WO2014002356A1 - リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ - Google Patents

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ Download PDF

Info

Publication number
WO2014002356A1
WO2014002356A1 PCT/JP2013/002760 JP2013002760W WO2014002356A1 WO 2014002356 A1 WO2014002356 A1 WO 2014002356A1 JP 2013002760 W JP2013002760 W JP 2013002760W WO 2014002356 A1 WO2014002356 A1 WO 2014002356A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
ion secondary
powder
lithium ion
Prior art date
Application number
PCT/JP2013/002760
Other languages
English (en)
French (fr)
Inventor
木崎 信吾
悠介 柏谷
祥章 喜多
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2014522381A priority Critical patent/JP5909552B2/ja
Publication of WO2014002356A1 publication Critical patent/WO2014002356A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a powder for a negative electrode material that can be used for a lithium ion secondary battery, has a large discharge capacity, has good cycle characteristics, and can obtain a lithium ion secondary battery that can withstand use at a practical level.
  • the present invention also relates to a lithium ion secondary battery negative electrode and capacitor negative electrode, and a lithium ion secondary battery and capacitor using the negative electrode material powder.
  • high energy density secondary batteries include nickel cadmium batteries, nickel metal hydride batteries, lithium ion secondary batteries and polymer batteries.
  • lithium ion secondary batteries have a much longer lifespan and higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus the demand thereof has shown high growth in the power supply market.
  • FIG. 1 is a diagram showing a configuration example of a coin-shaped lithium ion secondary battery.
  • the lithium ion secondary battery maintains the electrical insulation between the positive electrode 1, the negative electrode 2, the separator 3 impregnated with the electrolyte, and the positive electrode 1 and the negative electrode 2 and seals the battery contents. It consists of a gasket 4.
  • lithium ions reciprocate between the positive electrode 1 and the negative electrode 2 through the electrolytic solution of the separator 3.
  • the positive electrode 1 includes a counter electrode case 1a, a counter electrode current collector 1b, and a counter electrode 1c.
  • Lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ) are mainly used for the counter electrode 1c.
  • the negative electrode 2 is composed of a working electrode case 2a, a working electrode current collector 2b, and a working electrode 2c, and the negative electrode material used for the working electrode 2c is generally an active material capable of occluding and releasing lithium ions (negative electrode active material). And a conductive assistant and a binder.
  • carbon-based materials have been used as negative electrode active materials for lithium ion secondary batteries.
  • a new negative electrode active material having a higher capacity of a lithium ion secondary battery than conventional ones a composite oxide of lithium and boron, a composite oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni, etc.) Si, Ge, or a compound containing Sn and N and O, Si particles whose surface is coated with a carbon layer by chemical vapor deposition, and the like have been proposed.
  • silicon oxide powder represented by SiO x (0 ⁇ x ⁇ 2) such as SiO As the negative electrode active material.
  • Silicon oxide can be a negative electrode active material having a larger effective charge / discharge capacity because it has less degradation such as collapse of the crystal structure and generation of an irreversible material due to insertion and extraction of lithium ions during charge / discharge. Therefore, by using silicon oxide as the negative electrode active material, the capacity is higher than when carbon is used, and the cycle characteristics are better than when a high capacity negative electrode material such as Si or Sn alloy is used. A lithium ion secondary battery has been obtained.
  • silicon oxide powder is used as the negative electrode active material
  • carbon powder or the like is generally mixed as a conductive aid in order to compensate for the low electrical conductivity of silicon oxide.
  • the electrical conductivity of the contact part vicinity of the powder of silicon oxide and a conductive support agent is securable.
  • electrical conductivity cannot be ensured at a location away from the contact portion, and it is difficult to function as a negative electrode active material.
  • Patent Document 1 a carbon film is formed by CVD (chemical vapor deposition) on the surface of particles (conductive silicon composite) having a structure in which silicon microcrystals are dispersed in silicon dioxide.
  • CVD chemical vapor deposition
  • Patent Document 1 a uniform conductive carbon film is formed on the conductive silicon composite, and sufficient electrical conductivity can be imparted.
  • the lithium ion secondary battery using the conductive silicon composite of Patent Document 1 uses silicon dioxide in which silicon microcrystals are dispersed as a negative electrode material. Lithium ion occlusion, expansion and contraction during release increase, and repeated charge / discharge causes problems such as a sudden drop in capacity at a certain point. Further, the discharge capacity and cycle characteristics were not sufficient.
  • the present inventors conducted a charge / discharge test on a lithium ion secondary battery using a powder for a negative electrode material in which a conductive carbon film is formed on the surface of a SiO x (0.4 ⁇ x ⁇ 1.2) powder.
  • the cycle characteristics greatly change depending on the state of the conductive carbon film. Specifically, when the conductive carbon film is rough, the cycle characteristics are inferior to the smooth case, and it is difficult to maintain sufficient performance of the lithium ion secondary battery. This is because when the negative electrode material powder having a rough conductive carbon film occludes lithium ions, the SiO x powder expands, causing many cracks in the conductive carbon film, and the substantial specific surface area of the negative electrode material powder is reduced.
  • the present invention has been made in view of this problem, and has a large discharge capacity, good cycle characteristics, and a negative electrode material powder for a lithium ion secondary battery that can withstand use at a practical level, and the negative electrode material. It is an object to provide a lithium ion secondary battery negative electrode and a capacitor negative electrode, and a lithium ion secondary battery and a capacitor using the powder for use.
  • the present inventors produced lithium ion secondary batteries using negative electrode material powders having various specific surface areas, and the specific surface area of the negative electrode material powders and the cycle of the lithium ion secondary battery.
  • the relationship with characteristics was examined.
  • the negative electrode material powder in which the conductive carbon film was formed on the surface of the SiO x powder had a specific surface area A obtained from the particle size distribution and a specific surface area B measured by the BET method of 1.5 ⁇ B / A ⁇
  • the relationship of 100 was satisfied, it was found that the lithium ion secondary battery using the negative electrode material powder had good cycle characteristics and a large discharge capacity.
  • the present invention has been made on the basis of the above findings.
  • the gist of the present invention is that the following (1) to (3) powder for lithium ion secondary battery negative electrode material, and the following (4) lithium ion secondary battery negative electrode And a capacitor negative electrode of the following (5), a lithium ion secondary battery of the following (6), and a capacitor of the following (7).
  • a lithium ion secondary battery negative electrode material comprising a powder of SiO x (0.4 ⁇ x ⁇ 1.2) having a conductive carbon film on the surface and satisfying the following formula (1) Powder. 1.5 ⁇ B / A ⁇ 100 (1)
  • A Specific surface area of the powder for a lithium ion secondary battery negative electrode material calculated on the assumption that the particle is a sphere using a particle size distribution
  • B A lithium ion secondary battery negative electrode measured by a one-point method by the BET method It is a specific surface area of the powder for materials, and A is represented by the following formula (2).
  • d i a lithium ion secondary battery negative electrode material powder having a particle size
  • n i number of particles in the particle size range of d i ⁇ d i + 1 in the particle size distribution
  • [rho true density of SiO (2.2 g / cm 3 ).
  • the proportion of the conductive carbon film is 3% by mass or less, and the peak derived from the Si crystal does not appear when measured with an X-ray diffractometer.
  • Powder for negative electrode material of lithium ion secondary battery is 3% by mass or less, and the peak derived from the Si crystal does not appear when measured with an X-ray diffractometer.
  • x of SiO x particle size distribution of powder for negative electrode material of lithium ion secondary battery, specific surface area (A and B above) and D50 values, and conductive carbon film in the powder for negative electrode material of lithium ion secondary battery
  • specific surface area (A and B above) and D50 values conductive carbon film in the powder for negative electrode material of lithium ion secondary battery
  • SiO x powder having a conductive carbon film on the surface of the SiO x powder is a result of surface analysis using an X-ray photoelectron spectroscopic analyzer. Is 0.1 or less.
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics.
  • FIG. 1 is a diagram illustrating a configuration example of a coin-shaped lithium ion secondary battery.
  • FIG. 2 is a diagram showing the results of X-ray diffraction measurement for the powder for a negative electrode material for a lithium ion secondary battery, and FIG. 2 (a) is a diagram when a peak derived from a crystal of Si appears clearly, FIG. FIG. 2B is a diagram when a peak derived from a Si crystal appears, and FIG. 2C is a diagram when a peak derived from a Si crystal does not appear.
  • FIG. 3 is a diagram showing an example of the particle size distribution of the powder for a negative electrode material for a lithium ion secondary battery of the present invention.
