WO2013175715A1 - リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013175715A1
WO2013175715A1 PCT/JP2013/002878 JP2013002878W WO2013175715A1 WO 2013175715 A1 WO2013175715 A1 WO 2013175715A1 JP 2013002878 W JP2013002878 W JP 2013002878W WO 2013175715 A1 WO2013175715 A1 WO 2013175715A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
secondary battery
ion secondary
negative electrode
powder
Prior art date
Application number
PCT/JP2013/002878
Other languages
English (en)
French (fr)
Inventor
英明 菅野
大西 隆
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2014516650A priority Critical patent/JPWO2013175715A1/ja
Publication of WO2013175715A1 publication Critical patent/WO2013175715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material powder capable of obtaining a lithium ion secondary battery having a large discharge capacity and good cycle characteristics. Moreover, this invention relates to the lithium ion secondary battery negative electrode and lithium ion secondary battery which used this powder for negative electrode materials.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries and polymer batteries.
  • lithium ion secondary batteries have a much longer life and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c.
  • the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). ), A conductive aid and a binder.
  • carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries.
  • a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • Silicon oxide can be a negative electrode active material having a larger effective charge / discharge capacity because it has less degradation such as collapse of the crystal structure and generation of an irreversible material due to insertion and extraction of lithium ions during charge / discharge. Therefore, by using silicon oxide as the negative electrode active material, the capacity is higher than when carbon is used, and the cycle characteristics are better than when a high capacity negative electrode material such as Si or Sn alloy is used. A lithium ion secondary battery has been obtained.
  • Patent Document 1 discloses a silicon oxide containing active silicon whose spectrum measured by solid-state NMR satisfies a predetermined condition as a silicon oxide that can be used as such a negative electrode active material.
  • the present invention has been made in view of this problem, and used a negative electrode material powder capable of obtaining a lithium ion secondary battery having a large charge / discharge capacity and good cycle characteristics, and the negative electrode material powder. It aims at providing a lithium ion secondary battery negative electrode and a lithium ion secondary battery.
  • the present inventors made a silicon oxide powder under various conditions, and examined the characteristics of a lithium ion secondary battery using this as a negative electrode material.
  • the peak index S 0 attributed to zero-valent Si 4
  • the ratio S0 / S4 of the peak index S4 attributed to valence Si is 0.65 or more and 0.80 or less
  • the peak attributed to tetravalent Si is in the range of ⁇ 110 ppm or more and ⁇ 105 ppm or less. It was found that the lithium ion secondary battery using this SiO x powder as the negative electrode material has good charge / discharge capacity and cycle characteristics.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows. (1) to (3) Lithium ion secondary battery negative electrode powder, (4) Lithium ion secondary battery negative electrode, And the lithium ion secondary battery of (5) below.
  • the “index” of a peak attributed to zero-valent or tetravalent Si in a spectrum measured by nuclear magnetic resonance spectroscopy refers to the area of each peak separated by a Gaussian distribution, and the calculation method is as follows. It will be described later.
  • the powder for a lithium ion secondary battery negative electrode material of the present invention and the lithium ion secondary battery negative electrode a lithium ion secondary battery having excellent discharge capacity and initial efficiency and good cycle characteristics can be obtained.
  • the lithium ion secondary battery of the present invention has excellent discharge capacity and initial efficiency, and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 shows the NMR spectrum of the SiO x powder.
  • FIG. 3 is a diagram showing a configuration example of a silicon oxide production apparatus.
  • Powder for negative electrode material of lithium ion secondary battery of the present invention consists of SiO x (0.4 ⁇ x ⁇ 1.2), and nuclear magnetic resonance spectroscopy of 29 Si In the spectrum measured by the method (NMR; Nuclear Magnetic Resonance) (hereinafter, also simply referred to as “NMR spectrum”), the index of the peak attributed to zero-valent Si and the index of the peak attributed to tetravalent Si The ratio value is 0.65 or more and 0.80 or less, and the peak of the peak attributed to tetravalent Si is in the range of ⁇ 110 ppm or more and ⁇ 105 ppm or less.
  • Nuclear magnetic resonance is a resonance phenomenon that occurs when a substance containing an atomic nucleus having a magnetic moment (for example, 1 H, 13 C, 29 Si) is placed in a magnetic field and an electromagnetic wave having a frequency satisfying the resonance condition is applied thereto. It is. According to the NMR spectrum, it is possible to detect a bonding state of a nucleus having a magnetic moment with surrounding atoms as a chemical shift.
  • an atomic nucleus having a magnetic moment for example, 1 H, 13 C, 29 Si
  • SiO x targeted by the present invention has not been elucidated in detail, and it is considered that the composition is composed of a portion close to SiO 2 and a portion made of Si.
  • SiO x As a negative electrode material, lithium ions are occluded and released in a portion made of Si, and this portion repeats expansion and contraction every charge and discharge.
  • the portion whose composition is close to SiO 2 relaxes the volume change (or stress) due to the expansion and contraction of Si during occlusion and release of lithium ions, and contributes to the structural stability of the negative electrode. It is necessary that the number is sufficiently large.
