced using the binder composition can be sufficiently improved. Moreover, if the volume average particle diameter of the first particulate polymer is not more than the above upper limit value, excellent cycle characteristics can be exhibited in the secondary battery.
  • the volume average particle diameter of the first particulate polymer can be adjusted using sedimentation separation, classification, or the like. Further, when the first particulate polymer is prepared by artificially polymerizing the monomer composition, the volume average particle diameter of the first particulate polymer is a polymerization amount such as the amount of emulsifier used. It can be adjusted by changing the conditions.
  • the second particulate polymer is an electrode manufactured by forming an electrode mixture layer on a current collector using a slurry composition for a nonaqueous secondary battery electrode prepared using a binder composition.
  • the components contained in the electrode mixture layer are held so as not to be detached from the electrode mixture layer (that is, function as a binder together with the first particulate polymer described above).
  • composition of second particulate polymer contains an aliphatic conjugated diene monomer unit as a repeating unit, optionally an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit. And at least one of monomer units other than the aromatic vinyl monomer unit (hereinafter sometimes referred to as “arbitrary monomer unit”).
  • the second particulate polymer preferably contains an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
  • the aliphatic conjugated diene monomer capable of forming the aliphatic conjugated diene monomer unit of the second particulate polymer the aliphatic conjugated diene monomer of the first particulate polymer described above is used.
  • the thing similar to the aliphatic conjugated diene monomer which can form a unit is mentioned.
  • 1,3-butadiene and isoprene are preferable and 1,3-butadiene is more preferable as the aliphatic conjugated diene monomer forming the aliphatic conjugated diene monomer unit of the second particulate polymer.
  • an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the aliphatic conjugated diene monomer unit in the second particulate polymer is 20% by mass or more when the amount of all repeating units in the second particulate polymer is 100% by mass. It is necessary to be 60% by mass or less, preferably 25% by mass or more, more preferably 30% by mass or more, preferably 55% by mass or less, and more preferably 50% by mass or less. Preferably, it is 40 mass% or less. If the content ratio of the aliphatic conjugated diene monomer unit is within the above range, the peel strength of the electrode prepared using the binder composition can be sufficiently improved, and the secondary battery including the electrode is excellent. Cycle characteristics can be exhibited.
  • the peel strength of the electrode produced using the binder composition can be further improved.
  • the cycle characteristic of a secondary battery provided with the electrode produced using the binder composition can be further improved by the content rate of an aliphatic conjugated diene monomer unit being 55 mass% or less.
  • aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit of the second particulate polymer
  • other monomer units of the above-mentioned first particulate polymer are formed.
  • the thing similar to the obtained aromatic vinyl monomer is mentioned.
  • aromatic vinyl monomer forming the aromatic vinyl monomer unit of the second particulate polymer styrene and styrene sulfonate are preferable, and styrene is more preferable.
  • an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the aromatic vinyl monomer unit in the second particulate polymer is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass or more. Is more preferably 30% by mass or more, particularly preferably 50% by mass or more, preferably 70% by mass or less, more preferably 68% by mass or less, and 65% by mass. More preferably, it is as follows.
  • the content ratio of the aromatic vinyl monomer unit is set to the above lower limit value or more, the cycle characteristics of a secondary battery including an electrode produced using the binder composition can be further improved.
  • the content rate of an aromatic vinyl monomer unit shall be below the said upper limit, the peel strength of the electrode produced using the binder composition can further be improved.
  • Any monomer unit other than the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit, which can be contained in the second particulate polymer, is not particularly limited and is described above. Examples thereof include a repeating unit derived from a known monomer copolymerizable with an aliphatic conjugated diene monomer and an aromatic vinyl monomer.
  • the arbitrary monomer unit is not particularly limited, and examples thereof include a (meth) acrylic acid ester monomer unit and a hydrophilic group-containing monomer unit.
  • a hydrophilic group-containing monomer unit is preferable.
  • these monomers can be used individually by 1 type or in combination of 2 or more types.
  • the (meth) acrylic acid ester monomer unit and the hydrophilic group-containing monomer can form the (meth) acrylic acid ester monomer unit and the hydrophilic group-containing monomer unit of the second particulate polymer.
  • the body include the same (meth) acrylic acid ester monomers and hydrophilic group-containing monomers that can form other monomer units of the first particulate polymer described above. Of these, methyl methacrylate and 2-ethylhexyl acrylate are preferred as the (meth) acrylate monomer that can form the (meth) acrylate monomer unit of the second particulate polymer.
  • hydrophilic group-containing monomer forming the hydrophilic group-containing monomer unit a monomer having a carboxylic acid group and a monomer having a hydroxyl group are preferable, and itaconic acid and 2-hydroxyethyl acrylate ( 2-hydroxyethyl acrylate) is more preferred.
  • the content ratio of the arbitrary monomer unit of the second particulate polymer is preferably 0% by mass or more and 10% by mass or less, more preferably 7% by mass or less, and further preferably 5% by mass or less. If the content rate of arbitrary monomer units is 10 mass% or less, it can suppress that the stability of the slurry composition containing a binder composition falls.
  • the 2nd particulate polymer which has the composition mentioned above can be prepared by polymerizing the monomer composition containing the monomer mentioned above, without being specifically limited.
  • the ratio of each monomer in the monomer composition is usually the same as the ratio of each monomer unit in the desired polymer.
  • the polymerization mode of the second particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used.
  • addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used can also be generally used.
  • the second particulate polymer needs to have a volume average particle diameter of 0.01 ⁇ m or more and 0.5 ⁇ m or less, and the volume average particle diameter of the second particulate polymer is 0.05 ⁇ m or more. It is preferably 0.1 ⁇ m or more, more preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less, and further preferably 0.2 ⁇ m or less. If the volume average particle diameter of the second particulate polymer is not less than the above lower limit value, it is possible to suppress a decrease in the stability of the slurry composition containing the binder composition.
  • the volume average particle diameter of the second particulate polymer is not more than the above upper limit value, the peel strength of the electrode produced using the binder composition can be sufficiently improved and the secondary provided with the electrode.
  • the cycle characteristics of the battery can be sufficiently improved.
  • the volume average particle diameter of the second particulate polymer can be adjusted by changing the polymerization conditions such as the amount of emulsifier used.
  • the content of the first particulate polymer in the binder composition for a non-aqueous secondary battery electrode of the present invention is the total content of the first particulate polymer and the second particulate polymer. It is preferably 20% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, further preferably 55% by mass or more, and 60% by mass or more. Is more preferably 65% by mass or more, preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and 75% by mass. % Or less is particularly preferable.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention may contain any polymer other than the first particulate polymer and the second particulate polymer described above as a binder. Good.
  • the dispersion medium contained in the binder composition for a non-aqueous secondary battery electrode of the present invention is not particularly limited, and includes water.
  • the dispersion medium may be an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic solvent and water.
  • the protein that can be contained in the binder composition when the first particulate polymer described above is natural rubber is not particularly limited, and is derived from, for example, natural rubber particles used for preparing the binder composition.
  • Examples of the protein include proteins inevitably mixed during the preparation of the binder composition.
  • the protein contained in the binder composition may be a protein intentionally added to the binder composition such as a protein extracted from a natural product and a synthetic protein.
  • the protein content in the binder composition is preferably 4.0 ⁇ 10 ⁇ 4 parts by mass or more per 100 parts by mass of the first particulate polymer (natural rubber), and 4.5 ⁇ 10 6 -4 parts by mass or more, more preferably 5.0 ⁇ 10 ⁇ 4 parts by mass or more, still more preferably 7.0 ⁇ 10 ⁇ 4 parts by mass or more, and 1.5 ⁇ 10 It is particularly preferably 10 ⁇ 3 parts by mass or more, preferably 5.0 ⁇ 10 ⁇ 3 parts by mass or less, more preferably 4.5 ⁇ 10 ⁇ 3 parts by mass or less, and 4.0 ⁇ More preferably, it is 10 ⁇ 3 parts by mass or less.
  • the stability of the slurry composition prepared using the binder composition can be improved. A layer can be formed satisfactorily. Therefore, the peel strength of the electrode and the cycle characteristics of the secondary battery can be sufficiently improved.
  • the protein content is 5.0 ⁇ 10 ⁇ 3 parts by mass or less, the amount of protein contained in the electrode mixture layer formed using the slurry composition containing the binder composition is increased. It can suppress and can fully suppress that the side reaction (for example, decomposition
  • the protein content is not particularly limited, and can be adjusted using a technique such as purification of natural rubber particles used for preparing the binder composition or addition of protein to the binder composition.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention may contain components such as a reinforcing material, a leveling agent, a viscosity modifier, and an electrolyte solution additive in addition to the above components. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention is not particularly limited, for example, a dispersion containing a first particulate polymer, a dispersion containing a second particulate polymer, It can be prepared by mixing with any other components.
  • a dispersion liquid of a particulate polymer you may utilize the liquid part which a dispersion liquid contains as a dispersion medium of a binder composition as it is.
  • operation adjustment of protein by protein addition or purification
  • the slurry composition for a non-aqueous secondary battery electrode of the present invention includes an electrode active material and the binder composition described above, and optionally further includes proteins and / or other components. That is, the slurry composition for a non-aqueous secondary battery electrode of the present invention usually contains an electrode active material, the first particulate polymer and the second particulate polymer described above, and a dispersion medium. Optionally, it further contains proteins and / or other components. And since the slurry composition for nonaqueous secondary battery electrodes of this invention contains the binder composition mentioned above, when it uses for formation of the electrode compound-material layer of an electrode, electrode active materials and electrode active materials And the current collector can be satisfactorily bound.
  • the slurry composition for nonaqueous secondary battery electrodes of the present invention is used, an electrode having excellent peel strength can be obtained. Moreover, if the electrode formed using the slurry composition containing the said binder composition is used, the battery characteristic excellent in the non-aqueous secondary battery, especially cycling characteristics can be exhibited.
  • the slurry composition for non-aqueous secondary battery electrodes is a slurry composition for lithium ion secondary battery negative electrodes is demonstrated as an example, this invention is not limited to the following example.
  • the electrode active material is a material that transfers electrons at the electrode of the secondary battery.
  • release lithium is used normally.
  • examples of the negative electrode active material for a lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
  • examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Quality materials.
  • Examples of the carbonaceous material include graphitizable carbon and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
  • the graphitizable carbon for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
  • examples of the graphite material include natural graphite and artificial graphite.
  • artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
  • the metal-based negative electrode active material is an active material containing a metal, and usually includes an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / The active material which is more than g.