  • FIG. 4 is a diagram showing a configuration example of a silicon oxide production apparatus.
  • the powder for lithium ion secondary battery negative electrode material of the present invention (hereinafter also simply referred to as “powder for negative electrode material”) has SiO x having a conductive carbon film on the surface. (0.4 ⁇ x ⁇ 1.2).
  • the reason why the x range of SiO x is 0.4 ⁇ x ⁇ 1.2 is that when the value of x is less than 0.4, the lithium ion secondary using the negative electrode material powder of the present invention is used. This is because the battery and capacitor are rapidly deteriorated due to the charge / discharge cycle, and the battery capacity is reduced when it exceeds 1.2.
  • x preferably satisfies 0.8 ⁇ x ⁇ 1.05.
  • the powder for negative electrode material of the present invention satisfies the following formula (1). 1.5 ⁇ B / A ⁇ 100 (1)
  • A specific surface area of the powder for negative electrode material calculated on the assumption that the particles are spherical using particle size distribution
  • B specific surface area of the powder for negative electrode material measured by a one-point method by the BET method
  • A ⁇ ⁇ n i ⁇ ( 4 ⁇ (d i / 2) 2) ⁇ / [ ⁇ ⁇ ⁇ ⁇ n i ⁇ (4 ⁇ (d i / 2) 3/3) ⁇ ] ...
  • d i is the particle size of the powder for negative electrode material
  • n i is the number of particles in the range of particle size d i to d i + 1 in the particle size distribution
  • is the true density of SiO (2.2 g / cm 3 ).
  • the value of B / A is 1.
  • B / A can be used as an indicator of the surface state of the negative electrode material powder, that is, the state of the conductive carbon film. The closer the B / A value is to 1, the smoother the conductive carbon film is, and the larger the value is, the rougher the film becomes.
  • the SiO x powder expands, causing many cracks in the conductive carbon film, resulting in substantial negative electrode material use. It is thought that the specific surface area of the powder is increased and the decomposition of the electrolyte proceeds. When charging / discharging is repeated in this state, the specific surface area of the negative electrode material powder increases every cycle, the decomposition of the electrolyte is promoted, the deterioration of the electrolytic solution proceeds, and the cycle characteristics are lowered.
  • the value of B / A is 100 or less, since the conductive carbon film is smooth, it is possible to suppress the conductive carbon film from being cracked by charging / discharging, and deterioration or depletion of the electrolyte solution is prevented. It is difficult to proceed and the deterioration of cycle characteristics is suppressed. Therefore, the value of B / A is defined as 100 or less as in the above equation (1).
  • the value of B / A is defined as 1.5 or more as in the above equation (1).
  • the value of D50 in the particle size distribution preferably satisfies 1 ⁇ m ⁇ D50 ⁇ 50 ⁇ m, and more preferably 3 ⁇ m ⁇ D50 ⁇ 15 ⁇ m. This is because when the particle size of the negative electrode material powder is too small, the specific surface area of the entire negative electrode material powder is too large, and thus the reaction between the electrolyte and the negative electrode material powder is excessively promoted in the lithium ion secondary battery. This is because breakdown may occur due to depletion of the electrolyte. In addition, if the particle size of the negative electrode material powder is too large, the separator may be broken and short-circuited in the lithium ion secondary battery.
  • carbon film ratio the proportion of the conductive carbon film in the negative electrode material powder (hereinafter referred to as “carbon film ratio”) is 3% by mass or less, and a peak derived from Si crystals appears when measured with an X-ray diffractometer. Preferably not.
  • the carbon film rate is preferably 3% by mass or less is that the conductive carbon film also contributes to the charge / discharge capacity of the lithium ion secondary battery, like SiO x , but the charge / discharge capacity per unit mass is This is because it is smaller than SiO x .
  • the negative electrode material powder when the negative electrode material powder is measured with an X-ray diffractometer, it is preferable that the peak derived from the Si crystal does not appear because the SiO x in the negative electrode material powder has crystallinity. This is because, when the material is amorphous, expansion due to the penetration of lithium ions is more easily relaxed, and the cycle characteristics of the lithium ion secondary battery are superior.
  • FIG. 2 is a diagram showing the results of X-ray diffraction measurement of the negative electrode material powder.
  • X-ray diffraction measurement using CuK alpha rays was performed on the negative electrode material powders with different production conditions, and the results shown in FIG.
  • the figure (a) is a figure when the peak derived from the crystal of Si appears clearly, the figure (b) is the figure when the peak derived from the crystal of Si appears, and the figure (c) is the figure of Si. It is a figure when the peak derived from a crystal
  • the O content in the negative electrode material powder is quantitatively evaluated by analyzing 10 mg of a sample by an inert gas melting / infrared absorption method using an oxygen concentration analyzer (Leco, TC436). Calculated from the O content in the prepared sample.
  • Si content in the negative electrode material powder is determined by adding nitric acid and hydrofluoric acid to the sample to dissolve the sample, and analyzing the resulting solution with an ICP emission spectrometer (manufactured by Shimadzu Corporation). It calculates from Si content in the sample evaluated quantitatively by doing.
  • “having a conductive carbon film on the surface of the lower silicon oxide powder” means X-ray using AlK ⁇ - ray (1486.6 eV).
  • XPS photoelectron spectrometer
  • Si / C the molar ratio value Si / C of Si and C is 0.1 or less.
  • the XPS measurement conditions are as shown in Table 1.
  • the Si / C is preferably 0.05 or less, and more preferably 0.02 or less.
  • “Si / C is 0.02 or less” is a state in which most of the surface of the lower silicon oxide powder is covered with C and Si is hardly exposed.
  • FIG. 3 is a diagram showing an example of the particle size distribution of the powder for negative electrode material of the present invention. In the same figure, the frequency for each section of the particle size of the powder and the value of the accumulated part are shown. The particle size distribution was measured under the conditions shown in Table 2 using a laser diffraction particle size distribution measuring apparatus.
  • the measurement range of the particle diameter d in this measurement was 0.02 ⁇ m to 2000 ⁇ m, and a section obtained by dividing the measurement range into 85 equal parts by logarithmic equal division was defined as one section.
  • the first interval is in the range of particle size d 0 (0.02 ⁇ m) to d 1 (0.022 ⁇ m)
  • the second interval is greater than particle size d 1 and less than d 2 (0.026 ⁇ m)
  • the 85 section was larger than the particle size d 84 (1754.6 ⁇ m) and not more than d 85 (2000 ⁇ m).
  • i is an integer that satisfies 1 ⁇ i ⁇ 85.
  • the particles included in each section are regarded as spheres having a particle diameter d i and the number n i of particles in each section is used for the negative electrode material powder.
  • the total specific surface area was calculated.
  • the value of A was 1.8169 m 2 / g.
  • A ⁇ ⁇ n i ⁇ ( 4 ⁇ (d i / 2) 2) ⁇ / [ ⁇ ⁇ ⁇ ⁇ n i ⁇ (4 ⁇ (d i / 2) 3/3) ⁇ ] ...
  • d i is the particle size of the powder for negative electrode material
  • n i is the number of particles in the range of particle size d i to d i + 1 in the particle size distribution
  • is the true density of SiO (2.2 g / cm 3 ).
  • the value of D50 in the particle size distribution is a particle size when the value of the accumulated portion from the smaller particle size in the particle size distribution reaches 50%.
  • the value of D50 was 6.4626 ⁇ m.
  • the specific surface area of the lower silicon oxide powder on which the conductive carbon film is formed can be measured by the following BET method. 0.5 g of sample is put in a glass cell and dried under reduced pressure at 200 ° C. for about 5 hours. Then, the specific surface area is calculated from the nitrogen gas adsorption isotherm at the liquid nitrogen temperature ( ⁇ 196 ° C.) measured for this sample. The measurement conditions are as shown in Table 3.
  • the carbon film ratio is determined by analyzing the CO 2 gas by the mass of the negative electrode powder and the carbon concentration analyzer (Leco, CS400) by oxygen stream combustion-infrared absorption method. Calculated from the result of the evaluated carbon content.
  • the crucible is a ceramic crucible, the auxiliary combustor is copper, and the analysis time is 40 seconds.
  • FIG. 4 is a diagram illustrating a configuration example of a silicon oxide production apparatus. This apparatus includes a vacuum chamber 5, a raw material chamber 6 disposed in the vacuum chamber 5, and a deposition chamber 7 disposed on the upper portion of the raw material chamber 6.
  • the raw material chamber 6 is formed of a cylindrical body, and a cylindrical raw material container 8 and a heating source 10 surrounding the raw material container 8 are disposed at the center thereof.
  • a heating source 10 for example, an electric heater can be used.
  • the deposition chamber 7 is composed of a cylindrical body arranged so that its axis coincides with the raw material container 8.
  • a deposition base 11 made of stainless steel is provided on the inner peripheral surface of the deposition chamber 7 for vapor deposition of gaseous SiO generated by sublimation in the raw material chamber 6.
  • a vacuum device (not shown) for discharging the atmospheric gas is connected to the vacuum chamber 5 that accommodates the raw material chamber 6 and the deposition chamber 7, and the gas is discharged in the direction of arrow A.
  • the Si powder and SiO 2 powder were blended at a predetermined ratio as the raw material, mixing, mixing granulation raw material 9 was granulated and dried using.
  • the mixed granulated raw material 9 is filled in the raw material container 8 and heated (heated by a heating source 10) in an inert gas atmosphere or vacuum to generate (sublimate) SiO.