  • tetravalent Si has a peak near ⁇ 110 ppm.
  • the peak of the tetravalent Si shifts in a direction in which the numerical value of the peak position increases as the number of bond defects increases in the portion of the SiO x composition close to SiO 2 (leftward in FIG. 2 described later).
  • the peak position shifts in the direction in which the numerical value of the peak position becomes smaller (the right direction in FIG. 2 described later) as the number of bond defects and the higher crystallinity.
  • the charge / discharge capacity becomes small. This is because the function of relaxing the volume change (or stress) due to expansion and contraction during charge / discharge is weakened, the negative electrode structure is destroyed, and the amount of lithium ions that can be occluded and released is reduced.
  • the number of bond defects is small in the portion where the composition is close to SiO 2 .
  • the lithium ion conductivity is low, and therefore a portion made of Si does not contribute to the charge / discharge capacity of the lithium ion secondary battery.
  • the ratio value S0 / S4 of the peak index S0 attributed to zero-valent Si and the peak index S4 attributed to tetravalent Si was 0.65 or more, 0.80 If the peak of the peak attributed to tetravalent Si is SiO x in the range of ⁇ 110 ppm or more and ⁇ 105 ppm or less, by using this SiO x as the negative electrode material, the charge / discharge capacity is large, and It was found that a lithium ion secondary battery having good cycle characteristics can be obtained.
  • the peak peak attributed to tetravalent Si is preferably in the range of ⁇ 110 ppm to ⁇ 108 ppm.
  • D50 is the particle diameter or median diameter when the cumulative weight is 50% of the total weight in the particle size distribution measurement by the laser light diffraction method.
  • the SiO x powder preferably has a conductive carbon film on the surface.
  • the low conductivity of the SiO x powder can be supplemented by the conductive carbon film, and the charge / discharge capacity and cycle characteristics of the lithium ion secondary battery can be improved.
  • the conductive carbon film does not need to cover the entire particle of the SiO x powder, and it is sufficient that the film is formed on a part of the surface of the particle.
  • FIG. 2 is a diagram showing an NMR spectrum of SiO x powder.
  • the peak attributed to tetravalent Si has a peak near ⁇ 110 ppm
  • the peak attributed to zero-valent Si has a peak near ⁇ 70 ppm.
  • the NMR measurement conditions are as shown in Table 1.
  • the sample is dried at 250 ° C. for 3 hours under vacuum, then placed in a sealed sample tube and measured in that state.
  • a peak attributed to zero-valent Si and a peak attributed to tetravalent Si are separated by a Gaussian distribution, and the center value, height, and dispersion of each peak are ⁇ , A,
  • f0 (x) is a peak function of a peak attributed to zero-valent Si
  • f4 (x) is a peak function of a peak attributed to tetravalent Si.
  • fn (x) A [1 / ⁇ (2 ⁇ ) 1/2 ⁇ exp ⁇ (x ⁇ ) 2 / (2 ⁇ 2 ) ⁇ ] (1)
  • FIG. 3 is a diagram illustrating a configuration example of a silicon oxide production apparatus. This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous SiO generated by sublimation in the raw material chamber 6.
  • the deposition base 11 is also heated by a heating source (not shown).
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • Si powder and SiO 2 powder are blended at a predetermined ratio as raw materials, and mixed granulated raw material 9 that is mixed, granulated and dried is used.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by the sublimation rises from the raw material chamber 6 and enters the deposition chamber 7, is vapor-deposited on the surrounding deposition base 11, and is deposited as SiO x precipitates 12.
  • SiO x precipitate 12 is removed from the precipitation base 11 and pulverized using a ball mill or the like to obtain SiO x powder.
  • SiO x for powder such as by oxide film on the surface of the powder after pulverization of SiO x deposit 12 is formed, the value of x is to vary from 1.
  • the vapor deposition rate for depositing gaseous SiO on the deposition substrate 11 is 10 to 20 kg / m 2 in the initial stage (2 hours from the start of sublimation of SiO), and then about 3 kg / m 2 .
  • the ratio value S0 / of the ratio of the peak index S0 attributed to zero-valent Si and the peak index S4 attributed to tetravalent Si An SiO x powder having an S4 value of 0.65 or more and 0.80 or less and a peak peak attributed to tetravalent Si in the range of ⁇ 110 ppm or more and ⁇ 105 ppm or less can be obtained.
  • the portion of the SiO x precipitate 12 in contact with the deposition substrate 11 is used.
  • the number of bond defects in the portion close to SiO 2 increases, and the structure grows while maintaining the structural defects. Therefore, the SiO x powder obtained by pulverizing the SiO x precipitate 12 has a large number of bonding defects in the portion whose composition is close to that of SiO 2 , and the peak peak attributed to tetravalent Si is more than ⁇ 105 ppm. growing.
  • the deposition rate at the time of depositing the gaseous SiO on deposition substrate 11 when the case was greater than 20 kg / m 2, and even a 10 ⁇ 20kg / m 2 in the subsequent not early stage only Since the disproportionation reaction of the SiO x precipitate 12 proceeds and the crystallinity becomes high, the peak peak attributed to tetravalent Si is less than ⁇ 110 ppm.
