WO2013069197A1 - リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013069197A1
WO2013069197A1 PCT/JP2012/006350 JP2012006350W WO2013069197A1 WO 2013069197 A1 WO2013069197 A1 WO 2013069197A1 JP 2012006350 W JP2012006350 W JP 2012006350W WO 2013069197 A1 WO2013069197 A1 WO 2013069197A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material particles
ion secondary
Prior art date
Application number
PCT/JP2012/006350
Other languages
English (en)
French (fr)
Inventor
雄一 平川
三好 学
英明 篠田
加藤 崇行
林 圭一
佳世 水野
栄克 河端
めぐみ 田島
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US14/357,413 priority Critical patent/US9819007B2/en
Priority to JP2013542812A priority patent/JP5942999B2/ja
Priority to DE112012004702.8T priority patent/DE112012004702T5/de
Publication of WO2013069197A1 publication Critical patent/WO2013069197A1/ja
Priority to US15/370,532 priority patent/US9819008B2/en
Priority to US15/370,579 priority patent/US9819009B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode material and a negative electrode for a lithium ion secondary battery capable of inserting and extracting Li ions, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are small and have a large capacity, so they are used in a wide range of fields such as mobile phones and notebook computers. In recent years, it is also being used for hybrid vehicles and electric vehicles.
  • a lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the positive electrode is coated with a positive electrode active material made of a metal composite oxide of lithium and a transition metal, such as lithium / manganese composite oxide, lithium / cobalt composite oxide, lithium / nickel composite oxide, and the like.
  • Current collector is composed of a metal composite oxide of lithium and a transition metal, such as lithium / manganese composite oxide, lithium / cobalt composite oxide, lithium / nickel composite oxide, and the like.
  • the negative electrode is formed by covering a current collector with a negative electrode material made of a negative electrode active material capable of inserting and extracting lithium ions.
  • the negative electrode active material particles are made of a negative electrode active material capable of occluding and releasing lithium ions.
  • silicon (Si), tin (Sn), or compounds containing these elements has been studied.
  • Negative electrode active material particles made of silicon and tin or a compound containing these expand and contract in volume due to insertion and extraction of Li ions.
  • a film is formed on the surface of the negative electrode active material particles during charging to prevent the electrolytic solution from coming into direct contact with the negative electrode active material, thereby suppressing deterioration of the electrolytic solution.
  • this coating film may crack due to a volume change of the negative electrode active material particles.
  • the electrolytic solution directly contacts the negative electrode active material, the electrolytic solution is deteriorated, and the charge / discharge cycle characteristics may be deteriorated.
  • Patent Documents 1, 2, and 3 disclose that the cycle characteristics and charge / discharge characteristics of the battery are improved by adjusting the BET specific surface area of the silicon composite powder as the negative electrode active material to a predetermined range. ing.
  • Patent Document 4 discloses that the ratio of fine particles having a particle diameter of 5 ⁇ m or less contained in the negative electrode active material powder is 20% or less, so that the contact between the conductive additive powder and the negative electrode active material powder is appropriately maintained, and the discharge capacity and It is described that the initial charge / discharge capacity is improved.
  • Patent Documents 5, 6, and 7 disclose that the discharge capacity and cycle characteristics are improved by adjusting the average particle diameter (D50) of the silicon oxide powder to a predetermined range.
  • Patent Document 8 discloses that silicon oxide is used as the negative electrode active material, the median diameter of the negative electrode active material particles is 5 ⁇ m or more and 200 ⁇ m or less, and fluoroethylene carbonate (FEC) is added to the electrolytic solution.
  • Patent Document 9 shows that classification may be performed in order to set the average particle size of the negative electrode material to 5 to 40 ⁇ m.
  • Patent Document 10 shows that SiO, which is a negative electrode active material, has an average particle size of 15 ⁇ m and does not contain 10% or more of particles having a particle size of 5 ⁇ m or less.
  • Patent Document 2 discloses that SiO is pulverized and classified, and a powder having an average particle size of 5 ⁇ m and a particle size distribution of 1 to 10 ⁇ m is used.
  • Patent Document 11 describes that particles containing a silicon compound do not substantially contain particles having an average particle size of 0.1 ⁇ m or less.
  • Patent Documents 12, 13, 14, and 15 show that FEC is added to an electrolytic solution.
  • JP 2004-323284 A (paragraph “0013”) Japanese Patent Laying-Open No. 2008-166013 (paragraph “0018”) JP 2001-118568 A (paragraphs “0021” and “0025”) Japanese Patent Laying-Open No. 2005-116389 (paragraph “0026”) JP 2003-160328 A (paragraph “0015”) JP2009-301937A (paragraph “0013”) JP 2002-373653 A (paragraph “0011”) JP 2009-252579 A (paragraphs 266 and 278) JP-A-10-074504 (paragraph 19) JP 2001-148242 A (paragraphs 22 and 41) JP 2004-178922 A (Claim 11) Japanese Patent Laying-Open No. 2007-200882 (paragraph 63) JP2011-049114 (paragraph 45) JP 2008-098053 A (paragraph 103) Japanese Patent No. 4715848 (Claim 1)
  • the present inventor has further eagerly investigated the particle size of the negative electrode active material in order to improve the cycle characteristics and discharge capacity of the battery.
  • the present inventor has repeatedly eagerly investigated the particle size of the negative electrode active material and the configuration of the negative electrode in order to improve and stabilize the battery characteristics when using negative electrode active material particles that change in volume during charge and discharge. It was.
  • the present inventor has made various studies on the particle size of the negative electrode active material particles and the components of the electrolytic solution in order to improve the battery characteristics by a method different from the conventional one.
  • the present invention has been made in view of such circumstances, and a first problem is to provide a negative electrode material that improves the cycle characteristics of the battery, a negative electrode using the negative electrode material, and a lithium ion secondary battery.
  • the second problem is to provide a negative electrode material capable of increasing the discharge capacity, a negative electrode using the negative electrode material, a lithium ion secondary battery, and a vehicle.
  • the third problem is a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery that can improve and stabilize battery characteristics.
  • the fourth problem is to provide a lithium ion secondary battery having excellent battery characteristics.
  • the present inventor has found that the charge / discharge cycle characteristics and discharge capacity of the battery are increased by controlling the particle size of the negative electrode active material particles.
  • the total volume of negative electrode active material particles contained in the negative electrode material is 100% by volume, cracks occur in the coating formed on the surface of the negative electrode active material particles when 85% by volume or more has a particle size of 1 ⁇ m or more. This prevents the electrolyte solution from coming into contact with the negative electrode active material constituting the negative electrode active material particles, thereby preventing the electrolyte solution from deteriorating and improving the cycle characteristics.
  • D 50 refers to a particle diameter corresponding to an integrated volume distribution value of 50% in particle size distribution measurement by laser diffraction. That is, the D 50, it refers to the median diameter measured by volume.
  • the negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention is an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element capable of being alloyed with lithium.
  • a negative electrode material comprising negative electrode active material particles made of a compound, wherein the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when 85% by volume or more is 100% by volume, and a BET specific surface area is It is 6 m 2 / g or less, and D 50 of the negative electrode active material particles is 4.5 ⁇ m or more.
  • the negative electrode for a lithium ion secondary battery of the present invention is characterized by having the negative electrode material for a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes the negative electrode, a positive electrode having a positive electrode active material capable of inserting and extracting lithium ions, and an electrolyte.
  • the negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention is an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element capable of being alloyed with lithium.
  • a negative electrode material comprising negative electrode active material particles made of a compound, wherein the negative electrode active material particles have a BET specific surface area of 6 m 2 / g or less, and the D 50 of the negative electrode active material particles is 4.5 ⁇ m or more and 8.0 ⁇ m or less,
  • the negative electrode active material particles have a particle size range of 0.4 ⁇ m to 30 ⁇ m.
  • the negative electrode for a lithium ion secondary battery of the present invention is characterized by having the negative electrode material for a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes the negative electrode, a positive electrode having a positive electrode active material capable of inserting and extracting lithium ions, and an electrolyte.
  • the lithium ion secondary battery according to the third aspect of the present invention is a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the surface of the current collector and having negative electrode active material particles.
  • the negative electrode active material particle is composed of an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element compound capable of being alloyed with lithium, and the negative electrode active material. 85% by volume or more of the particles have a particle size of 1 ⁇ m or more, and the thickness of the negative electrode active material layer is 1.4 times or more of D90 of the negative electrode active material particles. It is characterized by that.
  • Elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi are mentioned.
  • a lithium ion secondary battery of the present invention is characterized by having the above-described negative electrode for a lithium ion secondary battery, a positive electrode having a positive electrode active material capable of inserting and extracting lithium ions, and an electrolyte.
  • the lithium ion secondary battery according to the fourth aspect of the present invention is composed of an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium or / and an element compound having an element capable of being alloyed with lithium.
  • a lithium ion secondary battery comprising: a negative electrode including negative electrode active material particles; a positive electrode having a positive electrode active material capable of occluding and releasing Li ions; and an electrolyte obtained by dissolving an electrolyte in a solvent, When the total amount of the negative electrode active material particles contained in the negative electrode is 100% by volume, 85% by volume or more thereof has a particle size of 1 ⁇ m or more, and the solvent of the electrolytic solution has fluorinated ethylene carbonate.
  • the first aspect of the present invention it is possible to provide a negative electrode material capable of improving the cycle characteristics of the battery, a negative electrode using the negative electrode material, and a lithium ion secondary battery.
  • the negative electrode active material particles have the above-mentioned particle size characteristics, and the negative electrode active material layer has a thickness of the negative electrode active material particles Since it has the above relationship with the diameter characteristic, the battery characteristic can be improved and stabilized. Moreover, since the lithium ion secondary battery of this invention uses the said negative electrode, the improvement and stabilization of a battery characteristic are realizable. Furthermore, according to the vehicle of the present invention, since the lithium ion secondary battery is used, high output can be stably exhibited for a long time.
  • the lithium ion secondary battery according to the fourth aspect of the present invention when the total amount of negative electrode active material particles contained in the negative electrode is 100% by volume, 85% by volume or more thereof has a particle diameter of 1 ⁇ m or more, And since the solvent of electrolyte solution has fluorinated ethylene carbonate, it is excellent in a battery characteristic. Further, since the vehicle of the present invention is equipped with a lithium ion secondary battery having excellent battery characteristics, it can exhibit high output for a long period of time.
  • FIG. 6 is a diagram showing the particle size distribution of samples 1 to 4.
  • FIG. 6 is a diagram showing the relationship between the BET specific surface area of Samples 1 to 4 and the 150th cycle discharge capacity retention rate. It is a diagram showing the relationship between the D 10 of the sample 1, 3 and 4 the 100th cycle discharge capacity retention ratio.
  • FIG. 5 is a diagram showing the relationship between the BET specific surface area of samples 1 to 4 and the initial discharge capacity.
  • FIG. 6 is a diagram showing reaction resistance of samples 1 to 4; It is sectional explanatory drawing of the negative electrode for lithium ion secondary batteries of this invention. It is a figure which shows the particle size distribution of the negative electrode active material particle used for the batteries 1 and 2.
  • FIG. 6 is a diagram showing the results of a charge / discharge cycle evaluation test for batteries 1 to 6; It is a figure which shows the result of the charging / discharging cycle stability test of the negative electrodes 1 and 2.
  • FIG. FIG. 4 is a diagram showing a particle size distribution of negative electrode active material particles used in lithium ion secondary batteries of batteries 7 and 9. It is a figure which shows the result of the charging / discharging cycle evaluation test of the lithium ion secondary battery of the batteries 7-13.
  • the negative electrode material of the embodiment of the first aspect includes negative electrode active material particles made of an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element compound capable of being alloyed with lithium.
  • a negative electrode material, wherein the negative electrode active material particles have a particle diameter of 1 ⁇ m or more and a BET specific surface area of 6 m 2 / g or less, when 85% by volume or more is 100% by volume as a whole.
  • the negative electrode active material particles are composed of an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium or / and an element compound capable of being alloyed with lithium, and are expanded and expanded by occluding and releasing Li ions. Shrink.
  • the coating on the surface of the negative electrode active material particles is relatively thin, so the stress applied to the outer surface of the coating is reduced, and cracks and defects are prevented from occurring on the outer surface of the coating. Can do. Therefore, the negative electrode active material particles are unlikely to come into contact with the electrolytic solution, and the elution of Li ions present in the negative electrode active material particles can be suppressed, and the decomposition reaction of the electrolytic solution can be suppressed. Therefore, the cycle characteristics of the battery can be improved.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when 85% by volume or more is 100% by volume as a whole.
  • the particle diameter is an effective diameter calculated by fitting a theoretical diffraction pattern obtained by assuming a spherical shape by a laser diffraction / scattering method and an actually measured diffraction pattern.
  • the BET specific surface area of the entire negative electrode active material particles is increased, and charging is performed.
  • the film thickness of the film formed increases. A film having a large thickness is less likely to follow the volume change of the negative electrode active material particles, and is likely to crack. For this reason, the negative electrode active material particles may come into direct contact with the electrolyte, and the electrolyte may be decomposed. Therefore, the cycle characteristics of the battery may be deteriorated.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume.
  • the amount of fine particles of less than 1 ⁇ m is further reduced in the negative electrode active material particles, the negative electrode active material particles having a thin film thickness are increased, and cracking of the film is less likely to occur due to the volume change of the negative electrode active material particles. Further, deterioration of the electrolytic solution can be further suppressed.
  • all of the negative electrode active material particles have a particle size of 1 ⁇ m or more. In this case, cracks in the coating are less likely to occur and deterioration of the electrolyte can be effectively suppressed.
  • the negative electrode active material particles it is preferable that 85% by volume or more of the negative electrode active material particles have a particle diameter of 2 ⁇ m or more when the whole is 100% by volume. In this case, the thickness of the coating is further reduced, the coating is hard to crack, and the decomposition of the electrolyte can be effectively suppressed.
  • the BET specific surface area of the negative electrode active material particles is 6 m 2 / g or less. When the BET specific surface area of the negative electrode active material particles exceeds 6 m 2 / g, the discharge capacity retention ratio may decrease.
  • the “BET specific surface area” is a method in which molecules having a known adsorption occupation area are adsorbed on the particle surface and the specific surface area of the particle is determined from the amount.
  • BET specific surface area of the anode active material particles may be less than or equal to 5 m 2 / g, more preferably not more than 4m 2 / g, it is preferably not more than 3.3 m 2 / g. In this case, the discharge capacity maintenance rate is further improved.
  • the BET specific surface area of the negative electrode active material particles is preferably 2.0 m 2 / g or more, more preferably 2.5 m 2 / g or more, and preferably 2.8 m 2 / g or more. .
  • the contact area between the negative electrode active material particles can be made relatively large, there are many electron conductive paths, and a large initial discharge capacity can be exhibited.
  • D 50 of the negative electrode active material particles is less than 4.5 ⁇ m, there is a risk that the cycle characteristics of the battery is reduced.
  • D 50 refers to the particle diameter at which the integrated value of the volume distribution in the particle size distribution measurement by the laser diffraction method corresponds to 50%.
  • D 50 of the negative electrode active material particles is 5.5 ⁇ m or more, and further preferably not smaller than 5.7 .mu.m. In this case, the cycle characteristics of the battery are further improved.
  • the D 50 of the negative electrode active material particles is preferably 8.0 ⁇ m or less, and more preferably 7.5 ⁇ m or less. If D 50 of the anode active material particle is excessive, there is a possibility that the reaction resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the particle size range of the negative electrode active material particles is preferably in the range of 0.4 ⁇ m to 30 ⁇ m.
  • “Particle size range” refers to the particle size of the negative electrode active material particles. “The particle size range is in the range of 0.4 ⁇ m or more and 30 ⁇ m or less” means that the particle size of the negative electrode active material particles is in the range of 0.4 ⁇ m or more and 30 ⁇ m. When the total amount of the negative electrode active material particles is 100% by volume, the proportion of the negative electrode active material particles having a particle size in the above particle size range is preferably 95% by volume or more.
  • the “particle diameter” is an effective diameter calculated by adapting a theoretical diffraction pattern obtained by assuming a spherical shape by a laser diffraction / scattering method and an actually measured diffraction pattern.
  • the negative electrode active material particles having a particle diameter of less than 0.4 ⁇ m When the negative electrode active material particles having a particle diameter of less than 0.4 ⁇ m are included, the fine particles of the negative electrode active material particles increase, and the coating film generated during charging may be thick. For this reason, since the film resistance increases, the cycle characteristics of the battery may be deteriorated.
  • the negative electrode active material particles having a particle size exceeding 30 ⁇ m are excessively included, the Li ion diffusion resistance into the particles increases, and the capacity may be reduced.
  • the degree of expansion / contraction in the particles differs during the battery reaction, cracks in the particles, and the capacity retention rate decreases There is a risk.
  • the particle size range of the negative electrode active material particles is preferably from 0.5 ⁇ m to 30 ⁇ m, preferably from 1.0 ⁇ m to 20 ⁇ m, and preferably from 1.37 ⁇ m to 18.5 ⁇ m. In this case, the cycle characteristics are further improved.
  • D 10 of the negative electrode active material particles is preferably 3 ⁇ m or more.
  • the cycle characteristics are further improved.
  • the negative electrode active material particle D 10 is 3 ⁇ m or more, the fine particles of the negative electrode active material particle are further reduced.
  • the coating on the surface of the negative electrode active material particles becomes relatively thin, the stress applied to the outer surface of the coating is reduced, and the occurrence of cracks and defects on the outer surface of the coating can be suppressed. Therefore, the negative electrode active material particles are unlikely to come into contact with the electrolytic solution, and the elution of Li ions present in the negative electrode active material particles can be suppressed, and the decomposition reaction of the electrolytic solution can be suppressed. Therefore, the cycle characteristics of the battery can be improved.
  • “D 10 ” refers to a particle size corresponding to an integrated value of volume distribution of 10% in particle size distribution measurement by laser diffraction.
  • D 10 of the anode active material particles is not less than 3.4 .mu.m, and further preferably not smaller than 4.0 .mu.m. In this case, the cycle characteristics of the battery are further improved.
  • the D 10 of the negative electrode active material particles is preferably 6.0 ⁇ m or less, and more preferably 5.5 ⁇ m or less. If D 10 of the anode active material particle is excessive, there is a possibility that the reaction resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the D 90 of the negative electrode active material particles is preferably larger than 8.0 ⁇ m. In this case, the cycle characteristics are further improved. The reason is that when the D 90 of the negative electrode active material particles is larger than 8.0 ⁇ m, the negative electrode active material particles having a large particle diameter increase. For this reason, the coating on the surface of the negative electrode active material particles becomes relatively thin, and it is possible to suppress the occurrence of cracks and defects on the outer surface of the coating, and to effectively suppress the decomposition reaction of the electrolytic solution. Therefore, the cycle characteristics of the battery can be improved. “D 90 ” indicates a particle diameter corresponding to 90% of the integrated value of the volume distribution in the particle size distribution measurement by the laser diffraction method.
  • the D 90 of the negative electrode active material particles is preferably 8.5 ⁇ m or more, and more preferably 9.0 ⁇ m or more. In this case, the cycle characteristics of the battery are further improved.
  • the D 90 of the negative electrode active material particles is preferably 12 ⁇ m or less, and more preferably 10.5 ⁇ m or less. If D 90 of the anode active material particle is excessive, there is a risk that the internal resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • a film may be formed on the surface of the negative electrode active material particles.
  • the coating is preferably a solid electrolyte interface coating (SEI: Solid Electrolyte Interphase) formed on the surface of the negative electrode active material particles during charging.
  • SEI Solid Electrolyte Interphase
  • the negative electrode active material particles are prevented from coming into direct contact with the electrolyte, and the decomposition of the electrolyte can be suppressed.
  • the negative electrode active material particles have the above-mentioned particle size characteristics, there are few fine particles, and the ratio of the volume of the coating film to the unit volume of the negative electrode active material particles can be kept low.
  • the stress applied to the coating film due to the volume change of the negative electrode active material particles can be reduced, and the occurrence of defects such as cracks in the coating film can be suppressed. Therefore, direct contact of the negative electrode active material particles with the electrolyte can be suppressed, the decomposition reaction of the electrolyte can be suppressed, and the cycle characteristics of the battery can be improved.
  • the BET specific surface area of the negative electrode active material particles is 5 m 2 / g or less, the D 50 of the negative electrode active material particles is 5.0 ⁇ m or more and 8.0 ⁇ m or less, and the particle size range of the negative electrode active material particles is 0.4 ⁇ m or more and 20 ⁇ m or less. It is preferable that In this case, the initial discharge capacity is increased.
  • the reason is considered as follows.
  • the reaction resistance of the negative electrode active material particles indicates the film resistance of the negative electrode active material particles and the Li ion diffusion resistance into the particles at the particle interface. The reaction resistance decreases as the particle size of the negative electrode active material particles decreases.
  • the film resistance of the negative electrode active material particles decreases as the film at the particle interface becomes thinner.
  • the smaller the particle size of the negative electrode active material particles the thicker the coating is formed.
  • the negative electrode reaction resistance can be reduced and the discharge capacity can be increased by making the particle size in a well-balanced range, which is the thin particle size of the coating, without increasing the Li ion diffusion inside the particle. Can do.
  • the D 50 of the negative electrode active material particles is preferably 5.7 ⁇ m or more and 7.2 ⁇ m or less.
  • the particle size can be balanced in order to reduce the reaction resistance of the negative electrode active material particles, and the battery capacity can be further increased.
  • the BET specific surface area of the negative electrode active material particles is preferably 2.5 m 2 / g or more and 5.0 m 2 / g or less, more preferably 2.5 m 2 / g or more and 4.0 m 2 / g or less. .7m 2 / g or more 3.3 m 2 / g is preferably less.
  • the negative electrode active material particles can be made to have a balanced particle size that results in a thin particle size of the coating without increasing the Li ion diffusion resistance into the particles, and the discharge capacity can be further increased. growing.
  • the D 90 of the negative electrode active material particles is preferably larger than 8.0 ⁇ m, more preferably 8.5 ⁇ m or more and 9.0 ⁇ m or more. In this case, the discharge capacity is further increased.
  • the particle size range of the negative electrode active material particles is preferably 1.0 ⁇ m or more and 18.5 ⁇ m or less, and preferably 1.37 ⁇ m or more and 18.5 ⁇ m or less. In this case, the discharge capacity is further increased.
  • a negative electrode material comprising negative electrode active material particles comprising an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium and / or an element compound capable of being alloyed with lithium.
  • 85% by volume or more of the particles may have a particle size of 1 ⁇ m or more and a BET specific surface area of 6 m 2 / g or less, assuming that the entire particle is 100% by volume. Also in this case, since the number of fine negative electrode active material particles is small, cycle characteristics are improved.
  • cyclone classification dry classification (weight classification, inertia classification, centrifugal classification), wet classification (sediment classification, mechanical classification, hydraulic classification, centrifugal classification), sieving classification, etc.
  • dry classification weight classification, inertia classification, centrifugal classification
  • wet classification sediment classification, mechanical classification, hydraulic classification, centrifugal classification
  • sieving classification etc.
  • the cyclone classification is preferably performed using a forced vortex centrifugal precision air classifier.
