WO2020145315A1 - 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤 - Google Patents

方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤 Download PDF

Info

Publication number
WO2020145315A1
WO2020145315A1 PCT/JP2020/000339 JP2020000339W WO2020145315A1 WO 2020145315 A1 WO2020145315 A1 WO 2020145315A1 JP 2020000339 W JP2020000339 W JP 2020000339W WO 2020145315 A1 WO2020145315 A1 WO 2020145315A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
content
hydroxide
carbonate
mgo
Prior art date
Application number
PCT/JP2020/000339
Other languages
English (en)
French (fr)
Inventor
田中 一郎
龍太郎 山縣
宣郷 森重
隆史 片岡
高橋 克
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112021012738-0A priority Critical patent/BR112021012738A2/pt
Priority to JP2020565184A priority patent/JP7205555B2/ja
Priority to KR1020217020594A priority patent/KR102564833B1/ko
Priority to CN202080008251.8A priority patent/CN113260720B/zh
Priority to EP20738994.1A priority patent/EP3910081A4/en
Priority to US17/421,562 priority patent/US11591668B2/en
Publication of WO2020145315A1 publication Critical patent/WO2020145315A1/ja
Priority to US18/096,276 priority patent/US20230160034A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/57Treatment of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet, a method for producing the same, and an annealing separator.
  • Oriented electrical steel sheet is a steel sheet containing Si in an amount of about 0.5 to 7% by mass and having crystallographic orientations integrated in the ⁇ 110 ⁇ 001> orientation (Goss orientation). A grain growth phenomenon due to secondary recrystallization is used to control the crystal orientation.
  • the method of manufacturing grain-oriented electrical steel is as follows.
  • the slab is heated and hot rolled to produce a hot rolled steel sheet.
  • the hot rolled steel sheet is annealed as necessary.
  • the hot-rolled steel sheet after pickling is cold-rolled at a cold rolling ratio of 80% or more to produce a cold-rolled steel sheet.
  • Decarburization annealing is performed on the cold rolled steel sheet to develop primary recrystallization.
  • Finish annealing is performed on the cold rolled steel sheet after decarburization annealing to develop secondary recrystallization.
  • an aqueous slurry containing an annealing separator having MgO as a main component is applied to the surface of the cold rolled steel sheet and dried (baked).
  • finish annealing is performed.
  • MgO in the annealing separator reacts with SiO 2 in the internal oxide layer formed on the surface of the cold-rolled steel sheet during decarburizing annealing, and forsterite (Mg 2 SiO 4 ) is contained as the main component.
  • a primary coating is formed on the surface.
  • an insulating coating (also called secondary coating) made of, for example, colloidal silica and phosphate is formed on the primary coating.
  • the thermal expansion coefficient of the primary coating and the insulating coating is smaller than that of the steel sheet. Therefore, the primary coating, together with the insulating coating, imparts tension to the steel sheet to reduce iron loss.
  • the primary coating further enhances the adhesion of the insulating coating to the steel sheet. Therefore, it is preferable that the adhesion of the primary coating to the steel sheet is high.
  • the steel sheet contains a magnetic property improving element, a part of the primary coating agglomerates, the interface between the steel sheet and the primary coating easily flattens, and the adhesion of the primary coating to the steel sheet decreases.
  • Patent Literatures 4 and 5 describe techniques for increasing the adhesion of the primary coating to the steel sheet.
  • Patent Document 4 describes that Ce, La and the like are added to the annealing separator in an amount of 0.001 to 1000 mg/m 2 per one surface in a basis weight of Ce, La and the like in the primary coating.
  • Patent Document 5 describes that the specific surface area of the main component MgO of the annealing separator is controlled, and at least one compound of Ca, Sr and Ba is added to the annealing separator to improve the film properties. ing.
  • JP-A-6-88171 Japanese Patent Laid-Open No. 8-269552 JP, 2005-290446, A JP 2012-214902 A Japanese Patent Laid-Open No. 11-302730
  • the present inventors have found that the grain-oriented electrical steel sheet contains Ce or La in the annealing separator as described in Patent Document 4.
  • Increasing the amount or increasing the content of Ca, Sr, or Ba in the annealing separator as described in Patent Document 5 improves the film adhesion of the grain-oriented electrical steel sheet, but deteriorates the magnetic properties. It turns out that there are cases. It was also found that there is a region in the surface of the steel sheet where the coating adhesion is poor, and further improvement of the coating adhesion is required.
  • An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for producing the same, which are excellent in magnetic properties, which are excellent in magnetic properties, and which are excellent in adhesion to a steel sheet of a primary coating, and an annealing separator. ..
  • the present invention is as listed below. (1)% by mass, C: 0.005% or less, Si: 2.5 to 4.5%, Mn: 0.050 to 1.000%, sum of S and Se: 0.005% or less, sol .
  • a grain-oriented electrical steel sheet comprising a primary coating containing as a main component, The peak position of Al emission intensity obtained when performing elemental analysis by glow discharge emission spectrometry in the plate thickness direction of the grain-oriented electrical steel sheet from the surface of the primary film is from the surface of the primary film to the plate thickness direction.
  • a cold rolling step of rolling to produce a cold rolled steel sheet A decarburization annealing step of performing decarburization annealing on the cold-rolled steel sheet, An aqueous slurry containing an annealing separator containing MgO as a main component is applied to the surface of the cold rolled steel sheet after the decarburization annealing, and the aqueous slurry on the surface of the cold rolled steel sheet is dried in a furnace at 400 to 1000°C.
  • the annealing separator contains MgO, one or more of Ca, Sr or Ba hydroxide, sulfate or carbonate, and one or more of Ti compound, Y compound, La compound or Ce compound,
  • the particle size distribution of MgO is such that the content of particles having a particle size of 1.0 ⁇ m or less is 20 to 30 mass% and the content of particles having a particle size of 10 ⁇ m or more is 2 to 5 mass with respect to the content of MgO.
  • the Ca, Sr, or Ba hydroxide, sulfate, or carbonate is contained in a total amount of 0.5 to 10.0% by mass with respect to the MgO content, and based on the MgO content.
  • the average particle size ratio of salt or carbonate is 0.8 to 2.5
  • X means the highest value of [Ca], [Sr], or [Ba].
  • the average particle size of the hydroxide, sulfate or carbonate of the element having the highest content among the hydroxides, sulfates or carbonates of Ca, Sr or Ba is 1.0 to 10.0 ⁇ m.
  • the particle size distribution of MgO is such that the content of particles having a particle size of 1.0 ⁇ m or less is 20 to 30 mass% and the content of particles having a particle size of 10 ⁇ m or more is 2 to 5 mass with respect to the content of MgO. %,
  • the Ca, Sr, or Ba hydroxide, sulfate, or carbonate is contained in a total amount of 0.5 to 10.0% by mass with respect to the MgO content, and based on the MgO content.
  • the average particle size ratio of salt or carbonate is 0.8 to 2.5
  • An annealing separator wherein the content of the Ti compound, the Y compound, the La compound or the Ce compound is 1.0 to 15.0 mass% in total with respect to the MgO.
  • X means the highest value of [Ca], [Sr], or [Ba].
  • the average particle size of the hydroxide, sulfate or carbonate of the element having the highest content among the hydroxides, sulfates or carbonates of Ca, Sr or Ba is 1.0 to 10.0 ⁇ m.
  • the root of the primary coating is formed before the SiO 2 in the internal oxide layer is aggregated and coarsened. It is possible to develop a fitting structure at the interface of the steel sheet. Therefore, according to one aspect of the present invention, it is possible to provide a grain-oriented electrical steel sheet which can improve the deterioration of the coating adhesion in the conventional technique and is excellent in the magnetic properties and the adhesion of the primary coating to the steel sheet.
  • a grain-oriented electrical steel sheet according to one aspect of the present invention includes a base material steel sheet and a primary coating mainly composed of forsterite (Mg 2 SiO 4 ) and formed on the surface of the base material steel sheet.
  • a primary coating mainly composed of forsterite (Mg 2 SiO 4 ) and formed on the surface of the base material steel sheet.
  • On top of the primary coating there may be an insulating coating composed of, for example, colloidal silica and phosphate. Both the primary coating and the insulating coating have a coefficient of thermal expansion smaller than that of the steel sheet, so that tension is applied to the steel sheet to reduce iron loss.
  • the secondary coating peels off from the steel sheet together with the primary coating, so that the adhesion of the primary coating to the steel sheet is preferably high.
  • the "main component” refers to a component contained in a certain substance in an amount of 50% by mass or more, and the main component is preferably contained in a certain substance in an amount of 70% by mass or more, more preferably 90% by mass or more. ..
  • the base material steel sheet forming the grain-oriented electrical steel sheet according to one embodiment of the present invention contains the elements listed below. As described in Section 2 below, the base steel sheet is manufactured by performing cold rolling, decarburization annealing, and finish annealing on a hot rolled steel sheet having a chemical composition described later. First, the essential elements will be explained.
  • C 0.005% or less C is an element effective in controlling the microstructure until the completion of the decarburization annealing process in the manufacturing process.
  • the C content is 0.005% or less, preferably 0.003% or less.
  • the C content is low, but even if the C content is reduced to less than 0.0001%, the effect of controlling the structure is saturated and the manufacturing cost only increases. Therefore, the C content is preferably 0.0001% or more.
  • Si 2.5-4.5% Si increases the electrical resistance of steel and reduces eddy current loss. If the Si content is less than 2.5%, the effect of reducing eddy current loss cannot be sufficiently obtained. On the other hand, if the Si content exceeds 4.5%, the cold workability of steel deteriorates. Therefore, the Si content is 2.5 to 4.5%.
  • the Si content is preferably 2.7% or more, more preferably 2.8% or more. On the other hand, the Si content is preferably 4.2% or less, more preferably 4.0% or less.
  • Mn 0.050 to 1.000% Mn combines with S and Se described later during the manufacturing process to form MnS and MnSe. These precipitates function as inhibitors (inhibitors of normal grain growth) and develop secondary recrystallization in steel. Mn also enhances the hot workability of steel. If the Mn content is less than 0.050%, these effects cannot be sufficiently obtained. On the other hand, if the Mn content exceeds 1.000%, secondary recrystallization does not occur and the magnetic properties of the steel deteriorate. Therefore, the Mn content is 0.050 to 1.000%.
  • the Mn content is preferably 0.060% or more, more preferably 0.065% or more. On the other hand, the Mn content is preferably 0.400% or less, more preferably 0.200% or less.
  • sol. Al 0.005% or less Al combines with N during the manufacturing process of the grain-oriented electrical steel sheet to form AlN that functions as an inhibitor. However, sol. If the Al content exceeds 0.005%, the inhibitor excessively remains in the base steel sheet, and the magnetic properties deteriorate. Therefore, sol.
  • the Al content is 0.005% or less. sol.
  • the Al content is preferably 0.004% or less, more preferably 0.003% or less. sol.
  • the Al content is preferably as low as possible. However, sol. Even if the Al content is reduced to less than 0.0001%, the manufacturing cost only increases. Therefore, the sol.
  • the Al content is preferably 0.0001% or more. In the present specification, sol. Al means acid-soluble Al.
  • N 0.005% or less N combines with Al in the manufacturing process to form AlN that functions as an inhibitor. However, if the N content exceeds 0.005%, the inhibitor excessively remains in the grain-oriented electrical steel sheet, and the magnetic properties deteriorate. Therefore, the N content is 0.005% or less.
  • the N content is preferably 0.004% or less, more preferably 0.003% or less.
  • the N content is preferably as low as possible. However, even if the N content is reduced to less than 0.0001%, the manufacturing cost only increases. Therefore, the N content is preferably 0.0001% or more.
  • the balance of the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet according to one aspect of the present invention is Fe and impurities.
  • impurities are those that are mixed in from the ore as raw material, scrap, or the manufacturing environment when industrially manufacturing the base steel sheet, and are not removed from the steel during finish annealing (not purified).
  • it means the following elements remaining in the steel, which are allowed to be contained in a content that does not adversely affect the action of the grain-oriented electrical steel sheet according to one embodiment of the present invention.
  • the total content of one or more of Sn, Sb, Cu, Bi, Te, or Pb is 0.03% or less.
  • the grain-oriented electrical steel sheet according to one aspect of the present invention includes a primary coating.
  • the primary coating is formed on the surface of the base steel sheet.
  • the main component of the primary coating is forsterite (Mg 2 SiO 4 ).
  • the primary coating consists of SiO 2 in the internal oxide layer formed on the surface layer of the steel sheet in the decarburization annealing step, and MgO which is the main component of the annealing separator applied and dried on the steel sheet before the finish annealing. It is formed by reacting in.
  • a grain-oriented electrical steel sheet in the production of a grain-oriented electrical steel sheet, it contains at least one of a Ti compound, a Y compound, a La compound or a Ce compound, and further contains a hydroxide, a sulfate or a carbonate of Ca, Sr or Ba.
  • An annealing separator containing one or more salts is used.
  • Peak position of Al emission intensity by glow discharge emission spectrometry (GDS method): within a range of 2.0 to 12.0 ⁇ m in the plate thickness direction from the surface of the primary coating A plate of grain-oriented electrical steel sheet from the surface of the primary coating The peak position of the Al emission intensity obtained when elemental analysis is performed in the thickness direction by glow discharge emission analysis is within the range of 2.0 to 12.0 ⁇ m in the plate thickness direction from the surface of the primary coating.
  • the interface between the primary coating and the steel sheet has a fitting structure. Specifically, a part of the primary coating enters the inside of the steel sheet from the surface of the steel sheet. A part of the primary coating that has penetrated from the surface of the steel sheet into the inside of the steel sheet exhibits a so-called anchor effect to enhance the adhesion of the primary coating to the steel sheet.
  • a part of the primary coating that enters the inside of the steel sheet from the surface of the steel sheet is defined as the “root of the primary coating”.
  • the main component of the root of the primary coating is spinel (MgAl 2 O 4 ) which is a type of Al oxide.
  • the peak of Al emission intensity obtained when elemental analysis is performed by glow discharge emission spectrometry indicates the position where spinel exists.
  • the depth position from the surface of the primary coating of the Al emission intensity peak is defined as the Al peak position D Al ( ⁇ m).
  • the Al peak position D Al being less than 2.0 ⁇ m means that the spinel is formed at a shallow position from the surface of the steel sheet, that is, the root of the primary coating is shallow. In this case, the adhesion of the primary coating is low.
  • the Al peak position D Al exceeds 12.0 ⁇ m it means that the root of the primary coating is excessively developed, and the root of the primary coating penetrates deep inside the steel sheet. In this case, the root of the primary coating hinders the domain wall movement, and the magnetic characteristics deteriorate.
