WO2017056466A1 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 Download PDF

Info

Publication number
WO2017056466A1
WO2017056466A1 PCT/JP2016/004325 JP2016004325W WO2017056466A1 WO 2017056466 A1 WO2017056466 A1 WO 2017056466A1 JP 2016004325 W JP2016004325 W JP 2016004325W WO 2017056466 A1 WO2017056466 A1 WO 2017056466A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
polymer
monomer unit
mass
electrode
Prior art date
Application number
PCT/JP2016/004325
Other languages
English (en)
French (fr)
Inventor
金田 拓也
健太郎 早坂
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020187006823A priority Critical patent/KR20180059433A/ko
Priority to JP2017542734A priority patent/JP7054623B2/ja
Priority to CN201680052979.4A priority patent/CN108028379A/zh
Publication of WO2017056466A1 publication Critical patent/WO2017056466A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes abbreviated as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. It is used for a wide range of purposes. In recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries.
  • An electrode for a secondary battery usually includes a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed by applying a slurry composition obtained by dispersing and / or dissolving an electrode active material and a binder composition containing a binder in a solvent onto a current collector and drying the electrode. Is formed.
  • the binder described in Patent Document 1 is obtained by, for example, crosslinking a copolymer containing an acrylonitrile monomer unit, a styrene monomer unit, a butadiene monomer unit, an acrylate monomer unit, etc. with an appropriate crosslinking agent.
  • the core portion is formed, and for example, the shell portion is formed of a copolymer including an acrylate monomer unit, a styrene monomer unit, and the like.
  • an electrode binder made of latex obtained by multi-stage emulsion polymerization has been proposed. (For example, refer to Patent Document 2).
  • the latex described in Patent Document 2 is obtained by multistage emulsion polymerization.
  • an aromatic vinyl monomer unit, a conjugated diene monomer unit, and a (meth) acrylic acid ester unit are used in the first stage of emulsion polymerization.
  • a polymer containing a monomer unit and a vinyl cyanide monomer unit is formed, and in another stage of emulsion polymerization, an aromatic vinyl monomer unit, a conjugated diene monomer unit, and a (meth) acrylic acid ester It was obtained by forming a polymer containing monomer units.
  • the binding material according to Patent Document 1 is excellent in binding properties, the rate characteristics of the secondary battery cannot be sufficiently improved. Further, in the binder according to Patent Document 2, the binding property between the electrode mixture layer and the current collector is sufficiently enhanced, and the electrical characteristics of the secondary battery such as rate characteristics and high temperature cycle characteristics are sufficiently high. I could't make it compatible.
  • an object of this invention is to provide the binder composition for non-aqueous secondary battery electrodes which is excellent in binding property and can fully improve the electrical property of a secondary battery.
  • the present invention is capable of forming an electrode mixture layer excellent in binding properties with a current collector, and can improve the electrical characteristics of a secondary battery including the electrode mixture layer. It aims at providing the slurry composition for electrodes. And this invention aims at providing the electrode for non-aqueous secondary batteries which can improve the electrical property of a secondary battery, and a non-aqueous secondary battery provided with the said electrode for non-aqueous secondary batteries. .
  • the present inventor has intensively studied for the purpose of solving the above problems. And this inventor examined the various polymers comprised by the various monomer unit which can comprise a binder first. As a result, since the polymer containing the aliphatic conjugated diene monomer unit and the aromatic vinyl monomer unit has a long molecular chain per monomer unit, the strength of the polymer itself can be improved, While it has the effect of improving the binding property of the binder, it has been found that the rate characteristics of the secondary battery cannot be sufficiently improved. On the other hand, the polymer containing the (meth) acrylic acid ester monomer unit can improve the rate characteristics of the secondary battery, but sufficiently improve the binding property of the binder. It became clear that it was not possible.
  • a core-shell structure polymer having a core part and a polymer containing a (meth) acrylic acid ester monomer unit in a specific ratio as a shell part has excellent binding properties and has a rate characteristic
  • the present inventors have found that the electrical characteristics of can be sufficiently enhanced and completed the present invention.
  • the binder composition for non-aqueous secondary battery electrodes by this invention is for non-aqueous secondary battery electrodes containing a particulate polymer.
  • a binder composition, wherein the particulate polymer has a core-shell structure comprising a shell part in the outermost layer and a core part inside the shell part, and the core part is composed of a single aliphatic conjugated diene.
  • Such a binder composition has excellent binding properties and can sufficiently enhance the electrical characteristics of the secondary battery.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • containing (including) a monomer unit means “a polymer-derived structural unit is contained in a polymer obtained using the monomer”. .
  • the “degree of swelling of the particulate polymer with respect to the electrolytic solution” can be measured by the method described in the examples of the present invention.
  • the first polymer has an aliphatic conjugated diene monomer unit of 25% by mass or more and an aromatic vinyl monomer unit of 40% by mass. More than 75 mass% is preferable. This is because such a binder composition is more excellent in binding properties and can further improve the electrical characteristics of the secondary battery.
  • the second polymer preferably further contains 20% by mass or more and less than 60% by mass of an aromatic vinyl monomer unit. This is because such a binder composition is more excellent in binding properties and can further improve the electrical characteristics of the secondary battery.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention has an alkyl group or a perfluoroalkyl group bonded to a non-carbonyl oxygen atom contained in the (meth) acrylic acid ester monomer unit. It is preferable that it is 3 or more. This is because such a binder composition can further improve the electrical characteristics of the secondary battery.
  • the second polymer further contains 0.05% by mass or more and 2% by mass or less of a crosslinkable monomer unit. This is because such a binder composition can further improve the electrical characteristics of the secondary battery.
  • the thickness of the shell part is 0.1% or more and 30% or less with respect to the volume average particle diameter (D50) of the particulate polymer. Is preferred. This is because such a binder composition is more excellent in binding properties and can further improve the electrical characteristics of the secondary battery.
  • the “shell thickness” of the particulate polymer can be an arithmetic average value obtained by measuring the thickness of the shell portion of 100 particulate polymers using a transmission electron microscope.
  • the volume average particle diameter (D50) is a particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the particle size distribution (volume basis) measured by the laser diffraction method.
  • the volume average particle diameter (D50) of the particulate polymer is preferably 50 nm or more and 1000 nm or less. This is because such a binder composition is more excellent in binding properties and can further improve the electrical characteristics of the secondary battery.
  • An object of the present invention is to advantageously solve the above-described problems, and the slurry composition for a non-aqueous secondary battery electrode of the present invention includes an electrode active material, a water-soluble polymer, and a non-aqueous secondary battery.
  • An electrode binder composition is included.
  • Such a slurry composition for a non-aqueous secondary battery electrode can form an electrode mixture layer excellent in binding properties with a current collector, and has the electrical characteristics of a secondary battery including the electrode mixture layer. Can be increased.
  • the electrode for non-aqueous secondary batteries of this invention is formed using the slurry composition for non-aqueous secondary battery electrodes mentioned above. It is characterized by comprising the electrode mixture layer made. If such a non-aqueous secondary battery electrode is used, the electrical characteristics of the secondary battery can be enhanced.
  • the non-aqueous secondary battery of this invention is equipped with the electrode for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. Such a non-aqueous secondary battery has good electrical characteristics.
  • the binder composition for non-aqueous secondary battery electrodes which can fully improve the electrical property of a secondary battery can be provided. Furthermore, according to the present invention, it is possible to form an electrode mixture layer having excellent binding properties with the current collector, and to improve the electrical characteristics of a secondary battery including the electrode mixture layer. A slurry composition for a secondary battery electrode can be provided. Furthermore, according to the present invention, it is possible to provide a non-aqueous secondary battery electrode capable of enhancing the electrical characteristics of the secondary battery, and a non-aqueous secondary battery including the non-aqueous secondary battery electrode. .
  • the binder composition for nonaqueous secondary battery electrodes of the present invention is used, for example, when forming an electrode of a nonaqueous secondary battery such as a lithium ion secondary battery.
  • the slurry composition for non-aqueous secondary battery electrodes of this invention contains the said binder composition, and is used for manufacture of the electrode for non-aqueous secondary batteries of this invention.
  • the electrode for a non-aqueous secondary battery of the present invention comprises an electrode mixture layer formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the secondary battery is characterized by using the non-aqueous secondary battery electrode of the present invention.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention contains a particulate polymer having a core-shell structure.
  • a particulate polymer includes a shell portion in the outermost layer and a core portion on the inner side of the shell portion, and the core portion contains a first aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
  • a second polymer different from the first polymer containing a polymer and having a shell portion containing 40% by mass or more of a (meth) acrylic acid ester monomer unit is characterized in that
  • the binder composition is bound by including in the binder composition a particulate polymer having a core-shell structure that includes the core part containing the first polymer and the shell part containing the second polymer.
  • a particulate polymer having a core-shell structure that includes the core part containing the first polymer and the shell part containing the second polymer.
  • a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is relatively low in polarity, an electrode active material and such a polymer In the electrode mixture layer obtained through a predetermined drying step after being dispersed in a polar solvent such as water, the polymers tend to be adsorbed on the surface of the electrode active material in a aggregated state. is there.
  • the polymer containing the (meth) acrylic acid ester monomer unit is relatively high in polarity, it is well dispersed in a polar solvent such as water, and after being dispersed in the polar solvent together with the electrode active material.
  • the polymers tend to be separated from each other on the surface of the electrode active material, that is, dispersed in a dot shape and adsorbed.
  • a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit exists as if the gap formed between the electrode active materials was filled.
  • the gap between the electrode active materials serving as a passage for the electrode active material ions to move is not blocked.
  • the particulate polymer preferably has an adsorption characteristic when a polymer containing a (meth) acrylic acid ester monomer unit is adsorbed to the electrode active material. This makes it difficult for the gap between the electrode active materials to be a passage for the movement of the electrode active material ions to be blocked, and the sites where the electrode active material ions can be inserted are uniformly dispersed on the electrode active material. And the rate characteristics of the secondary battery can be improved.
  • a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used as a core part, and a polymer containing 40% by mass or more of a (meth) acrylic acid ester monomer unit is used as a shell part.
  • the binder composition contains a particulate polymer having a core-shell structure, an excellent binding property derived from a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit, The excellent rate characteristic in the secondary battery derived from the polymer containing a meth) acrylic acid ester monomer unit can be exhibited.
  • the particulate polymer contained in the binder composition for a non-aqueous secondary battery electrode of the present invention uses a slurry composition for a non-aqueous secondary battery electrode containing the binder composition for a non-aqueous secondary battery electrode of the present invention.
  • an electrode When an electrode is formed, it is a component that can be held so that a component (for example, an electrode active material) contained in the electrode active material layer in the manufactured electrode is not detached from the electrode.
  • the particulate polymer exists in the form of particles in the binder composition and the slurry composition.
  • a particulate polymer contains the 1st polymer in which a core part contains an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit, and a shell part is a (meth) acrylic ester. It has a core-shell structure including a second polymer containing 40% by mass or more of monomer units. The first polymer and the second polymer are different polymers. In such a core-shell structure, it is preferable that the core portion and the shell portion are each formed of one layer, but the core portion and the shell portion may be formed of a plurality of layers.
  • the innermost layer preferably contains a first polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
  • the shell portion covers the entire outer surface of the core portion.
  • the shell portion may not cover the entire outer surface of the core portion as long as the effects of the present invention are achieved.
  • the swelling degree with respect to the electrolyte solution of the particulate polymer particulate polymer contained in the binder composition for nonaqueous secondary battery electrodes of the present invention is 2.5 times or less. If the degree of swelling of the particulate polymer with respect to the electrolytic solution is 2.5 times or less, a decrease in the adhesive strength of the electrode mixture layer to the current collector in the electrolytic solution can be suppressed, and the high temperature cycle of the secondary battery The characteristics can be further improved. In addition, if the degree of swelling of the particulate polymer with respect to the electrolytic solution is 2.5 times or less, the particulate polymer is excessively swollen in the electrolytic solution and inhibits the movement of ions contributing to the battery reaction. The rate characteristics of the secondary battery can be further improved.
  • the “swelling degree with respect to the electrolytic solution” of the particulate polymer is the weight after immersion when the film formed by molding the particulate polymer is immersed in a specific electrolytic solution under predetermined conditions.
  • the value can be determined as a value (times) divided by the weight of, specifically, a film is formed using the method described in the examples of the present specification, and the measurement is performed using the measuring method described in the examples. To do.
  • the swelling degree of the particulate polymer with respect to the electrolytic solution is preferably more than 1.0 times, preferably 2.0 times or less, more preferably 1.8 times or less, and 1.7 or less. More preferably.
  • the degree of swelling of the particulate polymer with respect to the electrolyte By making the degree of swelling of the particulate polymer with respect to the electrolyte more than the above lower limit value, the mobility of the electrode active material ions in the secondary battery is improved, the internal resistance of the secondary battery is reduced, and the secondary battery is reduced. The rate characteristics can be further improved.
  • the degree of swelling of the particulate polymer with respect to the electrolytic solution can be adjusted by changing the type and amount of the monomer used. For example, the amount of the aromatic vinyl monomer or the crosslinkable monomer is increased. It is possible to reduce the degree of swelling with respect to the electrolytic solution by increasing the polymerization molecular weight by increasing the polymerization temperature or increasing the polymerization reaction time.
  • the first polymer contained in the core of the particulate polymer contains an aliphatic conjugated diene monomer unit.
  • the aliphatic conjugated diene monomer unit is a structural unit derived from an aliphatic conjugated diene monomer.
  • Examples of the aliphatic conjugated diene monomer that can form an aliphatic conjugated diene monomer unit include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3. -Butadiene, 2-chloro-1,3-butadiene (chloroprene), substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Of these, 1,3-butadiene is preferred as the aliphatic conjugated diene monomer. In addition, these aliphatic conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the content ratio of the aliphatic conjugated diene monomer unit in the first polymer is preferably 25% by mass or more when the total repeating unit in the first polymer is 100% by mass, More preferably, it is more than 35 mass%, More preferably, it is 35 mass% or more, It is preferable that it is 60 mass% or less, It is more preferable that it is 50 mass% or less, It is that it is 40 mass% or less Further preferred. If the content rate of an aliphatic conjugated diene monomer unit is more than the said lower limit, the glass transition temperature of a 1st polymer can be reduced moderately and the binding property of a binder composition can be improved further.
  • the glass transition temperature of the first polymer is avoided from being excessively lowered, and the binding property of the binder composition is further increased. Can be improved.
  • the first polymer contains an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit is a structural unit derived from an aromatic vinyl monomer.
  • examples of the aromatic vinyl monomer capable of forming an aromatic vinyl monomer unit include styrene, ⁇ -methylstyrene, vinyl toluene, and divinylbenzene. These can be used individually by 1 type or in combination of 2 or more types. Among these, styrene is preferable.
  • the content ratio of the aromatic vinyl monomer unit in the first polymer is preferably 40% by mass or more when the total repeating unit in the first polymer is 100% by mass, and 50% by mass. % Or more, more preferably 55% by weight or more, further preferably 75% by weight or less, more preferably 70% by weight or less, and further preferably 65% by weight or less. preferable.
  • the content ratio of the aromatic vinyl monomer unit in the first polymer is preferably 40% by mass or more when the total repeating unit in the first polymer is 100% by mass, and 50% by mass. % Or more, more preferably 55% by weight or more, further preferably 75% by weight or less, more preferably 70% by weight or less, and further preferably 65% by weight or less. preferable.
  • the first polymer preferably contains an acid group-containing monomer unit.
  • the acid group-containing monomer that can form an acid group-containing monomer unit include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • (meth) allyl means allyl and / or methallyl
  • (meth) acryl means acryl and / or methacryl
  • examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • an acid group-containing monomer a monomer having a carboxylic acid group is preferable, and a monocarboxylic acid is preferable from the viewpoint of improving the polymerizability of the core portion of the particulate polymer. Acid is more preferred.
  • an acid group containing monomer may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the content ratio of the acid group-containing monomer unit in the first polymer is preferably 0.1% by mass or more when the total repeating unit in the first polymer is 100% by mass, It is more preferably 0.5% by mass or more, further preferably 1% by mass or more, preferably 7% by mass or less, more preferably 5% by mass or less, and 4% by mass or less. More preferably it is.
  • the content ratio of the acid group-containing monomer unit in the first polymer equal to or higher than the above lower limit, the dispersion stability of the first polymer in the polymerization solvent is improved at the time of preparing the particulate polymer. Can be made.
  • the content ratio of the acid group-containing monomer unit in the first polymer is equal to or less than the above upper limit, the occurrence of aggregates during the preparation of the particulate polymer is suppressed, and the binder composition
  • the production efficiency can be improved, and the amount of water remaining in the electrode can be reduced to further improve the high-temperature cycle characteristics of the secondary battery.
  • the 1st polymer may contain other monomer units other than the various monomer units mentioned above.
  • Other monomer units are not particularly limited, but other crosslinkable monomers other than nitrile group-containing monomer units, (meth) acrylate monomer units, and aliphatic conjugated diene monomer units. Examples include known monomers used for the preparation of particulate polymers such as units.
  • a content rate needs to be less than 40 mass%, Preferably it is less than 20 mass%, More preferably, it is 10 mass% Is less than.
  • the first polymer contains an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit, and other monomers used for forming the first polymer.
  • the kind and amount can be any kind and amount.
  • the glass transition temperature of the first polymer is not particularly limited, but is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C. or higher, further preferably ⁇ 10 ° or higher, preferably 35 ° C. or lower, more preferably 30 ° C or lower, more preferably 20 ° C or lower, particularly preferably 15 ° C or lower.
  • the glass transition temperature of the first polymer is not particularly limited, and can be adjusted by changing the type and amount of the monomer used for forming the first polymer.
  • the glass transition temperature of a 1st polymer is not specifically limited, It can measure using a differential scanning calorimeter. The measurement sample is obtained by drying the first polymer formed in the step of preparing the particulate polymer.
  • the (meth) acrylic acid ester monomer unit is a repeating unit derived from a (meth) acrylic acid ester monomer.
  • (meth) acrylic acid ester monomers that can form a (meth) acrylic acid ester monomer unit include (meth) acrylic acid alkyl esters and (meth) acrylic acid perfluoroalkyl esters.
  • (meth) acrylic acid alkyl esters examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl
  • Acrylic acid alkyl esters such as acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n- Butyl methacrylate, t-butyl methacrylate, isobut
  • Perfluoroalkyl esters of (meth) acrylic acid include 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate, 2- (perfluorohexyl) ethyl acrylate, 2- (acrylic acid 2- ( Perfluorooctyl) ethyl, 2- (perfluorononyl) ethyl acrylate, 2- (perfluorodecyl) ethyl acrylate, 2- (perfluorododecyl) ethyl acrylate, 2- (perfluorotetradecyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acrylate such as 2- (perfluorohexadecyl) ethyl acrylate; 2- (perfluorobutyl) ethyl methacrylate, 2- (perfluoropentyl) ethy
  • the hydrophobicity of the second polymer constituting the shell portion is appropriately increased to avoid excessive swelling of the particulate polymer with respect to the electrolytic solution, and the glass transition temperature of the second polymer is From the viewpoint of an appropriate range, the number of carbon atoms of the alkyl group or perfluoroalkyl group bonded to the non-carbonyl oxygen atom of the (meth) acrylic acid alkyl ester or (meth) acrylic acid perfluoroalkyl ester is preferably 3 or more. More preferably, it is 4 or more, More preferably, it is 6 or more, Preferably it is 14 or less, More preferably, it is 10 or less.
  • the (meth) acrylate monomer is preferably 2-ethylhexyl acrylate or butyl acrylate, More preferred is ethylhexyl acrylate.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the second polymer is 40% by mass or more when the total repeating unit in the particulate polymer is 100% by mass. Furthermore, the content ratio of the (meth) acrylic acid ester monomer unit in the second polymer is preferably 45% by mass or more, more preferably 50% by mass or more, and 80% by mass or less. It is preferably 70% by mass or less, more preferably 60% by mass or less. If the content ratio of the (meth) acrylic acid ester monomer unit is at least the above lower limit, the affinity between the water-soluble polymer and the particulate polymer is improved in the slurry composition for non-aqueous secondary battery electrodes.
  • the particulate polymers can be arranged apart from each other on the electrode active material.
  • the rate characteristic of the secondary battery formed using the binder composition for non-aqueous secondary battery electrodes can be improved.
  • the content ratio of the (meth) acrylic acid ester monomer unit is set to the above upper limit value or less, the binding property of the binder composition can be avoided by avoiding the extremely low glass transition temperature of the particulate polymer. This can be further improved.
  • the second polymer preferably contains an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer the same ones listed for the first polymer can be used, but the aromatic vinyl monomer used for the first polymer and the second one can be used.
  • the aromatic vinyl monomer used for the polymer may be the same or different. In particular, styrene is preferable as the aromatic vinyl monomer.
  • the content ratio of the aromatic vinyl monomer unit in the second polymer is preferably 20% by mass or more and 30% by mass when all the repeating units in the second polymer are 100% by mass. % Or more, more preferably 40% by mass or more, preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less. preferable.
  • the content ratio of the aromatic vinyl monomer unit in the second polymer not more than the above upper limit value, it is possible to suppress the glass transition temperature of the second polymer from being excessively increased, and to form a binder composition.
  • the binding property can be further improved.
  • the second polymer preferably contains an acid group-containing monomer unit.
  • the acid group-containing monomer that can form an acid group-containing monomer unit the same acid group-containing monomers that can be used for the first polymer can be used.
  • the acid group-containing monomer is preferably a dicarboxylic acid from the viewpoint of improving the temporal stability of the binder composition and the slurry composition for non-aqueous secondary battery electrodes by suppressing the increase in viscosity over time.
  • the dicarboxylic acids itaconic acid is more preferable.
  • the content ratio of the acid group-containing monomer unit in the second polymer is preferably 0.1% by mass or more when the total repeating unit in the second polymer is 100% by mass, It is more preferably 0.5% by mass or more, further preferably 1% by mass or more, preferably 10% by mass or less, more preferably 7% by mass or less, and 5% by mass or less. More preferably it is.
  • Dispersion stability of the particulate polymer in the binder composition and the slurry composition for a non-aqueous secondary battery electrode by setting the content ratio of the acid group-containing monomer unit in the second polymer to the above lower limit value or more. Can be improved.
  • the content ratio of the acid group-containing monomer unit in the second polymer not more than the above upper limit value, the amount of moisture brought into the secondary battery due to the particulate polymer is reduced, and the electrolytic solution The decomposition of the electrolyte inside can be suppressed, and the high-temperature cycle characteristics of the secondary battery can be further improved.
  • the second polymer preferably contains a crosslinkable monomer unit.
  • the crosslinkable monomer unit is a structural unit derived from a crosslinkable monomer.
  • the crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • crosslinkable monomer examples include polyfunctional monomers having two or more polymerization reactive groups in the monomer.
  • polyfunctional monomers include divinyl compounds such as divinylbenzene; ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, 1,3-butylene glycol diacrylate, allyl methacrylate, and the like.
  • Di (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate Body; and the like.
  • ethylene glycol dimethacrylate or allyl methacrylate it is preferable to use ethylene glycol dimethacrylate.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the content of the crosslinkable monomer unit in the second polymer is preferably 0.05% by mass or more when the total repeating unit in the second polymer is 100% by mass, More preferably, it is 1% by mass or more, more preferably 0.2% by mass or more, more preferably 5% by mass or less, more preferably 3% by mass or less, and 2% by mass or less. It is more preferable that it is 1% by mass or less.
  • the content ratio of the crosslinkable monomer unit is within the above range, the binding property of the particulate polymer can be further improved, and the high-temperature cycle characteristics of the secondary battery can be further improved.
  • the 2nd polymer may contain other monomer units other than the various monomer units mentioned above.
  • Other monomer units are not particularly limited, and examples thereof include known monomers used for the preparation of particulate polymers such as aliphatic conjugated diene monomers and nitrile group-containing monomer units.
  • Others used for forming the second polymer The kind and amount of the monomer can be any kind and amount.
  • the glass transition temperature of the second polymer is not particularly limited, but is preferably ⁇ 60 ° C. or higher, more preferably ⁇ 35 ° C. or higher, further preferably ⁇ 20 ° or higher, preferably 20 ° C. or lower, more preferably 10 ° C. Hereinafter, it is more preferably 0 ° C. or lower.
  • the glass transition temperature of the second polymer is not particularly limited and can be adjusted by changing the type and amount of the monomer used for forming the second polymer.
  • the glass transition temperature of a 2nd polymer is not specifically limited, It can measure using a differential scanning calorimeter.
  • a measurement sample containing only the second polymer by polymerizing the monomer in the blending ratio used for constituting the shell part of the particulate polymer of the present invention. Can be prepared.
  • the thickness of the shell part of the particulate polymer is preferably 0.1% or more, more preferably 0.8% or more, with respect to the volume average particle diameter (D50) of the particulate polymer. % Or more, more preferably 5% or more, particularly preferably 10% or more, preferably 30% or less, more preferably 20% or less, 15 More preferably, it is% or less. If the thickness of the shell part of the particulate polymer is not less than the above lower limit value, the characteristics of the second polymer constituting the shell part are exhibited, and the particulate polymers are separated from each other on the surface of the electrode active material. Therefore, the rate characteristics of the secondary battery can be further improved. Furthermore, if the thickness of the shell part of the particulate polymer is not more than the above upper limit value, the binding property of the binder composition can be further improved by exerting the characteristics of the first polymer constituting the core part. .
  • the volume average particle diameter (D50) of the particulate polymer is preferably 50 nm or more, more preferably 100 nm or more, further preferably 200 nm or more, preferably 1000 nm or less, and 700 nm or less. It is more preferable that it is 500 nm or less. If the volume average particle diameter (D50) of the particulate polymer is not less than the above lower limit, the binding property of the binder composition can be further improved, and the surface area of the particulate polymer is increased. The increase in the internal resistance of the secondary battery is suppressed, and the rate characteristics of the secondary battery can be further improved.
  • the volume average particle diameter (D50) of the particulate polymer is not more than the above upper limit value, the surface of the electrode active material is easily covered, and further, the decrease in strength of the particulate polymer itself is suppressed, and the binder composition
  • D50 volume average particle diameter
  • the particulate polymer having the core-shell structure described above includes, for example, various monomers for forming the first polymer in the core portion and various monomers for forming the second polymer in the shell portion. It can be prepared by stepwise polymerization. Specifically, the particulate polymer is first formed in the presence of the core part after forming the core part by single-stage polymerization or multi-stage polymerization using the monomer composition for forming the first polymer of the core part. It can prepare by polymerizing the monomer composition for 2nd polymer formation of a shell part, and forming a shell part.
  • the polymerization of the monomer composition for forming the first polymer and the monomer composition for forming the second polymer is not particularly limited and can be performed in an aqueous solvent such as water.
  • the content rate of each monomer in the monomer composition used for the polymerization is usually the content rate of the repeating unit (monomer unit) in the polymer obtained by polymerizing the monomer unit. It will be the same.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization reaction for example, any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the emulsion polymerization method is particularly preferable from the viewpoint of production efficiency.
  • the emulsion polymerization can be performed according to a conventional method. And generally used emulsifiers, dispersants, polymerization initiators, polymerization assistants, chain transfer agents, molecular weight modifiers and the like used for the polymerization of the first and second polymers can be used. The amount used is also generally used.
  • seed polymerization may be performed using seed particles.
  • the polymerization conditions can also be arbitrarily selected depending on the polymerization method and the type of polymerization initiator.
  • the volume average particle diameter (D50) of the particulate polymer and the thickness of the shell part are, for example, the amount of the emulsifier to be added in each of the stage of obtaining the first polymer and the stage of obtaining the second polymer,
  • the desired range can be obtained by adjusting the amount of the monomer.
  • the binder composition of the present invention may contain components such as a conductive additive, a reinforcing material, a leveling agent, a viscosity modifier, and an electrolyte solution additive. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the binder composition of the present invention can be prepared by dispersing the above-described components in an aqueous medium as a dispersion medium. Specifically, the above-described components and an aqueous medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a binder composition can be prepared.
  • the particulate polymer is prepared by polymerizing the monomer composition in an aqueous solvent, it can be directly mixed with other components in the state of an aqueous dispersion.
  • the slurry composition for non-aqueous secondary battery electrodes of the present invention includes the binder composition described above, a water-soluble polymer, and an electrode active material.
  • Such a slurry composition for a non-aqueous secondary battery electrode is capable of forming an electrode mixture layer having excellent binding properties with a current collector, and enhancing the electrical characteristics of a secondary battery including the electrode mixture layer. Can do.
  • the water-soluble polymer is adsorbed on the surface of the electrode active material or, if the composition contains a conductive material, on the surface of the conductive material. It is a component that contributes to stabilizing the dispersion of the electrode active material and the conductive material in the slurry. Further, the water-soluble polymer can increase the viscosity of the slurry composition for a non-aqueous secondary battery electrode, and can ensure the coatability while suppressing sedimentation of the components in the slurry.
  • the water-soluble polymer is not particularly limited, and is a polymer having a polarity that is soluble in water.
  • carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, polyvinyl alcohol, Carboxylic acid, salts thereof, poly (meth) acrylamide and the like can be used.
  • the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, and alginic acid.
  • poly (meth) acrylamide is a polymer whose main component is a compound having a (meth) acrylamide skeleton.
  • water-soluble polymers may be used alone or in combination of two or more at any ratio or as a copolymer obtained by copolymerization.
  • the polymer is “water-soluble” means that the mixture obtained by adding 1 part by weight of polymer (corresponding to the solid content) per 100 parts by weight of ion-exchanged water and stirring the mixture at a temperature of 20 ° C. Adjust to at least one of the conditions in the range of 70 ° C. or less and pH 3 or more and 12 or less (NaOH aqueous solution and / or HCl aqueous solution is used for pH adjustment). It means that the solid content of the residue remaining on the screen without passing through the screen does not exceed 50% by mass with respect to the solid content of the added polymer.
  • the blending amount of the water-soluble polymer in the slurry composition for a non-aqueous secondary battery electrode is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the electrode active material, More preferably, it is more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 2 parts by mass or less. .
  • the blending amount of the water-soluble polymer within the above range, the dispersibility of the electrode active material and the like in the slurry can be improved and the rate characteristics of the secondary battery can be improved.
  • the electrode active material is a substance that transfers electrons in the electrodes (positive electrode and negative electrode) of the secondary battery.
  • the slurry composition for lithium ion secondary batteries used for manufacture of the electrode of a lithium ion secondary battery is mentioned as an example of the slurry composition for non-aqueous secondary battery electrodes, and the electrode used for the said slurry composition
  • the active material positive electrode active material, negative electrode active material
  • the positive electrode active material is not particularly limited, and a known positive electrode active material used in the positive electrode of a lithium ion secondary battery can be used.
  • a compound containing a transition metal for example, a transition metal oxide, a transition metal sulfide, a composite metal oxide of lithium and a transition metal, or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • transition metal oxide for example, MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , amorphous quality MoO 3, amorphous V 2 O 5, amorphous V 6 O 13 and the like.
  • transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , and FeS.
  • the composite metal oxide of lithium and transition metal include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure. It is done.
  • the lithium-containing composite metal oxide having a layered structure for example, lithium-containing cobalt oxide (LiCoO 2), lithium-containing nickel oxide (LiNiO 2), lithium-containing composite oxide of Co-Ni-Mn, Ni- Mn lithium-containing composite oxide of -al, lithium-containing composite oxide of Ni-Co-Al, such solid solution of Limao 2 and Li 2 MBO 3 and the like.
  • Examples of the solid solution of LiMaO 2 and Li 2 MbO 3 include xLiMaO 2. (1-x) Li 2 MbO 3 .
  • x represents a number satisfying 0 ⁇ x ⁇ 1
  • Ma represents one or more transition metals having an average oxidation state of 3+
  • Mb represents one or more transition metals having an average oxidation state of 4+.
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and compounds in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal.
  • LiMn 2 O 4 lithium manganate
  • LiMn 2 O 4 compounds in which a part of Mn of lithium manganate
  • a specific example is Li s [Mn 2 ⁇ t Mc t ] O 4 .
  • Mc represents one or more transition metals having an average oxidation state of 4+.
  • Specific examples of Mc include Ni, Co, Fe, Cu, and Cr.
  • T represents a number satisfying 0 ⁇ t ⁇ 1, and s represents a number satisfying 0 ⁇ s ⁇ 1.
  • a lithium-excess spinel compound represented by Li 1 + x Mn 2 ⁇ x O 4 (0 ⁇ X ⁇ 2) can also be used.
  • Examples of the lithium-containing composite metal oxide having an olivine structure include olivine-type phosphorus represented by Li y MdPO 4 such as olivine-type lithium iron phosphate (LiFePO 4 ) and olivine-type lithium manganese phosphate (LiMnPO 4 ).
  • An acid lithium compound is mentioned.
  • Md represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co.
  • Y represents a number satisfying 0 ⁇ y ⁇ 2.
  • Md may be partially substituted with another metal. Examples of the metal that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
  • lithium-containing cobalt oxide LiCoO 2
  • olivine type phosphorus is used as the positive electrode active material. It is preferable to use lithium iron oxide (LiFePO 4 ).
  • a positive electrode active material containing at least one of Mn and Ni as the positive electrode active material.
  • LiNiO 2 , LiMn 2 O 4 , a spinel compound containing excess lithium, LiMnPO 4 , Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2, Li [Ni 1/3 Co 1/3 Mn 1/3] O 2, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56] O 2, LiNi 0.5 Mn 1 it is preferable to use a .5 O 4 or the like as the positive electrode active material, LiNiO 2, lithium-rich spinel compound, Li [Ni 0.5 Co 0.2 Mn 0.3] O 2, Li [Ni 1/3 Co 1 / 3 Mn 1/3] O 2, Li [ it is more preferable to use as the positive electrode active material Ni 0.17
  • the negative electrode active material is not particularly limited, and a known negative electrode active material used in the negative electrode of a lithium ion secondary battery can be used. Specifically, a material that can occlude and release lithium is usually used as the negative electrode active material. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
  • examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Quality materials.
  • examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. It is done.
  • graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
  • examples of the graphite material include graphite such as natural graphite and artificial graphite.
  • the metal-based negative electrode active material is an active material containing a metal, and usually includes an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /
  • the active material which is more than g.
  • the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
  • an active material containing silicon silicon-based negative electrode active material
  • silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiO x , and a composite of a Si-containing material and a conductive carbon obtained by coating or combining a Si-containing material with a conductive carbon. Etc.
  • silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the alloy containing silicon examples include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x is a SiO, heat treated in the presence of a polymer, such as any polyvinyl alcohol, by forming a silicon and silicon dioxide can be prepared. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or vapor after grinding and mixing SiO and optionally a polymer.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2.
  • SiO x for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO).
  • SiO x is a SiO
  • a composite of Si-containing material and conductive carbon for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam.
  • an organic gas and / or steam can be mentioned.
  • a method of coating the surface of the SiO particles by a chemical vapor deposition method using an organic gas a method of forming composite particles (granulation) of the SiO particles and graphite or artificial graphite by a mechanochemical method, etc. It can also be obtained by a known method.
  • the binder composition for non-aqueous secondary battery electrodes of the present invention containing the particulate polymer described above can be used.
  • the above-mentioned particulate polymer contained in the above-described binder composition functions as at least a part of the binder in the electrode mixture layer formed using the slurry composition for non-aqueous secondary battery electrodes.
  • the blending amount of the binder composition in the slurry composition for non-aqueous secondary battery electrodes is adjusted so that the blending ratio of the particulate polymer is within the following range based on the electrode active material and the water-soluble polymer. It is preferable.
  • the blending amount of the particulate polymer in the slurry composition for a non-aqueous secondary battery electrode of the present invention is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the electrode active material, and 0.3 mass. More preferably, it is 0.5 parts by mass or more, more preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and more preferably 2 parts by mass or less. Is more preferable.
  • the peel strength of the electrode formed using the slurry composition for non-aqueous secondary battery electrode can be sufficiently increased, and the secondary battery having such an electrode
  • the high-temperature cycle characteristics can be further improved.
  • the rate characteristic of a secondary battery provided with the electrode formed using the slurry composition for non-aqueous secondary battery electrodes can be improved further.
  • the blending amount of the particulate polymer in the slurry composition for a non-aqueous secondary battery electrode according to the present invention is preferably 0.1 times or more of the blending amount (solid content equivalent amount) of the water-soluble polymer, 0.5 It is more preferably at least twice, more preferably at least 0.7 times, more preferably at most 5 times, and even more preferably at most 2 times.
  • a conductive support agent is for ensuring the electrical contact between electrode active materials.
  • a well-known conductive support agent can be used, without being specifically limited.
  • conductive assistants for positive electrodes of lithium ion secondary batteries include conductive carbon materials such as acetylene black, ketjen black (registered trademark), carbon black, and graphite; various metal fibers, foils, etc. Can be used.
  • acetylene is used as a conductive additive. Black, ketjen black (registered trademark), carbon black, and graphite are preferably used, and acetylene black and ketjen black (registered trademark) are particularly preferably used.
  • the slurry composition for non-aqueous secondary battery electrodes of the present invention is optionally added to the water-soluble polymer and the binder composition in addition to the particulate polymer contained in the binder composition described above as a binder.
  • a polymer different from the contained particulate polymer hereinafter, may be referred to as “other polymer”
  • other polymers include fluorine-containing polymers and acrylonitrile polymers.
  • Other components that can be blended in the slurry composition for a non-aqueous secondary battery electrode of the present invention are not particularly limited, and are the same as other components that can be blended in the binder composition of the present invention. Can be mentioned.
  • the other component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the slurry composition for non-aqueous secondary battery electrodes of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and the aqueous medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
  • the mixing of each of the above components and the aqueous medium can usually be carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • water is usually used as the aqueous medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the water used as the aqueous medium may include water contained in the binder composition.
  • the electrode for a non-aqueous secondary battery of the present invention is a non-aqueous system in which a slurry composition for a non-aqueous secondary battery electrode obtained as described above is applied onto a current collector, and the non-aqueous system applied on the current collector. It is obtained by drying the slurry composition for secondary battery electrodes. That is, the electrode for non-aqueous secondary batteries of the present invention includes an electrode mixture layer formed using the slurry composition for non-aqueous secondary battery electrodes of the present invention. Moreover, the electrode for non-aqueous secondary batteries of this invention is obtained through the application
  • the electrode for non-aqueous secondary battery of the present invention comprises a dried product of the slurry composition for non-aqueous secondary battery electrode described above, and includes at least an electrode active material, the above-mentioned particulate polymer, Containing molecules.
  • the water-soluble polymer and / or particulate polymer described above contains a crosslinkable monomer unit
  • the polymer and / or polymer containing the crosslinkable monomer unit is a non-aqueous system.
  • the slurry composition for secondary battery electrodes may be cross-linked at the time of drying, or at the time of heat treatment optionally performed after drying (that is, the non-aqueous secondary battery electrode is composed of the above-described water-soluble polymer and / or It may contain a crosslinked product of a particulate polymer).
  • the particulate polymer is present in a particle shape in the binder composition and in the slurry composition, but in the electrode mixture layer formed using the slurry composition, the particle polymer may be in a particle shape, Any other shape may be used.
  • the above-described particulate polymer having the core-shell structure preferably maintains the core-shell structure. Thereby, when the binder by this invention is used, for example in a positive electrode, deterioration of the 1st polymer which forms a core part can be suppressed.
  • each component contained in the electrode was included in the slurry composition for a non-aqueous secondary battery electrode of the present invention, and the preferred abundance ratio of each of the components is the non-aqueous system of the present invention. It is the same as the suitable abundance ratio of each component in the slurry composition for secondary battery electrodes. Since the electrode for a non-aqueous secondary battery of the present invention uses the binder composition of the present invention, the peel strength is high, and the secondary battery can exhibit good rate characteristics and high-temperature cycle characteristics.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like.
  • the drying method by is mentioned.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
  • the pressurization treatment can improve the adhesion between the electrode mixture layer and the current collector and reduce the porosity of the electrode.
  • the powder molding method refers to preparing a slurry composition for producing an electrode for a secondary battery, preparing composite particles including an electrode active material from the slurry composition, and placing the composite particles on a current collector. It is a manufacturing method which supplies the electrode for secondary batteries by forming an electrode compound-material layer by supplying and roll-pressing as needed and shaping
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the secondary battery electrode of the present invention is used for at least one of the positive electrode and the negative electrode. Since the secondary battery of the present invention uses the above-described electrode, it is excellent in rate characteristics and high-temperature cycle characteristics.
  • the secondary battery of the present invention may be any of a lithium ion secondary battery, a nickel hydride secondary battery, and the like. Among these, a lithium ion secondary battery is preferable because performance improvement effects such as high-temperature cycle characteristics are particularly remarkable.
  • the secondary battery of the present invention is a lithium ion secondary battery will be described.
  • the secondary battery electrode of the present invention is used as at least one of a positive electrode and a negative electrode. That is, the positive electrode of the secondary battery of the present invention may be an electrode for the secondary battery of the present invention and the negative electrode may be another known negative electrode, and the negative electrode of the secondary battery of the present invention is for the secondary battery of the present invention.
  • the electrode and the positive electrode may be another known positive electrode, and both the positive electrode and the negative electrode of the secondary battery of the present invention may be the secondary battery electrode of the present invention.
  • a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used.
  • a lithium salt is usually used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte.
  • non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); and esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • a non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the additive include carbonate compounds such as vinylene carbonate (VC).
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • electrolytes other than the above for example, polymer electrolytes such as polyethylene oxide and polyacrylonitrile; gel polymer electrolytes in which the polymer electrolyte is impregnated with an electrolyte; inorganic solid electrolytes such as LiI and Li 3 N; Also good.
  • ⁇ Separator> As the separator, for example, those described in JP 2012-204303 A can be used. Among these, from the viewpoint of reducing the overall thickness of the separator and increasing the electrode active material ratio in the lithium ion secondary battery to increase the capacity per volume, polyolefin resins (polyethylene, polypropylene, A microporous film made of polybutene or polyvinyl chloride is preferred.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape, and put into a battery container.
  • pouring electrolyte solution and sealing is mentioned.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Glass transition temperature of first polymer and second polymer> Using each monomer and each additive used for the formation of the first polymer and the second polymer, a measurement sample is obtained under the same polymerization conditions as those for the first polymer and the second polymer. An aqueous dispersion containing the polymer was prepared. The prepared aqueous dispersion was used as a measurement sample. And the glass transition temperature was measured about the measurement sample of each polymer using the differential scanning calorimeter (the product name "EXSTAR DSC6220" by the SII nanotechnology company make). Specifically, 10 mg of a measurement sample is weighed in an aluminum pan, an empty aluminum pan is used as a reference, and the temperature rise rate is 10 ° C./min between -100 ° C.
  • the DSC curve was measured under normal temperature and normal humidity. During this temperature rising process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) becomes 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak The glass transition temperature was determined from the intersection with.
  • DDSC differential signal
  • ⁇ Swelling degree with respect to electrolytic solution electrolytic solution swelling degree
  • An aqueous dispersion containing a particulate polymer was prepared, and this aqueous dispersion was dried in an environment of 50% humidity and 23 to 25 ° C. for 3 days to form a film having a thickness of 3 ⁇ 0.3 mm.
  • the film formed was vacuum-dried at 150 ° C. for 12 hours, then cut into a diameter of 12 mm and precisely weighed. Let the mass of the film piece obtained by cutting be W0.
  • Electrolyte swelling degree (times) W1 / W0 ⁇ Volume average particle diameter (D50)>
  • the volume average particle diameter (D50) of the particulate polymer was measured using a laser diffraction / scattering particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.). Specifically, with respect to the aqueous dispersion containing the particulate polymer, the particle diameter-volume cumulative distribution of the particulate polymer is measured using a laser diffraction / scattering particle size distribution measuring apparatus, and the volume cumulative distribution value is 50. % Particle diameter was defined as the volume average particle diameter.
  • the thickness (%) of the shell part with respect to the volume average particle diameter (D50) of the particulate polymer (shell part thickness / particulate polymer volume average particle diameter (D50)) ⁇ 100.
  • peel strength (N / m), and evaluated according to the following criteria. It shows that the binding property of the negative mix layer with respect to a collector is excellent, so that peel strength is large.
  • the prepared pouch-type lithium ion secondary battery was allowed to stand at 23 ° C. for 24 hours, and then charged to a cell voltage of 4.4 V at a charge / discharge rate of 0.2 C at 25 ° C. and discharged to a cell voltage of 3.0 V. An operation was performed. Thereafter, the cell voltage is charged to a cell voltage of 4.4 V at a charge rate of 0.2 C at 25 ° C., and discharged to a cell voltage of 3.0 V at a discharge rate of 1.0 C, and the cell voltage at a discharge rate of 3.0 C. A charge / discharge cycle for discharging to 3.0 V was performed.
  • the ratio of the battery capacity in the case of the discharge rate 3.0CC to the battery capacity in the case of the discharge rate 1.0C was calculated as a percentage to obtain the charge / discharge rate characteristics, and evaluated according to the following criteria. The higher the value of the charge / discharge rate characteristic, the smaller the internal resistance, the faster charge / discharge is possible, and the better the rate characteristic.
  • C Charge / discharge rate characteristic is 60% or more and less than 65%
  • D Charge / discharge rate characteristic is less than 60% ⁇ secondary battery High temperature cycle characteristics>
  • the prepared lithium ion secondary battery was allowed to stand at 23 ° C.
  • Capacity maintenance ratio ⁇ C is 80% or more
  • Example 1 Preparation of particulate polymer> -First polymerization step- In a 5 MPa pressure vessel equipped with a stirrer, 35.0 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 63.0 parts of styrene as an aromatic vinyl monomer, methacrylic acid as an acid group-containing monomer unit 2.0 parts, 0.5 part of t-dodecyl mercaptan as a molecular weight regulator, 0.3 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator The mixture was sufficiently stirred and then heated to 50 ° C.
  • the aqueous dispersion containing the first polymer thus obtained was once cooled to 30 ° C. or lower.
  • -Second polymerization step- In the aqueous dispersion containing the cooled first polymer, 55.0 parts of 2-ethylhexyl acrylate as a (meth) acrylic acid ester monomer, 42.5 parts of styrene as an aromatic vinyl monomer, an acid group-containing single amount 2.0 parts of itaconic acid as a body, 0.5 part of ethylene glycol dimethacrylate as a crosslinkable monomer, 0.3 part of sodium dodecylbenzenesulfonate as an emulsifier, 0.3 part of potassium persulfate as a polymerization initiator, ion exchange After adding 150 parts of water and sufficiently stirring, the polymerization reaction was allowed to proceed by heating to 70 ° C.
  • aqueous dispersion containing the particulate polymer having a core-shell structure, in which the shell part made of the second polymer is coated with the core part made of the first polymer is obtained by 10% hydroxylation.
  • a sodium aqueous solution was added to adjust the pH to 8.
  • the unreacted monomer was removed by heating under reduced pressure.
  • an aqueous dispersion containing a particulate polymer having the first polymer as the core and the second polymer as the shell was obtained.
  • the volume average particle diameter (D50) of the particulate polymer was 320 nm, and the thickness of the shell part was 10.9% with respect to the volume average particle diameter (D50).
  • the glass transition temperature of the 1st polymer and the 2nd polymer, and the electrolyte solution swelling degree of a particulate polymer were measured. The results are shown in Table 1.
  • a mixed solution 1.0 part of a binder composition composed of an aqueous dispersion of a particulate polymer is added to the above mixed liquid in an amount corresponding to the solid content, and ion exchange water is added so that the final solid content concentration becomes 50%. And mixed for another 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition.
  • the prepared slurry composition for negative electrode was applied onto a copper foil (current collector) having a thickness of 15 ⁇ m with a comma coater so that the amount applied was 13.5 to 14.5 mg / cm 2 and dried. In addition, drying was performed by conveying copper foil over 2 minutes in the 70 degreeC oven at the speed
  • the obtained slurry composition for positive electrodes was apply
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared and cut into a 5 cm ⁇ 5 cm square.
  • the aluminum packaging material exterior was prepared as a battery exterior.
  • the positive electrode produced as mentioned above was cut out into a 4 cm x 4 cm square, and it has arrange
  • a square separator was disposed on the surface of the positive electrode mixture layer side of the positive electrode.
  • Examples 2 to 5, 13 to 14 A particulate polymer, a binder composition, a slurry composition for a negative electrode, a negative electrode, a positive electrode, and a secondary battery are the same as in Example 1 except that the blending ratio of the monomers is changed to the ratio shown in Tables 1 and 2. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 The amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.24 part. Further, the addition amount of various monomers added in the second polymerization step, and the composition ratio of various monomer units constituting the second polymer are blended with various monomers so as to be the same as in Example 1. While maintaining the ratio, the total addition amount of various monomers for constituting the second polymer was changed to 6 parts by mass when the first polymer was 100 parts by mass.
  • Example 1 a particulate polymer, a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, and various measurements were performed in the same manner as in Example 1. It was. The results are shown in Table 1.
  • Example 7 The amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.40 part. Further, the addition amount of various monomers added in the second polymerization step, and the composition ratio of various monomer units constituting the second polymer are blended with various monomers so as to be the same as in Example 1. While maintaining the ratio, the total addition amount of various monomers for constituting the second polymer was changed to 360 parts by mass when the first polymer was 100 parts by mass.
  • Example 1 a particulate polymer, a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, and various measurements were performed in the same manner as in Example 1. It was. The results are shown in Table 1.
  • Example 8 The particulate polymer, the binder composition, the negative electrode slurry composition, the negative electrode, the positive electrode, and the secondary were the same as in Example 1 except that the acrylate monomer added to the second polymer was changed to butyl acrylate. A battery was prepared and various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 A particulate polymer, a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1 except that the water-soluble polymer was changed to a polyacrylic acid-polyacrylamide copolymer. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 The particulate polymer, the binder composition, and the slurry composition for the negative electrode were the same as in Example 1 except that the addition amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.80 part.
  • a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 The particulate polymer, the binder composition, and the slurry composition for the negative electrode were the same as in Example 1 except that the addition amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.14 part.
  • a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 In the same manner as in Example 1, a particulate polymer and a binder composition were prepared. And, in blending the binder composition into the slurry composition for negative electrode, Example 1 except that the blending amount of the particulate polymer was changed to 0.3 times the solid content equivalent amount of the water-soluble polymer. In the same manner as described above, a slurry composition for negative electrode, a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 15 The amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.50 part. Further, the addition amount of various monomers added in the second polymerization step, and the composition ratio of various monomer units constituting the second polymer are blended with various monomers so as to be the same as in Example 1. While maintaining the ratio, the total addition amount of various monomers for constituting the second polymer was changed to 402 parts by mass when the first polymer was 100 parts by mass.
  • Example 2 Except for these points, a particulate polymer, a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1, and various measurements were performed in the same manner as in Example 1. It was. The results are shown in Table 2.
  • Example 1 (Comparative Example 1) In the same manner as in Example 1 except that the amount of sodium dodecylbenzenesulfonate, which is an emulsifier added during the preparation of the first polymer, was 0.23 parts, and the second polymer was not prepared. Then, a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 The first polymer was not prepared, and in the preparation of the second polymer, a particulate polymer was prepared in the same manner as in Example 1, except that the amount of sodium dodecylbenzenesulfonate as an emulsifier was 0.23 parts.
  • a binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 A particulate polymer, a binder composition, a slurry composition for negative electrode, a negative electrode, a positive electrode, and a secondary battery were prepared in the same manner as in Example 1 except that the monomer mixing ratio was changed to the ratio shown in Table 2. Various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • each particulate polymer prepared in Comparative Examples 1 and 2 was used instead of the particulate polymer having a core-shell structure.
  • a negative electrode slurry composition, a negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 In preparing the particulate polymer, a negative electrode slurry composition was prepared in the same manner as in Example 1 except that in the second polymerization step, 55.0 parts of methyl methacrylate was added instead of 55.0 parts of 2-ethylhexyl acrylate. A negative electrode, a positive electrode, and a secondary battery were prepared, and various measurements were performed in the same manner as in Example 1. The results are shown in Table 2.
  • BD indicates 1,3-butadiene
  • St indicates styrene
  • MAA indicates methacrylic acid
  • 2-EHA refers to 2-ethylhexyl acrylate
  • BA represents butyl acrylate
  • IA refers to itaconic acid
  • EDMA refers to ethylene glycol dimethacrylate
  • AMA indicates allyl methacrylate
  • CMC-Na represents carboxymethylcellulose sodium salt
  • PAA-PAM indicates a polyacrylic acid-polyacrylamide copolymer
  • MMA indicates methyl methacrylate.
  • a core part contains the 1st polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit, and a shell part is (meta).
  • a particulate polymer containing a second polymer different from the first polymer containing 40% by mass or more of an acrylate monomer unit is included, and the degree of swelling of the particulate polymer with respect to the electrolytic solution is 2. It can be seen that the binder compositions according to Examples 1 to 15, which are 5 times or less, have excellent binding properties and can sufficiently improve the electrical characteristics of the secondary battery.
  • Comparative Example 3 in which the proportion of acid ester monomer units is less than 40% by mass, Comparative Example 4 containing the first and second polymers but having no core-shell structure, and Example 1 constitute a core-shell structure
  • Comparative Example 5 in which the polymer to be reversed, and Comparative Example 6 in which the degree of swelling of the particulate polymer with respect to the electrolytic solution is 2.5 times greater than the binding property of the secondary battery as the binder. It can be seen that electrical characteristics cannot be achieved at a sufficiently high level.
  • the binder composition for non-aqueous secondary battery electrodes which can fully improve the electrical property of a secondary battery can be provided.
  • an electrode mixture layer that is excellent in binding properties with a current collector can be formed, and the electrical characteristics of a secondary battery including the electrode mixture layer can be enhanced.
  • a slurry composition for a secondary battery electrode can be provided.
  • the electrode for non-aqueous secondary batteries which can improve the electrical property of a secondary battery, and the non-aqueous secondary battery with high electrical property can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本発明の非水系二次電池電極用バインダー組成物は、コアシェル構造を有する粒子状重合体を含む非水系二次電池電極用バインダー組成物である。粒子状重合体において、コア部が、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、シェル部が、(メタ)アクリル酸エステル単量体単位を40質量%以上含有する、前記第1重合体とは異なる第2重合体を含む。さらに、粒子状重合体の電解液に対する膨潤度が2.5倍以下である。

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。近年では、二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを溶媒に分散および/または溶解させてなるスラリー組成物を集電体上に塗布し、乾燥させることにより形成される。
 近年では、二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物およびスラリー組成物の改良が試みられている。例えば、近年、二次電池などの電極に用いられるバインダーについて、二次電池の電池特性を向上させるために種々の組成が検討されてきた。具体的には、粒子の表面(シェル部)と内部(コア部)とを異なる重合体で形成したコアシェル型の粒子を結着材として電極に配合することが提案されてきた(例えば、特許文献1参照)。特許文献1に記載の結着材は、例えば、アクリロニトリル単量体単位、スチレン単量体単位、ブタジエン単量体単位、アクリレート単量体単位などを含む共重合体を適当な架橋剤で架橋させてコア部が形成されており、例えば、アクリレート単量体単位、スチレン単量体単位などを含む共重合体によりシェル部が形成されている。また、集電体に対する密着性の高い電極層を形成することができるバインダーとして、多段階の乳化重合によって得られるラテックスよりなる電極用バインダーが提案されてきた。(例えば、特許文献2参照)。特許文献2に記載のラテックスは、多段階の乳化重合によって得られるものであり、第1段階の乳化重合において芳香族ビニル単量体単位、共役ジエン単量体単位、(メタ)アクリル酸エステル単量体単位、及びシアン化ビニル単量体単位を含む重合体を形成し、他の段階の乳化重合において、芳香族ビニル単量体単位、共役ジエン単量体単位、及び(メタ)アクリル酸エステル単量体単位を含む重合体を形成して得られるものであった。
特開2002-75377号公報 特開2010-129369号公報
 しかし、特許文献1による結着材は、結着性に優れるものの、二次電池のレート特性を十分に向上させることができなかった。また、特許文献2による結着材では、電極合材層と集電体との結着性を十分に高めると共に、レート特性や高温サイクル特性といった二次電池の電気的特性を十分に高いレベルで両立させることができなかった。
 そこで、本発明は、結着性に優れると共に、二次電池の電気的特性を十分に高めることが可能な非水系二次電池電極用バインダー組成物を提供することを目的とする。
 また、本発明は、集電体との結着性に優れる電極合材層を形成可能であり、当該電極合材層を備える二次電池の電気的特性を高めることができる非水系二次電池電極用スラリー組成物を提供することを目的とする。
 そして、本発明は、二次電池の電気的特性を高めることができる非水系二次電池用電極、及び当該非水系二次電池用電極を備える非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、まず、結着材を構成可能な種々の単量体単位により構成される各種重合体について検討を行った。その結果、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体は、単量体単位当たりの分子鎖が長いため、重合体自体の強度を向上させることができ、結着材の結着性を向上させる作用を有する反面、二次電池のレート特性を十分に向上させることができないことが明らかになった。また、その一方で、(メタ)アクリル酸エステル単量体単位を含有する重合体は、二次電池のレート特性を向上させることができる反面、結着材の結着性を十分に向上させることができないことが明らかとなった。
 そこで、本発明者が、各重合体の長所を兼ね備えた結着材を開発すべくさらに検討を進めたところ、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体をコア部とし、(メタ)アクリル酸エステル単量体単位を特定の比率で含有する重合体をシェル部とするコアシェル構造の重合体が、結着性に優れると共に、レート特性を含む二次電池の電気的特性を十分に高めることができることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明による非水系二次電池電極用バインダー組成物は、粒子状重合体を含む非水系二次電池電極用バインダー組成物であって、前記粒子状重合体は、最外層にシェル部と、前記シェル部よりも内側にあるコア部とを備えるコアシェル構造を有し、前記コア部が、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、前記シェル部が、(メタ)アクリル酸エステル単量体単位を40質量%以上含有する、前記第1重合体とは異なる第2重合体を含み、前記粒子状重合体の電解液に対する膨潤度が2.5倍以下であることを特徴とする。このようなバインダー組成物は、結着性に優れると共に、二次電池の電気的特性を十分に高めることができる。
 ここで、本明細書において、「(メタ)アクリル酸」とは、アクリル酸および/またはメタクリル酸を意味する。
 本明細書において「単量体単位を含有する(含む)」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 なお、「粒子状重合体の電解液に対する膨潤度」は、本発明の実施例に記載の方法により測定することができる。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、前記第1重合体が、脂肪族共役ジエン単量体単位を25質量%以上及び芳香族ビニル単量体単位を40質量%以上75質量%以下含むことが好ましい。このようなバインダー組成物は、結着性に一層優れ、さらに二次電池の電気的特性を一層向上させることができるからである。
 また、本発明本発明の非水系二次電池電極用バインダー組成物は、前記第2重合体が、更に芳香族ビニル単量体単位を20質量%以上60質量%未満含むことが好ましい。このようなバインダー組成物は、結着性により一層優れ、さらに二次電池の電気的特性を一層向上させることができるからである。
 また、本発明の非水系二次電池電極用バインダー組成物は、前記(メタ)アクリル酸エステル単量体単位に含まれる非カルボニル性酸素原子に結合するアルキル基又はパーフルオロアルキル基の炭素数が、3以上であることが好ましい。このようなバインダー組成物は、二次電池の電気的特性をより一層向上させることができるからである。
 また、本発明の非水系二次電池電極用バインダー組成物は、前記第2重合体が、更に架橋性単量体単位を0.05質量%以上2質量%以下含むことが好ましい。このようなバインダー組成物は、二次電池の電気的特性をより一層向上させることができるからである。
 また、本発明の非水系二次電池電極用バインダー組成物は、前記シェル部の厚みが前記粒子状重合体の体積平均粒子径(D50)に対して0.1%以上30%以下であることが好ましい。このようなバインダー組成物は、結着性により一層優れ、さらに二次電池の電気的特性を一層向上させることができるからである。
 なお、粒子状重合体の「シェル部の厚み」は、透過型電子顕微鏡を用いて100個の粒子状重合体のシェル部の厚みを測定し、その算術平均値とすることができる。また、体積平均粒子径(D50)とは、レーザー回折法で測定した粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径である。
 さらに、本発明の非水系二次電池電極用バインダー組成物は、前記粒子状重合体の体積平均粒子径(D50)が、50nm以上1000nm以下であることが好ましい。このようなバインダー組成物は、結着性により一層優れ、さらに二次電池の電気的特性を一層向上させることができるからである。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質、水溶性高分子、及び非水系二次電池電極用バインダー組成物を含むことを特徴とする。このような非水系二次電池電極用スラリー組成物は、集電体との結着性に優れる電極合材層を形成可能であり、当該電極合材層を備える二次電池の電気的特性を高めることができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備えることを特徴とする。このような、非水系二次電池用電極を用いれば、二次電池の電気的特性を高めることができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用電極を備えることを特徴とする。このような非水系二次電池は、良好な電気的特性を有している。
 本発明によれば、結着性に優れると共に、二次電池の電気的特性を十分に高めることが可能な非水系二次電池電極用バインダー組成物を提供することができる。
 さらに、本発明によれば、集電体との結着性に優れる電極合材層を形成可能であり、当該電極合材層を備える二次電池の電気的特性を高めることができる非水系二次電池電極用スラリー組成物を提供することができる。
 さらに、本発明によれば、二次電池の電気的特性を高めることができる非水系二次電池用電極、及び当該非水系二次電池用電極を備える非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、例えば、リチウムイオン二次電池などの非水系二次電池の電極を形成する際に用いられる。
 また、本発明の非水系二次電池電極用スラリー組成物は、上記バインダー組成物を含むものであり、本発明の非水系二次電池用電極の製造に用いられる。
 さらに、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備えることを特徴とし、本発明の非水系二次電池は本発明の非水系二次電池用電極を用いたことを特徴とする。
(非水系二次電池電極用バインダー組成物)
 本発明の非水系二次電池電極用バインダー組成物は、コアシェル構造を有する粒子状重合体を含む。かかる粒子状重合体は、最外層にシェル部と、シェル部よりも内側にあるコア部を備え、コア部が脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、シェル部が(メタ)アクリル酸エステル単量体単位を40質量%以上含有する、第1重合体とは異なる第2重合体を含むことを特徴とする。
 本発明において、上記第1重合体を含むコア部と、上記第2重合体を含むシェル部とを供えるコアシェル構造の粒子状重合体をバインダー組成物に含有させることにより、バインダー組成物の結着性を向上させると共に、かかるバインダー組成物を用いて形成した二次電池の電気的特性を向上させることができる理由は明らかではないが、以下のような機構が推察される。まず、本発明者らは、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体、及び(メタ)アクリル酸エステル単量体単位を含有する重合体の双方の長所を兼ね備えた結着材の開発にあたり、各重合体の電極活物質表面への吸着態様が異なることを見出した。具体的には、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体は、比較的極性が低いため、電極を調製する際に、電極活物質とかかる重合体とを水などの極性溶媒中において分散させた後に所定の乾燥工程を経て得られる電極合材層中において、重合体同士が凝集して塊状となった状態で電極活物質表面に吸着される傾向がある。一方、(メタ)アクリル酸エステル単量体単位を含有する重合体は、比較的極性が高いため、水などの極性溶媒中において良好に分散し、電極活物質と共に極性溶媒中に分散させた後に所定の乾燥工程を経て得られた電極合材層中において、各重合体が電極活物質表面上で相互に離間して、すなわち、ドット状に分散して吸着される傾向がある。特に、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体は、あたかも電極活物質間に生じた間隙を埋めるような態様で存在することが明らかとなった。ここで、二次電池の電気的特性の一つであるレート特性を向上させる観点から、電極活物質イオンが移動するための通路となる電極活物質間の間隙は閉塞されないことが好ましい。すなわち、粒子状重合体は、(メタ)アクリル酸エステル単量体単位を含有する重合体が電極活物質に吸着する際の吸着特性を備えることが好ましい。これにより、電極活物質イオンが移動するための通路となる電極活物質間の間隙は閉塞されにくくなり、さらに、電極活物質上において電極活物質イオンが挿入可能なサイトが均一に分散された状態を創出することが可能であり、二次電池のレート特性を向上させることができる。したがって、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体をコア部とし、(メタ)アクリル酸エステル単量体単位を含有する重合体をシェル部とするコアシェル構造の粒子状重合体によれば、コア部を形成する重合体に起因する高い強度と、シェル部を形成する重合体に起因する良好な吸着特性との双方が発現しうることが明らかとなった。
 そして、本発明者らがさらに検討を進めたところ、粒子状重合体のシェル部における(メタ)アクリル酸エステル単量体単位の比率が40質量%以上である場合に、粒子状重合体の分散性が顕著に向上することが明らかとなった。よって、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体をコア部とし、(メタ)アクリル酸エステル単量体単位を40質量%以上含有する重合体をシェル部とするコアシェル構造の粒子状重合体をバインダー組成物に含有させれば、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する重合体由来の優れた結着性と、(メタ)アクリル酸エステル単量体単位を含有する重合体由来の、二次電池における優れたレート特性とを発揮させることができる。
<粒子状重合体>
 本発明の非水系二次電池電極用バインダー組成物に含有させる粒子状重合体は、本発明の非水系二次電池電極用バインダー組成物を含む非水系二次電池電極用スラリー組成物を用いて電極を形成した際に、製造した電極において電極活物質層に含まれる成分(例えば、電極活物質)が電極から脱離しないように保持しうる成分である。ここで、粒子状重合体は、バインダー組成物中及びスラリー組成物中では粒子形状で存在する。そして、上述したとおり、粒子状重合体は、コア部が脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、シェル部が(メタ)アクリル酸エステル単量体単位を40質量%以上含有する第2重合体を含むコアシェル構造を有する。なお、第1重合体と第2重合体とは異なる重合体である。かかるコアシェル構造は、コア部及びシェル部がそれぞれ一層で形成されることが好ましいが、コア部及びシェル部がそれぞれ複数層により形成されていても良い。特に、コア部が複数層で形成される場合には、最内層が脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含むことが好ましい。なお、通常、シェル部はコア部の外表面全体を覆っているが、本発明の効果を奏する限りにおいて、シェル部はコア部の外表面全体を覆っていなくても良い。
 さらに、本発明の非水系二次電池電極用バインダー組成物に含有させる粒子状重合体粒子状重合体の電解液に対する膨潤度は、2.5倍以下である。粒子状重合体の電解液に対する膨潤度が2.5倍以下であれば、電解液中における電極合材層の集電体に対する接着強度の低下を抑制することができ、二次電池の高温サイクル特性を一層向上させることができる。また、粒子状重合体の電解液に対する膨潤度が2.5倍以下であれば、電解液中にて粒子状重合体が過度に膨潤して、電池反応に寄与するイオンの移動を阻害することを抑制して、二次電池のレート特性を一層向上させることができる。
 なお、本発明において、粒子状重合体の「電解液に対する膨潤度」は、粒子状重合体を成形してなるフィルムを特定の電解液に所定条件で浸漬した場合の浸漬後の重量を浸漬前の重量で除した値(倍)として求めることができ、具体的には、本明細書の実施例に記載の方法を用いてフィルムを成形し、同実施例に記載の測定方法を用いて測定する。
 粒子状重合体の電解液に対する膨潤度は、1.0倍超であることが好ましく、2.0倍以下であることが好ましく、1.8倍以下であることがより好ましく、1.7以下であることが更に好ましい。粒子状重合体の電解液に対する膨潤度を上記下限値超とすることで、二次電池内における電極活物質イオンの移動性が向上し、二次電池の内部抵抗を低減させて、二次電池のレート特性を一層向上させることができる。
 粒子状重合体の電解液に対する膨潤度は、使用する単量体の種類および量を変更することにより調整することができ、例えば、芳香族ビニル単量体や架橋性単量体の量を増加させることや、重合温度を上げることや、重合反応時間を長くすること等により重合分子量を大きくすることで電解液に対する膨潤度を低下させることができる。
-第1重合体(コア部)-
[脂肪族共役ジエン単量体単位]
 粒子状重合体のコア部に含まれる第1重合体は、脂肪族共役ジエン単量体単位を含有する。第1重合体に脂肪族共役ジエン単量体単位を含有させることで、粒子状重合体の膨潤度が過度に大きくなることを回避して、二次電池の高温サイクル特性を向上させることができる。脂肪族共役ジエン単量体単位は脂肪族共役ジエン単量体由来の構造単位である。脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン(クロロプレン)、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などが挙げられる。なかでも、脂肪族共役ジエン単量体としては、1,3-ブタジエンが好ましい。
 なお、これらの脂肪族共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、第1重合体中の脂肪族共役ジエン単量体単位の含有割合は、第1重合体中の全繰り返し単位を100質量%とした場合に、25質量%以上であることが好ましく、30質量%以上であることがより好ましく、35質量%以上であることがさらに好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。脂肪族共役ジエン単量体単位の含有割合が上記下限値以上であれば、第1重合体のガラス転移温度を適度に低下させて、バインダー組成物の結着性を一層向上させることができる。さらに、脂肪族共役ジエン単量体単位の含有割合が上記上限値以下であれば、第1重合体のガラス転移温度が過度に低下することを回避して、バインダー組成物の結着性を一層向上させることができる。
[芳香族ビニル単量体単位]
 第1重合体は、芳香族ビニル単量体単位を含有する。第1重合体に芳香族ビニル単量体単位を含有させることで、粒子状重合体の膨潤度が過度に大きくなることを回避して、二次電池の高温サイクル特性を向上させることができる。芳香族ビニル単量体単位は、芳香族ビニル単量体由来の構成単位である。ここで、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらは、一種単独で、または、二種以上を組み合わせて用いることができる。これらの中でも、スチレンが好ましい。
 そして、第1重合体中の芳香族ビニル単量体単位の含有割合は、第1重合体中の全繰り返し単位を100質量%とした場合に、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、55質量%以上であることがさらに好ましく、75質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。第1重合体中の芳香族ビニル単量体単位の含有割合を上記下限値以上とすることにより、第1重合体のガラス転移温度が過度に低下することを抑制して、バインダー組成物の結着性を一層向上させることができる。さらに、第1重合体中の芳香族ビニル単量体単位の含有割合を上記上限値以下とすることにより、第1重合体のガラス転移温度が過度に上昇することを抑制して、バインダー組成物の結着性を一層向上させることができる。
[酸基含有単量体単位]
 さらに、第1重合体は、酸基含有単量体単位を含んでいることが好ましい。酸基含有単量体単位を形成し得る酸基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。なお、本明細書において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味し、(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。
 更に、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 また、水酸基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、粒子状重合体のコア部の重合性を向上させる観点から、モノカルボン酸が好ましく、なかでも、メタクリル酸がさらに好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、第1重合体中の酸基含有単量体単位の含有割合は、第1重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、7質量%以下であることが好ましく、5質量%以下であることがより好ましく、4質量%以下であることがさらに好ましい。第1重合体中の酸基含有単量体単位の含有割合を上記下限値以上とすることで、粒子状重合体の調製時における、重合溶媒中での第1重合体の分散安定性を向上させることができる。さらに、第1重合体中の酸基含有単量体単位の含有割合を上記上限値以下とすることで、粒子状重合体の調製時における、凝集物の発生を抑制して、バインダー組成物の生産効率を向上させることができるとともに、電極内にて残留する水分量を低減して、二次電池の高温サイクル特性を一層向上させることができる。
[第1重合体を構成しうるその他の単量体単位]
 さらに、第1重合体は、上述した各種単量体単位以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、特に限定されないが、ニトリル基含有単量体単位、(メタ)アクリル酸エステル単量体単位、脂肪族共役ジエン単量体単位以外の他の架橋性単量体単位などの粒子状重合体の調製に使用される既知の単量体が挙げられる。なお、第1重合体が(メタ)アクリル酸エステル単量体単位を含有する場合には、含有割合は40質量%未満である必要があり、好ましくは20質量%未満、より好ましくは10質量%未満である。また、本発明においては第1重合体が脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有することが重要であり、第1重合体の形成に使用するその他の単量体の種類および量は、バインダーの結着性を向上させるというコア部を構成する第1重合体の特性を発揮させることができる限りにおいて、任意の種類および量とすることができる。
[第1重合体のガラス転移温度]
 第1重合体のガラス転移温度は、特に限定されないが、好ましくは-50℃以上、より好ましくは-30℃以上、さらに好ましくは-10°以上であり、好ましくは35℃以下、より好ましくは30℃以下、さらに好ましくは20℃以下、特に好ましくは15℃以下である。第1重合体のガラス転移温度が上記範囲内であれば、バインダー組成物の結着性を一層向上させることができる。第1重合体のガラス転移温度は、特に限定されることなく、第1重合体の形成に使用する単量体の種類および量などを変更することにより調整することができる。
 なお、第1重合体のガラス転移温度は、特に限定されることなく、示差走査熱量計を用いて測定することができる。測定試料は、粒子状重合体の調製工程にて形成された第1重合体を乾燥させることにより得られる。
-第2重合体(シェル部)-
[(メタ)アクリル酸エステル単量体単位]
 (メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体由来の繰り返し単位である。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
 (メタ)アクリル酸アルキルエステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。
 (メタ)アクリル酸パーフルオロアルキルエステルとしては、アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチル、アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、アクリル酸2-(パーフルオロヘキサデシル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチル、メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、メタクリル酸2-(パーフルオロヘキサデシル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;などが挙げられる。
 これらは一種単独で、または、二種以上を組み合わせて用いることができる。
 ここで、シェル部を構成する第2重合体の疎水性を適度に高めて粒子状重合体を電解液に対する膨潤度が過剰に高くなることを回避すると共に、第2重合体のガラス転移温度を適切な範囲とする観点から、(メタ)アクリル酸アルキルエステルまたは(メタ)アクリル酸パーフルオロアルキルエステルの非カルボニル性酸素原子に結合するアルキル基またはパーフルオロアルキル基の炭素数は、好ましくは3以上、より好ましくは4以上、さらに好ましくは6以上であり、好ましくは14以下、より好ましくは10以下である。具体的には、粒子状重合体の膨潤度が過度に大きくなることを抑制する観点から、(メタ)アクリル酸エステル単量体は、2-エチルヘキシルアクリレート、ブチルアクリレートであることが好ましく、2-エチルヘキシルアクリレートであることがより好ましい。
 そして、第2重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体中の全繰り返し単位を100質量%とした場合に、40質量%以上である。さらに、第2重合体中の(メタ)アクリル酸エステル単量体単位の含有割合は、45質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。(メタ)アクリル酸エステル単量体単位の含有割合を上記下限値以上とすれば、非水系二次電池電極用スラリー組成物内において、水溶性高分子と粒子状重合体との親和性を向上させて、電極活物質上において粒子状重合体を相互に離間して配置させることができる。これにより、非水系二次電池電極用バインダー組成物を用いて形成した二次電池のレート特性を向上させることができる。さらに、(メタ)アクリル酸エステル単量体単位の含有割合を上記上限値以下とすれば、粒子状重合体のガラス転移温度が極端に低下することを回避してバインダー組成物の結着性を一層向上させることができる。
[芳香族ビニル単量体単位]
 さらに、第2重合体は、芳香族ビニル単量体単位を含んでいることが好ましい。第2重合体に芳香族ビニル単量体単位を含有させることで、粒子状重合体の膨潤度が過度に大きくなることを抑制して、二次電池の高温サイクル特性を一層向上させることができる。ここで、芳香族ビニル単量体としては、上記第1重合体について列挙したものと同様のものを使用することができるが、上記第1重合体について使用する芳香族ビニル単量体と第2重合体について使用する芳香族ビニル単量体とは同一であっても異なるものであっても良い。特に、芳香族ビニル単量体としては、スチレンが好ましい。
 そして、第2重合体中の芳香族ビニル単量体単位の含有割合は、第2重合体中の全繰り返し単位を100質量%とした場合に、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。第2重合体中の芳香族ビニル単量体単位の含有割合を上記下限値以上とすることにより、第2重合体のガラス転移温度が過度に低下することを抑制して、バインダー組成物の結着性を一層向上させることができる。さらに、第2重合体中の芳香族ビニル単量体単位の含有割合を上記上限値以下とすることにより、第2重合体のガラス転移温度が過度に上昇することを抑制して、バインダー組成物の結着性を一層向上させることができる。
[酸基含有単量体単位]
 さらに、第2重合体は、酸基含有単量体単位を含んでいることが好ましい。酸基含有単量体単位を形成し得る酸基含有単量体としては、第1重合体について使用可能な酸基含有単量体と同様のものを使用することができる。なかでも、酸基含有単量体としては、経時的な粘度上昇を抑制してバインダー組成物及び非水系二次電池電極用スラリー組成物の経時的安定性を向上させる観点から、ジカルボン酸が好ましく、ジカルボン酸の中でもイタコン酸がさらに好ましい。
 そして、第2重合体中の酸基含有単量体単位の含有割合は、第2重合体中の全繰り返し単位を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。第2重合体中の酸基含有単量体単位の含有割合を上記下限値以上とすることで、バインダー組成物及び非水系二次電池電極用スラリー組成物中における粒子状重合体の分散安定性を向上させることができる。さらに、第2重合体中の酸基含有単量体単位の含有割合を上記上限値以下とすることで、粒子状重合体に起因した二次電池中への水分の持ち込み量を減らして電解液中の電解質の分解を抑制し、二次電池の高温サイクル特性を一層向上させることができる。
[架橋性単量体単位]
 さらに、第2重合体は、架橋性単量体単位を含んでいることが好ましい。架橋性単量体単位は、架橋性単量体由来の構造単位である。また、架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。架橋性単量体単位を含むことにより、粒子状重合体の膨潤度を低下させて、粒子状重合体の結着性を一層向上させて、二次電池の高温サイクル特性を一層向上させることができる。
 架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン等のジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、アリルメタクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらの中でも、エチレングリコールジメタクリレートやアリルメタクリレートを用いることが好ましく、エチレングリコールジメタクリレートを用いることがより好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、第2重合体中の架橋性単量体単位の含有割合は、第2重合体中の全繰り返し単位を100質量%とした場合に、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることがさらにより好ましい。架橋性単量体単位の含有割合を上述の範囲内とすれば、粒子状重合体の結着性を一層向上させて、二次電池の高温サイクル特性を一層向上させることができる。
[第2重合体を構成しうるその他の単量体単位]
 さらに、第2重合体は、上述した各種単量体単位以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、特に限定されないが、脂肪族共役ジエン単量体、ニトリル基含有単量体単位などの粒子状重合体の調製に使用される既知の単量体が挙げられる。ここで、本発明においてはシェル部を構成する第2重合体が(メタ)アクリル酸エステル単量体単位を40質量%以上含有することが重要であり、第2重合体の形成に使用するその他の単量体の種類および量は、任意の種類および量とすることができる。
[第2重合体のガラス転移温度]
 第2重合体のガラス転移温度は特に限定されないが、好ましくは-60℃以上、より好ましくは-35℃以上、さらに好ましくは-20°以上であり、好ましくは20℃以下、より好ましくは10℃以下、さらに好ましくは0℃以下である。第2重合体のガラス転移温度が上記範囲内であれば、バインダー組成物の結着性を一層向上させることができる。第2重合体のガラス転移温度は、特に限定されることなく、第2重合体の形成に使用する単量体の種類および量などを変更することにより調整することができる。
 なお、第2重合体のガラス転移温度は、特に限定されることなく、示差走査熱量計を用いて測定することができる。第2重合体のガラス転移温度の測定にあたり、本発明の粒子状重合体のシェル部を構成するために用いる配合割合の単量体を重合させることで、第2重合体のみを含有する測定試料を調製することができる。
<粒子状重合体のシェル部の厚み>
 粒子状重合体のシェル部の厚みは、粒子状重合体の体積平均粒子径(D50)に対して0.1%以上であることが好ましく、0.8%以上であることがより好ましく、1%以上であることがさらに好ましく、5%以上であることがさらにより好ましく、10%以上であることが特に好ましく、30%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。粒子状重合体のシェル部の厚みが上記下限値以上であれば、シェル部を構成する第2重合体の特性を発揮させて、粒子状重合体を電極活物質の表面において相互に離間させて配置することが可能となり、二次電池のレート特性を一層向上させることができる。さらに、粒子状重合体のシェル部の厚みが上記上限値以下であれば、コア部を構成する第1重合体の特性を発揮させて、バインダー組成物の結着性を一層向上させることができる。
<粒子状重合体の体積平均粒子径(D50)>
 粒子状重合体の体積平均粒子径(D50)は、50nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることがさらに好ましく、1000nm以下であることが好ましく、700nm以下であることがより好ましく、500nm以下であることがさらに好ましい。粒子状重合体の体積平均粒子径(D50)が上記下限値以上であれば、バインダー組成物の結着性を一層向上させることができ、また、粒子状重合体の表面積が大きくなることに起因する二次電池の内部抵抗の上昇を抑制して、二次電池のレート特性を一層向上させることができる。さらに、粒子状重合体の体積平均粒子径(D50)が上記上限値以下であれば、電極活物質表面を覆い易くなり、さらに、粒子状重合体自体の強度の低下を抑制して、バインダー組成物の結着性を一層向上させることができ、二次電池の高温サイクル特性を一層向上させることができる。
<粒子状重合体の調製方法>
 上述したコアシェル構造を有する粒子状重合体は、例えば、コア部の第1重合体を形成するための各種単量体と、シェル部の第2重合体を形成するための各種単量体とを用い、段階的に重合することにより、調製することができる。具体的には、粒子状重合体は、まず、コア部の第1重合体形成用の単量体組成物を用いて一段重合または多段重合によりコア部を形成した後、コア部の存在下でシェル部の第2重合体形成用の単量体組成物を重合させてシェル部を形成することにより、調製することができる。なお、第1重合体形成用の単量体組成物および第2重合体形成用の単量体組成物の重合は、特に限定されることなく、水などの水系溶媒中で行うことができる。そして、重合に使用した単量体組成物中の各単量体の含有割合は、通常、当該単量体単位を重合して得られる重合体における繰り返し単位(単量体単位)の含有割合と同様になる。
 また、重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。中でも、製造効率の観点からは、乳化重合法が特に好ましい。なお、乳化重合は、常法に従い行うことができる。
 そして、第1及び第2重合体の重合に使用される乳化剤、分散剤、重合開始剤、重合助剤、連鎖移動剤、分子量調整剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。また、第1重合体の重合に際しては、シード粒子を採用してシード重合を行ってもよい。また、重合条件も、重合方法および重合開始剤の種類などにより任意に選択することができる。
 ここで、粒子状重合体の体積平均粒子径(D50)及びシェル部の厚みは、例えば、第1重合体を得る段階及び第2重合体を得る段階のそれぞれにおいて、添加する乳化剤の量、単量体の量などを調整することで、所望の範囲にすることができる。
<その他の成分>
 本発明のバインダー組成物は、上記粒子状重合体の他に、導電助剤、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製>
 本発明のバインダー組成物は、上述した成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上述した成分と水系媒体とを混合することにより、バインダー組成物を調製することができる。
 なお、粒子状重合体は、水系溶媒中で単量体組成物を重合して調製した場合には、水分散体の状態でそのまま他の成分と混合することができる。また、粒子状重合体を水分散体の状態で混合する場合には、水分散体中の水を上記水系媒体として使用してもよい。
(非水系二次電池電極用スラリー組成物)
 本発明の非水系二次電池電極用スラリー組成物は、上述したバインダー組成物と、水溶性高分子と、電極活物質とを含む。かかる非水系二次電池電極用スラリー組成物は、集電体との結着性に優れる電極合材層を形成可能であり、当該電極合材層を備える二次電池の電気的特性を高めることができる。
<水溶性高分子>
 水溶性高分子は、スラリー状の非水系二次電池電極用スラリー組成物中において、少なくとも一部が電極活物質表面や、組成物が導電材を含む場合には導電材表面に吸着することで、スラリー中における電極活物質や導電材の分散安定化に寄与する成分である。さらに、水溶性高分子は非水系二次電池電極用スラリー組成物の粘性を高めて、スラリー中の成分の沈降を抑制しつつその塗工性を確保しうる。ここで、水溶性高分子としては、特に限定されることなく、水に可溶な程度の極性を有する高分子であり、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリカルボン酸、これらの塩、ポリ(メタ)アクリルアミドなどを用いることができる。そして、ポリカルボン酸としては、ポリアクリル酸、ポリメタクリル酸、アルギン酸などが挙げられる。また、ポリ(メタ)アクリルアミドとは、(メタ)アクリルアミド骨格を有する化合物を主成分とする重合体である。例えば、アクリルアミド、メタクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタアクリルアミド、N-メチロールメタクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド、アクリルアミドt-ブチルスルホン酸等を含み、さらに共重合可能な単量体を含んでも構わない。これら水溶性高分子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて、あるいは共重合して得られた共重合体として用いてもよい。
 ここで、本発明において、高分子が「水溶性」であるとは、イオン交換水100質量部当たり高分子1質量部(固形分相当)を添加し攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつ、pH3以上12以下(pH調整にはNaOH水溶液及び/またはHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整し、250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の質量が、添加した高分子の固形分に対して50質量%を超えないことをいう。
 さらに、非水系二次電池電極用スラリー組成物における水溶性高分子の配合量は、電極活物質100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。水溶性高分子の配合量を上記範囲内とすることで、スラリー中における電極活物質等の分散性を向上させると共に、二次電池のレート特性を向上させることができる。
<電極活物質>
 電極活物質は、二次電池の電極(正極、負極)において電子の受け渡しをする物質である。以下では、非水系二次電池電極用スラリー組成物の一例として、リチウムイオン二次電池の電極の製造に使用されるリチウムイオン二次電池電極用スラリー組成物を挙げ、当該スラリー組成物に用いる電極活物質(正極活物質、負極活物質)について説明する。
[正極活物質]
 正極活物質としては、特に限定されることなく、リチウムイオン二次電池の正極において使用される既知の正極活物質を用いることができる。具体的には、正極活物質としては、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 ここで、遷移金属酸化物としては、例えばMnO、MnO、V、V13、TiO、Cu、非晶質VO-P、非晶質MoO、非晶質V、非晶質V13等が挙げられる。
 遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeSなどが挙げられる。
 リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、LiMaOとLiMbOとの固溶体などが挙げられる。なお、LiMaOとLiMbOとの固溶体としては、例えば、xLiMaO・(1-x)LiMbOなどが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。
 なお、本明細書において、「平均酸化状態」とは、前記「1種類以上の遷移金属」の平均の酸化状態を示し、遷移金属のモル量と原子価とから算出される。例えば、「1種類以上の遷移金属」が、50mol%のNi2+と50mol%のMn4+から構成される場合には、「1種類以上の遷移金属」の平均酸化状態は、(0.5)×(2+)+(0.5)×(4+)=3+となる。
 スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)や、マンガン酸リチウム(LiMn)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、Li[Mn2-tMc]Oが挙げられる。ここで、Mcは平均酸化状態が4+である1種類以上の遷移金属を表す。Mcの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。なお、正極活物質としては、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物なども用いることができる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)などのLiMdPOで表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiMdPOで表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。
 上述した中でも、スラリー組成物を用いて形成した正極を使用した二次電池の高温サイクル特性および初期容量を向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO)またはオリビン型リン酸鉄リチウム(LiFePO)を用いることが好ましい。
 また、スラリー組成物を用いて形成した正極を使用したリチウムイオン二次電池を高容量とする観点からは、正極活物質として、MnおよびNiの少なくとも一方を含有する正極活物質を用いることが好ましい。具体的には、リチウムイオン二次電池の高容量化の観点からは、LiNiO、LiMn、リチウム過剰のスピネル化合物、LiMnPO、Li[Ni0.5Co0.2Mn0.3]O、Li[Ni1/3Co1/3Mn1/3]O、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等を正極活物質として用いることが好ましく、LiNiO、リチウム過剰のスピネル化合物、Li[Ni0.5Co0.2Mn0.3]O、Li[Ni1/3Co1/3Mn1/3]O、Li[Ni0.17Li0.2Co0.07Mn0.56]O等を正極活物質として用いることがより好ましく、Li[Ni0.5Co0.2Mn0.3]Oを正極活物質として用いることが特に好ましい。
 なお、正極活物質の粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
[負極活物質]
 負極活物質としては、特に限定されることなく、リチウムイオン二次電池の負極において使用される既知の負極活物質を用いることができる。具体的には、通常は、負極活物質としては、リチウムを吸蔵および放出し得る物質を用いる。なお、リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 ここで、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 また、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などの黒鉛(グラファイト)が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物が挙げられる。
 SiOは、SiOおよびSiOの少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガスおよび/または蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。
 Si含有材料と導電性カーボンとの複合化物としては、例えば、SiOと、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガスおよび/または蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、SiOの粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、SiOの粒子と黒鉛または人造黒鉛をメカノケミカル法によって複合粒子化(造粒化)する方法などの公知の方法でも得ることができる。
<バインダー組成物>
 非水系二次電池電極用スラリー組成物に配合し得るバインダー組成物としては、上述した粒子状重合体を含む本発明の非水系二次電池電極用バインダー組成物を用いることができる。上述したバインダー組成物が含有する上述の粒子状重合体は、非水系二次電池電極用スラリー組成物を用いて形成した電極合材層において、結着材の少なくとも一部として機能する。非水系二次電池電極用スラリー組成物におけるバインダー組成物の配合量は、粒子状重合体の配合比率が、電極活物質及び水溶性高分子を基準として、以下の範囲内となるように調整することが好ましい。
[粒子状重合体の配合量(電極活物質基準)]
 すなわち、本発明の非水系二次電池電極用スラリー組成物における粒子状重合体の配合量は、電極活物質100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。粒子状重合体の配合量が上記下限値以上であれば、非水系二次電池電極用スラリー組成物を用いて形成した電極のピール強度を十分に高めることができ、かかる電極を有する二次電池の高温サイクル特性を一層向上させることができる。また、粒子状重合体の配合量が上記上限値以下であれば、非水系二次電池電極用スラリー組成物を用いて形成した電極を備える二次電池のレート特性を一層向上させることができる。
[粒子状重合体の配合量(水溶性高分子基準)]
 また、本発明の非水系二次電池電極用スラリー組成物における粒子状重合体の配合量は、水溶性高分子の配合量(固形分相当量)の0.1倍以上が好ましく、0.5倍以上がより好ましく、0.7倍以上がさらに好ましく、5倍以下が好ましく、2倍以下がより好ましい。水溶性高分子を基準とした粒子状重合体の配合量を上記範囲内とすることによって、電極活物質の表面において粒子状重合体を適度に離間させて配置することが可能となり、二次電池のレート特性を一層向上させることができる。
<導電助剤>
 導電助剤は、電極活物質同士の電気的接触を確保するためのものである。そして、導電助剤としては、特に限定されることなく、既知の導電助剤を用いることができる。具体的には、例えばリチウムイオン二次電池の正極用の導電助剤としては、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイト等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。これらの中でも、正極活物質同士の電気的接触を向上させ、スラリー組成物を用いて形成した正極を使用したリチウムイオン二次電池の電気的特性を向上させる観点からは、導電助剤として、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイトを用いることが好ましく、アセチレンブラック、ケッチェンブラック(登録商標)を用いることが特に好ましい。
<その他の重合体>
 ここで、本発明の非水系二次電池電極用スラリー組成物は、任意で、結着材として、上述したバインダー組成物が含有する粒子状重合体に加え、水溶性高分子及びバインダー組成物に含有される粒子状重合体とは異なる重合体(以下、「その他の重合体」と称することがある。)を含んでいてもよい。その他の重合体としては、例えば、フッ素含有重合体、アクリロニトリル重合体等が挙げられる。
<その他の添加剤>
 本発明の非水系二次電池電極用スラリー組成物に配合し得るその他の成分としては、上記成分の他に、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。また、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<二次電池電極用スラリー組成物の調製>
 本発明の非水系二次電池電極用スラリー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と水系媒体とを混合することにより、スラリー組成物を調製することができる。なお、上記各成分と水系媒体との混合は、通常、室温~80℃の範囲で、10分~数時間行うことができる。
 ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。なお、水系媒体として使用される水には、バインダー組成物が含有していた水も含まれ得る。
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、集電体上に、上述のようにして得られた非水系二次電池電極用スラリー組成物を塗布し、集電体上に塗布された非水系二次電池電極用スラリー組成物を乾燥して得られる。すなわち、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備える。また、本発明の非水系二次電池用電極は、スラリー組成物の塗布工程およびスラリー組成物の乾燥工程を経て得られる。
 即ち、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物の乾燥物よりなり、少なくとも、電極活物質と、上述した粒子状重合体と、水溶性高分子とを含有する。なお、上述した水溶性高分子および/または粒子状重合体が架橋性単量体単位を含有する場合には、当該架橋性単量体単位を含有する高分子および/または重合体は、非水系二次電池電極用スラリー組成物の乾燥時、または、乾燥後に任意に実施される熱処理時に架橋されていてもよい(即ち、非水系二次電池用電極は、上述した水溶性高分子および/または粒子状重合体の架橋物を含んでいてもよい)。また、粒子状重合体は、バインダー組成物中及びスラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 さらに、本発明の非水系二次電池用電極中において、上述したコアシェル構造の粒子状重合体は、コアシェル構造を維持していることが好ましい。これにより、本発明によるバインダーを、例えば正極において用いた際に、コア部を形成する第1重合体の劣化を抑制することができる。
 なお、電極に含まれている各成分は、本発明の非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、本発明の非水系二次電池電極用スラリー組成物中の各成分の好適な存在比と同じである。本発明の非水系二次電池用電極は、本発明のバインダー組成物を用いているので、ピール強度が高く、さらに、二次電池に良好なレート特性及び高温サイクル特性を発揮させることができる。
[塗布工程]
 上記二次電池電極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的な塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させると共に、電極の空隙率を低くすることができる。
 また、本発明の二次電池用電極の別の製造方法の例としては、粉体成型法が挙げられる。粉体成型法とは、二次電池用電極を製造するためのスラリー組成物を用意し、そのスラリー組成物から電極活物質などを含む複合粒子を調製し、その複合粒子を集電体上に供給し、所望により更にロールプレスして成形することにより電極合材層を形成して、二次電池用電極を得る製造方法である。この際、スラリー組成物としては、上述したものと同様のスラリー組成物を用いることができる。
(二次電池)
 本発明の二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方に、本発明の二次電池用電極を用いたものである。本発明の二次電池は、上述した電極を使用しているので、レート特性及び高温サイクル特性に優れる。
 本発明の二次電池は、リチウムイオン二次電池、ニッケル水素二次電池等のいずれであってもよい。なかでも、高温サイクル特性などの性能向上効果が特に顕著であることから、リチウムイオン二次電池が好ましい。以下、本発明の二次電池がリチウムイオン二次電池である場合について、説明する。
<電極>
 上述のように、本発明の二次電池用電極が、正極および負極の少なくとも一方として用いられる。すなわち、本発明の二次電池の正極が本発明の二次電池用電極であり負極が他の既知の負極であってもよく、本発明の二次電池の負極が本発明の二次電池用電極であり正極が他の既知の正極であってもよく、そして、本発明の二次電池の正極および負極の両方が本発明の二次電池用電極であってもよい。
<電解液>
 リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;などが挙げられる。なかでも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、電解液には添加剤を含有させてもよい。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、上記以外の電解液として、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質;前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質;LiI、LiNなどの無機固体電解質;などを用いてもよい。
<セパレータ>
 セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くし、リチウムイオン二次電池内の電極活物質比率を上げて体積あたりの容量を上げることができるという観点からは、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。
<二次電池の製造方法>
 本発明の二次電池の具体的な製造方法としては、例えば、正極と負極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、各第1重合体及び第2重合体のガラス転移温度、粒子状重合体の電解液に対する膨潤度、体積平均粒子径(D50)、及びシェル部厚み、電極のピール強度、並びに、二次電池のレート特性及び高温サイクル特性は、それぞれ以下の方法を使用して評価した。
<第1重合体及び第2重合体のガラス転移温度> 
 第1重合体及び第2重合体の形成に用いた各単量体及び各添加剤等を使用し、第1重合体及び第2重合体の重合条件と同様の重合条件で、測定試料となる重合体を含む水分散液をそれぞれ調製した。そして、調製した水分散液を測定試料とした。
 そして、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)を用いて、各重合体の測定試料について、ガラス転移温度を測定した。
 具体的には、測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分、JIS Z 8703に規定された常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移温度を求めた。
<電解液に対する膨潤度(電解液膨潤度)>
 粒子状重合体を含む水分散液を用意し、この水分散液を50%湿度、23~25℃の環境下で3日間乾燥させて、厚み3±0.3mmに成膜した。成膜したフィルムを、150℃で12時間真空乾燥した後に、直径12mmに裁断し、精秤した。
 裁断により得られたフィルム片の質量をW0とする。このフィルム片を、50gの電解液(組成:濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート/エチルメチルカーボネート=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加))に、60℃の環境下で72時間浸漬し、膨潤させた。その後、引き揚げたフィルム片(膨潤後)を軽く拭いた後、質量W1を計測した。
 そして、下記式にしたがって膨潤度(倍)を算出した。
 電解液膨潤度(倍)=W1/W0
<体積平均粒子径(D50)>
 粒子状重合体の体積平均粒子径(D50)は、レーザー回折・散乱式粒度分布測定装置(ベックマン・コールター社製、LS230)を用いて測定した。
 具体的には、粒子状重合体を含む水分散液について、レーザー回折・散乱式粒度分布測定装置を用いて粒子状重合体の粒子径-体積積算分布を測定し、体積積算分布の値が50%となる粒子径を体積平均粒子径とした。
<粒子状重合体のシェル部の厚み割合の算出方法>
 粒子状重合体を樹脂で包埋後にオスミウム染色を行い、凍結切片法により超薄切片を作成し、透過型電子顕微鏡(日立製作所社製、H-7100FA型)を用いた顕微鏡観察により、粒子状重合体のシェル部の厚みを算出した。具体的には、オスミウム染色由来のコントラスト差で粒子状重合体のコア部とシェル部を区別し、無作為に選択した100個の粒子状重合体の平均値をシェル部の厚みとした。
 そして、下記式により粒子状重合体の体積平均粒子径(D50)に対するシェル部の厚みの割合を算出した。
 粒子状重合体の体積平均粒子径(D50)に対するシェル部の厚み(%)=(シェル部厚み/粒子状重合体の体積平均粒子径(D50))×100として求めた。
<電極のピール強度>
 実施例、比較例で作製したリチウムイオン二次電池用負極を、幅1.0cm×長さ10cmの矩形に切って試験片とし、負極合材層側の表面を上にして固定した。そして、試験片の負極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とし、以下の基準で評価した。ピール強度が大きいほど、集電体に対する負極合材層の結着性が優れていることを示す。
 A:ピール強度が8N/m以上
 B:ピール強度が5N/m以上8N/m未満
 C:ピール強度が5N/m未満
<二次電池のレート特性>
 作製したパウチ型のリチウムイオン二次電池を、23℃で、24時間静置した後に、25℃で0.2Cの充放電レートにてセル電圧4.4Vまで充電しセル電圧3.0Vまで放電を行う操作を行った。その後、25℃で0.2Cの充電レートでセル電圧4.4Vまで充電し、1.0Cの放電レートでセル電圧3.0Vまで放電する充放電サイクルと、3.0Cの放電レートでセル電圧3.0Vまで放電する充放電サイクルとを、それぞれ行った。放電レート1.0Cの場合の電池容量に対する、放電レート3.0CCの場合の電池容量の割合を百分率で算出して充放電レート特性とし、下記の基準で評価した。充放電レート特性の値が高いほど、内部抵抗が小さく、高速充放電が可能であり、レート特性に優れていることを示す。
 A:充放電レート特性が70%以上
 B:充放電レート特性が65%以上70%未満
 C:充放電レート特性が60%以上65%未満
 D:充放電レート特性が60%未満
<二次電池の高温サイクル特性>
 作製したリチウムイオン二次電池を、23℃で24時間静置した後に、25℃で0.2Cの充放電レートにてセル電圧4.4Vまで充電しセル電圧3.0Vまで放電を行う操作を行い、初期容量C0を測定した。さらに、45℃環境下で、1.0Cの充放電レートでセル電圧4.4Vまで充電し、セル電圧3.0Vまで放電する充放電サイクルを繰り返し、300サイクル後の容量C1を測定した。そして、高温サイクル特性を、ΔC=(C1/C0)×100(%)で示す容量維持率にて評価した。この容量維持率の値が高いほど、放電容量の低下が少なく、高温サイクル特性に優れていることを示す。
 A:容量維持率ΔCが80%以上
 B:容量維持率ΔCが75%以上80%未満
 C:容量維持率ΔCが75%未満
(実施例1)
<粒子状重合体の調製>
-第1の重合工程-
 攪拌機を備えた5MPa耐圧容器に、脂肪族共役ジエン単量体として1,3-ブタジエン35.0部、芳香族ビニル単量体としてスチレン63.0部、酸基含有単量体単位としてメタクリル酸2.0部、分子量調整剤としてt-ドデシルメルカプタン0.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、イオン交換水150部、および、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して12時間保持することで重合反応を進行させ、さらに80℃に昇温して3時間保持することで重合反応を完結させた。こうして得られた第1重合体を含んだ水分散液を一旦30℃以下まで冷却した。
-第2の重合工程-
 冷却した第1重合体を含む水分散液に、(メタ)アクリル酸エステル単量体として2-エチルヘキシルアクリレート55.0部、芳香族ビニル単量体としてスチレン42.5部、酸基含有単量体としてイタコン酸2.0部、架橋性単量体としてエチレングリコールジメタクリレート0.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、重合開始剤として過硫酸カリウム0.3部、イオン交換水150部を入れ、十分に攪拌した後、70℃に加温して4時間保持して重合反応を進行させ、さらに80℃に昇温して3時間保持することで重合反応を完結させた後、30℃以下まで冷却した。
-後処理工程-
 このようにして得られた、第2重合体からなるシェル部により第1重合体からなるコア部が被覆されてなる、コアシェル構造を有する粒子状重合体を含む水分散液に、10%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。こうして、コア部として第1重合体、シェル部として第2重合体を有する粒子状重合体を含んだ水分散液を得た。粒子状重合体の体積平均粒子径(D50)は320nmであり、シェル部の厚みは体積平均粒子径(D50)に対して10.9%であった。そして、第1重合体及び第2重合体のガラス転移温度、及び粒子状重合体の電解液膨潤度を測定した。結果を表1に示す。
<リチウムイオン二次電池負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(比表面積:1.5m/g、体積平均粒子径:20μm)100.0部と、水溶性高分子としてのカルボキシメチルセルロースナトリウム塩(CMC-Na)の1%水溶液を固形分相当で1.0部とを加えた。そして、これらの混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分混合した。
 次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
 次いで、上記の混合液に、粒子状重合体の水分散液からなるバインダー組成物を固形分相当で1.0部添加すると共にイオン交換水を添加し、最終固形分濃度が50%となるように調整して、さらに10分間混合した。これを減圧下で脱泡処理して、負極用スラリー組成物を得た。
<リチウムイオン二次電池用負極の作製>
 調製した負極用スラリー組成物を厚さ15μmの銅箔(集電体)の上にコンマコーターで塗付量が13.5~14.5mg/cmとなるように塗布し、乾燥させた。なお、乾燥は、70℃のオーブン内で銅箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。次に、得られた負極原反をロールプレス機にて負極合材層のかさ密度が1.85g/cmとなるようプレスし、負極とした。なお、プレス後の負極合材層の目付量は14.0mg/cmであった。
 そして、作製した負極について、ピール強度を評価した。結果を表1に示す。
<リチウムイオン二次電池用正極の作製>
 プラネタリーミキサーに、正極活物質としてLiCoO96.0部、導電助剤としてアセチレンブラック2.0部(電気化学工業(株)製、HS-100)、結着材としてPVDF(ポリフッ化ビニリデン、(株)クレハ化学製KF-1100)2.0部を投入し、さらに全固形分濃度が67%となるようにN-メチルピロリドンを加えて混合して、正極用スラリー組成物を得た。
 そして、得られた正極用スラリー組成物を厚さ20μmのアルミ箔(集電体)の上にコンマコーターで塗布し、乾燥させた。なお、乾燥は、60℃のオーブン内でアルミ箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して正極原反を得た。次に、得られた正極原反をロールプレス機にて正極合材層のかさ密度が3.5g/cmとなるようにプレスし、正極を得た。
<リチウムイオン二次電池の作製>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5cm×5cmの正方形に切り抜いた。また、電池の外装として、アルミ包材外装を用意した。
 そして、上述のようにして作製した正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。次に、正極の正極合材層側の表面上に、正方形のセパレータを配置した。更に、上述のようにして作製した負極を、4.2cm×4.2cmの正方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート/メチルエチルカーボネート=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加)を充填した。更に、アルミ包材外装の開口を密封するために、150℃のヒートシールをしてアルミ包材外装を閉口し、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、レート特性および高温サイクル特性を評価した。結果を表1に示す。
(実施例2~5、13~14)
 単量体の配合割合を表1及び表2に示す割合に変更した以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例6)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.24部とした。さらに、第2重合工程にて添加する各種単量体の添加量を、第2重合体を構成する各種単量体単位の構成比率は実施例1と同様となるように各種単量体の配合比率を維持しつつ、第2重合体を構成するための各種単量体の添加量の合計が、第1重合体を100質量部とした場合に6質量部となるように変更した。これらの点以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例7)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.40部とした。さらに、第2重合工程にて添加する各種単量体の添加量を、第2重合体を構成する各種単量体単位の構成比率は実施例1と同様となるように各種単量体の配合比率を維持しつつ、第2重合体を構成するための各種単量体の添加量の合計が、第1重合体を100質量部とした場合に360質量部となるように変更した。これらの点以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例8)
 第2重合体に配合するアクリル酸エステル単量体をブチルアクリレートに変更した以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例9)
 水溶性高分子をポリアクリル酸-ポリアクリルアミド共重合体に変更した以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例10)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.80部とした以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例11)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.14部とした以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表1に示す。
(実施例12)
 実施例1と同様にして粒子状重合体及びバインダー組成物を調製した。そして、負極用スラリー組成物にバインダー組成物を配合するにあたり、粒子状重合体の配合量が、水溶性高分子の固形分相当量の0.3倍となるように変更した以外は実施例1と同様にして、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(実施例15)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.50部とした。さらに、第2重合工程にて添加する各種単量体の添加量を、第2重合体を構成する各種単量体単位の構成比率は実施例1と同様となるように各種単量体の配合比率を維持しつつ、第2重合体を構成するための各種単量体の添加量の合計が、第1重合体を100質量部とした場合に402質量部となるように変更した。これらの点以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例1)
 第1重合体の調製時に添加する乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.23部とし、第2重合体は調製しなかった以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例2)
 第1重合体は調製せず、第2重合体の調製にあたり、乳化剤であるドデシルベンゼンスルホン酸ナトリウムの添加量を0.23部とした以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例3)
 単量体の配合割合を表2に示す割合に変更した以外は実施例1と同様にして、粒子状重合体、バインダー組成物、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例4)
 粒子状重合体として、コアシェル構造を有する粒子状重合体に代えて、比較例1及び2で調整した各粒子状重合体を用いた。具体的には、負極用スラリー組成物の調製にあたり、比較例1及び2で調整した各粒子状重合体をそれぞれ固形分相当で0.5部ずつ配合した以外は実施例1と同様にして、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例5)
 粒子状重合体の調製にあたり、第1の重合工程において実施例1のシェル部の重合時に投入した各種単量体及び添加剤を添加し、実施例1のシェル部の重合時と同条件で重合し、第2の重合工程において実施例1のコア部の重合時に投入した各種単量体及び添加剤を添加し、実施例1のコア部の重合時と同条件で重合した。このようにして、第2の重合体からなるコア部と、第1の重合体からなるシェル部とを備えるコアシェル構造の粒子状重合体を調製した以外は実施例1と同様にして、負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
(比較例6)
 粒子状重合体の調製にあたり、第2の重合工程において、2-エチルヘキシルアクリレート55.0部に代えて、メチルメタクリレート55.0部を添加した以外は実施例1と同様にして負極用スラリー組成物、負極、正極および二次電池を作製し、実施例1と同様にして各種測定を行った。結果を表2に示す。
 なお、以下に示す表中、
「BD」は、1,3-ブタジエンを示し、
「St」は、スチレンを示し、
「MAA」は、メタクリル酸を示し、
「2-EHA」は、2-エチルヘキシルアクリレートを示し、
「BA」は、ブチルアクリレートを示し、
「IA」は、イタコン酸を示し、
「EDMA」は、エチレングリコールジメタクリレートを示し、
「AMA」は、アリルメタクリレートを示し、
「CMC-Na」は、カルボキシメチルセルロースナトリウム塩を示し、
「PAA-PAM」は、ポリアクリル酸-ポリアクリルアミド共重合体を示し、
「MMA」は、メチルメタクリレートを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、コアシェル構造を有し、コア部が、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、シェル部が、(メタ)アクリル酸エステル単量体単位を40質量%以上含有する、第1重合体とは異なる第2重合体を含む、粒子状重合体を含み、かかる粒子状重合体の電解液に対する膨潤度が2.5倍以下である実施例1~15に係るバインダー組成物は、結着性に富み、さらに、二次電池の電気的特性を十分に向上させ得ることが分かる。一方、上記第1及び第2重合体の何れか一方しか含有しない比較例1及び2のバインダー組成物や、コアシェル構造の粒子状重合体は含有するものの、かかる粒子状重合体のシェル部におけるアクリル酸エステル単量体単位の割合が40質量%未満である比較例3、上記第1及び第2重合体は含有するもののコアシェル構造を有さない比較例4、実施例1とはコアシェル構造を構成する重合体が逆の比較例5に係るバインダー組成物、並びに、粒子状重合体の電解液に対する膨潤度が2.5倍超の比較例6は、バインダーとしての結着性と二次電池の電気的特性とを十分に高いレベルで両立することができないことがわかる。
 本発明によれば、結着性に優れると共に、二次電池の電気的特性を十分に高めることが可能な非水系二次電池電極用バインダー組成物を提供することができる。
 また、本発明によれば、集電体との結着性に優れる電極合材層を形成可能であり、当該電極合材層を備える二次電池の電気的特性を高めることができる非水系二次電池電極用スラリー組成物を提供することができる。
 さらに、本発明によれば、二次電池の電気的特性を高めることができる非水系二次電池用電極、及び電気的特性の高い非水系二次電池を提供することができる。

Claims (10)

  1.  粒子状重合体を含む非水系二次電池電極用バインダー組成物であって、
     前記粒子状重合体は、最外層にシェル部と、前記シェル部よりも内側にあるコア部とを備えるコアシェル構造を有し、
     前記コア部が、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含有する第1重合体を含み、
     前記シェル部が、(メタ)アクリル酸エステル単量体単位を40質量%以上含有する、前記第1重合体とは異なる第2重合体を含み、
     前記粒子状重合体の電解液に対する膨潤度が2.5倍以下である、
    非水系二次電池電極用バインダー組成物。
  2.  前記第1重合体が、脂肪族共役ジエン単量体単位を25質量%以上及び芳香族ビニル単量体単位を40質量%以上75質量%以下含む、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  前記第2重合体が、更に芳香族ビニル単量体単位を20質量%以上60質量%未満含む、請求項1又は2に記載の非水系二次電池電極用バインダー組成物。
  4.  前記(メタ)アクリル酸エステル単量体単位に含まれる非カルボニル性酸素原子に結合するアルキル基又はパーフルオロアルキル基の炭素数が、3以上である、請求項1~3のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
  5.  前記第2重合体が、更に架橋性単量体単位を0.05質量%以上2質量%以下含む、請求項1~4のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
  6.  前記シェル部の厚みが前記粒子状重合体の体積平均粒子径(D50)に対して0.1%以上30%以下である、請求項1~5のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
  7.  前記粒子状重合体の体積平均粒子径(D50)が、50nm以上1000nm以下である請求項1~6のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
  8.  電極活物質、水溶性高分子、及び請求項1~7のいずれか一項に記載の非水系二次電池電極用バインダー組成物を含む非水系二次電池電極用スラリー組成物。
  9.  請求項8に記載の非水系二次電池電極用スラリー組成物を用いて形成された電極合材層を備える、非水系二次電池用電極。
  10.  請求項9に記載の非水系二次電池用電極を備える、非水系二次電池。
PCT/JP2016/004325 2015-09-28 2016-09-23 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 WO2017056466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187006823A KR20180059433A (ko) 2015-09-28 2016-09-23 비수계 2차 전지 전극용 바인더 조성물, 비수계 2차 전지 전극용 슬러리 조성물, 비수계 2차 전지용 전극, 및 비수계 2차 전지
JP2017542734A JP7054623B2 (ja) 2015-09-28 2016-09-23 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
CN201680052979.4A CN108028379A (zh) 2015-09-28 2016-09-23 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190460 2015-09-28
JP2015-190460 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056466A1 true WO2017056466A1 (ja) 2017-04-06