  • a forced vortex centrifugal precision air classifier particles are swirled, and large particles and small particles are separated by balancing the centrifugal force acting on the particles and the resistance to the centrifugal force.
  • a classification rotor with classification blades is rotated at high speed in the casing, and centrifugal force is generated by the rotation of the classification rotor to the powder charged from the top of the classification rotor, and air is introduced from the periphery of the classification rotor toward the center.
  • the powder with a large particle size that receives a large centrifugal force from the classification rotor flows out of the classification rotor, while the powder with a small particle size that is greatly influenced by the air flow than the centrifugal force moves with the air toward the center. And classifying the powder.
  • the rotation speed of the machine is preferably 3000 rpm or more and 10,000 rpm or less.
  • the supply rate of the negative electrode active material particles is preferably 0.5 kg / h or more and 2.0 kg / h or less, and the air volume is 1.5 m 3 / min or more and 3.5 m 3 / min or less. preferable.
  • the negative electrode active material particles are composed of an element that can occlude / release lithium ions and can be alloyed with lithium or / and an element compound that can be alloyed with lithium.
  • the element capable of alloying with lithium is preferably silicon (Si) or tin (Sn).
  • the elemental compound capable of alloying with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiOx (0.5 ⁇ x ⁇ 1.5).
  • Examples of the tin compound include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
  • the negative electrode active material particles preferably include silicon (Si), and further preferably include SiOx (0.5 ⁇ x ⁇ 1.5). Silicon has a large theoretical capacity. On the other hand, since the volume change during charging / discharging is large, the volume change can be reduced by using SiOx.
  • the negative electrode active material particles preferably have a Si phase and a SiO 2 phase.
  • the Si phase is composed of simple silicon, and is a phase that can occlude and release Li ions, and expands and contracts as Li ions are occluded and released.
  • the SiO 2 phase is made of SiO 2 and absorbs expansion and contraction of the Si phase.
  • Si phase is covered by SiO 2 phase, it may form a negative electrode active material particles composed of the Si phase and SiO 2 phase.
  • a plurality of refined Si phases are covered with a SiO 2 phase and integrated to form one particle, that is, a negative electrode active material particle. In this case, the volume change of the whole negative electrode active material particle can be suppressed effectively.
  • the mass ratio of the SiO 2 phase to the Si phase in the negative electrode active material particles is preferably 1 to 3.
  • the mass ratio is less than 1, the negative electrode active material particles are greatly expanded and contracted, and there is a possibility that cracks may occur in the negative electrode active material layer composed of the negative electrode active material particles.
  • the mass ratio exceeds 3, the amount of insertion / extraction of Li ions in the negative electrode active material particles is small, and the discharge capacity may be lowered.
  • the negative electrode active material particles may be composed only of the Si phase and the SiO 2 phase. Further, the negative electrode active material particles are mainly composed of a Si phase and a SiO 2 phase, but in addition, a known active material may be included as a component of the negative electrode active material particles, specifically, Me. At least one of x Si y O z (Me is Li, Ca, etc.) may be mixed.
  • a raw material powder containing silicon monoxide may be used as a raw material for the negative electrode active material particles.
  • silicon monoxide in the raw material powder is disproportionated into two phases of SiO 2 phase and Si phase.
  • silicon monoxide SiOn: n is 0.5 ⁇ n ⁇ 1.5
  • SiO 2 phase a homogeneous solid having an atomic ratio of Si to O of approximately 1: 1
  • the silicon oxide powder obtained by disproportionation includes a SiO 2 phase and a Si phase.
  • Disproportionation of silicon monoxide in the raw powder proceeds by applying energy to the raw powder.
  • energy for example, a method of heating or milling the raw material powder can be mentioned.
  • a raw material powder containing amorphous silicon monoxide powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as vacuum or in an inert gas.
  • a silicon oxide powder containing two phases of an amorphous SiO 2 phase and a crystalline Si phase is obtained.
  • the raw material powder When milling the raw material powder, a part of the mechanical energy of the milling contributes to chemical atomic diffusion at the solid phase interface of the raw material powder, and generates an oxide phase and a silicon phase.
  • the raw material powder may be mixed using a V-type mixer, a ball mill, an attritor, a jet mill, a vibration mill, a high energy ball mill or the like in an inert gas atmosphere such as vacuum or argon gas. Further heat treatment may be performed after milling to further promote disproportionation of silicon monoxide.
  • the negative electrode active material particles constitute a negative electrode material.
  • the negative electrode material is applied to the current collector surface to form a negative electrode active material layer.
  • the negative electrode material may be used by adding the above-described negative electrode active material particles as a main negative electrode active material and adding another known negative electrode active material (for example, graphite, Sn, Si, etc.).
  • the negative electrode material may contain a binder, a conductive additive, and the like in addition to the negative electrode active material particles.
  • the binder is not particularly limited, and a known one may be used.
  • a resin that does not decompose even at a high potential such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used.
  • a material generally used for an electrode of a lithium secondary battery may be used.
  • conductive carbon materials such as carbon black (carbonaceous fine particles) such as acetylene black and ketjen black, and carbon fibers.
  • known conductive materials such as conductive organic compounds are also used.
  • An auxiliary agent may be used. One of these may be used alone or in combination of two or more.
  • a lithium ion secondary battery includes a negative electrode having a negative electrode active material layer made of the above negative electrode material, a positive electrode made of a positive electrode active material capable of occluding and releasing lithium ions, and an electrolyte.
  • the negative electrode material generally constitutes the negative electrode by being pressure-bonded to a current collector as a negative electrode active material layer.
  • a current collector for example, a metal mesh or metal foil such as copper or copper alloy may be used.
  • the positive electrode may be composed of a current collector and a positive electrode material that has positive electrode active material particles and covers the surface of the current collector.
  • the positive electrode material includes a positive electrode active material capable of inserting and extracting lithium ions, and preferably further includes a binder and / or a conductive aid.
  • the conductive aid and the binder There are no particular limitations on the conductive aid and the binder, and any conductive aid and binder can be used as long as they can be used in lithium ion secondary batteries.
  • the positive electrode active material for example, a metal composite oxide of lithium and a transition metal such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, or a lithium / nickel composite oxide is used. Specific examples include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , and S.
  • the positive electrode active material simple sulfur, a sulfur-modified compound, or the like can also be used. However, when both the positive electrode and the negative electrode do not contain lithium, it is necessary to pre-dope lithium.
  • the current collector may be any material generally used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel.
  • the current collector may be in the form of a mesh or metal foil.
  • the separator separates the positive electrode and the negative electrode and holds the non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the electrolyte may be contained in the nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution is obtained by dissolving a fluoride salt as an electrolyte in an organic solvent.
  • the electrolyte fluoride salt is preferably an alkali metal fluoride salt soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
  • the organic solvent of the non-aqueous electrolyte is preferably an aprotic organic solvent, such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( One or more selected from EMC) and the like can be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • Lithium ion secondary battery in which a non-aqueous electrolyte is impregnated in the electrode body after connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like It is good to do.
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be adopted.
  • the lithium ion secondary battery may be mounted on a vehicle. By driving the traveling motor with a lithium ion secondary battery using negative electrode active material particles having the above particle size characteristics, it can be used for a long time with a large capacity and a large output.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • Lithium ion secondary batteries include various home electric appliances, office equipment, and industrial equipment driven by batteries, such as personal computers and portable communication devices, in addition to vehicles.
  • the negative electrode active material particles have a BET specific surface area of 6 m 2 / g or less, the negative electrode active material particles have a D 50 of 4.5 ⁇ m or more and 8.0 ⁇ m or less, The particle size range is 0.4 ⁇ m or more and 30 ⁇ m or less. In this case, the discharge capacity can be increased. The reason is considered as follows.
  • the impedance of the negative electrode active material particles indicates the resistance inside the negative electrode active material particles and at the particle interface.
  • the film resistance of the negative electrode active material particles becomes smaller as the film at the particle interface becomes thinner.
  • the “BET specific surface area” is a method in which molecules having a known adsorption occupation area are adsorbed on the particle surface and the specific surface area of the particle is determined from the amount.
  • the BET specific surface area of the negative electrode active material particles is preferably 2.5 m 2 / g or more and 5.0 m 2 / g or less, more preferably 2.5 m 2 / g or more and 4.0 m 2 / g or less, 2.7 m 2 / g or more 3.3 m 2 / g is preferably less.
  • the negative electrode active material particles can be made to have a balanced particle size that results in a thin particle size of the coating without increasing the Li ion diffusion resistance into the particles, and the discharge capacity can be further increased. improves.
  • D 50 of the negative electrode active material particles is 4.5 ⁇ m or more and 8.0 ⁇ m or less.
  • D 50 refers to the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50% and D 50. That is, the D 50, it refers to the median diameter measured by volume.
  • the discharge capacity may be reduced.
  • D 50 is preferably 5.0 ⁇ m or more and 7.2 ⁇ m or less, and more preferably 5.7 ⁇ m or more and 7.2 ⁇ m or less.
  • the particle size can be balanced in order to reduce the reaction resistance of the negative electrode active material particles, and the discharge capacity is further improved.
  • the particle size range of the negative electrode active material particles is in the range of 0.4 ⁇ m to 30 ⁇ m.
  • “Particle size range” refers to the particle size of the negative electrode active material particles.
  • “The particle size range is in the range of 0.4 ⁇ m or more and 30 ⁇ m or less” means that the particle size of the negative electrode active material particles is in the range of 0.4 ⁇ m or more and 30 ⁇ m.
  • the “particle size” in which the ratio of the negative electrode active material particles having a particle size in the above particle size range is 95% by volume or more is determined by laser diffraction / The effective diameter is calculated by fitting a theoretical diffraction pattern obtained by assuming a spherical shape by a scattering method and an actually measured diffraction pattern.
  • the negative electrode active material particles having a particle size of less than 0.4 ⁇ m are included, the fine particles of the negative electrode active material particles are increased, the coating film formed during charging is thickened, and the discharge capacity may be reduced.
  • negative electrode active material particles having an excessively large particle size exceeding 30 ⁇ m are included, the diffusion resistance of the negative electrode active material particles is increased, and the initial discharge capacity may be reduced.
  • the particle size range of the negative electrode active material particles is preferably from 0.5 ⁇ m to 30 ⁇ m, more preferably from 1.0 ⁇ m to 20 ⁇ m, from 1.0 ⁇ m to 18.5 ⁇ m, and from 1.37 ⁇ m to 18. It is desirable that it is 5 ⁇ m or less. In this case, the discharge capacity is further increased.
  • D 10 of the negative electrode active material particles is preferably 3.0 ⁇ m or more. In this case, the discharge capacity is further increased. This is because, by D 10 of the negative electrode active material particles is 3.0 ⁇ m or more, the fine particles is further reduced in the anode active material particles. For this reason, it is considered that the discharge capacity was increased because the coating on the surface of the negative electrode active material particles was relatively thin and the coating resistance of the particles was reduced. “D 10 ” refers to a particle diameter corresponding to an integrated value of volume distribution in the particle size distribution measurement by laser diffraction method of 10%.
  • D 10 of the anode active material particles may be at least 3.4 .mu.m, and further preferably not smaller than 4.0 .mu.m. In this case, the discharge capacity is further improved.
  • D 10 of the anode active material particles may be less than or equal to 6.0 .mu.m, and further preferably not 5.5 ⁇ m or less. If D 10 of the anode active material particle is excessive, there is a possibility that the reaction resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the D 90 of the negative electrode active material particles is preferably larger than 8.0 ⁇ m and preferably 10.0 ⁇ m or less. In this case, the initial discharge capacity is further increased. The reason for this is that the coating on the surface of the negative electrode active material particles is relatively thin, the coating resistance of the particles is suppressed, and the particle diameter of the particles is relatively small, so that the reaction resistance of the negative electrode can be lowered, resulting in an increase in discharge capacity. Can be considered.
  • D 90 indicates a particle diameter corresponding to 90% of the integrated value of the volume distribution in the particle size distribution measurement by the laser diffraction method.
  • D 90 of the negative electrode active material particles is preferably 8.5 ⁇ m or more and 11 ⁇ m or less, and more preferably 8.8 ⁇ m or more and 10.0 ⁇ m or less. In this case, the discharge capacity is further increased.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume.
  • the particle diameter is an effective diameter calculated by fitting a theoretical diffraction pattern obtained by assuming a spherical shape by a laser diffraction / scattering method and an actually measured diffraction pattern.
  • the total amount of negative electrode active material particles is 100% by volume, and the amount of negative electrode active material particles having a particle size of 1 ⁇ m or more is less than 85% by volume, the BET specific surface area of the entire negative electrode active material particles is increased, and charging is performed.
  • the film thickness of the film formed increases. A film with a large film thickness increases the film resistance of the negative electrode active material particles. For this reason, there exists a possibility that discharge capacity may fall. It is preferable that 95% by volume or more of the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume.
  • the negative electrode active material particles have a particle size in the range of 1 ⁇ m or more and 4 ⁇ m or less, assuming that the whole is 100% by volume. In this case, the diffusion resistance of the particles and the film resistance at the particle interface can be suppressed in a balanced manner, and the battery resistance can be effectively suppressed.
  • a film may be formed on the surface of the negative electrode active material particles as in the first aspect.
  • cyclone classification using a centrifuge, dry classification, wet classification, sieving classification, or the like may be performed.
  • other points (components of the negative electrode active material particles, manufacturing method, structure of the negative electrode material, structure of the lithium ion secondary battery, etc.) may be the same as those in the first aspect.
  • the negative electrode for a lithium ion secondary battery when the total amount of negative electrode active material particles contained in the negative electrode active material layer is 100% by volume, 85% by volume or more thereof has a particle size of 1 ⁇ m or more. , and the thickness of the negative electrode active material layer is more than 1.4 times the D 90 of the anode active material particle. For this reason, battery characteristics can be improved and stabilized. The reason is considered as follows.
  • Li ions are inserted and desorbed between the positive electrode active material and the negative electrode active material through the electrolytic solution.
  • a part of the electrolyte contained in the electrolytic solution is reductively decomposed, and the decomposition product covers the surface of the negative electrode active material particles to form a film.
  • This film is a film that allows Li ions to pass but not electrons, and is called a solid electrolyte interface film (SEI: Solid Electrolyte Interphase).
  • SEI Solid Electrolyte Interphase
  • the film thickness of the coating formed on the surface of the negative electrode active material particles tends to increase.
  • the film thickness is large, it cannot follow the volume change of Si or Sn due to the charge / discharge reaction, stress concentrates on the film surface, and cracks and defects are likely to occur.
  • the electrolytic solution easily enters the negative electrode active material particles through the damaged portion of the coating, and the electrolytic solution is easily decomposed when the electrolytic solution comes into contact with the negative electrode active material. The cycle characteristics of discharge will deteriorate.
  • the negative electrode active material particles are fine particles, the specific surface area of the negative electrode active material particles is increased, so that the coating film formed on the surface is increased, resulting in resistance to the entry and exit of Li ions, and the discharge capacity may be reduced. is there.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume. For this reason, the anode active material particles have very few fine particles having a particle diameter of less than 1 ⁇ m. Since the amount of fine particles contained in the negative electrode active material particles is reduced, the number of negative electrode active material particles coated with a thick film that is easily damaged is extremely small, and deterioration of the electrolyte can be suppressed, improving cycle characteristics. Can be made. In addition, when the particle size of the negative electrode active material particles increases, the specific surface area of the negative electrode active material particles decreases, so the amount of coating formed on the surface of the negative electrode active material particles decreases and the resistance of the negative electrode active material particles decreases. The discharge capacity increases.
  • the negative electrode has a negative electrode active material layer 1 made of negative electrode active material particles formed on the surface of a current collector 2.
  • the ratio of the negative electrode active material particles having a particle diameter of 1 ⁇ m or more in the whole negative electrode active material particle is The unevenness is formed between the relatively large large particles 11 of the negative electrode active material particles existing on the surface of the negative electrode active material layer 1, and the concave and convex portions 10 of the unevenness are not filled with the fine particles 12 of the negative electrode active material particles, The surface roughness of the negative electrode active material layer 1 is increased.
  • the electrolytic solution In the thin part of the negative electrode active material layer 1, the electrolytic solution easily penetrates into the inside. In this case, if the coating film formed on the surface of the negative electrode active material particles is cracked, the negative electrode active material constituting the negative electrode active material particles and the electrolytic solution are likely to be in contact with each other, and the cycle characteristics are likely to deteriorate. On the other hand, in the thick part of the negative electrode active material layer 1, the electrolytic solution hardly penetrates into the inside. For this reason, even if the coating is cracked, the electrolytic solution and the negative electrode active material are less likely to come into contact with each other than the thin portion, and the cycle characteristics are unlikely to deteriorate. In addition, the thin portion of the negative electrode active material layer 1 has a small capacity, and the thick portion has a large capacity. Thus, variations in battery characteristics such as cycle characteristics and discharge capacity are likely to occur.
  • the thickness of the anode active material layer and 1.4 times more than D 90 of the anode active material particle.
  • 1.4 or more negative electrode active material particles are arranged in the thickness direction of the negative electrode active material layer, and there is variation in the thickness of the negative electrode active material layer.
  • the charge / discharge cycle characteristics are stabilized.
  • the variation in discharge capacity is reduced. Therefore, battery characteristics such as cycle characteristics and discharge capacity can be stabilized.
  • the negative electrode active material particles have the above particle size characteristics and the thickness of the negative electrode active material layer has the above relationship with the particle size characteristics of the negative electrode active material particles, the battery characteristics are improved and stabilized. Can do.
  • the thickness of the negative electrode active material layer if it is less than 1.4 times the D 90 of the anode active material particles has a large variation in the thickness of the negative electrode active material layer, unevenness is likely to occur in battery characteristics.
  • the thickness of the negative electrode active material layer is preferably 2 times or more D 90 of the anode active material particle. In this case, the variation in the thickness of the negative electrode active material layer is further reduced, and the battery characteristics are further stabilized.
  • the thickness of the negative electrode active material layer is preferably not more than 5 times the D 90 of the anode active material particle. In this case, the electrolyte sufficiently penetrates into the negative electrode active material layer, Li ions diffuse into the negative electrode active material layer quickly, and the discharge capacity and rate characteristics are good.
  • the thickness of the negative electrode active material layer is preferably 3 times or more D 10 of the anode active material particle.
  • the fine particles 12 having a small relative size of the negative electrode active material particles with respect to the thickness of the negative electrode active material layer increase in the entire negative electrode active material particles, and the concave portions 10 on the surface of the negative electrode active material layer 1 A large amount of fine particles 12 enter and the surface can be flattened. For this reason, the battery characteristics can be further stabilized.
  • the thickness of the negative electrode active material layer is preferably more than four times the D 10 of the anode active material particle.
  • the surface of the negative electrode active material layer can be further flattened, and the battery characteristics can be further stabilized.
  • the thickness of the negative electrode active material layer is preferably not more than 10 times the D 10 of the anode active material particle. In this case, the electrolyte sufficiently penetrates into the negative electrode active material layer, Li ions diffuse into the negative electrode active material layer quickly, and the discharge capacity and rate characteristics are good.
  • the thickness of the negative electrode active material layer is desirably at least twice more of D 50 of the anode active material particles is 2.5 times or more.
  • the thickness of the negative electrode active material layer is more than twice the D 50 of the negative electrode active material particles, the thickness of the negative electrode active material layer is sufficiently large relative to the D 50 of the negative electrode active material particles, The variation in the thickness of the material layer is reduced, and the battery characteristics can be further stabilized.
  • the thickness of the negative electrode active material layer is preferably not more than 7 times the D 50 of the anode active material particle. In this case, the electrolyte sufficiently penetrates into the negative electrode active material layer, Li ions diffuse into the negative electrode active material layer quickly, and the discharge capacity and rate characteristics are good.
  • the thickness of the negative electrode active material layer is too small, the stability of the charge / discharge cycle characteristics may be lowered.
  • the thickness of the negative electrode active material layer is excessive, the electrolytic solution does not easily penetrate into the inside, the electrolytic solution and the negative electrode active material are difficult to contact, and charge / discharge characteristics may be deteriorated.
  • the total amount of the negative electrode active material particles in the negative electrode active material layer is 100% by volume
  • the particle size is 1 ⁇ m or more and less than 85% by volume
  • 1 ⁇ m in the negative electrode active material particles A relatively large amount of fine particles of less than that will be contained. For this reason, the specific surface area of negative electrode active material particles becomes large, and many coating films are produced
  • the negative electrode active material particles in the negative electrode active material layer may have a particle diameter of 1 ⁇ m or more when 95% by volume or more is 100% by volume. In this case, fine particles of less than 1 ⁇ m are further reduced in the negative electrode active material particles, and the coating amount is reduced. Therefore, the resistance of the negative electrode active material particles is kept low, and the charge / discharge characteristics are improved.
  • the whole negative electrode active material particles in the negative electrode active material layer have a particle size of 1 ⁇ m or more.
  • fine particles having a particle size of less than 1 ⁇ m are not present in the negative electrode active material particles in the negative electrode active material layer, the coating amount is further reduced, and the resistance of the negative electrode active material particles can be kept low.
  • the total amount of the negative electrode active material particles in the negative electrode active material layer is 100% by volume, it is preferable that 85% by volume or more thereof has a particle size of 2.0 ⁇ m or more. In this case, relatively small particles having a particle size of less than 2.0 ⁇ m can be suppressed, and the particle size of the negative electrode active material particles can be further increased. Therefore, the coating amount on the surface of the negative electrode active material particles can be further reduced, and the resistance of the negative electrode active material particles can be further reduced. Furthermore, when the total amount of the negative electrode active material particles in the negative electrode active material layer is 100% by volume, it is preferable that 95% by volume or more has a particle size of 2.0 ⁇ m or more. Furthermore, deterioration of the electrolytic solution can be effectively suppressed.
  • the total amount of the negative electrode active material particles in the negative electrode active material layer is 100% by volume, it is preferable that 85% by volume or more thereof has a particle size of 30 ⁇ m or less. Since the negative electrode active material containing Si has a high conductive resistance, when the number of large particles having a particle size exceeding 30 ⁇ m increases, the internal resistance of the negative electrode active material particles increases and the battery capacity may be reduced. Furthermore, when the total amount of the negative electrode active material particles in the negative electrode active material layer is 100% by volume, it is preferable that 95% by volume or more thereof has a particle size of 30 ⁇ m or less. In this case, the battery capacity can be increased.
