WO2012096350A1 - 方向性電磁鋼板及びその製造方法 - Google Patents

方向性電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2012096350A1
WO2012096350A1 PCT/JP2012/050502 JP2012050502W WO2012096350A1 WO 2012096350 A1 WO2012096350 A1 WO 2012096350A1 JP 2012050502 W JP2012050502 W JP 2012050502W WO 2012096350 A1 WO2012096350 A1 WO 2012096350A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
temperature
less
annealing
steel strip
Prior art date
Application number
PCT/JP2012/050502
Other languages
English (en)
French (fr)
Inventor
史明 高橋
義行 牛神
水上 和実
修一 中村
宣憲 藤井
山本 紀宏
将英 浦郷
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR122018072170-7A priority Critical patent/BR122018072170B1/pt
Priority to JP2012520602A priority patent/JP5224003B2/ja
Priority to PL12734045T priority patent/PL2664689T4/pl
Priority to US13/978,925 priority patent/US10208372B2/en
Priority to KR1020137017835A priority patent/KR101453235B1/ko
Priority to BR112013017778-0A priority patent/BR112013017778B1/pt
Priority to EP12734045.3A priority patent/EP2664689B1/en
Priority to RU2013137435/02A priority patent/RU2562182C2/ru
Priority to CN201280005239.7A priority patent/CN103314126B/zh
Publication of WO2012096350A1 publication Critical patent/WO2012096350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0484Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Definitions