  • the disproportionation reaction refers to a reaction represented by the following formula (1) in which Si and SiO 2 are generated from SiO x . 2SiO x ⁇ xSiO 2 + (2-x) Si (1)
  • the temperature of the precipitation base 11 is 450 ° C. or more and 800 ° C. or less, and the thickness of the SiO x precipitate 12 is 10 mm or less.
  • the SiO x precipitate 12 on the precipitation base 11 is in a supercooled state and is formed in a dendrite shape, so that the SiO x precipitate 12 becomes porous.
  • the destruction of the bond between Si and O due to expansion and contraction of the SiO x powder when charging and discharging are repeated is earlier than in the case where it is not porous. Therefore, the charge / discharge capacity decreases rapidly and the cycle characteristics are inferior.
  • the SiO precipitate 12 is thicker than 10 mm, it becomes difficult to detect the surface temperature of the SiO precipitate 12 due to the low thermal conductivity of SiO itself. Therefore, even if the temperature of the precipitation base 11 is 800 ° C. or lower, the surface temperature of the SiO x precipitate 12 becomes higher than 800 ° C., and there is a possibility that a disproportionation reaction of SiO occurs.
  • the conductive carbon film is formed on the surface of the SiO x powder by CVD or the like. Specifically, SiO x powder is put into a rotary kiln and held for a certain period of time in a gas atmosphere at a predetermined temperature. As the gas, a hydrocarbon gas or an organic substance-containing gas, or a mixed gas of a hydrocarbon gas or an organic substance-containing gas and an inert gas is used. The temperature and holding time of the gas atmosphere are set according to the thickness of the conductive carbon film to be formed. The presence or absence of the conductive carbon film can be confirmed by, for example, surface analysis of the SiO x powder using an X-ray photoelectron spectrometer (XPS). As a result, if C (carbon) is detected, it can be determined that a conductive carbon film is formed on the surface of the SiO x powder.
  • XPS X-ray photoelectron spectrometer
  • the negative electrode material used for the working electrode 2c constituting the negative electrode 2 can be composed of the negative electrode material powder (active material) of the present invention, other active materials, a conductive additive, and a binder.
  • the content of the negative electrode material powder of the present invention in the negative electrode material (the ratio of the mass of the negative electrode material powder of the present invention to the total mass of the constituent materials excluding the binder among the constituent materials of the negative electrode material) is 20% by mass. That's it.
  • Other active materials for the negative electrode material powder need not necessarily be added.
  • the conductive additive for example, acetylene black or carbon black can be used, and as the binder, for example, polyvinylidene fluoride can be used.
  • Si x and SiO 2 powder were blended, and mixed, granulated and dried mixed granulated raw materials were used as raw materials, and SiO x was deposited on the deposition substrate using the apparatus shown in FIG.
  • This powder had an O / Simol ratio (x value of SiO x ) of 1.02. This is because an oxide film is formed on the surface of the powder.
  • a SiO x powder having a conductive carbon film on the surface was also produced.
  • the conductive carbon film was formed by putting SiO x powder into a rotary kiln and treating it in a hydrocarbon gas atmosphere at 850 ° C. for 15 minutes.
  • Table 2 shows the value S0 / S4 of the ratio of the index S0 of the peak attributed to zero-valent Si to the index S4 of the peak attributed to tetravalent Si in the NMR spectrum for 29 Si of the SiO x powder, and The position of the apex of the peak attributed to tetravalent Si and the presence or absence of the conductive carbon film are shown.
  • Examples 1 to 6 of the present invention shown in Table 2 have peak index ratio values S0 / S4 of 0.65 to 0.80, and the peak apex position attributed to tetravalent Si is ⁇ 110 ppm or more and ⁇ 105 ppm or less. Met. In Comparative Examples 1 to 5, at least one of the peak index ratio value S0 / S4 or the peak position attributed to tetravalent Si did not satisfy the definition of the present invention.
  • the SiO x powders of the inventive examples 1 to 5 having no conductive carbon film had a specific resistance of 100000 ⁇ cm or more, whereas the inventive example 6 having the conductive carbon film was used.
  • the SiO x powder was 2.5 ⁇ 0.5 ⁇ cm.
  • R electrical resistance ( ⁇ ) of the sample
  • A bottom area (cm 2 ) of the sample
  • L thickness (cm) of the sample.
  • the specific resistance measurement sample was filled with 0.20 g of SiO x powder in a powder resistance measurement jig (jig part: stainless steel with an inner diameter of 20 mm, frame part: made of polytetrafluoroethylene) at 20 kgf / cm 2 . Molded by pressing for 60 seconds.
  • the electrical resistance of the sample was measured by a two-terminal method using a digital multimeter (VOAC7513, manufactured by Iwatatsu Measurement Co., Ltd.).
  • the thickness of the sample was measured with a micrometer.
  • SiO x powders were used as a negative electrode active material, and carbon black as a conductive additive and a binder were blended therein to produce a negative electrode material.