  • Negative electrode active material D 50 of the particles often is 5.5 ⁇ m or more, and further preferably not smaller than 5.7 .mu.m. In this case, the cycle characteristics of the battery are further improved.
  • the D 50 of the negative electrode active material particles is preferably 8.0 ⁇ m or less, and more preferably 7.5 ⁇ m or less. If D 50 of the anode active material particle is excessive, there is a possibility that the reaction resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the anode active material particles D 10 of may be at 3.0 ⁇ m or more, more than 3.4 .mu.m, it is preferably not less than 4.0 .mu.m. In this case, the number of small particles having a particle size of less than 3.0 ⁇ m is reduced in the negative electrode active material particles, and decomposition of the electrolytic solution due to film damage can be effectively suppressed.
  • the D 10 of the negative electrode active material particles is preferably 6.0 ⁇ m or less, and more preferably 5.5 ⁇ m or less. If D 10 of the anode active material particle is excessive, there is a possibility that the reaction resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the D 90 of the negative electrode active material particles is preferably larger than 7.5 ⁇ m, and more preferably 8.5 ⁇ m or more and 9.0 ⁇ m or more. In this case, the ratio of the negative electrode active material particles having a large particle size increases, and the coating amount decreases. For this reason, the resistance of the negative electrode active material particles is reduced, and the charge / discharge cycle characteristics are further improved.
  • the upper limit of D 90 of the negative electrode active material particles is preferably 12 ⁇ m or less, and more preferably 10.5 ⁇ m or less. If D 90 of the anode active material particle is excessive, there is a risk that the internal resistance of the anode active material particles (diffusion resistance of the negative electrode active material inside of the Li-ion) increases.
  • the ratio of D 50 of the negative electrode active material particles to D 90 of the negative electrode active material particles is preferably 0.5 or more and 0.8 or less, more preferably 0.65 or more and 0.8 or less. If the ratio of D 50 of the negative electrode active material particles is less than 0.5 for the D 90 of the anode active material particles, there is a possibility that decomposition products of the electrolyte increases, if it exceeds 0.8, the negative electrode The thickness of the active material layer is likely to vary, and the stability of battery characteristics may be reduced.
  • the ratio of D 10 of the negative electrode active material particles to D 90 of the negative electrode active material particles is preferably 0.1 or more and 0.6 or less, more preferably 0.4 or more and 0.6 or less. If the ratio of D 10 of the negative electrode active material particles is less than 0.1 for the D 90 of the anode active material particles, there is a possibility that decomposition products of the electrolyte increases, if it exceeds 0.6, the negative electrode The thickness of the active material layer is likely to vary, and the stability of battery characteristics may be reduced.
  • D 50 means a particle diameter corresponding to an integrated value of volume distribution in particle size distribution measurement by laser diffraction method corresponding to 50%, and is also referred to as median diameter.
  • D 10 represent respectively the particle diameters refers to a value of 10% diameter in cumulative fraction of the volume standard for determining the integrated volume from the smaller particle size distribution.
  • D 90 is a value of 90% diameter in the volume-based integrated fraction when the integrated volume is obtained from particles having a small particle size distribution.
  • D 50 , D 10 and D 90 are all measured by a particle size distribution measuring device.
  • the particle size range of the negative electrode active material particles is preferably within a range of 0.4 ⁇ m to 30 ⁇ m.
  • “Particle size range” refers to the range of the particle size of the negative electrode active material particles contained in the negative electrode. When the total amount of the negative electrode active material particles is 100% by volume, the proportion of the negative electrode active material particles having a particle size in the above particle size range is preferably 95% by volume or more.
  • the “particle diameter” is an effective diameter calculated by fitting a theoretical diffraction pattern obtained by assuming a spherical shape by a laser diffraction / scattering method and an actually measured diffraction pattern.
  • the particle size range of the negative electrode active material particles is less than 0.4 ⁇ m, the fine particles of the negative electrode active material particles increase, the coating film generated during charging increases, and the coating resistance increases. May decrease.
  • the particle size range of the negative electrode active material particles includes a range exceeding 30 ⁇ m, the diffusion resistance of Li into the negative electrode active material particles increases, and the capacity may decrease.
  • the anode active material particles there are portions that may or may not contribute to the battery reaction, the degree of expansion / contraction in the particles differs during the battery reaction, cracks occur in the particles, and cycle characteristics May decrease.
  • the particle size range of the negative electrode active material particles is preferably from 0.5 ⁇ m to 30 ⁇ m, preferably from 1.0 ⁇ m to 20 ⁇ m, and preferably from 1.37 ⁇ m to 18.5 ⁇ m. In this case, the cycle characteristics are further improved.
  • the BET specific surface area of the negative electrode active material particles is preferably 6 m 2 / g or less, more preferably 5 m 2 / g or less, 4 m 2 / g or less, and 3.3 m 2 / g or less. In this case, cycle characteristics at the time of charge / discharge are further improved.
  • “BET specific surface area” is a method for obtaining a specific surface area of a particle from the amount of a molecule whose adsorption occupation area is known on the particle surface, and is measured by an adsorption / desorption measuring device.
  • BET specific surface area of the anode active material particles may be at 2m 2 / g or more, and further preferably not 2.5 m 2 / g or more. In this case, the contact area between the negative electrode active material particles can be made relatively large, the number of electron conductive paths can be increased, and a large initial discharge capacity can be exhibited.
  • the above negative electrode active material particles constitute a negative electrode active material layer covering at least the surface of the current collector.
  • the volume ratio of the negative electrode active material particles is preferably 20% or more and 90% or less.
  • the volume ratio of the negative electrode active material particles is less than 20%, not only the discharge capacity decreases, but also the negative electrode active material particles are likely to be unevenly distributed depending on the portion of the negative electrode active material layer, which may cause variations in battery characteristics. is there.
  • the volume ratio of the negative electrode active material particles exceeds 90%, the negative electrode active material particles in the negative electrode active material layer become overcrowded, the conduction path of Li ions decreases, and the conductivity may decrease. is there.
  • a film may be formed on the surface of the negative electrode active material particles.
  • cyclone classification using a centrifuge, dry classification, wet classification, sieving classification, or the like may be performed.
  • the components of the negative electrode active material particles and the production method of the negative electrode active material particles are the same as in the first embodiment.
  • the negative electrode active material layer has negative electrode active material particles having the above characteristics. Other points (components, production method, etc.) of the negative electrode active material particles may be the same as those in the first and second embodiments.
  • the negative electrode active material layer may contain a binder, a conductive auxiliary agent, and the like in addition to the negative electrode active material particles, similarly to the negative electrode material of the first aspect.
  • the negative electrode is composed of a current collector and a negative electrode active material layer formed on the current collector surface.
  • the method for forming the negative electrode active material layer on the surface of the current collector include a method of forming a slurry containing negative electrode active material particles on the surface of the current collector using a doctor blade, and a slurry containing negative electrode active material particles And a sheet method in which the sheet is disposed on the surface of the current collector.
  • the negative electrode active material layer is preferably bonded to the surface of the current collector.
  • Examples of the pressure bonding method include a roll press method, and the roll press method is preferable for surface flattening.
  • the current collector for negative electrode in the first embodiment is preferably used.
  • a lithium ion secondary battery includes the above-described negative electrode, and includes a positive electrode and an electrolyte.
  • the positive electrode is preferably the same as the positive electrode in the first embodiment.
  • the separator may be used as necessary as in the first embodiment.
  • the electrolyte may be contained in the nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
  • the electrolyte is preferably a fluoride salt, and is preferably an alkali metal fluoride salt that is soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
  • the organic solvent of the nonaqueous electrolytic solution is preferably an aprotic organic solvent, and for example, a cyclic carbonate or a chain molecule may be used.
  • the solvent of the electrolytic solution preferably has both a cyclic carbonate and a chain molecule. Since the cyclic carbonate has a high dielectric constant and the chain molecule has a low viscosity, the movement of Li ions is not hindered, and the battery capacity can be improved.
  • the cyclic carbonate is preferably 30 to 50% by volume or less, and the chain molecule is preferably 50 to 70% by volume.
  • the cyclic carbonate increases the dielectric constant of the electrolytic solution, while having a high viscosity. As the dielectric constant increases, the conductivity of the electrolyte improves. If the viscosity is high, the movement of Li ions is hindered, resulting in poor conductivity. Chain molecules have a low dielectric constant but a low viscosity. By blending them in a well-balanced range within the above blending ratio, it is possible to adjust the solvent dielectric constant to a certain degree and also reduce the viscosity, adjust the solvent with good conductivity, and improve the battery capacity.
  • the cyclic carbonate may contain one or more selected from the group of fluorinated ethylene carbonate, propylene carbonate (PC), and ethylene carbonate (EC).
  • Fluorinated ethylene carbonate is a cyclic carbonate having at least one fluorine group in the molecule, and this fluorine group becomes a constituent element of the film formed on the surface of the negative electrode active material particles, and makes the film stable and strong. is there.
  • fluorinated ethylene carbonate it is preferable to use fluoroethylene carbonate (FEC), difluoroethylene carbonate, or the like.
  • the fluorinated ethylene carbonate is preferably 1% by volume or more and 30% by volume or less.
  • the cycle characteristics of charging / discharging can be effectively improved, and the battery capacity can be further improved by suppressing the viscosity of the electrolytic solution to facilitate the movement of Li ions.
  • the chain molecule used in the organic solvent is not particularly limited as long as it is a chain.
  • at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like can be used.
  • the first aspect may be the same as the first aspect except for the above features.
  • the solvent of the electrolytic solution is Has fluorinated ethylene carbonate.
  • Li ions are inserted / extracted between the positive electrode active material and the negative electrode active material through the electrolytic solution.
  • a part of the electrolyte contained in the electrolytic solution is reductively decomposed, and the decomposition product covers the surface of the negative electrode active material particles to form a film.
  • This film is a film that allows Li ions to pass but not electrons, and is called a solid electrolyte interface film (SEI: Solid Electrolyte Interphase).
  • SEI Solid Electrolyte Interphase
  • the film thickness of the coating formed on the surface of the negative electrode active material particles tends to increase.
  • the film thickness is large, it cannot follow the volume change of Si due to charge / discharge reaction, stress concentrates on the film surface, and cracks and defects are likely to occur.
  • the electrolytic solution easily enters the negative electrode active material particles through the damaged portion of the coating, and the electrolytic solution is easily decomposed when the electrolytic solution comes into contact with the negative electrode active material. The cycle characteristics of discharge will deteriorate.
  • the negative electrode active material particles are fine particles, active points such as cracks and defects of the negative electrode active material particles due to pulverization and the like increase, and the coating film formed on the surface becomes dense, and the resistance to the entry and exit of Li ions It becomes.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume. For this reason, the anode active material particles have very few fine particles having a particle diameter of less than 1 ⁇ m. Since the amount of fine particles contained in the negative electrode active material particles is reduced, the number of negative electrode active material particles coated with a thick film that is easily damaged is extremely small, and deterioration of the electrolyte can be suppressed, improving cycle characteristics. Can be made. Further, when the particle size of the negative electrode active material particles is increased, the negative electrode active material particles react uniformly on the surface, so that the structure of the coating film formed on the surface becomes rough and Li ions can pass smoothly.
  • the electrolytic solution has fluorinated ethylene carbonate.
  • Many of the fluorine atoms introduced into the fluorinated ethylene carbonate are constituents of LiF in the SEI film.
  • fluorinated ethylene carbonate by including fluorinated ethylene carbonate in the electrolytic solution, a stable and strong SEI film is generated, and the negative electrode active material is suppressed from coming into direct contact with the electrolytic solution, and decomposition of the electrolytic solution can be suppressed.
  • the negative electrode active material has a very small amount of fine particles of 1 ⁇ m or less, and the electrolyte contains fluorinated ethylene carbonate, so that a stable and strong SEI coating is thin on the surface of the negative electrode active material particles. It is formed with a thickness. Therefore, the number of negative electrode active material particles coated with a thick film that is easily damaged is extremely small, deterioration of the electrolytic solution can be suppressed, and cycle characteristics can be improved.
  • the negative electrode active material particles when the total amount of the negative electrode active material particles is 100% by volume, when the particle size is 1 ⁇ m or more and less than 85% by volume, the negative electrode active material particles have relatively many fine particles of less than 1 ⁇ m. Will be included. For this reason, the negative electrode active material particles that cause damage to the SEI coating during charging / discharging increase, and the electrolytic solution may directly contact the negative electrode active material, leading to deterioration of the electrolytic solution, which may reduce the charge / discharge cycle characteristics. is there.
  • the negative electrode active material particles have a particle diameter of 1 ⁇ m or more when the whole is 100% by volume.
  • the deterioration of the electrolytic solution is further suppressed, the cycle characteristics are further improved, and the passage resistance of Li ions passing through the coating formed on the surface of the negative electrode active material particles is further reduced.
  • the whole of the negative electrode active material particles contained in the negative electrode has a particle size of 1 ⁇ m or more.
  • fine particles having a particle size of less than 1 ⁇ m are not present in the negative electrode active material particles contained in the negative electrode, and SEI coating damage can be effectively suppressed and deterioration of the electrolyte can be effectively suppressed.
  • the total amount of the negative electrode active material particles contained in the negative electrode is 100% by volume, 85% by volume or more preferably has a particle size of 1.5 ⁇ m or more, and more than 95% by volume has a particle size of 1 It is desirable that it is 5 ⁇ m or more. In this case, relatively small particles having a particle size of less than 1.5 ⁇ m can be suppressed, and the particle size of the negative electrode active material particles can be further increased. Therefore, the film thickness of the SEI film on the surface of the negative electrode active material particles can be further reduced, and the film sufficiently follows the volume change at the time of charging / discharging, thereby effectively suppressing the occurrence of cracks in the film.
  • the total amount of the negative electrode active material particles contained in the negative electrode is 100% by volume, it is preferable that 95% by volume or more has a particle size of 30 ⁇ m or less, and more than 95% by volume has a particle size of 30 ⁇ m or less. Is desirable. Since the negative electrode active material containing Si has a high conductive resistance, when the number of large particles having a particle size exceeding 30 ⁇ m increases, the internal resistance of the negative electrode active material particles increases and the battery capacity may be reduced.
  • the D 50 of the negative electrode active material particles is preferably 5 ⁇ m or more and 10 ⁇ m or less, and more preferably 5.5 ⁇ m or more and 8 ⁇ m or less. In this case, the charge / discharge cycle characteristics are further improved.
  • D 10 of the anode active material particles may be at 3 ⁇ m or more, more than 3.4 .mu.m, is preferably not less than 4.0 .mu.m. In this case, there are fewer small particles having a particle size of less than 3 ⁇ m in the negative electrode active material particles, and decomposition of the electrolyte due to SEI coating damage can be effectively suppressed.
  • the D 90 of the negative electrode active material particles is preferably larger than 8.0 ⁇ m, and more preferably 8.5 ⁇ m or more and 9.0 ⁇ m or more.
  • the ratio of the negative electrode active material particles having a large particle size increases, and the number of negative electrode active material particles having a thin film increases.
  • the thin film can flexibly follow the volume change of the negative electrode active material particles. For this reason, there is little damage to a film, the direct contact with a negative electrode active material and electrolyte solution is suppressed, degradation of electrolyte solution can be suppressed effectively, and the cycle characteristic of charging / discharging further improves.
  • the upper limit of D 90 of the negative electrode active material particles is preferably 30 ⁇ m, and more preferably 25 ⁇ m. This is because the particle size of the negative electrode active material particles becomes excessive, the internal resistance of the negative electrode active material particles increases, and the battery capacity may be reduced.
  • D 50 refers to a 50% diameter value in the volume-based integrated fraction when the integrated volume is obtained from particles having a small particle size distribution, and is also referred to as a median diameter.
  • D 10 represent respectively the particle diameters refers to a value of 10% diameter in cumulative fraction of the volume standard for determining the integrated volume from the smaller particle size distribution.
  • D 90 is a value of 90% diameter in the volume-based integrated fraction when the integrated volume is obtained from particles having a small particle size distribution.
  • D 50 , D 10 and D 90 are all measured by a laser diffraction particle size distribution measuring device.
  • the particle size range of the negative electrode active material particles is preferably within a range of 0.4 ⁇ m to 30 ⁇ m. “Particle size range” refers to the range of the particle size of the negative electrode active material particles contained in the negative electrode. When the total amount of the negative electrode active material particles is 100% by volume, the proportion of the negative electrode active material particles having a particle size in the above particle size range is preferably 95% by volume or more.
  • the particle size range of the negative electrode active material particles includes less than 0.4 ⁇ m, the fine particles of the negative electrode active material particles increase, the SEI film generated during charging becomes thick, and the charge / discharge cycle characteristics may deteriorate. . Since the conductivity of the negative electrode active material is low, when the particle size range of the negative electrode active material particles includes a range exceeding 30 ⁇ m, the internal resistance of the negative electrode active material particles increases and the capacity may decrease. Also, in the anode active material particles, there are portions that may or may not contribute to the battery reaction, the degree of expansion / contraction in the particles differs during the battery reaction, cracks occur in the particles, and cycle characteristics May decrease.
  • the particle size range of the negative electrode active material particles is preferably from 0.5 ⁇ m to 30 ⁇ m, preferably from 1.0 ⁇ m to 20 ⁇ m, and preferably from 1.37 ⁇ m to 18.5 ⁇ m. In this case, the cycle characteristics are further improved.
  • the BET specific surface area of the negative electrode active material particles is preferably 6 m 2 / g or less, more preferably 5 m 2 / g or less, 4 m 2 / g or less, and 3.3 m 2 / g or less. In this case, cycle characteristics at the time of charge / discharge are further improved.
  • the “BET specific surface area” is a method in which a molecule whose adsorption occupation area is known is adsorbed on the particle surface, and the specific surface area of the particle is obtained from the amount.
  • the contact area between the negative electrode active material particles can be made relatively large, the number of electron conduction paths can be increased, and a large initial discharge capacity can be exhibited.
  • the negative electrode active material particles are preferably composed of large particles among particles obtained by classifying negative electrode active material particles made of Si-containing negative electrode active material into particles having a large particle size and small particles by cyclone classification.
  • the negative electrode active material particles contained in the negative electrode are not limited to those having the particle size adjusted by the cyclone classification, and the particle size is adjusted by a method such as a classification method using a sieve, a flotation separation method, a wet centrifugation method, or a dry classification method. It may be a thing.
  • a dry classification method it is preferable to use a dry classifier developed based on the latest classification theory different from the conventional airflow classifier.
  • the negative electrode active material particles are made of a negative electrode active material capable of inserting and extracting lithium ions.
  • a negative electrode active material consists of an element compound which has an element which can be alloyed with lithium, and / or an element which can be alloyed with lithium.
  • the elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, It is good to consist of at least 1 sort (s) chosen from the group of Sn, Pb, Sb, and Bi.
  • silicon (Si) or tin (Sn) is preferable.
  • the elemental compound having an element that can be alloyed with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiOx (0.5 ⁇ x ⁇ 1.5).
  • Examples of the tin compound include tin alloys (Cu—Sn alloy, Co—Sn alloy, etc.).
  • the negative electrode active material particles may have Si (silicon).
  • the negative electrode active material having Si can occlude / release lithium ions and is preferably made of silicon or / and a silicon compound.
  • the negative electrode active material may have SiOx (0.5 ⁇ x ⁇ 1.5). Silicon has a large theoretical discharge capacity.
  • the volume change during charging / discharging is large, the volume change can be reduced by using SiOx.
  • the components and manufacturing method of the fourth negative electrode active material particles may be the same as the components and manufacturing method of the negative electrode active material particles of the first aspect.
  • a film may be formed on the surface of the negative electrode active material particles.
  • cyclone classification using a centrifuge, dry classification, wet classification, sieving classification, or the like may be performed.
  • the components of the negative electrode active material particles and the production method of the negative electrode active material particles are the same as in the first embodiment.
  • the negative electrode active material particles having the above characteristics constitute a negative electrode material that covers at least the surface of the current collector.
  • the negative electrode is configured by pressing the negative electrode material as a negative electrode active material layer onto a current collector.
  • a current collector for example, a metal mesh or metal foil such as copper or copper alloy may be used.
  • the negative electrode active material particles described above may be used as the main negative electrode active material, and other negative electrode active materials (for example, graphite, Sn, Si, etc.) already added may be used.
  • the negative electrode material may contain a binder, a conductive additive, and the like in addition to the negative electrode active material particles.
  • the positive electrode used in the lithium ion secondary battery is composed of a current collector and a positive electrode material having positive electrode active material particles and covering the surface of the current collector, as in the first aspect. Good. Moreover, a separator is good also as needed like the 1st aspect.
  • the electrolyte may be contained in the nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
  • the electrolyte is preferably a fluoride salt, and is preferably an alkali metal fluoride salt that is soluble in an organic solvent.
  • the alkali metal fluoride salt e.g., LiPF 6, LiBF 4, LiAsF 6, NaPF 6, NaBF 4, and may be used at least one selected from the group of NaAsF 6.
  • the organic solvent of the nonaqueous electrolytic solution is preferably an aprotic organic solvent, and for example, cyclic carbonates, chain carbonates, ethers, and the like may be used.
  • the solvent of the electrolytic solution preferably has a cyclic carbonate containing cyclic ethylene carbonate and a chain carbonate. Since the cyclic carbonate has a high dielectric constant and the chain carbonate has a low viscosity, the movement of Li ions is not hindered, and the battery capacity can be improved.
  • the cyclic carbonate is preferably 30 to 50% by volume or less, and the chain carbonate is preferably 50 to 70% by volume.
  • the cyclic carbonate increases the dielectric constant of the electrolytic solution, while having a high viscosity. As the dielectric constant increases, the conductivity of the electrolyte improves. If the viscosity is high, the movement of Li ions is hindered, resulting in poor conductivity. Chain carbonate has a low dielectric constant but low viscosity. By blending them in a well-balanced range within the above blending ratio, it is possible to adjust the solvent dielectric constant to a certain degree and also reduce the viscosity, adjust the solvent with good conductivity, and improve the battery capacity.
  • the cyclic carbonate contains fluorinated ethylene carbonate as an essential component, and in addition, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma
  • PC propylene carbonate
  • EC ethylene carbonate
  • butylene carbonate gamma butyrolactone
  • vinylene carbonate 2-methyl-gamma butyrolactone
  • 2-methyl-gamma butyrolactone acetyl-gamma butyrolactone
  • gamma gamma
  • valerolactone gamma
  • One or more selected from the group of valerolactone may be included.
  • Fluorinated ethylene carbonate is a cyclic carbonate having at least one fluorine group in the molecule, and this fluorine group becomes a constituent element of the film formed on the surface of the negative electrode active material particles, and makes the film stable and strong. is there.
  • the fluorinated ethylene carbonate it is preferable to use fluoroethylene carbonate (FEC), difluoroethylene carbonate, trifluoroethylene carbonate, or the like. In view of acid resistance, it is particularly preferable to use FEC.