  • the Al peak position D Al is 2.0 to 12.0 ⁇ m, the adhesion of the primary coating can be enhanced while maintaining excellent magnetic properties.
  • the Al peak position D Al is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more.
  • the Al peak position D Al is preferably 11.0 ⁇ m or less, more preferably 10.0 ⁇ m or less.
  • the Al peak position D Al is measured by the following method. Elemental analysis is performed using the well-known glow discharge emission analysis method (GDS method). Specifically, an Ar atmosphere is set on the surface of the grain-oriented electrical steel sheet. A voltage is applied to the grain-oriented electrical steel sheet to generate glow plasma, and the surface layer of the steel sheet is sputtered and analyzed in the sheet thickness direction. The Al contained in the surface layer of the steel sheet is identified based on the emission spectrum wavelength peculiar to the element generated by the atoms being excited in the glow plasma. Further, the emission intensity of the identified Al is plotted in the depth direction. The Al peak position D Al is obtained based on the plotted Al emission intensity.
  • GDS method glow discharge emission analysis method
  • the depth position from the surface of the primary coating in elemental analysis is calculated based on the sputtering time. Specifically, the relationship between the sputter time and the sputter depth (hereinafter referred to as the sample result) is obtained in advance in the standard sample, and the sputter time is converted into the sputter depth using the sample result.
  • the converted sputter depth is defined as a depth position (depth position from the surface of the primary coating) obtained by elemental analysis (Al analysis).
  • a commercially available high frequency glow discharge emission spectrometer can be used.
  • the Al peak position D Al corresponds to the root portion of the primary coating.
  • the total peripheral length of the Al oxide is less than 0.20 ⁇ m/ ⁇ m 2 , the roots of the primary coating are not sufficiently formed. Therefore, the adhesion of the primary coating to the steel sheet is low.
  • the total sum of the peripheral lengths of Al oxide exceeds 1.00 ⁇ m/ ⁇ m 2 , the roots of the primary coating excessively develop and the roots of the primary coating penetrate deep inside the steel sheet. The roots impede secondary recrystallization and domain wall motion, and the magnetic properties deteriorate. Therefore, the total sum of the peripheral lengths of the Al oxides is 0.20 to 1.00 ⁇ m/ ⁇ m 2 .
  • the total circumference of the Al oxides is preferably 0.25 ⁇ m/ ⁇ m 2 or more, more preferably 0.27 ⁇ m/ ⁇ m 2 or more.
  • the total circumference of Al oxides is preferably 0.98 ⁇ m/ ⁇ m 2 or less, and more preferably 0.95 ⁇ m/ ⁇ m 2 or less.
  • the total circumference of the Al oxides can be obtained by the following method.
  • a glow discharge emission analyzer is used to perform glow discharge up to the Al peak position D Al .
  • an arbitrary 36 ⁇ m ⁇ 50 ⁇ m region is subjected to elemental analysis by an energy dispersive X-ray spectrometer (EDS), and Al oxide in the observation region is observed.
  • EDS energy dispersive X-ray spectrometer
  • Al oxide in the observation region is observed.
  • Specify Specifically, with respect to the maximum intensity of the characteristic X-ray of O in the observation region, a region in which 50% or more of the characteristic X-ray intensity of O is analyzed is specified as an oxide.
  • the specified oxide region a region in which 30% or more of the specific X-ray intensity of Al is analyzed with respect to the maximum intensity of the specific X-ray of Al is specified as an Al oxide.
  • the specified Al oxide is mainly spinel, and may be a silicate containing various alkaline earth metals and Al at high concentrations.
  • the perimeter ( ⁇ m) was calculated from the shape of the specified Al oxide in the analysis result of the EDS image data, and based on this, the sum of the perimeters of the Al oxide per unit area ( ⁇ m 2 ) of the observation region ( ⁇ m) (unit: ⁇ m/ ⁇ m 2 ) As described above, the total sum of the peripheral lengths of the Al oxide in the present disclosure means the total sum of the peripheral lengths of the Al oxide per unit area of the observation region.
  • the number density of Al oxides at the Al peak position D Al is 0.02 to 0.20 pieces/ ⁇ m 2 .
  • the Al peak position D Al corresponds to the root portion of the primary coating.
  • the number density ND of Al oxides exceeds 0.20 pieces/ ⁇ m 2 , the roots of the primary coating excessively develop and the roots of the primary coating penetrate to deep inside the steel sheet, and Since the secondary recrystallization and the domain wall motion are hindered, the magnetic properties are deteriorated. Therefore, the number density ND of Al oxides is 0.02 to 0.20 pieces/ ⁇ m 2 .
  • the number density ND of Al oxides is preferably 0.025/ ⁇ m 2 or more.
  • the Al oxide number density ND is preferably 0.18/ ⁇ m 2 or less, and more preferably 0.15/ ⁇ m 2 or less.
  • the Al oxide number density ND can be obtained by the following method.
  • a glow discharge emission analyzer is used to perform glow discharge up to the Al peak position D Al .
  • an arbitrary 36 ⁇ m ⁇ 50 ⁇ m region is subjected to elemental analysis by an energy dispersive X-ray spectrometer (EDS), and Al oxide in the observation region is observed. Specify.
  • a region in which 50% or more of the characteristic X-ray intensity of O is analyzed is specified as an oxide.
  • a region in which 30% or more of the intensity of the specific X-ray of Al is analyzed with respect to the maximum intensity of the specific X-ray of Al is specified as the Al oxide.
  • the grain-oriented electrical steel sheet described above can be produced, for example, by the method for producing a grain-oriented electrical steel sheet according to one aspect of the present invention.
  • the manufacturing method according to one aspect of the present invention includes a cold rolling step, a decarburizing step, and a finish annealing step. Hereinafter, each process will be sequentially described.
  • Cold Rolling Process In the cold rolling process, C: 0.100% or less, Si: 2.5 to 4.5%, Mn: 0.050 to 1.000%, one or more of S and Se. : 0.002 to 0.050% in total, sol. Al: 0.005 to 0.050% and N: 0.001 to 0.030% are contained as essential elements, one or more of Sb, Sn and Cu: 0.30% or less in total, and , Bi, Te and Pb: One or more of 0.0300% or less in total is contained as an optional element, and the balance is 80% or more in a hot rolled steel sheet having a chemical composition of Fe and impurities. Cold rolling is performed at a cold rolling rate to manufacture a cold rolled steel sheet. The reasons for limiting the chemical composition of the hot rolled steel sheet will be described.
  • (1-1-1) C 0.100% or less
  • the C content of the hot-rolled steel sheet exceeds 0.100%, the time required for decarburization annealing becomes long, the manufacturing cost increases, and the production Sex is also reduced. Therefore, the C content of the hot rolled steel sheet is 0.100% or less.
  • the C content of the hot-rolled steel sheet is preferably 0.080% or less, more preferably 0.070% or less.
  • Si (1-1-2) Si: 2.5-4.5% As described above in the section of the chemical composition of the grain-oriented electrical steel sheet, Si increases the electric resistance of steel, but if it is contained in excess, the cold workability deteriorates. If the Si content is 2.5 to 4.5%, the Si content of the grain-oriented electrical steel sheet after the finish annealing step will be 2.5 to 4.5%.
  • Mn 0.050 to 1.000%
  • Mn combines with S and Se during the manufacturing process to form a precipitate that functions as an inhibitor. Mn further enhances the hot workability of steel. If the Mn content of the hot-rolled steel sheet is 0.050 to 1.000%, the Mn content of the grain-oriented electrical steel sheet after the finish annealing step will be 0.050 to 1.000%.
  • sol. Al 0.005-0.050%
  • AlN functions as an inhibitor.
  • the Al content is 0.005 to 0.050%. sol.
  • the Al content is preferably 0.040% or less, more preferably 0.030% or less. On the other hand, sol.
  • the Al content is preferably 0.010% or more, more preferably 0.020% or more.
  • N 0.001 to 0.030%
  • N combines with Al to form AlN that functions as an inhibitor. If the N content is less than 0.001%, this effect cannot be obtained. On the other hand, when the N content exceeds 0.030%, AlN becomes coarse, AlN becomes difficult to function as an inhibitor, and secondary recrystallization may not occur. Therefore, the N content is 0.001 to 0.030%.
  • the N content is preferably 0.012% or less, more preferably 0.010% or less. On the other hand, the N content is preferably 0.005% or more, more preferably 0.006% or more.
  • the hot-rolled steel sheet further has one or more of Sb, Sn or Cu as an optional element, 0.30% in total.
  • Sb, Sn, or Cu is an optional element that is contained if necessary, and may not be contained. When contained, any of Sb, Sn or Cu enhances the magnetic flux density of the grain-oriented electrical steel sheet. If Sb, Sn, or Cu is contained at all, the magnetic flux density is increased.
  • the total content of Sb, Sn or Cu exceeds 0.30%, it becomes difficult to form an internal oxide layer during decarburization annealing, and during finish annealing, MgO of the annealing separator and SiO 2 of the internal oxide layer are not formed. Since the formation of the primary coating that progresses in response to the reaction is delayed, the adhesion of the formed primary coating decreases. Therefore, the total content of Sb, Sn or Cu is 0.00 to 0.30%.
  • the total content of Sb, Sn or Cu is preferably 0.005% or more, more preferably 0.007% or more.
  • the total content of Sb, Sn or Cu is preferably 0.25% or less, more preferably 0.20% or less.
  • the hot-rolled steel sheet further contains one or more kinds of Bi, Te or Pb as an optional element in total of 0. You may contain 0300% or less. Bi, Te and Pb are all optional elements and may not be contained.
  • the magnetic flux density of the grain-oriented electrical steel sheet can be further increased by containing at least one of these elements. However, if the total content of these elements exceeds 0.0300%, these elements segregate on the surface during finish annealing, and the interface between the primary coating and the steel sheet becomes flat, so the coating adhesion of the primary coating decreases. To do. Therefore, the total content of one or more of Bi, Te and Pb is 0.0000 to 0.0300%. The total content of one or more of Bi, Te and Pb is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the balance of the chemical composition of the hot rolled steel sheet is Fe and impurities.
  • the impurities are those that are mixed from ore as a raw material, scrap, or the manufacturing environment when industrially manufacturing a hot-rolled steel sheet, and of the grain-oriented electrical steel sheet according to one aspect of the present invention. It means that it is permissible as long as it does not adversely affect the action.
  • the hot rolled steel sheet having the above chemical composition is manufactured by a known method.
  • An example of the method for manufacturing the hot rolled steel sheet is as follows. A slab having the same chemical composition as the hot rolled steel sheet described above is prepared. The slab is manufactured through known refining and casting processes. Heat the slab. The heating temperature of the slab is, for example, more than 1280°C and not more than 1350°C. Hot rolling is performed on the heated slab to manufacture a hot rolled steel sheet.
  • the prepared hot rolled steel sheet is cold rolled to produce a cold rolled steel sheet which is a base material steel sheet.
  • the cold rolling may be performed only once or may be performed multiple times.
  • intermediate annealing is performed for the purpose of softening, and then cold rolling is performed.
  • a cold rolled steel sheet having a product sheet thickness (sheet thickness as a product) is manufactured by performing cold rolling once or a plurality of times.
  • the cold rolling rate in one or more times of cold rolling is 80% or more.
  • the cold rolling rate (%) is defined as follows.
  • Cold rolling rate (%) ⁇ 1-(plate thickness of cold rolled steel plate after the last cold rolling)/(plate thickness of hot rolled steel plate before the start of the first cold rolling) ⁇ 100
  • the cold rolling rate is preferably 95% or less.
  • the hot rolled steel sheet may be heat-treated or may be pickled before cold rolling the hot rolled steel sheet.
  • decarburization annealing step decarburization annealing is performed on the cold rolled steel sheet obtained through the cold rolling step.
  • the steel sheet manufactured by the cold rolling process is decarburized and annealed, if necessary.
  • the decarburization annealing is performed in a well-known wet atmosphere containing hydrogen-nitrogen.
  • the decarburization annealing reduces the C concentration of the grain-oriented electrical steel sheet to 50 ppm or less.
  • primary recrystallization appears in the steel sheet and the working strain introduced by the cold rolling process is released.
  • an internal oxide layer containing SiO 2 as a main component is formed on the surface layer of the steel sheet.
  • the annealing temperature in decarburization annealing is well known, and is, for example, 750 to 950°C.
  • the holding time at the annealing temperature is, for example, 1 to 5 minutes.
  • Finish annealing is performed on the steel sheet after the decarburizing annealing step.
  • finish annealing step first, an aqueous slurry containing an annealing separator is applied to the surface of the cold rolled steel sheet after decarburization annealing, and the aqueous slurry on the surface of the cold rolled steel sheet is dried in a furnace at 400 to 1000°C. .. Annealing (finish annealing) is performed on the steel sheet coated and dried with the aqueous slurry.
  • Aqueous Slurry The aqueous slurry is refined by adding water (typically industrial pure water) to an annealing separator described later and stirring the mixture.
  • the ratio of the annealing separator and water may be determined so that the required coating amount can be obtained when applied with a roll coater.
  • the ratio of water to the annealing separator is preferably 2 to 20 times by mass. ..
  • the ratio of water to the annealing separator is twice or more, it is preferable that the viscosity of the water slurry does not become too high and the annealing separator can be uniformly applied to the steel sheet surface.
  • the drying of the water slurry does not become insufficient in the subsequent drying step, and the moisture remaining in the finish annealing further deteriorates the appearance of the primary coating due to additional oxidation of the steel sheet. Is less likely to occur, which is preferable.
  • the annealing separation agent according to one aspect of the present invention used in the finish annealing step contains MgO as a main component.
  • Adhesion amount of the steel sheet in the annealing separating agent, per side for example, preferably 2 g / m 2 or more 10 g / m 2 or less.
  • the amount of the annealing separator adhering to the steel sheet is 2 g/m 2 or more, it is preferable that the steel sheets hardly stick to each other in the finish annealing.
  • the amount of the annealing separator attached to the steel sheet is 10 g/m 2 or less, the manufacturing cost does not increase, which is preferable.
  • the particle size distribution of MgO, the median diameter of MgO, the average particle diameter (that is, the volume average diameter MV) of hydroxide, sulfate, or carbonate of Ca, Sr, or Ba described in the present disclosure is JIS Z8825 (2013). Is a volume-based value measured by a laser diffraction/scattering method according to Therefore, the content of each of the particles of MgO having a particle diameter of 1.0 ⁇ m or less and the content of particles having a particle diameter of 10 ⁇ m or more is the above-mentioned volume-based value expressed on a mass basis.