  • the metal-based negative electrode active material for example, lithium metal, a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
  • an active material containing silicon silicon-based negative electrode active material
  • silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiO x , and a composite of a Si-containing material and a conductive carbon obtained by coating or combining a Si-containing material with a conductive carbon. Etc.
  • silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types.
  • the electrode active material preferably has a tap density of 1.1 g / cm 3 or less, more preferably 1.05 g / cm 3 or less, and still more preferably 1.03 g / cm 3 or less. .
  • the electrode active material expands and contracts with charge / discharge, but if the tap density of the electrode active material is set to the above upper limit or less, an electrode that does not easily swell with charge / discharge can be formed.
  • the tap density of the electrode active material is usually at 0.7 g / cm 3 or more, preferably 0.75 g / cm 3 or more, and more preferably 0.8 g / cm 3 or more.
  • many electrode active materials having a low tap density generally have fine irregularities. Therefore, when only a particulate polymer with a small particle diameter is used as the binder, the particulate polymer enters the recesses of the electrode active material with a low tap density, and the electrode active material is bound well. There is a possibility that it cannot be made. On the other hand, when only a particulate polymer having a large particle size is used as the binder, the contact area between the electrode active material and the particulate polymer is reduced, and the electrode active material is bound well. There is a possibility that it cannot be done.
  • the slurry composition for a non-aqueous secondary battery electrode of the present invention includes the first particulate polymer and the second particulate polymer having the predetermined composition and the volume average particle diameter described above, Even when an electrode active material having a low tap density is used, an electrode having excellent peel strength can be formed.
  • a binder composition As a binder composition, the binder composition for non-aqueous secondary battery electrodes containing the 1st particulate polymer mentioned above and the 2nd particulate polymer can be used.
  • the compounding quantity of a binder composition is not specifically limited, For example, per 100 mass parts of electrode active materials, the total amount of a 1st particulate polymer and a 2nd particulate polymer is conversion in solid content. The amount can be 0.5 parts by mass or more and 4.0 parts by mass or less.
  • the binder composition described above when the first particulate polymer is natural rubber and a binder composition containing protein is used, the slurry composition containing the binder composition is natural rubber. 1st particulate polymer which consists of, and protein will be contained.
  • a slurry composition contains the 1st particulate polymer which consists of natural rubber, and protein
  • content of the protein in a slurry composition is 100 mass parts of solid content contained in a slurry composition. It is preferably 6.0 ⁇ 10 ⁇ 6 parts by mass or more, more preferably 1.1 ⁇ 10 ⁇ 5 parts by mass or more, and further preferably 4.0 ⁇ 10 ⁇ 5 parts by mass or more. Preferably, it is 1.0 ⁇ 10 ⁇ 4 parts by mass or less, and more preferably 5.0 ⁇ 10 ⁇ 5 parts by mass or less. If protein content is more than the said lower limit, since stability of a slurry composition can be improved, an electrode compound-material layer can be favorably formed using the said slurry composition.
  • the peel strength of the electrode and the cycle characteristics of the secondary battery can be sufficiently improved.
  • the protein content is less than or equal to the above upper limit, the amount of protein contained in the electrode mixture layer formed using the slurry composition is suppressed, and the protein is attributed to the protein in the secondary battery.
  • the occurrence of such side reactions (for example, protein degradation) can be sufficiently suppressed. Therefore, it can suppress that the cycling characteristics of a secondary battery deteriorate.
  • Other components that can be blended in the slurry composition are not particularly limited, and examples thereof include those similar to other components that can be blended in the binder composition of the present invention.
  • the slurry composition may further contain a conductive material such as carbon black.
  • the other component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the slurry composition described above can be prepared by dispersing or dissolving the above components in a dispersion medium such as water. Specifically, the above components and the dispersion medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a fill mix, etc. Thus, a slurry composition can be prepared.
  • the mixing of each of the above components and the dispersion medium can usually be carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the thing similar to a binder composition can be used as a dispersion medium used for preparation of a slurry composition.
  • the dispersion medium used for preparing the slurry composition can also include the dispersion medium contained in the binder composition.
  • An electrode for a non-aqueous secondary battery according to the present invention comprises an electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode, and usually includes a current collector and a current collector. And an electrode mixture layer formed thereon.
  • the electrode mixture layer contains at least an electrode active material and a polymer derived from the first particulate polymer and the second particulate polymer.
  • each component contained in the electrode mixture layer is contained in the slurry composition for non-aqueous secondary battery electrodes, and a suitable abundance ratio of each of these components is the slurry composition.
  • first particulate polymer and the second particulate polymer exist in the form of particles in the slurry composition, but in the electrode mixture layer formed using the slurry composition, It may be any other shape.
  • the electrode for non-aqueous secondary batteries of the present invention since the slurry composition containing the binder composition for non-aqueous secondary battery electrodes of the present invention is used, the electrode mixture layer and the current collector are good. Bind to. Therefore, the electrode for nonaqueous secondary batteries of the present invention is excellent in peel strength. Moreover, since the electrode for a non-aqueous secondary battery of the present invention is formed using a slurry composition containing the binder composition for a non-aqueous secondary battery electrode of the present invention, if the electrode is used, the cycle A secondary battery excellent in battery characteristics such as characteristics can be obtained.
  • the electrode for non-aqueous secondary batteries of the present invention includes, for example, a step of applying the slurry composition described above on the current collector (application step), and a drying of the slurry composition applied on the current collector. And a step of forming an electrode mixture layer on the current collector (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition is applied.
  • the current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, vacuum drying method, infrared ray, electron beam, etc. The drying method by irradiation is mentioned. By drying the slurry composition on the current collector in this way, an electrode mixture layer is formed on the current collector, and a secondary battery electrode including the current collector and the electrode mixture layer can be obtained. it can.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
  • the adhesion between the electrode mixture layer and the current collector can be improved by the pressure treatment.
  • an electrode compound-material layer contains a curable polymer, it is preferable to harden the said polymer after formation of an electrode compound-material layer.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the non-aqueous secondary battery electrode of the present invention as at least one of the positive electrode and the negative electrode. And since the non-aqueous secondary battery of this invention is equipped with the electrode for non-aqueous secondary batteries of this invention, it is excellent in battery characteristics, such as a cycle characteristic. In addition, it is preferable that the nonaqueous secondary battery of this invention uses the electrode for nonaqueous secondary batteries of this invention as a negative electrode. Moreover, although the case where a secondary battery is a lithium ion secondary battery is demonstrated as an example below, this invention is not limited to the following example.
  • the non-aqueous secondary battery electrode of the present invention is used as at least one of a positive electrode and a negative electrode. That is, the positive electrode of the lithium ion secondary battery may be an electrode of the present invention and the negative electrode may be another known negative electrode, and the negative electrode of the lithium ion secondary battery is an electrode of the present invention and the positive electrode is another known positive electrode. In addition, both the positive electrode and the negative electrode of the lithium ion secondary battery may be the electrode of the present invention. In addition, as known electrodes other than the electrode for non-aqueous secondary batteries of this invention, the electrode formed by forming an electrode compound-material layer on a collector using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte for the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential region.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. For example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. Is more preferable.
  • known additives such as vinylene carbonate, fluoroethylene carbonate, ethyl methyl sulfone and the like can be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume.
  • a microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • the non-aqueous secondary battery of the present invention includes, for example, a positive electrode and a negative electrode that are stacked with a separator interposed therebetween, and are wound into a battery container according to the shape of the battery as necessary. It can manufacture by inject
  • a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, and the like may be provided as necessary.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • ⁇ Volume average particle diameter> For the aqueous dispersion of the particulate polymer adjusted to a solid content concentration of 0.1% by mass, the particle size distribution (volume) was measured by a laser diffraction particle size distribution measuring device (product name “LS-230” manufactured by Beckman Coulter, Inc.). Standard) was measured. And the particle diameter from which the cumulative volume calculated from the small diameter side in the obtained particle diameter distribution becomes 50% was calculated
  • the powder of the negative electrode active material filled in the measurement container was ground on the upper surface of the container.
  • a cap attached to the measuring instrument was attached to the measurement container, and a powder of the negative electrode active material was additionally filled up to the upper edge of the attached cap, and tapping was performed by repeatedly dropping from a height of 1.8 cm to 180 times.
  • the cap was removed, and the negative electrode active material powder was ground again on the upper surface of the container.
  • the sample worn after tapping was weighed, and the bulk density in this state was hardened and measured as the bulk density, that is, the tap density (g / cm 3 ).
  • the nitrogen content determined by the Kjeldahl method was defined as the protein amount.
  • the binder composition was dried for 3 days in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 3 ⁇ 0.3 mm. And about the obtained film, nitrogen content was measured using the Kjeldahl method and protein content was calculated
  • the viscosity was measured using a B-type viscometer (product name “TV-25” manufactured by Toki Sangyo Co., Ltd.), temperature: 25 ° C., rotor: No. 4. Rotor rotation speed: 60 rpm.
  • Viscosity change rate ⁇ M is less than 1.1 times
  • the prepared negative electrode was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • Cellophane tape was affixed on the surface of the negative electrode composite material layer with the surface of the negative electrode composite material layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. Moreover, the cellophane tape was fixed to the test bench.
  • the produced lithium ion secondary battery with a capacity of 800 mAh was allowed to stand for 24 hours in a 25 ° C. environment. Thereafter, under an environment of 25 ° C., a charge / discharge operation of charging to 4.35V at a charge rate of 1C and discharging to 3.0V at a discharge rate of 1C was performed, and an initial capacity C0 was measured.
  • Capacity maintenance ratio ⁇ C (C1 / C0) ⁇ 100 (%) was calculated and evaluated according to the following criteria. The higher the capacity retention ratio, the less the discharge capacity is reduced and the better the cycle characteristics.
  • Example 1 Preparation of first particulate polymer> Natural rubber latex containing natural rubber (NR) particles having a volume average particle diameter of 0.9 ⁇ m as the first particulate polymer (Musashino Chemical Co., Ltd., product name “LA type”, solid content concentration 62%) Got ready.
