WO2022259914A1 - 負極活物質、負極及びリチウムイオン二次電池 - Google Patents

負極活物質、負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022259914A1
WO2022259914A1 PCT/JP2022/022103 JP2022022103W WO2022259914A1 WO 2022259914 A1 WO2022259914 A1 WO 2022259914A1 JP 2022022103 W JP2022022103 W JP 2022022103W WO 2022259914 A1 WO2022259914 A1 WO 2022259914A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
particles
silicon monoxide
Prior art date
Application number
PCT/JP2022/022103
Other languages
English (en)
French (fr)
Inventor
信太郎 月形
真宏 吉岡
哲也 乙坂
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP22820096.0A priority Critical patent/EP4354546A1/en
Priority to CN202280040678.5A priority patent/CN117441242A/zh
Priority to KR1020237041914A priority patent/KR20240019115A/ko
Publication of WO2022259914A1 publication Critical patent/WO2022259914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode, and a lithium ion secondary battery.
  • lithium-ion secondary batteries are becoming more and more popular because they are easy to make smaller and have higher capacity, and they have a higher energy density than lead-acid batteries and nickel-cadmium batteries.
  • the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge-discharge reactions.
  • the negative electrode active material expands and contracts during charging and discharging, and cracks are likely to occur mainly near the surface layer of the negative electrode active material.
  • an ionic substance is generated inside the active material, making the negative electrode active material fragile.
  • a new surface is generated thereby increasing the reaction area of the active material.
  • a decomposition reaction of the electrolytic solution occurs on the new surface, and a film, which is a decomposition product of the electrolytic solution, is formed on the new surface, so that the electrolytic solution is consumed.
  • cycle characteristics tend to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see Patent Document 1, for example).
  • a carbon material electroconductive material
  • an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio is formed in the vicinity of the current collector (for example, see Patent Document 3).
  • the silicon active material contains oxygen so that the average oxygen content is 40 atomic % or less, and the oxygen content is increased near the current collector. (see, for example, Patent Document 4).
  • a nanocomposite containing Si phase, SiO 2 , and M y O metal oxide is used to improve the initial charge/discharge efficiency (see, for example, Patent Document 5).
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios near the interface between the active material and the current collector is is 0.4 or less (see Patent Document 7, for example).
  • a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see Patent Document 9, for example).
  • Patent Document 10 silicon oxide is used, and conductivity is imparted by forming a graphite film on the surface layer.
  • Patent Document 10 broad peaks appear at 1330 cm ⁇ 1 and 1580 cm ⁇ 1 with respect to the shift values obtained from the RAMAN spectrum of the graphite film, and their intensity ratio I 1330 /I 1580 is 1.5 ⁇ I 1330 /I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used (see, for example, Patent Document 11).
  • silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1:y (0 ⁇ y ⁇ 2) is used (see Patent Document 12, for example).
  • Non-Patent Document 1 The silicon oxide proposed by Hohl is a composite of Si 0+ to Si 4+ and has various oxidation states (Non-Patent Document 2).
  • Kapaklis also proposed a disproportionated structure in which Si and SiO 2 are separated by applying a thermal load to silicon oxide (Non-Patent Document 3).
  • Miyachi et al. pay attention to Si and SiO 2 that contribute to charging and discharging among silicon oxides having a disproportionated structure (Non-Patent Document 4).
  • silicon oxide powder with a defined particle size distribution of mode diameter, D50 and D90 is used (for example, Patent Document 13).
  • D50 indicates cumulative 50% diameter
  • D90 indicates cumulative 90% diameter
  • other numerical values are the same.
  • D90, D90/D10, and fine powder amount of 1 ⁇ m or less of silicon oxide powder subjected to wet classification with water after ball mill pulverization are specified (for example, Patent Document 14).
  • silicon oxide powder having a defined D50/D10 of the silicon oxide powder before forming the carbon film and a BET specific surface area of the negative electrode active material after forming the carbon film is used (for example, Patent document 15).
  • the specific surface area calculated from the particle size distribution of the negative electrode active material assuming that the particles are spherical and the BET specific surface area of the negative electrode active material A ratio is defined (eg, US Pat.
  • D10 and D90 of a negative electrode active material made of silicon oxide after forming a carbon film are specified (eg, Patent Document 17).
  • JP 2013-101770 A Japanese Patent Application Laid-Open No. 2001-185127 Japanese Patent Application Laid-Open No. 2002-042806 JP 2006-164954 A JP 2006-114454 A JP 2009-070825 A JP 2008-282819 A JP 2008-251369 A JP 2008-177346 A JP 2007-234255 A JP 2009-212074 A JP 2009-205950 A JP-A-06-325765 JP 2015-149171 A JP 2011-65934 A WO2012/077268 WO2014/002356 JP 2013-101770 A
  • Lithium-ion secondary batteries that use silicon-based materials with high charge-discharge capacity are expected to have cycle characteristics that are close to those of lithium-ion secondary batteries that use carbon-based active materials.
  • silicon-based materials silicon oxide has the potential to obtain higher cycle characteristics, and various improvements have been made. In repeating charging and discharging, the suppression of decomposition of the electrolytic solution on the surface of the negative electrode active material was insufficient, and cycle characteristics that could withstand a practical level were not obtained.
  • Patent Document 14 specifies D90/D10 and the amount of fine powder of 1 ⁇ m or less by performing wet classification with water, using SiO x powder with a change in the surface Si oxidation state and a greatly different value of x. Relative evaluation of efficiency and cycle characteristics versus particle size distribution is not possible.
  • the BET specific surface area of the negative electrode active material is greatly affected not only by the surface state of the silicon oxide particles serving as the base material, but also by the state of the carbon film formed on the surface of the negative electrode active material. It is insufficient as a factor to suppress the reaction. Furthermore, although there is a description that there is no difference in cycle characteristics (10 cycles) between an example having a D50 of about 5 ⁇ m and a comparative example having a D50 of 9.36 ⁇ m, generally in coin battery evaluation, charging and discharging cycles are performed. Since the Li positive electrode deteriorates with repetition, it is not suitable for a long-term cycle test exceeding 50 cycles. Therefore, in order to evaluate the deterioration of the negative electrode due to the reaction between the electrolyte and the negative electrode active material, more than 100 charge-discharge cycles are required. must be done in
  • Patent Documents 16 and 17 do not mention the particle size distribution and BET surface area of SiO x before forming the carbon film, and Patent Document 17 has a small D90 of 5 ⁇ m or less.
  • the present invention has been made in view of the problems described above, and an object of the present invention is to provide a negative electrode active material capable of improving cycle characteristics when used as a negative electrode active material for a negative electrode of a secondary battery.
  • the present invention provides a negative electrode active material containing silicon monoxide particles, wherein the silicon monoxide particles have a cumulative volume distribution of 0.5. 1% particle size D0.1 is 1.2 ⁇ m ⁇ D0.1 ⁇ 3.0 ⁇ m, cumulative 10% particle size D10 is 3.5 ⁇ m ⁇ D10 ⁇ 7.0 ⁇ m, cumulative 50% particle size D50 is 6.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m, the cumulative 99.9% particle diameter D99.9 satisfies 25.0 ⁇ m ⁇ D99.9 ⁇ 50.0 ⁇ m, and the silicon monoxide particles have a BET specific surface area Sm of 1.0 m 2 /g ⁇ S Provided is a negative electrode active material that satisfies m ⁇ 3.5 m 2 /g.
  • the negative electrode active material of the present invention has such a particle size distribution and BET specific surface area that in a long-term cycle test in which charging and discharging are repeated, the reaction with the electrolyte solution on the particle surface of the negative electrode active material is suppressed, and the battery cycle Characteristics can be greatly improved.
  • the cumulative 0.1% particle diameter D0.1 preferably satisfies 2.0 ⁇ m ⁇ D0.1 ⁇ 3.0 ⁇ m.