  • Gaseous SiO generated by sublimation rises from the raw material chamber 6 and enters the precipitation chamber 7, vapor-deposits on the surrounding precipitation base 11, and precipitates as SiO precipitates 12.
  • the reason why the powder is expressed as SiO x is that the value of x varies from 1 due to the formation of an oxide film on the surface of the powder after the SiO precipitate 12 is pulverized.
  • the grinding conditions will be specifically described below.
  • the ratra value is a value used for evaluating the wear resistance of the green compact, and is a value represented by a weight reduction rate before and after a test in which the green compact is repeatedly rotated and dropped in a cage.
  • the measurement method of ratra value is the standard “JPMA” of Japan Powder Metallurgy Association (JPMA). It is a value measured by the method described in “Method for measuring rattra value of P11-1992 metal compact”.
  • the lump-like SiO precipitate 12 is pulverized in an air atmosphere with a humidity of 60% or less to form a SiO x powder, and then pressure is maintained at a pressure of 10 Pa to 1000 Pa and a temperature of 200 ° C. to 400 ° C. for a certain period of time. Apply heat treatment. Since this pressure heat treatment is performed before the formation of the conductive carbon film, it is hereinafter also referred to as “pre-drying”.
  • the pre-dried SiO x powder is put in a rotary kiln described later in a state where it is housed in a sealed container and is not in contact with the atmosphere.
  • Adjustment method of particle size When adjusting the particle size of the SiO x powder obtained by pulverizing the massive SiO precipitates 12, for example, the following method can be employed.
  • the SiO x powder is immersed in a beaker containing water so that the water depth becomes 10 cm, and ultrasonic vibration is applied by an ultrasonic cleaner. Thereafter, natural sedimentation is performed, the fine water remaining in the aqueous layer is removed by discarding the supernatant water, and only the settled powder is recovered.
  • the settling time of the grinding time and SiO x powder SiO x precipitate to adjust the particle size of the SiO x powder, it can be a value of D50 with a predetermined range.
  • the recovered SiO x powder is dried in an oven at 130 ° C. for 24 hours or more under atmospheric pressure. Thereafter, it is crushed in an agate mortar, dried again under the same conditions, and further subjected to the above prior drying.
  • Adjustment of the particle size of the SiO x powder is not limited to sedimentation separation, but can also be performed by air classification or the like.
  • the conductive carbon film is formed on the surface of the pre-dried SiO x powder by CVD or the like. Specifically, a rotary kiln is used as an apparatus, and a mixed gas of a hydrocarbon gas and an inert gas is used as a gas.
  • the growth rate of the film is relatively slow and is set to 0.1 nm / h or more and 10 nm / h or less. By setting the growth rate of the film within this range, it is possible to suppress the generation of carbon fine particles due to aggregation.
  • the film growth rate can be controlled by the gas flow rate.
  • a pre-dried SiO x powder By applying a pre-dried SiO x powder, since aggregation of SiO x powder by moisture is suppressed, thereby improving the uniformity of the conductive carbon coating. Moreover, a smooth conductive carbon film can be formed by slowing the growth rate. By having both pre-drying before putting into the rotary kiln and the slow growth rate of the conductive carbon film, it is possible to obtain a negative electrode material powder satisfying B / A of 1.5 ⁇ B / A ⁇ 100. .
  • hydrocarbon gas that is a carbon source methane, ethane, propane, acetylene, or the like can be used. Of these, propane (C 3 H 8 ) is most desirable.
  • propane (C 3 H 8 ) is most desirable.
  • argon can be used as the mixed gas.
  • the content of the hydrocarbon gas in the mixed gas is 2% or more and 50% or less, preferably 20% or more and 40% or less in volume%.
  • the formation temperature of the conductive carbon film is 600 ° C. or more and 900 ° C. or less, and preferably 700 ° C. or more and 750 ° C. or less.
  • the formation processing temperature is adjusted by a heater provided in the rotary kiln.
  • Configuration of Lithium Ion Secondary Battery A configuration example of a coin-shaped lithium ion secondary battery using the powder for a lithium ion secondary battery negative electrode material and the lithium ion secondary battery negative electrode of the present invention is described with reference to FIG. explain. The basic configuration of the lithium ion secondary battery shown in FIG.
  • the negative electrode material used for the negative electrode 2, that is, the working electrode 2c constituting the negative electrode of the lithium ion secondary battery of the present invention is configured using the negative electrode material powder of the present invention.
  • the negative electrode material powder of the present invention which is an active material, other active materials, a conductive additive, and a binder can be used.
  • the ratio of the powder for negative electrode materials of this invention with respect to the sum total of the structural material except a binder among the structural materials in a negative electrode material shall be 20 mass% or more. It is not always necessary to add an active material other than the negative electrode material powder of the present invention.
  • the conductive additive for example, acetylene black or carbon black can be used
  • the binder for example, polyacrylic acid (PAA) or polyvinylidene fluoride can be used.
  • the lithium ion secondary battery of the present invention uses the above-described powder for negative electrode material of the present invention and the lithium ion secondary battery negative electrode, it has a large discharge capacity, good cycle characteristics, and can be used at a practical level. obtain.
  • the powder for negative electrode material of the present invention and the negative electrode using the same can also be applied to capacitors.
  • Test conditions 1-1 Configuration of Lithium Ion Secondary Battery
  • the configuration of the lithium ion secondary battery was the coin shape shown in FIG.
  • the negative electrode 2 will be described.
  • Si powder and SiO 2 powder were mixed, and mixed, granulated and dried mixed granulation raw materials were used as raw materials, and SiO was deposited on the deposition substrate using the apparatus shown in FIG.
  • a conductive carbon film was formed on the surface of the SiO x powder to obtain a powder for a lithium ion secondary battery negative electrode material.
  • a rotary kiln was used as the apparatus, a mixed gas of propane and argon was used as the gas, and the processing temperature was 700 ° C.
  • the carbon film rate was 2.5%.
  • B / A As shown in Table 4, the value of B / A was changed depending on whether or not pre-drying was performed on the SiO x powder and setting the growth rate of the conductive carbon film.
  • B / A satisfies 1.5 ⁇ B / A ⁇ 100.
  • B / A did not satisfy 1.5 ⁇ B / A ⁇ 100.
  • the pre-drying condition was to heat to 200 ° C. for 3 hours in a vacuum.
  • the carbon film formation rate is the same, the B / A value is smaller when the SiO x powder is pre-dried, and the carbon film formation rate is smaller if the pre-drying conditions are the same.
  • the value of B / A was small.
  • a slurry is prepared by adding n-methylpyrrolidone to a mixture of 65% by mass of the negative electrode material powder, 10% by mass of acetylene black, and 25% by mass of PAA. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, dried in an atmosphere at 120 ° C. for 30 minutes, and then punched out to a size with an area of 1 cm 2 on one side to obtain a negative electrode 2.
  • the counter electrode was lithium foil.
  • the electrolyte is a solution in which LiPF 6 (lithium hexafluorophosphate) is dissolved at a ratio of 1 mol / L in a mixed solution of EC (ethylene carbonate) and DEC (diethyl carbonate) in a volume ratio of 1: 1. It was.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyethylene porous film having a thickness of 30 ⁇ m was used as the separator.
  • Test Results A charge / discharge test was performed on the lithium ion secondary battery manufactured under the above conditions, and evaluation was performed using the initial discharge capacity and the cycle maintenance rate after 100 cycles as indexes. These values are shown in Table 4 together with the test conditions.
  • the cycle maintenance ratio is a value (%) of the ratio of the charge / discharge capacity at the 100th cycle to the charge / discharge capacity at the first cycle.
  • Comprehensive evaluation is ⁇ (excellent) when the initial discharge capacity is 1900 mAh / g or more and the cycle maintenance ratio is 85% or more, and ⁇ (good) when the initial discharge capacity is 1700 mAh / g or more and the cycle maintenance ratio is 80% or more. ), And the case where the initial discharge capacity was less than 1700 mAh / g or the cycle maintenance rate was less than 80% was evaluated as x (impossible).
  • the overall evaluation was x, and in all of the satisfied examples of the present invention, the overall evaluation was ⁇ or ⁇ . .
  • the inventive examples in particular, in inventive examples 3 and 4 in which the value of B / A was 30 or less, the initial discharge capacity was 1952 mAh / g or more and the cycle maintenance ratio was 88.7% or more, which was an excellent value. Yes, overall evaluation was ⁇ .
  • Lithium ion secondary battery negative electrode powder according to the present invention, and lithium ion secondary battery negative electrode or capacitor negative electrode are used to provide lithium having a large discharge capacity and good cycle characteristics, and can be used at a practical level. An ion secondary battery or a capacitor can be obtained. Moreover, the lithium ion secondary battery and capacitor of the present invention have a large discharge capacity and good cycle characteristics. Therefore, the present invention is a useful technique in the field of secondary batteries and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 表面に導電性炭素皮膜を有するSiOx(0.4≦x≦1.2)の粉末からなり、1.5≦B/A≦100を満足することを特徴とするリチウムイオン二次電池負極材用粉末。 ただし、A:粒度分布を用い、粒子が球体であると仮定して算出したリチウムイオン二次電池負極材用粉末の比表面積、B:BET法により1点法で測定したリチウムイオン二次電池負極材用粉末の比表面積であり、Aは下記式で表される。 A=Σ{ni×(4π(di/2)2)}/[ρ×Σ{ni×(4π(di/2)3/3)}] ここで、di:リチウムイオン二次電池負極材用粉末の粒径、ni:粒度分布において粒径di~di+1の範囲にある粒子数、ρ:SiOの真密度(2.2g/cm3)である。 この負極材用粉末を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池が得られる。