  • NR natural rubber
  • the resulting mixture was adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixture. To the obtained mixed solution, 2.2 parts of the binder composition for non-aqueous secondary battery electrodes corresponding to the solid content and ion-exchanged water were added, and the final solid content concentration was adjusted to 48%. Furthermore, after mixing for 10 minutes, the slurry composition for non-aqueous secondary battery negative electrodes with sufficient fluidity
  • the negative electrode active material used had a tap density (measured value of artificial graphite and natural graphite) of 0.85 g / cm 3. Then, the stability of the slurry composition was evaluated. Moreover, the protein content of the slurry composition was calculated. The results are shown in Table 1. ⁇ Production of negative electrode> The obtained slurry composition for a non-aqueous secondary battery negative electrode was applied on a copper foil having a thickness of 20 ⁇ m, which is a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m, and then dried. I let you. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes.
  • the obtained positive electrode after pressing was cut into a rectangle of 49 cm ⁇ 5 cm, placed so that the surface on the positive electrode mixture layer side was on the upper side, and a separator cut into 120 cm ⁇ 5.5 cm on the positive electrode mixture layer was Was placed on the left side in the longitudinal direction of the separator. Further, the obtained negative electrode after pressing was cut into a 50 cm ⁇ 5.2 cm rectangle, and on the separator, the negative electrode mixture layer side surface was opposed to the separator, and the negative electrode was positioned on the right side in the longitudinal direction of the separator. Arranged. And the obtained laminated body was wound with the winding machine, and the wound body was obtained.
  • Example 2 Example 1 was used except that the latex of the first particulate polymer (polyisoprene) prepared as follows was used instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.). Thus, a binder composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were produced. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • toluene in the obtained emulsion is distilled off under reduced pressure using a rotary evaporator, and then left to stand for separation in a chromatographic column with a cock for one day, followed by concentration by removing the lower layer after separation. It was. Finally, the upper layer portion was filtered through a 100-mesh wire mesh to prepare a latex containing polyisoprene (IR) particles as the first particulate polymer.
  • IR polyisoprene
  • Example 3 The binder composition was the same as in Example 1 except that the latex of the first particulate polymer prepared as follows was used instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.). Product, slurry composition, negative electrode, positive electrode, separator, and secondary battery. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of first particulate polymer> Butadiene rubber (manufactured by Nippon Zeon Co., Ltd., product name “Nipol BR1220”) was dissolved in toluene to prepare a butadiene rubber solution having a concentration of 25%.
  • Butadiene rubber manufactured by Nippon Zeon Co., Ltd., product name “Nipol BR1220”
  • the obtained pre-mixed liquid was transferred from the tank to a milder (product name “MDN303V” manufactured by Taiheiyo Kiko Co., Ltd.) at a rate of 100 g / min with a metering pump, and stirred at a rotation speed of 20000 rpm to emulsify. (Phase inversion emulsification).
  • toluene in the obtained emulsion is distilled off under reduced pressure using a rotary evaporator, and then left to stand for separation in a chromatographic column with a cock for one day, followed by concentration by removing the lower layer after separation. It was.
  • the upper layer portion was filtered through a 100-mesh wire mesh to prepare a latex containing polybutadiene (BR) particles as the first particulate polymer.
  • BR polybutadiene
  • the resulting polybutadiene latex had a solid content concentration of 60% and a volume average particle size of 1.1 ⁇ m.
  • Example 4 The binder composition was the same as in Example 1 except that the latex of the first particulate polymer prepared as follows was used instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.). Product, slurry composition, negative electrode, positive electrode, separator, and secondary battery. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of first particulate polymer> Natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.) was diluted to a solid content of 10% and allowed to stand for 30 days. Thereafter, 15% of the total amount of the supernatant was removed to obtain a latex containing natural rubber (NR) particles having a volume average particle diameter of 2.3 ⁇ m as the first particulate polymer.
  • NR natural rubber
  • Example 5 In the same manner as in Example 1 except that the amount of 1,3-butadiene was changed to 24 parts and the amount of styrene was changed to 71 parts at the time of preparing the second particulate polymer, the binder composition and the slurry composition Product, negative electrode, positive electrode, separator, and secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In the same manner as in Example 1 except that the amount of 1,3-butadiene was changed to 53 parts and the amount of styrene was changed to 42 parts at the time of preparing the second particulate polymer, the binder composition and the slurry composition Product, negative electrode, positive electrode, separator, and secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 1, except that the amount of tert-dodecyl mercaptan was changed to 0.4 part and the amount of sodium lauryl sulfate was changed to 0.5 part during the preparation of the second particulate polymer. A composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were produced. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 In the same manner as in Example 1, except that the amount of tert-dodecyl mercaptan was changed to 0.2 parts and the amount of sodium lauryl sulfate was changed to 0.1 parts when preparing the second particulate polymer. A composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were produced. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 The binder composition was the same as in Example 1 except that the latex of the first particulate polymer prepared as follows was used instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.). Product, slurry composition, negative electrode, positive electrode, separator, and secondary battery. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2. ⁇ Preparation of first particulate polymer> Natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.) was diluted to a solid content of 10% and allowed to stand for 30 days.
  • natural rubber latex product name “LA type” manufactured by Musashino Chemical Co., Ltd.
  • the extracted protein is added to the aqueous dispersion containing the natural rubber particles having a volume average particle diameter of 2.1 ⁇ m obtained above, and the content of the protein per 100 parts of the natural rubber particles is 3.0 ⁇ . Adjusted to 10 -3 parts.
  • Example 12 Natural rubber latex containing natural rubber particles having a volume average particle diameter of 0.85 ⁇ m instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd., product name “SELATEX1101, solid”)
  • a binder composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were produced in the same manner as in Example 1 except that a partial concentration of 60% was used.
  • Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 13 The binder composition was the same as in Example 1 except that the latex of the first particulate polymer prepared as follows was used instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.).
  • Product, slurry composition, negative electrode, positive electrode, separator, and secondary battery Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • the supernatant was collected, and the protein contained in the natural rubber latex was extracted from the collected supernatant.
  • the extracted protein is added to a natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.) that has not been subjected to protein extraction, and the protein content per 100 parts of natural rubber particles is 4. Adjusted to 8 ⁇ 10 ⁇ 3 parts.
  • Example 14 In the same manner as in Example 1 except that the amount of 1,3-butadiene was changed to 60 parts and the amount of styrene was changed to 35 parts when preparing the second particulate polymer, the binder composition and the slurry composition Product, negative electrode, positive electrode, separator, and secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 1 A binder composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a two-component film were prepared in the same manner as in Example 1 except that the first particulate polymer latex prepared as follows was used instead of the natural rubber latex. A secondary battery was manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of first particulate polymer> Natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.) was diluted to a solid content of 10% and allowed to stand for 30 days. Thereafter, the supernatant of 20% of the total amount was removed, and a latex containing natural rubber (NR) particles having a volume average particle diameter of 3.0 ⁇ m was obtained as a first particulate polymer.
  • Natural rubber latex product name “LA type” manufactured by Musashino Chemical Co., Ltd.
  • Example 2 In the same manner as in Example 1 except that the amount of 1,3-butadiene was changed to 15 parts and the amount of styrene was changed to 80 parts at the time of preparing the second particulate polymer, the binder composition and the slurry composition Product, negative electrode, positive electrode, separator, and secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The binder composition and slurry composition were the same as in Example 1 except that the amount of 1,3-butadiene was changed to 70 parts and the amount of styrene was changed to 25 parts when preparing the second particulate polymer.
  • Product, negative electrode, positive electrode, separator, and secondary battery were manufactured.
  • Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 The binder composition, slurry composition, negative electrode, and positive electrode were the same as in Example 1 except that only the second particulate polymer was used instead of the first particulate polymer when preparing the binder composition. A separator and a secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A binder composition, a slurry composition, a negative electrode, a positive electrode, a separator, and a two-component film were prepared in the same manner as in Example 1 except that the first particulate polymer latex prepared as follows was used instead of the natural rubber latex. A secondary battery was manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Preparation of first particulate polymer 95 parts 1,3-butadiene as an aliphatic conjugated diene monomer, 5 parts styrene as an aromatic vinyl monomer, 0.3 part tert-dodecyl mercaptan as a chain transfer agent, 0 sodium lauryl sulfate as an emulsifier
  • the addition of the mixture from vessel A containing 2 parts of mixture to pressure vessel B was started simultaneously with the addition of 1 part of potassium persulfate as a polymerization initiator to pressure vessel B, and polymerization was started.
  • the reaction temperature was maintained at 75 ° C. After 5 hours and 30 minutes from the start of the polymerization, the addition of the whole amount of the monomer was completed.
  • the mixture was further heated to 85 ° C. and reacted for 6 hours.
  • the polymerization conversion rate reached 97%
  • the mixture was cooled and the reaction was stopped to obtain a mixture containing a particulate polymer.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8.
  • the unreacted monomer was removed by heating under reduced pressure.
  • the mixture was cooled to obtain an aqueous dispersion (solid content concentration: 40%) containing styrene-butadiene copolymer (SBR) particles having a volume average particle diameter of 0.25 ⁇ m as the first particulate polymer.
  • SBR styrene-butadiene copolymer
  • Example 6 The binder composition, the slurry composition, the negative electrode, and the positive electrode were the same as in Example 1 except that the second particulate polymer (polyisoprene) prepared as follows was used as the second particulate polymer. A separator and a secondary battery were manufactured. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of second particulate polymer> Isoprene rubber (manufactured by Nippon Zeon Co., Ltd., product name “Nipol IR2200”) was dissolved in toluene to prepare an isoprene rubber solution having a concentration of 25%.
  • Isoprene rubber manufactured by Nippon Zeon Co., Ltd., product name “Nipol IR2200”
  • the obtained pre-mixed liquid was transferred from the tank to a milder (product name “MDN303V” manufactured by Taiheiyo Kiko Co., Ltd.) at a rate of 100 g / min with a metering pump, and stirred at a rotation speed of 20000 rpm to emulsify. (Phase inversion emulsification).
  • toluene in the obtained emulsion is distilled off under reduced pressure using a rotary evaporator, and then left to stand for separation in a chromatographic column with a cock for one day, followed by concentration by removing the lower layer after separation. It was.
  • the upper layer portion was filtered through a 100-mesh wire mesh to prepare a latex containing polyisoprene (IR) particles as the second particulate polymer.
  • the resulting polyisoprene latex had a solids concentration of 60% and a volume average particle size of 1.2 ⁇ m.
  • Example 8 instead of natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.), the first particulate polymer latex prepared as follows is used, and the second particulate polymer is not used.
  • a slurry composition, a negative electrode, a positive electrode, a separator and a secondary battery were produced in the same manner as in Example 1 except that the latex of the first particulate polymer was used as it was as the binder composition.
  • Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Natural rubber latex (product name “LA type” manufactured by Musashino Chemical Co., Ltd.) was centrifuged at a rotation speed of 10,000 rpm for 30 minutes using a centrifuge (product name “H-2000B” manufactured by Kokusan Co., Ltd.). Thereafter, the supernatant was collected, and the protein contained in the natural rubber latex was extracted from the collected supernatant. And the protein extracted with respect to the natural rubber latex (product name "LA type” by Musashino Chemical Co., Ltd. product) which has not performed protein extraction operation is added, and the protein content per 100 parts of natural rubber particles is 8. Adjusted to 0 ⁇ 10 ⁇ 3 parts.
  • NR indicates natural rubber
  • IR indicates polyisoprene
  • BR indicates polybutadiene
  • SBR indicates a styrene-butadiene copolymer
  • IP represents an isoprene unit
  • BD indicates 1,3-butadiene unit
  • ST indicates a styrene unit
  • IA indicates an itaconic acid unit
  • 2-HEA refers to 2-hydroxyethyl acrylate units.
  • a negative electrode having excellent peel strength and a secondary battery having excellent cycle characteristics can be obtained.
  • Table 1 also shows that in Comparative Example 1 using the first particulate polymer having a volume average particle size larger than 2.5 ⁇ m, the cycle characteristics of the secondary battery are degraded. Further, from Table 1, Comparative Examples 2 and 3 using the second particulate polymer in which the content of the aliphatic conjugated diene monomer unit is outside the above range, comparison using only the second particulate polymer.
  • Comparative Example 4 Comparative Example 5 using a first particulate polymer having a volume average particle size smaller than 0.6 ⁇ m, and an aliphatic conjugated diene monomer unit having a volume average particle size larger than 0.5 ⁇ m
  • Comparative Example 6 using the second particulate polymer whose content is outside the above range, it can be seen that the peel strength of the negative electrode is lowered and the cycle characteristics of the secondary battery are also lowered.
  • Table 2 it can be seen from Table 2 that in Comparative Examples 7 and 8 using only the first particulate polymer, the cycle characteristics of the secondary battery deteriorate.
  • a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode for a non-aqueous secondary battery that has excellent peel strength and can exhibit excellent cycle characteristics for a non-aqueous secondary battery.
  • the slurry composition for non-aqueous secondary battery electrodes can be provided.
  • a nonaqueous secondary battery excellent in battery characteristics such as cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物を提供する。本発明の非水系二次電池電極用バインダー組成物は、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体とを含む。

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることにより形成される。
 そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。具体的には、例えば、粒子径の異なる2種類の粒子状重合体を結着材として含むバインダー組成物を使用することで、電極活物質などの電極合材層を構成する成分同士の結着性および電極合材層と集電体との結着性(ピール強度)を高め、二次電池の性能を向上させることが提案されている。
 より具体的には、例えば特許文献1では、一次粒子の最頻粒子径が0.01μm以上0.25μm未満である粒子状重合体と、一次粒子の最頻粒子径が0.25μm以上3μm未満である粒子状重合体とを所定の割合で混合してなる結着材を用いることにより、電極のピール強度を高めることが提案されている。
特開2003-100298号公報
 しかし、近年では二次電池の更なる性能向上が求められているところ、上記従来のバインダー組成物には、バインダー組成物を用いて作製した電極のピール強度を高めつつ、当該電極を備える非水系二次電池の電池特性(例えば、サイクル特性など)を更に向上させるという点において改善の余地があった。
 そこで、本発明は、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を提供することを目的とする。
 更に、本発明は、サイクル特性等の電池特性に優れる非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の組成および平均粒子径を有する第一の粒子状重合体と、所定の組成および平均粒子径を有する第二の粒子状重合体とを結着材として併用することにより、結着性に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池電極用バインダー組成物が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体とを含むことを特徴とする。このように、所定の組成および体積平均粒子径を有する第一の粒子状重合体と、所定の組成および体積平均粒子径を有する第二の粒子状重合体とを含有させれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる電極を形成することができる。
 なお、本発明において、「体積平均粒子径」とは、レーザー回折法にて測定した粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(D50)を指す。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、前記第二の粒子状重合体が、芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で更に含有することが好ましい。第二の粒子状重合体が芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で含有していれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができると共に非水系二次電池のサイクル特性を更に向上させることができる。
 更に、本発明の非水系二次電池電極用バインダー組成物は、前記第一の粒子状重合体が天然ゴムであることが好ましい。第一の粒子状重合体として天然ゴムを使用すれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができると共に非水系二次電池のサイクル特性を更に向上させることができる。
 なお、第一の粒子状重合体が天然ゴムである場合、本発明の非水系二次電池電極用バインダー組成物は、タンパク質を更に含有し、前記タンパク質の含有量が、前記第一の粒子状重合体100質量部当たり4.0×10-4質量部以上5.0×10-3質量部以下であることが好ましい。所定量のタンパク質を含有させれば、非水系二次電池に更に優れたサイクル特性を発揮させることができる。
 ここで、本発明において、「タンパク質の含有量」は、ケルダール法により測定することができる。なお、「タンパク質の含有量」の測定に当たり、測定対象の組成物中にタンパク質以外の窒素分を含む成分が含有されている場合(例えば、窒素含有単量体単位を有する粒子状重合体が測定対象の組成物中に含まれている場合など)には、「タンパク質の含有量」は、当該成分を除去してから測定することにより、或いは、当該成分に由来する窒素分を別途測定して減算することにより、ケルダール法で求めることができる。
 そして、本発明の非水系二次電池電極用バインダー組成物は、前記第一の粒子状重合体の含有量が、前記第一の粒子状重合体と前記第二の粒子状重合体との合計含有量の20質量%以上90質量%以下であることが好ましい。第一の粒子状重合体の含有量を上記範囲内にすれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制しつつ、電極のピール強度を十分に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池電極用バインダー組成物の何れかとを含むことを特徴とする。このように、第一の粒子状重合体と第二の粒子状重合体とを含むバインダー組成物を含有させれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる電極を形成することができる。
 ここで、本発明の非水系二次電池電極用スラリー組成物は、前記電極活物質のタップ密度が1.1g/cm以下であることが好ましい。電極活物質のタップ密度が1.1g/cm以下であれば、非水系二次電池の充放電に伴う膨れが生じ難い電極を形成することができる。なお、通常、タップ密度の低い電極活物質を用いて形成した電極はピール強度が低下し易い傾向があるが、第一の粒子状重合体と第二の粒子状重合体とを含むバインダー組成物を使用すれば、電極のピール強度を十分に向上させることができる。
 なお、本発明において、「タップ密度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物の何れかを用いて形成した電極合材層を備えることを特徴とする。このように、上述した非水系二次電池電極用スラリー組成物を使用して電極合材層を形成すれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極が得られる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方が上述した非水系二次電池用電極であることを特徴とする。このように、上述した非水系二次電池用電極を使用すれば、サイクル特性等の電池特性を十分に向上させることができる。
 本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用電極を提供することができる。
 更に、本発明によれば、サイクル特性等の電池特性に優れる非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、非水系二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明の非水系二次電池電極用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極を形成する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した非水系二次電池用電極を用いたことを特徴とする。
 なお、本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物は、非水系二次電池の負極を形成する際に特に好適に用いることができる。
(非水系二次電池電極用バインダー組成物)
 本発明の非水系二次電池電極用バインダー組成物は、互いに組成が異なる第一の粒子状重合体および第二の粒子状重合体を含み、任意に、二次電池の電極に配合され得るその他の成分を更に含有する。また、本発明の非水系二次電池電極用バインダー組成物は、通常、水などの分散媒を更に含有する。そして、本発明の非水系二次電池電極用バインダー組成物は、第一の粒子状重合体が、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、第二の粒子状重合体が、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有する。また、本発明の非水系二次電池電極用バインダー組成物は、第一の粒子状重合体の体積平均粒子径が0.6μm以上2.5μm以下であり、第二の粒子状重合体の体積平均粒子径が0.01μm以上0.5μm以下である。
 そして、本発明の非水系二次電池電極用バインダー組成物は、所定の組成および体積平均粒子径を有する第一の粒子状重合体と、所定の組成および体積平均粒子径を有する第二の粒子状重合体との双方を含有しているので、電極の電極合材層の形成に用いた際に、電極活物質同士および電極活物質と集電体とを良好に結着させることができる。従って、本発明の非水系二次電池電極用バインダー組成物を使用すれば、ピール強度に優れる電極が得られる。また、上記第一の粒子状重合体および第二の粒子状重合体を含むバインダー組成物を用いて形成した電極を使用すれば、非水系二次電池に優れた電池特性、特にはサイクル特性を発揮させることができる。
 なお、以下に詳述するように第一の粒子状重合体としては天然ゴムを用いることができるが、第一の粒子状重合体として天然ゴムを用いる場合には、本発明の非水系二次電池電極用バインダー組成物は、所定量のタンパク質を更に含有することが好ましい。第一の粒子状重合体が天然ゴムである場合に所定量のタンパク質を含有させれば、バインダー組成物を用いて調製したスラリー組成物の安定性を高めて良好な電極合材層の形成を可能にすると共に、二次電池中においてタンパク質に起因した副反応(例えば、タンパク質の分解など)が発生するのを十分に抑制することができるからである。