  • the cumulative 10% particle diameter D10 preferably satisfies 4.8 ⁇ m ⁇ D10 ⁇ 7.0 ⁇ m.
  • the cumulative 50% particle size D50 preferably satisfies 8.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m.
  • the reaction with the electrolytic solution on the particle surface is more effectively suppressed, and the cycle characteristics of the battery can be greatly improved.
  • the BET specific surface area Sm is preferably 1.0 m 2 /g ⁇ S m ⁇ 2.2 m 2 /g.
  • the silicon monoxide particles are preferably coated with a carbon film.
  • the present invention also provides a negative electrode that includes the negative electrode active material described above.
  • the present invention also provides a lithium ion secondary battery comprising the above negative electrode, positive electrode, separator, and electrolyte.
  • the negative electrode active material of the present invention has a specific particle size distribution and BET specific surface area, so that in a long-term cycle test in which charging and discharging are repeated, the reaction with the electrolyte solution on the particle surface of the negative electrode active material is suppressed, and the cycle characteristics of the battery In particular, the cycle characteristics in long-term cycle tests can be greatly improved.
  • 4 is a graph showing the number of cycles at which 70% discharge capacity is maintained with respect to D0.1 of silicon monoxide particles. 4 is a graph showing the number of cycles of maintaining 70% discharge capacity with respect to D10 of silicon monoxide particles. 4 is a graph showing the number of cycles of maintaining 70% discharge capacity with respect to D50 of silicon monoxide particles. It is a graph which shows the number of discharge capacity 70% maintenance cycles with respect to D99.9 of silicon monoxide particles. 4 is a graph showing the number of cycles at which 70% discharge capacity is maintained with respect to the BET specific surface area of silicon monoxide particles. 4 is a graph showing the number of cycles at which 70% discharge capacity is maintained with respect to the BET specific surface area of carbon-coated silicon monoxide particles.
  • the present inventors have made intensive studies on controlling the particle size of the silicon monoxide particles that constitute the negative electrode active material. As a result, not only the particle size distribution of the silicon monoxide particles that serve as the base material, but also the BET specific surface area of the silicon monoxide particles is set in an appropriate range, thereby maintaining the initial charge-discharge characteristics while greatly improving the cycle characteristics. It has been found that it is possible to improve to , leading to the present invention.
  • the negative electrode active material of the present invention is a negative electrode active material containing silicon monoxide particles. Furthermore, the silicon monoxide particles satisfy the following conditions in the volume standard distribution measured by a laser diffraction particle size distribution analyzer.
  • ⁇ Cumulative 0.1% particle diameter D0.1 is 1.2 ⁇ m ⁇ D0.1 ⁇ 3.0 ⁇ m
  • ⁇ Cumulative 10% particle diameter D10 is 3.5 ⁇ m ⁇ D10 ⁇ 7.0 ⁇ m
  • - Cumulative 50% particle diameter D50 is 6.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m
  • ⁇ Cumulative 99.9% particle diameter D99.9 is 25.0 ⁇ m ⁇ D99.9 ⁇ 50.0 ⁇ m
  • the silicon monoxide particles contained in the negative electrode active material of the present invention have a BET specific surface area Sm that satisfies 1.0 m 2 /g ⁇ S m ⁇ 3.5 m 2 /g.
  • the BET specific surface area is a value measured by the BET one-point method, which measures the N 2 gas adsorption amount.
  • the silicon monoxide particles contained in the negative electrode active material of the present invention are 2.0 ⁇ m ⁇ D0.1 ⁇ 3.0 ⁇ m, 4.8 ⁇ m ⁇ D10 ⁇ 7.0 ⁇ m, and 8.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m.
  • BET specific surface area S m satisfies at least one of 1.0 m 2 /g ⁇ S m ⁇ 2.2 m 2 /g.
  • Silicon oxide is a generic term for amorphous silicon oxide, and silicon oxide before disproportionation is represented by the general formula SiOx (0.5 ⁇ x ⁇ 1.6).
  • This silicon oxide can be obtained, for example, by heating a mixture of silicon dioxide and metal silicon and then cooling and precipitating silicon monoxide gas produced, thereby obtaining silicon monoxide (SiO) in which x is 1 or close to 1. For example, 0.9 ⁇ x ⁇ 1.1.
  • the silicon monoxide particles within the specific particle size range of the present invention described above, they can be appropriately adjusted by treatments such as pulverization and classification.
  • Well-known equipment can be used for grinding.
  • ball mills, media agitation mills, and rollers are used to pulverize crushed materials by moving pulverizing media such as balls and beads, and using the impact force, friction force, and compression force resulting from the kinetic energy.
  • a jet mill that pulverizes the crushed material by colliding it with the lining material at high speed or colliding with each other, and crushing it by the impact force caused by the impact, and the impact caused by the rotation of the rotor with fixed hammers, blades, pins, etc.
  • Dry classification mainly uses air flow, and the processes of dispersion, separation (separation of fine and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, and interference between particles, particle
  • pretreatment adjustment of moisture, dispersibility, humidity, etc.
  • pulverization and classification are performed at once, and a desired particle size distribution can be obtained.
  • the cumulative 0.1% diameter D0.1 of the silicon monoxide particles is, as described above, 1.2 to 3.0 ⁇ m, preferably 2.0 to 3.0 ⁇ m. Also, the cumulative 10% diameter D10 of the silicon monoxide particles is set to 3.5 to 7.0 ⁇ m, preferably 4.8 to 7.0 ⁇ m. Also, the cumulative 50% diameter D50 of the silicon monoxide particles is 6.0 to 15.0 ⁇ m, preferably 8.0 to 15.0 ⁇ m.
  • the cumulative 99.9% diameter D99.9 of the silicon monoxide particles is 25.0 to 50.0 ⁇ m.
  • D99.9 is more than 50.0 ⁇ m, the coarse particles expand and contract due to charging and discharging, and there is a risk that the conductive path will be lost in the negative electrode active material layer.
  • the separator may be damaged by coarse particles due to pressing or the like. Therefore, as described above, D99.9 should not exceed 50 ⁇ m by setting D0.1 to 3.0 ⁇ m or less, D10 to 7.0 ⁇ m or less, and D50 to 15.0 ⁇ m or less. can be done.
  • the BET specific surface area of the silicon monoxide particles contained in the negative electrode active material of the present invention is 1.0 to 3.5 m 2 /g, preferably 1.0 to 2.2 m 2 /g, as described above. do.
  • the reaction area between the electrolytic solution and the silicon monoxide particles is reduced. Cycle characteristics can be greatly improved.
  • the reason why the BET specific surface area is 1.0 m 2 /g or more is that the BET specific surface area is 1.0 m 2 /g for silicon monoxide particles that satisfy D50 of 6.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m. This is because it is industrially difficult to produce silicon monoxide particles of less than
  • a method of imparting conductivity to the silicon monoxide particles and improving battery characteristics a method of mixing with conductive particles such as graphite, a method of coating the surface of the composite particles with a carbon film, and both.
  • a method of combining the Among them it is preferable to use coated particles in which the surfaces of silicon monoxide particles are coated with a carbon film.
  • Chemical vapor deposition (CVD) is a suitable method for coating with a carbon coating.
  • CVD chemical vapor deposition
  • silicon monoxide particles are exposed to carbon at a temperature range of 600 to 1,200° C. in an organic gas and/or steam atmosphere that can be thermally decomposed to produce carbon.
  • a method of forming a carbon coating by chemical vapor deposition may be mentioned.
  • Chemical vapor deposition can be applied under both normal pressure and reduced pressure.
  • generally known apparatuses such as a batch type furnace, a continuous furnace such as a rotary kiln and a roller hearth kiln, and a fluidized bed can be used as the apparatus used in the step of forming the carbon coating.