Description

リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
 本発明は、リチウムイオン二次電池に用いることにより放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池を得ることができる負極材用粉末に関する。また本発明は、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタに関する。
 近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化および軽量化の観点から、高エネルギー密度の二次電池の開発が強く要望されている。現在、高エネルギー密度の二次電池として、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン二次電池およびポリマー電池等がある。このうち、リチウムイオン二次電池は、ニッケルカドミウム電池やニッケル水素電池に比べて格段に高寿命かつ高容量であることから、その需要は電源市場において高い伸びを示している。
 図1は、コイン形状のリチウムイオン二次電池の構成例を示す図である。リチウムイオン二次電池は、同図に示すように、正極1、負極2、電解液を含浸させたセパレーター3、および正極1と負極2の電気的絶縁性を保つとともに電池内容物を封止するガスケット4から構成されている。充放電を行うと、リチウムイオンがセパレーター3の電解液を介して正極1と負極2の間を往復する。
 正極1は、対極ケース1aと対極集電体1bと対極1cとで構成され、対極1cにはコバルト酸リチウム(LiCoO)やマンガンスピネル(LiMn)が主に使用される。負極2は、作用極ケース2aと作用極集電体2bと作用極2cとで構成され、作用極2cに用いる負極材は、一般に、リチウムイオンの吸蔵放出が可能な活物質(負極活物質)と導電助剤およびバインダーとで構成される。
 従来、リチウムイオン二次電池の負極活物質としては、カーボン系材料が用いられている。従来のものよりもリチウムイオン二次電池を高容量とする新規負極活物質として、リチウムとホウ素の複合酸化物、リチウムと遷移金属(V、Fe、Cr、Mo、Ni等)との複合酸化物、Si、GeまたはSnとNおよびOを含む化合物、化学蒸着により表面を炭素層で被覆したSi粒子等が提案されている。
 しかし、これらの負極活物質はいずれも、充放電容量を向上させ、エネルギー密度を高めることができるものの、リチウムイオンの吸蔵、放出時の膨張や収縮が大きくなる。そのため、これらの負極活物質を用いたリチウムイオン二次電池は、充放電の繰り返しによる放電容量の維持性(以下、「サイクル特性」という)が不十分である。
 これに対し、負極活物質としてSiO等、SiO(0<x≦2)で表される珪素酸化物の粉末を用いることが、従来から試みられている。珪素酸化物は、充放電時のリチウムイオンの吸蔵、放出による結晶構造の崩壊や不可逆物質の生成等の劣化が小さいことから、有効な充放電容量がより大きな負極活物質となり得る。そのため、珪素酸化物を負極活物質として用いることにより、カーボンを用いた場合と比較して高容量であり、SiやSn合金といった高容量負極材を用いた場合と比較してサイクル特性が良好なリチウムイオン二次電池が得られている。
 負極活物質として珪素酸化物の粉末を用いる場合、珪素酸化物の電気伝導度の低さを補うために、一般に導電助剤としてカーボン粉末等が混合される。これにより、珪素酸化物の粉末と導電助剤との接触部近辺の電気伝導性は確保できる。しかし、接触部から離れた箇所では電気伝導性が確保できず、負極活物質として機能しにくい。
 この問題を解決するため、特許文献1では、珪素の微結晶が二酸化珪素に分散した構造を有する粒子(導電性珪素複合体)の表面にCVD(化学気相成長)で炭素の皮膜を形成した非水電解質二次電池負極材用の導電性珪素複合体およびその製造方法が提案されている。
特許第3952180号公報
 特許文献1で提案された方法によれば、導電性珪素複合体に均一な導電性炭素皮膜が形成され、十分な電気伝導性を付与することができる。しかし、本発明者らの検討によると、特許文献1の導電性珪素複合体を用いたリチウムイオン二次電池は、珪素の微結晶が分散した二酸化珪素を負極材として用いるため、充放電時におけるリチウムイオンの吸蔵、放出時の膨張、収縮が大きくなり、充放電を繰り返すと、ある時点で容量が突然低下する等の課題があった。また、放電容量およびサイクル特性が十分ではなかった。
 また、本発明者らが、SiO(0.4≦x≦1.2)粉末の表面に導電性炭素皮膜を形成した負極材用粉末を用いたリチウムイオン二次電池について充放電試験を行ったところ、導電性炭素皮膜の状態によってサイクル特性が大きく変化することがわかった。具体的には、導電性炭素皮膜が粗い場合には、滑らかな場合と比較して、サイクル特性が劣り、充分なリチウムイオン二次電池の性能を維持するのが困難であった。これは、導電性炭素皮膜が粗い負極材用粉末がリチウムイオンを吸蔵した際にSiO粉末が膨張し、導電性炭素皮膜に多くの亀裂が生じ、実質的な負極材用粉末の比表面積の増大が引き起こされ、電解質の分解が進行するためと考えられる。この状態で充放電を繰り返すと、1サイクル(1回の充放電)ごとに負極材用粉末の比表面積が増大し、電解質の分解が促進され、電解液の劣化が進行し、サイクル特性が低下することとなる。
 また、CVDによりSiO粉末の表面に導電性炭素皮膜を形成する際に、導電性炭素皮膜の成長速度を上げた場合には、炭素の凝集が生じ、炭素の皮膜ではなく微粒子が生成することがある。この炭素の微粒子が負極材用粉末に混入すると、負極材用粉末の比表面積が増大し、電解質の劣化の一因となる。
 本発明は、この課題に鑑みてなされたものであり、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池の負極材用粉末、この負極材用粉末を用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタを提供することを目的とする。
 上記の課題を解決するために、本発明者らは様々な比表面積の負極材用粉末を使用したリチウムイオン二次電池を作製し、負極材用粉末の比表面積とリチウムイオン二次電池のサイクル特性との関係について検討した。その結果、SiO粉末の表面に導電性炭素皮膜を形成した負極材用粉末が、粒度分布から求めた比表面積Aと、BET法で測定した比表面積Bとが1.5≦B/A≦100の関係を満たす場合に、この負極材用粉末を使用したリチウムイオン二次電池はサイクル特性が良好であり、かつ放電容量も大きいことを知見した。
 本発明は、以上の知見に基づいてなされたものであり、その要旨は、下記(1)~(3)のリチウムイオン二次電池負極材用粉末、下記(4)のリチウムイオン二次電池負極および下記(5)のキャパシタ負極、ならびに下記(6)のリチウムイオン二次電池および下記(7)のキャパシタにある。
(1)表面に導電性炭素皮膜を有するSiO(0.4≦x≦1.2)の粉末からなり、下記(1)式を満足することを特徴とするリチウムイオン二次電池負極材用粉末。
  1.5≦B/A≦100 …(1)
 ただし、A:粒度分布を用い、粒子が球体であると仮定して算出したリチウムイオン二次電池負極材用粉末の比表面積、B:BET法により1点法で測定したリチウムイオン二次電池負極材用粉末の比表面積であり、Aは下記(2)式で表される。