<第一の粒子状重合体>
 第一の粒子状重合体は、バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する(即ち、結着材として機能する)。
[第一の粒子状重合体の組成]
 そして、第一の粒子状重合体は、繰り返し単位として脂肪族共役ジエン単量体単位を含有することを必要とし、任意に、脂肪族共役ジエン単量体単位以外の単量体単位(以下、「その他の単量体単位」ということがある。)を更に含有する。
[[脂肪族共役ジエン単量体単位]]
 ここで、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエンなどが挙げられる。中でも、脂肪族共役ジエン単量体としては、1,3-ブタジエンおよびイソプレンが好ましく、イソプレンがより好ましい。なお、脂肪族共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、第一の粒子状重合体中の脂肪族共役ジエン単量体単位の割合は、第一の粒子状重合体中の全繰り返し単位の量を100質量%とした場合に、90質量%超100質量%以下である必要があり、92質量%以上であることが好ましく、95質量%以上であることがより好ましい。脂肪族共役ジエン単量体単位の含有割合を90質量%超とすることで、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができる。
 なお、脂肪族共役ジエン単量体は、通常、重合反応によって少なくともシス-1,4結合、トランス-1,4結合およびビニル結合の単量体単位を形成し得る。具体的には、例えば1,3-ブタジエンは、通常、重合反応によってシス-1,4結合、トランス-1,4結合および1,2結合(ビニル結合)の単量体単位を形成し得る。また、例えばイソプレンは、通常、重合反応によってシス-1,4結合およびトランス-1,4結合の単量体単位、並びに、1,2結合および3,4結合(ビニル結合)の単量体単位を形成し得る。そして、第一の粒子状重合体の脂肪族共役ジエン単量体単位においては、シス-1,4結合の割合が90モル%以上100モル%以下であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることが更に好ましい。第一の粒子状重合体の脂肪族共役ジエン単量体単位(100モル%)中のシス-1,4結合の単量体単位の割合が上記範囲の下限値以上であれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させると共に、当該電極を用いた二次電池のサイクル特性を更に向上させることができる。なお、脂肪族共役ジエン単量体単位中のシス-1,4結合の単量体単位の割合は、JIS K6239のIR法に準拠して求めることができる。
[[その他の単量体単位]]
 第一の粒子状重合体が含有し得る、上述した脂肪族共役ジエン単量体単位以外のその他の単量体単位としては、特に限定されることなく、上述した脂肪族共役ジエン単量体と共重合可能な既知の単量体に由来する繰り返し単位が挙げられる。具体的には、その他の単量体単位としては、特に限定されることなく、例えば芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、親水性基含有単量体単位などが挙げられる。
 なお、これらの単量体は一種単独で、または、2種以上を組み合わせて用いることができる。また、本発明において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 ここで、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、ブトキシスチレン、並びに、ビニルナフタレンなどが挙げられる。
 また、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
 更に、親水性基含有単量体単位を形成し得る親水性基含有単量体としては、親水性基を有する重合可能な単量体が挙げられる。具体的には、親水性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、水酸基を有する単量体が挙げられる。
 そして、カルボン酸基を有する単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基を有する単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
 スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本発明において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 リン酸基を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 なお、本発明において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 水酸基を有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH=CR-COO-(C2qO)-H(式中、pは2~9の整数、qは2~4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 そして、第一の粒子状重合体のその他の単量体単位の含有割合は、好ましくは0質量%以上10質量%未満、より好ましくは8質量%以下、更に好ましくは5質量%以下である。その他の単量体単位の含有割合が10質量%未満であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。
 ここで、上述した組成を有する第一の粒子状重合体は、上述した単量体を含む単量体組成物を人工的に重合することにより調製した重合体であってもよいし、天然ゴムであってもよい。中でも、電極のピール強度および二次電池のサイクル特性を更に向上させる観点からは、第一の粒子状重合体は天然ゴムからなることが好ましい。即ち、バインダー組成物は、水などの分散媒中に天然ゴム粒子が分散してなる天然ゴムのラテックスなどを用いて調製することが好ましい。
 なお、単量体組成物を人工的に重合することにより第一の粒子状重合体を調製する場合には、単量体組成物中の各単量体の割合は、通常、所望の重合体における各単量体単位の割合と同様とする。そして、第一の粒子状重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
[体積平均粒子径]
 また、第一の粒子状重合体は、体積平均粒子径が0.6μm以上2.5μm以下であることが必要であり、第一の粒子状重合体の体積平均粒子径は、0.7μm以上であることが好ましく、0.8μm以上であることがより好ましく、2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることが更に好ましい。第一の粒子状重合体の体積平均粒子径が上記範囲内であれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができる。また、第一の粒子状重合体の体積平均粒子径が上記上限値以下であれば、二次電池に優れたサイクル特性を発揮させることができる。
 なお、第一の粒子状重合体として天然ゴムを用いる場合には、第一の粒子状重合体の体積平均粒子径は、沈降分離や分級などを用いて調整することができる。また、単量体組成物を人工的に重合することにより第一の粒子状重合体を調製する場合には、第一の粒子状重合体の体積平均粒子径は、乳化剤の使用量などの重合条件を変更することにより調整することができる。
<第二の粒子状重合体>
 第二の粒子状重合体は、バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物を使用して集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持する(即ち、上述した第一の粒子状重合体と共に結着材として機能する)。
[第二の粒子状重合体の組成]
 そして、第二の粒子状重合体は、繰り返し単位として脂肪族共役ジエン単量体単位を含有することを必要とし、任意に、芳香族ビニル単量体単位と、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位以外の単量体単位(以下、「任意の単量体単位」ということがある。)との少なくとも一方を更に含有する。なお、第二の粒子状重合体は、脂肪族共役ジエン単量体単位と芳香族ビニル単量体単位とを含有することが好ましい。
[[脂肪族共役ジエン単量体単位]]
 ここで、第二の粒子状重合体の脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、上述した第一の粒子状重合体の脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の脂肪族共役ジエン単量体単位を形成する脂肪族共役ジエン単量体としては、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。なお、脂肪族共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、第二の粒子状重合体中の脂肪族共役ジエン単量体単位の割合は、第二の粒子状重合体中の全繰り返し単位の量を100質量%とした場合に、20質量%以上60質量%以下である必要があり、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。脂肪族共役ジエン単量体単位の含有割合を上記範囲内とすれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができると共に、当該電極を備える二次電池に優れたサイクル特性を発揮させることができる。特に、脂肪族共役ジエン単量体単位の含有割合を25質量%以上とすることで、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。また、脂肪族共役ジエン単量体単位の含有割合を55質量%以下とすることで、バインダー組成物を用いて作製した電極を備える二次電池のサイクル特性を更に向上させることができる。
[[芳香族ビニル単量体単位]]
 ここで、第二の粒子状重合体の芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、上述した第一の粒子状重合体のその他の単量体単位を形成し得る芳香族ビニル単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の芳香族ビニル単量体単位を形成する芳香族ビニル単量体としては、スチレンおよびスチレンスルホン酸塩が好ましく、スチレンがより好ましい。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、第二の粒子状重合体中の芳香族ビニル単量体単位の割合は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、30質量%以上であることが一層好ましく、50質量%以上であることが特に好ましく、70質量%以下であることが好ましく、68質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。芳香族ビニル単量体単位の含有割合を上記下限値以上とすれば、バインダー組成物を用いて作製した電極を備える二次電池のサイクル特性を更に向上させることができる。また、芳香族ビニル単量体単位の含有割合を上記上限値以下とすれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。
[[任意の単量体単位]]
 第二の粒子状重合体が含有し得る、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位以外の任意の単量体単位としては、特に限定されることなく、上述した脂肪族共役ジエン単量体および芳香族ビニル単量体と共重合可能な既知の単量体に由来する繰り返し単位が挙げられる。具体的には、任意の単量体単位としては、特に限定されることなく、例えば(メタ)アクリル酸エステル単量体単位、親水性基含有単量体単位などが挙げられる。中でも、任意の単量体単位としては、親水性基含有単量体単位が好ましい。
 なお、これらの単量体は一種単独で、または、2種以上を組み合わせて用いることができる。
 ここで、第二の粒子状重合体の(メタ)アクリル酸エステル単量体単位および親水性基含有単量体単位を形成し得る(メタ)アクリル酸エステル単量体および親水性基含有単量体としては、上述した第一の粒子状重合体のその他の単量体単位を形成し得る(メタ)アクリル酸エステル単量体および親水性基含有単量体と同様のものが挙げられる。中でも、第二の粒子状重合体の(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、メチルメタクリレート、2-エチルヘキシルアクリレートが好ましい。また、親水性基含有単量体単位を形成する親水性基含有単量体としては、カルボン酸基を有する単量体および水酸基を有する単量体が好ましく、イタコン酸および2-ヒドロキシエチルアクリレート(アクリル酸-2-ヒドロキシエチル)がより好ましい。
 そして、第二の粒子状重合体の任意の単量体単位の含有割合は、好ましくは0質量%以上10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下である。任意の単量体単位の含有割合が10質量%以下であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。
 なお、上述した組成を有する第二の粒子状重合体は、特に限定されることなく、上述した単量体を含む単量体組成物を重合することにより調製することができる。ここで、単量体組成物中の各単量体の割合は、通常、所望の重合体における各単量体単位の割合と同様とする。そして、第二の粒子状重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とすることができる。
[体積平均粒子径]
 また、第二の粒子状重合体は、体積平均粒子径が0.01μm以上0.5μm以下であることが必要であり、第二の粒子状重合体の体積平均粒子径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.4μm以下であることが好ましく、0.3μm以下であることがより好ましく、0.2μm以下であることが更に好ましい。第二の粒子状重合体の体積平均粒子径が上記下限値以上であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。また、第二の粒子状重合体の体積平均粒子径が上記上限値以下であれば、バインダー組成物を用いて作製した電極のピール強度を十分に向上させることができると共に当該電極を備える二次電池のサイクル特性を十分に向上させることができる。
 なお、第二の粒子状重合体の体積平均粒子径は、乳化剤の使用量などの重合条件を変更することにより調整することができる。
<粒子状重合体の含有割合>
 そして、本発明の非水系二次電池電極用バインダー組成物中の第一の粒子状重合体の含有量は、第一の粒子状重合体と第二の粒子状重合体との合計含有量の20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、55質量%以上であることが一層好ましく、60質量%以上であることがより一層好ましく、65質量%以上であることが特に好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましく、75質量%以下であることが特に好ましい。第一の粒子状重合体と第二の粒子状重合体との合計含有量に対する第一の粒子状重合体の含有量の割合が上記下限値以上であれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。また、第一の粒子状重合体の含有量の割合が上記上限値以下であれば、バインダー組成物を含むスラリー組成物の安定性が低下するのを抑制することができる。