  • the fluorinated ethylene carbonate is preferably 1% by volume or more and 30% by volume or less.
  • the cycle characteristics of charging / discharging can be effectively improved, and the battery capacity can be further improved by suppressing the viscosity of the electrolytic solution to facilitate the movement of Li ions.
  • the fluorinated ethylene carbonate is less than 1% by volume, the degree of improvement in cycle characteristics may be reduced.
  • the amount of fluorinated ethylene carbonate exceeds 30% by volume, the high temperature characteristics of the electrolytic solution are deteriorated, the fluorinated ethylene carbonate is decomposed at a high temperature, and the decomposition product causes the internal resistance of the battery to increase.
  • the chain carbonate used for the organic solvent is not particularly limited as long as it is a chain.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • dibutyl carbonate dipropyl carbonate
  • propionic acid alkyl ester malonic acid dialkyl ester
  • acetic acid alkyl ester Can do.
  • ethers used in organic solvents include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, and the like. Can be used.
  • the other points may be the same as those in the first to third aspects.
  • a negative electrode material comprising negative electrode active material particles made of an element capable of occluding and releasing lithium ions and capable of being alloyed with lithium or / and an element compound capable of being alloyed with lithium.
  • the negative electrode active material particles are 85% by volume or more of the negative electrode active material particles having a particle diameter of 1 ⁇ m or more when the whole is 100% by volume.
  • a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the surface of the current collector, wherein the negative electrode active material layer is any of a) to g) Kano are composed of negative electrode material, the thickness of the negative electrode active material layer, the negative active material negative electrode for a lithium ion secondary battery is 1.4 times the D 90 of the particles.
  • a negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode active material layer formed on the surface of the current collector, wherein the negative electrode active material layer is any one of the above a) to g) Kano are composed of negative electrode material, the thickness of the negative electrode active material layer, the negative active material negative electrode for a lithium ion secondary battery is three times more D 10 of the particles.
  • an anode comprising the anode active material particles, a cathode having a cathode active material capable of occluding and releasing Li ions, and an electrolytic solution obtained by dissolving an electrolyte in a solvent
  • a lithium ion secondary battery comprising: The solvent of the electrolytic solution is a lithium ion secondary battery having fluorinated ethylene carbonate.
  • a lithium ion secondary battery, wherein the solvent of the electrolytic solution includes fluorinated ethylene carbonate.
  • Each of the prepared negative electrode active material particles of Samples 1 to 4, natural graphite powder as a conductive additive, ketjen black, and polyamideimide as a binder are mixed, and a solvent is added to form a slurry mixture. Obtained.
  • the solvent was N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. Thereby, the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.
  • a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry.
  • This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape.
  • the laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • the concentration of LiPF 6 in the electrolyte was 1 mol / dm 3 .
  • the opening portion of the aluminum film was completely hermetically sealed while evacuating.
  • the tips of the current collectors on the positive electrode side and the negative electrode side were projected from the edge of the film to enable connection to external terminals, and a lithium ion battery was obtained.
  • the lithium ion battery was conditioned.
  • the conditioning treatment was performed by repeating charging and discharging three times at 25 ° C.
  • the first time the charging conditions were set to CC (constant current) charging at 0.2 C and 4.1 V, and the discharging conditions were set to CC discharging at 0.2 C, 3 V, and cutoff.
  • the second time the charging condition was set to 0.2C, 4.1V CC-CV (constant current constant voltage) charging, and the discharging condition was set to 0.1C, 3V, cut-off CC discharge.
  • the charging conditions were 1C, 4.2V CC-CV charging, and the discharging conditions were 1C, 3V, cutoff CC discharging.
  • ⁇ Discharge capacity maintenance rate> A cycle test of a lithium ion secondary battery was performed. The cycle test was performed at 25 ° C., the charging condition was 1 C, 4.2 V CC (constant current) charging, and the discharging condition was 1 C, 2.5 V CC (constant current) discharging. The first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 150th cycle. During the charge and discharge of the first cycle and 150th cycle, the discharge capacity was measured, and the 150th cycle discharge capacity retention rate was calculated.
  • the discharge capacity maintenance rate at the 150th cycle is obtained as a percentage of the value obtained by dividing the discharge capacity at the 150th cycle by the initial discharge capacity ((discharge capacity at the 150th cycle) / (discharge capacity at the first cycle) ⁇ 100). Value.
  • the discharge capacity retention ratio at the 150th cycle is shown in FIG.
  • the batteries using the negative electrode active material particles of Samples 2 to 4 had an extremely high discharge capacity maintenance ratio at the 150th cycle than the battery using the negative electrode active material particles of Sample 1. Further, among the samples 2 to 4, when the negative electrode active material particles of sample 4 were used, the discharge capacity retention rate was even higher.
  • FIG. 3 shows the relationship between the negative electrode active D 10 of material particles and the 100th cycle discharge capacity retention ratio of the sample 1,3,4. Secondary batteries similar to those described above were prepared for each sample, and the discharge capacity at the 100th cycle was measured.
  • the discharge capacity maintenance rate at the 100th cycle is obtained as a percentage of the value obtained by dividing the discharge capacity at the 100th cycle by the initial discharge capacity ((discharge capacity at the 100th cycle) / (discharge capacity at the first cycle) ⁇ 100). Value.
  • the batteries produced using the negative electrode active material particles of Samples 3 and 4 had a significantly higher discharge capacity maintenance rate at the 100th cycle than that of Sample 1.
  • the negative electrode active material particles had a BET specific surface area of 6 m 2 / g or less and the negative electrode active material particles had a D 50 of 4.5 ⁇ m or more, thereby improving the cycle characteristics of the battery. . Further, it was found that when the particle size range of the negative electrode active material particles is 0.4 ⁇ m or more and 30 ⁇ m or less, or D 10 is 3 ⁇ m or more, the cycle characteristics of the battery are further improved. D 90 of the active material particles may be larger than the 8.0 .mu.m, further it was found that good that D 90 of not less than 8.5 .mu.m.
  • the negative electrode active material particles had a particle diameter of 1 ⁇ m or more when the whole was taken as 100% by volume. Furthermore, it has also been found that 95% by volume or more of the negative electrode active material particles preferably have a particle size of 1 ⁇ m or more when the whole is 100% by volume.
  • the initial discharge capacity is the capacity at the time of the first discharge performed after the conditioning process.
  • the batteries using the negative electrode active material particles of Samples 2 to 4 had a higher initial discharge capacity than the battery using the negative electrode active material particles of Sample 1.
  • the initial discharge capacities of the samples 2 and 3 and the sample 3 were high.
  • the negative electrode active material particles are 100% by volume as a whole, 95% by volume or more thereof has a particle size of 1 ⁇ m or more, and the BET specific surface area of the negative electrode active material particles is 5 m 2 / g or less.
  • D 50 of the anode active material particles by not more than 8.0 ⁇ m or 5.0 .mu.m, it was found that the initial discharge capacity is increased.
  • the particle size range of the negative electrode active material particles is preferably 0.4 ⁇ m or more and 20.0 ⁇ m or less, and the D 50 of the negative electrode active material particles is 5.7 ⁇ m or more and 7.2 ⁇ m or less.
  • the BET specific surface area of the negative electrode active material particles is preferably 2.5 m 2 / g or more and 5.0 m 2 / g or less, and the D 90 of the negative electrode active material particles is larger than 8.0 ⁇ m. I found out that it was good.
  • the negative electrode active material particles have a BET specific surface area of 6 m 2 / g or less, the negative electrode active material particles have a D 50 of 4.5 ⁇ m or more and 8.0 ⁇ m or less, and the negative electrode active material particles have a particle size range of 0.4 ⁇ m. It was found that the initial discharge capacity is increased when the thickness is 30 ⁇ m or less. Further, D 10 of the negative electrode active material particles is preferably 3.0 ⁇ m or more, D 50 is preferably 5.7 ⁇ m or more and 7.2 ⁇ m or less, and the BET specific surface area of the negative electrode active material particles is 2.5 m 2 / g or more and 5.
  • the initial discharge capacity was further increased.
  • the total amount of the negative electrode active material particles is 100% by volume, 85% by volume or more preferably has a particle size of 1 ⁇ m or more, and further, the negative electrode active material particles have a total amount of 100% by volume. It was found that 95% by volume or more preferably had a particle size of 1 ⁇ m or more.
  • reaction resistance of negative electrode The reaction resistance of the negative electrodes prepared using the negative electrode active material particles of Samples 1 to 4 was measured.
  • AC impedance measurement was performed on the secondary battery produced using the negative electrode.
  • the frequency of the current was 1 M to 0.05 Hz, and the battery was charged to 4.2 V with a constant current and constant voltage (CCCV) under the conditions of 1 C and 25 ° C.
  • An AC impedance measurement was performed on the charged secondary battery under the condition of a frequency of 1 M to 0.05 Hz.
  • the measurement results are shown in FIG. In FIG. 5, the horizontal axis indicates the real part of the resistance, and the vertical axis indicates the imaginary part of the resistance. In the line portion shown in FIG.
  • the width between both ends of the arc-shaped portion indicates the coating resistance of the negative electrode active material particles and the Li ion diffusion resistance into the particles at the particle interface, and the real part is larger than the arc-shaped portion.
  • the resistance portion indicates Li ion diffusion resistance in the negative electrode active material particles.
  • the reaction resistance of the negative electrode using the negative electrode active material particles of Samples 2 to 4 was smaller than that of Sample 1.
  • sample 3 had the lowest reaction resistance. This is a factor in maximizing the initial discharge capacity of the negative electrode active material particles of Sample 3.
  • the reaction resistance of the negative electrode indicates a value obtained by combining the film resistance of the negative electrode active material particles and the Li ion diffusion resistance into the particles at the particle interface.
  • the film resistance of the negative electrode active material particles decreases as the film on the particle surface becomes thinner.
  • the smaller the particle size of the negative electrode active material particles the thicker the coating is formed. It is possible to increase the initial discharge capacity of the battery by reducing the impedance within a well-balanced range of the particle size of the SEI film without increasing the Li ion diffusion resistance inside the particle. It is thought that it was made.
  • Batteries 1-6 are examples of the present invention.
  • the particle size distribution of the disproportionated negative electrode active material particles was measured, and the results are shown in FIG.
  • the negative electrode active material particles had a BET specific surface area of 6.6 m 2 / g, D 10 of 1.4 ⁇ m, D 50 of 4.4 ⁇ m, and D 90 of 8.0 ⁇ m. .
  • the particle size range was 0.34 to 18.5 ⁇ m.
  • Each of the prepared negative electrode active material particles, natural graphite powder and ketjen black as a conductive additive, and polyamideimide as a binder were mixed, and a solvent was added to obtain a slurry mixture.
  • the solvent was N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed by a roll press method, heated at 200 ° C. for 2 hours, and allowed to cool.
  • the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.
  • the thickness of the negative electrode active material layer was 15 ⁇ m, and the ratio of the negative electrode active material particles was 42% by mass when the total mass of the negative electrode active material layer was 100 mass.
  • a lithium-nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry.
  • This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat-welding except for a part to make a bag shape.
  • the laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • the concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
  • the opening portion of the aluminum film was completely hermetically sealed while evacuating.
  • the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery.
  • a conditioning treatment was performed on the lithium ion secondary battery.
  • charging / discharging was repeated three times at 25 ° C.
  • Cyclone classification was performed on the negative electrode active material particles of the battery 1 to prepare negative electrode active material particles of the battery 2.
  • a cyclone classification is performed using a powder classifier (turbo classifier: manufactured by Nisshin Engineering), a rotational speed of 10,000 rpm, a total air amount of 3.0 m 2 / min, and a negative electrode active material particle supply rate of 1.5 kg / hour. It went on condition of.
  • the negative electrode active material particles put into the classification rotor are subjected to a centrifugal force due to the rotation of the classification and a drag force due to the air flowing in the radial center direction.
  • coarse particles satisfying the relationship of centrifugal force> drag force are blown outward of the classifying rotor, and fine particles satisfying the relationship of centrifugal force ⁇ drag force are moved in the radial center direction together with air.
  • the coarse particles blown outward were designated as battery 2.
  • the BET specific surface area of the coarse particles of Battery 2 was 2.8 m 2 / g, D10 was 4.4 ⁇ m, D50 was 6.4 ⁇ m, D90 was 9.2 ⁇ m, and the particle size range was 2.31 to 18.5 ⁇ m. .
  • the entire negative electrode active material particles of the collected battery 2 were taken as 100% by volume, those having a particle diameter of 2 ⁇ m or more were 100% by volume.
  • the particle size distribution of the battery 2 is shown in FIG. Other points of the battery 2 are the same as those of the battery 1.
  • a battery 4 was produced using the negative electrode active material particles of the battery 1.
  • a battery 5 was produced using the negative electrode active material particles of the battery 2.
  • Battery 6 A battery 6 was produced using the negative electrode active material particles of the battery 3.
  • ⁇ Cycle test of charge / discharge> The batteries 1 to 6 were subjected to a charge / discharge cycle test at 25 ° C.
  • the charge condition of the cycle test was 1 C, 4.2 V CC (constant current) charge
  • the discharge condition was 1 C, 2.5 V CC (constant current) discharge.
  • the first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 500th cycle.
  • the battery 4 in which FEC was added to the organic solvent of the electrolytic solution showed significantly improved cycle characteristics than the batteries 1 to 3 without FEC. This is because FEC becomes a constituent component of LiF in the coating, a stable and strong coating is generated, and the negative electrode active material is suppressed from coming into direct contact with the electrolytic solution, and the decomposition of the electrolytic solution is suppressed. it is conceivable that.
  • the batteries 5 and 6 have significantly improved cycle characteristics compared to the battery 4. This is because FEC is added to the electrolytic solution, and in the battery 5, the whole of the negative electrode active material particles is 2 ⁇ m or more, and in the battery 6, when the whole of the negative electrode active material particles is 100% by volume, It is 99.3% by volume and contains almost no relatively small fine particles.
  • the fine-particle negative electrode active material particles tend to have a thick film formed on the surface, and the surface of the film tends to crack due to a volume change of the negative electrode active material particles. Since the negative electrode active material particles of the batteries 5 and 6 contain almost no such fine particles, the number of the negative electrode active material particles that damage the coating is extremely small, and deterioration of the electrolytic solution can be suppressed.
  • the lithium ion secondary battery of the batteries 5 and 6 is excellent in cycling characteristics.
  • a negative electrode active material layer for a predetermined area is cut out from two different positions in the planar direction of each negative electrode 1, 2, and a positive electrode having a positive electrode active material layer having the same mass as the cut-out portion of each negative electrode active material layer
  • a secondary battery was assembled in combination.
  • the charge / discharge cycle test was performed at 25 ° C., the charge condition was 1 C, 4.2 V CC (constant current) charge, and the discharge condition was 2 C, 3 V CC (constant current) discharge.
  • the first charge / discharge test after the conditioning treatment was taken as the first cycle, and the same charge / discharge was repeated until the 500th cycle.
  • the two cut pieces of the negative electrode 1 had different discharge capacity retention rates.
  • One of the negative electrodes 1 exhibited a discharge capacity retention rate comparable to that of the negative electrode 2, and the other was lower than the discharge capacity retention rate of the negative electrode 2.
  • the difference between the discharge capacity retention rates of the two cut pieces of the negative electrode 1 increased as the number of charge / discharge cycles increased.
  • the two cut pieces of the negative electrode 2 (outlined linear portions in FIG. 9) showed the same discharge capacity retention rate. From this, it was found that the battery using the negative electrode 2 was excellent in cycle stability, and the battery using the negative electrode 2 was not good in cycle stability. The reason is considered as follows.
  • Both the negative electrodes 1 and 2 use the same negative electrode active material particles, and the entire negative electrode active material particles in the negative electrode active material layer have a particle size of 2 ⁇ m or more.
  • the total particle size of the negative electrode active material particles in the negative electrode active material layer 1 is 2 ⁇ m or more, and the large particles of the negative electrode active material particles present on the surface of the negative electrode active material layer 1 are relatively large.
  • Concavities and convexities are formed between 11, and the concave and convex portions 10 are not filled with the fine particles of the negative electrode active material particles, and the surface roughness of the negative electrode active material layer 1 is increased.
  • the thickness of the negative electrode active material layer with respect to D 90 of the negative electrode active material particles was 1.4 times or more, and thus the cycle characteristics were relatively stable.
  • the thickness of the negative electrode active material layer with respect to D 90 of the negative electrode active material particles is less than 2.0 times as in the negative electrode 1, the thickness tends to vary depending on the portion of the negative electrode active material layer.
  • the electrolytic solution easily penetrates into the inside.
  • the coating film formed on the surface of the negative electrode active material particles is cracked, the negative electrode active material constituting the negative electrode active material particles and the electrolytic solution are likely to be in contact with each other, and the cycle characteristics are likely to deteriorate.
  • the electrolytic solution hardly penetrates into the inside.
  • the negative electrode 1 is more likely to have variations in cycle characteristics than the negative electrode 2.
  • the negative electrode 2 since the thickness of the negative electrode active material layer to the D 90 of the anode active material particles is 2.0 times or more, the difference in thickness is less likely to occur due to part of the negative electrode active material layer. For this reason, it becomes difficult to form large irregularities on the surface of the negative electrode active material layer 1. For this reason, the negative electrode 2 has less variation in the thickness of the negative electrode active material layer than the negative electrode 1, and the charge / discharge cycle characteristics are stabilized.
  • the batteries 7 to 13 of the lithium ion secondary battery according to the fourth aspect of the present invention were fabricated as follows, and a charge / discharge cycle evaluation test was performed.
  • the batteries 7 to 11 are reference examples of the present invention, and the batteries 12 and 13 are examples of the present invention.
  • the particle size distribution of the disproportionated negative electrode active material particles was measured, and the results are shown in FIG. Further, as shown in Table 6, the negative electrode active material particles had a BET specific surface area of 6.6 m 2 / g, D 10 of 1.4 ⁇ m, D 50 of 4.4 ⁇ m, and D 90 of 8.0 ⁇ m. . The particle size range was 0.34 to 18.5 ⁇ m. When the total amount of the negative electrode active material particles was 100% by volume, the particles having a particle diameter of 1 ⁇ m or more was 93.3% by volume.
  • Each of the prepared negative electrode active material particles, natural graphite powder and ketjen black as a conductive additive, and polyamideimide as a binder were mixed, and a solvent was added to obtain a slurry mixture.
  • the solvent was N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the slurry-like mixture was formed into a film on one side of a copper foil as a current collector using a doctor blade, pressed at a predetermined pressure, heated at 200 ° C. for 2 hours, and allowed to cool. Thereby, the negative electrode formed by fixing the negative electrode active material layer on the current collector surface was formed.
  • a lithium / nickel composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a slurry.
  • This slurry was applied to one side of an aluminum foil as a current collector, pressed and fired.
  • a polypropylene porous membrane as a separator was sandwiched between the positive electrode and the negative electrode.
  • a plurality of electrode bodies composed of the positive electrode, the separator, and the negative electrode were stacked.
  • the periphery of the two aluminum films was sealed by heat welding except for a part to make a bag shape.
  • a laminated electrode body was put in a bag-like aluminum film, and an electrolytic solution was further put.
  • the electrolytic solution is obtained by dissolving LiPF 6 as an electrolyte in an organic solvent.
  • the concentration of LiPF 6 in the electrolytic solution was 1 mol / L (M).
  • the opening portion of the aluminum film was completely hermetically sealed while evacuating.
  • the tips of the positive electrode side and negative electrode side current collectors were projected from the edge portions of the film to be connectable to external terminals to obtain a lithium ion secondary battery.
  • a conditioning treatment was performed on the lithium ion secondary battery.
  • charging / discharging was repeated three times.
  • the first time the charging condition was set to CC-CV (constant current constant voltage) of 0.2C, 4.1V, and the discharging condition was set to CC discharge of 0.2C, 3V, cut-off.
  • the charging condition was set to CC-CV charging of 0.2C and 4.1V, and the discharging condition was set to CC discharge of 0.1C, 3V and cut-off.
  • the charging condition was 1C, 4.2V CC-CV charging, and the discharging condition was 1C, 3V, cut-off CC discharge.
  • the lithium secondary battery was returned to room temperature (25 ° C.).
  • the negative electrode active material particles used in the battery 7 were subjected to cyclone classification.
  • a cyclone classification is performed using a powder classifier (turbo classifier: manufactured by Nisshin Engineering), a classification rotor diameter of 300 mm, a rotation speed of 7000 rpm, a total air amount of 2.0 m 3 / min, and a supply amount of negative electrode active material particles
  • the test was performed under the condition of 1 kg / hour.
  • the negative electrode active material particles put into the classification rotor are subjected to a centrifugal force due to the rotation of the classification and a drag force due to the air flowing in the radial center direction.
  • coarse particles satisfying the relationship of centrifugal force ⁇ drag force are blown outward of the classifying rotor, and fine particles satisfying the relationship of centrifugal force> drag force are moved together with air in the radial center direction.
  • the fine particles moved toward the center of the classification rotor were used in the battery 8 as negative electrode active material particles.
  • Coarse particles blown outward were used in the battery 9 as negative electrode active material particles.
  • the fine particles used in the battery 8 have a BET specific surface area of 9.5 m 2 / g, D 10 of 0.8 ⁇ m, D 50 of 2.7 ⁇ m, D 90 of 5.0 ⁇ m, and a particle size range of 0.37 to 11 0.0 ⁇ m.
  • D 10 of 0.8 ⁇ m
  • D 50 of 2.7 ⁇ m
  • D 90 of 5.0 ⁇ m
  • a particle size range of 0.37 to 11 0.0 ⁇ m.
  • the coarse particles used in Battery 9 had a BET specific surface area of 2.8 m 2 / g, D 10 of 4.4 ⁇ m, D 50 of 6.4 ⁇ m, and D 90 of 9.2 ⁇ m. The range was 2.31 to 18.5 ⁇ m.
  • the volume of particles having a particle size of 2 ⁇ m or more was 100% by volume.
  • the particle size distribution of the particles used in the battery 9 is shown in FIG.
  • the other points of the lithium ion secondary battery of the batteries 8 and 9 are the same as the lithium ion secondary battery of the battery 7.
  • Cyclone classification was performed on the negative electrode active material particles of the battery 7 to prepare negative electrode active material particles of the battery 10.
  • the same equipment as when the batteries 8 and 9 were classified was used, and the conditions of a classification rotor diameter of 300 mm, a rotation speed of 4000 rpm, a total air amount of 2.0 m 3 / min, and a negative electrode active material particle supply rate of 1 kg ton / hour I went there.
  • the negative electrode active material particles of the collected battery 10 had a BET specific surface area of 2.7 m 2 / g, D 10 of 5.4 ⁇ m, D 50 of 7.2 ⁇ m, and D 90 of 10.0 ⁇ m.
  • the particle size range was 3.27 to 18.5 ⁇ m.
  • the particles having a particle diameter of 4 ⁇ m or more were 99.3% by volume.
  • Others are the same as the lithium ion secondary battery of the battery 7.
  • Battery 12 Using the negative electrode active material particles of the battery 9, a lithium ion secondary battery of the battery 12 was produced.
  • the battery 11 in which FEC was added to the organic solvent of the non-aqueous electrolyte had significantly improved cycle characteristics than the batteries 7 to 10 without FEC. This is because FEC becomes a component of LiF in the SEI film, a stable and strong SEI film is generated, the negative electrode active material is prevented from coming into direct contact with the electrolyte, and the decomposition of the electrolyte is suppressed. It is thought that.
  • Batteries 11 and 12 have significantly improved cycle characteristics as compared with battery 10. This is because FEC is added to the non-aqueous electrolyte. Further, in the battery 12, the whole of the negative electrode active material particles is 2 ⁇ m or more, and in the battery 13, 4 ⁇ m when the whole of the negative electrode active material particles is 100% by volume. The above is 99.3% by volume and contains almost no relatively small fine particles. The fine-particle negative electrode active material particles tend to have a thick film formed on the surface, and the surface of the film tends to crack due to a volume change of the negative electrode active material particles.
  • the negative electrode active material particles used in the batteries 12 and 13 contain almost no such fine particles, the number of negative electrode active material particles that damage the SEI film is extremely small, and deterioration of the electrolyte can be suppressed. Further, when the particle size of the negative electrode active material particles is increased, the structure of the SEI film formed on the surface becomes rough, and Li ions can pass smoothly. For this reason, it is thought that the lithium ion secondary battery of the batteries 12 and 13 is excellent in cycling characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