  A=Σ{n×(4π(d/2))}/[ρ×Σ{n×(4π(d/2)/3)}] …(2)
 ここで、d:リチウムイオン二次電池負極材用粉末の粒径、n:粒度分布において粒径d~di+1の範囲にある粒子数、ρ:SiOの真密度(2.2g/cm)である。
(2)粒度分布におけるD50の値が、1μm≦D50≦50μmを満足することを特徴とする前記(1)のリチウムイオン二次電池負極材用粉末。
(3)前記導電性炭素皮膜の占める割合が3質量%以下で、かつX線回折装置で測定した場合にSiの結晶に由来するピークが現れないことを特徴とする前記(1)または(2)のリチウムイオン二次電池負極材用粉末。
(4)前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
(5)前記(1)~(3)のいずれかのリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
(6)前記(4)のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
(7)前記(5)のキャパシタ負極を用いたキャパシタ。
 本発明における、SiOのx、リチウムイオン二次電池負極材用粉末の粒度分布、比表面積(上記AおよびB)およびD50の値、ならびにリチウムイオン二次電池負極材用粉末において導電性炭素皮膜の占める割合の、それぞれの測定方法については後述する。
 SiOの粉末について「表面に導電性炭素皮膜を有する」とは、後述するように、X線光電子分光分析装置を用いて表面分析を行った結果、SiとCのモル比の値Si/Cが0.1以下であることをいう。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。
図1はコイン形状のリチウムイオン二次電池の構成例を示す図である。 図2はリチウムイオン二次電池負極材用粉末についてのX線回折測定の結果を示す図であり、図2(a)はSiの結晶に由来するピークが明確に現れた場合の図、図2(b)はSiの結晶に由来するピークが現れた場合の図、図2(c)はSiの結晶に由来するピークが現れなかった場合の図である。 図3は本発明のリチウムイオン二次電池負極材用粉末の粒度分布の一例を示す図である。 図4は珪素酸化物の製造装置の構成例を示す図である。
1.本発明のリチウムイオン二次電池負極材用粉末
 本発明のリチウムイオン二次電池負極材用粉末(以下、単に「負極材用粉末」ともいう。)は、表面に導電性炭素皮膜を有するSiO(0.4≦x≦1.2)の粉末からなる。本発明において、SiOのxの範囲を0.4≦x≦1.2とする理由は、xの値が0.4を下回ると、本発明の負極材用粉末を用いたリチウムイオン二次電池およびキャパシタの充放電サイクルに伴う劣化が激しく、1.2を超えると電池の容量が小さくなるからである。また、xは、0.8≦x≦1.05を満足するのが好ましい。
 本発明の負極材用粉末は、下記(1)式を満足する。
  1.5≦B/A≦100 …(1)
 ただし、A:粒度分布を用い、粒子が球体であると仮定して算出した負極材用粉末の比表面積、B:BET法により1点法で測定した負極材用粉末の比表面積であり、Aは下記(2)式で表される。
  A=Σ{n×(4π(d/2))}/[ρ×Σ{n×(4π(d/2)/3)}] …(2)
 ここで、d:負極材用粉末の粒径、n:粒度分布において粒径d~di+1の範囲にある粒子数、ρ:SiOの真密度(2.2g/cm)である。
 負極材用粉末の粒子の形状が完全な球体であればB/Aの値は1であり、粒子の形状が球体から乖離したいびつな形状であるほど1よりも大きい。また、B/Aは、負極材用粉末の表面状態、すなわち導電性炭素皮膜の状態の指標として用いることができる。B/Aの値が1に近いほど導電性炭素皮膜は滑らかであり、1よりも大きいほど粗くなる。
 本発明者らが検討したところ、B/Aの値が100以下である場合に、サイクル特性が良好なリチウムイオン二次電池が得られることがわかった。B/Aの値が100よりも大きい場合、リチウムイオン二次電池のサイクル特性が劣る。
 これは、上述のように、導電性炭素皮膜が粗い負極材用粉末がリチウムイオンを吸蔵した際にSiO粉末が膨張し、導電性炭素皮膜に多くの亀裂が生じ、実質的な負極材用粉末の比表面積の増大が引き起こされ、電解質の分解が進行するためと考えられる。この状態で充放電を繰り返すと、1サイクルごとに負極材用粉末の比表面積が増大し、電解質の分解が促進され、電解液の劣化が進行し、サイクル特性が低下することとなる。
 一方、B/Aの値が100以下であれば、導電性炭素皮膜が滑らかであるため、充放電で導電性炭素皮膜に亀裂が生じるのを抑制することができ、電解液の劣化または枯渇が進行しにくく、サイクル特性の低下が抑制される。そのため、上記(1)式のように、B/Aの値を100以下と規定した。
 また、B/Aの値を1.5よりも小さくするには、導電性炭素皮膜の形成速度を極端に低下させる必要があり、負極材用粉末の工業的な生産が困難である。そのため、上記(1)式のように、B/Aの値を1.5以上と規定した。
 本発明の負極材用粉末は、粒度分布におけるD50の値が、1μm≦D50≦50μmを満足することが好ましく、3μm≦D50≦15μmがより好ましい。これは、負極材用粉末の粒径が小さすぎると、負極材用粉末全体の比表面積が大きすぎるため、リチウムイオン二次電池において電解液と負極材用粉末の反応が過度に促進され、場合によっては電解液の枯渇によるブレイクダウンが生じる可能性があるからである。また、負極材用粉末の粒径が大きすぎると、リチウムイオン二次電池においてセパレーターが破壊され、ショートする可能性があるからである。
 また、負極材用粉末において導電性炭素皮膜の占める割合(以下、「炭素皮膜率」という)が3質量%以下で、かつX線回折装置で測定した場合にSiの結晶に由来するピークが現れないことが好ましい。
 炭素皮膜率が3質量%以下であることが好ましい理由は、導電性炭素皮膜も、SiOと同様にリチウムイオン二次電池の充放電容量に寄与するものの、その単位質量あたりの充放電容量はSiOに比較して小さいからである。
 また、負極材用粉末をX線回折装置で測定した場合に、Siの結晶に由来するピークが現れないのが好ましい理由は、負極材用粉末中のSiOは、結晶性を有する場合よりもアモルファスである場合の方が、リチウムイオンの侵入による膨張が緩和されやすく、リチウムイオン二次電池のサイクル特性に優れるからである。
 図2は、負極材用粉末についてのX線回折測定の結果を示す図である。製造条件の異なる負極材用粉末について、CuKα線を用いたX線回折測定を行い、同図の結果を得た。Siの結晶の粉末についてCuKα線を用いてX線回折測定を行った場合、2θ=28.4°±0.3°にピークが現れる。同図(a)はSiの結晶に由来するピークが明確に現れた場合の図、同図(b)はSiの結晶に由来するピークが現れた場合の図、同図(c)はSiの結晶に由来するピークが現れなかった場合の図である。本発明の負極材用粉末は、同図(c)のように、Siの結晶に由来するピークが現れないことが好ましい。
2.分析方法
2-1.SiOのxの算出方法
 SiOのxは、負極材用粉末中のO含有率とSi含有率のモル比(O/Si)であり、例えば下記測定方法で測定したO含有率およびSi含有率を用いて算出することができる。