 なお、本発明の非水系二次電池電極用バインダー組成物は、上述した第一の粒子状重合体および第二の粒子状重合体以外の任意の重合体を結着材として含有していてもよい。
<分散媒>
 本発明の非水系二次電池電極用バインダー組成物が含有する分散媒としては、特に限定されることなく、水が挙げられる。なお、分散媒は、任意の化合物の水溶液や、少量の有機溶媒と水との混合溶液であってもよい。
<タンパク質>
 上述した第一の粒子状重合体が天然ゴムである場合にバインダー組成物が含有し得るタンパク質としては、特に限定されることなく、例えば、バインダー組成物の調製に用いた天然ゴム粒子に由来するタンパク質などの、バインダー組成物の調製時に不可避的に混入するタンパク質が挙げられる。また、バインダー組成物が含有するタンパク質は、天然物から抽出したタンパク質および合成タンパク質などのバインダー組成物に対して意図的に添加されたタンパク質であってもよい。
[タンパク質含有量]
 そして、バインダー組成物中のタンパク質の含有量は、第一の粒子状重合体(天然ゴム)100質量部当たり、4.0×10-4質量部以上であることが好ましく、4.5×10-4質量部以上であることがより好ましく、5.0×10-4質量部以上であることが更に好ましく、7.0×10-4質量部以上であることが一層好ましく、1.5×10-3質量部以上であることが特に好ましく、5.0×10-3質量部以下であることが好ましく、4.5×10-3質量部以下であることがより好ましく、4.0×10-3質量部以下であることが更に好ましい。タンパク質の含有量が4.0×10-4質量部以上であれば、バインダー組成物を用いて調製したスラリー組成物の安定性を高めることができるので、当該スラリー組成物を用いて電極合材層を良好に形成することができる。従って、電極のピール強度および二次電池のサイクル特性を十分に向上させることができる。また、タンパク質の含有量が5.0×10-3質量部以下であれば、バインダー組成物を含むスラリー組成物を用いて形成した電極合材層中に含まれるタンパク質の量が増加するのを抑制し、二次電池中においてタンパク質に起因した副反応(例えば、タンパク質の分解など)が発生するのを十分に抑制することができる。従って、二次電池のサイクル特性が低下するのを抑制することができる。
 なお、タンパク質の含有量は、特に限定されることなく、バインダー組成物の調製に用いる天然ゴム粒子の精製、または、バインダー組成物へのタンパク質の添加などの手法を用いて調整することができる。
<その他の成分>
 本発明の非水系二次電池電極用バインダー組成物は、上記成分の他に、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製方法>
 そして、本発明の非水系二次電池電極用バインダー組成物は、特に限定されることなく、例えば第一の粒子状重合体を含む分散液と、第二の粒子状重合体を含む分散液と、任意のその他の成分とを混合して調製することができる。なお、粒子状重合体の分散液を用いてバインダー組成物を調製する場合には、分散液が含有している液分をそのままバインダー組成物の分散媒として利用してもよい。また、タンパク質を含有する非水系二次電池電極用バインダー組成物を調製する場合には、任意に、タンパク質含有量を調整する操作(タンパク質の添加または精製によるタンパク質の除去)を実施することもできる。
(非水系二次電池電極用スラリー組成物)
 本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述したバインダー組成物とを含み、任意に、タンパク質および/またはその他の成分を更に含有する。即ち、本発明の非水系二次電池電極用スラリー組成物は、通常、電極活物質と、上述した第一の粒子状重合体および第二の粒子状重合体と、分散媒とを含有し、任意に、タンパク質および/またはその他の成分を更に含有する。そして、本発明の非水系二次電池電極用スラリー組成物は、上述したバインダー組成物を含んでいるので、電極の電極合材層の形成に用いた際に、電極活物質同士および電極活物質と集電体とを良好に結着させることができる。従って、本発明の非水系二次電池電極用スラリー組成物を使用すれば、ピール強度に優れる電極が得られる。また、上記バインダー組成物を含むスラリー組成物を用いて形成した電極を使用すれば、非水系二次電池に優れた電池特性、特にはサイクル特性を発揮させることができる。
 なお、以下では、一例として非水系二次電池電極用スラリー組成物がリチウムイオン二次電池負極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極活物質>
 電極活物質は、二次電池の電極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池用の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
 具体的には、リチウムイオン二次電池用の負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 そして、炭素質材料としては、例えば、易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 更に、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系負極活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
[電極活物質の性状]
 そして、電極活物質は、タップ密度が1.1g/cm以下であることが好ましく、1.05g/cm以下であることがより好ましく、1.03g/cm以下であることが更に好ましい。電極活物質は充放電に伴って膨張および収縮するが、電極活物質のタップ密度を上記上限値以下とすれば、充放電に伴う膨れが生じ難い電極を形成することができる。なお、電極活物質のタップ密度は、通常、0.7g/cm以上であり、0.75g/cm以上であることが好ましく、0.8g/cm以上であることがより好ましい。
 ここで、タップ密度の低い電極活物質は、一般に、微細な凹凸を有するものが多い。そのため、結着材として粒子径の小さい粒子状重合体のみを用いた場合には、タップ密度の低い電極活物質の凹部内に粒子状重合体が入り込んでしまい、電極活物質を良好に結着させることができない虞がある。一方で、結着材として粒子径の大きい粒子状重合体のみを用いた場合には、電極活物質と粒子状重合体との接触面積が減少してしまい、電極活物質を良好に結着させることができない虞がある。しかし、本発明の非水系二次電池電極用スラリー組成物は、上述した所定の組成および体積平均粒子径を有する第一の粒子状重合体および第二の粒子状重合体を含んでいるので、タップ密度の低い電極活物質を使用した場合であっても、ピール強度に優れる電極を形成することができる。
<バインダー組成物>
 バインダー組成物としては、上述した第一の粒子状重合体および第二の粒子状重合体を含む非水系二次電池電極用バインダー組成物を用いることができる。
 なお、バインダー組成物の配合量は、特に限定されることなく、例えば電極活物質100質量部当たり、固形分換算で、第一の粒子状重合体および第二の粒子状重合体の合計量が0.5質量部以上4.0質量部以下となる量とすることができる。
<タンパク質>
 ここで、上述したバインダー組成物として、第一の粒子状重合体が天然ゴムであり、且つ、タンパク質を含有するバインダー組成物を用いた場合、当該バインダー組成物を含むスラリー組成物は、天然ゴムからなる第一の粒子状重合体とタンパク質とを含有することとなる。
 そして、スラリー組成物が、天然ゴムからなる第一の粒子状重合体とタンパク質とを含有する場合、スラリー組成物中のタンパク質の含有量は、スラリー組成物に含まれている固形分100質量部当たり、6.0×10-6質量部以上であることが好ましく、1.1×10-5質量部以上であることがより好ましく、4.0×10-5質量部以上であることが更に好ましく、1.0×10-4質量部以下であることが好ましく、5.0×10-5質量部以下であることがより好ましい。タンパク質の含有量が上記下限値以上であれば、スラリー組成物の安定性を高めることができるので、当該スラリー組成物を用いて電極合材層を良好に形成することができる。従って、電極のピール強度および二次電池のサイクル特性を十分に向上させることができる。また、タンパク質の含有量が上記上限値以下であれば、スラリー組成物を用いて形成した電極合材層中に含まれるタンパク質の量が増加するのを抑制し、二次電池中においてタンパク質に起因した副反応(例えば、タンパク質の分解など)が発生するのを十分に抑制することができる。従って、二次電池のサイクル特性が低下するのを抑制することができる。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、スラリー組成物は、カーボンブラック等の導電材を更に含有していてもよい。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
 上述したスラリー組成物は、上記各成分を水などの分散媒中に分散または溶解させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより、スラリー組成物を調製することができる。なお、上記各成分と分散媒との混合は、通常、室温~80℃の範囲で、10分~数時間行うことができる。また、スラリー組成物の調製に用いる分散媒としては、バインダー組成物と同様のものを用いることができる。そして、スラリー組成物の調製に用いる分散媒には、バインダー組成物が含有していた分散媒も含まれ得る。
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、上記非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備えるものであり、通常は、集電体と、集電体上に形成された電極合材層とを有している。そして、電極合材層には、少なくとも、電極活物質と、第一の粒子状重合体および第二の粒子状重合体に由来する重合体とが含有されている。なお、電極合材層中に含まれている各成分は、上記非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、第一の粒子状重合体および第二の粒子状重合体は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の非水系二次電池用電極では、本発明の非水系二次電池電極用バインダー組成物を含むスラリー組成物を使用しているので、電極合材層と集電体とが良好に結着する。従って、本発明の非水系二次電池用電極はピール強度に優れている。また、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用バインダー組成物を含むスラリー組成物を使用して形成しているので、当該電極を使用すれば、サイクル特性等の電池特性に優れる二次電池が得られる。
<電極の製造方法>
 なお、本発明の非水系二次電池用電極は、例えば、上述したスラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを経て製造される。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させることができる。また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極および負極の少なくとも一方として本発明の非水系二次電池用電極を用いたものである。そして、本発明の非水系二次電池は、本発明の非水系二次電池用電極を備えているので、サイクル特性等の電池特性に優れている。
 なお、本発明の非水系二次電池は、本発明の非水系二次電池用電極を負極として用いたものであることが好ましい。また、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
 上述のように、本発明の非水系二次電池用電極が、正極および負極の少なくとも一方として用いられる。即ち、リチウムイオン二次電池の正極が本発明の電極であり負極が他の既知の負極であってもよく、リチウムイオン二次電池の負極が本発明の電極であり正極が他の既知の正極であってもよく、そして、リチウムイオン二次電池の正極および負極の両方が本発明の電極であってもよい。
 なお、本発明の非水系二次電池用電極以外の既知の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加することができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<二次電池の製造方法>
 本発明の非水系二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、実施例および比較例において、粒子状重合体の体積平均粒子径、負極活物質のタップ密度、バインダー組成物およびスラリー組成物のタンパク質含有量、スラリー組成物の安定性、負極のピール強度、並びに、二次電池のサイクル特性は、下記の方法で測定および評価した。
<体積平均粒子径>
 固形分濃度0.1質量%に調整した粒子状重合体の水分散液について、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)により粒子径分布(体積基準)を測定した。そして、得られた粒子径分布において小径側から計算した累積体積が50%となる粒子径を求め、粒子状重合体の体積平均粒子径(D50)とした。
<タップ密度>
 負極活物質のタップ密度は、パウダテスタ(登録商標)(ホソカワミクロン社製、製品名「PT-D」)を用いて測定した。具体的には、まず、測定容器に充填した負極活物質の粉体を容器上面にてすり切った。次いで、測定容器に測定器付属のキャップを取り付け、取り付けたキャップの上縁まで負極活物質の粉体を追加充填し、高さ1.8cmから180回繰り返し落下させることにより、タッピングを行った。タッピング終了後にキャップを外し、容器上面にて負極活物質の粉体を再びすり切った。タッピング後にすり切った試料を秤量し、この状態の嵩密度を固め嵩密度、即ちタップ密度(g/cm)として測定した。
<タンパク質含有量>
 バインダー組成物については、ケルダール法で求めた窒素含有量をタンパク質量とした。具体的には、バインダー組成物を湿度50%、温度23~25℃の環境下で3日間乾燥させて、厚み3±0.3mmのフィルムに成膜した。そして、得られたフィルムについて、ケルダール法を用いて窒素含有量を測定し、タンパク質含有量を求めた。
 また、スラリー組成物については、バインダー組成物のタンパク質含有量およびバインダー組成物の配合量からタンパク質含有量を算出した。
<スラリー組成物の安定性>
 スラリー組成物を調製する際に、バインダー組成物を添加する前の混合液の粘度M0(mPa・s)と、バインダー組成物を添加した後の混合液の粘度M1(mPa・s)とを測定した。なお、粘度の測定は、B型粘度計(東機産業社製、製品名「TV-25」)を使用し、温度:25℃、ローター:No.4、ローター回転数:60rpmの条件下で行った。
 そして、粘度変化率ΔM(=M1/M0(倍))を算出し、下記の基準で評価した。粘度変化率ΔMの値が小さいほど、バインダー組成物を添加した際に増粘し難く、スラリー組成物の安定性が高いことを示す。
 A:粘度変化率ΔMが1.1倍未満
 B:粘度変化率ΔMが1.1倍以上1.5倍未満
 C:粘度変化率ΔMが1.5倍以上1.8倍未満
 D:粘度変化率ΔMが1.8倍以上
<ピール強度>
 作製した負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極合材層の表面を下にして、負極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求め、当該平均値をピール強度として、下記の基準で評価した。ピール強度が大きいほど、負極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 A:ピール強度が24N/m以上
 B:ピール強度が19N/m以上24N/m未満
 C:ピール強度が14N/m以上19N/m未満
 D:ピール強度が14N/m未満
<サイクル特性>