 負極材は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を有する。負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上である。

Description

リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
 本発明は、Liイオンを吸蔵・放出し得るリチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、小型で大容量であるため、携帯電話やノート型パソコンといった幅広い分野で用いられている。また、近年、ハイブリッド車両や電気車両にも用いられつつある。
 リチウムイオン二次電池は、正極と負極と電解液とセパレータとから構成されている。正極は、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などの、リチウムと遷移金属との金属複合酸化物からなる正極活物質と、正極活物質で被覆された集電体とからなる。
 負極は、リチウムイオンを吸蔵・放出し得る負極活物質からなる負極材で集電体を被覆して形成されている。負極活物質粒子は、リチウムイオンを吸蔵・放出可能な負極活物質からなり、近年、珪素(Si)や錫(Sn)又はこれらの元素を含む化合物の使用が検討されている。珪素及び錫又はこれらを含む化合物からなる負極活物質粒子は、Liイオンの吸蔵・放出により体積が膨張したり収縮したりする。負極活物質粒子の表面には、充電時に被膜が形成されて、電解液が負極活物質と直接接触するのを防止して電解液の劣化を抑えている。しかし、この被膜は、負極活物質粒子の体積変化で亀裂が発生する場合がある。被膜に亀裂が生じると、電解液が負極活物質と直接接触して、電解液が劣化し、充放電のサイクル特性が低下するおそれがある。
 従来、負極材を構成する負極活物質の粒径を調整することで、サイクル特性等の電池特性を向上させようとする試みが行われている。例えば、特許文献1、2、3には、負極活物質としての珪素複合体粉末のBET比表面積を所定の範囲に調整することで、電池のサイクル特性及び充放電特性を向上させることが開示されている。
 特許文献4には、負極活物質粉末に含まれる粒径5μm以下の微粒子の割合を20%以下にすることで、導電助剤粉末と負極活物質粉末との接触を適度に保ち、放電容量及び初期の充放電容量を向上させることが記載されている。
 特許文献5、6、7には、酸化ケイ素粉末の平均粒子径(D50)を所定の範囲に調整することで、放電容量及びサイクル特性を向上させることが開示されている。
 また、近年、電池特性を向上させるべく、電解液中の成分と負極活物質粒子の粒度について検討されている。特許文献8には、負極活物質として珪素酸化物を用い、負極活物質粒子のメディアン径を5μm以上200μm以下とし、電解液にフルオロエチレンカーボネート(FEC)を添加することが示されている。特許文献9には、負極材料の平均粒子サイズが5~40μmとなるように設定するために、分級を行っても良いことが示されている。特許文献10には、負極活物質であるSiOを平均粒径が15μmで、5μm以下の粒径のものを10%以上含まないものを用いることが示されている。特許文献2には、SiOを粉砕し、分級し、平均粒径5μm、粒度分布1~10μmの粉末を用いることが示されています。特許文献11には、珪素化合物を含有する粒子が、平均粒径0.1μm以下の粒子を実質的に含まないとの記載がある。特許文献12、13、14、15には、電解液にFECを添加することが示されている。
特開2004-323284号公報(段落「0013」) 特開2008-166013号公報(段落「0018」) 特開2001-118568号公報(段落「0021」、「0025」) 特開2005-116389号公報(段落「0026」) 特開2003-160328号公報(段落「0015」) 特開2009-301937号公報(段落「0013」) 特開2002-373653号公報(段落「0011」) 特開2009-252579号公報(段落266,278) 特開平10-074504号公報(段落19) 特開2001-148242号公報(段落22,41) 特開2004-178922号公報(請求項11) 特開2007-200862号公報(段落63) 特開2011-049114号公報(段落45) 特開2008-098053号公報(段落103) 特許第4715848号公報(請求項1)
 本発明者は、電池のサイクル特性及び放電容量を向上させるべく、更に負極活物質の粒径について鋭意探求を重ねた。
 また、本発明者は、充放電時に体積変化を伴う負極活物質粒子を用いた場合について、電池特性を向上させ且つ安定化させるべく、負極活物質の粒径及び負極の構成について鋭意探求を重ねた。
 また、本発明者は、従来とは異なる手法で電池特性を向上させるべく、負極活物質粒子の粒度及び電解液の成分について種々に鋭意研究した。
 本発明はかかる事情に鑑みてなされたものであり、第1の課題は、電池のサイクル特性を向上させる負極材、並びにこれを用いた負極、及びリチウムイオン二次電池を提供することである。
 第2の課題は、放電容量を大きくすることができる負極材、並びにこれを用いた負極、リチウムイオン二次電池、及び車両を提供することである。
 第3の課題は、電池特性を向上させ且つ安定化させ得るリチウムイオン二次電池用負極、及びリチウムイオン二次電池である。
 第4の課題は、電池特性に優れたリチウムイオン二次電池を提供することである。
 本発明者は、負極活物質粒子の粒径を制御することで、電池の充放電サイクル特性及び放電容量が増加することを知見した。特に、負極材に含まれる負極活物質粒子全体を100体積%としたときに、その85体積%以上が粒径1μm以上であることにより、負極活物質粒子表面に形成される被膜に亀裂が発生することが抑制され、電解液が、負極活物質粒子を構成する負極活物質に接触して電解液が劣化することが抑制され、サイクル特性が向上する。また、負極活物質粒子のD50及び粒度範囲を所定の範囲に制御することにより、負極活物質粒子の内部及び粒子界面のインピーダンスを小さくし、放電容量を向上させる。本発明の各態様は、主として、上記の知見に基づいて完成された発明である。なお、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。
 (1)本発明の第1の態様のリチウムイオン二次電池用負極材は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上であることを特徴とする。
 本発明のリチウムイオン二次電池用負極は、前記リチウムイオン二次電池用負極材を有することを特徴とする。
 本発明のリチウムイオン二次電池は、前記負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とする。
 (2)本発明の第2の態様のリチウムイオン二次電池用負極材は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、前記負極活物質粒子のBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上8.0μm以下、前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下であることを特徴とする。
 本発明のリチウムイオン二次電池用負極は、前記リチウムイオン二次電池用負極材を有することを特徴とする。
 本発明のリチウムイオン二次電池は、前記負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とする。
 (3)本発明の第3の態様のリチウムイオン二次電池は、集電体と、該集電体の表面に形成され負極活物質粒子を有する負極活物質層とからなるリチウムイオン二次電池用負極であって、前記負極活物質粒子は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなり、前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、前記負極活物質層の厚みは、前記負極活物質粒子のD90の1.4倍以上であることを特徴とする。なお、リチウムと合金化反応可能な元素にはNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが挙げられる。
 本発明のリチウムイオン二次電池は、上記に記載されたリチウムイオン二次電池用負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを有することを特徴とする。
 (4)本発明の第4の態様のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素又は/及びリチウムと合金化可能な元素を有する元素化合物からなる負極活物質粒子を含む負極と、Liイオンを吸蔵、放出し得る正極活物質をもつ正極と、電解質を溶媒に溶解してなる電解液と、を備えたリチウムイオン二次電池であって、前記負極に含まれる前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、前記電解液の前記溶媒は、フッ素化エチレンカーボネートを有することを特徴とする。
 (1)本発明の第1の態様によれば、電池のサイクル特性を向上させることができる負極材、並びにこれを用いた負極、並びにリチウムイオン二次電池を提供することができる。
 (2)本発明の第2の態様によれば、放電容量を大きくすることができる負極材、並びにこれを用いた負極、並びにリチウムイオン二次電池を提供することができる。
 (3)本発明の第3の態様のリチウムイオン二次電池用負極によれば、負極活物質粒子が上記の粒径特性を有し、且つ負極活物質層の厚みが負極活物質粒子の粒径特性と上記の関係を有するため、電池特性を向上させ且つ安定化させることができる。また、本発明のリチウムイオン二次電池は、上記負極を用いているため、電池特性の向上及び安定化を実現できる。更に、本発明の車両によれば、上記リチウムイオン二次電池を用いているため、長期間高い出力を安定に発揮できる。
 (4)本発明の第4の態様のリチウムイオン二次電池は、負極に含まれる負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、かつ、電解液の溶媒は、フッ素化エチレンカーボネートを有するため、電池特性に優れる。また、本発明の車両は、電池特性に優れたリチウムイオン二次電池を搭載しているため、長期間高い出力を発揮することができる。
試料1~4の粒度分布を示す線図である。 試料1~4のBET比表面積と150サイクル目放電容量維持率との関係を示す図である。 試料1、3、4のD10と100サイクル目放電容量維持率との関係を示す図である。 試料1~4のBET比表面積と初回放電容量との関係を示す図である。 試料1~4の反応抵抗を示す図である。 本発明のリチウムイオン二次電池用負極の断面説明図である。 電池1、2に用いられている負極活物質粒子の粒度分布を示す図である。 電池1~6の充放電サイクル評価試験の結果を示す図である。 負極1、2の充放電サイクル安定性試験の結果を示す図である。 電池7、9のリチウムイオン二次電池に用いられている負極活物質粒子の粒度分布を示す図である。 電池7~13のリチウムイオン二次電池の充放電サイクル評価試験の結果を示す図である。
 (1)本発明の第1の態様の実施形態について詳細に説明する。
 第1の態様の実施形態の負極材は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上であることを特徴とする。この場合には、電池のサイクル特性が向上する。その理由は以下のように考えられる。
 負極活物質粒子全体を100体積%としたときに、その85体積%以上が粒径1μm以上とすることで、負極活物質粒子の微粒子が従来に比べて極めて少なく抑えられ、BET比表面積が小さくなり、またD50が大きくなる。BET比表面積が小さくなり、且つD50が大きくなると、充電時に、負極活物質粒子の表面に比較的薄い安定な被膜が形成される。負極活物質粒子は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなり、Liイオンを吸蔵・放出することにより膨張・収縮する。負極活物質粒子が膨張・収縮したときに、負極活物質粒子表面の被膜は比較的薄いため、被膜の外表面に加わる応力が軽減され、被膜の外表面に亀裂や欠損を生じることを抑えることができる。それゆえ、負極活物質粒子が電解液と接触し難く、負極活物質粒子に存在するLiイオンが溶出することを抑え、電解液の分解反応を抑えることができる。したがって、電池のサイクル特性を高めることができる。
 負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が1μm以上の粒径をもつ。粒径は、レーザー回折・散乱法により球形と仮定して得られる理論回折パターンと実測回折パターンを適合させて算出した有効径とする。
 負極活物質粒子全体を100体積%としたときに、1μm以上の粒径をもつ負極活物質粒子が85体積%未満である場合には、負極活物質粒子全体のBET比表面積が大きくなり、充電時に形成される被膜の膜厚が大きくなる。膜厚の大きい被膜は、負極活物質粒子の体積変化に追従しにくく、亀裂が生じやすい。このため、負極活物質粒子が直接電解質に接触して、電解質が分解するおそれがある。ゆえに、電池のサイクル特性が低下するおそれがある。
 更に、負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上の粒径をもつことがよい。この場合には、負極活物質粒子の中に1μm未満の微粒子が更に微量となり、被膜の厚みが薄い負極活物質粒子が多くなり、負極活物質粒子の体積変化により被膜の亀裂が発生しにくくなり、電解液の劣化を更に抑えることができる。
 更に、負極活物質粒子のすべてが、粒径1μm以上であることが望ましい。この場合には、更に、被膜の亀裂が発生しにくくなり、電解液の劣化を効果的に抑制できる。
 さらに、負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が2μm以上の粒径をもつことが好ましい。この場合には、被膜の膜厚が更に薄くなり、被膜に亀裂が生じにくく、電解質の分解を効果的に抑えることができる。
 負極活物質粒子のBET比表面積は6m/g以下である。負極活物質粒子のBET比表面積が6m/gを超える場合には、放電容量維持率が低下するそれがある。「BET比表面積」は、粒子表面に吸着占有面積の判った分子を吸着させ、その量から粒子の比表面積を求める方法である。
 負極活物質粒子のBET比表面積は、5m/g以下であることがよく、更には4m/g以下であることが好ましく、3.3m/g以下であることが望ましい。この場合には、放電容量維持率が更に向上する。
 負極活物質粒子のBET比表面積は、2.0m/g以上であることがよく、更には2.5m/g以上であることが好ましく、2.8m/g以上であることが望ましい。この場合には、負極活物質粒子同士の接触面積を比較的大きくすることができ、電子の導電パスが多く、大きな初回の放電容量を発揮することができる。
 負極活物質粒子のD50が4.5μm未満である場合には、電池のサイクル特性が低下するおそれがある。「D50」は、レーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。
 負極活物質粒子のD50が5.5μm以上であることがよく、更には5.7μm以上であることが好ましい。この場合には、電池のサイクル特性が更に向上する。
 負極活物質粒子のD50が8.0μm以下であることがよく、更には7.5μm以下であることが好ましい。負極活物質粒子のD50が過大である場合には、負極活物質粒子の反応抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子の粒度範囲は0.4μm以上30μm以下の範囲内とすることが好ましい。「粒度範囲」は、負極活物質粒子の粒径をいう。「粒度範囲は0.4μm以上30μm以下の範囲内」にあるとは、負極活物質粒子の粒径が0.4μm以上30μmの範囲内にあることをいう。負極活物質粒子全体を100体積%としたときに、その中で上記粒度範囲内の粒径をもつ負極活物質粒子の割合が95体積%以上であるとよい。「粒径」は、レーザー回折・散乱法により球形と仮定して得られる理論回折パターンと実測回折パターンを適合させて算出した有効径とする。
 0.4μm未満となる粒径の負極活物質粒子を含む場合には、負極活物質粒子の微粒子が多くなり、充電時に生成する被膜が厚くなるおそれがある。このため、被膜抵抗が増大するため電池のサイクル特性が低下するおそれがある。30μmを超えて過大となる粒径の負極活物質粒子を含む場合には、粒子内部へのLiイオン拡散抵抗が大きくなり、容量が低下するおそれがある。また、粒子の中で、電池反応に寄与し得る部分としない部分とが生じて、電池反応時に粒子内での膨張・収縮の程度が異なり、粒子内に亀裂が生じて、容量維持率が低下するおそれがある。
 負極活物質粒子の粒度範囲は0.5μm以上30μm以下であることが好ましく、1.0μm以上20μm以下であり、1.37μm以上18.5μm以下であることが望ましい。この場合には、更にサイクル特性が向上する。
 負極活物質粒子のD10は3μm以上であることが好ましい。この場合には更にサイクル特性が向上する。その理由は、負極活物質粒子のD10が3μm以上であることにより、負極活物質粒子の微粒子が更に少なくなる。このため、負極活物質粒子表面の被膜が比較的薄くなり、被膜の外表面に加わる応力が軽減され、被膜の外表面に亀裂や欠損を生じることを抑えることができる。それゆえ、負極活物質粒子が電解液と接触し難く、負極活物質粒子に存在するLiイオンが溶出することを抑え、電解液の分解反応を抑えることができる。したがって、電池のサイクル特性を高めることができる。「D10」とはレーザー回析法による粒度分布測定における体積分布の積算値が10%に相当する粒子径を指す。
 更に、負極活物質粒子のD10は3.4μm以上であることがよく、更には4.0μm以上であることが好ましい。この場合には、電池のサイクル特性が更に向上する。
 負極活物質粒子のD10は6.0μm以下であることがよく、更には5.5μm以下であることが好ましい。負極活物質粒子のD10が過大である場合には、負極活物質粒子の反応抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子のD90は8.0μmを超えて大きいことが好ましい。この場合には更にサイクル特性が向上する。その理由は、負極活物質粒子のD90が8.0μmを超えて大きい場合には、粒径の大きい負極活物質粒子が多くなる。このため、負極活物質粒子表面の被膜が比較的薄くなり、被膜の外表面に亀裂や欠損を生じることを抑えられ、電解液の分解反応を効果的に抑えることができる。したがって、電池のサイクル特性を高めることができる。なお、「D90」は、レーザー回析法による粒度分布測定における体積分布の積算値が90%に相当する粒子径を指す。
 更に、負極活物質粒子のD90は8.5μm以上であることがよく、更には9.0μm以上であることが好ましい。この場合には、電池のサイクル特性が更に向上する。
 負極活物質粒子のD90は12μm以下であることがよく、更には10.5μm以下であることが好ましい。負極活物質粒子のD90が過大である場合には、負極活物質粒子の内部抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子の表面には被膜が形成されているとよい。被膜は、充電時に負極活物質粒子表面に形成される固体電解質界面被膜(SEI:Solid Electrolyte Interphase)であるとよい。負極活物質粒子表面が固体電解質界面被膜で被覆されることで、負極活物質粒子が電解質と直接接触することが防止され、電解質の分解を抑えることができる。特に、本発明では、負極活物質粒子は、上記の粒径特性を有するため、微小な粒子が少なく、負極活物質粒子の単位体積に対する被膜の体積の比率が低く抑えられる。ゆえに、負極活物質粒子の体積変化による被膜に加わる応力を軽減でき、被膜に亀裂等の欠陥が生じることを抑えることができる。ゆえに、負極活物質粒子が電解質と直接接触することが抑えられ、電解質の分解反応を抑えることができ、電池のサイクル特性を向上させることができる。
 前記負極活物質粒子のBET比表面積が5m/g以下で、前記負極活物質粒子のD50が5.0μm以上8.0μm以下、前記負極活物質粒子の粒度範囲が0.4μm以上20μm以下であることが好ましい。この場合には、初回の放電容量が大きくなる。その理由は、以下のように考えられる。負極活物質粒子の反応抵抗は、負極活物質粒子の被膜抵抗及び粒子界面での粒子内部へのLiイオン拡散抵抗を示す。負極活物質粒子の粒径が小さくなるほど反応抵抗が小さくなる。負極活物質粒子の表面に被膜が形成されている場合には、粒子界面での被膜が薄くなるほど、負極活物質粒子の被膜抵抗が小さくなる。一方で、負極活物質粒子の粒径が小さいほど被膜が厚く形成される。粒子内部へのLiイオン拡散を大きくしない程度で、被膜の薄い粒径となるちょうどバランスのとれた範囲の粒径とすることで、負極反応抵抗を小さくすることができ、放電容量を大きくすることができる。
 負極活物質粒子のD50が5.7μm以上7.2μm以下であることが好ましい。この場合には、負極活物質粒子の反応抵抗を小さくするためにバランスがとれた粒径とすることができ、更に電池容量を大きくすることができる。
 負極活物質粒子のBET比表面積が2.5m/g以上5.0m/g以下であることが好ましく、更には、2.5m/g以上4.0m/g以下であり、2.7m/g以上3.3m/g以下であることが望ましい。この場合には、負極活物質粒子を、粒子内部へのLiイオン拡散抵抗を大きくしない程度で、被膜の薄い粒径となるバランスのとれた範囲の粒径とすることができ、更に放電容量が大きくなる。
 負極活物質粒子のD90が8.0μmを超えて大きいことが好ましく、更には8.5μm以上、9.0μm以上であることが望ましい。この場合には、更に放電容量が更に大きくなる。
 更に、負極活物質粒子の粒度範囲は、1.0μm以上18.5μm以下であることがよく、1.37μm以上18.5μm以下であることが好ましい。この場合には、更に放電容量が高くなる。
 また、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下であってもよい。この場合にも、微細な負極活物質粒子が少ないため、サイクル特性が向上する。
 負極活物質粒子の粒度を調整するために、例えば、サイクロン分級、乾式分級(重量分級、慣性分級、遠心分級)、湿式分級(沈降分級、機械的分級、水力分級、遠心分級)、ふるい分け分級などの方法がある。
 サイクロン分級は、強制渦遠心式精密空気分級機を用いて行うことが好ましい。例えば、強制渦遠心式精密空気分級機を用いたサイクロン分級は、粒子に旋回運動を与えて、粒子に作用する遠心力と、遠心力に対する抗力とのバランスによって粒度の大きい粒子と小さい粒子とを分離するものである。例えば、分級羽根を有する分級ロータをケーシング内で高速で回転させ、分級ロータの上部から投入した粉体に分級ロータの回転によって遠心力を生じさせるとともに分級ロータの周縁から中心に向かって空気を導入させ、分級ロータによる遠心力を大きく受ける粒径の大きな粉体は分級ロータの外方に流出し、一方遠心力より空気流による作用を大きく受ける粒径の小さな粉体は空気とともに中心方向に移動させて粉体を分級する方法である。
 強制渦遠心式精密空気分級機を用いるサイクロン分級法により、上記の所定の範囲のBET比表面積、D10、D50、D90、粒度範囲をもつ負極活物質粒子を分級するためには、遠心機の回転数は、3000rpm以上10000rpm以下であることがよい。また、負極活物質粒子の供給速度は0.5kg/h以上2.0kg/h以下であることがよく、また、風量は1.5m3/min以上3.5m3/min以下であることが好ましい。
 負極活物質粒子は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素又は/及びリチウムと合金化可能な元素化合物からなる。
 前記リチウムと合金化反応可能な元素は珪素(Si)または錫(Sn)であるとよい。前記リチウムと合金化反応可能な元素化合物は珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。
 中でも、負極活物質粒子は、珪素(Si)を有するとよく、更にはSiOx(0.5≦x≦1.5)を有するとよい。珪素は、理論容量が大きい。一方で、充放電時の体積変化が大きいため、SiOxとすることで体積変化を少なくすることができる。
 また、負極活物質粒子は、Si相と、SiO相とをもつことが好ましい。Si相は、珪素単体からなり、Liイオンを吸蔵・放出し得る相であり、Liイオンの吸蔵・放出に伴って膨張・収縮する。SiO相は、SiOからなり、Si相の膨張・収縮を吸収する。Si相がSiO相により被覆されることで、Si相とSiO相とからなる負極活物質粒子を形成しているとよい。さらには、微細化された複数のSi相がSiO相により被覆されて一体となって、1つの粒子、即ち負極活物質粒子を形成しているとよい。この場合には、負極活物質粒子全体の体積変化を効果的に抑えることができる。
 負極活物質粒子でのSi相に対するSiO相の質量比は、1~3であることが好ましい。前記質量比が1未満の場合には、負極活物質粒子の膨張・収縮が大きく、負極活物質粒子から構成された負極活物質層にクラックが生じるおそれがある。一方、前記質量比が3を超える場合には、負極活物質粒子でのLiイオンの吸蔵・放出量が少なく、放電容量が低くなるおそれがある。
 負極活物質粒子は、Si相とSiO相とのみから構成されていてもよい。また、負極活物質粒子は、Si相とSiO相とを主成分としているが、その他に、負極活物質粒子の成分として、公知の活物質を含んでいても良く、具体的には、MeSi(MeはLi,Caなど)のうちの少なくとも1種を混合していてもよい。
 負極活物質粒子の原料として、一酸化珪素を含む原料粉末を用いるとよい。この場合、原料粉末中の一酸化珪素を、SiO相とSi相との二相に不均化する。一酸化珪素の不均化では、SiとOとの原子比が概ね1:1の均質な固体である一酸化珪素(SiOn:nは0.5≦n≦1.5)が固体内部の反応により、SiO相とSi相との二相に分離する。不均化により得られる酸化珪素粉末は、SiO相とSi相とを含む。
 原料粉末の一酸化珪素の不均化は、原料粉末にエネルギーを与えることにより進行する。一例として、原料粉末を加熱する、ミリングする、などの方法が挙げられる。
 原料粉末を加熱する場合、一般に、酸素を絶った状態であれば800℃以上で、ほぼすべての一酸化珪素が不均化して二相に分離すると言われている。具体的には、非結晶性の一酸化珪素粉末を含む原料粉末に対して、真空中又は不活性ガス中などの不活性雰囲気中で800~1200℃、1~5時間の熱処理を行うことにより、非結晶性のSiO相と結晶性のSi相の二相を含む酸化珪素粉末が得られる。
 原料粉末をミリングする場合には、ミリングの機械的エネルギーの一部が、原料粉末の固相界面における化学的な原子拡散に寄与し、酸化物相と珪素相などを生成する。ミリングでは、原料粉末を、真空中、アルゴンガス中などの不活性ガス雰囲気下で、V型混合機、ボールミル、アトライタ、ジェットミル、振動ミル、高エネルギーボールミル等を使用して混合するとよい。ミリング後にさらに熱処理を施すことで、一酸化珪素の不均化をさらに促進させてもよい。
 負極活物質粒子は、負極材を構成している。負極材は、集電体表面に塗布されて負極活物質層を形成する。負極材は、上記の負極活物質粒子を主たる負極活物質とした上で、既に公知の他の負極活物質(たとえば黒鉛、Sn、Siなど)を添加して用いてもよい。
 負極材には、前記負極活物質粒子の他に、結着剤や、導電助材などを含んでいても良い。
 結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.05~1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 導電助材としては、リチウム二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、アセチレンブラック、ケッチェンブラック等のカーボンブラック(炭素質微粒子)、炭素繊維などの導電性炭素材料を用いるのが好ましく、導電性炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材の配合割合は、質量比で、負極活物質:導電助材=1:0.01~1:0.5であるのが好ましい。導電助材が少なすぎると効率のよい導電パスを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 (リチウムイオン二次電池)
 リチウムイオン二次電池は、上記の負極材からなる負極活物質層を有する負極と、リチウムイオンを吸蔵・放出し得る正極活物質からなる正極と、電解質とを備えている。
 負極材は、負極活物質層として集電体に圧着されることで負極を構成することが一般的である。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。
 正極は、集電体と、正極活物質粒子を有し集電体の表面を被覆する正極材とからなるとよい。正極材は、リチウムイオンを吸蔵・放出可能な正極活物質を含み、好ましくは、更に、結着剤及び/又は導電助材を含む。導電助材および結着剤は、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。
 正極活物質としては、例えば、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物などのリチウムと遷移金属との金属複合酸化物を用いる。具体的には、LiCoO、LiNi1/3Co1/3Mn1/3、LiMnO、Sなどが挙げられる。正極活物質は、また、硫黄単体、硫黄変性化合物などを用いることもできる。ただし、正極及び負極ともに、リチウムを含まない場合には、リチウムをプレドープする必要がある。
 集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。集電体は、メッシュや金属箔などの形状であるとよい。
 セパレータは、必要に応じて用いられる。セパレータは、正極と負極とを分離し非水電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
 電解質は、非水電解液に含まれているとよい。非水電解液は、有機溶媒に電解質であるフッ化塩を溶解させたものである。電解質であるフッ化塩は、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。
 正極および負極にセパレータを挟装させ電極体とする。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に電極体に非水電解液を含浸させてリチウムイオン二次電池とするとよい。
 リチウムイオン二次電池の形状は、特に限定なく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。
 (車両など)
 リチウムイオン二次電池は、車両に搭載してもよい。上記の粒径特性をもつ負極活物質粒子を用いたリチウムイオン二次電池で走行用モータを駆動することにより、大容量、大出力で、長時間使用することができる。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であれば良く,例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。
 リチウムイオン二次電池は、車両以外にも、パーソナルコンピュータ,携帯通信機器など,電池で駆動される各種の家電製品,オフィス機器,産業機器が挙げられる。
 (2)本発明の第2の態様の実施形態について詳細に説明する。
 第2の態様の実施形態の負極材は、負極活物質粒子のBET比表面積が6m/g以下で、負極活物質粒子のD50が4.5μm以上8.0μm以下、負極活物質粒子の粒度範囲が0.4μm以上30μm以下である。この場合には、放電容量を大きくすることができる。その理由は以下のように考えられる。
 負極活物質粒子のインピーダンスは、負極活物質粒子の内部及び粒子界面での抵抗を示す。負極活物質粒子の粒径が小さくなるほどインピーダンスが小さくなる。負極活物質粒子の界面に被膜が形成されている場合には、粒子界面での被膜が薄くなるほど、負極活物質粒子の被膜抵抗が小さくなる。一方で、負極活物質粒子の粒径が小さいほど被膜が厚く形成される。粒子内部へのLiイオン拡散抵抗を大きくしない程度で、被膜の薄い粒径となるちょうどバランスのとれた上記の範囲の粒径とすることで、インピーダンスを小さくすることができ、放電容量を大きくすることができると考えられる。
 負極活物質粒子のBET比表面積が6m/gを超える場合には、放電容量維持率が低下するそれがある。「BET比表面積」は、粒子表面に吸着占有面積の判った分子を吸着させ、その量から粒子の比表面積を求める方法である。
 負極活物質粒子のBET比表面積は、2.5m/g以上5.0m/g以下であることが好ましく、更には、2.5m/g以上4.0m/g以下であり、2.7m/g以上3.3m/g以下であることが望ましい。この場合には、負極活物質粒子を、粒子内部へのLiイオン拡散抵抗を大きくしない程度で、被膜の薄い粒径となるバランスのとれた範囲の粒径とすることができ、更に放電容量が向上する。
 負極活物質粒子のD50は、4.5μm以上8.0μm以下である。「D50」は、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。D50が4.5μm未満の場合又は8.0μmを超える場合には、放電容量が低下するおそれがある。
 更に、D50は、5.0μm以上7.2μm以下であることが好ましく、5.7μm以上7.2μm以下であることが望ましい。この場合には、負極活物質粒子の反応抵抗を小さくするためにバランスがとれた粒径とすることができ、更に放電容量が向上する。