2-2.O含有率の測定方法
 負極材用粉末中のO含有率は、酸素濃度分析装置(Leco社製、TC436)を用いて、試料10mgを不活性ガス融解・赤外線吸収法によって分析することで定量評価した試料中のO含有量から算出する。
2-3.Si含有率の測定方法
 負極材用粉末中のSi含有率は、試料に硝酸およびフッ酸を加えて試料を溶解させ、得られた溶液をICP発光分光分析装置(株式会社島津製作所製)で分析することによって定量評価した試料中のSi含有量から算出する。
2-4.導電性炭素皮膜の形成状態の評価方法
 本発明の負極材用粉末において、「低級酸化珪素粉末の表面に導電性炭素皮膜を有する」とは、AlKα線(1486.6eV)を用いたX線光電子分光分析装置(XPS)で、導電性炭素皮膜の形成処理を施した低級酸化珪素粉末の表面分析を行った場合に、SiとCとのモル比の値Si/Cが0.1以下であることをいう。XPSの測定条件は表1に示す通りとする。負極材用粉末に十分に電気伝導性を付与するには、Si/Cは、0.05以下が好ましく、0.02以下がさらに好ましい。「Si/Cが0.02以下」とは、低級酸化珪素粉末の表面のほとんどがCに覆われており、Siがほとんど露出していない状態である。
Figure JPOXMLDOC01-appb-T000001
2-5.リチウムイオン二次電池負極材用粉末の粒度分布および比表面積の測定方法
 図3は、本発明の負極材用粉末の粒度分布の一例を示す図である。同図には、粉末の粒径の区間ごとの頻度、および通過分積算の値を示す。粒度分布の測定は、レーザー回折式粒度分布測定装置を使用して、表2に示す条件で行った。
Figure JPOXMLDOC01-appb-T000002
 この測定における粒径dの測定レンジは0.02μm~2000μmとし、この測定レンジを対数等分割で85等分した区間を1区間とした。例えば、第1区間は粒径d(0.02μm)以上d(0.022μm)以下の範囲、第2区間は粒径dより大きくd(0.026μm)以下の範囲とし、第85区間は粒径d84(1754.6μm)より大きくd85(2000μm)以下の範囲とした。
 すなわち、以下に再掲する(2)式において、iは1≦i≦85を満たす整数とした。また下記(2)式では、各区間(粒径d~di+1の範囲)に含まれる粒子を、粒径dの球と見なし、各区間の粒子数nを用いて負極材用粉末全体の比表面積を算出した。図3に示す粒度分布の場合、Aの値は1.8169m/gであった。
  A=Σ{n×(4π(d/2))}/[ρ×Σ{n×(4π(d/2)/3)}] …(2)
 ここで、d:負極材用粉末の粒径、n:粒度分布において粒径d~di+1の範囲にある粒子数、ρ:SiOの真密度(2.2g/cm)である。
 また、粒度分布におけるD50の値とは、粒度分布において粒径が小さい方からの通過分積算の値が50%に達するときの粒径である。図3に示す粒度分布の場合、D50の値は、6.4626μmであった。
2-6.BET法によるリチウムイオン二次電池負極材用粉末の比表面積の測定方法
 導電性炭素皮膜を形成した低級酸化珪素粉末の比表面積は、以下のBET法によって測定することができる。試料0.5gをガラスセルに入れて、200℃で約5時間、減圧乾燥する。そして、この試料について測定した液体窒素温度(-196℃)における窒素ガス吸着等温線から比表面積を算出する。測定条件は表3に示す通りとする。
Figure JPOXMLDOC01-appb-T000003
2-7.炭素皮膜率の測定方法
 炭素皮膜率は、負極材用粉末の質量と、炭素濃度分析装置(Leco社製、CS400)を用いて酸素気流燃焼-赤外線吸収法によってCOガスを分析することで定量評価した炭素量の結果から算出する。ルツボはセラミックルツボを、助燃剤は銅を用い、分析時間は40秒とする。
3.本発明のリチウムイオン二次電池負極材用粉末の製造方法
3-1.SiO粉末の製造方法
 図4は、珪素酸化物の製造装置の構成例を示す図である。この装置は、真空室5と、真空室5内に配置された原料室6と、原料室6の上部に配置された析出室7とを備える。
 原料室6は円筒体で構成され、その中心部には、円筒状の原料容器8と、原料容器8を囲繞する加熱源10が配置される。加熱源10としては、例えば電熱ヒーターを用いることができる。
 析出室7は、原料容器8と軸が一致するように配置された円筒体で構成される。析出室7の内周面には、原料室6で昇華して発生した気体状のSiOを蒸着させるためのステンレス鋼からなる析出基体11が設けられる。
 原料室6と析出室7とを収容する真空室5には、雰囲気ガスを排出するための真空装置(図示せず)が接続されており、矢印A方向にガスが排出される。
 図4に示す製造装置を用いてSiOを製造する場合、原料としてSi粉末とSiO粉末とを所定の割合で配合し、混合、造粒および乾燥した混合造粒原料9を用いる。この混合造粒原料9を原料容器8に充填し、不活性ガス雰囲気または真空中で加熱源10によって加熱してSiOを生成(昇華)させる。昇華により発生した気体状のSiOは、原料室6から上昇して析出室7に入り、周囲の析出基体11上に蒸着し、SiO析出物12として析出する。その後、析出基体11からSiO析出物12を取り外し、ボールミル等を使用して粉砕することにより、SiO粉末が得られる。粉末についてSiOと表記したのは、SiO析出物12の粉砕後、粉末の表面に酸化膜が形成されること等によって、xの値が1から変動するためである。
 粉砕条件について、以下に具体的に説明する。SiO析出物12は、粉砕前の塊状の状態で、ラトラ値が10.0W%以下のものを用いる。ラトラ値とは、圧粉体の耐摩耗性の評価に用いられる値であり、圧粉体をかごの中で繰り返し回転、落下させる試験の前後の重量減少率で表される値である。ラトラ値の測定方法は、日本粉末冶金工業会(JPMA)の規格「JPMA
P11-1992金属圧粉体のラトラ値測定方法」に記載の方法で測定した値とする。
 塊状のSiO析出物12は、湿度60%以下の空気雰囲気内で粉砕し、SiO粉末とした後、圧力10Pa以上、1000Pa以下で、温度200℃以上、400℃以下に一定時間保持する加圧熱処理を施す。この加圧熱処理は、導電性炭素皮膜の形成前に行われるため、以下「事前乾燥」ともいう。事前乾燥を施したSiO粉末は、密閉容器に収容して大気と接触しない状態として、後述のロータリーキルンに投入する。
3-2.粒度の調整方法
 塊状のSiO析出物12を粉砕して得られたSiO粉末の粒度の調整をする場合には、例えば次の方法を採用することができる。水深10cmとなるように水を入れたビーカー内でSiO粉末を浸漬させ、超音波洗浄機によって超音波振動を付与する。その後、自然沈降を行い、上澄みの水を捨てることによって水層に残った微粉を除去し、沈降した粉末のみを回収する。SiO析出物の粉砕時間およびSiO粉末の沈降時間を調整することにより、SiO粉末の粒度を調整し、D50の値を所定の範囲とすることができる。
 回収されたSiO粉末は、オーブンを用いて大気圧下、130℃の条件で24時間以上乾燥させる。その後、メノウ乳鉢で解砕し、再度同条件で乾燥させ、さらに上記の事前乾燥を施す。
 SiO粉末の粒度の調整は、沈降分離に限られず、風力分級等によっても行うことができる。
3-3.導電性炭素皮膜の形成方法