  • the vapor deposition apparatus is a batch type furnace in which the particles are left stationary, the carbon can be more uniformly coated by carrying out the vapor deposition under reduced pressure, and the battery characteristics can be improved.
  • the thermal decomposition temperature, deposition rate, and characteristics of the carbon film formed after vapor deposition largely depend on the substance used. may differ.
  • the uniformity of the carbon film on the surface of a substance with a high deposition rate is not sufficient, and on the other hand, if a high temperature is required for decomposition, the silicon crystals in the silicon monoxide particles to be coated grow too large during deposition at a high temperature. As a result, the discharge efficiency and cycle characteristics may deteriorate.
  • the crystallite size of silicon is determined by the Scherrer method from the half width of the Si (111) peak in powder XRD measurement, and is preferably 50 nm or less, more preferably 10 nm or less. The smaller the crystallite size, the more the disproportionation of silicon oxide due to charging and discharging is suppressed, and higher cycle characteristics can be obtained.
  • the Si crystallite size of the silicon monoxide particles in the negative electrode active material can be confirmed, for example, using the following XRD apparatus.
  • ⁇ XRD Bruker D8 ADVANCE
  • the X-ray source was Cu K ⁇ rays, using a Ni filter, an output of 40 kV/40 mA, a slit width of 0.3°, a step width of 0.008°, and a counting time of 0.15 seconds per step from 10 to 40°. Measure up to
  • Raw materials for organic gases that can be thermally decomposed to produce carbon include hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, and hexane, benzene, toluene, xylene, styrene, ethylbenzene, Diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, cumarone, pyridine, anthracene, phenanthrene and other monocyclic to tricyclic aromatic hydrocarbons, gas light oil obtained in the tar distillation process, creosote oil, anthracene oil and naphtha cracked tar oil. These can be used singly or in combination of two or more. From an economical point of view, it is preferable to use a hydrocarbon gas with a composition of CxHy.
  • the coating amount of the carbon coating is preferably 1.0% by mass or more and 5.0% by mass or less with respect to the entire carbon-coated coated particles. Although it depends on the particles to be coated, by setting the carbon coating amount to 1.0% by mass or more, generally sufficient conductivity can be maintained. In addition, by setting the carbon coating amount to 5.0% by mass or less, the proportion of carbon in the negative electrode active material can be moderated without excessively increasing, and it can be used as a negative electrode active material for lithium ion secondary batteries. The charge/discharge capacity can be ensured when the battery is used.
  • a lithium ion secondary battery can be produced by producing a negative electrode using the negative electrode active material in which silicon monoxide particles are coated with a carbon film.
  • a conductive agent such as carbon or graphite
  • the type of the conductive agent is not particularly limited, and any electronically conductive material that does not cause decomposition or deterioration in the constructed battery may be used.
  • metal particles and metal fibers such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, natural graphite, artificial graphite, various coke particles, mesophase carbon, vapor growth carbon fiber, pitch Graphite such as carbon-based carbon fiber, PAN-based carbon fiber, and various resin sintered bodies can be used.
  • An example of the method for preparing the negative electrode is as follows.
  • the above negative electrode active material, optionally a conductive agent, other additives such as a binder such as carboxymethyl cellulose (hereinafter referred to as CMC), and a solvent such as an organic solvent or water are kneaded to form a paste. and apply this mixture to the current collector sheet.
  • CMC carboxymethyl cellulose
  • a solvent such as an organic solvent or water
  • the current collector sheet materials such as copper foil and nickel foil, which are usually used as current collectors for negative electrodes, can be used without particular limitations on thickness and surface treatment.
  • the molding method for molding the mixture into a sheet is not particularly limited, and a known method can be used.
  • a lithium ion secondary battery is a lithium ion secondary battery having at least a positive electrode, a negative electrode, and a lithium ion conductive non-aqueous electrolyte, wherein the negative electrode uses the negative electrode active material according to the present invention. It is.
  • the lithium ion secondary battery of the present invention is characterized in that it comprises a negative electrode using the negative electrode active material comprising the above-described coated particles, and other materials such as the positive electrode, electrolyte, separator, etc., and battery shape, etc. are known. can be used and is not particularly limited.
  • the negative electrode active material of the present invention has good battery characteristics (charge/discharge capacity and cycle characteristics) when used as a negative electrode active material for lithium ion secondary batteries, and is particularly excellent in cycle durability. is.
  • transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 and MoS 2 , lithium, and chalcogen compounds are used.
  • a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate or lithium perchlorate is used.
  • a lithium salt such as lithium hexafluorophosphate or lithium perchlorate
  • the non-aqueous solvent propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, 2-methyltetrahydrofuran, etc. may be used singly or in combination of two or more.
  • Various other non-aqueous electrolytes and solid electrolytes can also be used.
  • a jaw crusher manufactured by Maekawa Kogyosho
  • a ball mill manufactured by Makino
  • the particles were finely pulverized in a jet mill (KJ800 manufactured by Kurimoto, Ltd.) under the conditions of a compressed air pressure of 0.52 MPa and a classifier rotation speed of 4,500 rpm, and collected with a cyclone.
  • a jet mill KJ800 manufactured by Kurimoto, Ltd.
  • a compressed air pressure 0.52 MPa
  • a classifier rotation speed 4500 rpm
  • a cyclone collected with a cyclone.
  • D0.1 was 1.2 ⁇ m
  • D10 was 3.5 ⁇ m
  • D50 was
  • the silicon monoxide particles were 7.9 ⁇ m
  • D99.9 was 28.1 ⁇ m
  • BET specific surface area was 2.9 m 2 /g.
  • the particles were spread on a tray so that the powder layer had a thickness of 10 mm, and charged into a batch heating furnace. Then, the temperature inside the furnace was raised to 1,000° C. at a heating rate of 200° C./hr while reducing the pressure in the furnace with an oil rotary vacuum pump. After the temperature reached 1,000° C., 0.3 L/min of methane was passed through the furnace, and carbon coating treatment was performed for 10 hours. After the methane was stopped, the temperature inside the furnace was lowered and cooled, and the collected agglomerates were pulverized to obtain black particles.
  • the resulting black particles are conductive particles having a D50 of 7.9 ⁇ m, a BET specific surface area of 2.2 m 2 /g, a carbon coating amount of 2.8% by mass relative to the black particles, and a silicon crystallite size of 5.0 nm. Met.
  • negative electrode active material graphite, conductive aid 1 (carbon nanotube, CNT), conductive aid 2 (carbon fine particles having a median diameter of about 50 nm), sodium polyacrylate, and CMC were mixed at 9.3:83.7:1. After mixing at a dry mass ratio of :1:4:1, the mixture was diluted with pure water to obtain a negative electrode mixture slurry.
  • This slurry was applied to a copper foil having a thickness of 15 ⁇ m and dried in a vacuum atmosphere at 100° C. for 1 hour. After drying, the deposition amount of the negative electrode active material layer per unit area (also referred to as area density) on one side of the negative electrode was 7.0 mg/cm 2 .
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • vinylene carbonate (VC) and fluoroethylene carbonate (FEC) were added in amounts of 1.0% by mass and 2.0% by mass, respectively.
  • a Li foil with a thickness of 1 mm was punched into a diameter of 16 mm and attached to an aluminum clad.
  • the obtained electrode was punched out to have a diameter of 15 mm, and was faced to the Li counter electrode with a separator interposed therebetween.
  • the initial efficiency was measured under the following conditions. First, the charge rate was set to 0.03C. Charging was performed in CCCV mode. CV was 0 V and final current was 0.04 mA. CC discharge was performed at a discharge rate of 0.03 C and a discharge voltage of 1.2 V in the same manner.
  • initial efficiency (initial discharge capacity/initial charge capacity) ⁇ 100.
