WO2016152505A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2016152505A1
WO2016152505A1 PCT/JP2016/057195 JP2016057195W WO2016152505A1 WO 2016152505 A1 WO2016152505 A1 WO 2016152505A1 JP 2016057195 W JP2016057195 W JP 2016057195W WO 2016152505 A1 WO2016152505 A1 WO 2016152505A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
lithium ion
secondary battery
active material
Prior art date
Application number
PCT/JP2016/057195
Other languages
English (en)
French (fr)
Inventor
森下正典
川合徹
橋爪優一郎
藤岡真人
堀川勝弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017508183A priority Critical patent/JPWO2016152505A1/ja
Publication of WO2016152505A1 publication Critical patent/WO2016152505A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery using a negative electrode active material containing a Si alloy as a negative electrode active material.
  • the raw material of the composition selected so that Si and the intermetallic compound of Si may precipitate during solidification is gas atomization method.
  • a negative electrode material using an alloy powder obtained by solidification is disclosed.
  • Patent Document 2 includes a negative electrode in which a negative electrode active material layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is formed on the surface of a conductive metal foil which is a negative electrode current collector.
  • a lithium ion secondary battery is disclosed.
  • Si is a material capable of reversibly occluding and releasing Li.
  • the charge / discharge capacity is theoretically 4200 mAh / g, which is much higher than the theoretical maximum capacity of 372 mAh / g of carbon materials currently in practical use. .
  • the discharge capacity per unit volume which is important from the viewpoint of miniaturization of the battery, is significantly larger for Si. Therefore, Si can be a high capacity negative electrode material.
  • the present invention solves the above-described problems, and an object thereof is to provide a lithium ion secondary battery having a high capacity and a long cycle life using a Si alloy as a negative electrode active material.
  • the inventors of the present application focused on the high theoretical capacity of the negative electrode material containing Si, and as a result of repeated studies to improve the cycle life, the inventors have no occlusion ability of Li or other occlusion ability. Knowing that an alloy material in which a phase (for example, a phase of an intermetallic compound between Si and another metal) coexists with the Si phase is promising as a negative electrode material, further investigations and experiments were conducted, and the present invention was performed. It came to complete.
  • the lithium ion secondary battery of the present invention is A positive electrode; A negative electrode in which a negative electrode active material layer containing Si and a negative electrode active material layer containing a binder is formed on the surface of a conductive metal foil that is a negative electrode current collector; With a non-aqueous electrolyte, The capacity maintenance rate at the 500th charge / discharge cycle is 90% or more.
  • the Si is an Si alloy containing an Si phase and an intermetallic compound phase containing Si and at least one element X having no ability to occlude Li. It is preferably contained in the negative electrode active material.
  • the element having no ability to occlude Li is a concept that means that it does not have the ability to occlude Li at a rate that causes the Si alloy to collapse due to a volume change accompanying the occlusion and release of Li. Thus, it is a concept that does not exclude an element that slightly occludes Li in a range that does not cause such a problem.
  • Si which is a material constituting the negative electrode active material is a Si alloy containing a Si phase and an intermetallic compound phase containing an element X and Si having no Li storage ability
  • volume change due to insertion and extraction of Li It is possible to suppress the collapse of the negative electrode active material (Si alloy particles) caused by the above, and it is possible to obtain a lithium ion secondary battery having a longer life than a lithium ion secondary battery having a negative electrode using conventional Si It becomes possible.
  • Si alloy as the negative electrode active material
  • a high-capacity lithium ion secondary battery can be obtained as compared with the case where a carbonaceous material such as graphite is used as the negative electrode active material.
  • the element X is Ag, Au, B, Ba, Ca, Ce, Co, Cu, Er, Fe, Gd, Hf, Lu, Mn, Mo, Nb, Selected from the group consisting of Nd, Ni, P, Pd, Pr, Pt, Pu, Re, Rh, Ru, Sc, Sm, Sr, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zn Desirably, at least one selected from the above.
  • the Si alloy includes a Si phase and the intermetallic compound phase of the element X and Si, and the Si phase, the element X, and the Si Negative electrode active material (particles) containing the intermetallic compound phase (phase with no or little Li occlusion ability) has a small volume change accompanying Li occlusion and release, and the negative electrode active material (particles) in the charge / discharge cycle Therefore, the pulverization of the negative electrode material is difficult to proceed. As a result, it is possible to provide a lithium ion secondary battery that has a higher capacity than a lithium ion secondary battery that includes a negative electrode using a carbonaceous material and that has reached a practical level of cycle life.
  • the ratio of total Si to the total amount of all Si and X is 80% or more in terms of atomic fraction. Is preferred.
  • the said binder is a polyimide.
  • polyimide having a large bonding force As the negative electrode binder, it becomes possible to mitigate the deterioration of the structure of the negative electrode active material layer caused by repeated charge and discharge, and cracks, and consequently, the discharge capacity can be reduced. It becomes possible to suppress.
  • the polyimide is obtained through imidization and imination of a polyamic acid precursor, and preferably has a porous structure.
  • Polyimides that have undergone imidization (reaction) and iminization (reaction) have a porous structure, and the mechanical strength and flexibility of the binder compared to conventional polyimide binders that are composed only of a linear structure. Can be increased. Therefore, by using a polyimide (resin) having such a porous structure as a binder, it becomes possible to alleviate the occurrence of cracks due to deterioration of the structure of the negative electrode active material layer with repeated charge and discharge. As a result, a reduction in discharge capacity can be suppressed.
  • the polyamic acid precursor preferably contains tetracarboxylic dianhydride and diamine in a molar ratio (diamine / tetracarboxylic dianhydride) of 1.05 or more and 1.20 or less. .
  • the polyamic acid precursor contains tetracarboxylic dianhydride and diamine in a molar ratio (diamine / tetracarboxylic dianhydride) of 1.05 or more and 1.20 or less, imidization (reaction ) And imineization (reaction), the polyimide (resin) has a porous structure.
  • the structure of the negative electrode active material layer is deteriorated due to repeated charge and discharge, and cracks are mitigated, thereby suppressing a decrease in discharge capacity.
  • a negative electrode active material layer including a positive electrode, a negative electrode active material containing a Si alloy, and a binder is formed on the surface of a conductive metal foil that is a negative electrode current collector, Since it has a non-aqueous electrolyte and the capacity maintenance rate at the 500th charge / discharge cycle is 90% or more, a lithium ion secondary battery having a high capacity and a long life can be provided.
  • the negative electrode active material (Si alloy) including the Si phase and the intermetallic compound phase of the element X and Si (a phase having no or little Li storage ability) has a small volume change due to the insertion and release of Li, Since the collapse of the negative electrode active material (particles) in the charge / discharge cycle is suppressed, the pulverization of the negative electrode material is difficult to proceed. As a result, it is possible to obtain a negative electrode material that has a higher capacity than a carbonaceous material and has a cycle life that has reached a practical level.
  • the negative electrode preferably includes a Si alloy having a Si phase and an intermetallic compound phase containing at least one element X having no ability to occlude Li and Si.
  • a negative electrode active material and a binder are included.
  • a negative electrode is formed by forming a negative electrode active material layer on the surface of the electroconductive metal foil which is a negative electrode collector.
  • the binder preferably has a porous structure, and a polyimide binder is particularly preferably used.
  • the negative electrode active material can contain carbon, thylium titanate, Sn, Sn oxide, and the like.
  • the content of the Si alloy phase in the negative electrode active material is preferably 10% by mass or more, and more preferably 50% by mass or more from the viewpoint of obtaining a high capacity.
  • the Si alloy constituting the negative electrode active material is preferably composed of a Si phase and an intermetallic compound phase containing Si and at least one element X that has no Li storage ability in principle.
  • the negative electrode active material layer containing such an Si alloy is less likely to fall off due to pulverization of the negative electrode active material caused by volume changes caused by repeated insertion and extraction of Li ions in the Si phase, and has a high capacity. Therefore, it is possible to extend the life and capacity of the lithium ion secondary battery.
  • the ratio of Si in the negative electrode active material (particles) constituting the negative electrode of the lithium ion secondary battery of the present invention that is, the Si phase in the negative electrode active material, and the element X and Si having no ability to occlude Li are included.
  • the atomic fraction (atom%) of the total Si with respect to the total amount of all Si and the element X is 80 atom% or more (the atomic fraction of X is less than 20 atom%). It is desirable that Note that the atomic fraction (atom%) of all Si with respect to the total amount of all Si and element X is a value obtained from the formula: (total Si / (total Si + X)) ⁇ 100.
  • FIG. 1 shows the total of all Si and element X in a Si alloy comprising a Si phase and an intermetallic compound phase containing Si and an element X having no ability to occlude Li, constituting the negative electrode active material. It is a figure which shows the relationship between the atomic fraction (atom%) with respect to quantity, and the capacity
  • the negative electrode active material containing the Si alloy has a remarkably large volume change due to the insertion and extraction of Li ions during the charge and discharge of the Si phase, so that the negative electrode active material layer is easily cracked by repeated charge and discharge. Decrease in discharge capacity (cycle characteristics) after repeated charge / discharge becomes a problem.
  • an Si alloy constituting the negative electrode active material an Si alloy composed of an Si metal phase and an intermetallic compound phase containing Si and at least one element X having no Li storage ability in principle. When used, volume change caused by repeated insertion and extraction of Li ions in the Si phase is suppressed.
  • the structure of the negative electrode active material layer deteriorates due to repeated charge and discharge, and cracks occur. Can be more efficiently suppressed, and a reduction in discharge capacity can be suppressed.
  • a polyimide can be obtained by heat-treating a polyamic acid precursor at a temperature of 300 ° C. or higher.
  • the polyamic acid precursor preferably contains tetracarboxylic dianhydride and diamine in a molar ratio (diamine / tetracarboxylic dianhydride) of 1.05 or more and 1.20 or less.
  • the polyimide obtained by heat treatment of the polyamic acid precursor preferably has a polyimide imidation ratio of 95% or more.
  • a polyimide imidation ratio of 95% or more for example, an N-methyl-2-pyrrolidone (NMP) solution of a polyamic acid precursor is used under an inert atmosphere to prevent oxidation under conditions of 300 ° C. or more and 1 hour or more.
  • NMP N-methyl-2-pyrrolidone
  • heat treatment is performed at 300 ° C.
  • the imidation rate is 95% after 1 hour
  • heat treatment is performed at 350 ° C.
  • the imidation rate is 100% after 1 hour.
  • heat treatment is further performed for 0.5 hours or more at a temperature of 350 ° C. or higher after imidation.
  • the polyamic acid precursor contains tetracarboxylic dianhydride and diamine in a molar ratio (diamine / tetracarboxylic dianhydride) of 1.05 or more and 1.20 or less, it is porous by heat treatment.
  • the polyimide can be obtained.
  • Binders using polyimide have a porous structure by imidization and iminization, and the mechanical strength and flexibility of the binder are lower than those of conventional polyimide binders composed only of linear structures. Can be increased. Since the binder using the porous polyimide as in the present invention has many imide groups having high polarity in the molecule, the binder has high adhesion, and the negative electrode active material (particle) containing Si alloy ) And a metal foil as a current collector, such as a stainless steel foil.
  • the binder having this porous structure has a branched structure extending in many directions, imide groups existing in the structure also extend in many directions.
  • the surrounding Si alloy adheres firmly to a negative electrode active material (particles) containing metal and a metal foil as a current collector.
  • the ratio of Si alloy to the total amount of graphite and Si alloy ((Si alloy / Si alloy + graphite) ⁇ 100) (mass%) and lithium ion secondary It is a figure which shows the relationship of the capacity
  • the negative electrode constituting the lithium ion secondary battery according to the embodiment of the present invention includes, for example, the above-described Si alloy (Si phase, an intermetallic compound phase containing Si and at least one element X having no ability to occlude Li, and Si).
  • Si phase an intermetallic compound phase containing Si and at least one element X having no ability to occlude Li, and Si.
  • a conductive auxiliary agent, polyimide as a binder, and NMP are added to form a paste, and this is applied onto a negative electrode current collector.
  • a negative electrode active material obtained by mixing graphite or the like with the above-described Si alloy can also be used as the negative electrode active material.
  • FIG. 2 shows the relationship between the ratio of the Si alloy in the negative electrode active material to the total amount of graphite and Si alloy ((Si alloy / Si alloy + graphite) ⁇ 100) (mass%) and the capacity of the negative electrode (mAh / g).
  • the capacity is 1.8 times that of the graphite alone, and when it is 50% by mass, the capacity is 5 times or more that of the graphite alone.
  • the content of the Si alloy in the negative electrode active material is preferably 10% by mass or more, and more preferably 50% by mass or more from the viewpoint of realizing a high capacity.
  • a conductive additive can be blended in the range of 5 or more and 10 or less with respect to the Si alloy 100 constituting the negative electrode active material.
  • a polyimide binder having a porous structure there is no particular restriction on the amount of polyimide used as a binder having a porous structure.
  • a polyimide binder can be blended in the range of 15 or more and 22.5 or less on a mass basis with respect to the Si alloy 100 constituting the negative electrode active material.
  • the positive electrode of the lithium ion secondary battery various positive electrode active materials conventionally used in the technical field of lithium ion batteries can be used which are formed in layers on the positive electrode current collector.
  • a Li-containing metal oxide can be suitably used.
  • a Li containing metal oxide it can select from a layered compound, a spinel structure compound, a polyanion compound, etc. suitably, and can be used.
  • lithium cobalt oxide complex oxide LiCoO 2 (hereinafter also referred to as “LCO”), lithium manganate complex oxide (LiMnO 2 ), lithium nickelate complex oxide (LiNiO 2 ), lithium niobate composite oxide (LiNbO 2 ), lithium ferrate composite oxide (LiFeO 2 ), lithium magnesium oxide composite oxide (Li 2 MgO 2 ), lithium calcium oxide composite oxide (Li 2 CaO 2) , Lithium cuprate composite oxide (LiCuO 2 ), lithium zincate composite oxide (LiZnO 2 ), lithium molybdate composite oxide (LiMoO 2 ), lithium tantalate composite oxide (LiTaO 2 ), lithium tungstate composite oxide objects (LiWO 2), lithium - nickel - cobalt - aluminum Composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2; hereinafter referred to as "LNCAO”), lithium - nickel - cobalt - aluminum Composite oxide (LiNi 0.8 Co 0.
  • the spinel structure compound examples include spinel type lithium manganate composite oxide (LiMn 2 O 4 ; hereinafter also referred to as LMO), spinel type lithium-manganese-nickel composite oxide (LiNi0.5Mn1.5O4; Hereinafter, it is also expressed as LNMO).
  • LMO spinel type lithium manganate composite oxide
  • LNMO spinel type lithium-manganese-nickel composite oxide
  • the polyanionic compound as a preferred example, lithium iron phosphate (LiFePO4; hereinafter, may be referred to as LFP), lithium manganese phosphate (LiMnPO 4), cobalt phosphate lithium (LiCoPO 4), and the like.
  • LFP lithium iron phosphate
  • LiMnPO 4 lithium manganese phosphate
  • CoPO 4 cobalt phosphate lithium
  • MnO 2 manganese dioxide
  • vanadium-based materials vanadium-based materials
  • sulfur-based materials sulfur-based materials
  • silicate-based materials and the like are also preferably used as the layered compound.
  • the lithium ion secondary battery of the present invention needs to contain Li ions, it is preferable to use a lithium salt as the electrolyte salt.
  • the lithium salt is not particularly limited, but preferable examples include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate. . These lithium salts can be used singly or in combination of two or more. Since the above lithium salt has high electronegativity and is easily ionized, when it is adopted as a negative electrode material, a lithium ion secondary battery having excellent cycle characteristics and a large charge / discharge capacity can be provided.
  • solvent for the electrolyte examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ⁇ -butyrolactone. These solvents may be used alone or in combination of two or more. it can. In particular, propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or ⁇ -butyrolactone alone is preferred.
  • the mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in the range where one component is 10% or more and 90% or less in volume fraction.
  • the electrolyte in the lithium ion secondary battery of the present invention may be a solid electrolyte or an ionic liquid.
  • the lithium ion secondary battery according to the embodiment of the present invention having the above requirements is excellent in high capacity and cycle characteristics.
  • the specific structure of the lithium ion secondary battery of the present invention is not particularly limited, and can be an existing battery form or structure such as a stacked battery or a wound battery.
  • PAA polyamic acid
  • AB conductive Acetylene black
  • the obtained slurry was coated on a stainless steel foil having a thickness of 15 ⁇ m as a negative electrode current collector, dried at 80 ° C. in the air, and then pressed through a pair of rotating rollers of a roll press machine, whereby an electrode was obtained. A sheet was obtained.
  • This electrode sheet was punched into a disk shape having a diameter of 12 mm with an electrode punching machine, and was subjected to heat treatment for 1 hour 30 minutes in an Ar gas atmosphere at 350 ° C. to obtain a negative electrode plate.
  • the coating thickness of the slurry on the stainless steel foil was 10 ⁇ m.
  • a SUS316 can was used as a 2032 type coin cell member for the battery exterior, and a fluororesin PFA was used for the gasket.
  • a glass filter with a diameter of 16 mm (trade name “Advantech GA-100”, having a thickness of 0.44 mm and a porosity of 90%, which has been subjected to a vacuum drying treatment at 120 ° C. for 24 hours is compressed to a thickness of 0 .35 mm and porosity of 88%) were used.
  • Example 4 A coin cell (CR2032) as a sample (lithium ion secondary battery) according to Example 4 was manufactured under the same conditions as Example 1 except that Si alone was used as the negative electrode active material.
  • PAA polyamic acid
  • diamine diamine / tetracarboxylic dianhydride
  • PAA polyamic acid
  • CR2032 coin cell
  • Comparative Example 2 A coin cell (CR2032), which is a sample of Comparative Example 1 that does not satisfy the requirements of the present invention, was produced under the same conditions as in Comparative Example 1 except that Si alone was used as the negative electrode active material.
  • PAA polyamic acid
  • Comparative Example 1 lithium ion secondary battery
  • the capacity at the 500th cycle decreased by 45% or more with respect to the initial capacity. Yes. Since the negative electrode active material undergoes a large volume change during insertion and extraction of Li ions, the active material is pulverized or the active material is separated from the current collector as charge and discharge are repeated. It is considered that the charge / discharge cycle characteristics deteriorated.
  • the samples (lithium ion secondary batteries) of Examples 1, 2 and 3 having negative electrode active material layers using a polyimide having a porous structure by heat treatment of polyamic acid (PAA) 2 as a binder are shown in Table 1.
  • the capacity at the 500th cycle is only reduced by 5% or less with respect to the initial capacity, and the capacity decay with respect to the initial capacity becomes gentle compared with the lithium ion secondary batteries according to Comparative Examples 1 and 2, and the cycle It can be seen that the deterioration of the characteristics is sufficiently suppressed.
  • PAA polyamic acid
  • Table 1 in the (lithium ion secondary battery), the capacity at the 500th cycle was only reduced by 6% with respect to the initial capacity, and the initial capacity compared to the lithium ion secondary batteries according to Comparative Examples 1 and 2 It can be seen that the capacity attenuation with respect to the capacity is moderate, and the deterioration of the cycle characteristics is sufficiently suppressed.
  • PAA polyamic acid
  • Table 1 the sample of Example 4 (lithium ion secondary battery) having a negative electrode active material layer containing a polyimide binder having a porous structure having a porous structure by heat treatment in FIG.
  • the decrease is only 10% or less, and the capacity decay with respect to the initial capacity is moderate as compared with the lithium ion secondary batteries according to Comparative Examples 1 and 2, and the deterioration of the cycle characteristics is sufficiently suppressed.
  • a lithium ion secondary battery with high capacity and good cycle characteristics is obtained by suppressing peeling between the negative electrode active materials and at the interface between the negative electrode active material and the negative electrode current collector. It turns out that it is obtained.
  • the lithium ion secondary battery of the present invention can be suitably used as a main power source for mobile communication devices, portable electronic devices, electric bicycles, electric motorcycles, electric vehicles and the like.
  • the present invention is not limited to the above-described embodiments and examples, and the negative electrode active material and conductive additive constituting the negative electrode, the kind of binder, the configuration of the negative electrode constituting the lithium ion secondary battery, and the composition of the electrolytic solution It is possible to add various applications and modifications within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 負極活物質にSi合金を用いた、高容量でサイクル寿命の長いリチウムイオン二次電池を提供する。 正極と、Siを含む負極活物質とバインダーとを含む負極活物質層が、負極集電体である導電性金属箔の表面上に形成され負極と、非水電解質とを備えた構成とし、充放電サイクルの500サイクル目の容量維持率が90%以上となるようにする。 Siが、Si相と、Liを吸蔵する能力のない元素Xの少なくとも1種とSiとを含む金属間化合物相とを含む合金として負極活物質に含まれるようにする。 元素Xを、Ag、Au、B、Ba、Ca、Ce、Co、Cu、Er、Fe、Gd、Hf、Lu、Mn、Mo、Nb、Nd、Ni、P、Pd、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Te、Th、Ti、Tm、U、V、W、Y、Yb、Znからなる群より選択される少なくとも1種とする。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関し、詳しくは、負極活物質として、Si合金を含む負極活物質用いたリチウムイオン二次電池に関する。
 近年、携帯電話やノートパソコンなどの小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。そしてこのような状況下において、リチウムイオン二次電池が電源として広く利用されている。
 そして、そのようなリチウムイオン二次電池の負極を構成する材料として、特許文献1には、SiとSiの金属間化合物とが凝固中に析出するように選択した組成の原料を、ガスアトマイズ法で凝固させて得た合金粉末を用いた負極材料が開示されている。
 また、特許文献2には、ケイ素および/またはケイ素合金を含む負極活物質粒子とバインダーとを含む負極活物質層が負極集電体である導電性金属箔の表面上に形成された負極を備えたリチウムイオン二次電池が開示されている。
 ところで、ケイ素(Si)は、可逆的にLiを吸蔵・放出することができる材料である。このSiを負極材料に用いた場合、充電・放電容量は理論的には4200mAh/gとなり、現在実用化されている炭素材の理論最大容量の372mAh/gに比べて、はるかに高容量となる。金属リチウムの理論最大容量である3900mAh/gと比較しても、電池の小型化という観点から重要な単位体積あたりの放電容量が、Siの方が著しく大きくなる。したがって、Siは高容量の負極材料となりうる。
 しかしながら、Siを用いた負極材料は、Liの吸蔵・放出に伴う体積変化が大きいため、割れによる微粉化が生じやすく、リチウムイオン二次電池のサイクル寿命が極端に短くなるため、Siを負極材料に用いることは困難であった。
 また、従来、負極材料のバインダーとして広く用いられてきたポリフッ化ビニリデンを用いた場合、結着性が弱いため、粒子間および粒子と集電体との密着信頼性が低く、Siを用いたリチウムイオン二次電池のサイクル特性は不十分であった.
特開2001-297766号公報 特開2011-204592号公報
 本発明は,上記課題を解決するものであり、負極活物質にSi合金を用いた、高容量でサイクル寿命の長いリチウムイオン二次電池を提供することを目的とする。
 本願の発明者等は、Siを含む負極材料の持つ、高い理論容量に着目し、そのサイクル寿命を向上させるべく検討を重ねた結果、Liの吸蔵能を持たないか、吸蔵能が小さい他の相(例えば、Siと他の金属との間の金属間化合物の相)を、Si相と共存させた合金材料が負極材料として有望であることを知り、さらに検討および実験を行って、本発明を完成するに至った。
 上記課題を解決するために、本発明のリチウムイオン二次電池は、
 正極と、
 Siを含む負極活物質と、バインダーとを含む負極活物質層が、負極集電体である導電性金属箔の表面上に形成された負極と、
 非水電解質とを備え、
 充放電サイクルの500サイクル目の容量維持率が90%以上であること
 を特徴としている。
 また、本発明のリチウムイオン二次電池においては、前記Siが、Si相と、Liを吸蔵する能力のない元素Xの少なくとも1種とSiとを含む金属間化合物相とを含むSi合金として前記負極活物質に含まれていることが好ましい。
 なお、Liを吸蔵する能力のない元素とは、Liの吸蔵,放出に伴う体積変化による、Si合金の崩壊を引き起こすような割合でLiを吸蔵する能力を有さないことを意味する概念であって、そのような問題を引き起こさない範囲で、Liをわずかに吸蔵するような元素を排除しない概念である。
 負極活物質を構成する材料であるSiが、Si相と、Li吸蔵能のない元素XとSiとを含む金属間化合物相とを含むSi合金である場合、Liの吸蔵および放出による、体積変化に起因する負極活物質(Si合金粒子)の崩壊を抑制することが可能になり、従来のSiを用いた負極を有するリチウムイオン二次電池よりも長寿命のリチウムイオン二次電池を得ることが可能になる。
 また、負極活物質としてSi合金を用いることにより、負極活物質として黒鉛などの炭素質材料を用いた場合に比べて、高容量のリチウムイオン二次電池を得ることができる。
 また、本発明のリチウムイオン二次電池においては、前記元素Xが、Ag、Au、B、Ba、Ca、Ce、Co、Cu、Er、Fe、Gd、Hf、Lu、Mn、Mo、Nb、Nd、Ni、P、Pd、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Te、Th、Ti、Tm、U、V、W、Y、Yb、Znからなる群より選択される少なくとも1種であることが望ましい。
 元素Xが、上記群から選択される少なくとも1種である場合、Si合金がSi相と、上記の元素XとSiの金属間化合物相とを含むことになり、Si相と、元素XとSiの金属間化合物相(Liの吸蔵能がないか小さい相)とを含む負極活物質(粒子)は、Liの吸蔵・放出に伴う体積変化が小さく、充放電サイクルにおける、負極活物質(粒子)の崩壊が抑制されるため、負極材料の微粉化が進行しにくくなる。その結果、炭素質材料を用いた負極を備えるリチウムイオン二次電池に比べて高容量で、かつ、サイクル寿命も実用レベルに達したリチウムイオン二次電池を提供することが可能になる。
 また、前記Si合金において、全SiとXの合計量を原子分率で100%とした場合に、全SiとXの合計量に対する全Siの割合が、原子分率で80%以上であることが好ましい。
 全SiとXの合計量に対する全Siの割合(全Si/全Si+X)を、原子分率で80%以上とすることにより、高容量化ならびに長寿命化を達成することが可能になる。
 また、前記バインダーがポリイミドであることが好ましい。
 負極バインダーとして接合力の大きいポリイミドを用いることにより、充放電の繰り返しに伴って負極活物質層の構造が劣化して亀裂が生じることを緩和することが可能になり、ひいては、放電容量の低下を抑制することが可能になる。
 また、前記ポリイミドは、ポリアミック酸前駆体のイミド化およびイミン化を経て得られるものであって、多孔性構造を有するものであることが好ましい。
 イミド化(反応)およびイミン化(反応)を経たポリイミドは、多孔性構造を有し、直鎖構造だけで構成されている従来のポリイミド系のバインダーに比べて、バインダーの機械的強度および柔軟性を高めることができる。そのため、このような多孔性構造を有するポリイミド(樹脂)をバインダーに用いることにより、充放電の繰り返しに伴って負極活物質層の構造が劣化して亀裂が生じることを緩和することが可能になり、結果として、放電容量の低下を抑制することができるようになる。
 また、前記ポリアミック酸前駆体が、テトラカルボン酸二無水物とジアミンとを、モル比(ジアミン/テトラカルボン酸二無水物)で1.05以上、1.20以下の割合で含むものであることが好ましい。
 ポリアミック酸前駆体が、テトラカルボン酸二無水物とジアミンとを、モル比(ジアミン/テトラカルボン酸二無水物)で1.05以上、1.20以下の割合で含むものである場合、イミド化(反応)およびイミン化(反応)を経たポリイミド(樹脂)は、多孔性構造をもつものとなる。その結果、充放電の繰り返しに伴って負極活物質層の構造が劣化して亀裂が生じることを緩和して、放電容量の低下を抑制することができる。
 本発明のリチウムイオン二次電池は、正極と、Si合金を含む負極活物質とバインダーとを含む負極活物質層が、負極集電体である導電性金属箔の表面上に形成され負極と、非水電解質とを備え、充放電サイクルの500サイクル目の容量維持率が90%以上であることから、高容量で高寿命のリチウムイオン二次電池を提供することができる。
 また、Si相と、元素XとSiの金属間化合物相(Liの吸蔵能がないか小さい相)とを含む負極活物質(Si合金)は、Liの吸蔵・放出に伴う体積変化が小さく、充放電サイクルにおける、負極活物質(粒子)の崩壊が抑制されるため、負極材料の微粉化が進行しにくくなる。その結果、炭素質材料に比べてなお高容量で、サイクル寿命も実用レベルに達した負極材料を得ることが可能になる。
 なお、本発明のリチウムイオン二次電池において、負極は、好ましくは、Si相と、Liを吸蔵する能力のない元素Xの少なくとも1種とSiと含む金属間化合物相とを有するSi合金を含む負極活物質と、バインダーとを含む。そして、負極活物質層を、負極集電体である導電性金属箔の表面上に形成することにより負極が形成される。
 上記バインダーとしては、多孔性構造をもつものであることが好ましく、特にポリイミドバインダーが好ましく用いられる。
 また、負極活物質には,その他に、炭素、チタン酸チリウム、Sn、Sn酸化物などを含ませることができる。この場合、負極活物質中のSi合金相の含有率は、高容量を得る見地からは、10質量%以上であることが好ましく、50質量%以上であることがさらに好ましい。
 また、負極活物質を構成するSi合金は、好ましくは、Si相と、原理的にLi吸蔵能のない元素Xの少なくとも1種とSiを含む金属間化合物相とから構成される。このようなSi合金を含む負極活物質層は、Si相におけるLiイオンの吸蔵・放出の繰り返しに伴って生じる体積変化がもたらす負極活物質の微粉化による脱落が進行しにくく、かつ、高容量であるため、リチウムイオン二次電池の長寿命化および高容量化を図ることができる。
 本発明のリチウムイオン二次電池の負極を構成する負極活物質(粒子)中のSiの割合、すなわち、負極活物質における、Si相と、Liを吸蔵する能力のない元素XとSiとを含む金属間化合物相を含むSi合金における、全Siの、全Siと元素Xの合計量に対するの原子分率(atom%)は、80atom%以上であること(Xの原子分率が20atom%未満)であることが望ましい。
 なお、全Siの、全Siと元素Xの合計量に対するの原子分率(atom%)は、式:(全Si/(全Si+X))×100から求められる値である。
 図1は,負極活物質を構成する、Si相と、Liを吸蔵する能力のない元素XとSiとを含む金属間化合物相を含むSi合金における、全Siの、全Siと元素Xの合計量に対する原子分率(atom%)と、該負極活物質を用いた負極を備えるリチウムイオン二次電池の容量の関係を示す図である。
 図1に示すように、全Siの、全Siと元素Xの合計量に対するの原子分率(atom%)が80atom%以上(元素Xの含有量が20%未満)になると、十分な高容量が実現されることがわかる。
 また、Si合金を含む負極活物質は、Si相の充放電時におけるLiイオンの吸蔵・放出に起因する体積変化が著しく大きいため、充放電の繰り返しにより負極活物質層に亀裂が生じ易くなり、充放電の繰り返し後の放電容量(サイクル特性)の低下が問題となる。これに対し、上述のように、負極活物質を構成するSi合金として、Si相と、原理的にLi吸蔵能のない元素Xの少なくとも1種とSiを含む金属間化合物相からなるSi合金を用いた場合、Si相におけるLiイオンの吸蔵・放出の繰り返しに伴って生じる体積変化が抑制される。
 また、負極活物質に用いるバインダーとして、イミド化(反応)およびイミン化(反応)を経た多孔性ポリイミド樹脂を用いることにより、充放電の繰り返しに伴って負極活物質層の構造が劣化して亀裂が生じることをさらに効率よく抑制して、放電容量の低下を抑制することができる。
 ポリイミドは、ポリアミック酸前駆体を300℃以上の温度で熱処理することによって得ることができる。
 ポリアミック酸前駆体としては、テトラカルボン酸二無水物とジアミンとを、モル比(ジアミン/テトラカルボン酸二無水物)で1.05以上、1.20以下の割合で含むものであることが望ましい。
 ポリアミック酸前駆体の熱処理により得られるポリイミドは、ポリイミドのイミド化率が95%以上のものであることが好ましい。イミド化率95%以上のものは、例えば、ポリアミック酸前駆体のN-メチル-2-ピロリドン(NMP)溶液を、酸化防止のため不活性雰囲気下で、300℃以上、1時間以上の条件で熱処理することにより得ることができる。例えば、300℃で熱処理する場合、熱処理時間が1時間でイミド化率95%となり、350℃で熱処理する場合、熱処理時間が1時間でイミド化率100%となる。また、イミン化のためには、イミド化後に350℃以上の温度でさらに0.5時間以上の熱処理を行う。
 ポリアミック酸前駆体が、テトラカルボン酸二無水物とジアミンとを、モル比(ジアミン/テトラカルボン酸二無水物)で1.05以上、1.20以下の割合で含むものである場合、熱処理によって多孔性のポリイミドを得ることができる。なお、熱処理によって多孔性のポリイミドを得ることができるのは、ポリアミド酸が熱処理により脱水縮合するイミド化反応と、ポリイミド樹脂におけるケトン基と過剰なジアミンのアミノ基が反応するイミン化反応(C=N結合)を経て、ポリイミドが形成されることによる。
 ポリイミドを用いたバインダーは、イミド化およびイミン化による多孔性構造を有しており、直鎖構造だけで構成されている従来のポリイミド系のバインダーに比べて、バインダーの機械的強度および柔軟性を高めることができる。この本発明のような多孔性のポリイミドを用いたバインダーは分子内に,高い極性を有するイミド基が多く存在しているので、高い密着性を備えており、Si合金を含む負極活物質(粒子)や、集電体である金属箔、例えばステンレス箔との密着性に優れている。
 さらに、この多孔性構造を有するバインダーは、多くの方向に広がった分岐構造を有しているので、構造内に存在するイミド基も多くの方向に広がっており、この点でも、周囲のSi合金を含む負極活物質(粒子)や、集電体である金属箔と強固に密着する。
 本発明において用いられるポリアミック酸前駆体を構成する、テトラカルボン酸二無水物の好ましい例としては、芳香族テトラカルボン酸二無水物を挙げることができる。さらに好ましい例としては、無水ピロメリト酸、3,3’,4,4’-ビフェニルテトラカルボン酸無水物、または2種の化合物から派生する誘導体を挙げることができる。
 また、ポリアミック酸前駆体を構成するジアミンの好ましい例としては、脂肪族ジアミン及び芳香族ジアミンを挙げることができる。さらに好ましい例としては、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミノ、または2種の化合物から派生する誘導体を挙げることができる。
負極活物質を構成する、Si相と、Liを吸蔵する能力のない元素XとSiとを含む金属間化合物相を含むSi合金における。全Siの、全Siと元素Xの合計量に対する原子分率(atom%)と、該負極活物質を用いた負極を備えるリチウムイオン二次電池の容量(mAh/g)の関係を示す図である。 負極活物質が、黒鉛とSi合金を含むものである場合の、Si合金の、黒鉛とSi合金の合計量に対する割合((Si合金/Si合金+黒鉛)×100)(質量%)とリチウムイオン二次電池の容量(mAh/g)の関係を示す図である。
 次に,本発明の実施形態を示して,本発明の特徴とするところを詳しく説明する。
 本発明の実施形態にかかるリチウムイオン二次電池を構成する負極は、例えば、上述のSi合金(Si相と、Liを吸蔵する能力のない元素Xの少なくとも1種とSiを含む金属間化合物相とを有するSi合金)よりなる負極活物質に、導電助剤、バインダーとしてのポリイミドおよびNMPを加えてペースト状とし、これを負極集電体上に塗布することにより形成される。
 なお、負極活物質として、上述のSi合金に、黒鉛などを混合した負極活物質を用いることも可能である。
 図2は、負極活物質におけるSi合金の、黒鉛とSi合金の合計量に対する割合((Si合金/Si合金+黒鉛)×100)(質量%)と負極の容量(mAh/g)との関係を示す図である。
 図2に示すようにSi合金の割合が10質量%になると、容量は黒鉛単体の場合の1.8倍の容量となり、さらに50質量%になると、容量は黒鉛単体の場合の5倍以上になる。容量の観点から負極活物質中のSi合金の含有率は、高容量を実現する見地からは、10質量%以上であることが好ましく、50質量%以上であることがさらに好ましい。
 なお、導電助剤の使用量については特に制約はない。例えば、負極活物質を構成するSi合金100に対し、質量基準で、5以上、10以下の範囲で導電助剤を配合することができる。
 また、多孔性構造を有するバインダーとしてのポリイミドの使用量についても特に制約はない。例えば、負極活物質を構成するSi合金100に対し、質量基準で、15以上、22.5以下の範囲でポリイミドバインダーを配合することができる。
 また、リチウムイオン二次電池の正極としては、従来からリチウムイオン電池の技術分野で使用されている種々の正極活物質を正極集電体上に層状に形成したものを用いることができる。正極活物質としては、例えば、Li含有金属酸化物を好適に用いることができる。Li含有金属酸化物としては、層状化合物、スピネル構造化合物およびポリアニオン化合物などから、適宜選択して用いることができる。
 なお、上記の層状化合物としては、好適な例として、コバルト酸リチウム複合酸化物(LiCoO2(以下、「LCO」とも表記する)、マンガン酸リチウム複合酸化物(LiMnO2)、ニッケル酸リチウム複合酸化物(LiNiO2)、ニオブ酸リチウム複合酸化物(LiNbO2)、鉄酸リチウム複合酸化物(LiFeO2)、マグネシウム酸リチウム複合酸化物(Li2MgO2)、カルシウム酸リチウム複合酸化物(Li2CaO2)、銅酸リチウム複合酸化物(LiCuO2)、亜鉛酸リチウム複合酸化物(LiZnO2)、モリブデン酸リチウム複合酸化物(LiMoO2)、タンタル酸リチウム複合酸化物(LiTaO2)、タングステン酸リチウム複合酸化物(LiWO2)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.052;以下、「LNCAO」とも表記する)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi1/3Co1/3Mn1/32;以下、LNCMOとも表記する)、Li過剰系ニッケル-コバルト-マンガン複合酸化物(LixNiACoBMnCO2固溶体;以下、LirichNCMとも表記する)などを挙げることができる。
 スピネル構造化合物としては、好適な例として、スピネル型マンガン酸リチウム複合酸化物(LiMn24;以下、LMOとも表記する)、スピネル型リチウム-マンガン-ニッケル複合酸化物(LiNi0.5Mn1.5O4;以下、LNMOとも表記する)などが挙げられる。
 ポリアニオン化合物としては、好適な例として、リン酸鉄リチウム(LiFePO4;以下、LFPと表記する場合がある)、リン酸マンガンリチウム(LiMnPO4)、リン酸コバルトリチウム(LiCoPO4)などが挙げられる。
 上記の他、二酸化マンガン(MnO2)、バナジウム系材料、硫黄系材料、シリケート系材料なども層状化合物として好適に使用される。
 また、本発明のリチウムイオン二次電池は、Liイオンを含有する必要があることから、電解質塩としてはリチウム塩を用いるのが好ましい。このリチウム塩としては特に制約はないが、好ましい例として、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸イミドリチウムなどを挙げることができる。これらのリチウム塩は、1種単独または2種以上混合して用いることができる。上記のリチウム塩は電気的陰性度が高く、電離し易いことから、負極材料として採用した場合、サイクル特性に優れ、且つ充放電容量の大きいリチウムイオン二次電池を提供することができる。
 また、上記電解質の溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトンなどを用いることができ、これらの溶媒を1種単独または2種以上混合して用いることができる。特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物、またはγ-ブチロラクトン単体が好適である。
 なお、上記エチレンカーボネートとジエチルカーボネートとの混合物の混合比は、一方の成分が体積分率において10%以上、90%以下となる範囲で、任意に調整することができる。
 また、本発明のリチウムイオン二次電池における電解質は、固体電解質やイオン性液体であってもよい。
 上述の要件を備えた本発明の実施形態にかかるリチウムイオン二次電池は、高容量およびサイクル特性に優れている。
 また、本発明のリチウムイオン二次電池の具体的な構造には、特に制約はなく、積層式電池、捲回式電池などの既存の電池形態や構造とすることができる。
 以下、本発明の具体的な実施例を示して,本発明の特徴とするところをさらに具体的に説明する。
 [実施例1]
 <負極の作製>
 SiとBとを、構成原子比率がSi:B=95:5となるように混合した後、熔融状態とし、当該熔融金属を冷却させ、Si相とSi3B相とで構成されるSi合金の粉末(負極活物質粉末)を作製した。
 それからこの負極活物質粉末に対し、テトラカルボン酸二無水物とジアミンとがモル比(=ジアミン/テトラカルボン酸二無水物)1.2である、バインダー前駆体としてのポリアミック酸(PAA)、導電性物質としてのアセチレンブラック(AB)を、質量比で、負極活物質粉末:PAA:導電性物質=80:5:15の割合となるように秤量し、N‐メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。
 得られたスラリーを負極集電体である厚み:15μmのステンレス鋼箔上に塗布し、大気下において80℃で乾燥後、ロールプレス機の一対の回転ローラー間に通してプレスすることにより、電極シートを得た。
 この電極シートを電極打ち抜き機で直径12mmの円板状に打ち抜き、350℃のArガス雰囲気下において1時間30分の加熱処理を行い、負極板を得た。
 ここで、ステンレス箔上へのスラリーの塗布厚みは10μmとした。
 <正極の作製>
 リン酸鉄リチウム(LFP、正極活物質):CMCバインダー:アセチレンブラック(AB)=90:5:5(質量比)の原料を混合して、スラリー化した。
 得られたスラリーを正極集電体である厚さ20μmのAl箔上に塗布し、80℃にて乾燥後、ロールプレス機の一対の回転ローラー間に通してプレスすることにより電極シートを得た。この電極シートを電極打ち抜き機で直径11mmの円板状に打ち抜き、加熱処理(減圧中、150℃、5時間)して正極板を得た。
 ここで、Al箔上へのスラリーの塗布厚みは25μmとした。
 <電池の作製>
  電池外装には、2032型コインセル部材としてSUS316の缶を用い、ガスケットにはフッ素樹脂PFAを用いた。
 セパレータとしては、120℃下で24時間の減圧乾燥処理を施した直径16mmのガラスフィルター(商品名「アドバンテックGA-100」、厚み0.44mm、空隙率90%のものを圧縮して、厚み0.35mm、空隙率88%としたもの)を用いた。
 電解液としては、1M LiPF6 EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1(体積比)を用いた。
 コインセルの下蓋に上記正極のAl箔面を下に向けて載置し、その上にガラスフィルターからなるセパレータ、さらに上記負極の負極活物質層を塗布した面を下に向けて積層し、試験電池を作製した。なお、試験電池の組み立ては露点温度-60℃以下の環境で行った。
 これにより実施例1にかかる試料(リチウムイオン二次電池)を得た。
 [実施例2]
 SiとBの構成原子比率がSi:B=90:10であること以外は実施例1と同じ条件で、実施例2にかかる試料(リチウムイオン二次電池)であるコインセル(CR2032)を作製した。
[実施例3]
 SiとBの構成原子比率がSi:B=80:20であること以外は実施例1と同じ条件で、実施例3にかかる試料(リチウムイオン二次電池)であるコインセル(CR2032)を作製した。
 [実施例4] 
 負極活物質としてSi単体を用いたこと以外は実施例1と同じ条件で、実施例4にかかる試料(リチウムイオン二次電池)であるコインセル(CR2032)を作製した。
 [実施例5]
 負極用のバインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が1.05であるポリアミック酸(PAA)を用いたこと以外は実施例1と同じ条件で、実施例5にかかる試料(リチウムイオン二次電池)であるコインセル(CR2032)を作製した。
 [比較例1]
 負極バインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が0.9であるポリアミック酸(PAA)を用いたこと以外は実施例1と同じ条件で、本発明の要件を満たさない比較例1の試料であるコインセル(CR2032)を作製した。
 [比較例2]
 負極活物質としてSi単体を用いたこと以外は比較例1と同じ条件で、本発明の要件を満たさない比較例1の試料であるコインセル(CR2032)を作製した。
 <評価>
 上述のようにして作製した実施例1~5の試料、および、比較例1,2の試料について、以下の電池性能試験を行った。
 (電池性能試験)
 実施例1~5の試料および比較例1および2の試料(コインセル)に対し、それぞれ30℃において、充放電電流値3CAで1500サイクルまで試験を行い、500サイクル、1000サイクル、1500サイクルにおける容量維持率を調べた。なお、容量維持率は各サイクルにおける放電容量分の初期サイクルにおける放電容量の比として求めた。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、負極バインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が0.9であるポリアミック酸(PAA)を用いた比較例1の試料(リチウムイオン二次電池)は、500サイクル目の容量が初期容量に対して25%以上減少しており、サイクル特性が劣化していることがわかる。
 これは、バインダーの前駆体としてジアミン/テトラカルボン酸二無水物(モル比)が0.9の前駆体が用いられており、反応後のバインダーが直鎖構造物質のみで構成されているために機械的強度および柔軟性が低下し、さらに充放電に伴うSi相の体積変化が加わり、負極活物質層の構造劣化が進行したことによると考えられる。
 また、負極活物質としてSi単体を用いた比較例2の試料(リチウムイオン二次電池)は、表1からもわかるように、500サイクル目の容量が初期容量に対して45%以上減少している。該負極活物質ではLiイオンの吸蔵・放出時に大きな体積変化が生じるため、充放電の繰り返しに伴い、活物質の微粉化の進行、あるいは活物質の集電体からの剥離が発生して集電性が低下し、充放電サイクル特性が劣化したものと考えられる。
 これに対し、Si相とSi3B相から構成されるSi合金と、負極バインダー前駆体であるテトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が1.2であるポリアミック酸(PAA)の熱処理による多孔性構造をもつポリイミドをバインダーとして用いた負極活物質層を有する実施例1,2および3の試料(リチウムイオン二次電池)は、表1に示すように、500サイクル目の容量が初期容量に対して5%以下の減少にとどまっており、比較例1,2にかかるリチウムイオン二次電池と比べて初期容量に対する容量減衰が穏やかとなり、サイクル特性の劣化が十分に抑制されていることがわかる。
 また、負極バインダー前駆体として、テトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が1.05であるポリアミック酸(PAA)を用いた実施例5の試料(リチウムイオン二次電池)は、表1に示すように、500サイクル目の容量が初期容量に対して6%の減少にとどまり、比較例1、2にかかるリチウムイオン二次電池と比べて初期容量に対する容量減衰が穏やかとなり、サイクル特性の劣化が十分に抑制されていることがわかる。
 また、負極活物質としてSi単体と、負極バインダー前駆体であるテトラカルボン酸二無水物とジアミンとのモル比(=ジアミン/テトラカルボン酸二無水物)が1.2であるポリアミック酸(PAA)の熱処理による多孔性構造をもつポリイミドバインダーとを含む負極活物質層を有する、実施例4の試料(リチウムイオン二次電池)は、表1に示すように、500サイクル目の容量が初期容量に対して10%以下の減少にとどまり、比較例1,2にかかるリチウムイオン二次電池と比べて初期容量に対する容量減衰が穏やかとなり、サイクル特性の劣化が十分に抑制されていることがわかる。
 上記の結果から、本発明によれば、負極活物質間および負極活物質と負極集電体との界面での剥離を抑制して、高容量で、サイクル特性の良好なリチウムイオン二次電池が得られることがわかる。
 なお、本発明のリチウムイオン二次電池は、移動体通信機器、携帯用電子機器、電動自転車、電動二輪車、電気自動車等の主電源として好適に利用することができる。
 本発明は、上記実施形態および実施例に限定されるものではなく、負極を構成する負極活物質や導電助剤、バインダーの種類、リチウムイオン二次電池を構成する負極の構成や電解液の組成などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。

Claims (7)

  1.  正極と、
     Siを含む負極活物質とバインダーとを含む負極活物質層が、負極集電体である導電性金属箔の表面上に形成された負極と、
     非水電解質とを備え、
     充放電サイクルの500サイクル目の容量維持率が90%以上であること
     を特徴とするリチウムイオン二次電池。
  2.  前記Siが、Si相と、Liを吸蔵する能力のない元素Xの少なくとも1種とSiとを含む金属間化合物相とを含むSi合金として前記負極活物質に含まれていることを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記元素Xが、Ag、Au、B、Ba、Ca、Ce、Co、Cu、Er、Fe、Gd、Hf、Lu、Mn、Mo、Nb、Nd、Ni、P、Pd、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Te、Th、Ti、Tm、U、V、W、Y、Yb、Znからなる群より選択される少なくとも1種であることを特徴とする請求項2記載のリチウムイオン二次電池。