 事前乾燥を施したSiO粉末の表面への導電性炭素皮膜の形成は、CVD等により行う。具体的には、装置としてロータリーキルンを用い、ガスとして炭化水素ガスと不活性ガスとの混合ガスを用いて行う。皮膜の成長速度は比較的遅くし、0.1nm/h以上、10nm/h以下とする。皮膜の成長速度をこの範囲とすることにより、凝集による炭素の微粒子の生成を抑制することができる。皮膜の成長速度はガスの流量によって制御することができる。
 SiO粉末に事前乾燥を施すことにより、水分によるSiO粉末の凝集が抑制されるため、導電性炭素皮膜の均一性を向上させることができる。また、成長速度を遅くすることにより、滑らかな導電性炭素皮膜を形成することができる。ロータリーキルンに投入する前の事前乾燥と、導電性炭素皮膜の遅い成長速度の両方が揃うことにより、B/Aが1.5≦B/A≦100を満足する負極材用粉末を得ることができる。
 炭素源である炭化水素ガスとしては、メタン、エタン、プロパン、アセチレン等を使用することができる。このうち、プロパン(C)がもっとも望ましい。混合ガスとしては、例えばアルゴンを使用することができる。混合ガス中の炭化水素ガスの含有率は、体積%で、2%以上、50%以下とし、20%以上、40%以下が望ましい。
 導電性炭素皮膜の形成処理温度は、600℃以上、900℃以下とし、700℃以上、750℃以下が望ましい。形成処理温度の調整は、ロータリーキルンに設けられたヒーターにより行う。
4.リチウムイオン二次電池の構成
 本発明のリチウムイオン二次電池負極材用粉末およびリチウムイオン二次電池負極を用いた、コイン形状のリチウムイオン二次電池の構成例を、前記図1を参照して説明する。同図に示すリチウムイオン二次電池の基本的構成は、上述の通りである。
 負極2、すなわち本発明のリチウムイオン二次電池負極を構成する作用極2cに用いる負極材は、本発明の負極材用粉末を用いて構成する。具体的には、活物質である本発明の負極材用粉末とその他の活物質と導電助材とバインダーとで構成することができる。負極材中の構成材料のうち、バインダーを除いた構成材料の合計に対する本発明の負極材用粉末の割合は20質量%以上とする。本発明の負極材用粉末以外の活物質は必ずしも添加しなくてもよい。導電助材としては、例えばアセチレンブラックやカーボンブラックを使用することができ、バインダーとしては例えばポリアクリル酸(PAA)やポリフッ化ビニリデンを使用することができる。
 本発明のリチウムイオン二次電池は、上述の本発明の負極材用粉末およびリチウムイオン二次電池負極を用いたため、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得る。
 また、本発明の負極材用粉末およびこれを用いた負極は、キャパシタにも適用することができる。
 本発明の効果を確認するため、リチウムイオン二次電池を用いた以下の試験を行い、その結果を評価した。
1.試験条件
1-1.リチウムイオン二次電池の構成
 リチウムイオン二次電池の構成は、前記図1に示すコイン形状とした。
 最初に負極2について説明する。Si粉末とSiO粉末とを配合し、混合、造粒および乾燥した混合造粒原料を原料とし、前記図4に示す装置を用いて析出基板上にSiOを析出させた。SiO析出物は、アルミナ製ボールミルを使用して粉砕し、D50=10μmの粉末とした。この粉末は、O/Simol比(SiOのxの値)が1.02であった。
 SiO粉末の表面には導電性炭素皮膜を形成し、リチウムイオン二次電池負極材用粉末とした。導電性炭素皮膜の形成には、装置としてロータリーキルン、ガスとしてプロパンとアルゴンの混合ガスを使用し、処理温度は700℃とした。炭素皮膜率は2.5%とした。
 表4に示すように、SiO粉末への事前乾燥の実施または不実施、および導電性炭素皮膜の成長速度の設定によって、B/Aの値を変化させた。本発明例1~4は、B/Aが1.5≦B/A≦100を満足した。比較例1~5は、B/Aが1.5≦B/A≦100を満足しなかった。事前乾燥の条件は、真空中で200℃に3時間加熱することとした。表4からわかるように、炭素皮膜形成速度が同じであればSiO粉末に事前乾燥を施した方がB/Aの値は小さく、事前乾燥条件が同じであれば炭素皮膜形成速度が小さいほどB/Aの値は小さかった。
Figure JPOXMLDOC01-appb-T000004
 この負極材用粉末を65質量%、アセチレンブラックを10質量%、PAAを25質量%とした混合物に、n-メチルピロリドンを加えてスラリーを作成する。このスラリーを厚さ20μmの銅箔に塗布し、120℃の雰囲気下で30分乾燥した後、片面の面積が1cmとなる大きさに打ち抜いて負極2とした。
 対極はリチウム箔とした。電解質は、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を1:1の体積比とした混合液に、LiPF(六フッ化リンリチウム)を1mol/Lの割合となるように溶解させた溶液とした。セパレーターには厚さ30μmのポリエチレン製多孔質フィルムを用いた。
1-2.充放電試験条件
 充放電試験には、二次電池充放電試験装置(株式会社ナガノ製)を用いた。充電は、リチウムイオン二次電池の両極間の電圧が0Vに達するまでは1mAの定電流で行い、電圧が0Vに達した後は、0Vを維持したまま充電を行った。その後、電流値が20μAを下回った時点で充電を終了した。放電は、リチウムイオン二次電池の両極間の電圧が1.5Vに達するまでは1mAの定電流で行った。以上の充放電試験は100サイクル行った。
2.試験結果
 上記条件で作製したリチウムイオン二次電池について充放電試験を行い、初回放電容量および100サイクル後のサイクル維持率を指標として評価を行った。これらの値を試験条件と併せて前記表4に示す。サイクル維持率とは、1サイクル目の充放電容量に対する100サイクル目の充放電容量の比の値(%)である。総合評価は、初回放電容量が1900mAh/g以上かつサイクル維持率が85%以上の場合を◎(優良)、初回放電容量が1700mAh/g以上かつサイクル維持率が80%以上の場合を○(良)とし、初回放電容量が1700mAh/g未満またはサイクル維持率が80%未満の場合を×(不可)とした。
 表4からわかるように、B/Aの値が小さいほど、初回放電容量およびサイクル維持率のいずれも大きかった。また、B/Aが1.5≦B/A≦100を満足しなかった比較例は、いずれも総合評価が×であり、満足した本発明例はいずれも総合評価が○または◎であった。本発明例のうち、特に、B/Aの値が30以下であった本発明例3および4では、初回放電容量が1952mAh/g以上かつサイクル維持率が88.7%以上と優れた値であり、総合評価が◎であった。
 本発明のリチウムイオン二次電池負極材用粉末、ならびにリチウムイオン二次電池負極またはキャパシタ負極を用いることにより、放電容量が大きく、かつサイクル特性が良好であり、実用レベルでの使用に耐え得るリチウムイオン二次電池またはキャパシタを得ることができる。また、本発明のリチウムイオン二次電池およびキャパシタは、放電容量が大きく、かつサイクル特性が良好である。したがって、本発明は、二次電池およびキャパシタの分野において有用な技術である。
1:正極、 1a:対極ケース、 1b:対極集電体、 1c:対極、
2:負極、 2a:作用極ケース、 2b:作用極集電体、
2c:作用極、 3:セパレーター、 4:ガスケット、 5:真空室、
6:原料室、 7:析出室、 8:原料容器、 9:混合造粒原料、
10:加熱源、 11:析出基体、 12:SiO析出物