  • MgO which is the main component of the annealing separator, has the following particle size distribution.
  • the content of particles having a particle size of 1.0 ⁇ m or less is 20 to 30% and the content of particles having a particle size of 10 ⁇ m or more is 2 to 5% with respect to the content of MgO contained in the annealing separator. is there.
  • the annealing separator contains at least one Ca, Sr, or Ba hydroxide, sulfate, or carbonate.
  • the content of Ca, Sr, or Ba hydroxide, sulfate, or carbonate is 0.5 to 10.0% in total with respect to the content of MgO contained in the annealing separator.
  • the amount may be, for example, 1.0% or more, or 1.5% or more, or 2.0% or more, for example, 9.5% or less, or 9.0% or less, or 8.5% May be: Further, a value obtained by dividing the content of Ca hydroxide, sulfate or carbonate with respect to the content of MgO by the molecular weight of the hydroxide of Ca, sulfate or carbonate, or the hydroxide of Sr with respect to the content of MgO. , The content of sulfate or carbonate divided by the molecular weight of Sr hydroxide, sulfate or carbonate, and the content of Ba hydroxide, sulfate or carbonate with respect to the content of MgO is Ba.
  • the average particle diameter of the hydroxide, sulfate or carbonate of Ca, Sr or Ba is one aspect. At 1.0 to 10.0 ⁇ m.
  • the average particle diameter may be, for example, 1.5 ⁇ m or more, or 2.0 ⁇ m or more, or 2.5 ⁇ m or more, and for example, 8.0 ⁇ m or less, or 6.0 ⁇ m or less, or 5.0 ⁇ m or less, Good.
  • it is preferable that the average particle size of the compound of the element having the highest content (that is, the content on the mass basis) of Ca, Sr, or Ba is in the above range.
  • an annealing separator is selected from Ca hydroxide, Ca sulfate, Ca carbonate, Sr hydroxide, Sr sulfate, Sr carbonate, Ba hydroxide, Ba sulfate and Ba carbonate.
  • the average particle diameter of the whole compound is within the above range.
  • Ratio of average particle diameter of hydroxide, sulfate or carbonate of Ca, Sr or Ba to median diameter of MgO Median diameter of MgO (particle diameter corresponding to median of particle size distribution)
  • the ratio of the average particle diameters of the hydroxide, sulfate or carbonate of Ca, Sr or Ba is 0.8 to 2.5 in one embodiment.
  • the ratio can be, for example, 1.0 or more, or 1.1 or more, and can be, for example, 2.3 or less, or 2.0 or less.
  • the ratio of the average particle diameters of the compounds contained in the annealing separator is within the above range.
  • the median diameter (ie, D 50 particle size) of MgO may be 1.50 ⁇ m or more, or 1.80 ⁇ m or more, or 2.00 ⁇ m or more in one embodiment, and 5.00 ⁇ m or less, or 3. It may be 00 ⁇ m or less.
  • the annealing separator contains at least one Ti compound, Y compound, La compound or Ce compound.
  • the content of the Ti compound, the Y compound, the La compound or the Ce compound is 1.0 to 15.0% in total with respect to the content of MgO contained in the annealing separator.
  • the amount may be, for example, 1.5% or more, or 2.0% or more, or 2.5% or more, for example, 14.0% or less, or 13.5% or less, or 13.0% May be:
  • the Ti compound, Y compound, La compound or Ce compound is preferably an oxide or a hydroxide.
  • the interface between the primary coating of the grain-oriented electrical steel sheet and the steel sheet has a fitting structure. Specifically, in the vicinity of the interface between the primary coating and the steel sheet, the root of the primary coating extends around the inside of the steel sheet. The more the root of the primary coating penetrates into the steel sheet, the higher the adhesion of the primary coating to the steel sheet. Furthermore, the more the roots of the primary coating are dispersed inside the steel sheet (the tighter it is stretched), the higher the adhesion of the primary coating to the steel sheet.
  • the roots of the primary coating impede secondary recrystallization of the Goss orientation and cause random orientation. Crystal grains increase in the surface layer. Furthermore, the root of the primary coating becomes a factor that hinders the domain wall movement, deteriorating the magnetic characteristics.
  • the decrease in adhesion of the primary coating in the conventional technology is caused by the flattening of the interface structure between the steel sheet and the primary coating due to the aggregation of the roots of the primary coating. Therefore, the film adhesion has been improved by adding compounds such as Ce and La to the annealing separator and adding compounds such as Ca, Sr, or Ba.
  • the present inventors rather inhibit the film formation when a compound of Ca, Sr, or Ba is added in combination, and It was found that reducing the diameter of the compound of Ca, Sr, or Ba is effective for improving the adhesion of the primary coating.
  • MgO which is the main component of the annealing separator, requires not only fine particles that contribute to the formation of the primary coating, but also specific particles including larger diameter particles that affect the shape of the steel sheet after finish annealing. It is important to have a particle size distribution of, and in order to obtain the effect of improving the film adhesion by reducing the diameter of the compound of Ca, Sr, or Ba, the median diameter of MgO and the compound of Ca, Sr, or Ba It has been found that the ratio of the average particle size of is important.
  • Patent Documents 4 and 5 neither describe nor suggest the improvement of coating adhesion by reducing the diameter of the compound of Ca, Sr, or Ba added to the annealing separator and controlling the grain size with MgO.
  • the peak position of Al emission intensity in the plate thickness direction by glow discharge emission spectrometry is the position where spinel exists, that is, Corresponds to the root depth of the primary capsule.
  • the element distribution at the Al emission intensity peak position corresponds to the element distribution at the root position of the primary film
  • the Al distribution state corresponds to the spinel dispersed state, that is, the root dispersed state of the primary film.
  • the present inventors investigated the structure of the primary coating of the grain-oriented electrical steel sheet obtained under the condition that the diameter of the compound of Ca, Sr, or Ba was different by the above method, and made the diameter of the compound of Ca, Sr, or Ba smaller.
  • a new finding was obtained that the number density of Al oxides at the peak position of Al emission intensity and the sum of the perimeters increase, that is, the root of the primary coating develops by reducing the diameter of the compound of Ca, Sr, or Ba. ..
  • Ca, Sr, and Ba diffuse faster in SiO 2 than Mg. Therefore, when a compound of Ca, Sr, or Ba is added to the annealing separator, SiO 2 in the internal oxide layer reacts with these elements before they aggregate and coarsen, and a stable oxide with a low oxygen potential is formed in the inner layer. Is presumed to form.
  • this stable oxide suppresses the flattening of the interface structure between the steel sheet and the primary coating and develops the roots of the primary coating.
  • MgO which is the main component of the annealing separator
  • the average particle size of the hydroxide, sulfate or carbonate of Ca, Sr or Ba is less than 1.0 ⁇ m or more than 10 ⁇ m, the flattening of the interface structure between the steel sheet and the primary coating can be sufficiently suppressed.
  • the roots of the primary capsule may not be fully developed. Therefore, the average particle size of the hydroxide, sulfate or carbonate of Ca, Sr or Ba is preferably 1.0 to 10.0 ⁇ m.
  • the average particle size of the compound of the element having the highest content (that is, the content on the mass basis) of Ca, Sr, or Ba is 1.0 to 10.0 ⁇ m.
  • the additive to the annealing separator also affects the inhibitor that is essential for the development of Goss orientation due to secondary recrystallization.
  • Compounds of Ca, Sr, or Ba develop the roots of the primary film through the formation of oxides on the surface.
  • the change in the oxide formation behavior in the surface layer has a great influence on the change behavior of the inhibitor during finish annealing, and tends to destabilize the magnetic properties.
  • Ti compound, Y compound, La compound or Ce compound makes it possible to improve coating adhesion by reducing the diameter of Ca, Sr, or Ba compound and achieve excellent magnetic properties.
  • the roots of the primary coating do not develop.
  • the adhesion is poor, and if it exceeds 10.0%, the formation of the primary coating is suppressed, and as a result, the adhesion is also poor.
  • the root of the primary coating does not develop and the adhesion is poor.
  • the magnetic properties are inferior, and if it exceeds 15.0%, the roots of the primary coating are formed, but the magnetic properties are inferior.
  • MgO has a particle size distribution in which the content of particles with a particle size of 1.0 ⁇ m or less is 20 to 30% on a mass basis, and the content of particles with a particle size of 10 ⁇ m or more is 2 to 5% on a mass basis.
  • the ratio of the average particle diameter of Ca, Sr, or Ba hydroxide, sulfate, or carbonate to the diameter is 0.8 to 2.5.
  • MgO which is the main component of the annealing separator, requires fine particles that contribute to the formation of the primary coating. If the content of particles having a particle size of 1.0 ⁇ m or less is less than 20%, the formation of the primary coating becomes insufficient, while if it exceeds 30%, the reactivity is excessively increased, and the shape of the steel sheet and the workability during coating are improved. Adversely affect. Further, it may also adversely affect the magnetic properties and coating adhesion. Further, even when the number of coarse particles is small, it adversely affects the shape of the steel sheet, and when it is excessively large, it adversely affects the formation of the primary coating. Therefore, the content of particles having a particle size of 10 ⁇ m or more is 2 to 5%.
  • the median diameter of which the large side and the small side are equal and the average particle diameter of the hydroxide, sulfate or carbonate of Ca, Sr or Ba which is an additive to the annealing separator Being equal to each other leads to an increase in the frequency of contact between the surface of the steel sheet after the annealing separator is applied and baked and the compound of Ca, Sr, or Ba.
  • the median size reflects the size of the representative particles in the particle group (ie particles at 50% cumulative volume), while the average particle size reflects the size of all the particles present in the particle group.
  • the contact frequency between the surface of the steel sheet and the compound of Ca, Sr, or Ba can be influenced by the surface area of the compound of Ca, Sr, or Ba, it is possible to control the average particle size of the compound of Ca, Sr, or Ba. It may be advantageous to increase the contact frequency.
  • the additive powders form secondary particles that are aggregated with each other. Considering the particle size of the secondary particles, the hydroxide, sulfate or carbonate of Ca, Sr or Ba with respect to the median diameter of MgO is used. When the ratio of the average particle diameter to 0.8 is 2.5 to 2.5, the effect of forming the root of the primary coating is enhanced and the coating adhesion is improved.
  • the hydroxides of Sr, the hydroxides and carbonates of Ba are not inferior to the effects of the invention, but are deteriorated during handling. Since it is easy to perform, there is a concern that management will be required and productivity will be hindered. Therefore, there is no need to use them unless there is a particular reason.
  • the control of the particle size distribution in the annealing separator is not limited to this.
  • MgO having a desired particle size distribution and Ca, Sr, or Ba hydroxide, sulfate or carbonate (1 having a desired particle size distribution) can be used.
  • a mixture of two or more thereof) and a liquid medium for example, water
  • the disclosed values for particle size distribution may be those of the particles used to prepare the annealing separator.
  • the finish annealing process is performed under the following conditions, for example. Baking is performed before finish annealing. First, the annealing separator of an aqueous slurry is applied to the surface of the steel sheet. A steel sheet having an annealing separator applied on its surface is placed in a furnace kept at 400 to 1000° C. and held (baking treatment). As a result, the annealing separator applied to the surface of the steel sheet dries. The holding time is, for example, 10 to 90 seconds.
  • finish annealing is performed.
  • the annealing temperature is set to, for example, 1150 to 1250° C.
  • the base steel sheet steel sheet to which the annealing separator is applied and dried
  • the soaking time is, for example, 15 to 30 hours.
  • the atmosphere in the furnace during finish annealing is a known atmosphere.
  • a primary coating containing Mg 2 SiO 4 as a main component is formed.
  • the Al peak position D Al exists in the range of 2.0 to 12.0 ⁇ m in the plate thickness direction from the surface of the primary coating.
  • the sum of the peripheral lengths of the Al oxides at the Al peak position D Al is 0.20 to 1.00 ⁇ m/ ⁇ m 2 .
  • the number density ND of Al oxides is 0.02 to 0.20 pieces/ ⁇ m 2 .
  • each element of the chemical composition of hot-rolled steel sheet is removed to some extent from the components in the steel.
  • S, Al, N, etc. that function as inhibitors are largely removed in the finish annealing step. Therefore, as compared with the chemical composition of the hot-rolled steel sheet, the content of the above elements in the chemical composition of the base steel sheet of the grain-oriented electrical steel sheet is low as described above. If the above-described manufacturing method is performed using the hot rolled steel sheet having the above-mentioned chemical composition, a grain-oriented electrical steel sheet having the base material steel sheet having the above-mentioned chemical composition can be manufactured.
  • a secondary coating forming step may be further performed after the finish annealing step.
  • an insulating coating agent containing colloidal silica and phosphate as a main component is applied to the surface of the grain-oriented electrical steel sheet after the temperature is reduced by finish annealing, and then baked.
  • a secondary coating which is a tension insulating coating, is formed on the primary coating.
  • the grain-oriented electrical steel sheet according to one aspect of the present invention may further be subjected to a magnetic domain subdivision processing step after the finish annealing step or the secondary film forming step.
  • the magnetic domain refining treatment step the surface of the grain-oriented electrical steel sheet is irradiated with laser light having a magnetic domain refining effect, or a groove is formed on the surface.
  • a grain-oriented electrical steel sheet having further excellent magnetic properties can be manufactured.
  • molten steel having the chemical composition shown in Table 1 was manufactured in a vacuum melting furnace.
  • a slab was manufactured using the manufactured molten steel.
  • the slab was heated at 1350° C. for 1 hour, and the heated slab was hot-rolled to produce a hot-rolled steel sheet having a plate thickness of 2.3 mm.
  • the chemical composition of the hot-rolled steel sheet was the same as that of molten steel and was as shown in Table 1. It should be noted that “-” in Tables 1 and 2 means that it is not contained.
  • the hot rolled steel sheet was annealed at 1100°C for 120 seconds, and then the hot rolled steel sheet was pickled.
  • the annealing treatment conditions and pickling conditions for the hot rolled steel sheets were the same for all hot rolled steel sheets.
  • the hot-rolled steel sheet after pickling was cold-rolled to produce a cold-rolled steel sheet having a thickness of 0.22 mm.
  • the cold rolling rate was 90.4% in all of the cold rolled steel sheets.
  • aqueous slurry was applied to the cold rolled steel sheet after the primary recrystallization annealing.
  • the aqueous slurry was prepared by mixing the annealing separator and water at a compounding ratio of 1:7 on a mass basis.