 負極活物質粒子の粒度範囲は、0.4μm以上30μm以下の範囲内とする。「粒度範囲」は、負極活物質粒子の粒径をいう。「粒度範囲は0.4μm以上30μm以下の範囲内」にあるとは、負極活物質粒子の粒径が0.4μm以上30μmの範囲内にあることをいう。負極活物質粒子全体を100体積%としたときに、その中で上記粒度範囲内の粒径をもつ負極活物質粒子の割合が95体積%以上であるとよい「粒径」は、レーザー回折・散乱法により球形と仮定して得られる理論回折パターンと実測回折パターンを適合させて算出した有効径とする。0.4μm未満となる粒度の負極活物質粒子を含む場合、負極活物質粒子の微粒子が多くなり、充電時に生成する被膜が厚くなり、放電容量が低下するおそれがある。30μmを超えて過大となる粒度の負極活物質粒子を含む場合には、負極活物質粒子の拡散抵抗が大きくなり、初回放電容量が低下するおそれがある。
 負極活物質粒子の粒度範囲は、0.5μm以上30μm以下であることが好ましく、更には、1.0μm以上20μm以下であり、1.0μm以上18.5μm以下であり、1.37μm以上18.5μm以下であることが望ましい。この場合には、更に放電容量が大きくなる。
 負極活物質粒子のD10は、3.0μm以上であることが好ましい。この場合には更に放電容量が大きくなる。その理由は、負極活物質粒子のD10が3.0μm以上であることにより、負極活物質粒子の微粒子が更に少なくなる。このため、負極活物質粒子表面の被膜が比較的薄くなり、粒子の被膜抵抗が低くなるため、放電容量が大きくなったと考えられる。「D10」は、レーザー回析法による粒度分布測定における体積分布の積算値が10%に相当する粒子径を指す。
 更に、負極活物質粒子のD10は、3.4μm以上であることがよく、更には4.0μm以上であることが好ましい。この場合には、放電容量が更に向上する。
 負極活物質粒子のD10は、6.0μm以下であることがよく、更には5.5μm以下であることが好ましい。負極活物質粒子のD10が過大である場合には、負極活物質粒子の反応抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子のD90は、8.0μmを超えて大きいことがよく、且つ10.0μm以下であることが好ましい。この場合には更に初回放電容量が大きくなる。その理由は、負極活物質粒子表面の被膜が比較的薄くなり、粒子の被膜抵抗が抑えられ、且つ粒子の粒径も比較的小さいので負極の反応抵抗も低くでき、その結果放電容量を大きくすることができるものと考えられる。
 なお、「D90」は、レーザー回析法による粒度分布測定における体積分布の積算値が90%に相当する粒子径を指す。
 更に、負極活物質粒子のD90は、8.5μm以上11μm以下であることがよく、更には8.8μm以上10.0μm以下であることが好ましい。この場合には、放電容量が更に大きくなる。
 負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が1μm以上の粒径をもつことが好ましい。粒径は、レーザー回折・散乱法により球形と仮定して得られる理論回折パターンと実測回折パターンを適合させて算出した有効径とする。
 負極活物質粒子全体を100体積%としたときに、1μm以上の粒径をもつ負極活物質粒子が85体積%未満である場合には、負極活物質粒子全体のBET比表面積が大きくなり、充電時に形成される被膜の膜厚が大きくなる。膜厚の大きい被膜は、負極活物質粒子の被膜抵抗を大きくする。このため、放電容量が低下するおそれがある。負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上の粒径をもつことが好ましい。
 さらに、負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上4μm以下の範囲の粒径をもつことが好ましい。この場合には、粒子の拡散抵抗と粒子界面での被膜抵抗とをバランスよく抑え、電池抵抗を効果的におさえることができる。
 第2の態様においても、第1の態様と同様に、負極活物質粒子の表面には被膜が形成されているとよい。また、負極活物質粒子の粒度を調製するために、例えば、遠心機を用いるサイクロン分級、乾式分級、湿式分級、ふるい分け分級などを行うと良い。第2の態様において、その他の点(負極活物質粒子の成分、製法、負極材の構成、リチウムイオン二次電池の構成など)は、第1の態様と同様であるとよい。
(3)本発明の第3の態様の実施形態について詳細に説明する。
 本発明の第3の態様のリチウムイオン二次電池用負極においては、負極活物質層に含まれる負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、負極活物質層の厚みは、負極活物質粒子のD90の1.4倍以上である。このため、電池特性を向上させ且つ安定化させることができる。その理由は、以下のように考えられる。
 リチウムイオン二次電池に充放電を行うと、Liイオンが電解液を通じて正極活物質と負極活物質との間で挿入・脱離が行われる。その際には、電解液中に含まれる電解質が一部還元分解され、その分解生成物が、負極活物質粒子表面を被覆して被膜を形成する。この被膜は、Liイオンは通すが、電子は通さないという膜であり、固体電解質界面被膜(SEI:Solid Electrolyte Interphase)と言われている。この被膜は、負極活物質粒子表面を被覆することで、電解質と負極活物質とが直接接触することを防止して電解質の分解劣化を抑えている。
 負極活物質粒子が粒径1μm未満の微粒子である場合、負極活物質粒子表面に形成される被膜の膜厚が大きくなる傾向がある。被膜の膜厚が大きい場合には、充放電反応によるSiやSnの体積変化に追従できず、被膜表面に応力が集中し、亀裂や欠陥が生じやすい。このように被膜に損傷が生じると、被膜の損傷部分を通じて電解液が負極活物質粒子内部に浸入しやすくなり、電解液が負極活物質と接触することにより電解液成分が分解されやすくなり、充放電のサイクル特性が低下することになる。また、負極活物質粒子が微粒子の場合には、負極活物質粒子の比表面積が増大するため、表面に形成される被膜が増加し、Liイオンの出入りの抵抗となり、放電容量が低下するおそれがある。
 本発明においては、負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上である。このため、負極活物質粒子には、粒径1μm未満の微粒子が非常に少なくなる。負極活物質粒子に含まれる微粒子の量を抑えているため、損傷しやすい厚膜の被膜で被覆された負極活物質粒子が極めて少なくなり、電解液の劣化を抑えることができ、サイクル特性を向上させることができる。また、負極活物質粒子の粒径が大きくなると、負極活物質粒子の比表面積が小さくなるため、負極活物質粒子表面に形成される被膜の量が少なくなり、負極活物質粒子の抵抗が低減し、放電容量が増大する。
 図6に示すように、負極は、集電体2の表面に、負極活物質粒子からなる負極活物質層1を形成している。負極活物質層1内の負極活物質粒子全体の中の85体積%以上が粒径1μm以上である場合には、負極活物質粒子全体の中の粒径1μm以上の負極活物質粒子の割合が多くなり、負極活物質層1の表面に存在する負極活物質粒子の比較的大きな大粒子11の間に凹凸が形成され、この凹凸の凹部10が負極活物質粒子の微粒子12で埋められず、負極活物質層1の表面粗さが大きくなる。負極活物質層1の薄い部分では、電解液が内部まで浸透しやすい。この場合、負極活物質粒子表面に形成される被膜に亀裂が発生していると、負極活物質粒子を構成している負極活物質と電解液とが接触しやすく、サイクル特性が低下しやすい。一方、負極活物質層1の厚い部分では、電解液が内部まで浸透しにくい。このため、被膜に亀裂が生じていても、薄い部分に比べて電解液と負極活物質とは接触しにくく、サイクル特性が低下しにくい。また、負極活物質層1の薄い部分では容量が小さく、厚い部分では容量が大きくなる。このように、サイクル特性、放電容量などの電池特性にバラツキが生じやすい。
 そこで、本発明においては、負極活物質層の厚みを、負極活物質粒子のD90の1.4倍以上としている。この場合には、負極活物質層の多くの部分で、負極活物質層の厚み方向で1.4個以上の負極活物質粒子が配置されることになり、負極活物質層の厚みのバラツキが少なくなり、充放電サイクル特性が安定化する。また、放電容量のバラツキも少なくなる。ゆえに、サイクル特性、放電容量などの電池特性を安定化させることができる。
 即ち、負極活物質粒子が上記の粒径特性を有し、且つ負極活物質層の厚みが負極活物質粒子の粒径特性と上記の関係を有するため、電池特性を向上させ且つ安定化させることができる。
 一方、負極活物質層の厚みが、負極活物質粒子のD90の1.4倍未満である場合には、負極活物質層の厚みのバラツキが大きく、電池特性にバラツキが生じやすくなる。
 更に、負極活物質層の厚みは、負極活物質粒子のD90の2倍以上であることが好ましい。この場合には、負極活物質層の厚みのバラツキが更に少なくなり、電池特性が更に安定化される。
 負極活物質層の厚みは、負極活物質粒子のD90の5倍以下であることが好ましい。この場合には、負極活物質層の内部まで電解液が十分に浸透し、また負極活物質層の内部へのLiイオンの拡散も速く、放電容量及びレート特性がよい。
 ここで、負極活物質層の厚みは、負極活物質粒子のD10の3倍以上であることが好ましい。この場合には、負極活物質層の厚みに対する負極活物質粒子の相対的な大きさが小さい微粒子12が負極活物質粒子全体の中で多くなり、負極活物質層1の表面の凹部10に、微粒子12が多く入り込み、表面を平坦化させることができる。このため、更に電池特性を安定化させることができる。
 更に、負極活物質層の厚みは、負極活物質粒子のD10の4倍以上であることが望ましい。この場合には、負極活物質層の表面を更に平坦化させることができ、電池特性を更に安定化させることができる。
 負極活物質層の厚みは、負極活物質粒子のD10の10倍以下であることが好ましい。この場合には、負極活物質層の内部まで電解液が十分に浸透し、また負極活物質層の内部へのLiイオンの拡散も速く、放電容量及びレート特性がよい。
 負極活物質層の厚みは、負極活物質粒子のD50の2倍以上さらには2.5倍以上であることが望ましい。負極活物質層の厚みが負極活物質粒子のD50の2倍以上である場合には、負極活物質層の厚みが、負極活物質粒子のD50に対して十分な大きさとなり、負極活物質層の厚みのバラツキが少なくなり、電池特性を更に安定化させることができる。
 負極活物質層の厚みは、負極活物質粒子のD50の7倍以下であることが好ましい。この場合には、負極活物質層の内部まで電解液が十分に浸透し、また負極活物質層の内部へのLiイオンの拡散も速く、放電容量及びレート特性がよい。
 負極活物質層の厚みが過小の場合には、充放電のサイクル特性の安定性が低くなるおそれがある。負極活物質層の厚みが過大である場合には、電解液が内部まで浸透しにくく、電解液と負極活物質とが接触しにくく、充放電特性が低下するおそれがある。
 また、負極活物質層の中の負極活物質粒子の全体を100体積%としたときに、粒径が1μm以上のものが85体積%未満である場合には、負極活物質粒子の中に1μm未満の微粒子が比較的多く含まれることになる。このため、負極活物質粒子の比表面積が大きくなり、被膜が多く生成される。そのため、負極活物質粒子が高抵抗となり、充放電特性が悪化するおそれがある。
 負極活物質層の中の負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上の粒径をもつことがよい。この場合には、負極活物質粒子の中に1μm未満の微粒子が更に微量となり、被膜量が少なくなる。そのため、負極活物質粒子の抵抗を低く抑え、充放電特性が向上する。
 更に、負極活物質層の中の負極活物質粒子の全体が、粒径1μm以上であることが好ましい。この場合には、負極活物質層の中の負極活物質粒子の中に粒径1μm未満の微粒子が存在しなくなり、さらに被膜量が低減し、負極活物質粒子の抵抗を低く抑えることができる。
 負極活物質層の中の前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径2.0μm以上であることが好ましい。この場合には、粒径2.0μm未満の比較的小さい粒子を少なく抑えることができ、負極活物質粒子の粒径を更に大きくすることができる。ゆえに、負極活物質粒子表面の被膜量を更に少なくすることができ、負極活物質粒子の抵抗を更に下げることができる。更に、負極活物質層の中の前記負極活物質粒子の全体を100体積%としたときに、その95体積%以上が粒径2.0μm以上であることが好ましい。更に、電解液の劣化を効果的に抑えることができる。
 負極活物質層の中の負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径30μm以下であることが好ましい。Siを含む負極活物質は導電抵抗が高いため、粒径30μmを超える大きな粒子が多くなると、負極活物質粒子の内部抵抗が大きくなり、電池容量が低下するおそれがある。更に、負極活物質層の中の負極活物質粒子の全体を100体積%としたときに、その95体積%以上が粒径30μm以下であることが好ましい。この場合には、電池容量を高くすることができる。
 負極活物質粒子のD50は5.5μm以上であることがよく、更には5.7μm以上であることが好ましい。この場合には、電池のサイクル特性が更に向上する。
 負極活物質粒子のD50が8.0μm以下であることがよく、更には7.5μm以下であることが好ましい。負極活物質粒子のD50が過大である場合には、負極活物質粒子の反応抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子のD10は、3.0μm以上であることがよく、更には3.4μm以上、4.0μm以上であることが好ましい。この場合には、負極活物質粒子中で粒径3.0μm未満の小さい粒子が少なくなり、被膜損傷による電解液の分解を効果的に抑えることができる。
 負極活物質粒子のD10は6.0μm以下であることがよく、更には5.5μm以下であることが好ましい。負極活物質粒子のD10が過大である場合には、負極活物質粒子の反応抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子のD90は、7.5μmを超えて大きいことがよく、更には、8.5μm以上、9.0μm以上であることが好ましい。この場合には、粒径の大きな負極活物質粒子の割合が増えて、被膜量が少なくなる。このため、負極活物質粒子の抵抗が低減され、充放電のサイクル特性が更に向上する。
 負極活物質粒子のD90の上限は12μm以下であることがよく、更には10.5μm以下であることが好ましい。負極活物質粒子のD90が過大である場合には、負極活物質粒子の内部抵抗(Liイオンの負極活物質内部への拡散抵抗)が増大するおそれがある。
 負極活物質粒子のD90に対する負極活物質粒子のD50の比率は、0.5以上0.8以下さらには0.65以上0.8以下であることが好ましい。負極活物質粒子のD90に対する負極活物質粒子のD50の比率が0.5未満の場合には、電解液の分解生成物が増大するおそれがあり、0.8を超える場合には、負極活物質層の厚みにバラツキが生じやすく、電池特性の安定性が低下するおそれがある。
 負極活物質粒子のD90に対する負極活物質粒子のD10の比率は、0.1以上0.6以下さらには0.4以上0.6以下であることが好ましい。負極活物質粒子のD90に対する負極活物質粒子のD10の比率が0.1未満の場合には、電解液の分解生成物が増大するおそれがあり、0.6を超える場合には、負極活物質層の厚みにバラツキが生じやすく、電池特性の安定性が低下するおそれがある。
 ここで、D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径をいい、メディアン径とも称される。D10は、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における10%径の値をいう。D90も、同様に、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における90%径の値をいう。D50,D10、D90とも、粒度分布測定装置により測定される。
 負極活物質粒子の粒度範囲は、0.4μm以上30μm以下の範囲内とすることが好ましい。「粒度範囲」は、負極に含まれる負極活物質粒子の粒径の範囲をいう。負極活物質粒子全体を100体積%としたときに、その中で上記粒度範囲内の粒径をもつ負極活物質粒子の割合が95体積%以上であるとよい。「粒径」は、レーザー回折・散乱法により球形と仮定して得られる理論回折パターンと実測回折パターンを適合させて算出した有効径とする。
 負極活物質粒子の粒度範囲に0.4μm未満が含まれる場合には、負極活物質粒子の微粒子が多くなり、充電時に生成する被膜が多くなり、被膜抵抗が増大するため、充放電のサイクル特性が低下するおそれがある。負極活物質粒子の粒度範囲に30μmを超える範囲が含まれる場合には、負極活物質粒子内部へのLiの拡散抵抗が大きくなり、容量が低下するおそれがある。また、負極活物質粒子の中で、電池反応に寄与し得る部分としない部分とが生じて、電池反応時に粒子内での膨張・収縮の程度が異なり、粒子内に亀裂が生じて、サイクル特性が低下するおそれがある。
 負極活物質粒子の粒度範囲は0.5μm以上30μm以下であることが好ましく、1.0μm以上20μm以下であり、1.37μm以上18.5μm以下であることが望ましい。この場合には、更にサイクル特性が向上する。
 負極活物質粒子のBET比表面積は6m2/g以下であるとよく、更には5m2/g以下、4m2/g以下、3.3m2/g以下であることが好ましい。この場合には、充放電時のサイクル特性が更に向上する。「BET比表面積」は、粒子表面に吸着占有面積のわかった分子を吸着させ、その量から粒子の比表面積を求める方法であり、吸脱着測定装置により測定される。
 負極活物質粒子のBET比表面積は2m2/g以上であることがよく、更には2.5m2/g以上であることが好ましい。この場合には、負極活物質粒子同士の接触面積を比較的大きくすることができ、電子の導電パスが多くなり、大きな初回放電容量を発揮することができる。
 上記の負極活物質粒子は、集電体の少なくとも表面を被覆する負極活物質層を構成する。
 負極活物質層の全体の体積を100%としたとき、前記負極活物質粒子の体積の比率は、20%以上90%以下であることが好ましい。負極活物質粒子の体積の比率が20%未満の場合には、放電容量が低下するだけでなく、負極活物質層の部位によって負極活物質粒子が偏在しやすく、電池特性にバラツキが生じるおそれがある。一方、負極活物質粒子の体積の比率が90%を超える場合には、負極活物質層内の負極活物質粒子が過密になり、Liイオンの伝導パスが少なくなり、導電性が低下するおそれがある。
 第3の態様において、第1の態様と同様に、負極活物質粒子の表面には被膜が形成されているとよい。また、負極活物質粒子の粒度を調製するために、例えば、遠心機を用いるサイクロン分級、乾式分級、湿式分級、ふるい分け分級などを行うと良い。負極活物質粒子の成分、負極活物質粒子の製法は、第1の態様と同様である。
 第3の態様において、負極活物質層は、上記の特徴をもつ負極活物質粒子を有する。負極活物質粒子のその他の点(成分、製法など)は、第1、第2の態様と同様であるとよい。負極活物質層は、第1の態様の負極材と同様に、負極活物質粒子の他に、結着剤や導電助剤などを含んでいても良い。
 負極は、集電体と、集電体表面に形成された負極活物質層とからなる。集電体の表面に負極活物質層を形成する方法としては、例えば、負極活物質粒子を含むスラリーを、ドクターブレードを用いて集電体表面に成膜する方法、負極活物質粒子を含むスラリーをシート化し、このシートを集電体表面に配置するシート法などが挙げられる。また、負極活物質層は、集電体表面に圧着させるとよい。圧着法としては、ロールプレス法などが挙げられるが、表面平坦化のためにロールプレス法がよい。集電体は、第1の態様における負極用の集電体を用いることがよい。
リチウムイオン二次電池は、上記の負極を有するとともに、正極と電解質とで構成される。正極は、第1の態様における正極と同様のものを用いることがよい。セパレータも、第1の態様と同様に、必要に応じて用いられるとよい。
 電解質は、非水電解液に含まれているとよい。非水電解液は、有機溶媒に電解質を溶解させたものである。電解質は、フッ化塩であることがよく、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF6、LiBF4、LiAsF6、NaPF6、NaBF4、及びNaAsF6の群から選ばれる少なくとも1種を用いるとよい。
 非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、環状カーボネート、鎖状分子などを用いるとよい。電解液の溶媒は、環状カーボネートと鎖状分子との双方を有することが好ましい。環状カーボネートは誘電率が高く、鎖状分子は粘性が低いためLiイオンの移動を妨げず、電池容量を向上させることができる。
 電解液の溶媒全体を100体積%としたとき、環状カーボネートは30~50体積%以下であり、前記鎖状分子は50~70体積%であるとよい。環状カーボネートは、電解液の誘電率を高くする一方、粘性が高い。誘電率が上がると電解液の導電性が良くなる。粘性が高いとLiイオンの移動が妨げられ導電性が悪くなる。鎖状分子は、低い誘電率であるが、粘性は低い。両者を上記の配合比の範囲でバランスよく配合することで、溶媒の誘電率をある程度高く、また粘性も低くして、導電性のよい溶媒を調整でき、電池容量を向上させることができる。
 環状カーボネートは、フッ素化エチレンカーボネート、プロピレンカーボネート(PC)、エチレンカーボネート(EC)の群から選ばれる1種以上を含んでいても良い。フッ素化エチレンカーボネートは、分子内に少なくとも1つのフッ素基をもつ環状カーボネートであり、このフッ素基が、負極活物質粒子表面に形成される被膜の構成元素となり、被膜を安定で強固にするからである。フッ素化エチレンカーボネートとしては、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネートなどを用いることが好ましい。
 電解液の溶媒全体を100体積%としたときに、フッ素化エチレンカーボネートは、1体積%以上30体積%以下であることが好ましい。この場合には、充放電のサイクル特性を効果的に向上させることができるとともに、電解液の粘性も低く抑えてLiイオンを移動させやすくして電池容量を更に向上させることができる。
 有機溶媒に用いられる鎖状分子は、鎖状なら特に限定しない。例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。
 第3の態様において、上記の特徴の他は、第1の態様と同様であるとよい。
 (4)本発明の第4の態様の実施形態について詳細に説明する。
 本発明のリチウムイオン二次電池は、負極に含まれる負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、かつ、電解液の溶媒は、フッ素化エチレンカーボネートを有する。このため、後述の実施例に示すように、電池特性、特に充放電のサイクル特性に優れる。その理由は定かではないが、以下のように考えられる。
 リチウムイオン二次電池について充放電を行うと、Liイオンが電解液を通じて正極活物質と負極活物質との間で挿入・脱離が行われる。その際には、電解液中に含まれる電解質が一部還元分解され、その分解生成物が、負極活物質粒子表面を被覆して被膜を形成する。この被膜は、Liイオンは通すが、電子は通さないという膜であり、固体電解質界面被膜(SEI:Solid Electrolyte Interphase)と言われている。この被膜は、負極活物質粒子表面を被覆することで、電解質と負極活物質とが直接接触することを防止して電解質の分解劣化を抑えている。
 負極活物質粒子が粒径1μm以下の微粒子である場合、負極活物質粒子表面に形成される被膜の膜厚が大きくなる傾向がある。被膜の膜厚が大きい場合には、充放電反応によるSiの体積変化に追従できず、被膜表面に応力が集中し、亀裂や欠陥が生じやすい。このように被膜に損傷が生じると、被膜の損傷部分を通じて電解液が負極活物質粒子内部に浸入しやすくなり、電解液が負極活物質と接触することにより電解液成分が分解されやすくなり、充放電のサイクル特性が低下することになる。また、負極活物質粒子が微粒子の場合には、粉砕などによる負極活物質粒子の亀裂や欠陥などの活性点が多くなるため、表面に形成される被膜が緻密になり、Liイオンの出入りの抵抗となる。
 本発明においては、負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上である。このため、負極活物質粒子には、粒径1μm未満の微粒子が非常に少なくなる。負極活物質粒子に含まれる微粒子の量を抑えているため、損傷しやすい厚膜の被膜で被覆された負極活物質粒子が極めて少なくなり、電解液の劣化を抑えることができ、サイクル特性を向上させることができる。また、負極活物質粒子の粒径が大きくなると、負極活物質粒子表面で均一に反応するため、表面に形成される被膜の構造が粗くなり、Liイオンが円滑に通過することができる。
 また、電解液は、フッ素化エチレンカーボネートを有している。フッ素化エチレンカーボネートに導入されたフッ素原子の多くは、SEI被膜中のLiFの構成成分になる。このため、電解液にフッ素化エチレンカーボネートを含めることにより、安定で強固なSEI被膜が生成され、負極活物質が電解液に直接接触することが抑制され、電解液の分解を抑えることができる。
 このように、本発明によれば、負極活物質が1μm以下の微粒子の量が極めて少なく、且つ電解液がフッ素化エチレンカーボネートを含むので、負極活物質粒子表面に安定で強固なSEI被膜が薄い厚みで形成される。ゆえに、損傷しやすい厚膜の被膜で被覆された負極活物質粒子が極めて少なくなり、電解液の劣化を抑えることができ、サイクル特性を向上させることができる。
 一方、負極活物質粒子の全体を100体積%としたときに、粒径が1μm以上のものが85体積%未満である場合には、負極活物質粒子の中に1μm未満の微粒子が比較的多く含まれることになる。このため、充放電時にSEI被膜に損傷が生じる負極活物質粒子が多くなり、電解液が負極活物質と直接接触して電解液の劣化が進行して、充放電のサイクル特性が低下するおそれがある。
 ここで、負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が粒径1μm以上であることが好ましい。この場合には、電解液の劣化を更に抑えサイクル特性が更に向上し、また負極活物質粒子表面に形成される被膜を通過するLiイオンの通過抵抗が更に低下する。
 負極に含まれる負極活物質粒子の全体が、粒径1μm以上であることが好ましい。この場合には、負極に含まれる負極活物質粒子の中に粒径1μm未満の微粒子が存在しなくなり、SEI被膜損傷を効果的に抑え電解液の劣化を効果的に抑えることができる。
 前記負極に含まれる前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1.5μm以上であることが好ましく、更には、95体積%以上が粒径1.5μm以上であることが望ましい。この場合には、粒径1.5μm未満の比較的小さい粒子を少なく抑えることができ、負極活物質粒子の粒径を更に大きくすることができる。ゆえに、負極活物質粒子表面のSEI被膜の膜厚を更に薄くすることができ、充放電時の体積変化に被膜が十分に追従して、被膜への亀裂発生を効果的に抑えることができる。
 負極に含まれる負極活物質粒子の全体を100体積%としたときに、その95体積%以上が粒径30μm以下であることが好ましく、更には、95体積%以上が粒径30μm以下であることが望ましい。Siを含む負極活物質は導電抵抗が高いため、粒径30μmを超える大きな粒子が多くなると、負極活物質粒子の内部抵抗が大きくなり、電池容量が低下するおそれがある。
 負極活物質粒子のD50は5μm以上10μm以下であることがよく、更には5.5μm以上8μm以下であることが好ましい。この場合には、充放電のサイクル特性が更に向上する。
 負極活物質粒子のD10は、3μm以上であることがよく、更には3.4μm以上、4.0μm以上であることが好ましい。この場合には、負極活物質粒子中で粒径3μm未満の小さい粒子が少なくなり、SEI被膜損傷による電解液の分解を効果的に抑えることができる。
 負極活物質粒子のD90は、8.0μmを超えて大きいことがよく、更には、8.5μm以上、9.0μm以上であることが好ましい。この場合には、粒径の大きな負極活物質粒子の割合が増えて、薄い被膜をもつ負極活物質粒子が多くなる。このため、薄い被膜は、負極活物質粒子の体積変化に柔軟に追従し得る。このため、被膜の損傷が少なく、負極活物質と電解液との直接接触が抑制され、電解液の劣化を効果的に抑えることができ、充放電のサイクル特性が更に向上する。
 負極活物質粒子のD90の上限は30μm、更には25μmとすることがよい。負極活物質粒子の粒径が過大となり、負極活物質粒子の内部抵抗が大きくなり、電池容量が低下するおそれがあるからである。
 ここで、D50は、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値をいい、メディアン径とも称される。D10は、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における10%径の値をいう。D90も、同様に、粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における90%径の値をいう。D50,D10、D90とも、レーザー回折式粒度分布測定装置により測定される。
 負極活物質粒子の粒度範囲は、0.4μm以上30μm以下の範囲内とすることが好ましい。「粒度範囲」は、負極に含まれる負極活物質粒子の粒径の範囲をいう。負極活物質粒子全体を100体積%としたときに、その中で上記粒度範囲内の粒径をもつ負極活物質粒子の割合が95体積%以上であるとよい。
 負極活物質粒子の粒度範囲に0.4μm未満が含まれる場合には、負極活物質粒子の微粒子が多くなり、充電時に生成するSEI被膜が厚くなり、充放電のサイクル特性が低下するおそれがある。負極活物質の導電性は低いため、負極活物質粒子の粒度範囲に30μmを超える範囲が含まれる場合には、負極活物質粒子の内部抵抗が大きくなり、容量が低下するおそれがある。また、負極活物質粒子の中で、電池反応に寄与し得る部分としない部分とが生じて、電池反応時に粒子内での膨張・収縮の程度が異なり、粒子内に亀裂が生じて、サイクル特性が低下するおそれがある。
 負極活物質粒子の粒度範囲は0.5μm以上30μm以下であることが好ましく、1.0μm以上20μm以下であり、1.37μm以上18.5μm以下であることが望ましい。この場合には、更にサイクル特性が向上する。
 負極活物質粒子のBET比表面積は6m/g以下であるとよく、更には5m/g以下、4m/g以下、3.3m/g以下であることが好ましい。この場合には、充放電時のサイクル特性が更に向上する。「BET比表面積」は、粒子表面に吸着占有面積のわかった分子を吸着させ、その量から粒子の比表面積を求める方法である。
 この場合には、負極活物質粒子同士の接触面積を比較的大きくすることができ、電子の導電パスが多くなり、大きな初回放電容量を発揮することができる。
 前記負極活物質粒子は、Siを有する負極活物質からなる負極活物質粒子をサイクロン分級で粒径の大きい粒子と小さい粒子とに分級した粒子のうち、該大きい粒子からなることが好ましい。
 また、負極に含まれる負極活物質粒子は、上記サイクロン分級で粒度調整されたものに限らず、篩による分級法、浮沈分離法、湿式遠心分離法、乾式分級法などの方法により粒度調整されたものであってもよい。乾式分球法は、従来の気流式分級機とは異なる最新の分級理論に基づいて開発された乾式分級機を用いると良い。
 負極活物質粒子は、リチウムイオンを吸蔵・放出可能な負極活物質からなる。負極活物質は、リチウムと合金化可能な元素又は/及びリチウムと合金化可能な元素を有する元素化合物からなる。
 前記リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種からなるとよい。中でも、珪素(Si)または錫(Sn)からなるとよい。前記リチウムと合金化可能な元素を有する元素化合物は珪素化合物または錫化合物であることがよい。珪素化合物は、SiOx(0.5≦x≦1.5)であることがよい。錫化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)などが挙げられる。
 中でも、負極活物質粒子は、Si(珪素)を有するとよい。Siを有する負極活物質は、リチウムイオンを吸蔵・放出可能であって珪素又は/及び珪素化合物からなるとよい。負極活物質は、SiOx(0.5≦x≦1.5)を有するとよい。珪素は、理論放電容量が大きい。一方で、充放電時の体積変化が大きいため、SiOxとすることで体積変化を少なくすることができる。第4の負極活物質粒子の成分及び製法は、第1の態様の負極活物質粒子の成分及び製法と同様であるとよい。
第4の態様において、第1の態様と同様に、負極活物質粒子の表面には被膜が形成されているとよい。また、負極活物質粒子の粒度を調製するために、例えば、遠心機を用いるサイクロン分級、乾式分級、湿式分級、ふるい分け分級などを行うと良い。負極活物質粒子の成分、負極活物質粒子の製法は、第1の態様と同様である。
 第4の態様において、上記の特徴をもつ負極活物質粒子は、集電体の少なくとも表面を被覆する負極材を構成する。一般的に、負極は、上記負極材を負極活物質層として集電体に圧着されることで構成される。集電体は、例えば、銅や銅合金などの金属製のメッシュや金属箔を用いるとよい。
 負極材は、上記負極活物質粒子を主たる負極活物質とした上で、既に公知の他の負極活物質(たとえば黒鉛、Sn、Siなど)を添加して用いてもよい。
 第4の態様において、第1の態様と同様に、負極材には、前記負極活物質粒子の他に、結着剤や、導電助材などを含んでいても良い。