  • the lithium ion secondary battery produced under the above conditions was evaluated using the initial efficiency and cycle capacity maintenance rate as indices. These results are shown in Table 2 together with the test conditions.
  • the charge / discharge capacity is the average of the charge capacity at the first charge and the discharge capacity at the first discharge after the manufacture of the lithium ion secondary battery.
  • the cycle characteristic is a value (%) of the ratio of the charge / discharge capacity at the 100th cycle to the charge / discharge capacity at the first cycle.
  • the numerical values shown in Table 2 are the charge / discharge capacity and the cycle characteristics when Inventive Example 4 is taken as 100.
  • the overall evaluation is ⁇ (excellent) when the charge / discharge capacity is 95% or more and the cycle characteristic is 95% or more, and ⁇ (good) when the charge / discharge capacity is 90% or more and the cycle characteristic is 80% or more.
  • excellent
  • good
  • the case where the charge / discharge capacity was less than 90% or the cycle characteristic was less than 80% was evaluated as x (impossible).
  • Comparative Example 1 has a peak characteristic attributed to tetravalent Si of ⁇ 104 ppm, which is larger than ⁇ 105 ppm, and the SiO x powder has many structural defects, so that the cycle characteristics are as low as 55%. It was.
  • the position of the peak apex attributable to tetravalent Si is ⁇ 116 to ⁇ 112 ppm, which is less than ⁇ 110 ppm, and the composition in the SiO x powder is crystalline in the portion close to SiO 2 . Therefore, the charge / discharge capacity was as low as 55% to 85%. Therefore, all the comparative examples were evaluated as x.
  • the charge / discharge capacity was 92% or more and the cycle characteristics were 80% or more, and the overall evaluation was ⁇ or ⁇ .
  • Examples 3 to 6 of the present invention had excellent charge and discharge capacities of 95% or more and cycle characteristics of 88% or more, and the overall evaluation was ⁇ .
  • the present invention examples 5 and 6 having the same peak index ratio value S0 / S4 and the positions of the peaks of the tetravalent Si are the same, the present invention example 6 having a conductive carbon film is compared. However, the charge / discharge capacity and cycle characteristics were more excellent.
  • the present invention is a useful technique in the field of secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 SiO(0.4≦x≦1.2)からなり、29Siについての核磁気共鳴分光法によって測定されるスペクトルにおいて、0価のSiに帰属するピークの指数と、4価のSiに帰属するピークの指数の比の値が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあることを特徴とするリチウムイオン二次電池負極材用粉末。 この負極材用粉末を用いることにより、充放電容量が大きく、かつサイクル特性が良好なリチウムイオン二次電池を得ることができる。

Description

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
 本発明は、放電容量が大きく、かつサイクル特性が良好であるリチウムイオン二次電池を得ることができる負極材用粉末に関する。また本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびリチウムイオン二次電池に関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、図1に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガンスピネル(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵および放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、カーボン系材料が用いられている。従来のものよりもリチウムイオン二次電池を高容量とする新規負極活物質として、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、リチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される珪素酸化物の粉末を用いることが、従来から試みられている。珪素酸化物は、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化が小さいことから、有効な充放電容量がより大きな負極活物質となり得る。そのため、珪素酸化物を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。
 特許文献1には、このような負極活物質として使用可能な珪素酸化物として、固体NMRで測定したスペクトルが所定の条件を満たす、活性な珪素を含む珪素酸化物が開示されている。
特開2001-220125号公報
 しかし、本発明者らが、特許文献1に記載の珪素酸化物を負極活物質として用いたリチウムイオン二次電池について特性を調査したところ、未だ充放電容量およびサイクル特性のいずれも十分ではないという問題があった。
 本発明は、この問題に鑑みてなされたものであり、充放電容量が大きく、かつサイクル特性が良好なリチウムイオン二次電池を得ることができる負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびリチウムイオン二次電池を提供することを目的とする。
 本発明者らは、上記の課題を解決するために、種々の条件で珪素酸化物粉末を作成し、これを負極材に使用したリチウムイオン二次電池の特性について検討した。その結果、SiO(0.4≦x≦1.2)の粉末において、29Siについての核磁気共鳴分光法によって測定されるスペクトルにおいて、0価のSiに帰属するピークの指数S0と、4価のSiに帰属するピークの指数S4の比の値S0/S4が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にある場合に、このSiO粉末を負極材に使用したリチウムイオン二次電池は、充放電容量およびサイクル特性が良好であることを知見した。
 本発明は、上記知見に基づいてなされたものであり、その要旨は、下記(1)~(3)のリチウムイオン二次電池負極材用粉末、下記(4)のリチウムイオン二次電池負極、ならびに下記(5)のリチウムイオン二次電池にある。
(1)SiO(0.4≦x≦1.2)からなり、29Siについての核磁気共鳴分光法によって測定されるスペクトルにおいて、0価のSiに帰属するピークの指数と、4価のSiに帰属するピークの指数の比の値が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあることを特徴とするリチウムイオン二次電池負極材用粉末。
(2)前記スペクトルにおいて、4価のSiに帰属するピークの頂点が-110ppm以上、-108ppm以下の範囲にあることを特徴とする前記(1)に記載のリチウムイオン二次電池負極材用粉末。
(3)SiOからなる粉末の表面に導電性炭素皮膜を有することを特徴とする前記(1)または(2)に記載のリチウムイオン二次電池負極材用粉末。
(4)前記(1)~(3)のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
(5)前記(4)に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
 本発明において、核磁気共鳴分光法によって測定されるスペクトルにおける、0価または4価のSiに帰属するピークの「指数」とは、ガウス分布で分離した各ピークの面積をいい、その算出方法は後述する。
 本発明のリチウムイオン二次電池負極材用粉末、およびリチウムイオン二次電池負極を用いることにより、放電容量および初期効率に優れ、かつサイクル特性が良好であるリチウムイオン二次電池を得ることができる。また、本発明のリチウムイオン二次電池は、放電容量および初期効率に優れ、かつサイクル特性が良好である。
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。 図2はSiO粉末のNMRスペクトルを示す図である。 図3は珪素酸化物の製造装置の構成例を示す図である。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末は、SiO(0.4≦x≦1.2)からなり、29Siについての核磁気共鳴分光法(NMR;Nuclear Magnetic Resonance)によって測定されるスペクトル(以下、単に「NMRスペクトル」ともいう。)において、0価のSiに帰属するピークの指数と、4価のSiに帰属するピークの指数の比の値が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあることを特徴とする。
 核磁気共鳴とは、磁気モーメントを有する原子核(例えばH、13C、29Si)を含む物質を磁場の中におき、これに共鳴条件を満足する周波数の電磁波を印加したときに生じる共鳴現象である。NMRスペクトルによれば、磁気モーメントを有する原子核について、周囲の原子との結合状態を化学シフトとして検知することができる。
 本発明が対象とするSiOは構造が詳細には解明されておらず、組成がSiOに近い部分とSiからなる部分で構成されていると考えられている。SiOを負極材として使用したリチウムイオン二次電池では、Siからなる部分にリチウムイオンが吸蔵および放出され、この部分は充放電ごとに膨張と収縮を繰り返す。このとき、組成がSiOに近い部分は、リチウムイオンの吸蔵、放出時のSiの膨張、収縮による体積変化(または応力)を緩和し、負極の構造安定性に寄与するので、Siからなる部分と比べて十分に多いことが必要である。
 ここで、SiO中の、組成がSiOに近い部分では、Siの多くはOと結合した状態であり、この状態のSiは4価である。また、Siからなる部分ではSi同士が結合した状態であり、この状態のSiは0価である。NMRスペクトルにおいてピークの指数は、そのピークが帰属する構造の占める割合が大きいほど大きくなる。そのため、NMRスペクトルにおいて、0価のSiに帰属するピークの指数S0と4価のSiに帰属するピークの指数S4の比の値S0/S4が小さいほど、組成がSiOに近い部分が、Siからなる部分と比べて多いといえる。
 本発明者らが検討したところ、S0/S4の値は0.65以上、0.80以下である場合に、充放電容量およびサイクル特性が良好なリチウムイオン二次電池が得られることがわかった。S0/S4の値が0.65未満の場合、充放電容量が少なくなる。これは、組成がSiOに近い部分が多くなるためと考えられる。また、S0/S4の値が0.80よりも大きい場合、リチウムイオンの吸蔵、放出時のSiの膨張、収縮による体積変化(または応力)の緩和に働く、組成がSiOに近い部分が少なくなるのでサイクル特性が低くなる。
 29SiについてのNMRスペクトルにおいて、4価のSiは-110ppm付近にピークが存在する。4価のSiのピークは、SiO中の、組成がSiOに近い部分において、結合欠陥が多いほど、ピーク位置の数値が大きくなる方向(後述する図2では左方向)にシフトする。また、結合欠陥が少なく、結晶性が高いほど、ピーク位置の数値が小さくなる方向(後述する図2では右方向)にピーク位置がシフトする。
 組成がSiOに近い部分において、結合欠陥が多い場合には、充放電容量が小さくなる。これは、充放電時に膨張と収縮による体積変化(または応力)を緩和する働きが弱まり、負極構造が破壊され、吸蔵および放出が可能なリチウムイオンの量が少なくなるからである。
 さらに、充放電による膨張と収縮が繰り返されると、負極構造がさらに破壊され、リチウムイオンを吸蔵できなくなるため、サイクル特性も不十分となる。そのため、組成がSiOに近い部分において、結合欠陥が少ないことが好ましい。しかし、結合欠陥が少なすぎる場合、すなわち結晶性が高い場合には、リチウムイオン伝導性が低くなるので、いくらかのSiからなる部分がリチウムイオン二次電池の充放電容量に寄与しない。
 本発明者らが検討したところ、4価のSiのピーク位置の数値が-105ppmよりも大きい場合、組成がSiOに近い部分において、結合欠陥が多くなり、サイクル特性が不十分となる。一方、4価のSiのピーク位置の数値が-110ppm未満である場合、組成がSiOに近い部分において、結晶性が高くなり、リチウムイオン伝導性が低くなるため、充放電容量が小さくなる。
 以上の検討の結果、NMRスペクトルにおいて、0価のSiに帰属するピークの指数S0と、4価のSiに帰属するピークの指数S4の比の値S0/S4が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあるSiOであれば、このSiOを負極材として用いることにより、充放電容量が大きく、かつサイクル特性が良好なリチウムイオン二次電池を得ることができることがわかった。4価のSiに帰属するピークの頂点は、-110ppm以上、-108ppm以下の範囲にあることが好ましい。
 SiO粉末の粒度は、D50=1~10μmが好ましい。D50とは、レーザー光回折法による粒度分布測定において、累積重量が全重量の50%となるときの粒子径またはメジアン径である。
 また、SiO粉末は、表面に導電性炭素皮膜を有することが好ましい。導電性炭素皮膜により、SiO粉末の低い電気伝導度を補うことができ、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させることができる。導電性炭素皮膜は、SiO粉末の各粒子全体を覆う必要はなく、粒子の表面の一部に皮膜が形成されていればよい。
2.NMR測定方法
 図2は、SiO粉末のNMRスペクトルを示す図である。同図において、-110ppm近傍に頂点が存在するのが4価のSiに帰属するピークであり、-70ppm近傍に頂点が存在するのが0価のSiに帰属するピークである。
 NMRによるスペクトルの測定条件は、表1に示す通りとする。試料は、真空下で250℃に3時間保持して乾燥処理を施した後、密封型の試料管に入れ、その状態で測定する。
Figure JPOXMLDOC01-appb-T000001
 そして、得られたスペクトルについて、ガウス分布で0価のSiに帰属するピークと4価のSiに帰属するピークの分離を行い、各ピークの中心値、高さ、および分散をそれぞれμ、A、σとして、下記(1)式で表されるピーク関数fn(x)(n=0、4)を求める。f0(x)は0価のSiに帰属するピークのピーク関数であり、f4(x)は4価のSiに帰属するピークのピーク関数である。
  fn(x)=A[1/{(2π)1/2σ}exp{-(x-μ)/(2σ)}] …(1)
 各ピークのピーク関数fn(x)から各ピークの指数S0およびS4をSn=∫fn(x)dx(n=0、4)として算出する。これを用いて、0価のSiに帰属するピークの指数と、4価のSiに帰属するピークの指数の比の値をS0/S4として算出する。
3.本発明のリチウムイオン二次電池負極材用粉末の製造方法
3-1.SiO粉末の製造方法
 図3は、珪素酸化物の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状のSiOを蒸着させるためのステンレス鋼からなる析出基体11が設けられる。析出基体11も、加熱源(不図示)によって加熱される。
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。
 図3に示す製造装置を用いてSiOを製造する場合、原料としてSi粉末とSiO粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、SiO析出物12として析出する。その後、析出基体11からSiO析出物12を取り外し、ボールミル等を使用して粉砕することにより、SiO粉末が得られる。粉末についてSiOと表記したのは、SiO析出物12の粉砕後に粉末の表面に酸化膜が形成されること等によって、xの値が1から変動するためである。
 気体状のSiOを析出基体11上に蒸着させる際の蒸着速度は、初期の段階(SiOの昇華開始から2時間)において10~20kg/mとし、その後約3kg/mとする。これにより得られたSiO析出物12を粉砕することにより、NMRスペクトルにおいて、0価のSiに帰属するピークの指数S0と、4価のSiに帰属するピークの指数S4の比の値S0/S4の値が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあるSiO粉末を得ることができる。
 気体状のSiOを析出基体11上に蒸着させる際の蒸着速度を、初期の段階から10kg/m未満、例えば約3kg/mとすると、SiO析出物12の析出基体11に接する部分において、組成がSiOに近い部分の結合欠陥が多くなり、さらにその構造欠陥を維持したまま成長する。そのため、このSiO析出物12を粉砕して得られるSiO粉末は全体に、組成がSiOに近い部分の結合欠陥が多くなり、4価のSiに帰属するピークの頂点が-105ppmよりも大きくなる。
 一方、気体状のSiOを析出基体11上に蒸着させる際の蒸着速度を、20kg/mよりも大きくした場合、および初期の段階のみならずその後においても10~20kg/mとした場合には、SiO析出物12の不均化反応が進行して結晶性が高くなるため、4価のSiに帰属するピークの頂点が-110ppm未満となる。不均化反応とは、下記(1)式で表される、SiOからSiおよびSiOが生成する反応をいう。
  2SiO → xSiO + (2-x)Si …(1)
 析出基体11の温度は、450℃以上、800℃以下とし、SiO析出物12の厚さは10mm以下とする。析出基体11の温度が450℃未満の場合には、析出基体11上のSiO析出物12が過冷却状態となり、デンドライト状に生成するため、SiO析出物12がポーラス(多孔質)となる。ポーラスなSiO粉末を負極材に用いたリチウムイオン二次電池では、充放電を繰り返したときのSiO粉末の膨張と収縮によるSiとOとの結合の破壊がポーラスでない場合と比較して早期に生じるため、充放電容量の低下が早く、サイクル特性に劣る。
 析出基体11の温度が800℃よりも高いと、上記(1)式で表される不均化反応によって結晶性Siクラスターが生成する。リチウムイオン二次電池の充電時におけるSiの膨張係数は、SiOの4.4倍と大きい。そのため、結晶性Siクラスターが生成したSiO粉末を負極材に用いたリチウムイオン二次電池では、結晶性Siクラスターが生成していないものを用いた場合と比べて、充放電によるSiとOとの結合の破壊が生じやすく、サイクル特性に劣る。
 SiO析出物12が10mmよりも厚くなると、SiO自体の熱伝導率が低いことにより、SiO析出物12の表面温度を検知することが困難となる。そのため、析出基体11の温度が800℃以下であっても、SiO析出物12の表面温度が800℃よりも高くなり、SiOの不均化反応が生じるおそれがある。
4.導電性炭素皮膜の形成方法
 SiO粉末の表面への導電性炭素皮膜の形成は、CVD等によって行う。具体的には、SiO粉末をロータリーキルンに投入し、所定の温度のガス雰囲気下で一定時間保持する。ガスとしては、炭化水素ガスもしくは有機物含有ガス、または炭化水素ガスもしくは有機物含有ガスと不活性ガスとの混合ガスを用いる。ガス雰囲気の温度および保持時間は、形成する導電性炭素皮膜の厚さに応じて設定する。導電性炭素皮膜の有無の確認は、例えば、X線光電子分光分析装置(XPS)を用いたSiO粉末の表面分析によって行うことができる。その結果、C(炭素)が検出されれば、そのSiO粉末の表面に導電性炭素皮膜が形成されていると判断できる。
5.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池用負極材用粉末を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2を構成する作用極2cに用いる負極材は、本発明の負極材用粉末(活物質)とその他の活物質と導電助材とバインダーとで構成することができる。負極材中に占める本発明の負極材用粉末の含有率(負極材の構成材料のうち、バインダーを除いた構成材料の合計質量に対する本発明の負極材用粉末の質量の割合)は20質量%以上とする。負極材用粉末の他の活物質は必ずしも添加しなくてもよい。導電助材としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリフッ化ビニリデンを使用することができる。
 本発明の効果を確認するため、以下の試験を行い、その結果を評価した。
1.試験条件
 Si粉末とSiO粉末とを配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図3に示す装置を用いて析出基板上にSiOを析出させた。SiO析出物は、アルミナ製ボールミルを使用して粉砕し、D50=50μmの粉末とした。この粉末は、O/Simol比(SiOのxの値)が1.02であった。これは、粉末の表面に酸化膜が形成されたためである。
 また、表面に導電性炭素皮膜を有するSiO粉末も作製した。導電性炭素皮膜の形成は、SiO粉末をロータリーキルンに投入し、850℃の炭化水素ガス雰囲気下で15分処理することによって行った。
 表2には、SiO粉末の29SiについてのNMRスペクトルにおける、0価のSiに帰属するピークの指数S0と、4価のSiに帰属するピークの指数S4の比の値S0/S4、および4価のSiに帰属するピークの頂点の位置および導電性炭素皮膜の有無を示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す本発明例1~6は、ピーク指数の比の値S0/S4が0.65~0.80、4価のSiに帰属するピークの頂点の位置が-110ppm以上、-105ppm以下であった。比較例1~5は、ピーク指数の比の値S0/S4または4価のSiに帰属するピークの頂点の位置の少なくとも一方が本発明の規定を満たさなかった。
 本発明例1~6のうち、導電性炭素皮膜を有しない本発明例1~5のSiO粉末は比抵抗が100000Ωcm以上であったのに対し、導電性炭素皮膜を有する本発明例6のSiO粉末では2.5±0.5Ωcmであった。
 SiO粉末の比抵抗ρ(Ωcm)は、数式ρ=R×A/Lを用いて算出した。ここで、R:試料の電気抵抗(Ω)、A:試料の底面積(cm)、L:試料の厚さ(cm)である。比抵抗測定用の試料は、粉末抵抗測定用治具(治具部:内径20mmのステンレス製、枠部:ポリテトラフルオロエチレン製)にSiO粉末0.20gを充填し、20kgf/cmで60秒間加圧して成型した。試料の電気抵抗は、デジタルマルチメーター(岩通計測株式会社製、VOAC7513)を用いた二端子法で測定した。試料の厚さはマイクロメーターで測定した。
 これらのSiO粉末を負極活物質として使用し、これに導電助剤であるカーボンブラックと、バインダーを配合し、負極材を作製した。負極材原料の配合比は、SiO粉末:カーボンブラック:バインダー=7:2:1とした。この負極材と、正極材としてLi金属を用いて、前記図1に示すコイン状のリチウムイオン二次電池を作製した。
2.試験結果
 上記条件で作製したリチウムイオン二次電池について、初期効率およびサイクル容量維持率を指標として評価を行った。これらの結果を、試験条件と併せて表2に示す。ここで、充放電容量とは、リチウムイオン二次電池の製造後、最初の充電時の充電容量と最初の放電時の放電容量の平均である。サイクル特性とは、1サイクル目の充放電容量に対する100サイクル目の充放電容量の比の値(%)である。表2に示す数値は、本発明例4を100とした場合の充放電容量およびサイクル特性である。また、総合評価は、充放電容量が95%以上かつサイクル特性が95%以上の場合を◎(優良)、充放電容量が90%以上かつサイクル特性が80%以上の場合を○(良)とし、充放電容量が90%未満またはサイクル特性が80%未満の場合を×(不可)とした。
 比較例のうち、比較例1は、4価のSiに帰属するピークの頂点の位置が-104ppmと、-105ppmよりも大きく、SiO粉末に構造欠陥が多かったため、サイクル特性が55%と低かった。また、比較例2~5は、4価のSiに帰属するピークの頂点の位置が-116~-112ppmと、-110ppm未満であり、SiO粉末中の組成がSiOに近い部分において結晶性が高かったため、充放電容量が55%~85%と低かった。そのため、比較例はいずれも総合評価が×であった。
 本発明例は、いずれも充放電容量が92%以上かつサイクル特性が80%以上と良好な値であり、総合評価は○または◎であった。特に、本発明例3~6は、充放電容量が95%以上かつサイクル特性が88%以上と優れた値であり、総合評価は◎であった。
 また、ピーク指数の比の値S0/S4および4価のSiに帰属するピークの頂点の位置が同じである本発明例5と6を比較すると、導電性炭素皮膜を有する本発明例6の方が充放電容量およびサイクル特性がより優れていた。
 本発明のリチウムイオン二次電池負極材用粉末、およびリチウムイオン二次電池負極を用いることにより、放電容量および初期効率に優れ、かつサイクル特性が良好であるリチウムイオン二次電池を得ることができる。また、本発明のリチウムイオン二次電池は、放電容量および初期効率に優れ、かつサイクル特性が良好である。したがって、本発明は、二次電池の分野において有用な技術である。
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
2:負極、 2a:作用極ケース、 2b:作用極集電体、
2c:作用極、 3:セパレータ、 4:ガスケット、 5:真空室、
6:原料室、 7:析出室、 8:原料容器、 9:混合造粒原料、
10:加熱源、 11:析出基体、 12:SiO析出物

Claims (5)

  1.  SiO(0.4≦x≦1.2)からなり、29Siについての核磁気共鳴分光法によって測定されるスペクトルにおいて、0価のSiに帰属するピークの指数と、4価のSiに帰属するピークの指数の比の値が0.65以上、0.80以下であり、4価のSiに帰属するピークの頂点が-110ppm以上、-105ppm以下の範囲にあることを特徴とするリチウムイオン二次電池負極材用粉末。
  2.  前記スペクトルにおいて、4価のSiに帰属するピークの頂点が-110ppm以上、-108ppm以下の範囲にあることを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。
  3.  SiOからなる粉末の表面に導電性炭素皮膜を有することを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。
  4.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
  5.  請求項4に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
PCT/JP2013/002878 2012-05-23 2013-04-30 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池 WO2013175715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516650A JPWO2013175715A1 (ja) 2012-05-23 2013-04-30 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012117856 2012-05-23
JP2012-117856 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013175715A1 true WO2013175715A1 (ja) 2013-11-28

Family

ID=49623430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002878 WO2013175715A1 (ja) 2012-05-23 2013-04-30 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JPWO2013175715A1 (ja)
WO (1) WO2013175715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008260A1 (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
US10403899B2 (en) 2014-10-31 2019-09-03 Hitachi, Ltd. Alloy and lithium ion battery
WO2021157460A1 (ja) * 2020-02-07 2021-08-12 Dic株式会社 低酸素型ナノ珪素粒子含有スラリー、負極活物質、負極及びリチウムイオン二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP2011076788A (ja) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
JP2011076788A (ja) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403899B2 (en) 2014-10-31 2019-09-03 Hitachi, Ltd. Alloy and lithium ion battery
WO2018008260A1 (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP2018006190A (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
US10873082B2 (en) 2016-07-04 2020-12-22 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
WO2021157460A1 (ja) * 2020-02-07 2021-08-12 Dic株式会社 低酸素型ナノ珪素粒子含有スラリー、負極活物質、負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2013175715A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5584299B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
JP2011192453A (ja) 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
KR101440207B1 (ko) 리튬 이온 이차 전지 음극재용 분말 및 그 제조 방법
JP4809926B2 (ja) リチウムイオン二次電池用負極活物質
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP4769319B2 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
KR101509358B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 커패시터 음극, 및, 리튬 이온 이차 전지 및 커패시터
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5320890B2 (ja) 負極材の製造方法
WO2013175715A1 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP2012134050A (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP5584302B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP5554845B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP2015146300A (ja) リチウムイオン二次電池の負極用粉末およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794586

Country of ref document: EP

Kind code of ref document: A1