 作製した容量800mAhのリチウムイオン二次電池を、25℃の環境下で24時間静置させた。その後、25℃の環境下で、1Cの充電レートにて4.35Vまで充電し、1Cの放電レートにて3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。更に、45℃環境下で同様の充放電の操作を繰り返し、300サイクル後の容量C1を測定した。そして、容量維持率ΔC=(C1/C0)×100(%)を算出し、下記の基準で評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、サイクル特性に優れていることを示す。
 A:容量維持率ΔCが80%以上
 B:容量維持率ΔCが75%以上80%未満
 C:容量維持率ΔCが70%以上75%未満
 D:容量維持率ΔCが70%未満
(実施例1)
<第一の粒子状重合体の準備>
 第一の粒子状重合体として体積平均粒子径が0.9μmの天然ゴム(NR)の粒子を含有する天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」、固形分濃度62%)を準備した。
<第二の粒子状重合体の調製>
 脂肪族共役ジエン単量体としての1,3-ブタジエン33部、芳香族ビニル単量体としてのスチレン62部、カルボン酸基を有する単量体としてのイタコン酸4部、連鎖移動剤としてのtert-ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.3部の混合物を入れた容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
 また、重合開始から4時間後(混合物の70%を耐圧容器Bへと添加した後)に、水酸基を有する単量体としての2-ヒドロキシエチルアクリレート(アクリル酸-2-ヒドロキシエチル)1部を1時間30分に亘って耐圧容器Bに加えた。
 重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
 重合転化率が97%になった時点で冷却し、反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、体積平均粒子径が0.15μmの第二の粒子状重合体を含む水分散液(固形分濃度:40%)を得た。
<バインダー組成物の調製>
 天然ゴムラテックスと水分散液とを、第一の粒子状重合体と第二の粒子状重合体とが、固形分比率で、第一の粒子状重合体:第二の粒子状重合体=70:30になるように容器へ投入した。そして、スリーワンモーターにより1時間撹拌して、非水系二次電池電極用バインダー組成物を得た。
 そして、得られたバインダー組成物のタンパク質含有量を測定した。結果を表1に示す。
<スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(日立化成社製、製品名「MAG-E」)70部および天然黒鉛(日本カーボン社製、製品名「604A」)25.6部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、粘度調整剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、更に25℃で15分間混合して混合液を得た。得られた混合液に、非水系二次電池電極用バインダー組成物を固形分相当で2.2部、およびイオン交換水を入れ、最終固形分濃度が48%となるように調整した。更に10分間混合した後、減圧下で脱泡処理することにより、流動性の良い非水系二次電池負極用スラリー組成物を得た。
 なお、用いた負極活物質のタップ密度(人造黒鉛および天然黒鉛の実測値)は0.85g/cmであった
 そして、スラリー組成物の安定性を評価した。また、スラリー組成物のタンパク質含有量を算出した。結果を表1に示す。
<負極の作製>
 得られた非水系二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
 そして、負極のピール強度を評価した。結果を表1に示す。
<正極の作製>
 正極活物質としての体積平均粒子径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、非水系二次電池正極用スラリー組成物を得た。
 得られた非水系二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、得られた正極原反を、ロールプレス機を用いて圧延することにより、正極合材層を備える正極を得た。
<セパレータの準備>
 単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を、120cm×5.5cmに切り抜いた。
<二次電池の作製>
 得られたプレス後の正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出したセパレータを、正極がセパレータの長手方向左側に位置するように配置した。更に、得られたプレス後の負極を50cm×5.2cmの長方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うように、かつ、負極がセパレータの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF)を空気が残らないように注入し、更にアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。
 そして、リチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例2)  
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体(ポリイソプレン)のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
 イソプレンゴム(日本ゼオン株式会社製、製品名「Nipol IR2200」)をトルエンに溶解し、濃度25%のイソプレンゴム溶液を準備した。
 続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホスクシネートナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%の水溶液を調製した。
 上記イソプレンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
 次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過して、第一の粒子状重合体としてポリイソプレン(IR)の粒子を含むラテックスを調製した。得られたポリイソプレンのラテックスの固形分濃度は60%、体積平均粒子径は1.2μmであった。
(実施例3)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
 ブタジエンゴム(日本ゼオン株式会社製、製品名「Nipol BR1220」)をトルエンに溶解し、濃度25%のブタジエンゴム溶液を準備した。
 続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホスクシネートナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%の水溶液を調製した。
 上記ブタジエンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
 次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過して、第一の粒子状重合体としてポリブタジエン(BR)の粒子を含むラテックスを調製した。得られたポリブタジエンのラテックスの固形分濃度は60%、体積平均粒子径は1.1μmであった。
(実施例4)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を固形分濃度が10%になるまで希釈し、30日間静置した。その後、全体の15%の量の上澄みを除去し、第一の粒子状重合体として体積平均粒子径が2.3μmの天然ゴム(NR)の粒子を含有するラテックスを得た。
(実施例5)
 第二の粒子状重合体の調製時に、1,3-ブタジエンの量を24部に変更し、スチレンの量を71部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例6)
 第二の粒子状重合体の調製時に、1,3-ブタジエンの量を53部に変更し、スチレンの量を42部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例7)
 第二の粒子状重合体の調製時に、tert-ドデシルメルカプタンの量を0.4部に変更し、ラウリル硫酸ナトリウムの量を0.5部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例8)
 第二の粒子状重合体の調製時に、tert-ドデシルメルカプタンの量を0.2部に変更し、ラウリル硫酸ナトリウムの量を0.1部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例9~10)
 バインダー組成物の調製時に、天然ゴムラテックスと水分散液との混合比率を、それぞれ、第一の粒子状重合体:第二の粒子状重合体=55:45(実施例9)、第一の粒子状重合体:第二の粒子状重合体=90:10(実施例10)になるように変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(実施例11)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
<第一の粒子状重合体の調製>
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を固形分濃度が10%になるまで希釈し、30日間静置した。その後、全体の15%の量の上澄みを除去し、第一の粒子状重合体として体積平均粒子径が2.1μmの天然ゴム粒子を含有する水分散液を得た。
 更に、天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を、遠心分離機(株式会社コクサン社製、製品名「H-2000B」)を用いて回転数10000rpmで30分間遠心分離した。その後、上澄みを採取し、採取した上澄みから天然ゴムラテックスに含有されていたタンパク質を抽出した。そして、上記で得られた体積平均粒子径2.1μmの天然ゴム粒子を含有する水分散液に対して抽出したタンパク質を添加し、天然ゴム粒子100部当たりのタンパク質の含有量を3.0×10-3部に調整した。
(実施例12)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて体積平均粒子径が0.85μmの天然ゴム粒子を含有する天然ゴムラテックス(住友ゴム株式会社製、製品名「SELATEX1101、固形分濃度60%」)を使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(実施例13)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
<第一の粒子状重合体の調製>
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を、遠心分離機(株式会社コクサン社製、製品名「H-2000B」)を用いて回転数10000rpmで30分間遠心分離した。その後、上澄みを採取し、採取した上澄みから天然ゴムラテックスに含有されていたタンパク質を抽出した。そして、タンパク質の抽出操作を行っていない天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に対して抽出したタンパク質を添加し、天然ゴム粒子100部当たりのタンパク質の含有量を4.8×10-3部に調整した。
(実施例14)
 第二の粒子状重合体の調製時に、1,3-ブタジエンの量を60部に変更し、スチレンの量を35部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例1)
 天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を固形分濃度が10%になるまで希釈し、30日間静置した。その後、全体の20%の量の上澄みを除去し、第一の粒子状重合体として体積平均粒子径が3.0μmの天然ゴム(NR)の粒子を含有するラテックスを得た。
(比較例2)
 第二の粒子状重合体の調製時に、1,3-ブタジエンの量を15部に変更し、スチレンの量を80部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例3)
 第二の粒子状重合体の調製時に、1,3-ブタジエンの量を70部に変更し、スチレンの量を25部に変更した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例4)
 バインダー組成物の調製時に第一の粒子状重合体を使用せずに第二の粒子状重合体のみを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例5)
 天然ゴムラテックスに替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第一の粒子状重合体の調製>
 脂肪族共役ジエン単量体としての1,3-ブタジエン95部、芳香族ビニル単量体としてのスチレン5部、連鎖移動剤としてのtert-ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.2部の混合物を入れた容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
 重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
 重合転化率が97%になった時点で冷却し、反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、第一の粒子状重合体として体積平均粒子径が0.25μmのスチレン-ブタジエン共重合体(SBR)の粒子を含む水分散液(固形分濃度:40%)を得た。
(比較例6)
 第二の粒子状重合体として以下のようにして調製した第二の粒子状重合体(ポリイソプレン)を使用した以外は実施例1と同様にして、バインダー組成物、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
<第二の粒子状重合体の調製>
 イソプレンゴム(日本ゼオン株式会社製、製品名「Nipol IR2200」)をトルエンに溶解し、濃度25%のイソプレンゴム溶液を準備した。
 続いて、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルポリオキシエチレンスルホン酸ナトリウム、アルキルポリオキシエチレンジナトリウムを1:1:1で混合したものをイオン交換水に溶解し、全固形分濃度2%の水溶液を調製した。
 上記イソプレンゴム溶液500gと上記水溶液500gとをタンク内に投入し、撹拌して予備混合を行った。続いて、得られた予備混合液をタンク内から定量ポンプにて100g/分の速度でマイルダー(太平洋機工社製、製品名「MDN303V」)へと移送し、回転数20000rpmで撹拌して、乳化(転相乳化)した。
 次に、得られた乳化液中のトルエンをロータリーエバポレータにて減圧留去した後、コック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することにより、濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過して、第二の粒子状重合体としてポリイソプレン(IR)の粒子を含むラテックスを調製した。得られたポリイソプレンのラテックスの固形分濃度は60%、体積平均粒子径は1.2μmであった。
(比較例7)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて体積平均粒子径が0.9μmの天然ゴム粒子を含有する天然ゴムラテックス(住友ゴム株式会社製、製品名「SELATEX5101」、固形分濃度60%)を使用し、第二の粒子状重合体を使用せずに天然ゴムラテックス(住友ゴム株式会社製、製品名「SELATEX5101」)をそのままバインダー組成物として使用した以外は実施例1と同様にして、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