  • Table 2 summarizes the conditions for the annealing separator. The underline in Table 2 indicates that it is out of the range of one embodiment of the present invention. The content (%) shown in Table 2 is mass% with respect to the content of MgO contained in the annealing separator.
  • the particles of MgO which is the main component of the annealing separator
  • the particle size distribution of each is (A) The content of particles having a particle size of 1.0 ⁇ m or less is 25% by mass, the content of particles having a particle size of 10 ⁇ m or more is 4% by mass, and the D 20 particle size is 0.9 ⁇ m, relative to the total content of MgO.
  • D 30 particle size is 1.1 ⁇ m
  • D 50 particle size (median size) is 2.25 ⁇ m
  • the content of particles having a particle size of 1.0 ⁇ m or less is 10% by mass
  • the content of particles having a particle size of 10 ⁇ m or more is 4% by mass
  • the D 20 particle size is 1.5 ⁇ m, relative to the total content of MgO.
  • D 30 particle size is 1.8 ⁇ m
  • D 50 particle size (median size) is 4.56 ⁇ m
  • D 30 particle size is 0.7 ⁇ m
  • D 50 particle size (median size) is 1.81 ⁇ m
  • D The content of particles having a particle size of 1.0 ⁇ m or less is 25% by mass, the content of particles having a particle size of 10 ⁇ m or more is 1% by mass, and the D 20 particle size is 0.9 ⁇ m, relative to the total content of MgO.
  • D 30 particle size is 1.1 ⁇ m
  • D 50 particle size (median size) is 2.08 ⁇ m
  • E The content of particles having a particle size of 1.0 ⁇ m or less is 25% by mass, the content of particles having a particle size of 10 ⁇ m or more is 8% by mass, and the D 20 particle size is 0.9 ⁇ m, with respect to the total content of MgO.
  • D 30 particle size is 1.1 ⁇ m
  • D 50 particle size (median size) is 4.00 ⁇ m
  • the cold-rolled steel sheet having the surface coated with the aqueous slurry was baked at 900° C. for 10 seconds in any test number to dry the aqueous slurry.
  • the amount of the annealing separator applied to the dried steel sheet was 5 g/m 2 per side.
  • finish annealing treatment was performed. In the finish annealing treatment, each test number was held at 1200° C. for 20 hours.
  • Al peak position D Al measurement test For the grain-oriented electrical steel sheet of each test number, the Al peak position D Al was obtained by the following measuring method. Specifically, under the conditions described below, elemental analysis using the GDS method is performed on the surface layer of the grain-oriented electrical steel sheet, and the depth from the surface of the grain-oriented electrical steel sheet in an arbitrarily selected observation region of 36 ⁇ m ⁇ 50 ⁇ m. The elemental analysis was performed in the range of 100 ⁇ m in the direction (surface layer), and Al contained in each depth position in the surface layer was identified. The emission intensity of the identified Al was plotted in the depth direction from the surface.
  • Al oxide circumference total measurement test Circumference of the sum of Al oxide, under the same conditions as the [Al peak position D Al Measurement Test], by glow discharge optical emission spectrometer, performs the glow discharge to Al peak position D Al, an Al peak position D Al
  • the elemental analysis by an energy dispersive X-ray spectroscope (EDS) was performed on an arbitrary area (observation area) of 36 ⁇ m ⁇ 50 ⁇ m in the discharge trace of 1.
  • the Al oxide in the observation region is specified (the region in which 50% or more of the characteristic X-ray intensity of O is analyzed is specified as the oxide with respect to the maximum intensity of the characteristic X-ray of O in the observation region.
  • the Al oxide number density ND (number/ ⁇ m 2 ) at the Al peak position D Al was determined by the following method. Glow discharge was performed up to the Al peak position D Al using a glow discharge emission spectrometer under the same conditions as in the [Al peak position D Al measurement test]. Energy dispersive X-ray spectroscopy was performed on the arbitrary 36 ⁇ m ⁇ 50 ⁇ m region (observation region) of the discharge trace at the Al peak position D Al under the same conditions as in the above [Al oxide circumference total sum measurement test]. Elemental analysis was carried out by using an instrument (EDS).
  • EDS instrument
  • the Al oxide in the observation region is specified (the region in which 50% or more of the characteristic X-ray intensity of O is analyzed is specified as the oxide with respect to the maximum intensity of the characteristic X-ray of O in the observation region.
  • the region of the oxidized oxide a region in which 30% or more of the intensity of the specific X-ray of Al is analyzed with respect to the maximum intensity of the specific X-ray of Al is specified as the Al oxide
  • Magnetic property evaluation test The magnetic properties of the grain-oriented electrical steel sheets of each test number were evaluated by the following method. Specifically, a sample having a length of 300 mm in the rolling direction and a width of 60 mm was taken from the grain-oriented electrical steel sheet of each test number. A magnetic field of 800 A/m was applied to the sample using a single-plate magnetometer, and the magnetic flux density B8 was obtained. Table 3 shows the test results. In Table 3, a magnetic flux density of 1.92T or more is “excellent”, 1.90T to less than 1.92T is “good”, 1.88T to less than 1.90T is “good”, and less than 1.88T is “poor”. It showed with. If the magnetic flux density is 1.90T or more (that is, "good” in Table 3), the magnetic characteristics are excellent, and if it is 1.92T or more (that is, "excellent” in Table 3), it is particularly magnetic. It was judged to have excellent characteristics.
  • Adhesion evaluation test The adhesion of the primary coating of the grain-oriented electrical steel sheet of each test number was evaluated by the following method. Specifically, a sample having a length in the rolling direction of 60 mm and a width of 15 mm was taken from the grain-oriented electrical steel sheet of each test number. A bending test was performed on the sample with a curvature of 10 mm. The bending test was carried out by using a cylindrical mandrel bending tester (manufactured by TP Giken Co., Ltd.) and placing the sample on the sample such that the axial direction of the cylinder coincided with the width direction of the sample. The surface of the sample after the bending test was observed, and the total area of the region where the primary coating remained without peeling was determined.
  • the sample after the bending test was returned to a flat state, and the surface appearance was captured by a scanner (manufactured by EPSON, model number “ES-H7200”).
  • the obtained image was binarized by software with a built-in scanner, and the area of the primary coating remaining portion on the sample surface was measured.
  • Table 3 shows the test results.
  • the residual rate of the primary coating was 90% or more as "good", 70 to less than 90% as "good”, and less than 70% as "poor”. When the residual rate of the primary coating was 90% or more (that is, “good” in Table 3), it was judged that the adhesion of the primary coating to the mother steel sheet was excellent.
  • Table 3 shows the test results.
  • the chemical components of the annealing separator satisfy the chemical components defined in one embodiment of the present invention.
  • the particle size distribution of MgO of the annealing separator the content of particles having a particle size of 1.0 ⁇ m or less is 20 to 30%, the content of particles having a particle size of 10 ⁇ m or more is 2 to 5%, and Ca , Sr or Ba hydroxide, sulfate or carbonate content is in the range of 0.5 to 10.0% in total with respect to the MgO content, and X/([Ca]+[ Sr]+[Ba]) satisfies the range of 0.80 to 1.00, and the average particle diameter of Ca, Sr or Ba hydroxide, sulfate or carbonate is 1.0 to 10.0 ⁇ m.
  • the ratio of the average particle size of Ca, Sr or Ba hydroxide, sulfate or carbonate to the median diameter of MgO is 0.8 to 2.5, and the Ti compound, Y compound, La compound or Ce is further used.
  • the content of the compound is 1.0 to 15.0% in total with respect to the content in MgO. Therefore, the peak position of Al emission intensity obtained when elemental analysis by glow discharge emission spectrometry is performed from the surface of the primary coating in the thickness direction of the grain-oriented electrical steel sheet is 2 in the thickness direction from the surface of the primary coating.
  • the total content of Ca, Sr, and Ba compounds was below the lower limit specified in one aspect of the present invention. Therefore, the total length of the Al oxides and the number density of the Al oxides were low, and as a result, the adhesion of the primary coating was low. Also, the magnetic properties were inferior.
  • test number 28 the total content of the Ti compound, the Y compound, the La compound, and the Ce compound was below the lower limit specified in one embodiment of the present invention. Therefore, the Al peak position D Al , the sum of the peripheral lengths of Al oxides, and the number density of Al oxides were low, and as a result, the adhesion of the primary coating was low.
  • test number 29 X/([Ca]+[Sr]+[Ba]) is below the lower limit defined in one embodiment of the present invention, and the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the Al oxidations.
  • the number density of objects was low.
  • the adhesion of the primary coating was low.
  • the magnetic properties were inferior.
  • the average particle size of the Sr compound exceeded the upper limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO also exceeded the upper limit specified in one embodiment of the present invention.
  • the total sum of the peripheral lengths of Al oxides was low, and the adhesion of the primary coating was low.
  • test number 31 the total content of Ti compound, Y compound, La compound, and Ce compound exceeded the upper limit specified in one embodiment of the present invention. Therefore, the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the number density of the Al oxides were higher than the upper limit of one embodiment of the present invention, and as a result, the magnetic properties were poor.
  • the average particle size of the Ca compound exceeded the upper limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO also exceeded the upper limit specified in one embodiment of the present invention. Furthermore, the total content of the Ti compound, the Y compound, the La compound, and the Ce compound exceeded the upper limit specified in one embodiment of the present invention. Therefore, the Al peak position D Al , the sum of the peripheral lengths of Al oxides, and the number density of Al oxides were higher than the upper limit of one embodiment of the present invention, and the magnetic properties were poor.
  • the average particle size of the Sr compound was below the lower limit specified in one aspect of the present invention, and the ratio with the median diameter of MgO was also below the lower limit specified in one aspect of the present invention. Therefore, the total circumference of Al oxides and the number density of Al oxides were lower than the lower limit of one embodiment of the present invention, and the adhesion was poor. Also, the magnetic properties were inferior.
  • test Nos. 37 to 39 particles having a particle size of 1.0 ⁇ m or less in the particle size distribution of MgO exceeded the upper limit specified in one embodiment of the present invention.
  • the average particle size of the Ca compound exceeded the upper limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO also exceeded the upper limit specified in the present invention.
  • the average particle size of the Sr compound was lower than the lower limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO was also lower than the lower limit specified in one embodiment of the present invention. Therefore, in test numbers 37 to 39, the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the number density of the Al oxides were lower than the lower limit defined in one embodiment of the present invention, and the adhesion was poor.
  • test Nos. 40 to 42 particles having a particle size of 10 ⁇ m or more in the particle size distribution of MgO were below the lower limit specified in one embodiment of the present invention.
  • the average particle size of the Ca compound exceeded the upper limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO also exceeded the upper limit specified in one embodiment of the present invention.
  • the average particle size of the Sr compound was lower than the lower limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO was also lower than the lower limit specified in one embodiment of the present invention. Therefore, in test numbers 40 to 42, the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the number density of the Al oxides were lower than the lower limit specified in one embodiment of the present invention, and the adhesion was poor.
  • test Nos. 43 to 45 particles having a particle size distribution of MgO having a particle size of 10 ⁇ m or more exceeded the upper limit defined in one embodiment of the present invention.
  • the average particle size of the Ca compound exceeded the upper limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO also exceeded the upper limit specified in one embodiment of the present invention.
  • the average particle size of the Sr compound was further below the lower limit specified in one embodiment of the present invention, and the ratio with the median diameter of MgO was also below the lower limit specified in one embodiment of the present invention. Therefore, in test numbers 43 to 45, the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the number density of the Al oxides were lower than the lower limit specified in one embodiment of the present invention, and the adhesion was poor.
  • Test Nos. 46 to 48 differ from Test Nos. 5, 15, and 21 only in the ratio of the average particle diameter of Ca, Sr, or Ba to the median diameter of MgO.
  • the ratio between the average particle diameter of Ca and the median diameter of MgO in the test number 47, the ratio between the average particle diameter of Sr and the median diameter of MgO, and in the test number 48, the average particle diameter of Ba and MgO.
  • the ratio to the median diameter was above the upper limit specified in one embodiment of the present invention. Therefore, in test numbers 46 to 48, the Al peak position D Al , the sum of the peripheral lengths of the Al oxides, and the number density of the Al oxides were lower than the lower limit specified in one embodiment of the present invention, and the adhesion was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

磁気特性に優れるとともに一次被膜の鋼板への密着性に優れる方向性電磁鋼板を提供する。C:0.005%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SとSeの合計:0.005%以下、sol.Al:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物である化学組成を有する母材鋼板と、母材鋼板の表面上に形成され、Mg2SiO4を主成分として含有する一次被膜とを備える方向性電磁鋼板である。一次被膜の表面から板厚方向にグロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピーク位置が一次被膜の表面から板厚方向へ2.0~12.0μmの範囲に存在し、Al発光強度のピーク位置でのAl酸化物の周長の総和が0.20~1.00μm/μm2であり、かつAl酸化物の個数密度が0.02~0.20個/μm2である。

Description

方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤
 本発明は、方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤に関する。
 方向性電磁鋼板は、Siを0.5~7質量%程度含有し、結晶方位を{110}<001>方位(Goss方位)に集積させた鋼板である。結晶方位の制御には、二次再結晶による粒成長現象が利用される。
 方向性電磁鋼板の製造方法は次の通りである。スラブを加熱して熱間圧延を行って熱延鋼板を製造する。熱延鋼板に必要に応じて焼鈍を行う。熱延鋼板を酸洗する。酸洗後の熱延鋼板に、80%以上の冷延率で冷間圧延を行って冷延鋼板を製造する。冷延鋼板に脱炭焼鈍を行って、一次再結晶を発現する。脱炭焼鈍後の冷延鋼板に仕上げ焼鈍を行って二次再結晶を発現する。以上の工程により、方向性電磁鋼板が製造される。
 上述の脱炭焼鈍後であって仕上げ焼鈍前に、冷延鋼板の表面に、MgOを主成分とする焼鈍分離剤を含有する水性スラリーを塗布し、乾燥(焼付け)する。焼鈍分離剤が焼付けられた冷延鋼板をコイルに巻取った後、仕上げ焼鈍を行う。仕上げ焼鈍時において、焼鈍分離剤中のMgOと、脱炭焼鈍時に冷延鋼板の表面に形成された内部酸化層中のSiO2とが反応し、フォルステライト(Mg2SiO4)を主成分とする一次被膜が表面に形成される。
 一次被膜を形成した後、一次被膜上に、例えばコロイダルシリカおよびリン酸塩からなる絶縁被膜(二次被膜ともいう)を形成する。一次被膜および絶縁被膜は、鋼板よりも熱膨脹率が小さい。そのため、一次被膜は、絶縁被膜とともに、鋼板に張力を付与して鉄損を低減する。一次被膜はさらに、絶縁被膜の鋼板への密着性を高める。したがって、一次被膜の鋼板への密着性は高いほうが好ましい。
 一方、方向性電磁鋼板の低鉄損化には、磁束密度を高くしてヒステリシス損を低下することも有効である。方向性電磁鋼板の磁束密度を高めるためには、母鋼板の結晶方位をGoss方位に集積させることが有効である。Goss方位への集積を高めるための技術が、特許文献1~3に記載されている。特許文献1~3により記載された技術では、インヒビターの作用を強化する磁気特性改善元素(Sn、Sb、Bi、Te、Pb、Se等)を鋼板に添加する。これにより、Goss方位への集積が高まり、磁束密度を高めることができる。
 しかし、鋼板が磁気特性改善元素を含有すると、一次被膜の一部が凝集し、鋼板と一次被膜との界面が平坦化し易くなり、一次被膜の鋼板への密着性が低下する。
 一次被膜の鋼板への密着性を高める技術が特許文献4、5に記載されている。
 特許文献4には、焼鈍分離剤へCe、La等を添加することにより一次被膜中にCe、La等を目付量で片面当たり0.001~1000mg/m2含有させることが記載されている。
 さらに、特許文献5には、焼鈍分離剤の主剤MgOの比表面積を制御するとともに、焼鈍分離剤へCa、SrおよびBaの化合物の1種以上を添加し、被膜特性を改善することが記載されている。
特開平6-88171号公報 特開平8-269552号公報 特開2005-290446号公報 特開2012-214902号公報 特開平11-302730号公報
 本発明者らは、方向性電磁鋼板のいっそうの性能向上を図るべく鋭意検討を重ねた結果、方向性電磁鋼板において、特許文献4に記載されるように焼鈍分離剤へのCeまたはLaの含有量を高める、あるいは特許文献5に記載されるように焼鈍分離剤へのCa、Sr、またはBaの含有量を高めると、方向性電磁鋼板の被膜密着性は向上するものの、磁気特性が劣化する場合があることが判明した。また、鋼板面内には被膜密着性に劣る領域も存在し、さらなる被膜密着性の改善が求められることも判明した。
 本発明の目的は、被膜密着性の低下を改善し、磁気特性に優れ、一次被膜の鋼板への密着性に優れた方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤を提供することである。
 本発明は以下に列記の通りである。
 (1)質量%で、C:0.005%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SとSeの合計:0.005%以下、sol.Al:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物である化学組成を有する母材鋼板と、該母材鋼板の表面上に形成され、Mg2SiO4を主成分として含有する一次被膜とを備える方向性電磁鋼板であって、
 前記一次被膜の表面から前記方向性電磁鋼板の板厚方向にグロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピーク位置が、前記一次被膜の表面から前記板厚方向へ2.0~12.0μmの範囲に存在し、
 前記Al発光強度のピーク位置でのAl酸化物の周長の総和が0.20~1.00μm/μm2であり、かつ
 Al酸化物の個数密度が0.02~0.20個/μm2である、方向性電磁鋼板。
 (2)質量%で、C:0.100%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SとSeの合計:0.002~0.050%、sol.Al:0.005~0.050%およびN:0.001~0.030%を含有し、残部がFeおよび不純物である化学組成を有する熱延鋼板に80%以上の冷延率で冷間圧延を行って冷延鋼板を製造する冷間圧延工程と、
 前記冷延鋼板に脱炭焼鈍を行う脱炭焼鈍工程と、
 前記脱炭焼鈍後の前記冷延鋼板の表面に、MgOを主成分とする焼鈍分離剤を含有する水性スラリーを塗布し、400~1000℃の炉で該冷延鋼板の表面の水性スラリーを乾燥した後、該冷延鋼板に仕上げ焼鈍を行う仕上げ焼鈍工程を含み、
 前記焼鈍分離剤は、前記MgOと、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩を一種以上と、Ti化合物、Y化合物、La化合物またはCe化合物を一種以上とを含有し、
 前記MgOの粒度分布は、前記MgOの含有量に対して、粒径1.0μm以下の粒子の含有量が20~30質量%であるとともに粒径10μm以上の粒子の含有量が2~5質量%であり、
 前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩は、前記MgOの含有量に対して合計0.5~10.0質量%の範囲で含有され、かつ、前記MgOの含有量に対する前記Caの水酸化物、硫酸塩または炭酸塩の含有量を前記Caの水酸化物、硫酸塩または炭酸塩の分子量で割った値、前記MgOの含有量に対する前記Srの水酸化物、硫酸塩または炭酸塩の含有量を前記Srの水酸化物、硫酸塩または炭酸塩の分子量で割った値、及び前記MgOの含有量に対する前記Baの水酸化物、硫酸塩または炭酸塩の含有量を前記Baの水酸化物、硫酸塩または炭酸塩の分子量で割った値をそれぞれ[Ca]、[Sr]、及び[Ba]としたとき、X/([Ca]+[Sr]+[Ba])が0.80~1.00の範囲を満たし、
 前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmであるとともに、前記MgOのメジアン径に対する前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5であり、
 前記Ti化合物、Y化合物、La化合物またはCe化合物の含有量は、前記MgOの含有量に対して合計1.0~15.0質量%である、(1)に記載の方向性電磁鋼板の製造方法。
 ただし、Xは、[Ca]、[Sr]または[Ba]のうち最も高い値を意味する。
 (3)前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩のうち含有量が最も高い元素の水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmである、(2)に記載の方向性電磁鋼板の製造方法。
 (4)前記熱延鋼板は、Sb、SnまたはCuの一種以上を、合計で0.30質量%以下含有する、(2)または(3)に記載の方向性電磁鋼板の製造方法。
 (5)前記熱延鋼板は、Bi、TeまたはPbの一種以上を、合計で0.0300質量%以下含有する、(2)~(4)のいずれかに記載の方向性電磁鋼板の製造方法。
 (6)MgOを主成分とする焼鈍分離剤であって、
Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩を一種以上と、Ti化合物、Y化合物、La化合物またはCe化合物を一種以上とを含有し、
 前記MgOの粒度分布は、前記MgOの含有量に対して、粒径1.0μm以下の粒子の含有量が20~30質量%であるとともに粒径10μm以上の粒子の含有量が2~5質量%であり、
 前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩は、前記MgOの含有量に対して合計0.5~10.0質量%の範囲で含有され、かつ、前記MgOの含有量に対する前記Caの水酸化物、硫酸塩または炭酸塩の含有量を前記Caの水酸化物、硫酸塩または炭酸塩の分子量で割った値、前記MgOの含有量に対する前記Srの水酸化物、硫酸塩または炭酸塩の含有量を前記Srの水酸化物、硫酸塩または炭酸塩の分子量で割った値、及び前記MgOの含有量に対する前記Baの水酸化物、硫酸塩または炭酸塩の含有量を前記Baの水酸化物、硫酸塩または炭酸塩の分子量で割った値をそれぞれ[Ca]、[Sr]、及び[Ba]としたとき、X/([Ca]+[Sr]+[Ba])が0.80~1.00の範囲を満たし、
 前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmであるとともに、前記MgOのメジアン径に対する前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5であり、
 前記Ti化合物、Y化合物、La化合物またはCe化合物の含有量は、前記MgOに対して合計1.0~15.0質量%である、焼鈍分離剤。
 ただし、Xは、[Ca]、[Sr]または[Ba]のうち最も高い値を意味する。
 (7)前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩のうち含有量が最も高い元素の水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmである、(6)に記載の焼鈍分離剤。
 本発明の一態様によれば、Ca、Sr、またはBaの化合物を小径化することにより、内部酸化層中のSiO2が凝集および粗大化する前に一次被膜の根が形成され、一次被膜と鋼板の界面の嵌入構造を発達させることができる。よって、本発明の一態様によれば、従来の技術における被膜密着性の低下を改善でき、磁気特性に優れるとともに一次被膜の鋼板への密着性に優れる方向性電磁鋼板を提供できる。
 以下、本発明をその原理とともに説明する。移行の説明において、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。また、特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。
1.方向性電磁鋼板
 本発明の一態様に係る方向性電磁鋼板は、母材鋼板と、フォルステライト(Mg2SiO4)を主成分とし母材鋼板の表面に形成される一次被膜とを備える。一次被膜の上に、例えば、コロイダルシリカおよびリン酸塩で構成された絶縁被膜を有してもよい。一次被膜および絶縁被膜は、いずれも、鋼板よりも熱膨脹率が小さいため、鋼板に張力を付与して鉄損を低減する。一次被膜の密着性が低いと、二次被膜が一次被膜とともに鋼板から剥離するため、一次被膜の鋼板への密着性は高いほうが好ましい。
 ここで、「主成分」とはある物質に50質量%以上含まれている成分のことを言い、当該主成分は、ある物質に好ましくは70質量%以上、より好ましくは90質量%以上含まれる。
1.1.母材鋼板の化学組成
 本発明の一態様に係る方向性電磁鋼板を構成する母材鋼板は以下に列記の元素を含有する。なお、後述する2項で説明するように、母材鋼板は、後述する化学組成を有する熱延鋼板に冷間圧延、脱炭焼鈍、および仕上げ焼鈍を行うことにより製造される。初めに、必須元素を説明する。
 (1)C:0.005%以下
 Cは、製造工程における脱炭焼鈍工程の完了までの組織制御に有効な元素である。しかし、C含有量が0.005%を超えると、製品板である方向性電磁鋼板の磁気特性が低下する。したがって、C含有量は、0.005%以下であり、好ましくは0.003%以下である。
 一方、C含有量は低いほうが好ましいが、C含有量を0.0001%未満に低減しても、組織制御の効果は飽和し、製造コストが嵩むだけとなる。したがって、C含有量は、好ましくは0.0001%以上である。
 (2)Si:2.5~4.5%
 Siは、鋼の電気抵抗を高めて渦電流損を低減する。Si含有量が2.5%未満では渦電流損の低減効果を十分に得られない。一方、Si含有量が4.5%を超えると鋼の冷間加工性が低下する。したがって、Si含有量は2.5~4.5%である。Si含有量は、好ましくは2.7%以上であり、さらに好ましくは2.8%以上である。一方、Si含有量は好ましくは4.2%以下であり、さらに好ましくは4.0%以下である。
 (3)Mn:0.050~1.000%
 Mnは、製造工程中に後述のSおよびSeと結合してMnSおよびMnSeを形成する。これらの析出物は、インヒビター(正常結晶粒成長の抑制剤)として機能し、鋼において、二次再結晶を発現する。Mnは、さらに鋼の熱間加工性も高める。
 Mn含有量が0.050%未満であると、これらの効果を十分に得られない。一方、Mn含有量が1.000%を超えると、二次再結晶が発現せず、鋼の磁気特性が低下する。したがって、Mn含有量は0.050~1.000%である。Mn含有量は、好ましくは0.060%以上であり、さらに好ましくは0.065%以上である。一方、Mn含有量は好ましくは0.400%以下であり、さらに好ましくは0.200%以下である。
 (4)SおよびSeの合計:0.005%以下
 SおよびSeは、製造工程においてMnと結合して、インヒビターとして機能するMnSおよびMnSeを形成する。しかし、S、Se含有量が合計で0.005%を超えると、残存するインヒビターにより、磁気特性が低下するとともに、SおよびSeの偏析により、方向性電磁鋼板において表面欠陥が発生することがある。したがって、SおよびSeの合計含有量は0.005%以下である。
 方向性電磁鋼板におけるSおよびSeの合計含有量はなるべく低いほうが好ましい。しかし、方向性電磁鋼板中のSおよびSeの合計含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。したがって、方向性電磁鋼板中のSおよびSeの合計含有量は、好ましくは0.0001%以上である。
 (5)sol.Al:0.005%以下
 Alは、方向性電磁鋼板の製造工程中において、Nと結合して、インヒビターとして機能するAlNを形成する。しかし、sol.Al含有量が0.005%を超えると、母材鋼板中にインヒビターが過剰に残存するため、磁気特性が低下する。したがって、sol.Al含有量は0.005%以下である。
 sol.Al含有量は、好ましくは0.004%以下であり、さらに好ましくは0.003%以下である。sol.Al含有量はなるべく低いほうが好ましい。しかし、sol.Al含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。したがって、方向性電磁鋼板中のsol.Al含有量は、好ましくは0.0001%以上である。なお、本明細書において、sol.Alは酸可溶Alを意味する。
 (6)N:0.005%以下
 Nは、製造工程においてAlと結合して、インヒビターとして機能するAlNを形成する。しかし、N含有量が0.005%を超えると、方向性電磁鋼板中にインヒビターが過剰に残存して磁気特性が低下する。したがって、N含有量は0.005%以下である。
 N含有量は、好ましくは0.004%以下であり、さらに好ましくは0.003%以下である。N含有量はなるべく低いほうが好ましい。しかし、N含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。したがって、N含有量は、好ましくは0.0001%以上である。
 (7)残部:Feおよび不純物
 本発明の一態様に係る方向性電磁鋼板の母材鋼板の化学組成の残部は、Feおよび不純物である。ここで、不純物とは、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるもの、仕上げ焼鈍中に鋼中から取り除かれず(純化されず)に鋼中に残存する下記の元素であって、本発明の一態様に係る方向性電磁鋼板の作用に悪影響を及ぼさない含有量で含有することを許容される元素を意味する。
 本発明の一態様による方向性電磁鋼板の母材鋼板中の不純物において、Sn、Sb、Cu、Bi、TeまたはPbの1種以上の合計含有量は0.03%以下である。
 これらの元素はいずれも方向性電磁鋼板の磁束密度を高めるが、仕上げ焼鈍にて母材鋼板から除去されるためいずれも不純物であり、上述のとおり、合計で0.03%以下である。
1.2.一次被膜
 (1)化学成分
 本発明の一態様に係る方向性電磁鋼板は一次被膜を備える。一次被膜は、母材鋼板の表面に形成される。一次被膜の主成分は、フォルステライト(Mg2SiO4)である。
 一次被膜は、脱炭焼鈍工程において鋼板の表層に形成される内部酸化層中のSiO2と、仕上げ焼鈍前に鋼板に塗布および乾燥される焼鈍分離剤の主成分であるMgOとが、仕上げ焼鈍中に反応することにより、形成される。
 本発明の一態様では、方向性電磁鋼板の製造に際し、Ti化合物、Y化合物、La化合物またはCe化合物のうち一種以上を含有し、さらに、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の一種以上を含有する焼鈍分離剤を用いる。これにより、方向性電磁鋼板の磁気特性を高め、一次被膜の被膜密着性も高めることができる。
 (2)グロー放電発光分析法(GDS法)によるAl発光強度のピーク位置:一次被膜
の表面から板厚方向に2.0~12.0μmの範囲内
 一次被膜の表面から方向性電磁鋼板の板厚方向にグロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピーク位置が、一次被膜の表面から板厚方向に2.0~12.0μmの範囲内に存在する。
 方向性電磁鋼板において、一次被膜と鋼板(地金)の界面は嵌入構造を有する。具体的には、一次被膜の一部が、鋼板の表面から鋼板の内部に進入している。鋼板の表面から鋼板の内部に進入している一次被膜の一部は、いわゆるアンカー効果を発揮して、一次被膜の鋼板に対する密着性を高める。以降、本明細書では、鋼板の表面から鋼板の内部に進入する一次被膜の一部を、「一次被膜の根」と定義する。
 一次被膜の根が鋼板の内部に深く入り込んでいる領域において、一次被膜の根の主成分は、Al酸化物の一種であるスピネル(MgAl24)である。グロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピークは、スピネルの存在位置を示す。
 Al発光強度ピークの一次被膜の表面からの深さ位置をAlピーク位置DAl(μm)と定義する。Alピーク位置DAlが2.0μm未満であることは、スピネルが鋼板の表面から浅い位置に形成されていること、つまり、一次被膜の根が浅いことを意味する。この場合、一次被膜の密着性が低い。一方、Alピーク位置DAlが12.0μmを超えることは、一次被膜の根が過度に発達していることを意味し、鋼板の内部の深い部分まで一次被膜の根が進入する。この場合、一次被膜の根が磁壁移動を阻害し、磁気特性が低下する。
 Alピーク位置DAlが2.0~12.0μmであれば、優れた磁気特性を維持しつつ、一次被膜の密着性を高めることができる。Alピーク位置DAlは、好ましくは3.0μm以上であり、さらに好ましくは4.0μm以上である。一方、Alピーク位置DAlは好ましくは11.0μm以下であり、さらに好ましくは10.0μm以下である。
 Alピーク位置DAlは次の方法により測定される。周知のグロー放電発光分析法(GDS法)を用いて元素分析を行う。具体的には、方向性電磁鋼板の表面上をAr雰囲気にする。方向性電磁鋼板に電圧をかけてグロープラズマを発生させ、鋼板の表層をスパッタリングしながら板厚方向へ分析する。グロープラズマ中で原子が励起されて発生する元素特有の発光スペクトル波長に基づいて、鋼板の表層に含まれるAlを同定する。さらに、同定されたAlの発光強度を深さ方向へプロットする。プロットされたAl発光強度に基づいて、Alピーク位置DAlを求める。
 元素分析における一次被膜の表面からの深さ位置は、スパッタ時間に基づいて算定される。具体的には、予め標準サンプルにおいて、スパッタ時間とスパッタ深さの関係(以下、サンプル結果という)を求めておき、サンプル結果を用いてスパッタ時間をスパッタ深さに変換する。変換されたスパッタ深さを、元素分析(Al分析)した深さ位置(一次被膜の表面からの深さ位置)と定義する。本開示におけるGDS法では、市販の高周波グロー放電発光分析装置を用いることができる。
 (3)Al発光強度のピーク位置でのAl酸化物の周長の総和:0.20~1.00μm/μm2
 本発明の一態様に係る方向性電磁鋼板では、さらに、Alピーク位置DAlでのAl酸化物の周長の総和が0.20~1.00μm/μm2である。
 上述のとおり、Alピーク位置DAlは、一次被膜の根の部分に相当する。一次被膜の根には、Al酸化物であるスピネル(MgAl24)が多く存在する。したがって、Alピーク位置DAlでの任意の領域(たとえば、グロー放電の放電痕の底部)におけるAl酸化物の周長の総和は一次被膜の根(スピネル)の拡がりを示す指標となる。
 Al酸化物の周長の総和が0.20μm/μm2未満であると、一次被膜の根が十分に形成されていない。そのため、一次被膜の鋼板に対する密着性が低い。一方、Al酸化物の周長の総和が1.00μm/μm2を超えると、一次被膜の根が過剰に発達し、鋼板の内部の深い部分まで一次被膜の根が進入するため、一次被膜の根が二次再結晶および磁壁移動を阻害し、磁気特性が低下する。したがって、Al酸化物の周長の総和が0.20~1.00μm/μm2である。
 Al酸化物の周長の総和は、好ましくは0.25μm/μm2以上であり、さらに好ましくは0.27μm/μm2以上である。一方、Al酸化物の周長の総和は、好ましくは0.98μm/μm2以下であり、さらに好ましくは0.95μm/μm2以下である。
 Al酸化物の周長の総和は、次の方法により求めることができる。グロー放電発光分析装置により、Alピーク位置DAlまでグロー放電を行う。Alピーク位置DAlでの放電痕のうち、任意の36μm×50μmの領域(観察領域)に対して、エネルギー分散型X線分光器(EDS)による元素分析を行い、観察領域中のAl酸化物を特定する。具体的には、観察領域におけるOの特性X線の最大強度に対して、50%以上のOの特性X線の強度が分析される領域を酸化物と特定する。特定された酸化物の領域において、Alの特定X線の最大強度に対して、30%以上のAlの特定X線の強度が分析される領域をAl酸化物と特定する。特定されたAl酸化物は主としてスピネルであり、他に、種々のアルカリ土類金属とAlを高濃度で含むケイ酸塩である可能性がある。EDS画像データの分析結果における特定されたAl酸化物の形状からそれぞれ周長(μm)を算出し、これに基づいて観察領域の単位面積(μm2)当たりのAl酸化物の周長の総和(μm)(単位:μm/μm2)を求める。このように、本開示におけるAl酸化物の周長の総和とは、観察領域の単位面積当たりのAl酸化物の周長の総和を意味する。
 (4)Al酸化物の個数密度:0.02~0.20個/μm2
 本発明の一態様に係る方向性電磁鋼板では、さらに、Alピーク位置DAlでのAl酸化物の個数密度が0.02~0.20個/μm2である。
 上述のとおり、Alピーク位置DAlは、一次被膜の根の部分に相当する。一次被膜の根には、Al酸化物であるスピネル(MgAl24)が多く存在する。したがって、Alピーク位置DAlでの任意の領域(たとえば、グロー放電の放電痕の底部)におけるAl酸化物の個数密度をAl酸化物個数密度NDと定義すると、Al酸化物個数密度NDは一次被膜の根(スピネル)の鋼板表層での分散状態を示す指標となる。
 Al酸化物個数密度NDが0.02個/μm2未満であると、一次被膜の根が十分に形成されないため、一次被膜の鋼板に対する密着性が低い。一方、Al酸化物個数密度NDが0.20個/μm2を超えると、一次被膜の根が過剰に発達して鋼板の内部の深い部分まで一次被膜の根が進入し、一次被膜の根が二次再結晶および磁壁移動を阻害するため、磁気特性が低下する。したがって、Al酸化物個数密度NDは0.02~0.20個/μm2である。
 Al酸化物個数密度NDは、好ましくは0.025個/μm2以上である。一方、Al酸化物個数密度NDは、好ましくは0.18個/μm2以下であり、さらに好ましくは0.15個/μm2以下である。
 Al酸化物個数密度NDは次の方法により求めることができる。グロー放電発光分析装置により、Alピーク位置DAlまでグロー放電を行う。Alピーク位置DAlでの放電痕のうち、任意の36μm×50μmの領域(観察領域)に対して、エネルギー分散型X線分光器(EDS)による元素分析を行い、観察領域中のAl酸化物を特定する。
 具体的には、観察領域におけるOの特性X線の最大強度に対して、50%以上のOの特性X線の強度が分析される領域を酸化物と特定する。特定された酸化物領域において、Alの特定X線の最大強度に対して、30%以上のAlの特定X線の強度が分析される領域をAl酸化物と特定する。
 特定されたAl酸化物は主としてスピネルであり、他に、種々のアルカリ土類金属とAlを高濃度で含むケイ酸塩である可能性がある。特定されたAl酸化物の個数をカウントし、ND=特定されたAl酸化物の個数/観察領域の面積として、Al酸化物個数密度ND(個/μm2)を求める。
2.方向性電磁鋼板の製造方法
 上記した方向性電磁鋼板は、例えば本発明の一態様に係る方向性電磁鋼板の製造方法で製造することができる。
 本発明の一態様に係る製造方法は、冷間圧延工程、脱炭工程、および仕上げ焼鈍工程を含む。以下、各工程を順次説明する。
 (1)冷間圧延工程
 冷間圧延工程では、C:0.100%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SおよびSeの1種以上:合計で0.002~0.050%、sol.Al:0.005~0.050%、およびN:0.001~0.030%を必須元素として含有し、Sb、SnおよびCuのうちの1種以上:合計で0.30%以下、および、Bi、TeおよびPbのうちの1種以上:合計で0.0300%以下の一方または双方を任意元素として含有し、残部がFeおよび不純物である化学組成を有する熱延鋼板に80%以上の冷延率で冷間圧延を行って冷延鋼板を製造する。熱延鋼板の化学組成の限定理由を説明する。
 (1-1)熱延鋼板の化学組成
 初めに必須元素を説明する。
 (1-1-1)C:0.100%以下
 熱延鋼板のC含有量が0.100%を超えると、脱炭焼鈍に必要な時間が長くなり、製造コストが嵩み、かつ、生産性も低下する。したがって、熱延鋼板のC含有量は0.100%以下である。熱延鋼板のC含有量は、好ましくは0.080%以下であり、さらに好ましくは0.070%以下である。
 (1-1-2)Si:2.5~4.5%
 上記した方向性電磁鋼板の化学組成の項目で説明したように、Siは、鋼の電気抵抗を高めるが、過剰に含有すると冷間加工性が低下する。Si含有量が2.5~4.5%であれば、仕上げ焼鈍工程後の方向性電磁鋼板のSi含有量が2.5~4.5%となる。
 (1-1-3)Mn:0.050~1.000%
 上記した方向性電磁鋼板の化学組成の項目で説明したとおり、製造工程中において、MnはSおよびSeと結合して、インヒビターとして機能する析出物を形成する。Mnはさらに、鋼の熱間加工性を高める。熱延鋼板のMn含有量が0.050~1.000%であれば、仕上げ焼鈍工程後の方向性電磁鋼板のMn含有量が0.050~1.000%となる。
 (1-1-4)SおよびSeの合計:0.002~0.050%
 製造工程において、SおよびSeは、Mnと結合して、MnSおよびMnSeを形成する。MnSおよびMnSeは、いずれも、二次再結晶中の結晶粒成長を抑制するために必要なインヒビターとして機能する。
 SおよびSeの合計含有量が0.002%未満であると、MnSおよびMnSeを形成する効果を得られ難い。一方、SおよびSeの合計含有量が0.050%を超えると、製造工程において二次再結晶が発現せず、鋼の磁気特性が低下する。
 したがって、SおよびSeの合計含有量は0.002~0.050%である。SおよびSeの合計含有量は、好ましくは0.040%以下であり、さらに好ましくは0.030%以下である。
 (1-1-5)sol.Al:0.005~0.050%
 製造工程中において、Alは、Nと結合してAlNを形成する。AlNはインヒビターとして機能する。sol.Al含有量が0.005%未満であると、Nと結合してAlNを形成する効果を得られない。一方、熱延鋼板のsol.Al含有量が0.050%を超えると、AlNが粗大化し、AlNがインヒビターとして機能し難くなり、二次再結晶が発現しないことがある。
 したがって、熱延鋼板のsol.Al含有量は0.005~0.050%である。sol.Al含有量は、好ましくは0.040%以下であり、さらに好ましくは0.030%以下である。一方、sol.Al含有量は、好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
 (1-1-6)N:0.001~0.030%
 製造工程中において、Nは、Alと結合して、インヒビターとして機能するAlNを形成する。N含有量が0.001%未満であると、この効果を得られない。一方、N含有量が0.030%を超えると、AlNが粗大化し、AlNがインヒビターとして機能し難くなり、二次再結晶が発現しない場合がある。
 したがって、N含有量は0.001~0.030%である。N含有量は、好ましくは0.012%以下であり、さらに好ましくは0.010%以下である。一方、N含有量は、好ましくは0.005%以上であり、さらに好ましくは0.006%以上である。
 次に、任意元素を説明する。
 (1-1-7)Sb、SnまたはCuの1種以上:合計で0.30%以下
 熱延鋼板は、さらに、Sb、SnまたはCuの1種以上を任意元素として合計で0.30%以下含有してもよい。
 Sb、SnまたはCuは、いずれも必要に応じて含有する任意元素であり、含有しなくてもよい。含有すると、Sb、SnまたはCuは、いずれも、方向性電磁鋼板の磁束密度を高める。Sb、SnまたはCuが少しでも含有されれば磁束密度を高める。
 しかし、Sb、SnまたはCuの合計含有量が0.30%を超えると、脱炭焼鈍時に内部酸化層が形成し難くなり、仕上げ焼鈍時に、焼鈍分離剤のMgOおよび内部酸化層のSiO2が反応して進行する一次被膜の形成が遅延するため、形成される一次皮膜の密着性が低下する。
 したがって、Sb、SnまたはCuの合計含有量は、0.00~0.30%である。Sb、SnまたはCuの合計含有量は、好ましくは0.005%以上であり、さらに好ましくは0.007%以上である。一方、Sb、SnまたはCuの合計含有量は、好ましくは0.25%以下であり、さらに好ましくは0.20%以下である。
 (1-1-8)Bi、TeまたはPbの1種以上:合計で0.0300%以下
 熱延鋼板は、さらに、Bi、TeまたはPbの1種以上を、任意元素として、合計で0.0300%以下含有してもよい。
 Bi、TeおよびPbは、いずれも、任意元素であり、含有しなくてもよい。これらの元素の1種以上を少しでも含有することにより、方向性電磁鋼板の磁束密度をいっそう高めることができる。
 しかし、これらの元素の合計含有量が0.0300%を超えると、仕上げ焼鈍時にこれらの元素が表面に偏析し、一次被膜と鋼板の界面が平坦化するために一次被膜の被膜密着性が低下する。
 したがって、Bi、TeおよびPbの1種以上の合計含有量は0.0000~0.0300%である。Bi、TeおよびPbの1種以上の合計含有量は、好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。
 (1-1-9)残部:Feおよび不純物
 熱延鋼板の化学組成の残部はFeおよび不純物である。ここで、不純物とは、熱延鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであり、本発明の一態様に係る方向性電磁鋼板の作用に悪影響を及ぼさない範囲で許容されるものを意味する。
 (1-2)熱延鋼板の製造方法
 上述の化学組成を有する熱延鋼板は、周知の方法により製造される。熱延鋼板の製造方法の一例は次のとおりである。上述の熱延鋼板と同じ化学組成を有するスラブを準備する。スラブは周知の精錬工程および鋳造工程を経て、製造される。
 スラブを加熱する。スラブの加熱温度は、例えば1280℃超1350℃以下である。加熱されたスラブに対して熱間圧延を行い、熱延鋼板を製造する。
 (1-3)冷間圧延の条件
 準備された熱延鋼板に冷間圧延を行って、母材鋼板である冷延鋼板を製造する。冷間圧延は1回のみ行ってもよいし、複数回行ってもよい。冷間圧延を複数回行う場合、冷間圧延を行った後に軟化を目的として中間焼鈍を行い、その後に冷間圧延を行う。1回または複数回の冷間圧延を行うことにより、製品板厚(製品としての板厚)を有する冷延鋼板を製造する。
 1回または複数回の冷間圧延における冷延率は80%以上である。ここで、冷延率(%)は次のとおり定義される。
 冷延率(%)={1-(最後の冷間圧延後の冷延鋼板の板厚)/(最初の冷間圧延開始前の熱延鋼板の板厚)}×100
 なお、冷延率は好ましくは95%以下である。また、熱延鋼板に冷間圧延を行う前に、熱延鋼板に熱処理を行ってもよいし、酸洗を行ってもよい。
 (2)脱炭焼鈍工程
 脱炭工程では、冷間圧延工程を経て得られた冷延鋼板に対して脱炭焼鈍を行う。
 冷間圧延工程により製造された鋼板に脱炭焼鈍を行い、必要に応じて窒化焼鈍を行う。脱炭焼鈍は、周知の水素-窒素含有湿潤雰囲気中で行われる。脱炭焼鈍により、方向性電磁鋼板のC濃度を、50ppm以下に低減する。
 脱炭焼鈍では、鋼板に、一次再結晶が発現して、冷間圧延工程により導入された加工ひずみが解放される。さらに、脱炭焼鈍工程では、鋼板の表層部にSiO2を主成分とする内部酸化層が形成される。脱炭焼鈍での焼鈍温度は周知であり、例えば750~950℃である。焼鈍温度での保持時間は、例えば1~5分間である。
 (3)仕上げ焼鈍工程
 脱炭焼鈍工程後の鋼板に対して、仕上げ焼鈍を行う。仕上げ焼鈍工程では、はじめに、脱炭焼鈍後の冷延鋼板の表面に、焼鈍分離剤を含有する水性スラリーを塗布し、400~1000℃の炉で冷延鋼板の表面上の水性スラリーを乾燥する。水性スラリーを塗布・乾燥された鋼板に対して焼鈍(仕上げ焼鈍)を行う。
 (3-1)水性スラリー
 水性スラリーは、後述する焼鈍分離剤に水(典型的には工業用純水)を加え攪拌して精製する。焼鈍分離剤と水の比率は、ロールコーターで塗布した時に、所要の塗布量となるように決定すればよく、例えば、焼鈍分離剤に対する水の比率は質量基準で2倍以上20倍以下が好ましい。焼鈍分離剤に対する水の比率が2倍以上である場合、水スラリーの粘度が高くなり過ぎず、焼鈍分離剤を鋼板表面に均一に塗布でき好ましい。焼鈍分離剤に対する水の比率が20倍以下である場合、引き続く乾燥工程で水スラリーの乾燥が不十分とならず、仕上焼鈍において残存した水分が鋼板を追加酸化させることによる一次被膜の外観の劣化が生じにくく好ましい。
 (3-2)本発明の一態様に係る焼鈍分離剤
 仕上げ焼鈍工程で使用される本発明の一態様に係る焼鈍分離剤は、MgOを主成分とする。焼鈍分離剤の鋼板への付着量は、片面あたり、例えば、2g/m2以上10g/m2以下が好ましい。焼鈍分離剤の鋼板への付着量が2g/m2以上である場合、仕上焼鈍において、鋼板同士が焼き付きにくく好ましい。焼鈍分離剤の鋼板への付着量が10g/m2以下である場合、製造コストが増大せず好ましい。
 以下、本発明の一態様に係る焼鈍分離剤について説明する。なお、本開示で説明するMgOの粒度分布、MgOのメジアン径、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径(すなわち体積平均径MV)は、JIS Z8825(2013)に従ってレーザー回折・散乱法により測定される体積基準の値である。したがって、MgOの粒径1.0μm以下の粒子及び粒径10μm以上の粒子のそれぞれの含有量は上記体積基準の値を質量基準で表記したものである。
 (3-2-1)MgOの粒度分布
 焼鈍分離剤の主成分であるMgOは次の粒度分布を有する。焼鈍分離剤に含まれるMgOの含有量に対して、粒径1.0μm以下の粒子の含有量が20~30%であり、かつ、粒径10μm以上の粒子の含有量が2~5%である。
 (3-2-2)Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩
 焼鈍分離剤はCa、Sr、またはBaの水酸化物、硫酸塩または炭酸塩を1種以上含有する。Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩の含有量は、焼鈍分離剤に含有されるMgOの含有量に対して合計0.5~10.0%である。当該量は、例えば、1.0%以上、または1.5%以上、または2.0%以上であってよく、例えば、9.5%以下、または9.0%以下、または8.5%以下であってよい。さらに、MgOの含有量に対するCaの水酸化物、硫酸塩または炭酸塩の含有量をCaの水酸化物、硫酸塩または炭酸塩の分子量で割った値、MgOの含有量に対するSrの水酸化物、硫酸塩または炭酸塩の含有量をSrの水酸化物、硫酸塩または炭酸塩の分子量で割った値、及びMgOの含有量に対するBaの水酸化物、硫酸塩または炭酸塩の含有量をBaの水酸化物、硫酸塩または炭酸塩の分子量で割った値をそれぞれ[Ca]、[Sr]、及び[Ba]としたとき、X/([Ca]+[Sr]+[Ba]):0.80~1.00の範囲を満たす。ただし、Xは、[Ca]、[Sr]または[Ba]のうち最も高い値を意味する。X/([Ca]+[Sr]+[Ba])は、例えば、0.85以上、または0.90以上、または0.95以上であってよい。
 (3-2-3)Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径
 上記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径は、一態様において、1.0~10.0μmである。当該平均粒径は、例えば、1.5μm以上、または2.0μm以上、または2.5μm以上であってよく、例えば、8.0μm以下、または6.0μm以下、または5.0μm以下であってよい。一態様において、Ca、SrまたはBaのうち含有量(すなわち質量基準での含有量)が最も高い元素の化合物の平均粒径が上記範囲であることが好ましい。
 一態様においては、Ca水酸化物、Ca硫酸塩、Ca炭酸塩、Sr水酸化物、Sr硫酸塩、Sr炭酸塩、Ba水酸化物、Ba硫酸塩およびBa炭酸塩のうち焼鈍分離剤に含まれている化合物の全体での平均粒径が上記範囲内である。
 (3-2-4)MgOのメジアン径に対するCa、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比
 MgOのメジアン径(粒度分布の中央値に対応する粒径)に対する上記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比は、一態様において、0.8~2.5である。当該比は、例えば、1.0以上、または1.1以上であってよく、例えば、2.3以下、または2.0以下であってよい。
 一態様においては、MgOのメジアン径に対する、Ca水酸化物、Ca硫酸塩、Ca炭酸塩、Sr水酸化物、Sr硫酸塩、Sr炭酸塩、Ba水酸化物、Ba硫酸塩およびBa炭酸塩のうち焼鈍分離剤に含まれている化合物の全体での平均粒径の比が、上記範囲内である。
 MgOのメジアン径(すなわちD50粒径)は、一態様において、1.50μm以上、または1.80μm以上、または2.00μm以上であってよく、一態様において、5.00μm以下、または3.00μm以下であってよい。
 (3-2-5)Ti化合物、Y化合物、La化合物またはCe化合物
 焼鈍分離剤は、Ti化合物、Y化合物、La化合物またはCe化合物を1種以上含有する。Ti化合物、Y化合物、La化合物またはCe化合物の含有量は、焼鈍分離剤に含まれるMgOの含有量に対して、合計1.0~15.0%である。上記量は、例えば、1.5%以上、または2.0%以上、または2.5%以上であってよく、例えば、14.0%以下、または13.5%以下、または13.0%以下であってよい。
 ここで、Ti化合物、Y化合物、La化合物またはCe化合物は酸化物、または水酸化物であることが好ましい。
 これらの条件の理由を説明する。方向性電磁鋼板の一次被膜と鋼板との界面は嵌入構造を有する。具体的には、一次被膜と鋼板との界面付近では、一次被膜の根が鋼板の内部に張り巡らされている。一次被膜の根が鋼板の内部に進入するほど、鋼板に対する一次被膜の密着性は高まる。さらに、一次被膜の根が鋼板の内部に分散するほど(張り巡らされているほど)、鋼板に対する一次被膜の密着性は高まる。
 しかし、一次被膜の根が鋼板の内部に深く進入し過ぎる、あるいは、一次被膜の根が鋼板の内部に過剰に分散すると、一次被膜の根がGoss方位の二次再結晶を妨げ、ランダム方位の結晶粒が表層において増加する。さらに、一次被膜の根が磁壁移動の阻害要因となり、磁気特性が劣化する。
 従来の技術における一次被膜の密着性の低下は、一次被膜の根の凝集により鋼板と一次被膜との界面構造が平坦化することに起因する。このため、焼鈍分離剤へのCe、La等の化合物の添加、Ca、Sr、またはBaの化合物の添加により被膜密着性を向上させてきた。
 しかし、Ce、La等の化合物、あるいはCa、Sr、またはBaの化合物を多量に添加すると、磁気特性が劣化する場合がある。また、これらの化合物を添加しても、被膜密着性に差異が生じる場合がある。
 本発明者らは、被膜密着性を向上させるために鋭意検討を重ねた結果、Ca、Sr、またはBaの化合物を複合して添加する場合には、むしろ被膜形成が阻害されること、および、一次被膜の密着性の向上にはCa、Sr、またはBaの化合物の小径化が有効であることを知見した。
 また、焼鈍分離剤の主成分であるMgOは、一次被膜の形成に寄与する微細な粒子が必要であるばかりか、仕上げ焼鈍後の鋼板の形状に影響を及ぼすより大きな径の粒子も含めた特定の粒度分布を有することが重要であり、前記のCa、Sr、またはBaの化合物の小径化による被膜密着性の向上の効果を得るには、MgOのメジアン径とCa、Sr、またはBaの化合物の平均粒径の比が重要であることが判明した。
 なお、特許文献4、5には、焼鈍分離剤へ添加するCa、Sr、またはBaの化合物の小径化およびMgOとの粒径制御による被膜密着性の向上は、記載も示唆もされていない。
 ここで、一次被膜の根の主成分はスピネル(MgAl24)であるため、グロー放電発光分析法(GDS法)による板厚方向のAl発光強度ピーク位置は、スピネルの存在位置、すなわち、一次被膜の根の深さに対応する。
 また、Al発光強度ピーク位置での元素分布は、一次被膜の根の位置での元素分布に対応し、Alの分布状態はスピネルの分散状態、すなわち一次被膜の根の分散状態に相当する。
 本発明者らは、Ca、Sr、またはBaの化合物の径が異なる条件で得られた方向性電磁鋼板の一次被膜の構造を上記手法により調査し、Ca、Sr、またはBaの化合物の小径化によりAl発光強度ピーク位置でのAl酸化物の個数密度および周長の総和が増加する、すなわちCa、Sr、またはBaの化合物の小径化により一次被膜の根が発達するという新規な知見を得た。
 Ca、Sr、およびBaはSiO2中の拡散がMgよりも早い。そのため、焼鈍分離剤へCa、Sr、またはBaの化合物を添加すると、内部酸化層中のSiO2が凝集および粗大化する前にこれらの元素と反応し、内層において低酸素ポテンシャルで安定な酸化物を形成すると推定される。
 この安定な酸化物の形成により鋼板と一次被膜との界面構造の平坦化が抑制され、一次被膜の根が発達する。Ca、Sr、またはBaの化合物の小径化および焼鈍分離剤の主成分であるMgOとの粒径制御は、鋼板の表面のSiO2とCa、Sr、またはBaの化合物との接触頻度の増加を通じて一次被膜の根を形成する効果を高め、被膜密着性の向上に寄与すると推定される。Ca、Sr、またはBaの化合物を複合添加した場合、鋼板への付着状態が不均一になり、一次被膜の形成が阻害されやすくなると推定される。