  • the present invention relates to a manufacturing method for improving the film properties and magnetic properties of grain-oriented electrical steel sheets.
  • the present application claims priority based on Japanese Patent Application No. 2011-4359 filed in Japan on January 12, 2011, the contents of which are incorporated herein by reference.
  • Oriented electrical steel sheets are mainly used for power transformer core materials and therefore need to have low iron loss.
  • the method for producing grain-oriented electrical steel sheets is a process of forming a film on the steel sheet surface after decarburizing and annealing to the final thickness of the cold-rolled steel sheet, followed by finish annealing for the purpose of secondary recrystallization and purification. Go through.
  • the grain-oriented electrical steel sheet thus obtained is composed of a Si-containing steel sheet having a sharp (110) [001] texture (Goth orientation) and an inorganic coating of several microns formed on the surface thereof.
  • inhibitors In order to stably cause secondary recrystallization, fine grain precipitates in steel called inhibitors are used in grain oriented electrical steel sheets. Inhibitors suppress grain growth at low temperatures during finish annealing, and cause pinning effects due to decomposition or coarsening above a certain temperature and cause secondary recrystallization. Sulfides and nitrides are generally used. The In order to obtain the desired structure, it is necessary to keep the inhibitor at a certain temperature. For sulfides, the sulfur component partial pressure of finish annealing is controlled, and for nitrides, the nitrogen partial pressure is controlled. Reach the goal by.
  • sulfides and nitrides used as inhibitors are necessary for secondary recrystallization that occurs in the course of temperature increase during finish annealing, if they remain in the product, the iron loss of the product is significantly worsened.
  • purification annealing In order to remove the influence of sulfides and nitrides from the steel sheet, after the completion of secondary recrystallization, holding is performed in pure hydrogen at around 1200 ° C. for a long time. This is called purification annealing. Therefore, the purification annealing is in a state of being maintained at a high temperature during the finish annealing.
  • the coating of the grain-oriented electrical steel sheet is composed of a glass film and a secondary film, and the magnetic domain control effect is obtained by the tension applied to the steel sheet by these films, and the low iron loss characteristics are improved.
  • this tension is high, the iron loss improvement effect is high, and therefore, the ability to generate high tension is particularly required for the secondary coating.
  • SiO 2 in the steel sheet reacts with MgO as the main component of the annealing separator to form a glass film on the steel sheet.
  • the glass coating has two functions. As a first function, the glass film adheres firmly to the steel sheet and has the effect of imparting tension to the steel sheet itself, and also adheres to the steel sheet when forming a secondary film formed in the post-finish annealing process. It works as an intermediate layer to ensure the properties. When the adhesion of the glass film is good, a secondary film that generates a high tension can be formed, so that a low iron loss can be achieved by a higher magnetic domain control effect.
  • the glass film has a function of preventing excessive decrease in strength due to the inhibitor during finish annealing and stabilizing secondary recrystallization. Therefore, in order to stably manufacture a grain-oriented electrical steel sheet having good magnetic properties, it is necessary to form a glass film having good adhesion to the steel sheet.
  • the conventional grain-oriented electrical steel sheet has not always ensured sufficient adhesion when it is desired to give a higher tension than before.
  • An object of the present invention is to provide a grain-oriented electrical steel sheet having a glass film excellent in film adhesion and capable of forming a film that generates high tension, and having good magnetic properties, and a method for producing the same. is there.
  • the gist of the present invention is as follows. (1) Si is contained in an amount of 0.8 mass% to 7 mass%, Mn is contained in an amount of 0.05 mass% to 1 mass%, B is contained in an amount of 0.0005 mass% to 0.0080 mass%, and the Al content is 0.00. 025 mass% or less, C, N, S, and Se contents are each 0.005 mass% or less, and the balance is Fe and inevitable impurities, and the surface of the steel plate is a complex oxide mainly composed of forsterite.
  • the surface of the glass coating contains 26 to 38% by weight of colloidal silica and 4 to 12% by weight of one or two selected from the group consisting of chromic anhydride and chromate, with the balance being heavy phosphorus Glow discharge on the surface of the secondary film under the condition that a secondary film having a thickness of 1 ⁇ m or more and 2 ⁇ m or less formed by baking at 800 ° C. to 900 ° C. after being coated with a coating solution made of aluminum oxide and dried.
  • the peak position of the emission intensity has a peak of the emission intensity of B different from the peak position of the emission intensity of Mg, and the peak position of the emission intensity of B from the steel sheet surface is Deeper than the peak position of the emission intensity of Mg, Furthermore, the peak generation time tB of the peak of the B emission intensity observed by glow discharge emission analysis (GDS) that is farthest from the steel plate surface is expressed by the following formula (1). Electrical steel sheet. tMg ⁇ 1.6 ⁇ tB ⁇ tMg ⁇ 5 (1) Here, tMg represents the peak generation time of Mg.
  • Si is 0.8 mass% to 7 mass%
  • acid-soluble Al is 0.01 mass% to 0.065 mass%
  • N is 0.004 mass% to 0.012 mass%
  • Mn is 0.05 Containing at least one selected from the group consisting of S and Se, containing 0.003% by mass to 0.015% by mass.
  • the C content is 0.085 mass% or less
  • the step of heating the electrical steel sheet material consisting of Fe and inevitable impurities at a predetermined temperature Performing a hot rolling of the heated silicon steel material to obtain a hot rolled steel strip; and Annealing the hot rolled steel strip to obtain an annealed steel strip; and Cold-rolling the annealed steel strip at least once to obtain a cold-rolled steel strip; and Performing decarburization annealing of the cold-rolled steel strip to obtain a decarburized annealed steel strip in which primary recrystallization has occurred; and Applying an annealing separator mainly composed of MgO to the decarburized annealing steel strip; A step of producing secondary recrystallization by finish annealing of the decarburized annealed steel strip; Have Furthermore, between the start of the decarburization annealing and the expression of secondary recrystallization in the finish annealing, there is a step of performing a nitrid
  • the atmosphere satisfies the following formulas (9) and (10).
  • [Mn] represents the Mn content (mass%) of the silicon steel material
  • [S] represents the S content (mass%) of the silicon steel material
  • [Se] represents the silicon steel material.
  • Se content (% by mass) is indicated, [B] indicates the B content (% by mass) of the silicon steel material, [N] indicates the N content (% by mass) of the silicon steel material, and B asBN Indicates the amount (mass%) of B precipitated as BN in the hot-rolled steel strip, and S asMnS indicates the amount (mass%) of S precipitated as MnS in the hot-rolled steel strip. Se asMnSe indicates the amount (mass%) of Se precipitated as MnSe in the hot-rolled steel strip.
  • P N2 represents a nitrogen partial pressure
  • P H2O and P H2 represent a water vapor partial pressure and a hydrogen partial pressure, respectively.
  • the magnetic steel sheet material is further Cr: 0.3 mass% or less, Cu: 0.4 mass% or less, Ni: 1 mass% or less, P: 0.5 mass% or less, Mo: 0.1
  • the preceding item characterized by containing at least one selected from the group consisting of mass% or less, Sn: 0.3 mass% or less, Sb: 0.3 mass% or less, and Bi: 0.01 mass% or less. It is a manufacturing method of the grain-oriented electrical steel sheet according to (2).
  • a grain-oriented electrical steel sheet that can form a film that generates a high tension and that has a glass film excellent in film adhesion and that has good magnetic properties.
  • FIG. 1 is a diagram showing a schematic diagram of a glow discharge emission analysis (GDS) result on the surface of a grain-oriented electrical steel sheet.
  • FIG. 2 shows the relationship between the amount of precipitates in the hot-rolled steel strip and the magnetic properties after finish annealing.
  • FIG. 3 is a diagram showing the relationship between the amount of precipitates in the hot-rolled steel strip and the film adhesion after finish annealing.
  • FIG. 4 is a diagram showing the relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing.
  • FIG. 5 is a diagram showing the relationship between the amount of B not precipitated as BN and the film adhesion after finish annealing.
  • FIG. 6 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 7 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 8 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 9 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 10 is a diagram showing the relationship between the finish temperature of finish rolling of hot rolling and the magnetic properties after finish annealing.
  • FIG. 11 is a diagram showing the relationship between the finish temperature of finish rolling of hot rolling and the film adhesion after finish annealing.
  • FIG. 12 is a diagram showing the relationship between hot-rolled precipitates and magnetic properties after finish annealing.
  • FIG. 13 is a diagram showing the relationship between hot-rolled precipitates and film adhesion after finish annealing.
  • FIG. 14 is a diagram showing the relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing.
  • FIG. 15 is a diagram showing the relationship between the amount of B not precipitated as BN and the film adhesion after finish annealing.
  • FIG. 16 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 17 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 18 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 19 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 20 is a diagram illustrating the relationship between the finish temperature of finish rolling of hot rolling and the magnetic properties after finish annealing.
  • FIG. 21 is a diagram showing the relationship between the finish temperature of finish rolling of hot rolling and the film adhesion after finish annealing.
  • FIG. 22 is a diagram showing the relationship between the amount of precipitates in the hot-rolled steel strip and the magnetic properties after finish annealing.
  • FIG. 23 is a diagram showing the relationship between the amount of precipitates in the hot-rolled steel strip and the film adhesion after finish annealing.
  • FIG. 24 is a diagram showing the relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing.
  • FIG. 25 is a diagram showing the relationship between the amount of B not precipitated as BN and the film adhesion after finish annealing.
  • FIG. 26 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 27 is a diagram showing the relationship between hot rolling conditions and magnetic properties after finish annealing.
  • FIG. 28 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 29 is a diagram showing the relationship between hot rolling conditions and film adhesion after finish annealing.
  • FIG. 30 is a diagram illustrating the relationship between the finish temperature of finish rolling of hot rolling and the magnetic properties after finish annealing.
  • FIG. 31 is a diagram showing the relationship between the finish temperature of finish rolling of hot rolling and the film adhesion after finish annealing.
  • FIG. 32 is a diagram showing the relationship between the ratio tB / tMg of the GDS analysis result and the film adhesion.
  • B has been used as an additive for the annealing separator of grain-oriented electrical steel sheets, but the inventors may improve film adhesion as well as magnetic properties when B is added to the steel sheet. I found. As a result of detailed investigation of samples exhibiting good characteristics, it became clear that the distribution of B is characterized at the interface between the glass coating and the steel plate. That is, it has been found that the magnetic properties and film adhesion can be improved by optimizing the interface structure between the glass film and the steel sheet. This interface structure has the following characteristics.
  • the entire steel sheet contains 0.8 mass% to 7 mass% of Si, 0.05 mass% to 1 mass% of Mn, 0.0005 mass% to 0.0080 mass% of B, and the Al content is In a grain-oriented electrical steel sheet comprising 0.025% by mass or less, the contents of C, N, S and Se each being 0.005% by mass or less and the balance being Fe and unavoidable impurities, mainly forsterite on the steel sheet surface A layer made of a complex oxide.
  • the meaning of mainly forsterite here means that forsterite accounts for 70% by weight or more as a constituent component of the film as a constituent component of the film.
  • GDS glow discharge emission analysis
  • it has a peak of B emission intensity at a position different from the peak position of Mg, and the position from the steel sheet surface is deeper than Mg. To do.
  • the distance from the surface of the furthest from the steel plate surface is a certain distance or more from the Mg peak position.
  • the Mg peak was investigated for samples prepared under various conditions in the first experiment below, and the relationship with adhesion was examined.
  • the result shown in FIG. 32 was obtained.
  • the Mg peak position was tMg
  • the peak position in the deepest part from the surface of the steel plate among the B peaks was tB.
  • FIG. 32 shows the result of arranging the magnetic characteristics by the ratio tB / tMg between the values tMg and tB.
  • adhesiveness is improving, so that peeling area is small.
  • the peeled area of the film is as small as 5% or less, and the adhesion is improved.
  • the magnetic characteristic is also improved when the value tB is large, but if the value tB is too large, the magnetic property may be deteriorated. Therefore, the ratio tB / tMg is set to 5 or less.
  • the thickness of the secondary film on the glass film is measured under a certain condition.
  • a coating comprising 26 to 38% by weight of colloidal silica, 4 to 12% by mass of one or two selected from the group consisting of chromic anhydride and chromate, and the balance consisting of aluminum biphosphate
  • a secondary film having a thickness of 1 ⁇ m or more and 2 ⁇ m or less formed by baking at 800 ° C. to 900 ° C. after the liquid is applied and dried it can be directly measured by GDS.
  • the secondary film is removed with an aqueous sodium hydroxide solution to expose the surface of the glass film, and then the colloidal silica is 26 to 38 wt. %, And 4 to 12% by mass of one or two selected from the group consisting of chromic anhydride and chromate, with the balance being applied and dried with a coating solution consisting of aluminum biphosphate
  • the values tB and tMg are measured by GDS in a state where a secondary film having a thickness of 1 ⁇ m or more and 2 ⁇ m or less formed by baking at 800 ° C. to 900 ° C. is formed. By forming a secondary film having such a composition range and thickness range, the values tB and tMg can be measured with sufficient accuracy.
  • the peak position of Mg is expressed by the discharge time in the peak position of the deepest part of B, each being tB (second), and the peak position of Mg is tMg.
  • the electrical steel sheet represented by the formula (1).
  • Mg is mostly derived from the glass film. Therefore, when the secondary film is thick, the peak position of Mg changes and the peak position of B changes. In order to avoid this influence, in the present invention, the thickness of the secondary film at the time of GDS measurement is specified. Further, if the secondary film of the product plate contains a large amount of Mg, the Mg peak derived from the glass film becomes unclear. Therefore, in order to evaluate the expression (1), it is necessary to use a value measured after removing the secondary film. In addition, the regulation of the thickness, composition, and formation conditions of the secondary film is a pretreatment condition when GDS measurement is performed, and does not define the state of the secondary film of the product plate.
  • the components including Si are defined, and the electromagnetic steel sheet material is processed at a predetermined temperature.
  • the method described in the above (4) and (5) may be used.
  • Si 3.3% by mass
  • C 0.06% by mass
  • acid-soluble Al 0.027% by mass
  • N 0.008% by mass
  • Mn 0.05% by mass to 0.19% by mass
  • Various silicon steel slabs containing S: 0.007 mass% and B: 0.0010 mass% to 0.0035 mass% with the balance being Fe and inevitable impurities were obtained.
  • the silicon steel slab was heated at a temperature of 1100 ° C. to 1250 ° C. and hot rolled.
  • finish rolling was performed at 1000 ° C. to obtain a hot rolled steel strip having a thickness of 2.3 mm.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 840 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • the atmosphere of the finish annealing is the nitrogen partial pressure P N2 of the atmosphere from 800 ° C to 1100 ° C is 0.5, the oxygen potential Log [P H2O / P H2 ] is -1.0, the nitrogen partial pressure of the atmosphere of 1100 ° C or higher
  • PN2 nitrogen partial pressure of 0.1 or less and oxygen potential Log [P H2O / P H2 ] of -2 or less.
  • the vertical axis represents the value (mass%) obtained by converting the precipitation amount of BN into B.
  • the horizontal axis corresponds to the amount (mass%) of S deposited as MnS.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnS or BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • the relationship between the state of precipitates and film adhesion after finish annealing was investigated.
  • the amount of the secondary film was evaluated to be larger than the normal basis weight.
  • the basis weight of the secondary film is increased, high tension is applied to the steel sheet, and when the adhesion of the glass film is not sufficient, film peeling tends to occur.
  • a coating solution comprising 100 g of aluminum phosphate having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was first prepared as a secondary film.
  • this coating liquid was apply
  • this steel plate was wound around a 20 ⁇ round bar, it was judged that the adhesion was good when the peeled area of the coating that exposed the steel plate inside the bent portion was 5% or less.
  • white circles indicate that the adhesion was good, and black squares indicate that the film peeled and the adhesion was comparable to the conventional one.
  • an improvement in film adhesion is observed in a sample in which the amount of MnS and BN deposited is a certain value or more.
  • FIG. 4 shows the B content (mass%), and the vertical axis shows the value (mass%) obtained by converting the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of B not precipitated as BN was a certain value or more. This indicates that secondary recrystallization was unstable.
  • BN was compositely precipitated around MnS with MnS as a nucleus.
  • Such a composite precipitate is effective as an inhibitor that stabilizes secondary recrystallization.
  • BN is decomposed at an appropriate temperature range during finish annealing, and B is supplied to the interface between the steel sheet and the glass coating during the formation of the glass coating, and finally the coating adheres. Contributes to the improvement of sex.
  • the horizontal axis in FIG. 6 represents the Mn content (% by mass), and the vertical axis represents the slab heating temperature (° C.) during hot rolling.
  • the horizontal axis of FIG. 7 shows B content (mass%), and a vertical axis
  • shaft shows the temperature (degreeC) of the slab heating at the time of hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the curve in FIG. 6 shows the solution temperature T1 (° C.) of MnS represented by the following formula (2), and the curve in FIG. 7 shows the solution temperature T3 of BN represented by the following formula (4). (° C.). As shown in FIG.
  • [Mn] represents the Mn content (mass%)
  • [S] represents the S content (mass%)
  • [B] represents the B content (mass%)
  • [N] represents N Content (mass%) is shown.
  • the precipitation temperature range was 800 ° C to 1000 ° C.
  • FIG. 8 shows the Mn content (% by mass), and the vertical axis shows the temperature (° C.) of slab heating during hot rolling. White circles indicate that there was no problem in film adhesion, and black squares indicate that film peeling occurred.
  • the curve in FIG. 8 shows the solution temperature T1 (° C.) of MnS represented by the formula (2), and the curve in FIG. 9 shows the solution temperature T3 (° C. of BN represented by the formula (4). ). As shown in FIG.
  • the present inventors investigated the end temperature of hot rolling finish rolling.
  • Si 3.3 mass%
  • C 0.06 mass%
  • acid-soluble Al 0.027 mass%
  • N 0.008 mass%
  • Mn 0.1 mass%
  • S Various silicon steel slabs containing 0.007 mass% and B: 0.001 mass% to 0.004 mass% with the balance being Fe and inevitable impurities were obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C. and hot rolled.
  • finish rolling was performed at 1020 ° C. to 900 ° C. to obtain a hot rolled steel strip having a thickness of 2.3 mm.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 840 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • the atmosphere of the finish annealing is the nitrogen partial pressure P N2 of the atmosphere from 800 ° C to 1100 ° C is 0.5, the oxygen potential Log [P H2O / P H2 ] is -1.0, the nitrogen partial pressure of the atmosphere of 1100 ° C or higher
  • PN2 nitrogen partial pressure of 0.1 or less and oxygen potential Log [P H2O / P H2 ] of -2 or less.
  • FIG. 10 The horizontal axis in FIG. 10 represents the B content (% by mass), and the vertical axis represents the finish rolling finish temperature Tf.
  • a white circle indicates that the magnetic flux density B8 is 1.91T or more, and a black square indicates that the magnetic flux density B8 is less than 1.91T.
  • FIG. 10 it was found that a high magnetic flux density B8 can be obtained when the finish rolling finish temperature Tf satisfies the following formula (5). This is considered to be because precipitation of BN was further promoted by controlling the finish rolling finish temperature Tf. Tf ⁇ 1000 ⁇ 10000 ⁇ [B] (5)
  • the relationship between the finishing temperature of hot rolling finish rolling and the film adhesion after finish annealing was investigated.
  • the adhesion was evaluated by the same method as described in the explanation of FIG. The result is shown in FIG.
  • the horizontal axis in FIG. 11 represents the B content (% by mass), and the vertical axis represents the finish rolling finish temperature Tf.
  • a white circle indicates that the film adhesion was good, and a black square indicates that the film was peeled off.
  • the finish rolling finish temperature Tf satisfies the formula (5) and the finish annealing atmosphere is optimized to obtain an effect of improving the film adhesion.
  • Si 3.3 mass%, C: 0.06 mass%, acid-soluble Al: 0.028 mass%, N: 0.007 mass%, Mn: 0.05 mass% to 0.20 mass%, Various silicon steel slabs containing Se: 0.007% by mass and B: 0.0010% by mass to 0.0035% by mass with the balance being Fe and inevitable impurities were obtained.
  • the silicon steel slab was heated at a temperature of 1100 ° C. to 1250 ° C. and hot rolled. In hot rolling, after rough rolling was performed at 1050 ° C., finish rolling was performed at 1000 ° C. to obtain a hot rolled steel strip having a thickness of 2.3 mm.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 850 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, the nitrogen partial pressure P N2 in the atmosphere from 800 ° C. to 1100 ° C. is 0.5, the oxygen potential Log [P H2O / P H2 ] is ⁇ 1.0, Various samples were prepared by performing final annealing with an nitrogen partial pressure P N2 in an atmosphere of 1100 ° C. or higher being 0.1 or less and an oxygen potential Log [P H2O / P H2 ] being ⁇ 2 or less.
  • FIG. 12 shows the value (mass%) in which the amount of MnSe precipitated is converted into the amount of Se, and the vertical axis shows the value (mass%) in which the amount of precipitated BN is converted into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnSe or BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • FIG. 13 shows the value (mass%) in which the amount of MnSe precipitated is converted into the amount of Se, and the vertical axis shows the value (mass%) in which the amount of precipitated BN is converted into B.
  • White circles indicate that film adhesion is good, and black squares indicate that film peeling occurred.
  • FIG. 13 it can be seen that there is an effect of improving the film adhesion when a sample having a certain amount of deposited MnSe and BN and a finish annealing atmosphere is in an appropriate condition.
  • FIG. 14 shows B content (mass%), and a vertical axis
  • shaft shows the value (mass%) which converted the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of B not precipitated as BN was a certain value or more. This indicates that secondary recrystallization was unstable.
  • BN was complexly deposited around MnSe with MnSe as a nucleus.
  • Such a composite precipitate is effective as an inhibitor that stabilizes secondary recrystallization.
  • BN is decomposed in an appropriate temperature range during finish annealing, and B is supplied to the interface between the steel sheet and the glass coating during the formation of the glass coating. Contributes to improved adhesion.
  • FIG. 16 shows the Mn content (% by mass), and the vertical axis shows the slab heating temperature (° C.) during hot rolling.
  • the horizontal axis in FIG. 17 indicates the B content (% by mass), and the vertical axis indicates the slab heating temperature (° C.) during hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the curve in FIG. 16 shows the solution temperature T2 (° C.) of MnSe represented by the following formula (3)
  • the curve in FIG. 17 shows the solution temperature T3 of BN represented by formula (4) ( ° C). As shown in FIG.
  • T2 10733 / (4.08-log ([Mn] ⁇ [Se]))-273 (3)
  • [Se] indicates the Se content (% by mass).
  • the horizontal axis represents the Mn content (mass%)
  • the vertical axis represents the slab heating temperature (° C.) during hot rolling.
  • the horizontal axis of FIG. 19 shows B content (mass%)
  • shaft shows the temperature (degreeC) of the slab heating at the time of hot rolling.
  • White circles indicate that the film adhesion is improved, and black squares indicate that the film is peeled off and the adhesion is not improved.
  • the curve in FIG. 18 shows the solution temperature T2 (° C.) of MnSe represented by the formula (3)
  • the curve in FIG. 19 shows the solution temperature T3 (° C. of BN represented by the formula (4). ). As shown in FIG.
  • the precipitation temperature range was 800 ° C to 1000 ° C.
  • the present inventors investigated the end temperature of hot rolling finish rolling.
  • Si 3.3% by mass
  • C 0.06% by mass
  • acid-soluble Al 0.028% by mass
  • N 0.007% by mass
  • Mn 0.1% by mass
  • Se Various silicon steel slabs containing 0.007 mass% and B: 0.001 mass% to 0.004 mass% with the balance being Fe and inevitable impurities were obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C. and hot rolled.
  • finish rolling was performed at 1020 ° C. to 900 ° C. to obtain a hot rolled steel strip having a thickness of 2.3 mm.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 850 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, nitrogen partial pressure P N2 in an atmosphere from 800 ° C. to 1100 ° C. is 0.5, oxygen potential Log [P H2O / P H2 ] is ⁇ 1, 1100 ° C.
  • nitrogen partial pressure P N2 in an atmosphere is 0.1 or less and the oxygen potential Log [P H2O / P H2 ] being ⁇ 2.
  • FIG. 20 The horizontal axis in FIG. 20 indicates the B content (mass%), and the vertical axis indicates the finish rolling finish temperature Tf.
  • a white circle indicates that the magnetic flux density B8 is 1.91T or more, and a black square indicates that the magnetic flux density B8 is less than 1.91T.
  • FIG. 20 it was found that a high magnetic flux density B8 can be obtained when the finish rolling finish temperature Tf satisfies the above-described equation (13). This is considered to be because precipitation of BN was further promoted by controlling the finish rolling finish temperature Tf.
  • Si 3.3 mass%, C: 0.06 mass%, acid-soluble Al: 0.026 mass%, N: 0.009 mass%, Mn: 0.05 mass% to 0.20 mass%,
  • Various silicon steel slabs containing S: 0.005% by mass, Se: 0.007% by mass, and B: 0.0010% by mass to 0.0035% by mass with the balance being Fe and inevitable impurities are obtained. It was.
  • the silicon steel slab was heated at a temperature of 1100 ° C. to 1250 ° C. and hot rolled. In hot rolling, after rough rolling was performed at 1050 ° C., finish rolling was performed at 1000 ° C. to obtain a hot rolled steel strip having a thickness of 2.3 mm.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 850 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.021% by mass.
  • an annealing separator mainly composed of MgO is applied, nitrogen partial pressure P N2 in an atmosphere from 800 ° C. to 1100 ° C. is 0.5, oxygen potential Log [P H2O / P H2 ] is ⁇ 1, 1100 ° C.
  • nitrogen partial pressure P N2 in an atmosphere from 800 ° C. to 1100 ° C.
  • oxygen potential Log [P H2O / P H2 ] is ⁇ 1, 1100 ° C.
  • Various samples were prepared by performing final annealing with the nitrogen partial pressure P N2 in the above atmosphere being 0.1 or less and the oxygen potential Log [P H2O / P H2 ] being ⁇ 2 or less.
  • FIG. 22 shows the sum (mass%) of the value obtained by multiplying the value obtained by converting the precipitation amount of MnS into the amount of S and the value obtained by converting the precipitation amount of MnSe into the amount of Se by 0.5.
  • the vertical axis indicates the value (mass%) obtained by converting the amount of precipitated BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnS and MnSe or BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • FIG. 23 shows the sum (mass%) of the value obtained by multiplying the value obtained by converting the precipitation amount of MnS into the amount of S and the value obtained by converting the precipitation amount of MnSe into the amount of Se by 0.5.
  • the vertical axis indicates the value (mass%) obtained by converting the amount of precipitated BN into B.
  • white circles indicate that the film adhesion is improved, and black squares indicate that there is a film peeling and there is no effect of improving the film adhesion.
  • the film adhesion was improved when the amount of MnS, MnSe, and BN deposited was a certain value or more, and the atmosphere of the finish annealing was in an appropriate condition.
  • FIG. 24 shows B content (mass%), and a vertical axis
  • shaft shows the value (mass%) which converted the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of B not precipitated as BN was a certain value or more. This indicates that secondary recrystallization was unstable.
  • the relationship between the amount of B not precipitated as BN and the film adhesion after finish annealing was investigated for samples in which MnS, MnSe, and BN were deposited in a certain amount or more.
  • the film adhesion evaluation method is the same as that used in FIG. The result is shown in FIG.
  • the horizontal axis of FIG. 25 shows the B content (mass%), and the vertical axis shows the value (mass%) obtained by converting the precipitation amount of BN into B.
  • White circles indicate that the film adhesion is improved, and black squares indicate that the film is peeled off and the film adhesion is not improved.
  • the amount of B not precipitated as BN is a predetermined value or less and the atmosphere of finish annealing is appropriate, the film adhesion was improved.
  • BN was complexly deposited around MnS or MnSe with MnS or MnSe as a nucleus.
  • Such a composite precipitate is effective as an inhibitor that stabilizes secondary recrystallization.
  • BN is decomposed at an optimum temperature range during the finish annealing, and B is supplied to the interface between the steel plate and the glass coating when the glass coating is formed. Contributes to improved film adhesion.
  • the horizontal axis represents the Mn content (mass%), and the vertical axis represents the slab heating temperature (° C.) during hot rolling.
  • the horizontal axis of FIG. 27 shows the B content (% by mass), and the vertical axis shows the temperature (° C.) of slab heating during hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the two curves in FIG. 26 show the solution temperature T1 (° C.) of MnS represented by the formula (2) and the solution temperature T2 (° C.) of MnSe represented by the formula (3).
  • the curve in the middle shows the solution temperature T3 (° C.) of BN represented by the formula (4).
  • a high magnetic flux density B8 can be obtained in a sample that has been slab heated at a temperature that is determined according to the Mn content. Furthermore, it was also found that this temperature substantially coincided with the solution temperature T1 of MnS and the solution temperature T2 of MnSe. In addition, as shown in FIG. 27, it was also found that a high magnetic flux density B8 can be obtained in a sample that has been slab heated at a temperature determined according to the B content. Furthermore, it was also found that this temperature almost coincided with the solution temperature T3 of BN. That is, it has been found that it is effective to perform slab heating in a temperature range where MnS, MnSe and BN are not completely dissolved.
  • the horizontal axis in FIG. 28 indicates the Mn content (mass%), and the vertical axis indicates the slab heating temperature (° C.) during hot rolling.
  • the horizontal axis in FIG. 29 indicates the B content (% by mass), and the vertical axis indicates the slab heating temperature (° C.) during hot rolling.
  • White circles indicate that film adhesion is improved, and black squares indicate that film peeling occurs and film adhesion is not improved.
  • the two curves in FIG. 28 show the solution temperature T1 (° C.) of MnS represented by the formula (2) and the solution temperature T2 (° C.) of MnSe represented by the formula (3).
  • the curve in the middle shows the solution temperature T3 (° C.) of BN represented by the formula (4).
  • T3 ° C.
  • FIG. 28 it was found that the film adhesion was improved in the sample in which the slab heating was performed at a temperature lower than the temperature determined according to the Mn content and the atmosphere of the finish annealing was an appropriate condition. Furthermore, it was also found that this temperature substantially coincided with the solution temperature T1 of MnS and the solution temperature T2 of MnSe. Further, as shown in FIG. 29, it was also found that the film adhesion is improved in a sample in which the slab heating is performed at a temperature lower than the temperature determined according to the B content and the finish annealing atmosphere is in an appropriate condition.
  • this temperature almost coincided with the solution temperature T3 of BN. That is, it has been proved that it is effective that the slab heating is performed in a temperature range where MnS, MnSe and BN are not completely dissolved, and the atmosphere of the finish annealing is appropriate.