Claims (7)

  1.  表面に導電性炭素皮膜を有するSiO(0.4≦x≦1.2)の粉末からなり、下記(1)式を満足することを特徴とするリチウムイオン二次電池負極材用粉末。
      1.5≦B/A≦100 …(1)
     ただし、A:粒度分布を用い、粒子が球体であると仮定して算出したリチウムイオン二次電池負極材用粉末の比表面積、B:BET法により1点法で測定したリチウムイオン二次電池負極材用粉末の比表面積であり、Aは下記(2)式で表される。
      A=Σ{n×(4π(d/2))}/[ρ×Σ{n×(4π(d/2)/3)}] …(2)
     ここで、d:リチウムイオン二次電池負極材用粉末の粒径、n:粒度分布において粒径d~di+1の範囲にある粒子数、ρ:SiOの真密度(2.2g/cm)である。
  2.  粒度分布におけるD50の値が、1μm≦D50≦50μmを満足することを特徴とする請求項1に記載のリチウムイオン二次電池負極材用粉末。
  3.  前記導電性炭素皮膜の占める割合が3質量%以下で、かつX線回折装置で測定した場合にSiの結晶に由来するピークが現れないことを特徴とする請求項1または2に記載のリチウムイオン二次電池負極材用粉末。
  4.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたリチウムイオン二次電池負極。
  5.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極材用粉末を用いたキャパシタ負極。
  6.  請求項4に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。
  7.  請求項5に記載のキャパシタ負極を用いたキャパシタ。
PCT/JP2013/002760 2012-06-25 2013-04-24 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ WO2014002356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522381A JP5909552B2 (ja) 2012-06-25 2013-04-24 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-142306 2012-06-25
JP2012142306 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002356A1 true WO2014002356A1 (ja) 2014-01-03

Family

ID=49782560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002760 WO2014002356A1 (ja) 2012-06-25 2013-04-24 リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ

Country Status (2)

Country Link
JP (1) JP5909552B2 (ja)
WO (1) WO2014002356A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067644A (ja) * 2017-10-02 2019-04-25 株式会社大阪チタニウムテクノロジーズ 負極材用粉末及び負極材料製造方法
WO2020045333A1 (ja) * 2018-08-27 2020-03-05 株式会社大阪チタニウムテクノロジーズ SiO粉末製造方法及び球形粒子状SiO粉末
WO2022259914A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
JP2023512360A (ja) * 2020-12-28 2023-03-27 寧徳新能源科技有限公司 負極材料、電気化学装置及び電子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742307B (zh) * 2019-01-31 2021-11-23 兰溪致德新能源材料有限公司 聚酰亚胺硅极耳材料的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327190A (ja) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
WO2012011247A1 (ja) * 2010-07-20 2012-01-26 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
WO2012026067A1 (ja) * 2010-08-25 2012-03-01 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2012077268A1 (ja) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2012108113A1 (ja) * 2011-02-09 2012-08-16 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2013101770A (ja) * 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076788A (ja) * 2009-09-29 2011-04-14 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5406799B2 (ja) * 2010-07-29 2014-02-05 信越化学工業株式会社 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
JP5949194B2 (ja) * 2012-06-12 2016-07-06 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327190A (ja) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
WO2012011247A1 (ja) * 2010-07-20 2012-01-26 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
WO2012026067A1 (ja) * 2010-08-25 2012-03-01 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2012077268A1 (ja) * 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2012108113A1 (ja) * 2011-02-09 2012-08-16 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2013101770A (ja) * 2011-11-07 2013-05-23 Seiko Instruments Inc 小型非水電解質二次電池及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067644A (ja) * 2017-10-02 2019-04-25 株式会社大阪チタニウムテクノロジーズ 負極材用粉末及び負極材料製造方法
JP7251915B2 (ja) 2017-10-02 2023-04-04 株式会社大阪チタニウムテクノロジーズ 負極材用粉末及び負極材料製造方法
WO2020045333A1 (ja) * 2018-08-27 2020-03-05 株式会社大阪チタニウムテクノロジーズ SiO粉末製造方法及び球形粒子状SiO粉末
JPWO2020045333A1 (ja) * 2018-08-27 2021-09-09 株式会社大阪チタニウムテクノロジーズ SiO粉末製造方法及び球形粒子状SiO粉末
JP7058333B2 (ja) 2018-08-27 2022-04-21 株式会社大阪チタニウムテクノロジーズ SiO粉末製造方法及び球形粒子状SiO粉末
JP2023512360A (ja) * 2020-12-28 2023-03-27 寧徳新能源科技有限公司 負極材料、電気化学装置及び電子装置
JP7378479B2 (ja) 2020-12-28 2023-11-13 寧徳新能源科技有限公司 負極材料、電気化学装置及び電子装置
WO2022259914A1 (ja) 2021-06-08 2022-12-15 信越化学工業株式会社 負極活物質、負極及びリチウムイオン二次電池
KR20240019115A (ko) 2021-06-08 2024-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 및 리튬 이온 이차 전지

Also Published As

Publication number Publication date
JPWO2014002356A1 (ja) 2016-05-30
JP5909552B2 (ja) 2016-04-26

Similar Documents

Publication Publication Date Title
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
JP5584299B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
KR101531451B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터
EP3638622B1 (en) Electroactive materials for metal-ion batteries
JP4531762B2 (ja) 二次電池用SiO粉末およびその製造方法
JP5497177B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP5909552B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
JP2004323284A (ja) 珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP5662485B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2011148569A1 (ja) リチウムイオン二次電池負極材用粉末およびその製造方法
JP5430761B2 (ja) リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
JP4769319B2 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
JP2003272630A (ja) 負極活物質の製造方法
JP5584302B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびキャパシタ負極、ならびにリチウムイオン二次電池およびキャパシタ
WO2013175715A1 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP5554845B2 (ja) リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
JP2020119847A (ja) 蓄電デバイス用負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808914

Country of ref document: EP

Kind code of ref document: A1