  • LCO lithium cobalt oxide
  • the cycle characteristics were investigated as follows. First, two cycles of charge and discharge were performed at 0.2C in an atmosphere of 25°C for battery stabilization, and the discharge capacity of the second cycle was measured. The battery cycle characteristics were calculated from the discharge capacity at the third cycle, and the battery test was stopped when the discharge capacity maintenance rate reached 70%. Charging and discharging were performed at 0.7C for charging and 0.5C for discharging. The charge voltage was 4.3V, the discharge final voltage was 2.5V, and the charge final rate was 0.07C.
  • the resulting silicon monoxide particles were coated with a carbon film to obtain conductive particles having a D50 of 6.1 ⁇ m, a BET specific surface area of 3.2 m 2 /g, and a carbon coating amount of 3.5% by mass relative to the black particles. .
  • a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed.
  • Conductive particles were produced in the same manner as in Example 1, except that the silicon monoxide particles obtained in Comparative Example 2 were used and the methane aeration time was set to 7 hours. Conductive particles having a D50 of 6.0 ⁇ m, a BET specific surface area of 3.2 m 2 /g, and a carbon coating amount of 2.7% by mass based on the black particles were obtained. Using the obtained conductive particles, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed.
  • Example 4 The ball mill powder having a D50 of 100 ⁇ m obtained in Example 1 was pulverized by a jet mill under the conditions of a classifier compressed air pressure of 0.40 MPa and a rotation speed of 2200 rpm, and collected by a cyclone. Silicon monoxide particles having a D0.1 of 3.5 ⁇ m, a D10 of 7.2 ⁇ m, a D50 of 18.9 ⁇ m, a D99.9 of 53.4 ⁇ m, and a BET specific surface area of 1.3 m 2 /g of the particles collected by the cyclone. there were.
  • the resulting silicon monoxide particles were coated with a carbon film to obtain conductive particles having a D50 of 19.0 ⁇ m, a BET specific surface area of 1.2 m 2 /g, and a carbon coating amount of 2.0% by mass relative to the black particles. .
  • a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed.
  • the silicon monoxide particles had a D0.1 of 0.3 ⁇ m, a D10 of 1.5 ⁇ m, a D50 of 9.1 ⁇ m, a D99.9 of 57.0 ⁇ m, and a BET specific surface area of 2.8 m 2 /g.
  • a carbon film was coated in the same manner as in Example 1 without performing fine pulverization and classification operations with a jet mill, and the D50 was 9.3 ⁇ m, the BET specific surface area was 2.5 m 2 /g, and the carbon coating amount with respect to black particles was 3. 1% by weight of conductive particles was obtained. Using the obtained conductive particles, a negative electrode was produced in the same manner as in Example 1, and battery evaluation was performed.
  • Table 1 shows the conditions of Examples and Comparative Examples.
  • Table 2 shows powder physical properties and battery characteristics.
  • FIG. 1 shows the number of cycles of maintaining 70% discharge capacity of the negative electrode active material coated with carbon with respect to D0.1 of silicon monoxide particles not coated with carbon
  • FIG. 2 shows silicon monoxide without carbon coating.
  • FIG. 4 shows the number of cycles to maintain 70% discharge capacity of the carbon-coated negative electrode active material with respect to silicon monoxide particles D99.9 in the non-carbon-coated state
  • FIG. 5 shows the state without carbon coating.
  • the number of cycles is 800 or more when the cumulative 0.1% particle diameter D0.1 of the silicon monoxide particles is in the range of 1.2 ⁇ m ⁇ D0.1 ⁇ 3.0 ⁇ m. Further, from FIG. 2, it can be seen that the number of cycles is 800 or more when the cumulative 10% particle diameter D10 of the silicon monoxide particles is in the range of 3.5 ⁇ m ⁇ D10 ⁇ 7.0 ⁇ m. Further, from FIG. 3, it can be seen that the number of cycles is 800 or more when the cumulative 50% particle diameter D50 of the silicon monoxide particles is in the range of 6.0 ⁇ m ⁇ D50 ⁇ 15.0 ⁇ m. Further, from FIG.
  • the number of cycles is 800 or more when the cumulative 99.9% particle diameter D99.9 of the silicon monoxide particles is in the range of 25.0 ⁇ m ⁇ D99.9 ⁇ 50.0 ⁇ m. Further, from FIG. 5, it can be seen that the number of cycles is 800 or more when the BET specific surface area Sm of the silicon monoxide particles is in the range of 1.0 m 2 /g ⁇ S m ⁇ 3.5 m 2 /g.
  • Examples 1 to 10 are lithium ion secondary batteries with greatly improved cycle characteristics while maintaining initial charge/discharge characteristics as compared to Comparative Examples 1 to 5.
  • the particle size distribution of the silicon monoxide particles did not satisfy the optimum conditions, and the BET specific surface area was high.
  • the negative electrode active material comprising silicon monoxide particles having a particle size distribution of D99.9 exceeding 50 ⁇ m deteriorates the cycle characteristics. It is presumed that the coarse particles expanded and contracted due to charging and discharging, and the conductive path was lost.
  • the present invention is not limited to the above embodiments.
  • the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、一酸化珪素粒子を含む負極活物質であって、前記一酸化珪素粒子は、レーザー回折法粒度分布測定装置で測定した体積基準分布において、累積0.1%粒子径D0.1が1.2μm≦D0.1≦3.0μm、累積10%粒子径D10が3.5μm≦D10≦7.0μm、累積50%粒子径D50が6.0μm≦D50≦15.0μm、累積99.9%粒子径D99.9が25.0μm≦D99.9≦50.0μmを満たし、前記一酸化珪素粒子は、BET比表面積Sが1.0m/g≦S≦3.5m/gを満たすものである負極活物質である。これにより、二次電池の負極電極に負極活物質として用いた際に、サイクル特性を向上させることが可能な負極活物質が提供される。

Description

負極活物質、負極及びリチウムイオン二次電池
 本発明は、負極活物質、負極及びリチウムイオン二次電池に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、広く普及が進んでいる。
 上記のリチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材として珪素を用いることが検討されている。なぜならば、珪素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としての珪素材の開発は珪素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質として珪素系材料に珪素単体を用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、珪素系材料を主材としたリチウムイオン二次電池用負極活物質材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用い珪素及びアモルファス二酸化珪素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、酸化珪素粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、珪素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、珪素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中における珪素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、珪素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
 また、サイクル特性改善のため、酸化珪素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化珪素中に分散された珪素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、珪素と酸素の原子数比を1:y(0<y<2)に制御した酸化珪素を用いている(例えば特許文献12参照)。
 また、酸化珪素を用いたリチウムイオン二次電池は、日立マクセルが2010年6月にナノシリコン複合体を採用したスマートフォン用の角形の二次電池の出荷を開始した(例えば非特許文献1参照)。Hohlより提案された酸化珪素はSi0+~Si4+の複合材であり様々な酸化状態を有する(非特許文献2)。また、Kapaklisは酸化珪素に熱負荷を与えることでSiとSiOにわかれる、不均化構造を提案している(非特許文献3)。Miyachiらは不均化構造を有する酸化珪素のうち充放電に寄与するSiとSiOに注目している(非特許文献4)。
 また、サイクル特性改善のため、モード径、D50およびD90の粒度分布が規定された酸化珪素粉末を用いている(例えば特許文献13)。なお、粒度分布において、D50は累積50%径を、D90は累積90%径を示し、その他の数値も同様である。また、サイクル特性改善のため、ボールミル粉砕後に水による湿式分級を行った酸化珪素粉末のD90、D90/D10、1μm以下の微粉量が規定されている(例えば特許文献14)。また、初回放電容量およびサイクル特性改善の為、炭素被膜形成前の酸化珪素粉末のD50/D10および炭素被膜形成後の負極活物質のBET比表面積が規定された酸化珪素粉末を用いている(例えば特許文献15)。また、サイクル特性改善のため、炭素被膜が形成された酸化珪素からなる負極活物質において、負極活物質の粒度分布から粒子が球体と仮定して算出した比表面積と負極活物質のBET比表面積の比が規定されている(例えば特許文献16)。また、炭素被膜形成後の酸化珪素からなる負極活物質のD10およびD90が規定されている(例えば、特許文献17)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特開平06-325765号公報 特開2015-149171号公報 特開2011-65934号公報 国際公開第2012/077268号 国際公開第2014/002356号 特開2013-101770号公報
社団法人電池工業会機関紙「でんち」平成22年5月1日号、第10頁 A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess : J. Non-Cryst. Solids, 320, (2003 ), 255. V. Kapaklis, J. Non-Crystalline Solids, 354 (2008) 612 Mariko Miyachi, Hironori Yamamoto, and Hidemasa Kawai, J. Electrochem. Soc. 2007 volume 154, issue 4, A376-A380
 高い充放電容量を持つ珪素系材料を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれている。珪素系材料の中では、酸化珪素がより高いサイクル特性を得る可能性があり、様々な改善が行われて来たが、上記、負極活物質の粒径制御に関する様々な技術を以てしても、充放電の繰り返しを行うにあたり、負極活物質表面における電解液の分解抑制が不十分であり、実用レベルに耐えうるサイクル特性が得られていなかった。
 その理由としては、以下のことが考えられる。特許文献14では、水による湿式分級を行い、表面Si酸化状態が変化し、かつxの値が大きく異なるSiO粉末を用いて、D90/D10および1μm以下の微粉量を規定しており、初回効率およびサイクル特性と粒度分布の相対的な評価ができていない。
 また、特許文献15では、(特許文献14と同様に水による湿式分級で得られた)炭素被膜形成前のSiO粉末のD50とD50/D10、炭素被膜形成後の負極活物質のBET比表面積を規定しているが、実施例ではD50が4.41~5.35μmと比較的粒径が小さい中での初期放電容量の差を述べているだけであり、D90、D99.9については触れられておらず、炭素被膜形成前のSiO粉末のD0.1およびBET比表面積には触れられていない。小粒径側の粒子径はD0.1を規定することによって、より正確に粉体の粒度分布情報を得ることができる。負極活物質のBET比表面積は、基材となる酸化珪素粒子の表面状態だけでなく、負極活物質表面に形成される炭素被膜の状態によって大きく左右されるため、本質となる酸化珪素粒子の表面反応を抑制する因子としては不十分である。さらに、D50が約5μmである実施例とD50が9.36μmである比較例にサイクル特性(10サイクル)の差はないとの記載があるが、一般的にコイン電池評価では、充放電サイクルを繰り返すことでLi正極が劣化してくるため、50サイクルを超える長期サイクル試験には不向きである。したがって、電解液と負極活物質との反応による負極の劣化を評価するには100サイクルを超える充放電サイクルが必要であり、正極には正極活物質としてLCO(コバルト酸リチウム)などを用いたフルセルで行う必要がある。
 また、特許文献16及び特許文献17では、炭素被膜形成前のSiOの粒度分布およびBET表面積に関して触れられておらず、また、特許文献17ではD90が5μm以下と小さい。
 本発明は前述のような問題に鑑みてなされたもので、二次電池の負極電極に負極活物質として用いた際に、サイクル特性を向上させることが可能な負極活物質を提供することを目的とする。
 上記目的を達成するために、本発明では、一酸化珪素粒子を含む負極活物質であって、前記一酸化珪素粒子は、レーザー回折法粒度分布測定装置で測定した体積基準分布において、累積0.1%粒子径D0.1が1.2μm≦D0.1≦3.0μm、累積10%粒子径D10が3.5μm≦D10≦7.0μm、累積50%粒子径D50が6.0μm≦D50≦15.0μm、累積99.9%粒子径D99.9が25.0μm≦D99.9≦50.0μmを満たし、前記一酸化珪素粒子は、BET比表面積Sが1.0m/g≦S≦3.5m/gを満たすものであることを特徴とする負極活物質を提供する。
 本発明の負極活物質は、このような粒度分布及びBET比表面積とすることで、充放電を繰り返す長期サイクル試験において、負極活物質の粒子表面における電解液との反応が抑制され、電池のサイクル特性を大幅に向上させることができる。
 このとき、前記累積0.1%粒子径D0.1が、2.0μm≦D0.1≦3.0μmを満たすものであることが好ましい。
 また、前記累積10%粒子径D10が、4.8μm≦D10≦7.0μmを満たすものであることが好ましい。
 また、前記累積50%粒子径D50が、8.0μm≦D50≦15.0μmを満たすものであることが好ましい。
 これらのような粒子径分布を有する一酸化珪素を含む負極活物質によれば、粒子表面における電解液との反応がより効果的に抑制され、電池のサイクル特性を大幅に向上させることができる。
 また、本発明の負極活物質においては、前記BET比表面積Sが、1.0m/g≦S≦2.2m/gであることが好ましい。
 このようなBET比表面積を有するものであれば、電解液と一酸化珪素粒子との反応面積がより適切になり、電池のサイクル特性を大幅に向上させることができる。
 また、本発明の負極活物質においては、前記一酸化珪素粒子が炭素被膜で被覆されたものであることが好ましい。
 このような炭素被膜で被覆された一酸化珪素粒子を有するものであれば、一酸化珪素粒子の表面に導電性を与えることができる。
 また、本発明は、上記の負極活物質を含むことを特徴とする負極を提供する。
 このような負極は、二次電池に組み込んだときに、充放電を繰り返す長期サイクル試験において、負極活物質の粒子表面における電解液との反応が抑制され、電池のサイクル特性を大幅に向上させることができる。
 また、本発明は、上記の負極と、正極と、セパレータと、電解質とを具備することを特徴とするリチウムイオン二次電池を提供する。
 このようなリチウムイオン二次電池は、充放電を繰り返す長期サイクル試験において、負極活物質の粒子表面における電解液との反応が抑制され、電池のサイクル特性を大幅に向上させることができる。
 本発明の負極活物質は、特定の粒度分布及びBET比表面積を有することで、充放電を繰り返す長期サイクル試験において、負極活物質の粒子表面における電解液との反応が抑制され、電池のサイクル特性、特に長期のサイクル試験におけるサイクル特性を大幅に向上させることができる。
一酸化珪素粒子のD0.1に対する放電容量70%維持サイクル数を示すグラフである。 一酸化珪素粒子のD10に対する放電容量70%維持サイクル数を示すグラフである。 一酸化珪素粒子のD50に対する放電容量70%維持サイクル数を示すグラフである。 一酸化珪素粒子のD99.9に対する放電容量70%維持サイクル数を示すグラフである。 一酸化珪素粒子のBET比表面積に対する放電容量70%維持サイクル数を示すグラフである。 炭素被膜を被覆した一酸化珪素粒子のBET比表面積に対する放電容量70%維持サイクル数を示すグラフである。
 本発明者らは長期サイクル特性における負極の劣化が一酸化珪素粒子表面における電解液の分解による所が大きいことを鑑み、負極活物質を構成している一酸化珪素粒子の粒径制御において鋭意検討を重ねた結果、基材となる一酸化珪素粒子の粒度分布だけでなく、一酸化珪素粒子のBET比表面積を適切な範囲とすることで、初期充放電特性を維持したまま、サイクル特性を大幅に向上させることが可能であることが判明し、本発明に至った。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
<負極活物質>
 本発明の負極活物質は、一酸化珪素粒子を含む負極活物質である。さらに、当該一酸化珪素粒子は、レーザー回折法粒度分布測定装置で測定した体積基準分布において、以下の条件を満たす。
・累積0.1%粒子径D0.1が1.2μm≦D0.1≦3.0μm、
・累積10%粒子径D10が3.5μm≦D10≦7.0μm、
・累積50%粒子径D50が6.0μm≦D50≦15.0μm、
・累積99.9%粒子径D99.9が25.0μm≦D99.9≦50.0μm
さらに、本発明の負極活物質に含まれる一酸化珪素粒子は、BET比表面積Sが1.0m/g≦S≦3.5m/gを満たすものである。
 なお、本発明の説明において、BET比表面積はNガス吸着量によって測定するBET1点法にて測定した値である。
 さらに好ましくは、本発明の負極活物質に含まれる一酸化珪素粒子は、2.0μm≦D0.1≦3.0μm、4.8μm≦D10≦7.0μm、8.0μm≦D50≦15.0μm、BET比表面積Sが1.0m/g≦S≦2.2m/gの少なくともいずれかを満たす。
 酸化珪素とは、非晶質の酸化珪素の総称であり、不均化前の酸化珪素は、一般式SiOx(0.5≦x≦1.6)で表される。この酸化珪素は、例えば、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出することで、xが1または1に近い一酸化珪素(SiO)が得られる。例えば、0.9≦x≦1.1である。
 一酸化珪素粒子を、上記した本発明の特定の粒径範囲とするためには、粉砕や分級等の処理により適宜調整することができる。粉砕には良く知られた装置を使用することができる。例えば、ボール、ビーズ等の粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピン等を固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」等が用いられる。粉砕は、湿式、乾式共に用いられる。なお、粉砕だけでは粒度分布がブロードになるが、さらに、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級が用いられる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の流れの乱れ、速度分布、静電気の影響等で分級効率を低下させないよう、分級をする前に前処理(水分、分散性、湿度等の調整)を行うことや、使用される気流の水分や酸素濃度を調整して用いられる。また、サイクロン等の乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。本発明の一酸化珪素粒子の粒度分布およびBET比表面積とするには、BET比表面積が大きくならないようなジェットミル粉砕を行い、かつ分級機により小粒径側を気流分級によりカットすることが有効である。
 一酸化珪素粒子の累積0.1%径D0.1は、上記のように、1.2~3.0μmとし、好ましくは2.0~3.0μmとする。また、一酸化珪素粒子の累積10%径D10は3.5~7.0μmとし、好ましくは4.8~7.0μmとする。また、一酸化珪素粒子の累積50%径D50は6.0~15.0μmとし、好ましくは8.0~15.0μmとする。
 また、上記のように、一酸化珪素粒子の累積99.9%径D99.9は25.0~50.0μmとする。一方で、D99.9が50.0μmよりも大きくなると、充放電によって粗大粒子が膨張収縮し、負極活物質層内で導電パスが失われるおそれがある。また、電極作製後であっても、プレス等によって粗大粒子がセパレータを傷つけてしまうおそれがある。そのため、上記のように、D0.1を3.0μm以下、かつ、D10を7.0μm以下、かつ、D50を15.0μm以下とすることで、D99.9が50μmを超えないようにすることができる。
 また、本発明の負極活物質に含まれる一酸化珪素粒子のBET比表面積は、上記のように1.0~3.5m/gとし、好ましくは1.0~2.2m/gとする。BET比表面積を3.5m/g以下にすることで、電解液と一酸化珪素粒子との反応面積が下がるため、一酸化珪素粒子をリチウムイオン二次電池用負極活物質として用いた際にサイクル特性を大幅に向上させることができる。また、このBET比表面積は1.0m/g以上とする理由は、D50が6.0μm≦D50≦15.0μmを満たす一酸化珪素粒子に対して、BET比表面積が1.0m/g未満の一酸化珪素粒子を作製することは、工業的に困難であるからである。
 上記一酸化珪素粒子に導電性を付与し、電池特性の向上を図る方法として、黒鉛等の導電性のある粒子と混合する方法、上記複合粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法が挙げられる。中でも、一酸化珪素粒子の表面が、炭素被膜で被覆されている被覆粒子とすることが好ましい。炭素被膜で被覆する方法としては、化学蒸着(CVD)する方法が好適である。
 化学蒸着(CVD)の方法としては、例えば、一酸化珪素粒子に対して、熱分解して炭素を生成し得る有機物ガス及び/又は蒸気雰囲気中、600~1,200℃の温度範囲で炭素を化学蒸着して炭素被膜を形成させる方法が挙げられる。
 化学蒸着(CVD)は、常圧、減圧下共に適用可能であり、減圧下としては、50~30,000Paの減圧下が挙げられる。また、炭素被膜の形成工程に使用する装置は、バッチ式炉、ロータリーキルン、ローラーハースキルンといった連続炉、流動層等の一般的に知られた装置が使用可能である。特に、蒸着装置が粒子を静置して行うバッチ式炉の場合、減圧下で行うことにより炭素をさらに均一に被覆することができ、電池特性の向上を図ることができる。
 化学蒸着による炭素被膜の形成には、下記のような様々な有機物がその炭素源として挙げられるが、熱分解温度や蒸着速度、また蒸着後に形成される炭素被膜の特性等は、用いる物質によって大きく異なる場合がある。蒸着速度が大きい物質は表面の炭素被膜の均一性が十分でない場合が多く、反面分解に高温を要する場合、高温での蒸着時に、被覆される一酸化珪素粒子中の珪素結晶が大きく成長し過ぎて、放電効率やサイクル特性の低下を招くおそれがある。一般的に、珪素の結晶子サイズは粉体XRD測定におけるSi(111)ピークの半値幅からシェラー法により求められ、50nm以下であることが好ましく、10nm以下であることがさらに好ましい。結晶子サイズが小さいほど、充放電に伴う酸化珪素の不均化が抑制され、より高いサイクル特性を得ることができる。
 負極活物質における一酸化珪素粒子のSi結晶子サイズは、例えば以下のXRD装置を用いて確認することができる。
・XRD:Bruker社 D8 ADVANCE
 X線源はCu Kα線、Niフィルターを使用して,出力40kV/40mA、スリット幅0.3°、ステップ幅0.008°、1ステップあたり0.15秒の計数時間にて10-40°まで測定する。
 熱分解して炭素を生成し得る有機物ガスの原料としては、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環~3環の芳香族炭化水素、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油及びナフサ分解タール油等が挙げられる。これらは1種単独で又は2種以上を適宜選択して用いることができる。経済的な観点から、CxHyの組成からなる炭化水素ガスを使用することが好ましい。
 炭素被膜の被覆量は、炭素被覆した被覆粒子全体に対して1.0質量%以上5.0質量%以下が好ましい。被覆される粒子にもよるが、炭素被覆量を1.0質量%以上とすることで、概ね十分な導電性を維持することができる。また、炭素被覆量が5.0質量%以下とすることで、負極活物質材料に占める炭素の割合を多くしすぎることなく適度とすることができ、リチウムイオン二次電池用負極活物質として用いた場合に充放電容量を確保できる。
 本発明は、上記、一酸化珪素粒子を炭素膜で被覆した負極活物質を用いて、負極を作製し、リチウムイオン二次電池を製造することができる。
[負極]
 上記負極活物質を用いて負極を作製する場合、さらにカーボンや黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粒子や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
 負極の調製方法としては、一例として下記のような方法が挙げられる。上述の負極活物質と、必要に応じて導電剤と、カルボキシメチルセルロース(以下、CMCと称する)等の結着剤等の他の添加剤と、有機溶剤又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
[リチウムイオン二次電池]
 リチウムイオン二次電池は、少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とを有するリチウムイオン二次電池であって、上記負極に、本発明に係る負極活物質が用いられたものである。本発明のリチウムイオン二次電池は、上記被覆粒子からなる負極活物質を用いた負極からなる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。上述のように、本発明の負極活物質は、リチウムイオン二次電池用の負極活物質として用いた場合の電池特性(充放電容量及びサイクル特性)が良好で、特にサイクル耐久性に優れたものである。
 正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoS等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。
 電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられる。非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ-ブチロラクトン、2-メチルテトラヒドロフラン等の1種又は2種以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
 まず、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出することで、xがほぼ1.0の一酸化珪素(SiOx)を得た。次に、このSiOx(x=1.0)をジョークラッシャー(前川工業所製)で粗砕し、さらに、ボールミル(マキノ製)で15分間粉砕し、D50が100μmの一酸化珪素粒子を得た。この粒子をジェットミル(栗本鐵工所製KJ800)で、圧縮空気の圧力0.52MPa、分級機の回転数4,500rpmの条件で微粉砕し、サイクロンで回収した。この粒子をレーザー回折法粒度分布測定装置(島津製作所SALD-3100)で屈折率2.05-0.00iの条件で測定したところ、D0.1が1.2μm、D10が3.5μm、D50が7.9μm、D99.9が28.1μm、BET比表面積が2.9m/gの一酸化珪素粒子であった。
 この粒子を粉体層厚みが10mmとなるようトレイに敷き、バッチ式加熱炉内に仕込んだ。そして油回転式真空ポンプで炉内を減圧しつつ、200℃/hrの昇温速度で炉内を1,000℃に昇温した。そして1,000℃に達した後、炉内にメタン0.3L/minで通気し、10時間の炭素被覆処理を行った。メタン停止後、炉内を降温・冷却し、回収した凝集体を解砕することで黒色粒子を得た。
 得られた黒色粒子は、D50が7.9μm、BET比表面積が2.2m/gで、黒色粒子に対する炭素被覆量2.8質量%、珪素の結晶子サイズが5.0nmの導電性粒子であった。
<電池評価>
 次に、以下の方法で、得られた炭素被膜粒子を負極活物質として用いた電池評価を行った。
 まず、負極活物質、グラファイト、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、ポリアクリル酸ナトリウム、CMCを9.3:83.7:1:1:4:1の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。
 このスラリーを厚さ15μmの銅箔に塗布し、真空雰囲気中で100℃1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は7.0mg/cmであった。
 次に、溶媒エチレンカーボネート(EC)及びジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、ビニレンカーボネート(VC)とフルオロエチレンカーボネート(FEC)をそれぞれ、1.0質量%、2.0質量%添加した。
 次に、以下のようにしてコイン電池を組み立てた。
 最初に厚さ1mmのLi箔を直径16mmに打ち抜き、アルミクラッドに張り付けた。
得られた電極を直径15mmに打ち抜き、セパレータを介してLi対極と向い合せ電解液注液後、2032コイン電池を作製した。
 初回効率は以下の条件で測定した。まず充電レートを0.03C相当で行った。CCCVモードで充電を行った。CVは0Vで終止電流は0.04mAとした。放電レートは同様に0.03C、放電電圧は1.2V、CC放電を行った。
 初期充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。
 得られた初期データから、対正極を設計し、電池評価を行った。正極活物質はLCO(コバルト酸リチウム)を使用した。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。電池サイクル特性は3サイクル目の放電容量から計算し,放電容量の維持率が70%に達した所で電池試験をとめた。充放電は充電0.7C、放電0.5Cで行った。充電電圧は4.3V、放電終止電圧は2.5V,充電終止レートは0.07Cとした。
 [実施例2~10]
 実施例1と同じSiOx(x=1.0)を同様にボールミルでD50を100μmにした。次のジェットミル工程で分級機の回転数、粉砕圧および雰囲気制御を行い、表1に示される粉体物性を有する一酸化珪素粒子を作製した。実施例1と同様の方法で、一酸化珪素粒子に炭素膜を被覆させて導電性粒子を作製し、得られた導電性粒子を用いて負極を作製し、電池評価を行った。
 [比較例1]
 実施例1と同じSiOx(x=1.0)を同様にボールミルで100μmにした。次のジェットミル工程で分級機の圧縮空気の圧力0.52MPa、回転数を5000rpmの条件で微粉砕し、サイクロンで回収した。サイクロンで回収した粒子のD0.1が1.8μm、D10が4.5μm、D50が6.6μm、D99.9が18.9μm、BET比表面積が3.3m/gの一酸化珪素粒子であった。実施例1と同様の方法で、一酸化珪素粒子に炭素膜を被覆させて導電性粒子を作製し、得られた導電性粒子を用いて負極を作製し、電池評価を行った。
 [比較例2]
 実施例1と同じSiOx(x=1.0)を用いて30分間ボールミルで粉砕し、D50を20μmにした。次のジェットミル工程では、分級機の圧縮空気の圧力0.45MPa、回転数を5500rpmの条件で微粉砕し、サイクロンで回収した。サイクロンで回収した粒子のD0.1が0.4μm、D10が2.5μm、D50が5.8μm、D99.9が18.5μm、BET比表面積が3.7m/gの一酸化珪素粒子であった。得られた一酸化珪素粒子に炭素膜を被覆し、D50が6.1μm、BET比表面積が3.2m/g、黒色粒子に対する炭素被覆量3.5質量%の導電性粒子が得られた。得られた導電性粒子を用いて、実施例1と同様の方法で負極を作製し、電池評価を行った。
 [比較例3]
 比較例2で得られた一酸化珪素粒子を用いることおよびメタン通気時間を7時間とすること以外は、実施例1と同様にして、導電性粒子を作製した。D50が6.0μm、BET比表面積が3.2m/g、黒色粒子に対する炭素被覆量2.7質量%の導電性粒子が得られた。得られた導電性粒子を用いて、実施例1と同様の方法で負極を作製し、電池評価を行った。
 [比較例4]
 実施例1で得られたD50が100μmのボールミル粉を用いて、ジェットミルで分級機の圧縮空気の圧力0.40MPa、回転数を2200rpmの条件で微粉砕し、サイクロンで回収した。サイクロンで回収した粒子のD0.1が3.5μm、D10が7.2μm、D50が18.9μm、D99.9が53.4μm、BET比表面積が1.3m/gの一酸化珪素粒子であった。得られた一酸化珪素粒子に炭素膜を被覆し、D50が19.0μm、BET比表面積が1.2m/g、黒色粒子に対する炭素被覆量2.0質量%の導電性粒子が得られた。得られた導電性粒子を用いて、実施例1と同様の方法で負極を作製し、電池評価を行った。
 [比較例5]
 実施例1と同じSiOx(x=1.0)を用いてボールミルで1時間粉砕した。この一酸化珪素粒子はD0.1が0.3μm、D10が1.5μm、D50が9.1μm、D99.9が57.0μm、BET比表面積が2.8m/gであった。ジェットミルによる微粉砕・分級操作をせずに、実施例1と同様に炭素膜を被覆し、D50が9.3μm、BET比表面積が2.5m/g、黒色粒子に対する炭素被覆量3.1質量%の導電性粒子が得られた。得られた導電性粒子を用いて、実施例1と同様の方法で負極を作製し、電池評価を行った。
 実施例および比較例の条件を表1に示す。また、粉体物性および電池特性を表2に示す。図1に炭素被覆していない状態の一酸化珪素粒子のD0.1に対する、炭素被覆した状態の負極活物質の放電容量70%維持サイクル数、図2に炭素被覆していない状態の一酸化珪素粒子D10に対する、炭素被覆した状態の負極活物質の放電容量70%維持サイクル数、図3に炭素被覆していない状態の一酸化珪素粒子D50に対する、炭素被覆した状態の負極活物質の放電容量70%維持サイクル数、図4に炭素被覆していない状態の一酸化珪素粒子D99.9に対する、炭素被覆した状態の負極活物質の放電容量70%維持サイクル数、図5に炭素被覆していない状態の一酸化珪素粒子BET比表面積に対する放電容量70%維持サイクル数、図6に炭素被覆した状態の負極活物質BET比表面積に対する炭素被覆した状態の負極活物質の放電容量70%維持サイクル数を示す。
 図1から、一酸化珪素粒子の累積0.1%粒子径D0.1が1.2μm≦D0.1≦3.0μmの範囲において、サイクル数が800以上となっていることがわかる。また、図2から、一酸化珪素粒子の累積10%粒子径D10が3.5μm≦D10≦7.0μmの範囲において、サイクル数が800以上となっていることがわかる。また、図3から、一酸化珪素粒子の累積50%粒子径D50が6.0μm≦D50≦15.0μmの範囲において、サイクル数が800以上となっていることがわかる。また、図4から、一酸化珪素粒子の累積99.9%粒子径D99.9が25.0μm≦D99.9≦50.0μmの範囲において、サイクル数が800以上となっていることがわかる。また、図5から、一酸化珪素粒子のBET比表面積Sが1.0m/g≦S≦3.5m/gの範囲において、サイクル数が800以上となっていることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~10は比較例1~5に比べて、初期充放電特性を維持したまま、サイクル特性が大幅に改善されたリチウムイオン二次電池であることが確認された。比較例1~3では、一酸化珪素粒子の粒度分布が最適な条件を満たしておらず、かつBET比表面積が高いため、実施例ほどのサイクル特性が得られなかった。また、比較例4および5では、D99.9が50μmを超える粒度分布を持った一酸化珪素粒子からなる負極活物質により、サイクル特性が低下してしまうことが確認された。充放電によって粗大粒子が膨張収縮し、導電パスが失われたと推定される。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  一酸化珪素粒子を含む負極活物質であって、
     前記一酸化珪素粒子は、レーザー回折法粒度分布測定装置で測定した体積基準分布において、
     累積0.1%粒子径D0.1が1.2μm≦D0.1≦3.0μm、
     累積10%粒子径D10が3.5μm≦D10≦7.0μm、
     累積50%粒子径D50が6.0μm≦D50≦15.0μm、
     累積99.9%粒子径D99.9が25.0μm≦D99.9≦50.0μm
     を満たし、
     前記一酸化珪素粒子は、BET比表面積Sが1.0m/g≦S≦3.5m/gを満たすものであることを特徴とする負極活物質。
  2.  前記累積0.1%粒子径D0.1が、2.0μm≦D0.1≦3.0μmを満たすものであることを特徴とする請求項1に記載の負極活物質。
  3.  前記累積10%粒子径D10が、4.8μm≦D10≦7.0μmを満たすものであることを特徴とする請求項1又は請求項2に記載の負極活物質。
  4.  前記累積50%粒子径D50が、8.0μm≦D50≦15.0μmを満たすものであることを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。
  5.  前記BET比表面積Sが、1.0m/g≦S≦2.2m/gであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極活物質。
  6.  前記一酸化珪素粒子が炭素被膜で被覆されたものであることを特徴とする請求項1から請求項5のいずれか1項に記載の負極活物質。
  7.  請求項1から請求項6のいずれか1項に記載の負極活物質を含むことを特徴とする負極。
  8.  請求項7に記載の負極と、正極と、セパレータと、電解質とを具備することを特徴とするリチウムイオン二次電池。
PCT/JP2022/022103 2021-06-08 2022-05-31 負極活物質、負極及びリチウムイオン二次電池 WO2022259914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22820096.0A EP4354546A1 (en) 2021-06-08 2022-05-31 Negative electrode active material, negative electrode, and lithium ion secondary battery
CN202280040678.5A CN117441242A (zh) 2021-06-08 2022-05-31 负极活性物质、负极及锂离子二次电池
KR1020237041914A KR20240019115A (ko) 2021-06-08 2022-05-31 부극 활물질, 부극 및 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-095807 2021-06-08
JP2021095807A JP2022187684A (ja) 2021-06-08 2021-06-08 負極活物質、負極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2022259914A1 true WO2022259914A1 (ja) 2022-12-15

Family

ID=84424976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022103 WO2022259914A1 (ja) 2021-06-08 2022-05-31 負極活物質、負極及びリチウムイオン二次電池

Country Status (6)

Country Link
EP (1) EP4354546A1 (ja)
JP (1) JP2022187684A (ja)
KR (1) KR20240019115A (ja)
CN (1) CN117441242A (ja)
TW (1) TW202315194A (ja)
WO (1) WO2022259914A1 (ja)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2011065934A (ja) 2009-09-18 2011-03-31 Osaka Titanium Technologies Co Ltd 珪素酸化物およびリチウムイオン二次電池用負極材
WO2012077268A1 (ja) 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2013101770A (ja) 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法
WO2014002356A1 (ja) 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2015149171A (ja) 2014-02-06 2015-08-20 信越化学工業株式会社 リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
JP2016091649A (ja) * 2014-10-30 2016-05-23 信越化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
CN111969196A (zh) * 2020-08-05 2020-11-20 有研资源环境技术研究院(北京)有限公司 一种纳米片状氧化亚硅及其复合负极材料

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2011065934A (ja) 2009-09-18 2011-03-31 Osaka Titanium Technologies Co Ltd 珪素酸化物およびリチウムイオン二次電池用負極材
WO2012077268A1 (ja) 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2013101770A (ja) 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法
WO2014002356A1 (ja) 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2015149171A (ja) 2014-02-06 2015-08-20 信越化学工業株式会社 リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
JP2016091649A (ja) * 2014-10-30 2016-05-23 信越化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
CN111969196A (zh) * 2020-08-05 2020-11-20 有研资源环境技术研究院(北京)有限公司 一种纳米片状氧化亚硅及其复合负极材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. HOHLT. WIEDERP. A. VAN AKENT. E. WEIRICHG. DENNINGERM. VIDALS. OSWALDC. DENEKEJ. MAYERH. FUESS, J. NON-CRYST. SOLIDS, vol. 320, 2003, pages 255
JOURNAL OF BATTERY ASSOCIATION OF JAPAN ''DENCHI, 1 May 2010 (2010-05-01), pages 10
MARIKO MIYACHIHIRONORI YAMAMOTOHIDEMASA KAWAI, J. ELECTROCHEM. SOC, vol. 154, 2007, pages A376 - A380
V. KAPAKLIS, J. NON-CRYSTALLINE SOLIDS, vol. 354, 2008, pages 612

Also Published As

Publication number Publication date
JP2022187684A (ja) 2022-12-20
TW202315194A (zh) 2023-04-01
EP4354546A1 (en) 2024-04-17
KR20240019115A (ko) 2024-02-14
CN117441242A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5555978B2 (ja) 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
CN110024189B (zh) 非水二次电池用负极材料、非水二次电池用负极及非水二次电池
US10170757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
JP6030995B2 (ja) 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP6592156B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
JP4673287B2 (ja) スピネル型リチウムマンガン酸化物及びその製造方法
JP2015130324A (ja) 非水電解液二次電池
US10050259B2 (en) Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2012079470A (ja) 非水電解質二次電池
CN107925074B (zh) 锂离子二次电池用负极材料、其制造方法和锂离子二次电池
TWI651883B (zh) 鋰離子二次電池用負極材料及其製造方法、鋰離子二次電池用負極以及鋰離子二次電池
JP6119796B2 (ja) 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
WO2022259914A1 (ja) 負極活物質、負極及びリチウムイオン二次電池
WO2022259920A1 (ja) 負極活物質、負極及びリチウムイオン二次電池
JP5907223B2 (ja) 非水電解質二次電池用負極活物質、負極及び非水電解質二次電池の製造方法
JP5821893B2 (ja) 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040678.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022820096

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820096

Country of ref document: EP

Effective date: 20240108