 第4の態様において、リチウムイオン二次電池に用いられる正極は、第1の態様と同様に、集電体と、正極活物質粒子を有し集電体の表面を被覆する正極材とからなるとよい。また、セパレータも、第1の態様と同様に、必要に応じて用いられるとよい。
 電解質は、非水電解液に含まれているとよい。非水電解液は、有機溶媒に電解質を溶解させたものである。電解質は、フッ化塩であることがよく、有機溶媒に可溶なアルカリ金属フッ化塩であることが好ましい。アルカリ金属フッ化塩としては、例えば、LiPF、LiBF、LiAsF、NaPF、NaBF、及びNaAsFの群から選ばれる少なくとも1種を用いるとよい。
 非水電解液の有機溶媒は、非プロトン性有機溶媒であることがよく、たとえば、環状カーボネート、鎖状カーボネート、エーテル類などを用いるとよい。電解液の溶媒は、環状エチレンカーボネートを含む環状カーボネートと、鎖状カーボネートとを有することが好ましい。環状カーボネートは誘電率が高く、鎖状カーボネートは粘性が低いためLiイオンの移動を妨げず、電池容量を向上させることができる。
 電解液の溶媒全体を100体積%としたとき、環状カーボネートは30~50体積%以下であり、前記鎖状カーボネートは50~70体積%であるとよい。環状カーボネートは、電解液の誘電率を高くする一方、粘性が高い。誘電率が上がると電解液の導電性が良くなる。粘性が高いとLiイオンの移動が妨げられ導電性が悪くなる。鎖状カーボネートは、低い誘電率であるが、粘性は低い。両者を上記の配合比の範囲でバランスよく配合することで、溶媒の誘電率をある程度高く、また粘性も低くして、導電性のよい溶媒を調整でき、電池容量を向上させることができる。
 環状カーボネートは、フッ素化エチレンカーボネートを必須成分とし、そのほか、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、及びガンマバレロラクトンの群から選ばれる1種以上を含んでいても良い。
フッ素化エチレンカーボネートは、分子内に少なくとも1つのフッ素基をもつ環状カーボネートであり、このフッ素基が、負極活物質粒子表面に形成される被膜の構成元素となり、被膜を安定で強固にするからである。フッ素化エチレンカーボネートとしては、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネートなどを用いることが好ましい。耐酸性を考慮すると、このうちFECを用いるのが特に好ましい。
 電解液の溶媒全体を100体積%としたときに、フッ素化エチレンカーボネートは、1体積%以上30体積%以下であることが好ましい。この場合には、充放電のサイクル特性を効果的に向上させることができるとともに、電解液の粘性も低く抑えてLiイオンを移動させやすくして電池容量を更に向上させることができる。一方、フッ素化エチレンカーボネートが1体積%未満である場合には、サイクル特性向上の程度が低くなるおそれがある。フッ素化エチレンカーボネートが30体積%を超える場合には、電解液の高温特性が低下し、高温によってフッ素化エチレンカーボネートが分解し、その分解生成物により電池の内部抵抗が高くなる原因となる。
 有機溶媒に用いられる鎖状カーボネートは、鎖状であればよく、特に限定しない。例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジブチルカーボネート、ジプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、及び酢酸アルキルエステルから選ばれる一種以上を用いることができる。
 また、有機溶媒に用いられるエーテル類として、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等を用いることができる。
 第4の態様において、その他の点は、第1~第3の態様と同様であるとよい。
 (5)その他
 上記の第1~第4の態様の中から、好ましい態様を抽出して結合することができる。例えば、以下の態様が挙げられる。
・a)リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材。
・b)前記a)において、前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上である負極材。
・c)前記a)又はb)において、前記負極活物質粒子のBET比表面積が6m/g以下である負極材。
d)前記a)~c)のいずれかにおいて、前記負極活物質粒子のD50が4.5μm以上である負極材。
・e)前記a)からd)のいずれかにおいて、前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下である負極材。
・f)前記a)からe)のいずれかにおいて、前記負極活物質粒子のD10は3μm以上である負極材。
・g)前記a)からf)のいずれかにおいて、前記負極活物質粒子のD90が8.0μmを超えて大きい負極材。
・h)集電体と、集電体の表面に形成された負極活物質層とからなるリチウムイオン二次電池用負極であって、前記負極活物質層は、前記a)~g)のいずれかの負極材から構成されており、前記負極活物質層の厚みは、前記負極活物質粒子のD90の1.4倍以上であるリチウムイオン二次電池用負極。
・i)集電体と、集電体の表面に形成された負極活物質層とからなるリチウムイオン二次電池用負極であって、前記負極活物質層は、前記a)~g)のいずれかの負極材から構成されており、前記負極活物質層の厚みは、前記負極活物質粒子のD10の3倍以上であるリチウムイオン二次電池用負極。
・j)前記a)~g)のいずれかにおいて、前記負極活物質粒子を含む負極と、Liイオンを吸蔵、放出し得る正極活物質をもつ正極と、電解質を溶媒に溶解してなる電解液と、を備えたリチウムイオン二次電池であって、
 前記電解液の前記溶媒は、フッ素化エチレンカーボネートを有するリチウムイオン二次電池。
・k)前記h)又はi)のリチウムイオン二次電池用負極と、Liイオンを吸蔵、放出し得る正極活物質をもつ正極と、電解質を溶媒に溶解してなる電解液と、を備えたリチウムイオン二次電池であって、前記電解液の前記溶媒は、フッ素化エチレンカーボネートを有するリチウムイオン二次電池。
 (二次電池の作製)
 調製された試料1~4の各負極活物質粒子と、導電助材としての天然黒鉛粉末とケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と、天然黒鉛粒子と、ケッチェンブラックと、ポリアミドイミドとの質量比は、百分率で、負極活物質粒子/天然黒鉛粒子/ケッチェンブラック/ポリアミドイミド=42/40/2/3/15であった。
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。
 次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。
 正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、質量比でEC/EMC/DMC=3/3/4との配合比で混合して調製した。電解液中のLiPFの濃度は、1mol/dm3であった。
 その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン電池を得た。
 リチウムイオン電池にはコンディショニング処理を行った。コンディショニング処理は、25℃で充放電を3回繰り返して行った。1回目は充電条件を0.2C、4.1VのCC(定電流)充電とし、放電条件を0.2C、3V、カットオフのCC放電とした。2回目は充電条件を0.2C、4.1VのCC-CV(定電流定電圧)充電とし、放電条件を0.1C、3V、カットオフのCC放電とした。3回目は充電条件を1C、4.2VのCC-CV充電とし、放電条件を1C、3V、カットオフのCC放電とした。
 <放電容量維持率>
 リチウムイオン二次電池のサイクル試験を行った。サイクル試験は、25℃で行い、充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、150サイクル目まで同様の充放電を繰り返し行った。1サイクル目及び150サイクル目の充放電の際に、放電容量を測定し、150サイクル目放電容量維持率を算出した。150サイクル目放電容量維持率は、150サイクル目の放電容量を初回の放電容量で除した値の百分率((150サイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である。150サイクル目放電容量維持率を図2及び表2に示した。
 図2及び表2に示すように、試料2~4の負極活物質粒子を用いた電池は、試料1の負極活物質粒子を用いた電池よりも150サイクル目放電容量維持率が極めて高かった。更に、試料2~4の中でも試料4の負極活物質粒子を用いた場合には、放電容量維持率が更に高かった。
 図3には、試料1、3、4の負極活物質粒子のD10と100サイクル目放電容量維持率との関係を示した。各試料毎に上記と同様の二次電池を作製し、100サイクル目の放電容量を測定した。100サイクル目放電容量維持率は、100サイクル目の放電容量を初回の放電容量で除した値の百分率((100サイクル目の放電容量)/(1サイクル目の放電容量)×100)で求められる値である。
 図3及び表2に示すように、試料3,4の負極活物質粒子を用いて作製された電池は、試料1の場合よりも、100サイクル目放電容量維持率が格段に高かった。
 これらのことから、負極活物質粒子のBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上であることにより、電池のサイクル特性を向上させることがわかった。また、前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下であるか、又はD10が3μm以上の場合には、更に電池のサイクル特性が向上することがわかった。極活物質粒子のD90は8.0μmを超えて大きいことがよく、更にはD90が8.5μm以上であることがよいことがわかった。また、負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が1μm以上の粒径をもつことがよいこともわかった。更に、負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上の粒径をもつことがよいこともわかった。
 <初回放電容量>
 次に、試料1~4の負極活物質粒子を用いた電池の初回放電容量を測定した。初回放電容量は、コンディショニング処理後に行う第1回目の放電時の容量である。図4及び表2に示すように、試料2~4の負極活物質粒子を用いた電池は、試料1の負極活物質粒子を用いた電池よりも初回放電容量が高かった。試料2~4の中でも、試料2,3の場合、更には試料3の場合の初回放電容量が高かった。
 このことから、前記負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が粒径1μm以上であり、負極活物質粒子のBET比表面積が5m/g以下で、負極活物質粒子のD50が5.0μm以上8.0μm以下であることにより、初回放電容量が高くなることがわかった。
 更に初回放電容量を高めるために、負極活物質粒子の粒度範囲が0.4μm以上20.0μm以下であることがよく、また、負極活物質粒子のD50が5.7μm以上7.2μm以下であることがよく、負極活物質粒子のBET比表面積が2.5m/g以上5.0m/g以下であることがよく、負極活物質粒子のD90が8.0μmを超えて大きいことがよいこともわかった。
 また、このことから、負極活物質粒子のBET比表面積が6m/g以下で、負極活物質粒子のD50が4.5μm以上8.0μm以下、負極活物質粒子の粒度範囲が0.4μm以上30μm以下であることにより、初回放電容量が高くなることがわかった。また、負極活物質粒子のD10は3.0μm以上、D50が5.7μm以上7.2μm以下であることがよく、負極活物質粒子のBET比表面積が2.5m/g以上5.0m/g以下であることがよく、負極活物質粒子のD90が8.0μmを超えて大きいことにより、更に初回放電容量が高くなることがわかった。負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が1μm以上の粒径をもつことがよく、さらには負極活物質粒子は、全体を100体積%としたときに、その95体積%以上が1μm以上の粒径をもつことが好ましいことがわかった。
 <負極の反応抵抗>
 試料1~4の負極活物質粒子を用いて作製した負極の反応抵抗を測定した。負極の反応抵抗を測定するために、負極を用いて作製した上記二次電池について交流インピーダンス測定を行った。電流の周波数は1M~0.05Hzであり、1C、25℃の条件で定電流定電圧(CCCV)で4.2Vまで充電した。充電した状態の二次電池を周波数1M~0.05Hzの条件で交流インピーダンス測定を行った。測定結果を図5に示した。図5において、横軸は、抵抗の実数部を示し、縦軸は抵抗の虚数部を示す。図5に示す線部において、円弧状部の両端部間の幅は負極活物質粒子の被膜抵抗及び粒子界面での粒子内部へのLiイオン拡散抵抗を示し、円弧状部よりも実数部の大きい抵抗部分は負極活物質粒子内でのLiイオン拡散抵抗を示す。
 図5に示すように、試料2~4の負極活物質粒子を用いた負極の反応抵抗は、試料1よりも小さかった。試料2~4の中でも、試料3が最も反応抵抗が小さかった。このことは、試料3の負極活物質粒子の初回放電容量が極大となる要因となる。
 図4の初回放電容量の結果と照らし合わせると、以下のことが推定される。負極の反応抵抗は、負極活物質粒子の被膜抵抗及び粒子界面での粒子内部へのLiイオン拡散抵抗を合わせた値を示す。負極活物質粒子の粒径が小さくなるほど粒子内部へのLiイオン拡散抵抗が小さくなる。負極活物質粒子の界面には被膜が形成されている場合には、粒子表面での被膜が薄くなるほど、負極活物質粒子の被膜抵抗が小さくなる。一方で、負極活物質粒子の粒径が小さいほど被膜が厚く形成される。粒子内部へのLiイオン拡散抵抗を大きくしない程度で、SEI被膜の薄い粒径となるちょうどバランスのとれた範囲の粒径で、インピーダンスを小さくすることで、電池の初回放電容量を大きくすることができたと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (2)本発明の第3の態様のリチウムイオン二次電池を以下のように電池1~6の6種類作製し、充放電のサイクル評価試験を行った。電池1~6は本発明の実施例である。
 (電池1)
 まず、市販のSiO粉末を、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、負極活物質粒子が得られた。この負極活物質粒子について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、負極活物質粒子には、単体珪素と二酸化珪素が生成していることがわかった。
 不均化された負極活物質粒子の粒度分布を測定し、その結果を図7に示した。また、表3に示すように、負極活物質粒子のBET比表面積は6.6m2/gであり、D10は1.4μm、D50は4.4μm、D90は8.0μmであった。粒度範囲は0.34~18.5μmであった。
 調製された各負極活物質粒子と、導電助材としての天然黒鉛粉末とケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と、天然黒鉛粒子と、ケッチェンブラックと、ポリアミドイミドとの質量比は、百分率で、負極活物質粒子/天然黒鉛粒子/ケッチェンブラック/ポリアミドイミド=42/40/2/3/15であった。
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、ロールプレス法でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。負極活物質層の厚みは、15μmとし、負極活物質層全体の質量を100質量としたときの負極活物質粒子の比率は、42質量%とした。
 次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/32と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。
 正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPF6が、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でEC/EMC/DMC=30/30/40の配合比で混合して調製した。電解液中のLiPF6の濃度は、1mol/L(M)であった。
 その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池を得た。
 リチウムイオン二次電池にコンディショニング処理を行った。コンディショニング処理では、25℃で充放電を3回繰り返して行った。
 (電池2)
 電池1の負極活物質粒子にサイクロン分級を行って、電池2の負極活物質粒子を調製した。サイクロン分級では、サイクロン分級は、粉体分級機(ターボクラシファイア:日清エンジニアリング製)を用い、回転数10000rpm、総空気量3.0m2/分、負極活物質粒子の供給量1.5kg/時の条件で行った。分級ロータに投入された負極活物質粒子は、分級の回転による遠心力と、半径中心方向に流れる空気による抗力を受ける。これらの粒子のうち遠心力>抗力の関係が成り立つ粗い粒子は、分級ロータの外方向に飛ばされ、遠心力<抗力の関係が成り立つ細かい粒子は空気とともに半径中心方向に移動される。外方向に飛ばされた粗い粒子を電池2とした。
 電池2の粗い粒子のBET比表面積は2.8m2/g、D10は4.4μm、D50は6.4μm、D90は9.2μmであり、粒度範囲は2.31~18.5μmであった。回収した電池2の負極活物質粒子全体を100体積%としたときに、粒径2μm以上のものが100体積%であった。電池2の粒度分布を図7に示した。電池2のその他の点は、電池1と同様である。
 (電池3)
 電池1の負極活物質粒子にサイクロン分級を行って、電池3の負極活物質粒子を調製した。サイクロン分級では、電池2を分級したときと同じ装置を用い、回転数4000rpm、総空気量2.0m3/分、負極活物質粒子の供給量1kg/時の条件で行った。表3に示すように、回収した電池3の負極活物質粒子のBET比表面積は2.7m2/g、D10は5.4μm、D50は7.2μm、D90は10.0μmであり、粒度範囲は3.27~18.5μmであった。回収した電池3の負極活物質粒子全体を100体積%としたときに、粒径4μm以上のものが99.3体積%であった。その他は、電池1と同様である。
 (電池4)
 電池1の負極活物質粒子を用いて、電池4を作製した。電池4の電解液の有機溶媒は、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池1と同様である。
 (電池5)
 電池2の負極活物質粒子を用いて、電池5を作製した。電池5の電解液の有機溶媒は、電池4と同様に、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池1と同様である。
 (電池6)
 電池3の負極活物質粒子を用いて、電池6を作製した。電池6の電解液の有機溶媒は、電池4と同様に、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池1と同様である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <充放電のサイクル試験>
 電池1~6について、充放電のサイクル試験を25℃で行った。サイクル試験の充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を1C、2.5VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。
 図8に示すように、電池1,2,3の順に、サイクル特性が向上した。これは、負極活物質粒子のD10及びD50が大きくなるほど、また負極活物質粒子の比表面積が小さくなるほど、サイクル特性が向上したことを示している。
 電解液の有機溶媒にFECを添加した電池4は、FEC無添加の電池1~3よりも著しくサイクル特性が向上した。これは、FECが、被膜中のLiFの構成成分になり、安定で強固な被膜が生成され、負極活物質が電解液に直接接触することが抑制され、電解液の分解が抑えられたためであると考えられる。
 図8に示すように、電池5,6は、電池4に比べて格段にサイクル特性が向上した。これは、電解液にFECを添加していること、更に電池5では負極活物質粒子の全体が2μm以上であり、電池6では負極活物質粒子の全体を100体積%としたときに4μm以上のものが99.3体積%であって、比較的小さい微粒子を殆ど含んでいない。微粒子の負極活物質粒子は、表面に形成される被膜が厚くなりやすく、負極活物質粒子の体積変化により被膜表面部に亀裂が生じやすい。電池5,6の負極活物質粒子では、このような微粒子を殆ど含んでいないため、被膜が損傷する負極活物質粒子が極めて少なくなり、電解液の劣化を抑えることができる。また、負極活物質粒子の粒径が大きくなると、表面に形成される被膜の構造が粗くなり、Liイオンが円滑に通過することができる。このため、電池5,6のリチウムイオン二次電池は、サイクル特性に優れていると考えられる。
 <充放電サイクルの安定性試験>
 電池5の負極活物質を用いて, 負極活物質粒子と、天然黒鉛粒子と、ケッチェンブラックと、ポリアミドイミドとの質量比が、百分率で、負極活物質粒子/天然黒鉛粒子/アセチレンブラック/ポリアミドイミド=32/50/8/10の電極を作製し、層の厚みを変更した場合の充放電サイクルの安定性試験を行った。表5に示すように、負極活物質層の厚みを14.7μmとした場合を負極1、負極活物質層の厚みを19μmとした場合を負極2とした。負極1、2は実施例である。
 各負極1、2の平面方向の位置の異なる2箇所から所定面積分の負極活性物質層を切り出し、各負極活物質層の切り出し部分を、この切り出し部分と同質量の正極活物質層を持つ正極と組み合わせて二次電池を組み立てた。電池内の電解質は1M(mol/dm3)のLiPF6とし、溶媒は、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製したものを用いた。
Figure JPOXMLDOC01-appb-T000005
 充放電のサイクル試験は、25℃で行い、充電条件を1C、4.2VのCC(定電流)充電とし、放電条件を2C、3VのCC(定電流)放電とした。コンディショニング処理後の最初の充放電試験を1サイクル目とし、500サイクル目まで同様の充放電を繰り返し行った。
 図9に示すように、負極1の2つの切り出し片(図9の黒線状部)は、互いに放電容量維持率が異なった。負極1の一方は、負極2と同程度の放電容量維持率を示し、他方は負極2の放電容量維持率よりも低かった。負極1の2つの切り出し片は、充放電サイクル数が増加するにつれて、放電容量維持率の差は広がった。一方、負極2の2つの切り出し片(図9の白抜き線状部)は、互いに同じ放電容量維持率を示した。このことから、負極2を用いた電池はサイクル安定性に優れており、負極2を用いた電池はサイクル安定性がよくないことがわかった。この理由は、以下のように考えられる。
 負極1,2はともに、同じ負極活物質粒子を用いており、この負極活物質層内の負極活物質粒子全体が粒径2μm以上である。この場合、図6に示すように、負極活物質層1中の負極活物質粒子全体の粒径が2μm以上となり、負極活物質層1の表面に存在する負極活物質粒子の比較的大きな大粒子11の間に凹凸が形成され、この凹凸の凹部10が負極活物質粒子の微粒子で埋められず、負極活物質層1の表面粗さが大きくなる。
 負極1,2とも、負極活物質粒子のD90に対する負極活物質層の厚みが1.4倍以上であるため、サイクル特性が比較的安定していた。
 負極1のように、負極活物質粒子のD90に対する負極活物質層の厚みが2.0倍未満の場合には、負極活物質層の部分によって厚みに差異が生じやすい。負極活物質層1の薄い部分では、電解液が内部まで浸透しやすい。この場合、負極活物質粒子表面に形成される被膜に亀裂が発生していると、負極活物質粒子を構成している負極活物質と電解液とが接触しやすく、サイクル特性が低下しやすい。一方、負極活物質層1の厚い部分では、電解液が内部まで浸透しにくい。このため、被膜に亀裂が生じていても、薄い部分に比べて電解液と負極活物質とは接触しにくく、サイクル特性が低下しにくい。このように、負極1では、負極2に比べて、サイクル特性にバラツキが生じやすい。
 一方、負極2では、負極活物質粒子のD90に対する負極活物質層の厚みが2.0倍以上であるため、負極活物質層の部分による厚みの差異が生じにくい。このため、負極活物質層1の表面に大きな凹凸が形成されにくくなる。このため、負極2は、負極1に比べて、負極活物質層の厚みのバラツキが少なくなり、充放電サイクル特性が安定化する。
 (3)本発明の第4の態様のリチウムイオン二次電池を以下のように電池7~13の7種類作製し、充放電のサイクル評価試験を行った。電池7~11は本発明の参考例であり、電池12,13は本発明の実施例である。
 (電池7)
 まず、市販のSiO粉末をボールミルに入れて、Ar雰囲気下で、回転数450rpmで20時間ミリングし、その後、不活性ガス雰囲気中で、900℃の温度下で、2時間加熱処理を行った。これにより、SiO粉末が不均化されて、負極活物質粒子が得られた。この負極活物質粒子について、CuKαを使用したX線回折(XRD)測定を行ったところ、単体珪素と二酸化珪素とに由来する特有のピークが確認された。このことから、負極活物質粒子には、単体珪素と二酸化珪素が生成していることがわかった。
 不均化された負極活物質粒子の粒度分布を測定し、その結果を図10に示した。また、表6に示すように、負極活物質粒子のBET比表面積は6.6m/gであり、D10は1.4μm、D50は4.4μm、D90は8.0μmであった。粒度範囲は0.34~18.5μmであった。負極活物質粒子全体を100体積%としたときに、粒径1μm以上のものが93.3体積%であった。
 調製された各負極活物質粒子と、導電助材としての天然黒鉛粉末とケッチェンブラックと、結着剤としてのポリアミドイミドとを混合し、溶媒を加えてスラリー状の混合物を得た。溶媒は、N‐メチル‐2‐ピロリドン(NMP)であった。負極活物質粒子と、天然黒鉛粒子と、ケッチェンブラックと、ポリアミドイミドとの質量比は、百分率で、負極活物質粒子/天然黒鉛粒子/ケッチェンブラック/ポリアミドイミド=42/40/2/3/15であった。
 次に、スラリー状の混合物を、ドクターブレードを用いて集電体である銅箔の片面に成膜し、所定の圧力でプレスし、200℃、2時間加熱し、放冷した。これにより、集電体表面に負極活物質層が固定されてなる負極が形成された。
 次に、正極活物質としてのリチウム・ニッケル系複合酸化物LiNi1/3Co1/3Mn1/3と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを混合してスラリーとなし、このスラリーを集電体としてのアルミニウム箔の片面に塗布し、プレスし、焼成した。リチウム・ニッケル系複合酸化物とアセチレンブラックとポリフッ化ビニリデンとの質量比は、リチウム・ニッケル系複合酸化物/アセチレンブラック/ポリフッ化ビニリデン=88/6/6とした。これにより、集電体の表面に正極活物質層を固定してなる正極を得た。
 正極と負極との間に、セパレータとしてのポリプロピレン多孔質膜を挟み込んだ。この正極、セパレータ及び負極からなる電極体を複数積層した。2枚のアルミニウムフィルムの周囲を、一部を除いて熱溶着をすることにより封止して、袋状とした。袋状のアルミニウムフィルムの中に、積層された電極体を入れ、更に、電解液を入れた。電解液は、電解質としてのLiPFが、有機溶媒に溶解してなる。有機溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でEC/EMC/DMC=30/30/40の配合比で混合して調製した。電解液中のLiPFの濃度は、1mol/L(M)であった。
 その後、真空引きしながら、アルミニウムフィルムの開口部分を完全に気密に封止した。このとき、正極側及び負極側の集電体の先端を、フィルムの端縁部から突出させ、外部端子に接続可能とし、リチウムイオン二次電池を得た。
 リチウムイオン二次電池にコンディショニング処理を行った。コンディショニング処理では、充放電を3回繰り返して行った。1回目は充電条件を0.2C、4.1VのCC-CV(定電流定電圧)充電とし、放電条件を0.2C、3V、カットオフのCC放電とした。2回目は充電条件を0.2C、4.1VのCC-CV充電とし、放電条件を0.1C、3V、カットオフのCC放電とした。3回目は充電条件を1C、4.2VのCC-CV充電とし、放電条件を1C、3V、カットオフのCC放電とした。コンディショニング処理の後に、リチウム二次電池を常温(25℃)に戻した。
 (電池8、9)
 電池7で用いた負極活物質粒子にサイクロン分級を行った。サイクロン分級では、サイクロン分級は、粉体分級機(ターボクラシファイア:日清エンジニアリング製)を用い、分級ロータ径300mm、回転数7000rpm、総空気量2.0m/分、負極活物質粒子の供給量1kg/時の条件で行った。分級ロータに投入された負極活物質粒子は、分級の回転による遠心力と、半径中心方向に流れる空気による抗力を受ける。これらの粒子のうち遠心力<抗力の関係が成り立つ粗い粒子は、分級ロータの外方向に飛ばされ、遠心力>抗力の関係が成り立つ細かい粒子は空気とともに半径中心方向に移動される。分級ロータの中心方向に移動された細かい粒子は、負極活物質粒子として電池8で用いた。外方向に飛ばされた粗い粒子は、負極活物質粒子として電池9で用いた。
 電池8で用いた細かい粒子のBET比表面積は9.5m/g、D10は0.8μm、D50は2.7μm、D90は5.0μmであり、粒度範囲は0.37~11.0μmであった。回収した電池8の負極活物質粒子全体を100体積%としたときに、粒径2μm未満のものが33体積%であった。
 表6に示すように、電池9で用いた粗い粒子のBET比表面積は2.8m/g、D10は4.4μm、D50は6.4μm、D90は9.2μmであり、粒度範囲は2.31~18.5μmであった。回収した電池9で用いた負極活物質粒子全体を100体積%としたときに、粒径2μm以上のものが100体積%であった。電池9で用いた粒子の粒度分布を図10に示した。
 電池8,9のリチウムイオン二次電池のその他の点は、電池7のリチウムイオン二次電池と同様である。
 (電池10)
 電池7の負極活物質粒子にサイクロン分級を行って電池10の負極活物質粒子を調製した。サイクロン分級では、電池8,9を分級したときと同じ装置を用い、分級ロータ径300mm、回転数4000rpm、総空気量2.0m/分、負極活物質粒子の供給量1kgトン/時の条件で行った。表6に示すように、回収した電池10の負極活物質粒子のBET比表面積は2.7m/g、D10は5.4μm、D50は7.2μm、D90は10.0μmであり、粒度範囲は3.27~18.5μmであった。回収した電池10の負極活物質粒子全体を100体積%としたときに、粒径4μm以上のものが99.3体積%であった。その他は、電池7のリチウムイオン二次電池と同様である。
 (電池11)
 電池7の負極活物質粒子を用いて、電池11のリチウムイオン二次電池を作製した。電池11のリチウムイオン二次電池の非水電解液の有機溶媒は、フルオロエチレンカーボネート(FEC)とエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池7のリチウムイオン二次電池と同様である。
 (電池12)
 電池9の負極活物質粒子を用いて、電池12のリチウムイオン二次電池を作製した。電池12のリチウムイオン二次電池の非水電解液の有機溶媒は、電池11と同様に、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池7のリチウムイオン二次電池と同様である。
 (電池13)
 電池10の負極活物質粒子を用いて、電池13のリチウムイオン二次電池を作製した。電池13のリチウムイオン二次電池の非水電解液の有機溶媒は、電池11と同様に、体積%でFEC/EC/EMC/DMC=4/26/30/40の配合比で混合して調製した。その他は、電池7のリチウムイオン二次電池と同様である。
Figure JPOXMLDOC01-appb-T000006
 <充放電のサイクル評価試験>
 電池7~13のリチウムイオン二次電池について、充放電のサイクル試験を行った。試験条件は、電池1~6と同様とした。
 図11に示すように、電池8、7、9、10の順に、サイクル特性が向上した。これは、負極活物質粒子のD10及びD50が大きくなるほど、また負極活物質粒子の比表面積が小さくなるほど、サイクル特性が向上したことを示している。
 非水電解液の有機溶媒にFECを添加した電池11は、FEC無添加の電池7~10よりも著しくサイクル特性が向上した。これは、FECが、SEI被膜中のLiFの構成成分になり、安定で強固なSEI被膜が生成され、負極活物質が電解液に直接接触することが抑制され、電解液の分解が抑えられたためであると考えられる。
 電池11,12は、電池10に比べて格段にサイクル特性が向上した。これは、非水電解液にFECを添加していること、更に電池12では負極活物質粒子の全体が2μm以上であり、電池13では負極活物質粒子の全体を100体積%としたときに4μm以上のものが99.3体積%であって、比較的小さい微粒子を殆ど含んでいない。微粒子の負極活物質粒子は、表面に形成される被膜が厚くなりやすく、負極活物質粒子の体積変化により被膜表面部に亀裂が生じやすい。電池12、13で用いた負極活物質粒子では、このような微粒子を殆ど含んでいないため、SEI被膜が損傷する負極活物質粒子が極めて少なくなり、電解液の劣化を抑えることができる。また、負極活物質粒子の粒径が大きくなると、表面に形成されるSEI被膜の構造が粗くなり、Liイオンが円滑に通過することができる。このため、電池12、13のリチウムイオン二次電池は、サイクル特性に優れていると考えられる。
1:負極活物質層、2:集電体、10:凹部