(比較例8)
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に替えて以下のようにして調製した第一の粒子状重合体のラテックスを使用し、第二の粒子状重合体を使用せずに第一の粒子状重合体のラテックスをそのままバインダー組成物として使用した以外は実施例1と同様にして、スラリー組成物、負極、正極、セパレータおよび二次電池を製造した。そして、実施例1と同様にして各種評価を行った。結果を表2に示す。
<第一の粒子状重合体の調製>
 天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)を、遠心分離機(株式会社コクサン社製、製品名「H-2000B」)を用いて回転数10000rpmで30分間遠心分離した。その後、上澄みを採取し、採取した上澄みから天然ゴムラテックスに含有されていたタンパク質を抽出した。そして、タンパク質の抽出操作を行っていない天然ゴムラテックス(ムサシノケミカル社製、製品名「LAタイプ」)に対して抽出したタンパク質を添加し、天然ゴム粒子100部当たりのタンパク質の含有量を8.0×10-3部に調整した。
 なお、以下に示す表1中、
「NR」は、天然ゴムを示し、
「IR」は、ポリイソプレンを示し、
「BR」は、ポリブタジエンを示し、
「SBR」は、スチレン-ブタジエン共重合体を示し、
「IP」は、イソプレン単位を示し、
「BD」は、1,3-ブタジエン単位を示し、
「ST」は、スチレン単位を示し、
「IA」は、イタコン酸単位を示し、
「2-HEA」は、2-ヒドロキシエチルアクリレート単位を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~2より、脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体とを併用した実施例1~14では、ピール強度に優れる負極およびサイクル特性に優れる二次電池が得られることが分かる。また、表1より、体積平均粒子径が2.5μmよりも大きい第一の粒子状重合体を用いた比較例1では、二次電池のサイクル特性が低下してしまうことが分かる。更に、表1より、脂肪族共役ジエン単量体単位の含有割合が上記範囲外の第二の粒子状重合体を用いた比較例2および3、第二の粒子状重合体のみを使用した比較例4、体積平均粒子径が0.6μmよりも小さい第一の粒子状重合体を用いた比較例5、並びに、体積平均粒子径が0.5μmよりも大きく且つ脂肪族共役ジエン単量体単位の含有割合が上記範囲外の第二の粒子状重合体を用いた比較例6では、負極のピール強度が低下すると共に二次電池のサイクル特性が低下してしまうことが分かる。また、表2より、第一の粒子状重合体のみを使用した比較例7および8では、二次電池のサイクル特性が低下してしまうことが分かる。
 本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、ピール強度に優れ、且つ、非水系二次電池に優れたサイクル特性を発揮させることが可能な非水系二次電池用電極を提供することができる。
 更に、本発明によれば、サイクル特性等の電池特性に優れる非水系二次電池を提供することができる。

Claims (9)

  1.  脂肪族共役ジエン単量体単位を90質量%超の割合で含有し、且つ、体積平均粒子径が0.6μm以上2.5μm以下である第一の粒子状重合体と、
     脂肪族共役ジエン単量体単位を20質量%以上60質量%以下の割合で含有し、且つ、体積平均粒子径が0.01μm以上0.5μm以下である第二の粒子状重合体と、
    を含む、非水系二次電池電極用バインダー組成物。
  2.  前記第二の粒子状重合体が、芳香族ビニル単量体単位を10質量%以上70質量%以下の割合で更に含有する、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  前記第一の粒子状重合体が天然ゴムである、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4.  タンパク質を更に含有し、
     前記タンパク質の含有量が、前記第一の粒子状重合体100質量部当たり4.0×10-4質量部以上5.0×10-3質量部以下である、請求項3に記載の非水系二次電池電極用バインダー組成物。
  5.  前記第一の粒子状重合体の含有量が、前記第一の粒子状重合体と前記第二の粒子状重合体との合計含有量の20質量%以上90質量%以下である、請求項1~4の何れかに記載の非水系二次電池電極用バインダー組成物。
  6.  電極活物質と、請求項1~5の何れかに記載の非水系二次電池電極用バインダー組成物とを含む、非水系二次電池電極用スラリー組成物。
  7.  前記電極活物質のタップ密度が1.1g/cm以下である、請求項6に記載の非水系二次電池電極用スラリー組成物。
  8.  請求項6または7に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  9.  正極、負極、電解液およびセパレータを備え、
     前記正極および負極の少なくとも一方が請求項8に記載の非水系二次電池用電極である、非水系二次電池。
PCT/JP2016/004360 2015-09-30 2016-09-27 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 WO2017056489A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16850668T PL3358661T3 (pl) 2015-09-30 2016-09-27 Kompozycja wiążąca elektrody niewodnej baterii akumulatorowej, kompozycja zawiesinowa elektrody niewodnej baterii akumulatorowej, elektroda niewodnej baterii akumulatorowej i niewodna bateria akumulatorowa
CN201680054939.3A CN108140838B (zh) 2015-09-30 2016-09-27 非水系二次电池电极用粘结剂组合物、浆料组合物、电极以及非水系二次电池
US15/762,241 US10593948B2 (en) 2015-09-30 2016-09-27 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP16850668.1A EP3358661B1 (en) 2015-09-30 2016-09-27 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
KR1020187007975A KR102661643B1 (ko) 2015-09-30 2016-09-27 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015194191A JP6481581B2 (ja) 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2015194187A JP6477398B2 (ja) 2015-09-30 2015-09-30 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2015-194187 2015-09-30
JP2015-194191 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017056489A1 true WO2017056489A1 (ja) 2017-04-06

Family

ID=58422911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004360 WO2017056489A1 (ja) 2015-09-30 2016-09-27 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Country Status (7)

Country Link
US (1) US10593948B2 (ja)
EP (1) EP3358661B1 (ja)
KR (1) KR102661643B1 (ja)
CN (1) CN108140838B (ja)
HU (1) HUE055448T2 (ja)
PL (1) PL3358661T3 (ja)
WO (1) WO2017056489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160614A (ja) * 2018-03-14 2019-09-19 Tdk株式会社 リチウムイオン二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045226A1 (ja) * 2018-08-31 2020-03-05 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池電極合材層用スラリー組成物、全固体二次電池固体電解質層用スラリー組成物、および全固体二次電池
CN113302219B (zh) * 2019-01-30 2023-08-22 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015116A (ja) * 1999-07-01 2001-01-19 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー、およびその利用
JP2003100298A (ja) * 2001-09-21 2003-04-04 Nippon Zeon Co Ltd 二次電池電極用バインダー組成物および二次電池
WO2012111472A1 (ja) * 2011-02-15 2012-08-23 Jsr株式会社 蓄電デバイス用電極、電極用スラリー、電極用バインダー組成物、および蓄電デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754237B (zh) * 2003-02-25 2010-05-26 日本瑞翁株式会社 电化学装置用电极的制造方法
JP5470817B2 (ja) * 2008-03-10 2014-04-16 日産自動車株式会社 電池用電極およびこれを用いた電池、並びにその製造方法
WO2012115096A1 (ja) 2011-02-23 2012-08-30 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP5617725B2 (ja) 2011-03-28 2014-11-05 日本ゼオン株式会社 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
EP2728624A4 (en) * 2011-07-25 2015-05-27 Hitachi Chemical Co Ltd SEMICONDUCTOR SUBSTRATE, MANUFACTURING METHOD, SOLAR CELL ELEMENT AND SOLAR CELL
JP4957932B1 (ja) * 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP6245173B2 (ja) * 2012-07-17 2017-12-13 日本ゼオン株式会社 二次電池用負極及び二次電池
EP3007257B1 (en) * 2013-08-19 2018-10-24 LG Chem, Ltd. Binder composition for secondary battery, electrode using same, and lithium secondary battery
US10256446B2 (en) * 2014-02-27 2019-04-09 Zeon Corporation Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015116A (ja) * 1999-07-01 2001-01-19 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー、およびその利用
JP2003100298A (ja) * 2001-09-21 2003-04-04 Nippon Zeon Co Ltd 二次電池電極用バインダー組成物および二次電池
WO2012111472A1 (ja) * 2011-02-15 2012-08-23 Jsr株式会社 蓄電デバイス用電極、電極用スラリー、電極用バインダー組成物、および蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160614A (ja) * 2018-03-14 2019-09-19 Tdk株式会社 リチウムイオン二次電池
JP7059711B2 (ja) 2018-03-14 2022-04-26 Tdk株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
KR20180063078A (ko) 2018-06-11
PL3358661T3 (pl) 2021-09-27
CN108140838B (zh) 2021-07-23
EP3358661B1 (en) 2021-06-30
US20180261845A1 (en) 2018-09-13
EP3358661A1 (en) 2018-08-08
KR102661643B1 (ko) 2024-04-26
CN108140838A (zh) 2018-06-08
US10593948B2 (en) 2020-03-17
EP3358661A4 (en) 2019-03-20
HUE055448T2 (hu) 2021-11-29

Similar Documents

Publication Publication Date Title
US11387457B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11742488B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6798545B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2017056466A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2018180101A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
JP6874690B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP7176522B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
KR102407600B1 (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
KR102661643B1 (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
JP6996503B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6481581B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2021200350A1 (ja) 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池
WO2019181870A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007975

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE