WO2012077268A1 - リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ - Google Patents

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ Download PDF

Info

Publication number
WO2012077268A1
WO2012077268A1 PCT/JP2011/005647 JP2011005647W WO2012077268A1 WO 2012077268 A1 WO2012077268 A1 WO 2012077268A1 JP 2011005647 W JP2011005647 W JP 2011005647W WO 2012077268 A1 WO2012077268 A1 WO 2012077268A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
lithium ion
secondary battery
powder
Prior art date
Application number
PCT/JP2011/005647
Other languages
English (en)
French (fr)
Inventor
安田 幸司
木崎 信吾
下崎 新二
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to KR1020137012843A priority Critical patent/KR101513820B1/ko
Priority to CN2011800569500A priority patent/CN103229336A/zh
Priority to JP2012547676A priority patent/JP5648070B2/ja
Publication of WO2012077268A1 publication Critical patent/WO2012077268A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a powder for a negative electrode material that can be used for a lithium ion secondary battery, has a large discharge capacity, has good cycle characteristics, and can obtain a lithium ion secondary battery that can withstand use at a practical level.
  • the present invention also relates to a lithium ion secondary battery negative electrode and capacitor negative electrode, and a lithium ion secondary battery and capacitor using the negative electrode material powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries, and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c, and lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
  • carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries.
  • a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • Silicon oxide can be a negative electrode active material with a larger effective charge / discharge capacity because it has less degradation such as collapse of the crystal structure and generation of irreversible materials due to insertion and extraction of lithium ions during charge and discharge. Therefore, by using silicon oxide as a negative electrode active material, lithium has a higher capacity than when carbon is used, and has better cycle characteristics than when a high capacity negative electrode material such as Si or Sn alloy is used. An ion secondary battery has been obtained.
  • silicon oxide powder is used as the negative electrode active material
  • carbon powder or the like is generally mixed as a conductive aid in order to compensate for the low electrical conductivity of silicon oxide.
  • the electrical conductivity of the contact part vicinity of a silicon oxide powder and a conductive support agent is securable.
  • electrical conductivity cannot be ensured at a location away from the contact portion, and it is difficult to function as a negative electrode active material.
  • Patent Document 1 a carbon film is formed by CVD (chemical vapor deposition) on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide.
  • CVD chemical vapor deposition
  • Patent Document 1 According to the method proposed in Patent Document 1, a uniform carbon film is formed on the conductive silicon composite, and sufficient electrical conductivity can be imparted.
  • the lithium ion secondary battery using the conductive silicon composite of Patent Document 1 uses silicon dioxide in which silicon microcrystals are dispersed as the negative electrode material. Lithium ion occlusion, expansion and contraction during release increase, and repeated charge / discharge causes problems such as a sudden drop in capacity at a certain point. Further, the discharge capacity and cycle characteristics were not sufficient.
  • the present inventors have made various studies on silicon oxide, which is considered to be a negative electrode material powder (negative electrode active material) capable of increasing the capacity of a lithium ion secondary battery.
  • the decrease in initial efficiency (the value of the ratio of the discharge capacity to the charge capacity at the time of the first charge / discharge (at the time of the first charge / discharge) after the manufacture of the lithium ion secondary battery) is Li 4 led to think to be due to the formation of SiO 4.
  • Li 22 Si 5 in the first term on the right side of the equation (1) is a component responsible for reversible capacity, and Li 4 SiO 4 in the second term is responsible for irreversible capacity. Li 4 SiO 4 cannot release lithium ions.
  • the theoretical characteristic of the lithium ion secondary battery when silicon oxide (SiO x ) is used as the negative electrode material powder and x 1 is a reversible capacity of 2007 mAh / g, The initial efficiency was found to be 76%.
  • Conventional lithium ion secondary batteries using silicon oxide as a negative electrode material powder have a reversible capacity of about 1500 mAh / g, so a lithium ion secondary battery using silicon oxide as a negative electrode material powder. It was found that there is still room for improvement in the reversible capacity of the battery.
  • the present invention has been made in view of this problem, and has a large discharge capacity, good cycle characteristics, and a negative electrode material powder for a lithium ion secondary battery that can withstand use at a practical level, and the negative electrode material. It is an object to provide a lithium ion secondary battery negative electrode and a capacitor negative electrode, and a lithium ion secondary battery and a capacitor using the powder for use.
  • the present inventors have studied a method for suppressing the generation of bubbles during slurry preparation.
  • the inventors presumed that among the SiO x powders, fine powder is a cause of easily generating bubbles. Then, to remove the fines by sedimentation, was using SiO x powder that suppresses the spread of the particle size distribution was found that air bubbles at the time of generation of the slurry as compared to those that do not remove fine powder is small.
  • the slurry using the SiO x powder from which the fine powder has been removed has a higher density than that without removing the fine powder, and the lithium ion secondary battery using this slurry as the negative electrode material has a high initial discharge capacity. did. These are considered to be due to the reduction of bubbles inside the slurry.
  • the present invention has been made on the basis of the above findings.
  • the gist of the present invention is as follows. (1) to (6) Lithium ion secondary battery negative electrode powder, (7) Lithium ion secondary battery negative electrode And a capacitor negative electrode of the following (8), a lithium ion secondary battery of the following (9), and a capacitor of the following (10).
  • the “lower silicon oxide powder” is an SiO x powder satisfying x ⁇ 0.4 ⁇ x ⁇ 1.2.
  • x of SiOx, D50, D10, the thickness of the conductive carbon film, the specific surface area, the proportion of the conductive carbon film in the negative electrode material powder, and the tar component content will be described later.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a diagram showing a configuration example of a silicon oxide manufacturing apparatus.
  • FIG. 3 is a graph showing the particle size distribution before and after the sedimentation separation of the SiO powder.
  • FIG. 3 (a) shows the distribution before the sedimentation separation, and
  • FIG. 3 (b) shows the distribution after the sedimentation separation.
  • Powder for negative electrode material of lithium ion secondary battery of the present invention has a conductive carbon film on the surface of lower silicon oxide powder, and in the particle size distribution of this silicon oxide powder, 1 ⁇ m ⁇ D50 ⁇ 20 ⁇ m, and the relationship between D50 and D10 satisfies 1.4 ⁇ D50 / D10 ⁇ 2.4.
  • the lower silicon oxide powder is a SiO x powder in which x satisfies 0.4 ⁇ x ⁇ 1.2.
  • the reason why x is in this range is that when the value of x is less than 0.4, the lithium ion secondary battery using the negative electrode material powder of the present invention and the capacitor are severely deteriorated due to charge / discharge cycles, and 1.2. This is because the capacity of the battery is reduced when the value exceeds.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the discharge capacity of a lithium ion secondary battery using this lower silicon oxide powder as a negative electrode material powder can be improved.
  • the thickness of the conductive carbon film is preferably 1.5 nm or more and 7.5 nm or less. If the conductive carbon film is less than 1.5 nm, the electrical conductivity may be insufficient, and if it is thicker than 7.5 nm, it is easy to peel off from the surface of the lower silicon oxide powder. In either case, the lithium ion secondary battery This is because the discharge capacity may be insufficient.
  • the thickness of the conductive film is more preferably 2.0 nm or more and 5.0 nm or less.
  • the powder for a negative electrode material for a lithium ion secondary battery of the present invention has a particle size distribution of 1 ⁇ m ⁇ D50 ⁇ 20 ⁇ m.
  • Dn (0 ⁇ n ⁇ 100) is the particle size when the cumulative frequency from the smaller particle size reaches n%.
  • D50 ⁇ 1 ⁇ m bubbles are likely to be generated during the production of the slurry, and thus the adhesion between the electrode substrate and the negative electrode is weakened.
  • D50 preferably satisfies 3 ⁇ m ⁇ D50 ⁇ 12 ⁇ m.
  • the relationship between D50 and D10 in the particle size distribution satisfies 1.4 ⁇ D50 / D10 ⁇ 2.4.
  • 1.4 ⁇ D50 / D10 ⁇ 2.4 indicates that the particle size distribution is moderately sharp.
  • the particle size distribution is excessively sharp, and the bulk density of the slurry prepared by mixing the powder for negative electrode material with a binder or a conductive auxiliary agent is increased. In this case, the slurry also contains bubbles. In the same manner as in the above case, the discharge capacity of the lithium ion secondary battery decreases because it is easily peeled off from the applied working electrode current collector. Further, when D50 / D10> 2.4, the particle size distribution is broad, the amount of bubbles generated is large at the time of slurry production, and it is difficult to mix uniformly, and when used as an electrode, a lithium ion secondary battery The discharge capacity is reduced.
  • the relationship between D50 and D10 preferably satisfies 1.6 ⁇ D50 / D10 ⁇ 2.1.
  • Lithium-ion secondary battery negative electrode material powder of this invention the specific surface area measured by the BET method, 0.3 m 2 / g or more, preferably not more than 7.0 m 2 / g.
  • the specific surface area of the negative electrode material powder is small, generation of an SEI film (Solid Electrolyte Interface, irreversible capacity component) on the electrode surface during the first charge / discharge can be suppressed.
  • SEI film Solid Electrolyte Interface, irreversible capacity component
  • the specific surface area is larger than 7.0 m 2 / g, the surface area becomes considerably wide, so that the ratio of the SEI film formed on the particle surface is increased, and the capacity of the lithium ion secondary battery may be decreased.
  • the specific surface area measured by the BET method is more preferably 0.5 m 2 / g or more and 6.0 m 2 / g or less.
  • the powder for the negative electrode material of the lithium ion secondary battery preferably has a ratio of the conductive carbon film (hereinafter referred to as “carbon film ratio”) of 0.5 mass% or more and 10 mass% or less. This is due to the following reason.
  • the carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery as in the case of lower silicon oxide, but its charge / discharge capacity per unit mass is smaller than that of lower silicon oxide. Therefore, the carbon film rate of the powder for a lithium ion secondary battery negative electrode material is preferably 10% by mass or less from the viewpoint of securing the charge / discharge capacity of the lithium ion secondary battery. On the other hand, if the carbon film ratio is less than 0.5% by mass, the effect of imparting conductivity by the conductive carbon film cannot be obtained, and the lithium ion secondary battery using the negative electrode material powder is difficult to function as a battery. .
  • the carbon film rate is more preferably 0.5% by mass or more and 2.5% by mass or less.
  • the total content of tar components is preferably 1 mass ppm or more and 4000 mass ppm or less.
  • the tar component is generated when the conductive carbon film is formed, as will be described later.
  • the total content of the tar components is more than 4000 ppm by mass, resistance to expansion and contraction of the negative electrode accompanying charging / discharging of the lithium ion secondary battery is poor, and the cycle characteristics are inferior.
  • it is 4000 mass ppm or less, a lithium ion secondary battery having good initial efficiency and cycle characteristics can be obtained, and in particular, cycle characteristics are improved. If it is 1500 ppm by mass or less, initial efficiency and cycle characteristics are further improved.
  • the total content of the tar component is more preferably 40 mass ppm or more and 1500 mass ppm or less.
  • O content in powder for lithium ion secondary battery negative electrode material was analyzed by 10% of sample by inert gas melting / infrared absorption method using oxygen concentration analyzer (Leco, TC436). It is calculated from the O content in the sample quantitatively evaluated.
  • Si content in the negative electrode powder for lithium ion secondary batteries was determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and then adding the resulting solution to an ICP emission spectrometer (Shimadzu Corporation). And the Si content in the sample under quantitative evaluation.
  • the Si / C is preferably 0.05 or less, and more preferably 0.02 or less. “Si / C is 0.02 or less” is a state in which most of the surface of the lower silicon oxide powder is covered with C and Si is hardly exposed.
  • D50 and D10 can be measured using a laser diffraction particle size distribution measuring device.
  • the measurement conditions are as shown in Table 2.
  • a 2 g sample is placed in the apparatus, and 2 g / L sodium hexametaphosphate is added as a dispersant.
  • the measurement range is 0.02 ⁇ m to 2000 ⁇ m, and the weight distribution is measured.
  • D10 is the particle size when the cumulative frequency from the smaller particle size reaches 10%
  • D50 is the particle size when the cumulative frequency from the smaller particle size reaches 10%.
  • the thickness of the conductive carbon film is calculated from the specific surface area of the lower silicon oxide powder and the carbon film ratio measured by the BET method described later, when the thickness is uniform. can do.
  • the density of both lower silicon oxide and carbon is about 2.2 g / cm 3 , although it varies somewhat depending on the composition and degree of graphitization. Assuming that these densities are equal, when the thickness of the conductive carbon film is as small as nanometer order, the film thickness A [nm] is equal to the specific surface area B [m 2 / g] and the carbon coverage C From [wt%], it can be calculated using the following equation (1).
  • A 4.55 ⁇ C ⁇ B (1)
  • the specific surface area of lower silicon oxide powder formed with a conductive carbon film can be measured by the following BET method. 0.5 g of sample is put in a glass cell and dried under reduced pressure at 200 ° C. for about 5 hours. Then, the specific surface area is calculated from the nitrogen gas adsorption isotherm at the liquid nitrogen temperature ( ⁇ 196 ° C.) measured for this sample. The measurement conditions are as shown in Table 3.
  • Carbon film ratio measurement method The carbon film ratio is determined by measuring the mass of the powder for the negative electrode material of the lithium ion secondary battery and the CO 2 gas by an oxygen gas flow combustion-infrared absorption method using a carbon concentration analyzer (Leco, CS400). It is calculated from the result of carbon amount quantitatively evaluated by analysis.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • TPD-MS Temporal Programmed Desorption-Mass Spectroscopy
  • the tar component is a high molecular weight component such as an aromatic hydrocarbon generated when a hydrocarbon or organic gas is thermally decomposed.
  • the total amount of components having molecular weights of 57, 106, 178, 202, 252 and 276 is defined as the residual tar component amount (see Table 5 described later).
  • Representative chemical species of each molecular weight are 106 for xylene, 178 for phenanthrene and anthracene, 202 for pyrene, 252 for perylene and benzopyrene, and 276 for pentacene and picene.
  • FIG. 2 is a diagram showing a configuration example of a silicon oxide manufacturing apparatus.
  • This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous silicon oxide generated by sublimation in the raw material chamber 6.
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • a mixed granulated raw material 9 in which silicon powder and silicon dioxide powder are blended at a predetermined ratio as a raw material, mixed, granulated and dried is used.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as lower silicon oxide 12. Thereafter, the lower silicon oxide 12 deposited from the deposition base 11 is removed and pulverized using a ball mill or the like to obtain a lower silicon oxide powder.
  • the lower silicon oxide powder obtained in this way contains fine powder, and thus, for example, the fine powder is removed by the following method.
  • Lower silicon oxide powder is immersed in a beaker containing water so that the water depth becomes 10 cm, and ultrasonic vibration is applied by an ultrasonic cleaner. Thereafter, natural sedimentation is performed, the fine water remaining in the aqueous layer is removed by discarding the supernatant water, and only the settled powder is recovered.
  • the particle size of the lower silicon oxide powder can be adjusted, and the value of D50 / D10 can be set within a predetermined range. When the sedimentation time is long, not only the particles having a large particle size but also fine powder remaining in the aqueous layer sinks, and the value of D50 / D10 increases.
  • FIG. 3 is a diagram showing the particle size distribution before and after sedimentation separation.
  • FIG. 3 (a) shows the distribution before sedimentation separation
  • FIG. 3 (b) shows the distribution after sedimentation separation.
  • the figure (a) is a particle size distribution about the test number 4 which is a comparative example in the below-mentioned Example
  • the figure (b) is the particle size distribution about the test number 1 which is an example of this invention. From these figures, it can be seen that fine powder having a particle size of about 1 ⁇ m has been removed by sedimentation separation.
  • the recovered lower silicon oxide powder is dried in an oven at 130 ° C. for 24 hours or more under atmospheric pressure. Then, it is crushed in an agate mortar and further dried under the same conditions.
  • the method of adjusting the particle size of the lower silicon oxide powder is not limited to sedimentation separation, and can be performed by air classification or the like.
  • the conductive carbon film is formed on the surface of the lower silicon oxide powder having the adjusted particle size by CVD or the like. Specifically, a rotary kiln is used as the apparatus, and a mixed gas of a hydrocarbon gas or an organic substance-containing gas that is a carbon source and an inert gas is used as a gas.
  • hydrocarbon gas consisting only of C and H is preferable as the carbon source.
  • a hydrocarbon gas is used as a carbon source, an aromatic substance composed of only C and H is generated as a tar component, and components having molecular weights of 57, 106, 178, 202, 252 and 276 are the main components.
  • the forming temperature of the conductive carbon film is 700 ° C. or higher and 750 ° C. or lower.
  • the treatment time is 20 minutes or more and 120 minutes or less, and is set according to the thickness of the conductive carbon film to be formed.
  • This treatment condition is a range in which a conductive carbon film having low crystallinity can be obtained. Moreover, it is also the range in which the production
  • the conductive carbon film has better cycle characteristics of the lithium ion secondary battery when the crystallinity is lower. This is considered to be due to the fact that the higher the crystallinity of the conductive carbon film, the lower the lithium ion acceptance rate and the lower the ability to relax the expansion and contraction of silicon oxide. Further, SiC is generated near the interface between the surface of the lower silicon oxide powder and the carbon film when the heating temperature is excessively high. Since generation of SiC reduces the amount of Si that can contribute to the capacity of the battery, it is preferable to suppress generation of SiC.
  • Vacuum treatment method of lower silicon oxide powder with conductive carbon film formed The lower silicon oxide powder with conductive carbon film formed under vacuum at a temperature of 600 ° C. or higher and 750 ° C. or lower for 10 minutes or longer and 1 hour or shorter Apply vacuum treatment to hold.
  • the vacuum treatment is performed in a state where the lower silicon oxide powder is housed in a vacuum chamber, and the internal pressure of the vacuum chamber is maintained at 1 Pa or less using an oil diffusion pump. This internal pressure is measured using a Pirani gauge.
  • the tar component generated during the formation of the carbon film can be volatilized and removed from the carbon film by vacuum treatment. Moreover, when the heating holding temperature is in the above range, the generation of SiC in the vicinity of the interface between the silicon oxide and the carbon film is suppressed.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the powder for negative electrode material of the lithium ion secondary battery of the present invention. Specifically, it can be comprised with the powder for lithium ion secondary battery negative electrode materials of this invention which is an active material, another active material, a conductive support agent, and a binder. Of the constituent materials in the negative electrode material, the ratio of the powder for the negative electrode material of the lithium ion secondary battery of the present invention to the total of the constituent materials excluding the binder is 20% by mass or more. It is not always necessary to add an active material other than the powder for a negative electrode material of the lithium ion secondary battery of the present invention.
  • the conductive assistant for example, acetylene black or carbon black can be used
  • the binder for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
  • the lithium ion secondary battery of the present invention uses the above-described powder for a lithium ion secondary battery negative electrode material and a lithium ion secondary battery negative electrode of the present invention, the discharge capacity is large, the cycle characteristics are good, and the practical level. Can withstand use in
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • Test conditions 1-1 Configuration of Lithium Ion Secondary Battery
  • the configuration of the lithium ion secondary battery was the coin shape shown in FIG.
  • the negative electrode 2 will be described. Silicon powder and silicon dioxide powder are blended at a predetermined ratio, and mixed, granulated and dried mixed granulated raw materials are used as raw materials, and lower silicon oxide is deposited on the deposition substrate using the apparatus shown in FIG. .
  • the deposited lower silicon oxide was pulverized for 24 hours using an alumina ball mill to obtain a powder having a D50 of 4.4 ⁇ m.
  • This lower silicon oxide powder was subjected to particle size adjustment by natural sedimentation for a maximum of 168 hours by the method described above.
  • the values of D50, D10 and D50 / D10 after adjusting the sedimentation time and particle size were as shown in Tables 4 to 6 below (test numbers 1 to 14).
  • This lower silicon oxide (SiO x ) powder satisfied x 1.
  • a conductive carbon film was formed on the surface of the lower silicon oxide powder to obtain a negative electrode material powder for a lithium ion secondary battery.
  • a rotary kiln was used as the apparatus, a mixed gas of normal butane and Ar was used as the gas, and the treatment temperature was 700 ° C.
  • the formation temperature of carbon film, the rate of carbon film, and the thickness of the carbon film were as shown in Tables 4-6.
  • Test Nos. 1 to 6 shown in Table 4 the value of D50 / D10 was changed by changing the sedimentation time.
  • Test numbers 1 to 3 are examples of the present invention, and the value of D50 / D10 satisfied the definition of the present invention.
  • Test numbers 4 to 6 are comparative examples, and the value of D50 / D10 did not satisfy the definition of the present invention.
  • Test Nos. 7 and 8 shown in Table 5 a vacuum treatment was performed after forming a conductive carbon film.
  • the holding temperature was 700 ° C.
  • the holding time was as shown in Table 4, and the internal pressure of the vacuum chamber was kept at 1 Pa or less using an oil diffusion pump.
  • Test Nos. 9 to 14 shown in Table 6 the carbon film ratio was changed.
  • Test numbers 7 to 14 are all examples of the present invention, and the value of D50 / D10 satisfied the definition of the present invention.
  • the values of D50 / D10 are in the range of 1.70 or more and 1.80 or less.
  • a slurry is prepared by adding n-methylpyrrolidone to a mixture of 65% by mass of the negative electrode material powder for lithium ion secondary battery, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
  • the counter electrode 1c was a lithium foil.
  • LiPF 6 lithium phosphorous hexafluoride
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyethylene porous film having a thickness of 30 ⁇ m was used as the separator.
  • Test results A lithium-ion secondary battery produced under the above conditions was subjected to a charge / discharge test and evaluated using the initial discharge capacity as an index. Moreover, about the powder for lithium ion secondary battery negative electrode materials, the specific surface area measured by BET method, the carbon film rate, and the thickness of the carbon film were also measured. For test numbers 1, 7 and 8, the total content of tar components was also measured. These values are shown in Tables 4 to 6 together with the test conditions.
  • test numbers 9 to 14 had excellent initial discharge capacities of 1659 mAh / g or more.
  • the thickness of the carbon film is 1.5 nm or more as in Test Nos. 9 to 12.
  • the thickness was 7.5 nm or less, a further excellent value was obtained.
  • Test No. 9 has a carbon coverage of 0.5% by mass or more and 2.5% by mass or less, a carbon film thickness of 2.0 nm or more and 5.0 nm or less, and an initial discharge capacity. It was the most excellent value of 1734 mAh / g.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 低級酸化珪素粉末の表面に導電性炭素皮膜を有し、この酸化珪素粉末の粒度分布において、1μm≦D50≦20μmであり、D50とD10が1.4≦D50/D10≦2.4を満足するリチウムイオン二次電池負極材用粉末。導電性炭素皮膜の厚さは1.5nm以上、7.5nm以下であること、BET法で測定した比表面積は0.3m2/g以上、7.0m2/g以下であること、前記導電性炭素皮膜の占める割合は0.5質量%以上10質量%以下であることが、それぞれ好ましい。TPD-MSで測定したタール成分の合計含有率が1質量ppm以上4000質量ppm以下であることが好ましく、XRD測定でSiOx由来のハローの最大値P1とSi(111)の最強線ピークの値P2がP2/P1<0.01を満たすことが好ましい。これにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池に用いられる負極材用粉末を提供することができる。

Description

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
 本発明は、リチウムイオン二次電池に用いることにより放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末に関する。また本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、図1に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、カーボン系材料が用いられている。従来のものよりもリチウムイオン二次電池を高容量とする新規負極活物質として、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、リチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される酸化珪素の粉末を用いることが、従来から試みられている。酸化珪素は、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化が小さいことから、有効な充放電容量がより大きな負極活物質となり得る。そのため、酸化珪素を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。
 負極活物質として酸化珪素粉末を用いる場合、酸化珪素の電気伝導度の低さを補うために、一般に導電助剤としてカーボン粉末等が混合される。これにより、酸化珪素粉末と導電助剤との接触部近辺の電気伝導性は確保できる。しかし、接触部から離れた箇所では電気伝導性が確保できず、負極活物質として機能しにくい。
 この問題を解決するため、特許文献1では、珪素の微結晶が二酸化珪素に分散した構造を有する粒子(導電性珪素複合体)の表面にCVD(化学気相成長)で炭素の皮膜を形成した非水電解質二次電池負極材用の導電性珪素複合体およびその製造方法が提案されている。
特許第3952180号公報
 特許文献1で提案された方法によれば、導電性珪素複合体に均一な炭素皮膜が形成され、十分な電気伝導性を付与することができる。しかし、本発明者らの検討によると、特許文献1の導電性珪素複合体を用いたリチウムイオン二次電池は、珪素の微結晶が分散した二酸化珪素を負極材として用いるため、充放電時におけるリチウムイオンの吸蔵、放出時の膨張、収縮が大きくなり、充放電を繰り返すと、ある時点で容量が突然低下する等の課題があった。また、放電容量およびサイクル特性が十分ではなかった。
 この課題を解決するために、本発明者らは、特にリチウムイオン二次電池の高容量化を図れる負極材用粉末(負極活物質)であると考えられる酸化珪素について種々検討を行った。その結果、初期効率(リチウムイオン二次電池の製造後、最初の充放電時(初回充放電時)の、放電容量の充電容量に対する比の値)の低下は、下記(1)式に示すLiSiOの生成によるものと考えるに至った。(1)式の右辺第1項のLi22Siが可逆容量、第2項のLiSiOが不可逆容量を担う成分である。LiSiOはリチウムイオンを放出することができない。
  SiO+(44-x)/10Li+(44-x)/10e
   → (4-x)/20Li22Si+x/4LiSiO …(1)
 本発明者らの検討によると、酸化珪素(SiO)を負極材用粉末とし、x=1である場合のリチウムイオン二次電池の理論上の特性は、可逆容量が2007mAh/gであり、初期効率は76%であることがわかった。これまでの酸化珪素を負極材用粉末として用いたリチウムイオン二次電池では可逆容量の大きいものであっても1500mAh/g程度であったため、酸化珪素を負極材用粉末として用いたリチウムイオン二次電池の可逆容量には未だに改善の余地があることがわかった。
 本発明者らがさらに検討を進めたところ、特許文献1に記載の条件で酸化珪素粉末の表面に炭素皮膜を形成した負極材用粉末を、バインダーや導電助剤と混合してスラリーにする時に、微細な気泡が生成することを発見した。スラリーに気泡が含まれると、バインダーと電極基板との接触面積が減少するため、負極(前記図1の作用極2c)と、銅板からなる電極基板(同、作用極集電体2b)との密着性が弱くなり、初期放電容量が少なくなる。
 本発明は、この課題に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池の負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタを提供することを目的とする。
 上記の課題を解決するために、本発明者らは、スラリー作製時の気泡の生成を抑制する方法について検討した。発明者らは、SiO粉末の中でも微粉が気泡を生成させやすい原因であると推定した。そして、沈降分離によって微粉を除去し、粒度分布の広がりを抑制したSiO粉末を使用したところ、微粉を除去しないものと比較してスラリーの生成時の気泡が少ないことを知見した。また、微粉を除去したSiO粉末を使用したスラリーは、微粉を除去しないものと比較して密度が高く、このスラリーを負極材に使用したリチウムイオン二次電池は初期放電容量が高いことを知見した。これらは、スラリー内部の気泡が減少したことに起因すると考えられる。
 さらに検討したところ、SiO粉末の粒度分布におけるD50とD10の関係について1.4≦D50/D10≦2.4を満足させることにより、リチウムイオン二次電池の初期放電容量が優れた値となることを知見した。
 本発明は、以上の知見に基づいてなされたものであり、その要旨は、下記(1)~(6)のリチウムイオン二次電池負極材用粉末、下記(7)のリチウムイオン二次電池負極および下記(8)のキャパシタ負極、ならびに下記(9)のリチウムイオン二次電池および下記(10)のキャパシタにある。
(1)低級酸化珪素粉末の表面に導電性炭素皮膜を有し、この酸化珪素粉末の粒度分布において、1μm≦D50≦20μmであり、D50とD10の関係が1.4≦D50/D10≦2.4を満足することを特徴とするリチウムイオン二次電池負極材用粉末。
(2)前記導電性炭素皮膜の厚さが、1.5nm以上、7.5nm以下であることを特徴とする前記(1)のリチウムイオン二次電池負極材用粉末。
(3)BET法で測定した比表面積が、0.3m/g以上、7.0m/g以下であることを特徴とする前記(1)または(2)のリチウムイオン二次電池負極材用粉末。
(4)前記導電性炭素皮膜の占める割合が、0.5質量%以上、10質量%以下であることを特徴とする前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末。
(5)TPD-MSで測定したタール成分の合計含有率が、1質量ppm以上、4000質量ppm以下であることを特徴とする前記(1)~(4)のいずれかのリチウムイオン二次電池負極材用粉末。
(6)CuKα線を用いたXRDで測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2の関係が、P2/P1<0.01を満足することを特徴とする前記(1)~(5)のいずれかのリチウムイオン二次電池負極材用粉末。
(7)前記(1)~(6)のいずれかのリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
(8)前記(1)~(6)のいずれかのリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
(9)前記(7)のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
(10)前記(8)のキャパシタ負極を用いたキャパシタ。
 本発明において、「低級酸化珪素粉末」とは、xが0.4≦x≦1.2を満足するSiOの粉末である。SiOのx、D50、D10、導電性炭素皮膜の厚さ、比表面積、負極材用粉末において導電性炭素皮膜の占める割合、およびタール成分含有率の、それぞれの測定方法については後述する。
 低級酸化珪素粉末について「表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.1以下であることをいう。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。 図2は酸化珪素の製造装置の構成例を示す図である。 図3はSiO粉末の沈降分離前後の粒度分布を示す図であり、同図(a)は沈降分離前の分布、同図(b)は沈降分離後の分布を示す。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末は、低級酸化珪素粉末の表面に導電性炭素皮膜を有し、この酸化珪素粉末の粒度分布において、1μm≦D50≦20μmであり、D50とD10の関係が1.4≦D50/D10≦2.4を満足することを特徴とする。
 低級酸化珪素粉末とは、上述のように、xが0.4≦x≦1.2を満足するSiOの粉末である。xをこの範囲とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えると電池の容量が小さくなるからである。また、xは、0.8≦x≦1.05を満足するのが好ましい。
 絶縁体である低級酸化珪素粉末に導電性炭素皮膜を形成することで、この低級酸化珪素粉末を負極材用粉末として用いたリチウムイオン二次電池の放電容量を改善することができる。導電性炭素皮膜の厚さは、1.5nm以上、7.5nm以下とするのが好ましい。導電性炭素皮膜が1.5nm未満では電気伝導性が不足する可能性があり、7.5nmを超えて厚いと低級酸化珪素粉末の表面から剥離しやすく、いずれの場合とも、リチウムイオン二次電池の放電容量が不十分となるおそれがあるからである。導電性被膜の厚さは、2.0nm以上、5.0nm以下とするのがより好ましい。
 本発明のリチウムイオン二次電池負極材用粉末は、粒度分布において、1μm≦D50≦20μmである。Dn(0<n≦100)とは、粒径が小さい方からの積算頻度がn%に達する時の粒径である。D50<1μmでは、スラリーの作製時に気泡が発生しやすくなるため、電極基板と負極との密着性が弱くなる。一方、20μm<D50では、負極表面の粗さが大きくなり、この場合も電極基板と負極との密着性が弱くなる。D50は、3μm≦D50≦12μmを満足するのが好ましい。
 また、本発明のリチウムイオン二次電池負極材用粉末は、粒度分布におけるD50とD10の関係が、1.4≦D50/D10≦2.4を満足する。1.4≦D50/D10≦2.4とは、粒度分布が適度にシャープであることを表す。
 D50/D10<1.4では、粒度分布が過度にシャープであり、負極材用粉末をバインダーや導電助剤と混合して作製したスラリーの嵩密度が高くなり、この場合もスラリーに気泡が含まれる場合と同様に、塗布した作用極集電体から剥離しやすいため、リチウムイオン二次電池の放電容量が低下する。また、D50/D10>2.4では、粒度分布がブロードであり、スラリーの作製時に気泡の生成量が多く、均一に混合することが困難であり、電極として使用した場合にリチウムイオン二次電池の放電容量が低下する。D50とD10の関係は、1.6≦D50/D10≦2.1を満足するのが好ましい。
 本発明のリチウムイオン二次電池負極材用粉末は、BET法で測定した比表面積を、0.3m/g以上、7.0m/g以下とするのが好ましい。負極材用粉末の比表面積が小さいと、初回充放電時の電極表面におけるSEI膜(Solid Electrolyte Interface、不可逆容量成分)の生成を抑制することができる。しかし、粒径が約10μmの粉末の場合、比表面積が0.3m/gよりも小さい粉末の製造は、経済的な観点から工業化が困難である。また、比表面積が7.0m/gよりも大きいと、表面積が相当広くなるため、粒子表面に形成されるSEI膜の比率が大きくなり、リチウムイオン二次電池の容量が小さくなるおそれがある。BET法で測定した比表面積は、0.5m/g以上、6.0m/g以下とするのがより好ましい。
 リチウムイオン二次電池負極材用粉末は、導電性炭素皮膜の占める割合(以下、「炭素皮膜率」という)を、0.5質量%以上、10質量%以下とするのが好ましい。これは、以下の理由による。
 炭素皮膜も、低級酸化珪素と同様にリチウムイオン二次電池の充放電容量に寄与するものの、その単位質量あたりの充放電容量は低級酸化珪素に比較して小さい。そのため、リチウムイオン二次電池負極材用粉末の炭素皮膜率は10質量%以下であることが、リチウムイオン二次電池の充放電容量を確保する観点から好ましい。一方、炭素皮膜率が0.5質量%よりも小さいと、導電性炭素皮膜による導電性付与の効果が得られず、この負極材用粉末を用いたリチウムイオン二次電池が電池として作用しにくい。炭素皮膜率は、0.5質量%以上、2.5質量%以下とするのがより好ましい。
 本発明のリチウムイオン二次電池負極材用粉末は、タール成分の合計含有率を、1質量ppm以上、4000質量ppm以下とするのが好ましい。タール成分は、後述するように、導電性炭素皮膜を形成する際に生成する。タール成分の合計含有率が4000質量ppmよりも多いと、リチウムイオン二次電池の充放電に伴う負極の膨張、収縮への耐性が乏しく、サイクル特性に劣る。一方、4000質量ppm以下であると、初期効率およびサイクル特性が良好なリチウムイオン二次電池を得ることができ、特にサイクル特性が良好となる。1500質量ppm以下ではさらに初期効率およびサイクル特性が良好となる。また、タール成分の合計含有率を1質量ppm以下とするのには、リチウムイオン二次電池負極材用粉末の真空処理の時間が長くなり、製造コストがかかる。タール成分の合計含有率は、40質量ppm以上、1500質量ppm以下とするのがより好ましい。
 リチウムイオン二次電池負極材用粉末は、CuKα線を用いたXRDで測定した場合に、10°≦2θ≦30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2が、P2/P1<0.01を満足すること、すなわちアモルファスであることが好ましい。これは、負極材用粉末中の低級酸化珪素粉末が、結晶性を有する場合と比較して、アモルファスである場合にはリチウムイオンの侵入による膨張が緩和されやすく、リチウムイオン二次電池のサイクル特性に優れるからである。
2.分析方法
2-1.SiOのxの算出方法
 SiOのxは、リチウムイオン二次電池負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、例えば下記測定方法で測定したO含有率およびSi含有率を用いて算出することができる。
2-2.O含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
2-3.Si含有率の測定方法
 リチウムイオン二次電池負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価下試料中のSi含有量から算出する。
2-4.導電性炭素皮膜の形成状態の評価方法
 本発明のリチウムイオン二次電池負極材用粉末において、「低級酸化珪素粉末の表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施した低級酸化珪素粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.1以下であることをいう。XPSの測定条件は表1に示す通りとする。リチウムイオン二次電池負極材用粉末に十分に電気伝導性を付与するには、Si/Cは、0.05以下が好ましく、0.02以下がさらに好ましい。「Si/Cが0.02以下」とは、低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
Figure JPOXMLDOC01-appb-T000001
2-5.粒度分布におけるD50およびD10の測定方法
 D50およびD10は、レーザー回折式粒度分布測定装置を使用して測定することができる。測定条件は表2に示す条件とし、2gの試料を装置に入れて、分散剤として2g/Lのヘキサメタリン酸ナトリウムを添加する。測定範囲は0.02μmから2000μmまでとし、重量分布を測定する。D10は、粒径が小さい方からの積算頻度が10%に達する時の粒径であり、D50は、粒径が小さい方からの積算頻度が10%に達する時の粒径である。
Figure JPOXMLDOC01-appb-T000002
2-6.導電性炭素皮膜の厚さの測定方法
 導電性炭素皮膜の厚さは、厚さが均一である場合の値を、後述するBET法によって測定した低級酸化珪素粉末の比表面積と炭素被膜率から算出することができる。組成や黒鉛化度によって多少異なるが、低級酸化珪素および炭素の密度はともに約2.2g/cmである。これらの密度が等しいとすると、導電性炭素皮膜の厚さがナノメートルのオーダーと小さい場合には、皮膜の厚さA[nm]は、比表面積B[m/g]および炭素被覆率C[wt%]から、下記(1)式を用いて算出することができる。
  A=4.55×C÷B …(1)
2-7.導電性炭素皮膜を形成した低級酸化珪素粉末の比表面積の測定方法
 導電性炭素皮膜を形成した低級酸化珪素粉末の比表面積は、以下のBET法によって測定することができる。試料0.5gをガラスセルに入れて、200℃で約5時間、減圧乾燥する。そして、この試料について測定した液体窒素温度(-196℃)における窒素ガス吸着等温線から比表面積を算出する。測定条件は表3に示す通りとする。
Figure JPOXMLDOC01-appb-T000003
2-8.炭素皮膜率の測定方法
 炭素皮膜率は、リチウムイオン二次電池負極材用粉末の質量と、炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
2-9.TPD-MSによるタール成分の含有量の測定方法
 リチウムイオン二次電池負極材用粉末の残留タール成分量は、以下のTPD-MS(Temperature Programmed Desorption‐Mass Spectroscopy;昇温熱脱離・質量分析法)によって測定することができる。試料50mgをシリカ製セルに入れ、50mL/minのヘリウムガスフロー中で、室温から1000℃まで10K/minの速度で昇温する。そして、発生したガスを質量分析計(株式会社島津製作所製、GC/MS QP5050A)で分析する。
 タール成分とは、炭化水素または有機物のガスを熱分解した時に生じる、芳香族炭化水素等の高分子量成分をいう。本発明では、分子量が57、106、178、202、252および276の成分量の合計を、残留タール成分量とする(後述の表5参照)。各分子量の代表化学種は、106はキシレン、178はフェナントレンおよびアントラセン、202はピレン、252はペリレンおよびベンゾピレン、276はペンタセンおよびピセンである。
3.低級酸化珪素粉末の製造方法
 図2は、酸化珪素の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状の酸化珪素を蒸着させるためのステンレス鋼からなる析出基体11が設けられる。
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。
 図2に示す製造装置を用いて低級酸化珪素を製造する場合、原料として珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、低級酸化珪素12として析出する。その後、析出基体11から析出した低級酸化珪素12を取り外し、ボールミル等を使用して粉砕することにより、低級酸化珪素粉末が得られる。
4.粒度の調整方法
 このようにして得られた低級酸化珪素粉末は微粉を含有するため、例えば次の方法で微粉を除去する。水深10cmとなるように水を入れたビーカー内で低級酸化珪素粉末を浸漬させ、超音波洗浄機によって超音波振動を付与する。その後、自然沈降を行い、上澄みの水を捨てることによって水層に残った微粉を除去し、沈降した粉末のみを回収する。析出低級酸化珪素の粉砕時間および低級酸化珪素粉末の沈降時間を調整することにより、低級酸化珪素粉末の粒度を調整し、D50/D10の値を所定の範囲とすることができる。沈降時間が長いと、粒径の大きなもののみならず、水層に残った微粉も沈むため、D50/D10の値が大きくなる。
 図3は、沈降分離前後の粒度分布を示す図であり、同図(a)は沈降分離前、同図(b)は沈降分離後の分布を示す。同図(a)は後述の実施例における比較例である試験番号4、同図(b)は本発明例である試験番号1についての粒度分布である。これらの図から、沈降分離によって、粒径が約1μmの微粉が除去されていることがわかる。
 回収された低級酸化珪素粉末は、オーブンを用いて大気圧下、130℃の条件で24時間以上乾燥させる。その後、メノウ乳鉢で解砕し、さらに同条件で乾燥させる。
 低級酸化珪素粉末の粒度の調整方法は、沈降分離に限られず、風力分級等によっても行うことができる。
5.導電性炭素皮膜の形成方法
 粒度を調整した低級酸化珪素粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭素源である炭化水素ガスまたは有機物含有ガスと、不活性ガスとの混合ガスを用いて行う。
 ただし、炭素源として炭化水素以外の有機物を用いると、OやNといったCおよびH以外の成分が酸化珪素と反応し、SiOやSiを生成するため、リチウムイオンの収容、放出に寄与し得るSi量が減少し、リチウムイオン二次電池の容量が小さくなる。そのため、炭素源としてはCおよびHのみからなる炭化水素ガスが好ましい。炭素源として炭化水素ガスを用いた場合には、タール成分としてCとHのみからなる芳香族が生成し、分子量が57、106、178、202、252および276の成分が主成分となる。
 導電性炭素皮膜の形成処理温度は、700℃以上、750℃以下とする。また、処理時間は、20分以上、120分以下とし、形成する導電性炭素皮膜の厚さに応じて設定する。この処理条件は、結晶性の低い導電性炭素皮膜を得られる範囲である。また、低級酸化珪素粉末の表面と炭素皮膜との界面近傍におけるSiCの生成が抑制される範囲でもある。
 本発明者らの調査によると、導電性炭素皮膜は結晶性が低い方がリチウムイオン二次電池のサイクル特性に優れていることがわかっている。これは、導電性炭素皮膜の結晶性が高いほど、リチウムイオンの受け入れ速度が小さく、かつ酸化珪素の膨張、収縮を緩和する能力が低いことに起因すると考えられる。また、SiCは、加熱温度が過度に高い場合に低級酸化珪素粉末の表面と炭素皮膜との界面近傍に生成する。SiCが生成すると電池の容量に寄与し得るSiの量が減少するため、SiCの生成は抑制することが好ましい。
6.導電性炭素皮膜を形成した低級酸化珪素粉末の真空処理方法
 導電性炭素皮膜を形成した低級酸化珪素粉末には、真空下で、600℃以上、750℃以下の温度に10分以上、1時間以下保持する真空処理を施す。真空処理は、低級酸化珪素粉末を真空槽に収容した状態で行い、真空槽の内圧は、油拡散ポンプを用いて1Pa以下に保つ。この内圧は、ピラニー真空計を用いて測定する。
 真空処理により、炭素皮膜の形成時に生成したタール成分を炭素皮膜から揮発除去することができる。また、加熱保持温度が上記範囲である場合には、酸化珪素と炭素皮膜との界面近傍におけるSiCの生成が抑制される。
7.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明のリチウムイオン二次電池負極材用粉末を用いて構成する。具体的には、活物質である本発明のリチウムイオン二次電池負極材用粉末とその他の活物質と導電助剤とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明のリチウムイオン二次電池負極材用粉末の割合は20質量%以上とする。本発明のリチウムイオン二次電池負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助剤としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデンを使用することができる。
 本発明のリチウムイオン二次電池は、上述の本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。
1.試験条件
1-1.リチウムイオン二次電池の構成
 リチウムイオン二次電池の構成は、前記図1に示すコイン形状とした。
 最初に負極2について説明する。珪素粉末と二酸化珪素粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図2に示す装置を用いて析出基板上に低級酸化珪素を析出させた。析出した低級酸化珪素は、アルミナ製ボールミルを使用して24時間粉砕してD50が4.4μmの粉末とした。この低級酸化珪素粉末は、上述の方法で最大168時間の自然沈降により粒度調整を行った。沈降時間、粒度調整後のD50、D10およびD50/D10の値は後掲の表4~6に示す通りとした(試験番号1~14)。この低級酸化珪素(SiO)の粉末は、x=1を満たしていた。
 低級酸化珪素粉末の表面には導電性炭素皮膜を形成し、リチウムイオン二次電池負極材用粉末とした。炭素皮膜の形成には、装置としてロータリーキルン、ガスとしてノルマルブタンとArとの混合ガスを使用し、処理温度は700℃とした。炭素皮膜の形成処理温度、炭素皮膜率および炭素皮膜の厚さは、表4~6に示す通りとした。
 表4に示す試験番号1~6では、沈降時間を変化させてD50/D10の値を変化させた。試験番号1~3は本発明例であり、D50/D10の値が本発明の規定を満足した。試験番号4~6は比較例であり、D50/D10の値が本発明の規定を満足しなかった。
 表5に示す試験番号7および8では、導電性炭素皮膜を形成した後、真空処理を施した。保持温度は700℃、保持時間は表4に示す条件とし、真空槽の内圧は油拡散ポンプを用いて1Pa以下に保った。また、表6に示す試験番号9~14では、炭素皮膜率を変化させた。試験番号7~14はいずれも本発明例であり、D50/D10の値が本発明の規定を満足した。試験番号1および7~14では、沈降時間を24時間に統一したため、D50/D10の値は1.70以上、1.80以下の範囲に揃っている。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 このリチウムイオン二次電池負極材用粉末を65質量%、アセチレンブラックを10質量%、PAAを25質量%とした混合物に、n‐メチルピロリドンを加えてスラリーを作製する。このスラリーを厚さ20μmの銅箔に塗布し、120℃の雰囲気下で30分乾燥した後、片面の面積が1cmとなる大きさに打ち抜いて負極2とした。
 対極1cはリチウム箔とした。電解質は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPF(六フッ化リンリチウム)を1モル/リットルの割合となるように溶解させた溶液とした。セパレーターには厚さ30μmのポリエチレン製多孔質フィルムを用いた。
1-2.充放電試験条件
 充放電試験には、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまでは1mAの定電流で行い、電圧が0Vに達した後は、0Vを維持したまま充電を行った。その後、電流値が20μAを下回った時点で充電を終了した。放電は、リチウムイオン二次電池の両極間の電圧が1.5Vに達するまでは1mAの定電流で行った。以上の充放電試験は10サイクル行った。
2.試験結果
 上記条件で作製したリチウムイオン二次電池について充放電試験を行い、初回放電容量を指標として評価を行った。また、リチウムイオン二次電池負極材用粉末について、BET法で測定した比表面積、炭素皮膜率、炭素皮膜の厚さも測定した。試験番号1、7および8についてはタール成分の合計含有率も測定した。これらの値を試験条件と併せて前記表4~6に示す。
2-1.粒度分布の影響
 前記表4に示す試験結果に基づいて、粒度分布、すなわちD50/D10の値の影響について説明する。試験番号1~6の全てにおいて、比表面積、炭素被覆率および炭素皮膜の厚さは、本発明で好ましいとする範囲内であった。
 試験番号4では沈降を行わなかったため、試験番号5では沈降時間が長すぎて水層から微粉が沈降したため、いずれも低級酸化珪素粉末に微粉が多く含まれており、D50/D10の値は本発明の規定する範囲よりも大きかった。また、試験番号6は、沈降時間が短すぎたため、低級酸化珪素粉末には微粉とともに粒径の小さいものも少なく、D50/D10の値は1.34と本発明の規定する範囲よりも小さかった。そのため、試験番号4~6では、初回放電容量は1619mAh/g以下と小さかった。
 一方、試験番号1~3では沈降時間が適切であったため、D50/D10の値は本発明の規定する範囲内であり、初回放電容量は1706mAh/g以上と優れた値であった。
2-2.タール成分の合計含有率の影響
 前記表5に示す試験結果に基づいて、タール成分の合計含有率の影響について説明する。試験番号7および8のいずれも、比表面積、炭素被覆率および炭素皮膜の厚さは、本発明で好ましいとする範囲内であった。表5には、比較対象として試験番号1も記載している。
 前記表4に示すように、タール成分を除去しなかった試験番号1~6では試験番号1において初回放電容量が最も優れた値であった。しかし、表5に示すように、D50/D10の値を試験番号1と同等とした試験番号7および8では、タール成分を除去し、タール成分の合計含有率を4000質量ppm以下とすることにより、初回放電容量がさらに優れた値となった。表5に示す結果から、真空処理時間が長いほど、タール成分の合計含有率が低下し、初回放電容量が大きいことがわかる。
2-3.炭素被覆率および炭素皮膜の厚さの影響
 前記表6に示す試験結果に基づいて、炭素被覆率および炭素皮膜の影響について説明する。表6に示す試験番号9~14のうち、試験番号9~12はいずれも、比表面積、炭素被覆率および炭素皮膜の厚さは、本発明で好ましいとする範囲内であった。試験番号13は炭素皮膜の厚さが、試験番号14は炭素被覆率および炭素皮膜の厚さが、それぞれ本発明で好ましいとする範囲外であった。
 表6に示すように、試験番号9~14はいずれも初期放電容量が1659mAh/g以上と優れた値であった。しかし、試験番号9~13のように炭素被覆率を0.5質量%以上、10質量%以下とすることにより、また、試験番号9~12のように炭素皮膜の厚さを1.5nm以上、7.5nm以下とすることにより、さらに優れた値となった。
 特に、試験番号9は、炭素被覆率が0.5質量%以上、2.5質量%以下であり、かつ炭素皮膜の厚さが2.0nm以上、5.0nm以下であり、初期放電容量が1734mAh/gと最も優れた値であった。
 また、試験番号1~14のいずれのリチウムイオン二次電池とも、10回目の放電容量と初回放電容量との比の値が93%と、サイクル特性が優れていたことを確認した。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、 
2:負極、 2a:作用極ケース、 2b:作用極集電体、 
2c:作用極、 3:セパレーター、 4:ガスケット、 5:真空室、 
6:原料室、 7:析出室、 8:原料容器、 9:混合造粒原料、 
10:加熱源、 11:析出基体、 12:低級酸化珪素

Claims (10)

  1.  低級酸化珪素粉末の表面に導電性炭素皮膜を有し、この酸化珪素粉末の粒度分布において、1μm≦D50≦20μmであり、D50とD10の関係が1.4≦D50/D10≦2.4を満足することを特徴とするリチウムイオン二次電池負極材用粉末。
  2.  前記導電性炭素皮膜の厚さが、1.5nm以上、7.5nm以下であることを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。
  3.  BET法で測定した比表面積が、0.3m/g以上、7.0m/g以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。
  4.  前記導電性炭素皮膜の占める割合が、0.5質量%以上、10質量%以下であることを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  5.  TPD-MSで測定したタール成分の合計含有率が、1質量ppm以上、4000質量ppm以下であることを特徴とする請求項1~4のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  6.  CuKα線を用いたX線回折装置で測定した場合に、2θ=10°~30°に現れるSiOに由来するハローの最大値P1と、2θ=28.4±0.3°に現れるSi(111)の最強線ピークの値P2の関係が、P2/P1<0.01を満足することを特徴とする請求項1~5のいずれかに記載のリチウムイオン二次電池負極材用粉末。
  7.  請求項1~6のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
  8.  請求項1~6のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
  9.  請求項7に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
  10.  請求項8に記載のキャパシタ負極を用いたキャパシタ。
     
     
PCT/JP2011/005647 2010-12-07 2011-10-07 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ WO2012077268A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137012843A KR101513820B1 (ko) 2010-12-07 2011-10-07 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
CN2011800569500A CN103229336A (zh) 2010-12-07 2011-10-07 锂离子二次电池负极材料用粉末、使用其的锂离子二次电池负极及电容器负极、以及锂离子二次电池及电容器
JP2012547676A JP5648070B2 (ja) 2010-12-07 2011-10-07 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-272745 2010-12-07
JP2010272745 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012077268A1 true WO2012077268A1 (ja) 2012-06-14

Family

ID=46206784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005647 WO2012077268A1 (ja) 2010-12-07 2011-10-07 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Country Status (4)

Country Link
JP (1) JP5648070B2 (ja)
KR (1) KR101513820B1 (ja)
CN (1) CN103229336A (ja)
WO (1) WO2012077268A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069197A1 (ja) * 2011-11-11 2013-05-16 株式会社豊田自動織機 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
JP2013101770A (ja) * 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法
WO2014002356A1 (ja) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2014065417A1 (ja) * 2012-10-26 2014-05-01 日立化成株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2014175071A (ja) * 2013-03-06 2014-09-22 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015022964A (ja) * 2013-07-22 2015-02-02 株式会社デンソー リチウムイオン二次電池用負極材料,その製造方法及びリチウムイオン二次電池
JP2015530704A (ja) * 2012-12-06 2015-10-15 エルジー・ケム・リミテッド リチウム二次電池用高容量負極活物質、その製造方法、及びそれを含むリチウム二次電池
US9742007B2 (en) 2014-02-27 2017-08-22 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2017199657A (ja) * 2016-04-21 2017-11-02 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US10446846B2 (en) 2017-08-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material particle, negative electrode, lithium ion secondary battery, and method of producing negative electrode active material particle
CN110635123A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
JPWO2018198377A1 (ja) * 2017-04-28 2020-03-12 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US20210028438A1 (en) * 2018-06-12 2021-01-28 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2022514713A (ja) * 2019-11-14 2022-02-14 寧徳新能源科技有限公司 負極材料、並びにそれを含む電気化学装置及び電子装置
JP2022515216A (ja) * 2019-11-14 2022-02-17 寧徳新能源科技有限公司 負極材料、並びにそれを含む電気化学装置及び電子装置
WO2022259914A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
WO2022259920A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
EP4080610A4 (en) * 2019-12-20 2023-06-21 Posco METHOD OF MANUFACTURE OF ANODE MATERIAL FOR LITHIUM SECONDARY BATTERY, ACTIVE ANODE MATERIAL FOR LITHIUM SECONDARY BATTERY MANUFACTURED BY METHOD, AND LITHIUM SECONDARY BATTERY WITH THE ACTIVE ANODE MATERIAL
JP7349498B2 (ja) 2019-11-14 2023-09-22 寧徳新能源科技有限公司 負極材料、並びに、それを含む電気化学装置及び電子装置
JP7420836B2 (ja) 2019-10-22 2024-01-23 博賽利斯(南京)有限公司 電極材料用のシリカ粒子及びその製造方法と適用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036132A (ko) 2012-07-06 2015-04-07 도레이 카부시키가이샤 리튬 이온 이차 전지용 부극 재료, 리튬 이온 이차 전지용 복합 부극 재료, 리튬 이온 이차 전지 부극용 수지 조성물, 리튬 이온 이차 전지용 부극 및 리튬 이온 이차 전지
CN104638237B (zh) * 2015-01-20 2018-03-13 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池氧化亚硅复合材料、制备方法及其用途
WO2018097213A1 (ja) * 2016-11-22 2018-05-31 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
CN110911635B (zh) * 2019-11-14 2021-01-01 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN110890531B (zh) * 2019-11-14 2021-03-05 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN113540426B (zh) * 2019-11-28 2022-09-09 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
TWI759209B (zh) * 2021-05-19 2022-03-21 中美矽晶製品股份有限公司 矽氧化物之製備裝置
CN113745645B (zh) * 2021-09-08 2022-08-05 珠海冠宇电池股份有限公司 一种硅负极体系的锂离子电池
EP4322248A1 (en) * 2021-10-05 2024-02-14 LG Energy Solution, Ltd. Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (ja) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材
JP3952180B2 (ja) * 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2011065934A (ja) * 2009-09-18 2011-03-31 Osaka Titanium Technologies Co Ltd 珪素酸化物およびリチウムイオン二次電池用負極材
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP2011192453A (ja) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP4810794B2 (ja) * 2004-03-31 2011-11-09 株式会社Gsユアサ 非水電解質二次電池
CN1913200B (zh) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 锂离子电池硅碳复合负极材料及其制备方法
JP5131429B2 (ja) * 2006-12-15 2013-01-30 信越化学工業株式会社 非水電解質二次電池用負極及びその製造方法
JP5555978B2 (ja) * 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5245559B2 (ja) 2008-06-16 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (ja) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材
JP3952180B2 (ja) * 2002-05-17 2007-08-01 信越化学工業株式会社 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2011065934A (ja) * 2009-09-18 2011-03-31 Osaka Titanium Technologies Co Ltd 珪素酸化物およびリチウムイオン二次電池用負極材
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP2011192453A (ja) * 2010-03-12 2011-09-29 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101770A (ja) * 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法
WO2013069197A1 (ja) * 2011-11-11 2013-05-16 株式会社豊田自動織機 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
US9819007B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode material and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US9819008B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
JPWO2013069197A1 (ja) * 2011-11-11 2015-04-02 株式会社豊田自動織機 リチウムイオン二次電池用の負極材及び負極、並びにリチウムイオン二次電池
US9819009B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
JP5909552B2 (ja) * 2012-06-25 2016-04-26 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2014002356A1 (ja) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JPWO2014002356A1 (ja) * 2012-06-25 2016-05-30 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
CN110010880A (zh) * 2012-10-26 2019-07-12 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US10693130B2 (en) 2012-10-26 2020-06-23 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2014065417A1 (ja) * 2012-10-26 2016-09-08 日立化成株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US11251421B2 (en) 2012-10-26 2022-02-15 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110635124A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN104737337A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN110635123A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN110021735A (zh) * 2012-10-26 2019-07-16 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
TWI624984B (zh) * 2012-10-26 2018-05-21 日立化成股份有限公司 鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池
WO2014065417A1 (ja) * 2012-10-26 2014-05-01 日立化成株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2015530704A (ja) * 2012-12-06 2015-10-15 エルジー・ケム・リミテッド リチウム二次電池用高容量負極活物質、その製造方法、及びそれを含むリチウム二次電池
JP2014175071A (ja) * 2013-03-06 2014-09-22 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015022964A (ja) * 2013-07-22 2015-02-02 株式会社デンソー リチウムイオン二次電池用負極材料,その製造方法及びリチウムイオン二次電池
US9742007B2 (en) 2014-02-27 2017-08-22 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2017199657A (ja) * 2016-04-21 2017-11-02 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6995488B2 (ja) 2016-04-21 2022-02-04 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JPWO2018198377A1 (ja) * 2017-04-28 2020-03-12 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
US10446846B2 (en) 2017-08-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material particle, negative electrode, lithium ion secondary battery, and method of producing negative electrode active material particle
US20210028438A1 (en) * 2018-06-12 2021-01-28 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JP7420836B2 (ja) 2019-10-22 2024-01-23 博賽利斯(南京)有限公司 電極材料用のシリカ粒子及びその製造方法と適用
JP2022514713A (ja) * 2019-11-14 2022-02-14 寧徳新能源科技有限公司 負極材料、並びにそれを含む電気化学装置及び電子装置
JP7349498B2 (ja) 2019-11-14 2023-09-22 寧徳新能源科技有限公司 負極材料、並びに、それを含む電気化学装置及び電子装置
JP7350072B2 (ja) 2019-11-14 2023-09-25 寧徳新能源科技有限公司 負極材料、並びにそれを含む電気化学装置及び電子装置
JP2022515216A (ja) * 2019-11-14 2022-02-17 寧徳新能源科技有限公司 負極材料、並びにそれを含む電気化学装置及び電子装置
EP4080610A4 (en) * 2019-12-20 2023-06-21 Posco METHOD OF MANUFACTURE OF ANODE MATERIAL FOR LITHIUM SECONDARY BATTERY, ACTIVE ANODE MATERIAL FOR LITHIUM SECONDARY BATTERY MANUFACTURED BY METHOD, AND LITHIUM SECONDARY BATTERY WITH THE ACTIVE ANODE MATERIAL
WO2022259914A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
WO2022259920A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
KR20240019115A (ko) 2021-06-08 2024-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 및 리튬 이온 이차 전지
KR20240019114A (ko) 2021-06-08 2024-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 및 리튬 이온 이차 전지

Also Published As

Publication number Publication date
JP5648070B2 (ja) 2015-01-07
JPWO2012077268A1 (ja) 2014-05-19
KR20130101097A (ko) 2013-09-12
CN103229336A (zh) 2013-07-31
KR101513820B1 (ko) 2015-04-20

Similar Documents

Publication Publication Date Title
JP5648070B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5584299B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
JP4531762B2 (ja) 二次電池用SiO粉末およびその製造方法
JP2021506059A (ja) 非水電解質二次電池用負極活物質、及びその製造方法
JP2010021100A (ja) 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5430761B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2011148569A1 (ja) リチウムイオン二次電池負極材用粉末およびその製造方法
JP5182498B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP4769319B2 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
JP2012134050A (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP5584302B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2013175715A1 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
WO2012093651A1 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547676

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137012843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846183

Country of ref document: EP

Kind code of ref document: A1