  • the precipitation temperature range was 800 ° C to 1000 ° C.
  • the present inventors investigated the end temperature of hot rolling finish rolling.
  • Si 3.3 mass%
  • C 0.06 mass%
  • acid-soluble Al 0.026 mass%
  • N 0.009 mass%
  • Mn 0.1 mass%
  • S Various silicon steel slabs containing 0.005% by mass
  • Se 0.007% by mass
  • B 0.001% by mass to 0.004% by mass with the balance being Fe and inevitable impurities were obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C. and hot rolled.
  • finish rolling was performed at 1020 ° C. to 900 ° C.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 850 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.021% by mass.
  • an annealing separator mainly composed of MgO is applied, nitrogen partial pressure P N2 in an atmosphere from 800 ° C. to 1100 ° C. is 0.5, oxygen potential Log [P H2O / P H2 ] is ⁇ 1, 1100 ° C.
  • finish annealing was performed with a nitrogen partial pressure P N2 of 0.1 or less and an oxygen potential Log [P H2O / P H2 ] of ⁇ 2 or less, and various samples were prepared.
  • FIG. 30 The horizontal axis in FIG. 30 indicates the B content (mass%), and the vertical axis indicates the finish rolling finish temperature Tf.
  • a white circle indicates that the magnetic flux density B8 is 1.91T or more, and a black square indicates that the magnetic flux density B8 is less than 1.91T.
  • FIG. 30 it was found that a high magnetic flux density B8 can be obtained when the finish rolling finish temperature Tf satisfies the equation (5). This is considered to be because precipitation of BN was further promoted by controlling the finish rolling finish temperature Tf.
  • FIG. 31 The horizontal axis in FIG. 31 indicates the B content (mass%), and the vertical axis indicates the finish rolling finish temperature Tf. Further, white circles indicate that film adhesion is improved, and black squares indicate that film peeling occurs and film adhesion is not improved. As shown in FIG. 31, it was found that the film adhesion is improved when the finish rolling finish temperature Tf satisfies the formula (5) and the atmosphere of the finish annealing is an appropriate condition.
  • the magnetic properties and the film adhesion of the grain-oriented electrical steel sheet are stably improved by controlling the precipitation form of BN and the atmosphere of the finish annealing.
  • the atmosphere of finish annealing was not made into the value by Formula (9) and (10), even if the magnetic characteristic was favorable, the improvement effect of film
  • membrane adhesiveness was not acquired.
  • B is not combined with MnS or MnSe as BN, secondary recrystallization becomes unstable and good magnetic properties cannot be obtained.
  • the atmosphere of finish annealing is not controlled, the effect of improving film adhesion appears. The details of the reason for not being clarified so far are as follows.
  • the magnetic properties are as follows.
  • B in a solid solution state is easily segregated at grain boundaries, and BN that is single-deposited after hot rolling is often fine.
  • These solid solution B and fine BN suppress the grain growth at the time of primary recrystallization as a strong inhibitor in a low temperature range where decarburization annealing is performed, and locally inhibit in a high temperature range where finish annealing is performed.
  • the steel grain structure becomes a mixed grain structure. Therefore, since the primary recrystallized grains are small when the primary recrystallization temperature is low, the magnetic flux density of the grain-oriented electrical steel sheet becomes low. In addition, since the crystal grain structure becomes a mixed grain structure in a high temperature range, secondary recrystallization becomes unstable.
  • the film adhesion is as follows. First, regarding the state of B after purification annealing, it is considered that B present at the interface between the glass coating and the steel sheet exists as an oxide. Although it exists as BN before purification occurs, it is considered that BN is decomposed by the purification, and B in the steel sheet diffuses to near the surface of the steel sheet to form an oxide. Although details of the oxide are not clear, the present inventors presume that a composite oxide is formed together with Mg, Si, and Al present in the glass coating and the root of the glass coating.
  • BN decomposes in the latter half of the finish annealing and B is concentrated on the surface of the steel sheet.
  • B concentration occurs in the early stage of the glass film formation, the interface structure after the finish annealing is completed. Concentrate in shallower parts. For this reason, it does not become a thing provided with the characteristic of this invention.
  • B is concentrated near the root of the glass film, and the interface between the glass film and the steel sheet has the characteristics of the present invention. It becomes.
  • the condition may be that B is concentrated above this temperature.
  • the BN precipitates in the steel sheet reach a high temperature. It needs to exist stably.
  • BN is fine and is not complex-precipitated with MnS or MnSe, the decomposition temperature in the final annealing is lowered, and the solid solution B is formed at the interface between the glass film and the steel plate before the root of the glass film is formed. It thickens and does not contribute to improving the anchor effect at the interface between the glass film and the steel sheet. For this reason, it is thought that the improvement effect of film adhesion is lost.
  • B is also used as an additive for the annealing separator, segregation of B may be observed near the interface between the glass film and the steel sheet in the grain-oriented electrical steel sheet that has undergone finish annealing.
  • B derived from the annealing separator it is difficult to obtain an interface structure between the glass film and the steel sheet according to the present invention.
  • a sufficient amount of B needs to diffuse into the steel plate from the surface of the steel plate. There is.
  • the oxide of B Since the oxide of B has a relatively high equilibrium dissociation pressure of oxygen among the elements constituting the glass film, it diffuses to the root of the glass film where the oxygen potential is assumed to be lower than the surface layer of the glass film to form an oxide. This situation is unlikely to occur. Therefore, it is difficult to realize the interface structure between the glass film and the steel plate according to the present invention by using B derived from the annealing separator.
  • the adhesion of the glass coating is improved when the concentration position in the deepest part of B is deeper than the concentration position of Mg.
  • the peak position of the deepest part of B concentration is expressed as discharge time tB (seconds)
  • the Mg peak position is tMg (seconds). Good results are obtained under the following conditions. tMg ⁇ 1.6 ⁇ tB ⁇ tMg ⁇ 5 (1)
  • the value tB is preferably tMg ⁇ 5.0 or less.
  • the reason for limiting the atmosphere of finish annealing will be described.
  • the nitrogen partial pressure P N2 is kept at 0.75 to 0.2, and the oxygen potential Log [P H2O / P H2 ] is set to ⁇ 0.7 or less. This is to suppress the decomposition of BN in the temperature range of 800 to 1100 ° C. If the decomposition of BN is not suppressed in this temperature range, good adhesion cannot be obtained. This is because if the atmosphere is inappropriate and the decomposition of BN is not sufficiently suppressed, B diffuses to the surface of the steel sheet from the early stage of finish annealing and concentrates at a shallow position from the surface of the steel sheet. .
  • the nitrogen partial pressure P N2 is set to a value of 0.2 or more in order to moderately suppress the decomposition of BN.
  • the oxygen potential Log [P H2O / P H2 ] exceeds ⁇ 0.7, oxidation of B occurs, and as a result, decomposition of BN is promoted.
  • the atmosphere of the finish annealing satisfies the conditions of the nitrogen partial pressure P N2 and the oxygen potential Log [P H2O / P H2 ] described above. .
  • the temperature range for the above atmospheric conditions is 800 ° C. to 1100 ° C.
  • the temperature is lower than 800 ° C, it overlaps with the initial temperature range of glass film formation. If the above oxygen potential Log [P H2O / P H2 ] is used in this area, a healthy glass film cannot be obtained and the film adhesion May be adversely affected. If the lower limit temperature is too low, the adhesiveness is adversely affected. If the lower limit temperature is too high, the decomposition of BN cannot be sufficiently suppressed. Therefore, in this embodiment, the lower limit temperature is set to 800 ° C.
  • the atmosphere under the above-described conditions is realized between 800 ° C. and 1100 ° C.
  • the method of adjusting the atmosphere of the finish annealing can be realized by controlling the mixing ratio between nitrogen gas and a gas that does not react with the steel plate, such as hydrogen, with respect to the nitrogen partial pressure PN2 .
  • the oxygen potential Log [P H2O / P H2 ] can be realized by controlling the dew point of the atmosphere.
  • the nitrogen partial pressure P N2 is preferably set to 0.1 or less, and the oxygen potential Log [P H2O / P H2 ] is set to ⁇ 2 or less. This is for concentrating B as an oxide at a predetermined position and further purifying after secondary recrystallization.
  • the reason why the upper limit of the oxygen potential Log [P H2O / P H2 ] is set to ⁇ 2 is that B is an oxide and is further concentrated near the surface of the steel sheet. If this value is too high, the concentration of B oxide occurs in the deep part of the steel sheet, making it difficult to obtain good magnetic properties.
  • the nitrogen partial pressure P N2 is 0.1 or less is that if the nitrogen partial pressure P N2 is too high, the concentration of B oxide occurs near the surface of the steel sheet, and good adhesion cannot be obtained. In addition, it is difficult to proceed with purification, and it may be uneconomical due to a long annealing time. As described in detail above, in order for B to effectively work to improve the film adhesion, the nitrogen partial pressure P N2 and the oxygen potential Log [P H2O / P H2 ] in the high temperature region during finish annealing are used. It is necessary to control.
  • the silicon steel material used in this embodiment is Si: 0.8 mass% to 7 mass%, acid-soluble Al: 0.01 mass% to 0.065 mass%, N: 0.004 mass% to 0.012 mass %, Mn: 0.05% by mass to 1% by mass, S and Se: 0.003% by mass to 0.015% by mass in total, and B: 0.0005% by mass to 0.0080% by mass, C content is 0.085 mass% or less, and the remainder consists of Fe and inevitable impurities.
  • the finally obtained grain-oriented electrical steel sheet has a Si content of 0.8 mass% to 7 mass%, a Mn content of 0.05 mass% to 1 mass%, and a B content of 0.0005 mass% to 0.0080 mass%. And the contents of Al, C, N, S and Se are each 0.005% by mass or less, and the balance consists of Fe and inevitable impurities.
  • Si content increases the electric resistance and decreases the iron loss.
  • Si content shall be 7 mass% or less, it is preferable that it is 4.5 mass% or less, and it is still more preferable that it is 4 mass% or less.
  • Si content shall be 0.8 mass% or more, it is preferable that it is 2 mass% or more, and it is still more preferable that it is 2.5 mass% or more.
  • C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties. For this reason, in this embodiment, decarburization annealing is performed before finish annealing. However, if the C content exceeds 0.085% by mass, the time required for decarburization annealing becomes long, and the productivity in industrial production is impaired. For this reason, C content shall be 0.085 mass% or less, and it is preferable that it is 0.07 mass% or less.
  • the C content in the finally obtained grain-oriented electrical steel sheet is 0.005 mass%.
  • Acid-soluble Al combines with N and precipitates as (Al, Si) N and functions as an inhibitor. Secondary recrystallization is stabilized when the content of acid-soluble Al is in the range of 0.01 mass% to 0.065 mass%. For this reason, content of acid-soluble Al shall be 0.01 mass% or more and 0.065 mass% or less. Moreover, it is preferable that content of acid-soluble Al is 0.02 mass% or more, and it is still more preferable that it is 0.025 mass% or more. Moreover, it is preferable that content of acid-soluble Al is 0.04 mass% or less, and it is still more preferable that it is 0.03 mass% or less.
  • the Al content in the finally obtained grain-oriented electrical steel sheet is 0.005 mass%.
  • B binds to N and precipitates together with MnS or MnSe as BN and functions as an inhibitor. Secondary recrystallization is stabilized when the B content is in the range of 0.0005 mass% to 0.0080 mass%. For this reason, B content shall be 0.0005 mass% or more and 0.0080 mass% or less. Moreover, it is preferable that B content is 0.001 mass% or more, and it is still more preferable that it is 0.0015 mass% or more. Moreover, it is preferable that B content is 0.0040 mass% or less, and it is still more preferable that it is 0.0030 mass% or less.
  • B is added to the grain-oriented electrical steel sheet finally obtained due to, for example, being derived from the annealing separator. If B exceeds 0.0080 mass%, the magnetic properties will be adversely affected. Therefore, the B content in the finally obtained grain-oriented electrical steel sheet is set to 0.0005 mass% to 0.0080 mass%.
  • N binds to B or Al and functions as an inhibitor.
  • N content When the N content is less than 0.004% by mass, a sufficient amount of inhibitor cannot be obtained. For this reason, N content shall be 0.004 mass% or more, it is preferable that it is 0.006 mass% or more, and it is still more preferable that it is 0.007 mass% or more.
  • N content exceeds 0.012% by mass, pores called blisters are generated in the steel strip during cold rolling. For this reason, N content shall be 0.012 mass% or less, it is preferable that it is 0.010 mass% or less, and it is still more preferable that it is 0.009 mass% or less.
  • the N content in the grain-oriented electrical steel sheet finally obtained is 0.005 mass%.
  • Mn, S, and Se generate MnS and MnSe that are nuclei from which BN is compositely precipitated, and the composite precipitate functions as an inhibitor. Secondary recrystallization is stabilized when the Mn content is in the range of 0.05 mass% to 1 mass%. For this reason, Mn content shall be 0.05 mass% or more and 1 mass% or less. Moreover, it is preferable that Mn content is 0.08 mass% or more, and it is still more preferable that it is 0.09 mass% or more. The Mn content is preferably 0.50% by mass or less, and more preferably 0.2% by mass or less.
  • the obtained grain-oriented electrical steel sheet has a Mn content of 0.05 mass% to 1 mass%.
  • the content of S and Se in the finally obtained grain-oriented electrical steel sheet is 0.005 mass% or less.
  • Ti forms coarse TiN and affects the precipitation amount of BN and (Al, Si) N functioning as an inhibitor.
  • Ti content exceeds 0.004% by mass, it is difficult to obtain good magnetic properties. For this reason, it is preferable that Ti content is 0.004 mass% or less.
  • the silicon steel material may further contain one or more selected from the group consisting of Cr, Cu, Ni, P, Mo, Sn, Sb, and Bi within the following range.
  • Cr improves the oxide layer formed during decarburization annealing and is effective in forming a glass film. However, if the Cr content exceeds 0.3% by mass, decarburization is significantly inhibited. For this reason, Cr content shall be 0.3 mass% or less.
  • Cu increases specific resistance and reduces iron loss. However, this effect is saturated when the Cu content exceeds 0.4% by mass. In addition, surface flaws called “copper hege” may occur during hot rolling. For this reason, Cu content was 0.4 mass% or less.
  • Ni increases specific resistance and reduces iron loss. Ni also improves the magnetic properties by controlling the metal structure of the hot-rolled steel strip. However, when the Ni content exceeds 1% by mass, secondary recrystallization becomes unstable. For this reason, Ni content shall be 1 mass% or less.
  • P increases specific resistance and reduces iron loss.
  • P content exceeds 0.5% by mass, a problem arises in rollability. For this reason, P content shall be 0.5 mass% or less.
  • Mo improves surface properties during hot rolling. However, when the Mo content exceeds 0.1% by mass, this effect is saturated. For this reason, Mo content shall be 0.1 mass% or less.
  • Sn and Sb are grain boundary segregation elements. Since the silicon steel material used in this embodiment contains Al, Al may be oxidized by moisture released from the annealing separator depending on the conditions of finish annealing. In this case, the inhibitor strength varies depending on the site in the grain-oriented electrical steel sheet, and the magnetic characteristics may vary. However, when a grain boundary segregating element is contained, oxidation of Al can be suppressed. That is, Sn and Sb suppress the variation in magnetic characteristics by suppressing the oxidation of Al. However, if the total content of Sn and Sb exceeds 0.30% by mass, an oxide layer is hardly formed at the time of decarburization annealing, and the formation of the glass film becomes insufficient. Moreover, decarburization is significantly inhibited. For this reason, content of Sn and Sb shall be 0.3 mass% or less in total amount.
  • Bi stabilizes precipitates such as sulfides and strengthens the function as an inhibitor.
  • the Bi content exceeds 0.01% by mass, the glass film formation is adversely affected. For this reason, Bi content shall be 0.01 mass% or less.
  • the silicon steel material (slab) of the above components is manufactured by, for example, melting steel with a converter or an electric furnace, vacuum degassing the molten steel as necessary, and then performing continuous casting. Can do. Moreover, it can replace with continuous casting and can also produce even if it performs after-agglomeration partial rolling.
  • the thickness of the silicon steel slab is, for example, 150 mm to 350 mm, preferably 220 mm to 280 mm. Also, a so-called thin slab having a thickness of 30 mm to 70 mm may be produced. When a thin slab is produced, rough rolling when obtaining a hot-rolled steel strip can be omitted.
  • BN is combined with MnS and / or MnSe, and the slab is so formed that the precipitation amounts of BN, MnS, and MnSe in the hot-rolled steel strip satisfy the following formulas (6) to (8). Set conditions for heating and hot rolling.
  • B asBN indicates the amount (mass%) of B precipitated as BN
  • S asMnS indicates the amount (mass%) of S precipitated as MnS
  • Se asMnSe precipitates as MnSe. The amount (% by mass) of Se is shown.
  • the amount of precipitation and the amount of solid solution are controlled so that Expression (6) and Expression (7) are satisfied.
  • a certain amount or more of BN is precipitated.
  • unstable fine precipitates may be formed in the subsequent process, which may adversely affect the primary recrystallization structure.
  • MnS and MnSe function as nuclei in which BN is compositely precipitated. Therefore, in order to sufficiently precipitate BN and improve the magnetic characteristics, the amount of precipitation is controlled so that the formula (8) is satisfied.
  • Equation (6) and Equation (8) are derived from FIGS. 2, 12, and 22.
  • FIG. 2 shows that when B asBN is 0.0005 mass% or more and S asMnS is 0.002 mass% or more, a good magnetic flux density with a magnetic flux density B8 of 1.88 T or more can be obtained.
  • S asMnS + 0.5 ⁇ Se asMnSe is necessarily 0.002 mass% or more, and if Se asMnSe is 0.004 mass% or more, inevitably.
  • S asMnS + 0.5 ⁇ Se asMnSe is 0.002% by mass or more. Therefore, it is important that S asMnS + 0.5 ⁇ Se asMnSe is 0.002 mass% or more.
  • the slab heating temperature is set to satisfy the following conditions.
  • the solution temperatures T1 and T2 substantially coincide with the upper limit of the slab heating temperature at which the magnetic flux density B8 of 1.88 T or more is obtained.
  • the solution temperature T3 substantially coincides with the upper limit of the slab heating temperature at which a magnetic flux density B8 of 1.88 T or more is obtained.
  • the slab heating is preferably performed at a temperature T1 and / or a temperature T2 or lower and a temperature T3 or lower. Further, when the temperature of the slab heating is equal to or lower than the temperature T4 or T5, a preferable amount of MnS or MnSe precipitates during the slab heating, so that BN is complex-deposited around these to easily form an effective inhibitor. It becomes possible.
  • the finish temperature Tf of the finish rolling in the hot rolling is set so that the following formula (5) is satisfied. This is for further promoting the precipitation of BN.
  • Tf 1000 ⁇ 10000 ⁇ [B] (5)
  • the finish rolling finish temperature Tf is more preferably 800 ° C. or higher from the viewpoint of precipitation of BN.
  • the hot rolled steel strip is annealed.
  • cold rolling is performed. As described above, the cold rolling may be performed only once, or multiple times of cold rolling may be performed while performing intermediate annealing. In cold rolling, the final cold rolling rate is preferably 80% or more. This is to develop a good primary recrystallization texture.
  • decarburization annealing is performed. As a result, C contained in the steel strip is removed. Decarburization annealing is performed in a humid atmosphere, for example. Further, for example, it is preferable to carry out for a time such that the crystal grain size obtained by primary recrystallization is 15 ⁇ m or more in the temperature range of 770 ° C. to 950 ° C. This is to obtain good magnetic properties. Subsequently, application of an annealing separator and finish annealing are performed. As a result, crystal grains oriented in the ⁇ 110 ⁇ ⁇ 001> orientation are preferentially grown by secondary recrystallization.
  • nitriding is performed between the start of decarburization annealing and the occurrence of secondary recrystallization in finish annealing. This is to form an inhibitor of (Al, Si) N.
  • This nitriding treatment may be performed during decarburization annealing or may be performed during finish annealing.
  • annealing may be performed in an atmosphere containing a gas having nitriding ability such as ammonia.
  • the nitriding treatment may be performed either in the heating zone of the continuous annealing furnace or in the soaking zone, and the nitriding treatment may be performed in a stage after the soaking zone.
  • powder having nitriding ability such as MnN may be added to the annealing separator.
  • the finish annealing method has a temperature range of 800 ° C. to 1100 ° C., and the atmosphere satisfies the equations (9) and (10). 0.75 ⁇ P N2 ⁇ 0.2 (9) -0.7 ⁇ Log [P H2O / P H2 ] (10)
  • the condition of the formula (9) is achieved by controlling the nitrogen partial pressure in this atmosphere. Further, the oxygen potential can be controlled by including water vapor in the atmosphere, and the condition of the expression (10) can be satisfied.
  • the inhibitor is strengthened by BN, it is preferable to set the heating rate within the temperature range of 1000 ° C. to 1100 ° C. to 15 ° C./h or less in the heating process of finish annealing. Further, instead of controlling the heating rate, it is also effective to perform a constant temperature annealing that is held in a temperature range of 1000 ° C. to 1100 ° C. for 10 hours or more.
  • a grain-oriented electrical steel sheet having excellent magnetic properties can be manufactured stably.
  • Example 1 A slab having a composition as shown in Table 1, with the balance being Fe and inevitable impurities was produced. Next, the slab was heated at 1100 ° C., and then finish rolled at 900 ° C. The heating temperature of 1100 ° C. was a value lower than all of the values of temperatures T1, T2, and T3 calculated from the composition in Table 1. Thus, a hot rolled steel strip having a thickness of 2.3 mm was obtained. Subsequently, the hot rolled steel strip was annealed at 1100 ° C. Next, cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm. Thereafter, decarburization annealing was performed in a humid atmosphere gas at 830 ° C.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, the nitrogen partial pressure P N2 in the atmosphere up to 800 ° C.
  • oxygen potential Log [P H2O / P H2 ] is ⁇ 0.5, 800 ° C.- Nitrogen partial pressure P N2 of atmosphere up to 1100 ° C is 0.5, oxygen potential Log [P H2O / P H2 ] is -1, nitrogen partial pressure P N2 of atmosphere above 1100 ° C is 0.1 or less, oxygen potential Log [P H2O / P H2 ] was set to -2 or less, and finish annealing was performed by heating to 1200 ° C at a rate of 15 ° C / h.
  • the steel sheet thus obtained had the composition shown in Table 2.
  • the condition of the film and the magnetic properties were measured.
  • the ratio of forsterite in the glass film and the peak positions of Mg and B by GDS were investigated.
  • the coating liquid which consists of 100 g of aluminum phosphate solutions with a solid content concentration of 50%, 102 g of colloidal silica with a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared. .
  • the thickness of the secondary film was 1.5 ⁇ m.
  • the magnetic properties were measured according to JIS C2556. Furthermore, film adhesion was also tested by the following procedure. First, a coating solution comprising 100 g of a solid aluminum phosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared. And after baking on the steel plate which has a glass film after finish annealing, after applying and drying a coating liquid so that it may become 10 g / m ⁇ 2 > on one side, it baked at 900 degreeC.
  • the steel sheet has a composition within the range of the present invention
  • the forsterite content of the glass film is 70% or more
  • the peak positions of Mg and B in the GDS profile are slab and tB / tMg.
  • the adhesion and magnetic flux density are good when it is 1.6 or more.
  • tB / tMg is 2.0 or more
  • the adhesion is particularly good.
  • 5 is the upper limit for tB / tMg.
  • the amount of forsterite when the amount of Si and Al was not within the range of the present invention, an amount of 70% or more could not be secured.
  • Example 2 A slab having the composition shown in Table 4 was formed, with the balance being Fe and inevitable impurities. Furthermore, slab heating and finish rolling were performed under the temperature conditions shown in Table 5 to obtain a hot-rolled steel strip having a thickness of 2.3 mm. Table 6 shows the analysis results of B, BN, MnS, and MnSe of the hot-rolled sheet subjected to such heat treatment. Subsequently, the hot rolled steel strip was annealed at 1100 ° C. Next, cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm. Thereafter, decarburization annealing was performed in a humid atmosphere gas at 830 ° C.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, and the atmosphere up to 800 ° C. is the same as in Example 1.
  • test no. d1 to test No. In the case of d3, since the slab heating temperature was higher than T1, the film adhesion was poor and the magnetic flux density was also low.
  • Test No. in the case of d4 the finish temperature Tf of the finish rolling was higher than 1000-10000 ⁇ [B], so the film adhesion was poor.
  • the slab heating temperature is higher than T1 and T3, B asBN is less than 0.0005, and [B] ⁇ B asBN is more than 0.001, resulting in poor film adhesion and magnetic flux.
  • the density was also low.
  • Test No. In the case of d8, since the value of S asMnS + Se asMnSe was less than 0.002, the magnetic flux density was low.
  • Test No. which is the following invention example in which the slab heating temperature is lower than the temperatures T1, T2 and T3. D1 to Test No. In the case of D10, good film adhesion and magnetic flux density were obtained.
  • Example 3 A slab having the composition shown in Table 8 with the balance being Fe and inevitable impurities was produced. Next, after the slab was heated under the conditions shown in Table 9, finish rolling was performed at 900 ° C. Thus, a hot rolled steel strip having a thickness of 2.3 mm was obtained. Subsequently, the hot rolled steel strip was annealed at 1100 ° C. Next, cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm. Thereafter, decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • an annealing separator mainly composed of MgO is applied, and the atmosphere up to 800 ° C. is the same as in Example 1.
  • the nitrogen partial pressure P N2 of the atmosphere up to 800 ° C. to 1100 ° C. is 0.5
  • the oxygen potential Log [P H2O / P H2 ] is -1
  • the nitrogen partial pressure P N2 in an atmosphere of 1100 ° C or higher is 0.1 or less
  • the oxygen potential Log [P H2O / P H2 ] is -2 at a rate of 15 ° C / h.
  • Example 4 The following experiment was conducted for the purpose of examining the influence of the atmosphere and switching temperature at 800 ° C. to 1100 ° C. First, Si: 3.4% by mass, B: 0.0025% by mass, C: 0.06% by mass, N: 0.008% by mass, S: 0.007% by mass, Al: 0.03% by mass A slab having a composition with the balance consisting of Fe and inevitable impurities was prepared. Next, the slab was heated at 1100 ° C., and then finish rolled at 900 ° C. At 1100 ° C., the value was lower than all of the values of T1, T2, and T3 calculated from the above composition. Thus, a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator containing MgO as a main component is applied, and the atmosphere up to the temperature of A1 in Table 11 is the same as in Example 1, and the atmosphere shown in Table 11 is set at the switching temperatures A1 and A2 in Table 11.
  • the nitrogen partial pressure P N2 is set to 0.05 and the oxygen potential Log [P H2O / P H2 ] is set to ⁇ 2 or less.
  • Finish annealing was performed in an atmosphere of 100% hydrogen.
  • the condition of the film and the magnetic properties were measured.
  • the amount of forsterite in the glass film and the peak positions of Mg and B were examined by GDS.
  • the amount of forsterite was 70% or more.
  • a coating solution comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared.
  • the thickness of the secondary film was 1.5 ⁇ m.
  • the magnetic properties were measured according to JIS C2556. Furthermore, film adhesion was also tested by the following procedure. First, a coating solution comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared. And after baking on the steel plate which has a glass film after finish annealing, after applying and drying a coating liquid so that it may become 10 g / m ⁇ 2 > on one side, it baked at 900 degreeC.
  • test No. with different atmosphere switching temperature In f4, since the switching temperature A1 was too low, the effect of improving the adhesion could not be obtained. Test No. At f5, since the switching temperature A1 was too high, decomposition due to oxidation of BN was accelerated, the ratio tB / tMg was an inappropriate value, and the magnetic flux density B8 was also poor. Test No. At f6, since the switching temperature A2 was too low, the decomposition of BN was accelerated, the ratio tB / tMg was an inappropriate value, and the magnetic flux density B8 was also poor. Test No. At f7, since the switching temperature A2 was too high, the decomposition of BN was slow, the ratio tB / tMg was too large, and the magnetic properties were poor.
  • Example 5 In order to investigate better conditions of the atmosphere at 800 ° C. to 1100 ° C., the following experiment was conducted. First, Si: 3.4% by mass, B: 0.0025% by mass, C: 0.06% by mass, N: 0.008% by mass, S: 0.007% by mass, Al: 0.03% by mass A slab having the following composition was prepared, with the balance being Fe and inevitable impurities. Next, the slab was heated at 1100 ° C., and then finish rolled at 900 ° C. At 1100 ° C., the value was lower than all of the values of T1, T2, and T3 calculated from the above composition. Thus, a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, and the atmosphere up to the temperature of A1 in Table 12 is the same as in Example 1, and the switching temperatures A1 and A2 in Table 12 are the atmospheres in Table 12;
  • the partial pressure P N2 is 0.05 and the oxygen potential Log [P H2O / P H2 ] is -2 or less. Finish annealing was performed in a% atmosphere.
  • the condition of the film and the magnetic properties were measured.
  • the amount of forsterite in the glass film layer and the peak positions of Mg and B by GDS were investigated.
  • the amount of forsterite was 70% or more.
  • a coating solution was prepared comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride.
  • the thickness of the secondary film was 1.5 ⁇ m.
  • the magnetic properties were measured according to JIS C2556. Furthermore, film adhesion was also tested by the following procedure. First, a coating solution comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared. And in order to obtain especially high tension
  • test No. with different atmosphere switching temperature For g6, the switching temperature A1 was too low, so that the effect of improving the adhesion could not be obtained.
  • Test No. In g7 since the switching temperature A1 was too high, decomposition due to oxidation of BN was accelerated, the ratio tB / tMg was an inappropriate value, and the magnetic flux density B8 was poor.
  • Test No. In g8 since the switching temperature A2 was too low, the decomposition of BN was accelerated, the ratio tB / tMg was an inappropriate value, and the magnetic flux density B8 was also poor.
  • Test No. In g9 since the switching temperature A2 was too high, the decomposition of BN was slow, the ratio tB / tMg was too large, and the magnetic characteristics were poor.
  • Example 6 The following experiment was conducted for the purpose of investigating atmospheric conditions of 1100 ° C. or higher. First, Si: 3.4% by mass, B: 0.0025% by mass, C: 0.06% by mass, N: 0.008% by mass, S: 0.007% by mass, Al: 0.03% by mass A slab having a composition with the balance consisting of Fe and inevitable impurities was prepared. Next, the slab was heated at 1100 ° C., and then finish rolled at 900 ° C. At 1100 ° C., the value was lower than all of the values of T1, T2, and T3 calculated from the above composition. Thus, a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.023 mass%.
  • an annealing separator mainly composed of MgO is applied, the nitrogen partial pressure P N2 in the atmosphere up to 800 ° C.
  • the atmosphere shown in Table 13 is heated to 1200 ° C at a rate of 15 ° C / h. After reaching 1200 ° C., finish annealing was performed in an atmosphere of 100% hydrogen.
  • the condition of the film and the magnetic properties were measured.
  • the amount of forsterite in the glass film layer and the peak positions of Mg and B were examined by GDS.
  • the amount of forsterite was 70% or more.
  • a coating solution was prepared comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride.
  • the thickness of the secondary film was 1.5 ⁇ m.
  • the magnetic properties were measured according to JIS C2556. Furthermore, film adhesion was also tested by the following procedure. First, a coating solution comprising 100 g of an aluminum biphosphate solution having a solid content concentration of 50%, 102 g of colloidal silica having a solid content concentration of 20%, and 5.4 g of chromic anhydride was prepared. And in order to give especially high tension
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 Siを0.8質量%~7質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、Alの含有率が0.025質量%以下、C、N、S及びSeの含有量がそれぞれ0.005質量%以下であり、残部がFe及び不可避的不純物からなり、鋼板表面にフォルステライトを主体とする複合酸化物からなるグラス皮膜を有する方向性電磁鋼板において、前記グラス皮膜の表面に所定の条件で形成された二次皮膜の表面に対するグロー放電発光分析(GDS)を行った場合に、発光強度のピーク位置がMgの発光強度のピーク位置とは異なるBの発光強度のピークを有し、前記鋼板表面からのBの発光強度のピーク位置がMgの発光強度のピーク位置より深いことを特徴とする方向性電磁鋼板。

Description

方向性電磁鋼板及びその製造方法
 本発明は方向性電磁鋼板の皮膜特性と磁気特性を向上させるための製造方法に関するものである。本願は、2011年1月12日に、日本国に出願された特願2011-4359号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は主に電力用トランスコア材料に用いられるため、低鉄損であることが必要である。方向性電磁鋼板の製造方法は、最終板厚とした冷延鋼板に脱炭焼鈍を施した後、二次再結晶と純化を目的とした仕上げ焼鈍を経た後、鋼板表面に皮膜を形成する工程を経る。このようにして得られた方向性電磁鋼板は先鋭な(110)〔001〕集合組織(ゴス方位)を有したSi含有鋼板と、その表面に形成された数ミクロンの無機質皮膜とからなる。鋼板がゴス方位を持つことが方向性電磁鋼板の低鉄損特性を実現するために不可欠な条件であり、この組織を実現するために仕上げ焼鈍中にゴス方位粒子が選択的に成長する二次再結晶と呼ばれる粒成長が利用されている。
 二次再結晶を安定的に引き起こすため、方向性電磁鋼板ではインヒビターと称する鋼中の微細析出物が利用されている。インヒビターは仕上げ焼鈍中低温部では粒成長を抑制し、一定の温度以上では分解あるいは粗大化によってピン止め効果を失って二次再結晶を引き起こすもので、硫化物や窒化物が一般的に利用される。望ましい組織を得るためにはインヒビターを一定の温度まで保持することが必要であり、硫化物であれば仕上げ焼鈍の硫黄成分分圧を制御し、窒化物であれば窒素分圧を制御することなどによって目的を達する。インヒビターとして使用される硫化物や窒化物は、仕上げ焼鈍中の昇温途中で起こる二次再結晶のために必要ではあるが、これらが製品中に残留すると製品の鉄損を著しく悪化させる。硫化物や窒化物の影響を鋼板中から除くために、二次再結晶完了後、純水素中1200℃前後で長時間保定を行う。これを純化焼鈍と称する。したがって、純化焼鈍では、仕上げ焼鈍中において高温に保定された状態となっている。
 一方、方向性電磁鋼板の皮膜はグラス皮膜と二次皮膜とから構成され、これらの皮膜が鋼板に与える張力により磁区制御効果が得られて低鉄損特性が向上する。特許文献1に記載されているように、この張力が高いと鉄損改善効果が高いことから、高い張力を発生する能力が、特に二次皮膜に求められる。
 一般に仕上げ焼鈍時に鋼板中のSiOと焼鈍分離剤主成分のMgOとが反応し、鋼板上にグラス皮膜が形成される。グラス皮膜には2つの機能がある。1つ目の機能として、グラス皮膜は鋼板に強固に密着しそれ自身が鋼板への張力付与効果をもつとともに、仕上げ焼鈍後工程で形成される二次皮膜を形成する際にその鋼板への密着性を確保する中間層としてはたらく。グラス皮膜の密着性が良いと、高い張力を生ずる二次皮膜を形成できるため、より高い磁区制御効果により低鉄損が達成できるようになる。また、2つ目の機能として、グラス皮膜は仕上げ焼鈍中にインヒビターによる過度の強度低下を防止し、二次再結晶を安定化する機能を有する。したがって、良好な磁気特性を有する方向性電磁鋼板を安定的に製造するためには鋼板に対して密着性のよいグラス皮膜を形成することが必要となる。
 方向性電磁鋼板においてグラス皮膜と鋼板との密着性を向上させるためには、グラス皮膜と鋼板との間の界面構造を最適化することが必要とされている。ところが、従来の方向性電磁鋼板は、従来よりも高い張力を与えたい場合などには、必ずしも十分な密着性が確保されるものではなかった。
特開平7-207424号公報 特開2003-27196号公報 特開2004-76143号公報 特開2000-204450号公報 特開平6-17261号公報 国際公開第2011/7771号 特公昭60-55570号公報 特開2008-1977号公報
 本発明の目的は、高い張力を発生する皮膜を形成することが可能な、皮膜密着性に優れるグラス皮膜を有するとともに、良好な磁気特性を有する方向性電磁鋼板及びその製造方法を提供することである。
 本発明の要旨は次のとおりである。
(1)Siを0.8質量%~7質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、Alの含有率が0.025質量%以下、C、N、SおよびSeの含有量がそれぞれ0.005質量%以下であり、残部がFe及び不可避的不純物からなり、鋼板の表面にフォルステライトを主体とする複合酸化物からなるグラス皮膜を有する方向性電磁鋼板において、
 前記グラス皮膜の表面に、コロイド状シリカ26~38重量%と、無水クロム酸及びクロム酸塩からなる群から選択された1種または2種を4~12質量%とを含み、残部が重リン酸アルミニウムからなるコーティング液が塗布された乾燥した後に800℃~900℃で焼きつけて形成される厚さが1μm以上2μm以下の二次皮膜が形成された条件で前記二次皮膜の表面に対するグロー放電発光分析(GDS)を行った場合に、発光強度のピーク位置がMgの発光強度のピーク位置とは異なるBの発光強度のピークを有し、前記鋼板表面からのBの発光強度のピーク位置がMgの発光強度のピーク位置より深く、
 さらに、グロー放電発光分析(GDS)で観察される前記Bの発光強度のピークのうち、前記鋼板表面から最も遠いもののピーク発生時間tBが、下記式(1)であらわされることを特徴とする方向性電磁鋼板。
 tMg×1.6≦tB≦tMg×5・・・(1)
 ここで、tMgはMgのピーク発生時間を示す。
(2)Siを0.8質量%~7質量%、酸可溶性Alを0.01質量%~0.065質量%、Nを0.004質量%~0.012質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003質量%~0.015質量%含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる電磁鋼板素材を所定の温度で加熱する工程と、
 加熱された前記珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、
 前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、
 前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、
 前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、
MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、
 前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、
 を有し、
 更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、
 前記所定の温度は、
 前記珪素鋼素材にS及びSeが含有されている場合、下記式(2)で表される温度T1(℃)以下、下記式(3)で表される温度T2(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、前記珪素鋼素材にSeが含有されていない場合、下記式(2)で表される温度T1(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、前記珪素鋼素材にSが含有されていない場合、下記式(3)で表される温度T2(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、前記熱間圧延の仕上げ圧延の終了温度Tfは下記式(5)を満たし、前記熱間圧延鋼帯中のBN、MnS及びMnSeの量は下記式(6)、(7)及び(8)を満たし、かつ仕上げ焼鈍時の温度が800℃~1100℃の温度範囲で、雰囲気が下記式(9)及び(10)を満たすことを特徴とする方向性電磁鋼板の製造方法。
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(2)
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(3)
 T3=16000/(5.92-log([B]×[N]))-273 ・・・(4)
 Tf≦1000-10000×[B]・・・・(5)
 BasBN≧0.0005 ・・・(6)
 [B]―BasBN≦0.001 ・・・(7)
 SasMnS+0.5×SeasMnSe≧0.002 ・・・(8)
 0.75≧PN2≧0.2 ・・・・・・(9)
 -0.7≧Log[PH2O/PH2] ・・・・・・・・(10)
 ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示し、[B]は前記珪素鋼素材のB含有量(質量%)を示し、[N]は前記珪素鋼素材のN含有量(質量%)を示し、BasBNは前記熱間圧延鋼帯中にBNとして析出しているBの量(質量%)を示し、SasMnSは前記熱間圧延鋼帯中にMnSとして析出しているSの量(質量%)を示し、SeasMnSeは前記熱間圧延鋼帯中にMnSeとして析出しているSeの量(質量%)を示す。また、PN2は窒素分圧を示し、PH2O、PH2はそれぞれ水蒸気分圧、水素分圧を示す。
(3)仕上げ焼鈍時の温度が800℃~1100℃の温度範囲で、仕上げ焼鈍時の雰囲気が(11)式を満たすことを特徴とする前項(2)に記載の方向性電磁鋼板の製造方法。 4Log[PN2]=3Log[PH2O/PH2]+A+3455/T・・・・(11)
 ここで、-3.72≧3Log[PH2O/PH2]+A≧-5.32かつ-0.7≧Log[PH2O/PH2]であり、AはLog[PH2O/PH2]に従って、3Log[PH2O/PH2]+Aが所定の範囲に入るように定まる定数であり、Tは絶対温度を示す。
(4)仕上げ焼鈍時に1100℃以上の雰囲気が(12)式および(13)式を満たすことを特徴とする前項(2)に記載の方向性電磁鋼板の製造方法。
 0.1≧PN2・・・・・・・・(12)
 -2≧Log[PH2O/PH2]・・・・・・・・(13)
(5)前記電磁鋼板素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする前項(2)に記載の方向性電磁鋼板の製造方法である。
 本発明によれば、高い張力を発生する皮膜を形成することが可能な、皮膜密着性に優れるグラス皮膜を有するとともに、良好な磁気特性を有する方向性電磁鋼板を得ることができる。
図1は、方向性電磁鋼板表面のグロー放電発光分析(GDS)結果の模式図を示す図である。 図2は、熱間圧延鋼帯中の析出物量と仕上げ焼鈍後の磁気特性との関係を示す。 図3は、熱間圧延鋼帯中の析出物量と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図4は、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す図である。 図5は、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図6は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図7は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図8は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図9は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図10は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す図である。 図11は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図12は、熱間圧延の析出物と仕上げ焼鈍後の磁気特性との関係を示す図である。 図13は、熱間圧延の析出物と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図14は、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す図である。 図15は、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図16は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図17は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図18は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図19は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図20は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す図である。 図21は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図22は、熱間圧延鋼帯中の析出物量と仕上げ焼鈍後の磁気特性との関係を示す図である。 図23は、熱間圧延鋼帯中の析出物量と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図24は、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す図である。 図25は、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図26は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図27は、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す図である。 図28は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図29は、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図30は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す図である。 図31は、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を示す図である。 図32は、GDS分析結果の比tB/tMgと皮膜密着性との関係を示す図である。
 従来、Bは方向性電磁鋼板の焼鈍分離剤の添加物として利用されてきたが、発明者らは、Bを鋼板中に添加した場合に、磁気特性とともに皮膜密着性が向上する場合があることを見出した。そして、良好な特性を示す試料を詳しく調査した結果、グラス皮膜と鋼板との間の界面においてBの分布に特徴があることが明らかになった。すなわち、グラス皮膜と鋼板との間の界面構造を最適化することにより磁気特性と皮膜密着性とを向上させることができることを見出した。この界面構造は、以下の特徴を備えるものである。すなわち、鋼板全体としてSiを0.8質量%~7質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、Alの含有率が0.025質量%以下、C、N、SおよびSeの含有量がそれぞれ0.005質量%以下であり、残部がFeおよび不可避的不純物からなる方向性電磁鋼板において、鋼板表面にフォルステライトを主体とする複合酸化物からなる層を有する。
 ここでのフォルステライトを主体とするとの意味は、皮膜の構成成分として、フォルステライトが皮膜の構成化合物として70重量%以上を占めることを指す。そして、鋼板表面に対するグロー放電発光分析(GDS)を行った場合、Mgのピーク位置とは異なる位置にBの発光強度のピークを有し、その鋼板表面からの位置がMgより深いことを特徴とする。具体的には、図1に示すように、GDSで観察されるBのピークのうち、鋼板表面から最も遠いものの表面からの距離が、Mgのピークの位置から一定以上の距離であることを特徴とする。
 このMgのピークを、以下の第1の実験にある種々の条件にて作成した試料について調査し、密着性との関係を調べたところ、図32に示す結果を得た。ここではMgのピーク位置をtMgとし、Bのピークのうち、鋼板の表面から最も深い部分にあるピークの位置をtBとした。さらに図32には、磁気特性についても値tMg、tBの比tB/tMgで整理した結果を示している。なお、図32では剥離面積が少ないほど密着性が向上していることを示している。
 図32に示すように、tB≧tMg×1.6であると皮膜の剥離面積が5%以下と軽微であり、密着性が向上していることがわかる。一方、磁気特性も値tBが大きいと向上するが、値tBが大きすぎると却って劣化する場合もあることから、比tB/tMgは5以下とする。
 なお、GDSにより値tB、tMgを計測する場合には、グラス皮膜上の二次皮膜の厚さを一定条件にして計測を行う。例えば、コロイド状シリカ26~38重量%と、無水クロム酸及びクロム酸塩からなる群から選択された1種または2種を4~12質量%とを含み、残部が重リン酸アルミニウムからなるコーティング液が塗布されて乾燥した後に800℃~900℃で焼きつけて形成される厚さが1μm以上2μm以下の二次皮膜が形成されている場合は、そのままGDSにより計測することができる。しかし、二次皮膜の組成や厚さが不明な場合は、水酸化ナトリウム水溶液などで二次皮膜を除去してグラス皮膜の表面を露出させた後、前述のようにコロイド状シリカ26~38重量%と、無水クロム酸及びクロム酸塩からなる群から選択された1種または2種を4~12質量%とを含み、残部が重リン酸アルミニウムからなるコーティング液を塗布して乾燥させた後に800℃~900℃で焼きつけて形成される厚さが1μm以上2μm以下の二次皮膜を形成させた状態でGDSにより値tB、tMgを計測する。このような組成範囲及び厚さの範囲の二次皮膜を形成することで、値tB、tMgを十分な精度で測定することができる。
 この結果から、Mgのピーク位置は、グラス皮膜表面からGDS分析をした場合にBの濃化の最深部のピーク位置を放電時間で表し、それぞれをtB(秒)とし、Mgのピーク位置をtMg(秒)とした場合、(1)式で表わされることを特徴とする電磁鋼板。
 tMg×1.6≦tB≦tMg×5・・・(1)
 Mgは、グラス皮膜から由来するものがほとんどである。したがって、二次皮膜が厚い場合には、Mgのピーク位置が変わるとともに、Bのピーク位置が変わる。この影響を避けるために本発明ではGDS測定時の二次皮膜の厚さを規定している。また、製品板の二次皮膜にMgが多く含まれると、グラス皮膜から由来するMgのピークが不明瞭となる。このことから(1)式を評価するためには該二次皮膜を除去したのちに測定した値を用いる必要がある。なお、二次皮膜の厚さ、組成、及び形成条件の規定はGDS測定を行う場合の前処理条件であり、製品板の二次皮膜などの状態を規定するものではない。
 (1)式に定めた構造を実現するためには、前述の(3)に記載したように、Siを初めとする成分を規定し、この電磁鋼板素材を所定の温度にて処理すること、あるいは前述の(4)および(5)に記載した方法によればよい。
<第1の実験>
 以上のような知見を得るに至った試験の内容を以下に述べる。まず、析出物と磁気特性及び皮膜密着性との関係について、Sを含む組成を有する珪素鋼素材について調査する試験を行った。
 まず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.05質量%~0.19質量%、S:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。仕上げ焼鈍の雰囲気は、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1.0、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図2に示す。縦軸はBNの析出量をBに換算した値(質量%)を示す。横軸はMnSとして析出したSの量(質量%)に相当する。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図2に示すように、MnSまたはBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 一方、析出物の状況と仕上げ焼鈍後の皮膜密着性との関係を調査した。密着性向上効果を明確にするため、通常の目付量よりも多い二次皮膜量として評価した。二次皮膜の目付量を多くすると、鋼板に高い張力がかかり、グラス皮膜の密着性が十分でない場合には皮膜剥離が起こりやすくなる。この試験のために、まず二次皮膜として、固形分濃度50%のリン酸アルミニウムを100g、固形分濃度20%コロイダルシリカを102g、無水クロム酸5.4gからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に片面10g/mとなるようにこの塗布液を塗布し、乾燥した後、900℃で焼き付けた。この鋼板を20φの丸棒に巻きつけたのち、曲げた部分の内側で鋼板が露出するような皮膜の剥離面積が5%以下である場合、密着性が良好であるとの判断をした。この結果を図3に示す。図3において白丸は密着性が良好であったものを示し、黒四角は皮膜剥離があり、密着性が従来と同等程度であったものを示している。図3に示すように、MnS及びBNの析出量が一定値以上の試料では、皮膜密着性の向上が認められる。
 更に、MnS及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図4に示す。図4の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図4に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 同じように、MnS及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を調査した。この結果を図5に示す。密着性の評価については、図3の説明で述べた方法と同じ方法により行った。図5に示すように、BNの析出量が一定値以上の試料では、皮膜密着性の向上が認められる。
 また、磁気特性及び皮膜密着性が良好な試料について析出物の形態を調査した結果、MnSを核としてBNがMnSの周辺に複合析出していることが判明した。このような複合析出物は二次再結晶を安定化させるインヒビターとして有効である。さらに、仕上げ焼鈍の雰囲気を適正化することにより、仕上げ焼鈍中に適正な温度域でBNを分解してBをグラス皮膜の形成時に鋼板とグラス皮膜との界面に供給し、最終的に皮膜密着性の向上に寄与する。
 また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図6及び図7に示す。
 図6の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図7の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図6中の曲線は、下記式(2)で表わされるMnSの溶体化温度T1(℃)を示し、図7中の曲線は、下記式(4)で表わされるBNの溶体化温度T3(℃)を示している。図6に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSの溶体化温度T1とほぼ一致していることも判明した。また、図7に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(2)
 T3=16000/(5.92-log([B]×[N]))-273 ・・・(4)
 ここで、[Mn]はMn含有量(質量%)を示し、[S]はS含有量(質量%)を示し、[B]はB含有量(質量%)を示し、[N]はN含有量(質量%)を示す。
 更にBNの析出挙動を調査した結果、その析出温度域が800℃~1000℃であることが判明した。
 同じように、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を調査した。密着性の評価については、図3の説明で述べた方法と同じ方法により行った。この結果を図8及び図9に示す。図8の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は皮膜密着性に問題が無かったことを示し、黒四角は皮膜剥離があったことを示している。また、図8中の曲線は、式(2)で表わされるMnSの溶体化温度T1(℃)を示し、図9中の曲線は、式(4)で表わされるBNの溶体化温度T3(℃)を示している。図8に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、皮膜密着性改善効果が得られることが判明した。更に、この温度はMnSの溶体化温度T1とほぼ一致していることも判明した。また、図9に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、皮膜密着性改善効果が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。
 また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.1質量%、S:0.007質量%、及びB:0.001質量%~0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃~900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。仕上げ焼鈍の雰囲気は、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1.0、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、種々の試料を作製した。
 そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図10に示す。図10の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図10に示すように、仕上げ圧延の終了温度Tfが、下記式(5)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
 Tf≦1000-10000×[B] ・・・(5)
 また、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を調査した。密着性の評価については、図3の説明で述べた方法と同じ方法により行った。この結果を図11に示す。図11の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は皮膜密着性が良好であったことを示し、黒四角は皮膜剥離があったことを示している。図11に示すように、仕上げ圧延の終了温度Tfが、式(5)を満たし、かつ仕上げ焼鈍の雰囲気を適正化することにより皮膜密着性の改善効果が得られることが判明した。
<第2の実験>
 次に、析出物と、磁気特性及び皮膜密着性との関係について、Seを含む組成を有する珪素鋼素材について調査する試験を行った。
 まず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.05質量%~0.20質量%、Se:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1.0、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として仕上げ焼鈍を行い、種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図12に示す。図12の横軸はMnSeの析出量をSeの量に換算した値(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図12に示すように、MnSeまたはBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 同様に、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の皮膜密着性との関係を調査した。皮膜密着性の評価については、図3の説明で述べた方法と同様におこなった。この結果を図13に示す。図13の横軸はMnSeの析出量をSeの量に換算した値(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は皮膜密着性が良好であることを示し、黒四角は皮膜剥離が生じたことを示している。図13に示すように、MnSe及びBNの析出量が一定以上の試料で仕上げ焼鈍の雰囲気が適正な条件である場合には、皮膜密着性の改善効果があることがわかる。
 更に、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図14に示す。図14の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図14に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 同様に、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を調査した。皮膜密着性の評価については、図3の説明で述べた方法と同様である。この結果を図15に示す。図15の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は皮膜密着性に改善効果が見られたことを示し、黒四角は皮膜剥離があり、皮膜密着性に改善効果が無かったことを示している。図15に示すように、BNとして析出していないBの量が一定値以下である試料で仕上げ焼鈍の雰囲気が適正な条件である場合には、皮膜密着性の改善効果が見られた。
 更に、磁気特性、皮膜密着性が良好な試料について析出物の形態を調査した結果、MnSeを核としてBNがMnSeの周辺に複合析出していることが判明した。このような複合析出物は二次再結晶を安定化させるインヒビターとして有効である。さらに、仕上げ焼鈍の雰囲気が適正である場合には、仕上げ焼鈍中に適正な温度域でBNを分解してBをグラス皮膜の形成時に鋼板とグラス皮膜との界面に供給し、最終的に皮膜密着性の向上に寄与する。
 また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図16及び図17に示す。
 図16の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図17の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図16中の曲線は、下記式(3)で表わされるMnSeの溶体化温度T2(℃)を示し、図17中の曲線は、式(4)で表わされるBNの溶体化温度T3(℃)を示している。図16に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図17に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnSe及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(3)
ここで、[Se]はSe含有量(質量%)を示す。
 同様に、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を調査した。この結果を図18及び図19に示す。皮膜密着性の評価については、図3の説明で述べた方法と同様である。
 図18の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図19の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離があって、密着性は向上していないことを示している。また、図18中の曲線は、式(3)で表わされるMnSeの溶体化温度T2(℃)を示し、図19中の曲線は、式(4)で表わされるBNの溶体化温度T3(℃)を示している。図18に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、皮膜密着性が向上することが判明した。更に、この温度はMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図19に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、皮膜密着性向上効果があることが判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまりスラブ加熱を、MnSe及びBNが完全固溶しない温度域で行い、適正な雰囲気で仕上げ焼鈍を行うことが有効であることが判明した。
 更にBNの析出挙動を調査した結果、その析出温度域が800℃~1000℃であることが判明した。
 また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.1質量%、Se:0.007質量%、及びB:0.001質量%~0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃~900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2として、仕上げ焼鈍を行い、種々の試料を作製した。
 そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図20に示す。図20の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図20に示すように、仕上げ圧延の終了温度Tfが前述の式(13)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
 同様に、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を調査した。この結果を図21に示す。図21の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離があって密着性向上効果がなかったことを示している。図21に示すように、仕上げ圧延の終了温度Tfが式(13)を満たし、適正な雰囲気で仕上げ焼鈍を行った場合に、皮膜密着性向上効果があること判明した。
<第3の実験>
 さらに析出物と、磁気特性及び皮膜密着性との関係についてS及びSeを含む組成を有する珪素鋼素材について調査する試験を行った。
 まず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.009質量%、Mn:0.05質量%~0.20質量%、S:0.005質量%、Se:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、仕上げ焼鈍を行い、種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図22に示す。図22の横軸はMnSの析出量をSの量に換算した値とMnSeの析出量をSeの量に換算した値に0.5を乗じて得られる値との和(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図22に示すように、MnS及びMnSe、またはBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 同様に、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の皮膜密着性との関係を調査した。皮膜密着性の評価については、図3の説明で述べた方法と同様である。この結果を図23に示す。図23の横軸はMnSの析出量をSの量に換算した値とMnSeの析出量をSeの量に換算した値に0.5を乗じて得られる値との和(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離があって皮膜密着性向上効果が無いことを示している。図23に示すように、MnS、MnSe及びBNの析出量が一定値以上であり、また、仕上げ焼鈍の雰囲気が適正な条件である場合に皮膜密着性が改善されていた。
 更に、MnS、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図24に示す。図24の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図24に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 同様に、MnS、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の皮膜密着性との関係を調査した。皮膜密着性の評価方法は、図3で用いたものと同様である。この結果を図25に示す。図25の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離があり、皮膜密着性が向上していなかったことを示している。図25に示すように、BNとして析出していないBの量が一定値以下である試料であり、また仕上げ焼鈍の雰囲気が適正である場合には、皮膜密着性が改善されていた。
 更に、磁気特性および皮膜密着性が良好な試料について析出物の形態を調査した結果、MnS又はMnSeを核としてBNがMnS又はMnSeの周辺に複合析出していることが判明した。このような複合析出物は二次再結晶を安定化させるインヒビターとして有効である。さらに、仕上げ焼鈍の雰囲気を適正な条件にした場合には、仕上げ焼鈍中に最適な温度域でBNを分解してグラス皮膜形成時にBを鋼板とグラス皮膜との界面に供給し、最終的に皮膜密着性の向上に寄与する。
 次に、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図26及び図27に示す。
 図26の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図27の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図26中の2つの曲線は、式(2)で表わされるMnSの溶体化温度T1(℃)、及び式(3)で表わされるMnSeの溶体化温度T2(℃)を示し、図27中の曲線は、式(4)で表わされるBNの溶体化温度T3(℃)を示している。図26に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度は、MnSの溶体化温度T1及びMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図27に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS、MnSe及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
 同様に、熱間圧延の条件と仕上げ焼鈍後の皮膜密着性との関係を調査した。この結果を図28及び図29に示す。図28の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図29の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離が生じて皮膜密着性が向上していないことを示している。また、図28中の2つの曲線は、式(2)で表わされるMnSの溶体化温度T1(℃)、及び式(3)で表わされるMnSeの溶体化温度T2(℃)を示し、図29中の曲線は、式(4)で表わされるBNの溶体化温度T3(℃)を示している。図28に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行い、仕上げ焼鈍の雰囲気が適正な条件である試料において、皮膜密着性が向上することが判明した。更に、この温度は、MnSの溶体化温度T1及びMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図29に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行い、仕上げ焼鈍の雰囲気が適正な条件である試料において、皮膜密着性が向上することも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS、MnSe及びBNが完全固溶しない温度域で行い、仕上げ焼鈍の雰囲気が適正であることが有効であることが判明した。
 更にBNの析出挙動を調査した結果、その析出温度域が800℃~1000℃であることが判明した。
 また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.009質量%、Mn:0.1質量%、S:0.005質量%、Se:0.007質量%、及びB:0.001質量%~0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃~900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として仕上げ焼鈍を行い、種々の試料を作製した。
 そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図30に示す。図30の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図30に示すように、仕上げ圧延の終了温度Tfが式(5)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
 同様に、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の皮膜密着性との関係を調査した。この結果を図31に示す。図31の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は皮膜密着性が向上していることを示し、黒四角は皮膜剥離が生じ、皮膜密着性が向上していないことを示している。図31に示すように、仕上げ圧延の終了温度Tfが式(5)を満たし、仕上げ焼鈍の雰囲気が適正な条件である場合に、皮膜密着性が向上することが判明した。
 以上のように第1~第3の実験の結果から、BNの析出形態と仕上げ焼鈍の雰囲気とを制御することによって、安定して方向性電磁鋼板の磁気特性と皮膜密着性とが向上することがわかる。なお、仕上げ焼鈍の雰囲気を式(9)及び(10)による値としなかった場合は、磁気特性が良好であっても皮膜密着性の改善効果が得られなかった。BがBNとしてMnS又はMnSeと複合析出しない場合に二次再結晶が不安定になって良好な磁気特性が得られず、また、仕上げ焼鈍の雰囲気を制御しないと皮膜密着性の改善効果が現れない理由の詳細は今のところ明らかになっていないが、次のように考えられる。
 まず、磁気特性については次のとおりである。一般的に、固溶状態のBは粒界に偏析しやすく、熱間圧延後に単独析出したBNは微細であることが多い。これらの固溶状態のB及び微細なBNは、脱炭焼鈍が行われる低温度域では強力なインヒビターとして一次再結晶時に粒成長を抑制し、仕上げ焼鈍が行われる高温度域では局所的にインヒビターとして機能しなくなり、鋼の結晶粒組織が混粒組織となる。したがって、一次再結晶温度が低温度域では一次再結晶粒が小さいので、方向性電磁鋼板の磁束密度が低くなってしまう。また、高温度域では結晶粒組織が混粒組織となるため、二次再結晶が不安定になる。
 次に、皮膜密着性については次のとおりである。まず、純化焼鈍後のBの状態については、グラス皮膜と鋼板との間の界面に存在するBは酸化物として存在していると考えられる。純化が起こる前はBNとして存在しているが、純化によってBNが分解し、鋼板中のBが鋼板の表面近くまで拡散し、酸化物を形成していると考えられる。酸化物の詳細は明らかではないが、グラス皮膜及びグラス皮膜の根に存在するMg、Si、Alとともに複合酸化物を形成していると本発明者らは推定している。
 BNは仕上げ焼鈍の後半に分解して鋼板の表面にBが濃化するが、Bの濃化がグラス皮膜の形成初期に起こると、仕上げ焼鈍終了後の界面構造は、Bがグラス皮膜の根よりも浅い部分に濃化する。このため、本発明の特徴を備えるようなものにならない。一方、グラス皮膜の形成が一定程度進んだ状態でBNの分解が開始した場合は、Bはグラス皮膜の根近傍に濃化し、グラス皮膜と鋼板との界面は、本発明の特徴を備えた構造となる。ここで、グラス皮膜の形成が一定程度進んだ状態では、グラス皮膜の根の形成が開始した状況であり、その温度域はおおむね1000℃以上である。したがって、本発明のグラス皮膜と鋼板と間の界面構造を実現するためには、Bがこの温度以上で濃化する条件としてもよいが、このためには鋼板中にあるBN析出物が高温まで安定的に存在する必要がある。
 BNが微細であるとともにMnSまたはMnSeと複合析出していないと、仕上げ焼鈍における分解温度が低下し、固溶したBはグラス皮膜の根が形成されないうちにグラス皮膜と鋼板との間の界面に濃化し、グラス皮膜と鋼板との間の界面のアンカー効果向上に寄与しない。このため皮膜密着性の向上効果が無くなると考えられる。
 したがって、Bを効果的に作用させるためには仕上げ焼鈍の雰囲気を高温部において制御する必要がある。これを実現するために、発明者らは800℃~1100℃まではBNの分解を抑制し、1100℃以上では、BNの分解を促進させると共に、純化を進行させる雰囲気とすることが効果的であることを見出した。
 なお、Bは焼鈍分離剤の添加物としても用いられているため、仕上げ焼鈍を経た方向性電磁鋼板ではグラス皮膜と鋼板との間の界面付近にBの偏析が観察される場合がある。しかし、焼鈍分離剤から由来するBでは、本発明にあるグラス皮膜と鋼板との間の界面構造を得ることは困難である。焼鈍分離剤から由来するBによって本発明のグラス皮膜と鋼板との間の界面構造のような濃化状況を実現するためには、鋼板の表面から鋼板中に十分な量のBが拡散する必要がある。Bの酸化物はグラス皮膜を構成する元素の中でも比較的酸素の平衡解離圧が高いため、グラス皮膜の表層よりも酸素ポテンシャルが低いと推定されるグラス皮膜の根まで拡散して酸化物を形成する状況は起こりにくいと考えられる。したがって、焼鈍分離剤から由来するBを利用して本発明にあるグラス皮膜と鋼板との間の界面構造を実現するのは困難である。
 次に本発明の各条件について限定理由を以下に説明する。
 まずグラス皮膜と鋼板との間の界面構造については、Bの最深部での濃化位置がMgの濃化位置よりも深いとグラス皮膜の密着性が向上する。その値は、グラス皮膜の表面からGDS分析をした場合にBの濃化の最深部のピーク位置を放電時間で表してtB(秒)とし、Mgのピーク位置をtMg(秒)とした場合、以下の条件とすると良い結果が得られる。
 tMg×1.6≦tB≦tMg×5・・・(1)
 一方、値tBが大きすぎる場合は、磁気特性が悪化する傾向がある。このため、値tBはtMg×5.0以下とすると良い。
 次に、仕上げ焼鈍の雰囲気の限定理由について述べる。800℃~1100℃の間は窒素分圧PN2を0.75~0.2に保つとともに、酸素ポテンシャルLog[PH2O/PH2]を-0.7以下とする。これは、800~1100℃の温度域でBNの分解を抑制するためである。この温度域でBNの分解を抑制しないと、良好な密着性が得られなくなる。この理由は、雰囲気が不適当である場合にBNの分解が十分に抑制されないと、Bが仕上げ焼鈍の早い時期から鋼板の表面に拡散し、鋼板の表面から浅い位置に濃化するためである。
 仕上げ焼鈍の雰囲気の条件の詳細は以下のとおりである。すなわち、窒素分圧PN2はBNの分解を適度に抑制するために0.2以上の値をとする。一方、0.75を越えて高すぎる場合には、BNの分解が過度に抑制されて良好な二次再結晶が起こらない。また、酸素ポテンシャルLog[PH2O/PH2]が-0.7を超えるとBの酸化が起こり、結果的にBNの分解を促進することになる。したがって、800~1100℃の温度域でBNの分解を抑制するためには、仕上げ焼鈍の雰囲気が、上に述べた窒素分圧PN2及び酸素ポテンシャルLog[PH2O/PH2]の条件を満たす。
 また、仕上げ焼鈍の雰囲気の制御については、酸素分圧及び窒素分圧を(11)式に従って制御するとより良い結果が得られる。
 4Log[PN2]=3Log[PH2O/PH2]+A+3455/T・・・・(11)
 ここで、-3.72≧3Log[PH2O/PH2]+A≧-5.32かつ-0.7≧Log[PH2O/PH2]であり、Tは絶対温度を示す。
 また、上記の雰囲気条件とする温度域は、800℃~1100℃としている。800℃よりも低い温度では、グラス皮膜の形成の初期の温度域に重なり、この領域で上記の酸素ポテンシャルLog[PH2O/PH2]とすると、健全なグラス皮膜が得られず、皮膜密着性に悪影響を与える可能性がある。下限温度が低すぎると密着性に悪影響を与え、高過ぎるとBNの分解を十分に抑制できないため、本実施形態では、下限温度を800℃としている。一方、上限の温度が高過ぎると、二次再結晶が不安定となり、上限温度が低すぎると、Bの鋼板表面の極近傍に濃縮しやすくなって密着性を向上させる効果が失われてしまう可能性がある。したがって、本実施形態では、上述した条件の雰囲気を800℃から1100℃の間で実現している。
 仕上げ焼鈍の雰囲気の調整方法は、窒素分圧PN2に関しては、窒素ガスと水素等鋼板と反応しないガスとの混合比を制御することにより実現できる。また、酸素ポテンシャルLog[PH2O/PH2]に関しては、雰囲気の露点を制御することなどにより実現できる。
 また、1100℃を超える温度の雰囲気では、窒素分圧PN2を0.1以下にするとともに、酸素ポテンシャルLog[PH2O/PH2]を-2以下とすることが好ましい。これは所定の位置で酸化物としてBを濃化させ、二次再結晶後の純化をより進行させるためである。酸素ポテンシャルLog[PH2O/PH2]の上限を-2とする理由は、Bを酸化物として鋼板の表面近くでより濃化させるためである。この値が高すぎると、B酸化物の濃化が鋼板深部で起こり、良好な磁気特性が得られにくくなる。また、窒素分圧PN2を0.1以下にする理由は、窒素分圧PN2が高過ぎるとB酸化物の濃化が鋼板表面近くで起こり、良好な密着性が得られなくなる。また、純化が進行しにくく、焼鈍時間が長時間化して不経済的である場合もあるからである。以上詳細に述べたように、皮膜密着性を改善するようBを効果的に作用させるためには、仕上げ焼鈍中の高温領域での窒素分圧PN2と酸素ポテンシャルLog[PH2O/PH2]とを制御する必要がある。
 次に成分範囲の限定理由について述べる。
 本実施形態で用いる珪素鋼素材は、Si:0.8質量%~7質量%、酸可溶性Al:0.01質量%~0.065質量%、N:0.004質量%~0.012質量%、Mn:0.05質量%~1質量%、S及びSe:総量で0.003質量%~0.015質量%、並びにB:0.0005質量%~0.0080質量%を含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる。
 また、最終的に得られる方向性電磁鋼板は、Siを0.8質量%~7質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、Al、C、N、SおよびSeの含有量がそれぞれ0.005質量%以下であり、残部がFeおよび不可避的不純物からなる。
 Siは、電気抵抗を高めて鉄損を低下させる。しかし、Si含有量が7質量%を超えていると、冷間圧延が極めて困難となり、冷間圧延時に割れが生じやすくなる。このため、Si含有量は7質量%以下とし、4.5質量%以下であることが好ましく、4質量%以下であることが更に好ましい。また、Si含有量が0.8質量%未満であると、仕上げ焼鈍時にγ変態が生じ、方向性電磁鋼板の結晶方位が損なわれてしまう。このため、Si含有量は0.8質量%以上とし、2質量%以上であることが好ましく、2.5質量%以上であることが更に好ましい。
 Cは、一次再結晶組織を制御に有効な元素であるが、磁気特性に悪影響を及ぼす。このため、本実施形態では、仕上げ焼鈍前に脱炭焼鈍を行う。しかし、C含有量が0.085質量%を超えていると、脱炭焼鈍にかかる時間が長くなり、工業生産における生産性が損なわれてしまう。このため、C含有量は0.085質量%以下とし、0.07質量%以下であることが好ましい。
 また、最終的に得られる方向性電磁鋼板にCが0.005質量%を超えると磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板におけるC含有量は0.005質量%以下とする。
 酸可溶性Alは、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。酸可溶性Alの含有量が0.01質量%~0.065質量%の範囲内にある場合に二次再結晶が安定する。このため、酸可溶性Alの含有量は0.01質量%以上0.065質量%以下とする。また、酸可溶性Alの含有量は0.02質量%以上であることが好ましく、0.025質量%以上であることが更に好ましい。また、酸可溶性Alの含有量は0.04質量%以下であることが好ましく、0.03質量%以下であることが更に好ましい。
 また、最終的に得られる方向性電磁鋼板にAlが0.005質量%を超えると磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板におけるAl含有量は0.005質量%以下とする。
 Bは、Nと結合してBNとしてMnS又はMnSeと複合析出し、インヒビターとして機能する。B含有量が0.0005質量%~0.0080質量%の範囲内にある場合に二次再結晶が安定する。このため、B含有量は0.0005質量%以上0.0080質量%以下とする。また、B含有量は0.001質量%以上であることが好ましく、0.0015質量%以上であることが更に好ましい。また、B含有量は0.0040質量%以下であることが好ましく、0.0030質量%以下であることが更に好ましい。
 また、最終的に得られる方向性電磁鋼板には、焼鈍分離剤から由来するなどによってBが加わっている。Bが0.0080質量%を超えると磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板におけるB含有量は0.0005質量%~0.0080質量%とする。
 Nは、B又はAlと結合してインヒビターとして機能する。N含有量が0.004質量%未満であると、十分な量のインヒビターを得ることができない。このため、N含有量は0.004質量%以上とし、0.006質量%以上であることが好ましく、0.007質量%以上であることが更に好ましい。一方、N含有量が0.012質量%を超えていると、冷間圧延時に鋼帯中にブリスターとよばれる空孔が生じる。このため、N含有量は0.012質量%以下とし、0.010質量%以下であることが好ましく、0.009質量%以下であることが更に好ましい。
 また、最終的に得られる方向性電磁鋼板ではNが0.005質量%を超えると磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板におけるN含有量は0.005質量%以下とする。
 Mn、S及びSeは、BNが複合析出する核となるMnS及びMnSeを生成し、複合析出物がインヒビターとして機能する。Mn含有量が0.05質量%~1質量%の範囲内にある場合に二次再結晶が安定する。このため、Mn含有量は0.05質量%以上1質量%以下とする。また、Mn含有量は0.08質量%以上であることが好ましく、0.09質量%以上であることが更に好ましい。また、Mn含有量は0.50質量%以下であることが好ましく、0.2質量%以下であることが更に好ましい。
 また、最終的に得られる方向性電磁鋼板でもMnが0.05質量%~1質量%の範囲を外れると二次再結晶が不安定になり、磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板のMn含有量は0.05質量%~1質量%とする。
 また、S及びSeの含有量が総量で0.003質量%~0.015質量%の範囲内にある場合に二次再結晶が安定する。このため、S及びSeの含有量は総量で0.003質量%以上0.015質量%以下とする。また、熱間圧延における割れの発生を防止する観点から、下記式(14)が満たされることが好ましい。なお、S又はSeのいずれかのみが珪素鋼素材に含有されていてもよく、S及びSeの双方が含有されていてもよい。S及びSeの双方が含有されている場合、BNの析出をより安定的に促進し、磁気特性を安定的に向上させることができる。
 [Mn]/([S]+[Se])≧4 ・・・(14)
 また、最終的に得られる方向性電磁鋼板でSおよびSeが0.005質量%を超えると磁気特性に悪影響を及ぼすことから、最終的に得られる方向性電磁鋼板のSおよびSeの含有量は0.005質量%以下とする。
 Tiは、粗大なTiNを形成して、インヒビターとして機能するBN及び(Al,Si)Nの析出量に影響を及ぼす。Ti含有量が0.004質量%を超えていると、良好な磁気特性を得にくい。このため、Ti含有量は0.004質量%以下であることが好ましい。
 珪素鋼素材に、更に、Cr、Cu、Ni、P、Mo、Sn、Sb、及びBiからなる群から選択された一種以上が下記の範囲で含有されていてもよい。
 Crは、脱炭焼鈍時に形成される酸化層を改善し、グラス皮膜の形成に有効である。しかし、Cr含有量が0.3質量%を超えていると、脱炭が著しく阻害される。このため、Cr含有量は0.3質量%以下とする。
 Cuは、比抵抗を高めて鉄損を低減させる。しかし、Cu含有量が0.4質量%を超えるとこの効果が飽和する。また、熱間圧延時に「カッパーヘゲ」とよばれる表面疵が生じることもある。このため、Cu含有量は0.4質量%以下とした。
 Niは、比抵抗を高めて鉄損を低減させる。また、Niは、熱間圧延鋼帯の金属組織を制御して磁気特性を向上させる。しかし、Ni含有量が1質量%を超えていると、二次再結晶が不安定になる。このため、Ni含有量は1質量%以下とする。
 Pは、比抵抗を高めて鉄損を低減させる。しかし、P含有量が0.5質量%を超えていると、圧延性に問題が生じる。このため、P含有量は0.5質量%以下とする。
 Moは、熱間圧延時の表面性状を改善する。しかし、Mo含有量が0.1質量%を超えるとこの効果が飽和してしまう。このため、Mo含有量は0.1質量%以下とする。
 Sn及びSbは、粒界偏析元素である。本実施形態で用いられる珪素鋼素材はAlを含有しているため、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化される場合がある。この場合、方向性電磁鋼板内の部位によってインヒビター強度にばらつきが生じ、磁気特性もばらつくことがある。しかし、粒界偏析元素が含有されている場合には、Alの酸化を抑制することができる。つまり、Sn及びSbは、Alの酸化を抑制して磁気特性のばらつきを抑制する。但し、Sn及びSbの含有量が総量で0.30質量%を超えていると、脱炭焼鈍時に酸化層が形成されにくくなり、グラス皮膜の形成が不十分となる。また、脱炭が著しく阻害される。このため、Sn及びSbの含有量は総量で0.3質量%以下とする。
 Biは、硫化物等の析出物を安定化してインヒビターとしての機能を強化する。しかし、Bi含有量が0.01質量%を超えていると、グラス皮膜の形成に悪影響が及ぶ。このため、Bi含有量は0.01質量%以下とする。
 次に、本実施形態における各処理について説明する。
 上記の成分の珪素鋼素材(スラブ)は、例えば、転炉又は電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、次いで、連続鋳造を行うことによって作製することができる。また、連続鋳造に代えて、造塊後分塊圧延を行っても作製することができる。珪素鋼スラブの厚さは、例えば150mm~350mmとし、220mm~280mmとすることが好ましい。また、厚さが30mm~70mmの所謂薄スラブを作製してもよい。薄スラブを作製した場合は、熱間圧延鋼帯を得る際の粗圧延を省略することができる。
 珪素鋼スラブの作製後には、スラブ加熱を行い、熱間圧延を行う。そして、本実施形態では、BNをMnS及び/又はMnSeと複合析出させ、熱間圧延鋼帯におけるBN、MnS、及びMnSeの析出量が下記式(6)~(8)を満たすように、スラブ加熱及び熱間圧延の条件を設定する。
 BasBN≧0.0005 ・・・(6)
 [B]-BasBN≦0.001 ・・・(7)
 SasMnS+0.5×SeasMnSe≧0.002 ・・・(8)
 ここで、「BasBN」はBNとして析出したBの量(質量%)を示し、「SasMnS」はMnSとして析出したSの量(質量%)を示し、「SeasMnSe」はMnSeとして析出したSeの量(質量%)を示している。
 Bについては、式(6)及び式(7)が満たされるように、その析出量及び固溶量を制御する。インヒビターの量を確保するために、一定量以上のBNを析出させておく。また、固溶しているBの量が多い場合、その後の工程で不安定な微細析出物を形成して一次再結晶組織に悪影響を及ぼすことがある。
 MnS及びMnSeは、BNが複合析出する核として機能する。従って、BNを十分に析出させて磁気特性を向上させるために、式(8)が満たされるように、その析出量を制御する。
 式(6)に表わされる条件は、図4、図14、及び図24から導き出したものである。図4、図14、及び図24から、[B]-BasBNが0.001質量%以下の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。
 式(6)及び式(8)に表わされる条件は、図2、図12、及び図22から導き出したものである。図2からBasBNが0.0005質量%以上、かつSasMnSが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。
 同様に、図12からBasBNが0.0005質量%以上、かつSeasMnSeが0.004質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。同様に、図22からBasBNが0.0005質量%以上、かつSasMnS+0.5×SeasMnSeが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。そして、SasMnSが0.002質量%以上であれば、必然的に、SasMnS+0.5×SeasMnSeは0.002質量%以上となり、SeasMnSeが0.004質量%以上であれば、必然的に、SasMnS+0.5×SeasMnSeは0.002質量%以上となる。従って、SasMnS+0.5×SeasMnSeが0.002質量%以上であることが重要である。
 また、スラブ加熱の温度は、以下の条件を満たすように設定する。
 (i)珪素鋼スラブにS及びSeが含有されている場合
  式(2)で表される温度T1(℃)以下、式(3)で表される温度T2(℃)以下、かつ式(4)で表わされる温度T3(℃)以下
 (ii)珪素鋼スラブにSeが含有されていない場合
  式(2)で表される温度T1(℃)以下、かつ式(4)で表わされる温度T3(℃)以下
 (iii)珪素鋼スラブにSが含有されていない場合
  式(3)で表される温度T2(℃)以下、かつ式(4)で表わされる温度T3(℃)以下
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(2)
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(3)
 T3=16000/(5.92-log([B]×[N]))-273 ・・・(4)
 このような温度でスラブ加熱を行うと、スラブ加熱時にはBN、MnS及びMnSeが完全には固溶せず、熱間圧延中にBN、MnS及びMnSeの析出が促進されるからである。図6、図16、及び図26からわかるように、溶体化温度T1及びT2は、1.88T以上の磁束密度B8が得られるスラブ加熱温度の上限とほぼ一致している。また、図7、図17、及び図27からわかるように、溶体化温度T3は、1.88T以上の磁束密度B8が得られるスラブ加熱温度の上限とほぼ一致している。
 また、スラブ加熱の温度を以下の条件も満たすように設定することが更に好ましい。スラブ加熱中に、好ましい量のMnS又はMnSeを析出させるためである。
 (i)珪素鋼スラブにSeが含有されていない場合
  下記式(15)で表される温度T4(℃)以下
 (ii)珪素鋼スラブにSが含有されていない場合
  下記式(16)で表される温度T5(℃)以下
 T4=14855/(6.82-log([Mn-0.0034]×[S-0.002]))-273 ・・・(15)
 T5=10733/(4.08-log([Mn-0.0034]×[Se-0.004]))-273 ・・・(16)
 スラブ加熱の温度が高すぎる場合、BN、MnS及び/又はMnSeが完全に固溶することがある。この場合、熱間圧延時に、BN、MnS及び/又はMnSeを析出させることが困難になる。従って、スラブ加熱は、温度T1及び/又は温度T2以下、かつ温度T3以下で行うことが好ましい。更に、スラブ加熱の温度が温度T4又はT5以下であると、好ましい量のMnS又はMnSeがスラブ加熱中に析出するため、これらの周辺にBNを複合析出させて、容易に有効なインヒビターを形成することが可能となる。
 また、Bに関し、熱間圧延での仕上げ圧延の終了温度Tfを下記式(5)が満たされるように設定する。BNの析出をより促進するためである。
 Tf≦1000-10000×[B] ・・・(5)
 図10、図20、図30からわかるように、式(5)が示す条件は、1.88T以上の磁束密度B8が得られる条件とほぼ一致している。また、仕上げ圧延の終了温度Tfは、BNの析出の観点から800℃以上とすることがさらに好ましい。
 熱間圧延後には、熱間圧延鋼帯の焼鈍を行う。次いで、冷間圧延を行う。上記のように、冷間圧延は1回のみ行ってもよく、複数回の冷間圧延を、間に中間焼鈍を行いながら行ってもよい。冷間圧延では、最終冷間圧延率を80%以上とすることが好ましい。これは、良好な一次再結晶集合組織を発達させるためである。
 その後、脱炭焼鈍を行う。この結果、鋼帯に含まれるCが除去される。脱炭焼鈍は、例えば、湿潤雰囲気中で行う。また、例えば、770℃~950℃の温度域で一次再結晶により得られる結晶粒径が15μm以上となるような時間で行うことが好ましい。これは、良好な磁気特性を得るためである。続いて、焼鈍分離剤の塗布及び仕上げ焼鈍を行う。この結果、二次再結晶により{110}<001>方位を向く結晶粒が優先的に成長する。
 また、脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、窒化処理を行っておく。これは、(Al,Si)Nのインヒビターを形成するためである。この窒化処理は、脱炭焼鈍中に行ってもよく、仕上げ焼鈍中に行ってもよい。脱炭焼鈍中に行う場合、例えばアンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍を行えばよい。また、連続焼鈍炉の加熱帯又は均熱帯のいずれで窒化処理を行ってもよく、また、均熱帯よりも後の段階で窒化処理を行ってもよい。仕上げ焼鈍中に窒化処理を行う場合、例えばMnN等の窒化能のある粉末を焼鈍分離剤中に添加すればよい。
 仕上げ焼鈍の方法は前述の通り温度が800℃~1100℃の温度範囲で、雰囲気が(9)及び(10)式を満たす。
 0.75≧PN2≧0.2・・・・・・(9)
 -0.7≧Log[PH2O/PH2]・・・・・・・・(10)
 仕上げ焼鈍は、通常、窒素及び水素の混合雰囲気により行われるので、この雰囲気の窒素分圧を制御することにより(9)式の条件は達成される。また、酸素ポテンシャルは雰囲気に水蒸気を含ませることによって制御することが可能であり、(10)式の条件を満たすようにすることが可能である。
 ここで、さらに(11)式の条件を満たし、1100℃以上の雰囲気が(12)式および(13)式を満たすとさらに良い結果が得られる。
 4Log[PN2]=3Log[PH2O/PH2]+A+3455/T・・・・(11)
 0.1≧PN2・・・・・・・・(12)
 -2≧Log[PH2O/PH2]・・・・・・・・(13) ここで、-3.72≧3Log[PH2O/PH2]+A≧-5.32かつ-0.7≧Log[PH2O/PH2]であり、
PN2は窒素分圧を示し、PH2O、PH2はそれぞれ水蒸気分圧、水素分圧を示し、AはLog[PH2O/PH2]に従って、3Log[PH2O/PH2]+Aが所定の範囲に入るように定まる定数であり、Tは絶対温度を示す。
 本実施形態では、BNによりインヒビターが強化されているので、仕上げ焼鈍の加熱過程において、1000℃~1100℃の温度範囲内での加熱速度を15℃/h以下とすることが好ましい。また、加熱速度の制御に代えて、1000℃~1100℃の温度範囲内に10時間以上保持する恒温焼鈍を行うことも有効である。
 このような本実施形態によれば、安定して優れた磁気特性の方向性電磁鋼板を製造することができる。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
<実施例1>
 表1にあるような組成を有し、残部はFeおよび不可避的不純物からなるスラブを作製した。次いで、スラブを1100℃で加熱し、その後、900℃で仕上げ圧延を行った。なお、1100℃の加熱温度は、表1の組成から計算される温度T1、T2、T3の値の全てを下回る値であった。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-0.5、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。
 このようにして得られた鋼板は表2に示す組成を有していた。このような仕上げ焼鈍後の試料について、皮膜の状況および磁気特性(磁束密度B8)を測定した。まず、皮膜の状況は、グラス皮膜におけるフォルステライトの比率と、GDSによるMg及びBのピーク位置とを調査した。なお、GDSにより測定を行う前に、固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%コロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面5g/mとなるよう塗布液を塗布して乾燥させた後、900℃で焼き付けた。この場合の二次皮膜の厚さは1.5μmであった。
 また、磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。さらに、以下の手順で皮膜密着性も試験した。まず固形分濃度50%の重リン酸アルミニウム溶液を100g、固形分濃度20%コロイダルシリカを102g、無水クロム酸5.4gからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面10g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。次に、この鋼板を直径20φの丸棒に巻きつけたのち、曲げた部分の内側で鋼板が露出するような皮膜の剥離面積を測定した。剥離面積が5%以下である場合、密着性が良好であるとの判断をした。以上の試験の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示すように、本発明の範囲の組成の鋼板であり、またグラス皮膜のフォルステライト量が70%以上で、GDSプロファイルにおけるMgとBのピーク位置がスラブがtB/tMgが1.6以上である場合に密着性と磁束密度が良好であることがわかる。特にtB/tMgが2.0以上であると、特に密着性が良好である。一方、磁気特性はtB/tMgが5.0を超えると悪化するのでtB/tMgは5が上限となる。フォルステライト量は、SiおよびAlの量が本発明の範囲でない場合に70%以上の量が確保できなかった。
<実施例2>
 表4にある組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。さらに表5にある温度条件でスラブ加熱と仕上げ圧延を行い、厚さが2.3mmの熱間圧延鋼帯を得た。このような熱処理を経た熱延板のB、BN、MnSおよびMnSeの分析結果は表6の通りであった。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃までの雰囲気は実施例1と同様にし、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして実施例1と同様にして、GDSによるtB及びtMgの評価を行い、さらに磁気特性(磁束密度B8)を測定した。また皮膜密着性の試験も行った。この結果を表7に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、試験No.d1~試験No.d3の場合、スラブ加熱温度がT1より高いため、皮膜密着性が悪く、磁束密度も低かった。また、試験No.d4の場合は、仕上げ圧延の終了温度Tfが1000-10000×[B]より高いため、皮膜密着性が悪かった。さらに、試験No.d5の場合は、仕上げ圧延の終了温度Tfが800℃に満たなかったため皮膜密着性が悪く、磁束密度も低くかった。試験No.d6、d7の場合は、スラブ加熱温度がT1、T3よりも高く、さらにBasBNが0.0005未満であり、[B]-BasBNが0.001超であるため皮膜密着性が悪く、磁束密度も低かった。試験No.d8の場合はSasMnS+SeasMnSeの値が0.002未満であるため磁束密度が低かった。一方、スラブ加熱温度が温度T1、T2及びT3よりスラブ加熱温度が低い以下の発明例である試験No.D1~試験No.D10の場合には、良好な皮膜密着性及び磁束密度が得られた。
 以上から明らかなように、本発明の範囲の操業条件によれば、良好な磁気特性及び皮膜密着性を有する方向性電磁鋼板を得ることができる。
<実施例3>
 表8にある組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、表9にある条件でスラブを加熱した後に900℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃までの雰囲気は実施例1と同様にし、800℃~1100℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1、1100℃以上の雰囲気の窒素分圧PN2を0.1以下、酸素ポテンシャルLog[PH2O/PH2]を-2として、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、実施例1と同様にして、GDSによるtB及びtMgの評価を行い、さらに皮膜密着性及び磁気特性(磁束密度B8)を測定した。この結果を表10に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表8および表10より明らかなように、素材の組成が本発明の範囲を外れた比較例では皮膜密着性が劣るとともに、磁束密度が低かった。しかし、素材の組成が本発明の範囲にある発明例E1~E23では、良好な皮膜密着性及び磁束密度が得られた。
<実施例4>
 800℃~1100℃での雰囲気および切り替え温度の影響を調べる目的で以下の実験を行った。まず、Si:3.4質量%、B:0.0025質量%、C:0.06質量%、N:0.008質量%、S:0.007質量%、Al:0.03質量%からなる組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1100℃で加熱し、その後、900℃で仕上げ圧延を行った。1100℃では、上記の組成から計算されるT1、T2、T3の値の全てを下回る値であった。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、表11のA1の温度までの雰囲気は実施例1と同様にするとともに、表11にある切り替え温度A1およびA2で表11にある雰囲気とし、温度A2より高い温度では窒素分圧PN2を0.05、酸素ポテンシャルLog[PH2O/PH2]を-2以下として、15℃/hの速度で1200℃まで加熱し1200℃到達後は水素100%の雰囲気にて仕上げ焼鈍を行った。
 このような仕上げ焼鈍後の試料について、皮膜の状況および磁気特性(磁束密度B8)を測定した。まず、皮膜の状況は、グラス皮膜のフォルステライト量と、GDSによりMg及びBのピーク位置を調査した。フォルステライト量はすべて70%以上であった。GDSの測定前には、固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面5g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この場合の二次皮膜の厚さは1.5μmであった。
 また、磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。さらに、以下の手順で皮膜密着性も試験した。まず固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面10g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この鋼板を直径20φの丸棒に巻きつけたのち、曲げた部分の内側で鋼板が露出するような皮膜の剥離面積を測定した。剥離面積が5%以下である場合、密着性が良好であるとの判断をした。以上の試験の結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、試験No.f1の場合は800℃~1100℃における窒素分圧PN2が低すぎるためにBNの分解が進み、Bは表面近くに濃化して比tB/tMgが小さくなり、皮膜密着性の向上効果が得られなかった。また、試験No.f2の場合は、窒素分圧PN2が高過ぎるため、皮膜密着性は良いものの、良好な磁気特性は得られなかった。試験No.f3の場合は、酸素ポテンシャルLog[PH2O/PH2]が高過ぎるためにBNの分解が進んで磁束密度B8が悪く、また、比tB/tMgが小さくなりすぎ、皮膜密着性の改善効果がなかった。
 一方、雰囲気切り替え温度を変えた試験No.f4では、切り替え温度A1が低すぎるために密着性向上効果が得られなかった。試験No.f5では、切り替え温度A1が高過ぎるためにBNの酸化による分解が早まり、比tB/tMgが不適当な値となり、磁束密度B8も悪かった。試験No.f6では、切り替え温度A2が低すぎるため、BNの分解が早まり、比tB/tMgが不適当な値となり、磁束密度B8も悪かった。試験No.f7では、切り替え温度A2が高過ぎたため、BNの分解が遅く、比tB/tMgが大きすぎ、磁気特性が悪かった。
 以上から明らかなように、本発明の操業条件とすれば、良好な磁気特性と、皮膜密着性とを有する方向性電磁鋼板を得ることができる。
<実施例5>
 800℃~1100℃での雰囲気のより良い条件を調査する目的で、以下の実験を行った。まず、Si:3.4質量%、B:0.0025質量%、C:0.06質量%、N:0.008質量%、S:0.007質量%、Al:0.03質量%からなる組成を有し、残部はFeおよび不可避的不純物からなるスラブを作製した。次いで、スラブを1100℃で加熱し、その後、900℃で仕上げ圧延を行った。1100℃では、上記の組成から計算されるT1、T2、T3の値の全てを下回る値であった。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、表12にあるA1の温度までの雰囲気は実施例1と同様にし、表12にある切り替え温度A1およびA2で表12にある雰囲気とし、温度A2より高い温度では窒素分圧PN2を0.05、酸素ポテンシャルLog[PH2O/PH2]を-2以下として15℃/hの速度で1200℃まで加熱し1200℃到達後は水素100%の雰囲気にて仕上げ焼鈍を行った。
 このような仕上げ焼鈍後の試料について、皮膜の状況および磁気特性(磁束密度B8)を測定した。まず、皮膜の状況は、グラス皮膜層のフォルステライト量と、GDSによるMg及びBのピーク位置を調査した。フォルステライト量はすべて70%以上であった。GDS測定前には、固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面5g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この場合の二次皮膜の厚さは1.5μmであった。
 また、磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。さらに、以下の手順で皮膜密着性も試験した。まず固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に特に高い張力を得るため、焼き付け後に片面12g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この鋼板を直径20φの丸棒に巻きつけたのち、曲げた部分の内側で鋼板が露出するような皮膜の剥離面積を測定した。剥離面積が5%以下である場合、密着性が良好であるとの判断をした。以上の試験の結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、試験No.g1の場合は、800℃~1100℃における(11)式における3Log[PH2O/PH2]+Aが最も良い条件よりも低いためにBNの分解が進みやすく、最も良い条件よりもBは表面近くに濃化して比tB/tMgが小さくなり、特に皮膜張力が高い本実施例の場合は、皮膜密着性は良くなかった。また、試験No.g2の場合は、(11)式における3Log[PH2O/PH2]+Aが高過ぎるため、皮膜密着性は良いものの、良好な磁気特性は得られなかった。試験No.g3の場合は、酸素ポテンシャルLog[PH2O/PH2]が高すぎるために比tB/tMgが不適当な値となり、良好な密着性が得られなかった。試験No.g4及びg5の場合は、酸素ポテンシャルLog[PH2O/PH2]が高すぎるとともに3Log[PH2O/PH2]+Aの値が不適当であったため、それぞれ良好な磁気特性が得られないことに加え、試験No.g5の場合は良好な密着性が得られなかった。
 一方、雰囲気切り替え温度を変えた試験No.g6は、切り替え温度A1が低すぎるために密着性向上効果が得られなかった。試験No.g7では、切り替え温度A1が高過ぎるためにBNの酸化による分解が早まり、比tB/tMgが不適当な値となり、磁束密度B8が悪かった。試験No.g8では、切り替え温度A2が低すぎるため、BNの分解が早まり、比tB/tMgが不適当な値となり、磁束密度B8も悪かった。試験No.g9では、切り替え温度A2が高過ぎたため、BNの分解が遅く、比tB/tMgが大きすぎ、磁気特性が悪かった。
 以上から明らかなように、本発明のうちで仕上げ焼鈍の操業条件を特によい窒素分圧範囲とすると、特に高い張力を発生する皮膜が形成されても、良好な磁気特性に加え、良好な皮膜密着性を有する方向性電磁鋼板を得ることができる。
<実施例6>
 1100℃以上の雰囲気条件を調査する目的で、以下の実験を行った。まず、Si:3.4質量%、B:0.0025質量%、C:0.06質量%、N:0.008質量%、S:0.007質量%、Al:0.03質量%からなる組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1100℃で加熱し、その後、900℃で仕上げ圧延を行った。1100℃では、上記の組成から計算されるT1、T2、T3の値の全てを下回る値であった。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、800℃までの雰囲気の窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-0.5、800℃~1100℃は窒素分圧PN2を0.5、酸素ポテンシャルLog[PH2O/PH2]を-1とし、1100℃以上では表13にある雰囲気として15℃/hの速度で1200℃まで加熱し、1200℃到達後は水素100%の雰囲気にて仕上げ焼鈍を行った。
 このような仕上げ焼鈍後の試料について、皮膜の状況および磁気特性(磁束密度B8)を測定した。まず、皮膜の状況は、グラス皮膜層のフォルステライト量と、GDSによりMg及びBのピーク位置を調査した。フォルステライト量はすべて70%以上であった。GDS測定前には、固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に焼き付け後に片面5g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この場合の二次皮膜の厚さは1.5μmであった。
 また、磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。さらに、以下の手順で皮膜密着性も試験した。まず固形分濃度50%の重リン酸アルミニウム溶液を100gと、固形分濃度20%のコロイダルシリカを102gと、無水クロム酸5.4gとからなる塗布液を作成した。そして、仕上げ焼鈍後のグラス皮膜を有する鋼板に特に高い張力を付与するために、焼き付け後に片面12g/mとなるよう塗布液を塗布して乾燥した後、900℃で焼き付けた。この鋼板を直径20φの丸棒に巻きつけたのち、曲げた部分の内側で鋼板が露出するような皮膜の剥離面積を測定した。剥離面積が5%以下である場合、密着性が良好であるとの判断をした。以上の試験の結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、試験No.h1の場合は、1100℃以上における窒素分圧PN2および酸素ポテンシャルLog[PH2O/PH2]が高過ぎるためにBNの分解が進まず、比tB/tMgが大きすぎて磁気特性が悪かった。また、試験No.h2の場合は、酸素ポテンシャルLog[PH2O/PH2]が高過ぎるために比tB/tMgが大きすぎて磁気特性が悪かった。試験No.h3の場合は、窒素分圧PN2が高すぎるため、比tB/tMgが小さすぎて本実施例のように特に高い張力を生ずる皮膜が形成された場合、皮膜密着性の改善効果がなかった。
 以上から明らかなように、仕上げ焼鈍について本発明の操業条件とすれば、特に高い張力が付与された場合でも、良好な磁気特性に加え、良好な皮膜密着性を有する方向性電磁鋼板を得ることができる。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (5)

  1.  Siを0.8質量%~7質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、Al、C、N、SおよびSeの含有量がそれぞれ0.005質量%以下であり、残部がFe及び不可避的不純物からなり、鋼板表面にフォルステライトを主体とする複合酸化物からなるグラス皮膜を有する方向性電磁鋼板において、
     前記グラス皮膜の表面に、コロイド状シリカ26~38質量%と、無水クロム酸及びクロム酸塩からなる群から選択された1種または2種を4~12質量%とを含み、残部が重リン酸アルミニウムからなる厚さが1μm以上2μm以下の二次皮膜が形成された条件で前記二次皮膜の表面に対するグロー放電発光分析(GDS)を行った場合に、発光強度のピーク位置がMgの発光強度のピーク位置とは異なるBの発光強度のピークを有し、前記鋼板表面からのBの発光強度のピーク位置がMgの発光強度のピーク位置より深く、
     さらに、グロー放電発光分析(GDS)で観察される前記Bの発光強度のピークのうち、前記鋼板表面から最も遠いもののピーク発生時間tBが、下記式(1)であらわされることを特徴とする方向性電磁鋼板。
     tMg×1.6≦tB≦tMg×5・・・(1)
     ここで、tMgはMgのピーク発生時間を示す。
  2.  Siを0.8質量%~7質量%、酸可溶性Alを0.01質量%~0.0065質量%、Nを0.004質量%~0.012質量%、Mnを0.05質量%~1質量%、Bを0.0005質量%~0.0080質量%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003質量%~0.015質量%含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる電磁鋼板素材を所定の温度で加熱する工程と、
     加熱された前記珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、
     前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、
     前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、
     前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、
     MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、
     前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、
     を有し、
     更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、
     前記所定の温度は、
      前記珪素鋼素材にS及びSeが含有されている場合、下記式(2)で表される温度T1(℃)以下、下記式(3)で表される温度T2(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、
      前記珪素鋼素材にSeが含有されていない場合、下記式(2)で表される温度T1(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、
     前記珪素鋼素材にSが含有されていない場合、下記式(3)で表される温度T2(℃)以下、かつ下記式(4)で表わされる温度T3(℃)以下であり、前記熱間圧延の仕上げ圧延の終了温度Tfは下記式(5)を満たし、
     前記熱間圧延鋼帯中のBN、MnS及びMnSeの量は下記式(6)、(7)及び(8)を満たし、かつ仕上げ焼鈍時の温度が800℃~1100℃の温度範囲で、雰囲気が下記式(9)及び(10)を満たすことを特徴とする方向性電磁鋼板の製造方法。
     T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(2)
     T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(3)
     T3=16000/(5.92-log([B]×[N]))-273 ・・・(4)
     Tf≦1000-10000×[B]・・・・(5)
     BasBN≧0.0005 ・・・(6)
     [B]―BasBN≦0.001 ・・・(7)
     SasMnS+0.5×SeasMnSe≧0.002 ・・・(8)
     0.75≧PN2≧0.2 ・・・・・・・・・・・・・・・(9)
     -0.7≧Log[PH2O/PH2] ・・・・・・・・(10)
     ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示し、[B]は前記珪素鋼素材のB含有量(質量%)を示し、[N]は前記珪素鋼素材のN含有量(質量%)を示し、BasBNは前記熱間圧延鋼帯中にBNとして析出しているBの量(質量%)を示し、SasMnSは前記熱間圧延鋼帯中にMnSとして析出しているSの量(質量%)を示し、SeasMnSeは前記熱間圧延鋼帯中にMnSeとして析出しているSeの量(質量%)を示す。また、PN2は窒素分圧を示し、PH2O、PH2はそれぞれ水蒸気分圧、水素分圧を示す。
  3.  仕上げ焼鈍時の温度が800℃~1100℃の温度範囲で、雰囲気が下記式(11)を満たすことを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
     4Log[PN2]=3Log[PH2O/PH2]+A+3455/T・・・・(11)
     ここで、-3.72≧3Log[PH2O/PH2]+A≧-5.32かつ-0.7≧Log[PH2O/PH2]であり、AはLog[PH2O/PH2]に従って、3Log[PH2O/PH2]+Aが所定の範囲に入るように定まる定数であり、Tは絶対温度を示す。
  4.  仕上げ焼鈍時に1100℃以上の雰囲気が下記式(12)及び(13)を満たすことを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
     0.1≧PN2・・・・・・・・・・・・・・・・・・(12)
     -2≧Log[PH2O/PH2]・・・・・・・・(13)
  5.  前記電磁鋼板素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
PCT/JP2012/050502 2011-01-12 2012-01-12 方向性電磁鋼板及びその製造方法 WO2012096350A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR122018072170-7A BR122018072170B1 (pt) 2011-01-12 2012-01-12 Método de fabricação de uma chapa de aço elétrico com grão orientado
JP2012520602A JP5224003B2 (ja) 2011-01-12 2012-01-12 方向性電磁鋼板及びその製造方法
PL12734045T PL2664689T4 (pl) 2011-01-12 2012-01-12 Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych oraz sposób jej wytwarzania
US13/978,925 US10208372B2 (en) 2011-01-12 2012-01-12 Grain-oriented electrical steel sheet and manufacturing method thereof
KR1020137017835A KR101453235B1 (ko) 2011-01-12 2012-01-12 방향성 전자기 강판 및 그 제조 방법
BR112013017778-0A BR112013017778B1 (pt) 2011-01-12 2012-01-12 Chapa de aço elétrico com grão orientado
EP12734045.3A EP2664689B1 (en) 2011-01-12 2012-01-12 Grain-oriented electrical steel sheet and manufacturing method thereof
RU2013137435/02A RU2562182C2 (ru) 2011-01-12 2012-01-12 Лист из электротехнической стали с ориентированной зеренной структурой и способ его получения
CN201280005239.7A CN103314126B (zh) 2011-01-12 2012-01-12 方向性电磁钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-004359 2011-01-12
JP2011004359 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096350A1 true WO2012096350A1 (ja) 2012-07-19

Family

ID=46507241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050502 WO2012096350A1 (ja) 2011-01-12 2012-01-12 方向性電磁鋼板及びその製造方法

Country Status (9)

Country Link
US (1) US10208372B2 (ja)
EP (1) EP2664689B1 (ja)
JP (1) JP5224003B2 (ja)
KR (1) KR101453235B1 (ja)
CN (1) CN103314126B (ja)
BR (2) BR112013017778B1 (ja)
PL (1) PL2664689T4 (ja)
RU (1) RU2562182C2 (ja)
WO (1) WO2012096350A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682357C1 (ru) * 2015-07-08 2019-03-19 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электротехническая листовая сталь и способ ее производства
WO2019146694A1 (ja) * 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
WO2019146697A1 (ja) * 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
WO2020149344A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
RU2771766C1 (ru) * 2019-01-16 2022-05-11 Ниппон Стил Корпорейшн Лист электротехнической стали с ориентированной зеренной структурой, имеющий превосходную адгезию изоляционного покрытия без покрытия из форстерита

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305745B (zh) * 2012-03-09 2016-04-27 宝山钢铁股份有限公司 一种高质量硅钢常化基板的生产方法
EP3653757A4 (en) * 2017-07-13 2021-01-13 Nippon Steel Corporation ORIENTED ELECTROMAGNETIC STEEL PLATE
WO2020012665A1 (ja) * 2018-07-13 2020-01-16 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
WO2020145315A1 (ja) * 2019-01-08 2020-07-16 日本製鉄株式会社 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤
WO2020145321A1 (ja) * 2019-01-08 2020-07-16 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、及び、方向性電磁鋼板の製造に利用される焼鈍分離剤
US20220002831A1 (en) * 2019-01-08 2022-01-06 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN113260718B (zh) * 2019-01-08 2023-02-17 日本制铁株式会社 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
CN113302320B (zh) * 2019-01-16 2023-02-28 日本制铁株式会社 方向性电磁钢板及其制造方法
WO2020149340A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板およびその製造方法
JP7352108B2 (ja) * 2019-09-19 2023-09-28 日本製鉄株式会社 方向性電磁鋼板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055570B2 (ja) 1975-07-18 1985-12-05 アレゲニ−・ラドラム・スチ−ル・コ−ポレ−ション 方向性ケイ素鋼板を製造する方法
JPH0617261A (ja) 1991-07-10 1994-01-25 Nippon Steel Corp 被膜特性と磁気特性に優れた一方向性珪素鋼板
JPH10140243A (ja) * 1996-11-13 1998-05-26 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JPH10324959A (ja) * 1997-03-26 1998-12-08 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板とその製造方法
JPH11269544A (ja) * 1998-03-20 1999-10-05 Kawasaki Steel Corp 高磁束密度低鉄損方向性電磁鋼板の製造方法
JP2002348611A (ja) * 2001-05-22 2002-12-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2008001977A (ja) 2006-05-24 2008-01-10 Nippon Steel Corp 方向性電磁鋼板の製造方法
WO2011007771A1 (ja) 2009-07-13 2011-01-20 新日本製鐵株式会社 方向性電磁鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392534B1 (en) * 1989-04-14 1998-07-08 Nippon Steel Corporation Method of producing oriented electrical steel sheet having superior magnetic properties
JP3169500B2 (ja) 1994-01-14 2001-05-28 新日本製鐵株式会社 低鉄損一方向性電磁鋼板
DE4409691A1 (de) * 1994-03-22 1995-09-28 Ebg Elektromagnet Werkstoffe Verfahren zur Herstellung von Elektroblechen mit einem Glasüberzug
US5885371A (en) 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
BR9800978A (pt) 1997-03-26 2000-05-16 Kawasaki Steel Co Chapas elétricas de aço com grão orientado tendo perda de ferro muito baixa e o processo de produção da mesma
WO1999002742A2 (en) 1997-06-27 1999-01-21 Pohang Iron & Steel Co., Ltd. Method for manufacturing high magnetic flux density grain oriented electrical steel sheet based on low temperature slab heating method
JP4653266B2 (ja) 1998-10-22 2011-03-16 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
JP3537339B2 (ja) 1999-01-14 2004-06-14 新日本製鐵株式会社 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP2000282142A (ja) 1999-03-29 2000-10-10 Nippon Steel Corp 一方向性電磁鋼板の製造方法
EP1162280B1 (en) 2000-06-05 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP2002220642A (ja) * 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
US7399369B2 (en) 2001-07-16 2008-07-15 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JP3388239B2 (ja) 2001-07-16 2003-03-17 新日本製鐵株式会社 高磁場鉄損と被膜特性に優れる超高磁束密度一方向性電磁鋼板の製造方法
JP4196613B2 (ja) 2002-08-22 2008-12-17 Jfeスチール株式会社 高出銑比高炉操業方法
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
JP4747564B2 (ja) 2004-11-30 2011-08-17 Jfeスチール株式会社 方向性電磁鋼板
SI1752549T1 (sl) * 2005-08-03 2016-09-30 Thyssenkrupp Steel Europe Ag Postopek za proizvodnjo zrnato usmerjene magnetne jeklene vzmeti
KR101165430B1 (ko) * 2006-11-22 2012-07-12 신닛뽄세이테쯔 카부시키카이샤 피막 밀착성이 우수한 일방향성 전자 강판 및 그 제조법
ITRM20070218A1 (it) * 2007-04-18 2008-10-19 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato
PL2455498T3 (pl) 2009-07-17 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Sposób wytwarzania blachy cienkiej ze stali magnetycznej o ziarnach zorientowanych

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055570B2 (ja) 1975-07-18 1985-12-05 アレゲニ−・ラドラム・スチ−ル・コ−ポレ−ション 方向性ケイ素鋼板を製造する方法
JPH0617261A (ja) 1991-07-10 1994-01-25 Nippon Steel Corp 被膜特性と磁気特性に優れた一方向性珪素鋼板
JPH10140243A (ja) * 1996-11-13 1998-05-26 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JPH10324959A (ja) * 1997-03-26 1998-12-08 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板とその製造方法
JPH11269544A (ja) * 1998-03-20 1999-10-05 Kawasaki Steel Corp 高磁束密度低鉄損方向性電磁鋼板の製造方法
JP2002348611A (ja) * 2001-05-22 2002-12-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2008001977A (ja) 2006-05-24 2008-01-10 Nippon Steel Corp 方向性電磁鋼板の製造方法
WO2011007771A1 (ja) 2009-07-13 2011-01-20 新日本製鐵株式会社 方向性電磁鋼板の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682357C1 (ru) * 2015-07-08 2019-03-19 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электротехническая листовая сталь и способ ее производства
WO2019146694A1 (ja) * 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
WO2019146697A1 (ja) * 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
JPWO2019146694A1 (ja) * 2018-01-25 2021-01-28 日本製鉄株式会社 方向性電磁鋼板
JPWO2019146697A1 (ja) * 2018-01-25 2021-01-28 日本製鉄株式会社 方向性電磁鋼板
JP7010305B2 (ja) 2018-01-25 2022-02-10 日本製鉄株式会社 方向性電磁鋼板
JP7010306B2 (ja) 2018-01-25 2022-02-10 日本製鉄株式会社 方向性電磁鋼板
US11466338B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
WO2020149344A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
JPWO2020149344A1 (ja) * 2019-01-16 2021-12-02 日本製鉄株式会社 フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
RU2771766C1 (ru) * 2019-01-16 2022-05-11 Ниппон Стил Корпорейшн Лист электротехнической стали с ориентированной зеренной структурой, имеющий превосходную адгезию изоляционного покрытия без покрытия из форстерита
JP7339549B2 (ja) 2019-01-16 2023-09-06 日本製鉄株式会社 フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板

Also Published As

Publication number Publication date
EP2664689A1 (en) 2013-11-20
US20130292006A1 (en) 2013-11-07
BR112013017778A2 (pt) 2016-10-11
EP2664689B1 (en) 2019-04-03
US10208372B2 (en) 2019-02-19
KR101453235B1 (ko) 2014-10-22
PL2664689T3 (pl) 2019-09-30
CN103314126B (zh) 2015-03-11
PL2664689T4 (pl) 2019-09-30
JPWO2012096350A1 (ja) 2014-06-09
BR112013017778B1 (pt) 2019-05-14
JP5224003B2 (ja) 2013-07-03
RU2013137435A (ru) 2015-02-20
BR122018072170B1 (pt) 2019-05-14
KR20130101575A (ko) 2013-09-13
EP2664689A4 (en) 2014-07-30
RU2562182C2 (ru) 2015-09-10
CN103314126A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5224003B2 (ja) 方向性電磁鋼板及びその製造方法
JP4823719B2 (ja) 磁気特性が極めて優れた方向性電磁鋼板の製造方法
JP5954347B2 (ja) 方向性電磁鋼板およびその製造方法
JP4709949B2 (ja) 方向性電磁鋼板の製造方法
JP4709950B2 (ja) 方向性電磁鋼板の製造方法
CN107614725B (zh) 取向性电磁钢板及其制造方法
WO2011148849A1 (ja) 一方向性電磁鋼板の製造方法
JP6439665B2 (ja) 方向性電磁鋼板の製造方法
JP2017020059A (ja) 方向性電磁鋼板とその製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP2014196558A (ja) 方向性電磁鋼板の製造方法
JP2007138199A (ja) 一方向性電磁鋼板の製造方法
JP2019099827A (ja) 方向性電磁鋼板の製造方法
JP5332946B2 (ja) 窒化型方向性電磁鋼板の窒化後のコイル巻き取り方法
JP6205710B2 (ja) 方向性電磁鋼板およびその製造方法
KR20190093614A (ko) 방향성 전자 강판 및 그 제조 방법
JP7352108B2 (ja) 方向性電磁鋼板
JP2019099839A (ja) 方向性電磁鋼板の製造方法
JP4604827B2 (ja) 一方向性電磁鋼板の製造方法
JP4569353B2 (ja) 一方向性電磁鋼板の製造方法
JP2012144777A (ja) 電磁鋼板素材及び方向性電磁鋼板の製造方法
KR20220128653A (ko) 방향성 전자 강판의 제조 방법
JP2012144776A (ja) 方向性電磁鋼板の製造方法
JP5011712B2 (ja) 一方向性電磁鋼板の製造方法
JP2019002039A (ja) レーザー磁区制御用方向性電磁鋼板とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012520602

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017835

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012734045

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013137435

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013017778

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013017778

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130711