Family

ID=58423111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004325 WO2017056466A1 (ja) 2015-09-28 2016-09-23 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池

Country Status (4)

Country Link
JP (1) JP7054623B2 (ja)
KR (1) KR20180059433A (ja)
CN (1) CN108028379A (ja)
WO (1) WO2017056466A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105902A1 (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 이차 전지 전극용 바인더 조성물 및 전극 합제
KR20200059145A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 이차 전지 전극용 바인더 조성물 및 전극 합제
CN115050963A (zh) * 2022-06-29 2022-09-13 上海道赢实业有限公司 一种用于锂离子电池负极的粘结剂及其制备方法和用途
WO2023008100A1 (ja) * 2021-07-27 2023-02-02 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
WO2024024913A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2024038796A1 (ja) * 2022-08-15 2024-02-22 株式会社カネカ リチウムイオン電池の電極用バインダー
US11912804B2 (en) 2018-11-15 2024-02-27 Lg Chem, Ltd. Core-shell copolymer, method for preparing the same and thermoplastic resin composition including the same
CN118027313A (zh) * 2024-04-11 2024-05-14 深圳好电科技有限公司 聚合物颗粒、粘结剂组合物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210110295A (ko) * 2018-12-27 2021-09-07 니폰 제온 가부시키가이샤 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극, 및 이차 전지
CN113302219B (zh) * 2019-01-30 2023-08-22 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池
US11575133B2 (en) * 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
KR20220043187A (ko) * 2019-11-27 2022-04-05 디아이씨 가부시끼가이샤 리튬이온 이차 전지 바인더용 수성 수지 조성물, 및 리튬이온 이차 전지용 세퍼레이터
US20230006210A1 (en) * 2019-12-27 2023-01-05 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP3916901A4 (en) * 2020-03-31 2022-04-13 Ningde Amperex Technology Ltd. SEPARATOR, ELECTRODE ASSEMBLY, BATTERY AND ELECTRONIC DEVICE
CN114520329B (zh) * 2020-11-19 2024-08-06 比亚迪股份有限公司 粘接剂及其制备方法和浆料
US20240105951A1 (en) * 2020-12-18 2024-03-28 Lg Chem, Ltd. Electrode Binder Composition for Rechargeable Battery and Electrode Mixture Including the Same
CN113555558B (zh) * 2021-07-12 2022-12-20 珠海冠宇电池股份有限公司 一种乳液型粘结剂和包括该粘结剂的锂离子电池
CN114335895A (zh) * 2021-12-27 2022-04-12 浙江杰特维新材料有限公司 一种用于锂离子电池隔膜涂覆的功能层材料
KR102530988B1 (ko) * 2022-06-29 2023-05-11 주식회사 엘엑스엠엠에이 흐름성과 응집성이 개선된 코어쉘형 불소계 수지 입자 및 제조 방법
CN115117356B (zh) * 2022-08-30 2023-02-03 宁德时代新能源科技股份有限公司 核壳结构聚合物、制备方法和用途、正极浆料、二次电池、电池模块、电池包和用电装置
KR20240048823A (ko) * 2022-10-07 2024-04-16 주식회사 엘엑스엠엠에이 결합 특성이 향상된 코어-쉘형 불소계 수지 입자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2003151560A (ja) * 2001-09-03 2003-05-23 Nippon Zeon Co Ltd 電極用バインダー組成物、電極用スラリー、電極、および電池
WO2013161786A1 (ja) * 2012-04-23 2013-10-31 日本ゼオン株式会社 リチウムイオン二次電池
JP2015162384A (ja) * 2014-02-27 2015-09-07 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
US20150287994A1 (en) * 2014-04-08 2015-10-08 Chi Mei Corporation Resin for negative electrode of lithium ion battery, resin composition, slurry, negative electrode, and lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621031B2 (ja) 2000-09-04 2005-02-16 松下電器産業株式会社 非水電解質二次電池用負極
JP5365836B2 (ja) 2008-11-27 2013-12-11 Jsr株式会社 エネルギーデバイス電極用バインダーおよびその製造方法
JP6245173B2 (ja) * 2012-07-17 2017-12-13 日本ゼオン株式会社 二次電池用負極及び二次電池
CN104272508A (zh) * 2012-08-09 2015-01-07 日本瑞翁株式会社 二次电池用负极、二次电池、浆料组合物及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2003151560A (ja) * 2001-09-03 2003-05-23 Nippon Zeon Co Ltd 電極用バインダー組成物、電極用スラリー、電極、および電池
WO2013161786A1 (ja) * 2012-04-23 2013-10-31 日本ゼオン株式会社 リチウムイオン二次電池
JP2015162384A (ja) * 2014-02-27 2015-09-07 日本ゼオン株式会社 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
US20150287994A1 (en) * 2014-04-08 2015-10-08 Chi Mei Corporation Resin for negative electrode of lithium ion battery, resin composition, slurry, negative electrode, and lithium ion battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912804B2 (en) 2018-11-15 2024-02-27 Lg Chem, Ltd. Core-shell copolymer, method for preparing the same and thermoplastic resin composition including the same
WO2020105902A1 (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 이차 전지 전극용 바인더 조성물 및 전극 합제
KR20200059145A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 이차 전지 전극용 바인더 조성물 및 전극 합제
KR102277492B1 (ko) 2018-11-20 2021-07-14 주식회사 엘지화학 이차 전지 전극용 바인더 조성물 및 전극 합제
US11870077B2 (en) 2018-11-20 2024-01-09 Lg Chem, Ltd. Binder composition for secondary battery electrode and electrode mixture
WO2023008100A1 (ja) * 2021-07-27 2023-02-02 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
CN115050963A (zh) * 2022-06-29 2022-09-13 上海道赢实业有限公司 一种用于锂离子电池负极的粘结剂及其制备方法和用途
CN115050963B (zh) * 2022-06-29 2024-05-10 上海道赢实业有限公司 一种用于锂离子电池负极的粘结剂及其制备方法和用途
WO2024024913A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2024038796A1 (ja) * 2022-08-15 2024-02-22 株式会社カネカ リチウムイオン電池の電極用バインダー
CN118027313A (zh) * 2024-04-11 2024-05-14 深圳好电科技有限公司 聚合物颗粒、粘结剂组合物

Also Published As

Publication number Publication date
JPWO2017056466A1 (ja) 2018-07-12
CN108028379A (zh) 2018-05-11
JP7054623B2 (ja) 2022-04-14
KR20180059433A (ko) 2018-06-04

Similar Documents

Publication Publication Date Title
JP7054623B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7020118B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US10290873B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP6168051B2 (ja) リチウムイオン二次電池
KR102468252B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP2017117597A (ja) 非水系二次電池電極用バインダー組成物の製造方法、非水系二次電池電極用スラリー組成物の製造方法、非水系二次電池用電極の製造方法、および非水系二次電池の製造方法
JP6874690B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019208419A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
JP2017103030A (ja) 非水系二次電池用機能層およびその製造方法、並びに、非水系二次電池およびその製造方法
CN108140838B (zh) 非水系二次电池电极用粘结剂组合物、浆料组合物、电极以及非水系二次电池
JP6481581B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2018003636A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019044912A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542734

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850646

Country of ref document: EP

Kind code of ref document: A1