  4.  前記Si合金において、全SiとXの合計量を原子分率で100%とした場合に、全SiとXの合計量に対する全Siの割合が,原子分率で80%以上であることを特徴とする請求項2または3記載のリチウムイオン二次電池。
  5.  前記バインダーがポリイミドであることを特徴とする請求項1~4のいずれかに記載のリチウムイオン二次電池。
  6.  前記ポリイミドがポリアミック酸前駆体のイミド化およびイミン化を経て得られるものであって、多孔性構造を有するものであることを特徴とする請求項5に記載のリチウムイオン二次電池。
  7.  前記ポリアミック酸前駆体が、テトラカルボン酸二無水物とジアミンとを、モル比(ジアミン/テトラカルボン酸二無水物)で1.05以上、1.20以下の割合で含むものであることを特徴とする請求項6記載のリチウムイオン二次電池。
PCT/JP2016/057195 2015-03-25 2016-03-08 リチウムイオン二次電池 WO2016152505A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508183A JPWO2016152505A1 (ja) 2015-03-25 2016-03-08 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015062100 2015-03-25
JP2015-062100 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152505A1 true WO2016152505A1 (ja) 2016-09-29

Family

ID=56977337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057195 WO2016152505A1 (ja) 2015-03-25 2016-03-08 リチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JPWO2016152505A1 (ja)
WO (1) WO2016152505A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137902A (zh) * 2018-11-05 2020-05-12 清华大学 H-Si-O体系材料、负极活性材料及其制备方法、电化学电池负极材料及电化学电池
JP2020113441A (ja) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297766A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池とその負極材料および該材料の製法
WO2012132396A1 (ja) * 2011-03-25 2012-10-04 株式会社アイ.エス.テイ ポリイミド前駆体溶液、ポリイミド前駆体、ポリイミド樹脂、合剤スラリー、電極、合剤スラリー製造方法、および電極形成方法
WO2013069197A1 (ja) * 2011-11-11 2013-05-16 株式会社豊田自動織機 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297766A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池とその負極材料および該材料の製法
WO2012132396A1 (ja) * 2011-03-25 2012-10-04 株式会社アイ.エス.テイ ポリイミド前駆体溶液、ポリイミド前駆体、ポリイミド樹脂、合剤スラリー、電極、合剤スラリー製造方法、および電極形成方法
WO2013069197A1 (ja) * 2011-11-11 2013-05-16 株式会社豊田自動織機 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137902A (zh) * 2018-11-05 2020-05-12 清华大学 H-Si-O体系材料、负极活性材料及其制备方法、电化学电池负极材料及电化学电池
JP2020113441A (ja) * 2019-01-11 2020-07-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極

Also Published As

Publication number Publication date
JPWO2016152505A1 (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
US20100009258A1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, lithium ion secondary battery and method for producing the same
JP5897971B2 (ja) 電極活物質、非水系二次電池用電極、非水系二次電池及び非水系二次電池用電極の製造方法
JP5278994B2 (ja) リチウム二次電池
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
KR20070078070A (ko) 리튬 이차 전지
JP2011076997A (ja) リチウムイオン二次電池
US11258055B2 (en) Cathode active material of lithium secondary battery
WO2013042610A1 (ja) リチウムイオン二次電池
WO2016021684A1 (ja) 正極及びそれを用いた二次電池
JP6108520B2 (ja) リチウムイオン二次電池正極およびこれを用いたリチウムイオン二次電池
JP5561803B2 (ja) 非水電解質二次電池
JP2023536375A (ja) 複合金属酸化物材料及びその調製方法、正極シート、二次電池、電池モジュール、電池パック及び電力消費装置
JP5322259B2 (ja) 二次電池用正極およびこれを使用したリチウム二次電池
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP6414058B2 (ja) 電極用バインダー組成物および電極
JP5490510B2 (ja) リチウムイオン二次電池用負極活物質
EP3276708B1 (en) Lithium ion battery negative electrode and lithium ion battery
WO2016152505A1 (ja) リチウムイオン二次電池
CN109216692B (zh) 改性三元正极材料及其制备方法、锂离子电池
JP5360870B2 (ja) リチウムイオン二次電池用正極、およびそれを用いたリチウムイオン二次電池
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
WO2023026482A1 (ja) 電極、電池、及び電池パック
EP3489198A1 (en) Cathode active material of lithium secondary battery
JP4867153B2 (ja) 非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池
JP5605867B2 (ja) 二次電池用正極およびこれを使用したリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768408

Country of ref document: EP

Kind code of ref document: A1