Claims (46)

  1.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、
     前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上であることを特徴とするリチウムイオン二次電池用負極材。
  2.  前記リチウムと合金化反応可能な元素は珪素または錫であり、前記リチウムと合金化反応可能な元素化合物は珪素化合物または錫化合物である請求項1に記載のリチウムイオン二次電池用負極材。
  3.  前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下である請求項1に記載のリチウムイオン二次電池用負極材。
  4.  前記負極活物質粒子のD10は3μm以上である請求項1に記載のリチウムイオン二次電池用負極材。
  5.  前記負極活物質粒子の表面には被膜が形成されている請求項1に記載のリチウムイオン二次電池用負極材。
  6.  前記負極活物質粒子のBET比表面積が5m/g以下で、前記負極活物質粒子のD50が5.0μm以上8.0μm以下、前記負極活物質粒子の粒度範囲が0.4μm以上20μm以下である請求項1に記載のリチウムイオン二次電池用負極材。
  7.  前記負極活物質粒子のD50が5.7μm以上7.2μm以下である請求項6記載のリチウムイオン二次電池用負極材。
  8.  前記負極活物質粒子のBET比表面積が2.5m/g以上5.0m/g以下である請求項6に記載のリチウムイオン二次電池用負極材。
  9.  前記負極活物質粒子のD90が8.0μmを超えて大きい請求項6に記載のリチウムイオン二次電池用負極材。
  10.  前記負極活物質粒子は、SiOx(0.5≦x≦1.5)を有する請求項1に記載のリチウムイオン二次電池用負極材。
  11.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、
     前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、且つBET比表面積が6m/g以下であることを特徴とするリチウムイオン二次電池用負極材。
  12.  請求項1に記載のリチウムイオン二次電池用負極材を有するリチウムイオン二次電池用負極。
  13.  請求項11に記載のリチウムイオン二次電池用負極材を有するリチウムイオン二次電池用負極。
  14.  請求項12記載の負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とするリチウムイオン二次電池。
  15.  請求項13記載の負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とするリチウムイオン二次電池。
  16.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、
     前記負極活物質粒子のBET比表面積が6m/g以下で、前記負極活物質粒子のD50が4.5μm以上8.0μm以下、前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下であることを特徴とするリチウムイオン二次電池用負極材。
  17.  前記リチウムと合金化反応可能な元素は珪素または錫であり、前記リチウムと合金化反応可能な元素化合物は珪素化合物または錫化合物であることを特徴とする請求項16に記載のリチウムイオン二次電池用負極材。
  18.  前記負極活物質粒子のD10が3.0μm以上である請求項16に記載のリチウムイオン二次電池用負極材。
  19.  前記負極活物質粒子のD50が5.7μm以上7.2μm以下である請求項16記載のリチウムイオン二次電池用負極材。
  20.  前記負極活物質粒子のBET比表面積が2.5m/g以上5.0m/g以下である請求項16記載のリチウムイオン二次電池用負極材。
  21.  前記負極活物質粒子のD90が8.0μmを超えて大きい請求項16記載のリチウムイオン二次電池用負極材。
  22.  前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上である請求項16記載のリチウムイオン二次電池用負極材。
  23.  前記負極活物質粒子は、SiOx(0.5≦x≦1.5)を有する請求項16記載のリチウムイオン二次電池用負極材。
  24.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなる負極活物質粒子を含む負極材であって、
     前記負極活物質粒子のD50が4.5μm以上8.0μm以下、前記負極活物質粒子の粒度範囲が0.4μm以上30μm以下であることを特徴とするリチウムイオン二次電池用負極材。
  25.  請求項16記載のリチウムイオン二次電池用負極材を有するリチウムイオン二次電池用負極。
  26.  請求項24記載のリチウムイオン二次電池用負極材を有するリチウムイオン二次電池用負極。
  27.  請求項25記載の負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とするリチウムイオン二次電池。
  28.  請求項26記載の負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを備えていることを特徴とするリチウムイオン二次電池。
  29.  集電体と、該集電体の表面に形成され負極活物質粒子を有する負極活物質層とからなるリチウムイオン二次電池用負極であって、
     前記負極活物質粒子は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化反応可能な元素又は/及びリチウムと合金化反応可能な元素化合物からなり、
     前記負極活物質粒子は、全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、
     前記負極活物質層の厚みは、前記負極活物質粒子のD90の1.4倍以上であることを特徴とするリチウムイオン二次電池用負極。
  30.  前記負極活物質層の厚みは、前記負極活物質粒子のD10の3倍以上である請求項29記載のリチウムイオン二次電池用負極。
  31.  前記負極活物質粒子のD90に対する前記負極活物質粒子のD50の比率は、0.5以上0.8以下である請求項29記載のリチウムイオン二次電池用負極。
  32.  前記負極活物質層の全体の質量を100としたとき、前記負極活物質粒子の質量の比率は、20%以上90%以下である請求項29記載のリチウムイオン二次電池用負極。
  33.  前記リチウムと合金化反応可能な元素は珪素または錫であり、前記リチウムと合金化反応可能な元素化合物は珪素化合物または錫化合物である請求項29記載のリチウムイオン二次電池用負極。
  34.  請求項29に記載されたリチウムイオン二次電池用負極と、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極と、電解質とを有することを特徴とするリチウムイオン二次電池。
  35.  リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素又は/及びリチウムと合金化可能な元素を有する元素化合物からなる負極活物質粒子を含む負極と、Liイオンを吸蔵、放出し得る正極活物質をもつ正極と、電解質を溶媒に溶解してなる電解液と、を備えたリチウムイオン二次電池であって、
     前記負極に含まれる前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1μm以上であり、
     前記電解液の前記溶媒は、フッ素化エチレンカーボネートを有することを特徴とするリチウムイオン二次電池。
  36.  前記リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、及びBiの群から選ばれる少なくとも1種からなる請求項35記載のリチウムイオン二次電池。
  37.  前記リチウムと合金化可能な元素はSiである請求項36に記載のリチウムイオン二次電池。
  38.  前記負極に含まれる前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径1.5μm以上である請求項35記載のリチウムイオン二次電池。
  39.  前記負極に含まれる前記負極活物質粒子の全体を100体積%としたときに、その85体積%以上が粒径30μm以下である請求項35記載のリチウムイオン二次電池。
  40.  前記負極活物質粒子の平均粒径D50は5μm以上10μm以下である請求項35記載のリチウムイオン二次電池。
  41.  前記負極に含まれる前記負極活物質粒子は、前記負極活物質粒子をサイクロン分級で粒径の大きい粒子と小さい粒子とに分級した粒子のうち、該大きい粒子からなる請求項35記載のリチウムイオン二次電池。
  42.  前記フッ素化エチレンカーボネートは、フルオロエチレンカーボネート及びジフルオロエチレンカーボネートの群から選ばれる1種以上からなる請求項35記載のリチウムイオン二次電池。
  43.  前記電解液の前記溶媒全体を100体積%としたときに、前記フッ素化エチレンカーボネートは、1体積%以上30体積%以下である請求項35に記載のリチウムイオン二次電池。
  44.  前記電解液の前記溶媒は、前記フッ素化エチレンカーボネートを含む環状カーボネートと、鎖状カーボネートを有する請求項35記載のリチウムイオン二次電池。
  45.  前記電解液の前記溶媒全体を100体積%としたとき、前記環状カーボネートは30~50体積%以下であり、前記鎖状カーボネートは50~70体積%である請求項44記載のリチウムイオン二次電池。
  46.  前記負極活物質粒子の表面には被膜が形成されている請求項35記載のリチウムイオン二次電池。
PCT/JP2012/006350 2011-11-11 2012-10-03 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池 WO2013069197A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/357,413 US9819007B2 (en) 2011-11-11 2012-10-03 Negative-electrode material and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
JP2013542812A JP5942999B2 (ja) 2011-11-11 2012-10-03 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
DE112012004702.8T DE112012004702T5 (de) 2011-11-11 2012-10-03 Negativelektrodenmaterial und Negativelektrode für die Verwendung in einer Lithiumionensekundärbatterie sowie Lithiumionensekundärbatterie
US15/370,532 US9819008B2 (en) 2011-11-11 2016-12-06 Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US15/370,579 US9819009B2 (en) 2011-11-11 2016-12-06 Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011247339 2011-11-11
JP2011-247357 2011-11-11
JP2011-247339 2011-11-11
JP2011247357 2011-11-11
JP2011-252245 2011-11-18
JP2011252245 2011-11-18
JP2011-284860 2011-12-27
JP2011284860 2011-12-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/357,413 A-371-Of-International US9819007B2 (en) 2011-11-11 2012-10-03 Negative-electrode material and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US15/370,532 Division US9819008B2 (en) 2011-11-11 2016-12-06 Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US15/370,579 Division US9819009B2 (en) 2011-11-11 2016-12-06 Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
WO2013069197A1 true WO2013069197A1 (ja) 2013-05-16

Family

ID=48288995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006350 WO2013069197A1 (ja) 2011-11-11 2012-10-03 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池

Country Status (4)

Country Link
US (3) US9819007B2 (ja)
JP (3) JP5942999B2 (ja)
DE (1) DE112012004702T5 (ja)
WO (1) WO2013069197A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026607A (ja) * 2013-06-18 2015-02-05 株式会社Gsユアサ 蓄電素子及び蓄電モジュール
WO2016152505A1 (ja) * 2015-03-25 2016-09-29 株式会社村田製作所 リチウムイオン二次電池
JP2016173886A (ja) * 2015-03-16 2016-09-29 株式会社Gsユアサ 非水電解質二次電池
JP2017107886A (ja) * 2014-01-31 2017-06-15 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法
JP2017199657A (ja) * 2016-04-21 2017-11-02 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2018125086A (ja) * 2017-01-30 2018-08-09 京セラ株式会社 蓄電池用負極材料、蓄電池用負極および蓄電池
JP2018190746A (ja) * 2018-09-11 2018-11-29 信越化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
US10347908B2 (en) 2014-11-27 2019-07-09 Hitachi, Ltd. Lithium ion secondary battery and manufacturing method of the lithium ion secondary battery
WO2021127991A1 (zh) * 2019-12-24 2021-07-01 东莞新能源科技有限公司 电化学装置和电子装置
JP2021118149A (ja) * 2020-01-29 2021-08-10 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極材、及び、リチウムイオン二次電池
JP2022088448A (ja) * 2014-03-13 2022-06-14 株式会社半導体エネルギー研究所 電極

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6618387B2 (ja) * 2016-02-24 2019-12-11 株式会社エンビジョンAescジャパン リチウムイオン二次電池
JP6861565B2 (ja) * 2016-09-16 2021-04-21 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6634398B2 (ja) 2017-03-13 2020-01-22 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2018179111A1 (ja) * 2017-03-28 2018-10-04 日立化成株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
NO345463B1 (en) * 2017-04-06 2021-02-15 Elkem Materials Silicon powder for use in anodes for lithium-ion batteries and method for production of silicon powder
CN111656584A (zh) * 2018-01-31 2020-09-11 日立化成株式会社 锂离子二次电池用负极活性物质、锂离子二次电池用负极和锂离子二次电池
KR20200110754A (ko) * 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 리튬 이온 이차 전지용 음극 활물질, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지
US10998546B2 (en) 2018-01-31 2021-05-04 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20210031423A (ko) 2018-07-19 2021-03-19 가부시키가이샤 아데카 비수전해질 이차전지
JP7159838B2 (ja) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7159840B2 (ja) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7159839B2 (ja) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN111082129B (zh) * 2019-12-24 2021-01-12 东莞新能源科技有限公司 电化学装置和电子装置
JP7378479B2 (ja) * 2020-12-28 2023-11-13 寧徳新能源科技有限公司 負極材料、電気化学装置及び電子装置
KR20240101141A (ko) * 2022-12-23 2024-07-02 재단법인 포항산업과학연구원 리튬 이차 전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130011A (ja) * 1994-09-05 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JPH09223496A (ja) * 1995-12-11 1997-08-26 Fuji Photo Film Co Ltd 非水二次電池
JP2006164960A (ja) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008262832A (ja) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009032693A (ja) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd Si/C複合物、これを含むアノード活物質及びリチウム電池
JP2009032492A (ja) * 2007-07-26 2009-02-12 Sony Corp 負極および電池
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
WO2012077268A1 (ja) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665491A (en) 1995-12-11 1997-09-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP3951363B2 (ja) 1996-06-26 2007-08-01 宇部興産株式会社 非水二次電池
JP3703667B2 (ja) 1998-12-24 2005-10-05 株式会社エスアイアイ・マイクロパーツ 非水電解質二次電池
JP2001118568A (ja) 1999-10-21 2001-04-27 Denki Kagaku Kogyo Kk 非水系二次電池
JP4843836B2 (ja) 2000-08-02 2011-12-21 パナソニック株式会社 非水電解質二次電池とその負極板の製造方法
JP4752992B2 (ja) 2001-06-15 2011-08-17 信越化学工業株式会社 非水電解質二次電池用負極材
JP4702510B2 (ja) 2001-09-05 2011-06-15 信越化学工業株式会社 リチウム含有酸化珪素粉末及びその製造方法
JP4385589B2 (ja) 2002-11-26 2009-12-16 昭和電工株式会社 負極材料及びそれを用いた二次電池
JP4081676B2 (ja) 2003-04-24 2008-04-30 信越化学工業株式会社 非水電解質二次電池用負極材
JP3929429B2 (ja) 2003-10-09 2007-06-13 三星エスディアイ株式会社 リチウム二次電池用電極及びリチウム二次電池
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2007200862A (ja) 2005-12-28 2007-08-09 Sanyo Electric Co Ltd 非水電解質二次電池
US9263771B2 (en) * 2006-03-30 2016-02-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method of manufacturing the same
JP4329806B2 (ja) 2006-10-13 2009-09-09 ソニー株式会社 二次電池
JP2008123814A (ja) 2006-11-10 2008-05-29 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2008166013A (ja) 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd 複合活物質およびそれを用いた電気化学素子
JP4715848B2 (ja) 2008-01-09 2011-07-06 ソニー株式会社 電池
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5298609B2 (ja) 2008-04-08 2013-09-25 ソニー株式会社 二次電池用負極および二次電池
JP5182498B2 (ja) 2008-06-16 2013-04-17 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5446612B2 (ja) 2009-08-28 2014-03-19 Tdk株式会社 リチウムイオン二次電池
JP2011060701A (ja) * 2009-09-14 2011-03-24 Hitachi Maxell Ltd 非水二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130011A (ja) * 1994-09-05 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JPH09223496A (ja) * 1995-12-11 1997-08-26 Fuji Photo Film Co Ltd 非水二次電池
JP2006164960A (ja) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008262832A (ja) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2009032492A (ja) * 2007-07-26 2009-02-12 Sony Corp 負極および電池
JP2009032693A (ja) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd Si/C複合物、これを含むアノード活物質及びリチウム電池
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
WO2012077268A1 (ja) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026607A (ja) * 2013-06-18 2015-02-05 株式会社Gsユアサ 蓄電素子及び蓄電モジュール
US10446838B2 (en) 2014-01-31 2019-10-15 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery, negative electrode active material and method for producing same, complex including nano silicon, carbon layer, and cationic polymer layer, and method for producing complex formed of nano silicon and carbon layer
JP2017107886A (ja) * 2014-01-31 2017-06-15 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法
JP2019016611A (ja) * 2014-01-31 2019-01-31 株式会社豊田自動織機 非水系二次電池用負極及び非水系二次電池、負極活物質及びその製造方法、ナノシリコンと炭素層とカチオン性ポリマー層とを具備する複合体、ナノシリコンと炭素層よりなる複合体の製造方法
JP7447175B2 (ja) 2014-03-13 2024-03-11 株式会社半導体エネルギー研究所 電極
JP2022088448A (ja) * 2014-03-13 2022-06-14 株式会社半導体エネルギー研究所 電極
US10347908B2 (en) 2014-11-27 2019-07-09 Hitachi, Ltd. Lithium ion secondary battery and manufacturing method of the lithium ion secondary battery
JP2016173886A (ja) * 2015-03-16 2016-09-29 株式会社Gsユアサ 非水電解質二次電池
WO2016152505A1 (ja) * 2015-03-25 2016-09-29 株式会社村田製作所 リチウムイオン二次電池
JPWO2016152505A1 (ja) * 2015-03-25 2017-12-07 株式会社村田製作所 リチウムイオン二次電池
JP2017199657A (ja) * 2016-04-21 2017-11-02 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6995488B2 (ja) 2016-04-21 2022-02-04 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2018125086A (ja) * 2017-01-30 2018-08-09 京セラ株式会社 蓄電池用負極材料、蓄電池用負極および蓄電池
JP2018190746A (ja) * 2018-09-11 2018-11-29 信越化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
WO2021127991A1 (zh) * 2019-12-24 2021-07-01 东莞新能源科技有限公司 电化学装置和电子装置
US11837698B2 (en) 2019-12-24 2023-12-05 Dongguan Amperex Technology Limited Electrochemical device and electronic device
JP2021118149A (ja) * 2020-01-29 2021-08-10 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極材、及び、リチウムイオン二次電池
JP7388936B2 (ja) 2020-01-29 2023-11-29 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極材、及び、リチウムイオン二次電池

Also Published As

Publication number Publication date
DE112012004702T5 (de) 2014-08-21
US9819007B2 (en) 2017-11-14
JP5942999B2 (ja) 2016-06-29
JP2015167145A (ja) 2015-09-24
JP6061159B2 (ja) 2017-01-18
US20140308588A1 (en) 2014-10-16
US9819009B2 (en) 2017-11-14
US20170084905A1 (en) 2017-03-23
US9819008B2 (en) 2017-11-14
JP6269713B2 (ja) 2018-01-31
US20170084906A1 (en) 2017-03-23
JPWO2013069197A1 (ja) 2015-04-02
JP2016164884A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6269713B2 (ja) リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
JP5796587B2 (ja) 負極活物質、非水電解質二次電池用負極ならびに非水電解質二次電池
KR100453093B1 (ko) 비수전해질 이차전지
JP2012033279A (ja) リチウムイオン二次電池
EP2645455A1 (en) Composite electrode active material, electrode and lithium battery containing the composite electrode active material, and method of preparing the composite electrode active material
JP6011607B2 (ja) 非水系電解質二次電池
WO2021117480A1 (ja) 非水電解液二次電池
JP2019515460A (ja) リチウムイオン二次電池
JP7262419B2 (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
US8148014B2 (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2013132824A1 (ja) リチウムイオン二次電池
WO2014024534A1 (ja) リチウムイオン二次電池用負極活物質、及び、リチウムイオン二次電池
WO2013128805A1 (ja) リチウムイオン二次電池
JP6245954B2 (ja) リチウムイオン二次電池用負極活物質
US20160087261A1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP4319663B2 (ja) マンガン酸リチウム、リチウム二次電池正極副活物質、リチウム二次電池正極活物質及びリチウム二次電池
WO2000033403A1 (fr) Cellule secondaire d&#39;electrolyte non aqueux et procede de chargement
WO2023120724A1 (ja) リン-炭素複合材料、リン-炭素複合材料の製造方法、負極活物質、リチウム二次電池用負極及びリチウム二次電池
JP2010272540A (ja) 負極材料及びそれを用いた二次電池
JP2014116217A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015097139A (ja) リチウムイオン二次電池
JP2009167100A (ja) マンガン酸リチウム、その製造方法、リチウム二次電池正極副活物質、リチウム二次電池正極活物質及びリチウム二次電池
JP2002313334A (ja) 非水電解質二次電池用負極材料およびその製造方法
JP2015002049A (ja) リチウムイオン二次電池用負極およびその負極を用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542812

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357413

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012004702

Country of ref document: DE

Ref document number: 1120120047028

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847590

Country of ref document: EP

Kind code of ref document: A1