 すなわち、Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0μm未満または10μm超であると、鋼板と一次被膜との界面構造の平坦化を十分に抑制できず、一次被膜の根が十分に発達しないおそれがある。このため、Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩の平均粒径は1.0~10.0μmであることが望ましい。一態様において、Ca、SrまたはBaのうち含有量(すなわち質量基準での含有量)が最も高い元素の化合物の平均粒径が1.0~10.0μmであることが好ましい。
 なお、焼鈍分離剤への添加物は、二次再結晶によるGoss方位の発達に必要不可欠なインヒビターにも影響を及ぼす。Ca、Sr、またはBaの化合物は表層での酸化物の形成を通じて一次被膜の根を発達させる。表層での酸化物の形成挙動の変化は仕上げ焼鈍中のインヒビターの変化の挙動にも大きな影響を及ぼし、磁気特性を不安定化させる傾向がある。
 Ti化合物、Y化合物、La化合物またはCe化合物との複合添加により、Ca、Sr、またはBaの化合物の小径化による被膜密着性の向上と優れた磁気特性を両立できる。
 Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩の1種以上の合計含有量が、MgOの含有量に対して、0.5%未満であると一次被膜の根が発達せず密着性に劣り、10.0%超であると一次被膜の生成が抑制され、結果的に密着性にも劣る。
 また、X/([Ca]+[Sr]+[Ba])(ここで、Xは[Ca]、[Sr]、[Ba]のうち最も高い値である)が0.80未満であると一次被膜の形成が不均一となり、密着性にも劣ることとなる。
 さらに、Ti化合物、Y化合物、La化合物またはCe化合物のうち1種以上の合計含有量がMgOの含有量に対して1.0%未満であると一次被膜の根が発達せず密着性に劣り、かつ磁気特性にも劣り、15.0%超であると、一次被膜の根は形成されるものの、磁気特性に劣る。
 MgOは、粒径1.0μm以下の粒子の含有量が質量基準で20~30%、粒径10μm以上の粒子の含有量が質量基準で2~5%の粒度分布を有し、MgOのメジアン径に対するCa、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5である。
 焼鈍分離剤の主成分であるMgOは、一次被膜の形成に寄与する微細な粒子が必要である。粒径1.0μm以下の粒子の含有量が20%未満であると一次被膜の形成が不十分となり、一方、30%を超えると反応性が過度に高まり、鋼板の形状や塗布時の作業性に悪影響を及ぼす。さらに、磁気特性、被膜密着性にも悪影響を及ぼす場合もある。また、粗な粒子が少ない場合にも、鋼板の形状に悪影響を及ぼし、過度に多い場合は一次被膜の形成に悪影響を及ぼす。このため、粒径10μm以上の粒子の含有量は2~5%である。
 このような粒度分布を有するMgOにおいて、大きい側と小さい側が等量となるメジアン径と焼鈍分離剤への添加剤であるCa、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が同等であることが、焼鈍分離剤を塗布、焼き付けた後の鋼板の表面とCa、Sr、またはBaの化合物との接触頻度の増加につながる。メジアン径は粒子群中の代表粒子(すなわち累積体積50%における粒子)のサイズを反映する一方、平均粒径は粒子群中に存在する粒子全体のサイズを反映する。鋼板の表面とCa、Sr、またはBaの化合物との接触頻度は当該Ca、Sr、またはBaの化合物の表面積に左右され得ることから、Ca、Sr、またはBaの化合物の平均粒径の制御は当該接触頻度の増加に有利であり得る。添加剤の粉末は、互いが凝集した二次粒子を形成しており、この二次粒子の粒径で考えると、MgOのメジアン径に対するCa、SrまたはBaの水酸化物、硫酸塩または炭酸塩に対する平均粒径の比が0.8~2.5であることにより一次被膜の根を形成する効果が高まり、被膜密着性が向上する。
 ここで、Ca、Sr、またはBaの水酸化物、硫酸塩または炭酸塩のうち、Srの水酸化物、Baの水酸化物および炭酸塩は発明の効果に遜色はないものの、取扱い中に変質し易いために管理に注意を要し、生産性を阻害する懸念がある。このため、特に理由がなければ、あえてこれらを使用する必要性はない。
 焼鈍分離剤における粒度分布の制御は、これに限定されないが例えば、所望の粒度分布を有するMgOと、所望の粒度分布を有するCa、Sr、またはBaの水酸化物、硫酸塩または炭酸塩(1種でも2種以上の混合物でもよい)と、液体媒体(例えば水)とを当業者に公知の手段で混合すること等によって実現できる。一態様において、粒度分布に関する本開示の値は焼鈍分離剤の調製に用いた粒子の値であってよい。
 (3-2-6)仕上げ焼鈍工程の製造条件
 仕上げ焼鈍工程は、例えば次の条件で行う。仕上げ焼鈍の前に焼付け処理を行う。初めに、鋼板の表面に水性スラリーの焼鈍分離剤を塗布する。表面に焼鈍分離剤が塗布された鋼板を400~1000℃に保持した炉内に装入し、保持する(焼付け処理)。これにより、鋼板の表面に塗布された焼鈍分離剤が乾燥する。保持時間はたとえば10~90秒間である。
 焼鈍分離剤を乾燥した後、仕上げ焼鈍を行う。仕上げ焼鈍では、焼鈍温度を、例えば1150~1250℃とし、母材鋼板(焼鈍分離剤を塗布・乾燥させた鋼板)を均熱する。均熱時間は例えば15~30時間である。仕上げ焼鈍における炉内雰囲気は周知の雰囲気である。
 以上の製造工程により製造された方向性電磁鋼板では、Mg2SiO4を主成分として含有する一次被膜が形成される。Alピーク位置DAlが、一次被膜の表面から板厚方向に2.0~12.0μmの範囲に存在する。Alピーク位置DAlでのAl酸化物の周長の総和が0.20~1.00μm/μm2である。さらに、Al酸化物個数密度NDが0.02~0.20個/μm2である。
 脱炭焼鈍工程および仕上げ焼鈍工程により、熱延鋼板の化学組成の各元素が鋼中成分からある程度取り除かれる。特に、インヒビターとして機能するS、Al、N等は仕上げ焼鈍工程において大幅に取り除かれる。そのため、熱延鋼板の化学組成と比較して、方向性電磁鋼板の母材鋼板の化学組成中の上記の元素含有量は上記のように低くなる。上述の化学組成の熱延鋼板を用いて上記製造方法を行えば、上記化学組成の母材鋼板を有する方向性電磁鋼板を製造できる。
 (4)二次被膜形成工程
 本発明の一態様による方向性電磁鋼板の製造方法の一例では、さらに、仕上げ焼鈍工程後に二次被膜形成工程を経てもよい。二次被膜形成工程では、仕上げ焼鈍の降温後の方向性電磁鋼板の表面に、コロイド状シリカおよびリン酸塩を主体とする絶縁コーティング剤を塗布した後、焼付ける。これにより、一次被膜上に張力絶縁被膜である二次被膜が形成される。
 (5)磁区細分化処理工程
 本発明の一態様による方向性電磁鋼板は、さらに、仕上げ焼鈍工程または二次被膜形成工程後に、磁区細分化処理工程を行ってもよい。磁区細分化処理工程では、方向性電磁鋼板の表面に、磁区細分化効果のあるレーザー光を照射したり、表面に溝を形成したりする。この場合、さらに磁気特性に優れる方向性電磁鋼板が製造できる。
 本発明を、実施例によりさらに具体的に説明する。
 表1に示す化学組成を有する溶鋼を真空溶解炉で製造した。製造された溶鋼を用いて、スラブを製造した。スラブを1350℃で1時間加熱し、加熱されたスラブに熱間圧延を行って2.3mmの板厚を有する熱延鋼板を製造した。熱延鋼板の化学組成は溶鋼と同じであり、表1に示す通りであった。なお、表1、2における「-」は含有しないことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 熱延鋼板に1100℃、120秒間の条件で焼鈍処理を行って、その後、熱延鋼板に酸洗を行った。熱延鋼板への焼鈍処理条件および酸洗条件は、いずれの熱延鋼板も同じとした。酸洗後の熱延鋼板に冷間圧延を行い、0.22mmの板厚を有する冷延鋼板を製造した。いずれの冷延鋼板においても冷延率は90.4%であった。
 冷延鋼板に脱炭焼鈍を兼ねた一次再結晶焼鈍を行った。一次再結晶焼鈍での焼鈍温度はいずれの冷延鋼板においても850℃であり、焼鈍温度での保持時間は2分間であった。
 一次再結晶焼鈍後の冷延鋼板に対して、水性スラリーを塗布した。水性スラリーは、焼鈍分離剤と水とを質量基準で1:7の配合比で混合して調製した。表2に焼鈍分離剤の条件をまとめて示す。表2における下線は本発明の一態様の範囲を外れることを示す。なお、表2に記載の含有量(%)は、焼鈍分離剤に含有されるMgOの含有量に対する質量%である。
 表2において、焼鈍分離剤の主成分であるMgOの粒子には、粒度分布の異なる下記(A)~(E)の5種類を使用した。それぞれの粒度分布は、
 (A)MgO全体の含有量に対して粒径1.0μm以下の粒子の含有量が25質量%、粒径10μm以上の粒子の含有量が4質量%、D20粒径が0.9μm、D30粒径が1.1μm、D50粒径(メジアン径)が2.25μm、
 (B)MgO全体の含有量に対して粒径1.0μm以下の粒子の含有量が10質量%、粒径10μm以上の粒子の含有量が4質量%、D20粒径が1.5μm、D30粒径が1.8μm、D50粒径(メジアン径)が4.56μm、
 (C)MgO全体の含有量に対して粒径1.0μm以下の粒子の含有量が35質量%、粒径10μm以上の粒子の含有量が4質量%、D20粒径が0.5μm、D30粒径が0.7μm、D50粒径(メジアン径)が1.81μm、
 (D)MgO全体の含有量に対して粒径1.0μm以下の粒子の含有量が25質量%、粒径10μm以上の粒子の含有量が1質量%、D20粒径が0.9μm、D30粒径が1.1μm、D50粒径(メジアン径)が2.08μm、
 (E)MgO全体の含有量に対して粒径1.0μm以下の粒子の含有量が25質量%、粒径10μm以上の粒子の含有量が8質量%、D20粒径が0.9μm、D30粒径が1.1μm、D50粒径(メジアン径)が4.00μm、
である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 水性スラリーが表面に塗布された冷延鋼板に対して、いずれの試験番号においても900℃にて10秒間焼付け処理を行って水性スラリーを乾燥した。ここで、乾燥後の鋼板に対する焼鈍分離剤の塗布量は、片面当たり5g/m2であった。
 焼付け後、仕上げ焼鈍処理を行った。仕上げ焼鈍処理では、いずれの試験番号においても、1200℃で20時間保持した。以上の製造工程により、母材鋼板と一次被膜とを有する方向性電磁鋼板を製造した。
 [方向性電磁鋼板の母材鋼板の化学組成分析]
 製造された試験番号1~48の方向性電磁鋼板の一次被膜を硫酸と硝酸により除去し、母材鋼板を得た。母材鋼板に対して、スパーク放電発光析法および、原子吸光分析法により、母材鋼板の化学組成を求めた。求めた化学組成を表3に示す。ここで、試験番号1~48のいずれも、Sn、Sb、Cu、Bi、Te、Pbの合計含有量は0.03%以下であった。なお、表3における下線は本発明の一態様の範囲外であることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 [評価試験]
 [Alピーク位置DAl測定試験]
 各試験番号の方向性電磁鋼板に対して、次の測定方法によりAlピーク位置DAlを求めた。具体的には、後述の条件で、方向性電磁鋼板の表層に対してGDS法を用いた元素分析を行い、任意に選んだ36μm×50μmの観察領域において、方向性電磁鋼板の表面から深さ方向に100μmの範囲(表層)で元素分析を行い、表層中の各深さ位置に含まれるAlを同定した。同定されたAlの発光強度を表面から深さ方向にプロットした。
(GDS元素分析条件)
装置:高周波グロー放電発光分析装置(RIGAKU社製、型番「GDA750」
Arガス圧力:3hPa
アノード径:6mmφ
電力:20W
計測時間:30~100秒
プロットされたAl発光強度のグラフに基づいて、Alピーク位置DAlを求めた。求めたAlピーク位置DAlを表3に示す。
 [Al酸化物周長総和測定試験]
 Al酸化物の周長の総和は、上記[Alピーク位置DAl測定試験]と同様の条件で、グロー放電発光分析装置により、Alピーク位置DAlまでグロー放電を行い、Alピーク位置DAlでの放電痕のうち、任意の36μm×50μmの領域(観察領域)に対して、後述の条件で、エネルギー分散型X線分光器(EDS)による元素分析を行った。観察領域中のAl酸化物を特定し(観察領域におけるOの特性X線の最大強度に対して、50%以上のOの特性X線の強度が分析される領域を酸化物と特定し、特定された酸化物の領域において、Alの特定X線の最大強度に対して、30%以上のAlの特定X線の強度が分析される領域をAl酸化物と特定する)、特定されたAl酸化物の周長の総和(μm/μm2)を求めた。
(EDS元素分析条件)
装置:走査型電子顕微鏡(日本電子社製、型番「JSM-6610LA」)
EDS検出器:JED-2300
加速電圧:15kV
照射電流:11.32057nA
入力カウント:30000cps以上
測定時間:1000秒以上
求めたAl酸化物の周長の総和を表3に示す。
 [Al酸化物の数密度ND測定試験]
 各試験番号の方向性電磁鋼板に対して、Alピーク位置DAlでのAl酸化物個数密度ND(個/μm2)を次の方法で求めた。上記[Alピーク位置DAl測定試験]と同様の条件で、グロー放電発光分析装置により、Alピーク位置DAlまでグロー放電を行った。Alピーク位置DAlでの放電痕のうち、任意の36μm×50μmの領域(観察領域)に対して、上記[Al酸化物周長総和測定試験]と同様の条件で、エネルギー分散型X線分光器(EDS)による元素分析を行った。観察領域中のAl酸化物を特定し(観察領域におけるOの特性X線の最大強度に対して、50%以上のOの特性X線の強度が分析される領域を酸化物と特定し、特定された酸化物の領域において、Alの特定X線の最大強度に対して、30%以上のAlの特定X線の強度が分析される領域をAl酸化物と特定する)、特定されたAl酸化物の個数をカウントし、ND=特定されたAl酸化物の個数/観察領域の面積として、Al酸化物個数密度ND(個/μm2)を求めた。求めたAl酸化物個数密度NDを表3に示す。
 [磁気特性評価試験]
 次の方法により、各試験番号の方向性電磁鋼板の磁気特性を評価した。具体的には、各試験番号の方向性電磁鋼板から圧延方向長さ300mm×幅60mmのサンプルを採取した。サンプルに対して、単板磁気測定器を用い、800A/mの磁場を付与して、磁束密度B8を求めた。表3に試験結果を示す。表3において、磁束密度が1.92T以上を「優」、1.90T~1.92T未満を「良」、1.88T~1.90T未満を「可」、1.88T未満を「不良」で示した。磁束密度が1.90T以上であれば(つまり、表3中「良」であれば)磁気特性に優れ、1.92T以上であれば(つまり、表3中「優」であれば)特に磁気特性に優れる、と判断した。
 [密着性評価試験]
 次の方法により、各試験番号の方向性電磁鋼板の一次被膜の密着性を評価した。具体的には、各試験番号の方向性電磁鋼板から圧延方向長さ60mm×幅15mmのサンプルを採取した。サンプルに対して10mmの曲率で曲げ試験を行った。曲げ試験は、円筒型マンドレル屈曲試験機(TP技研株式会社製)を用いて、円筒の軸方向がサンプルの幅方向と一致するようにサンプルに設置して行った。曲げ試験後のサンプルの表面を観察し、一次被膜が剥離せずに残存している領域の総面積を求めた。具体的には、曲げ試験後のサンプルを平坦な状態に戻し、表面外観をスキャナー(EPSON社製、型番「ES-H7200」)で取り込んだ。得られた画像をスキャナー内蔵ソフトで二値化処理し、サンプル表面のうちの一次被膜残存部位の面積を計測した。そして、一次被膜残存率=一次被膜が剥離せず残存している領域の総面積/サンプルにおける曲げ部の面積×100として、一次被膜残存率を求めた。
 表3に試験結果を示す。一次被膜残存率が90%以上を「良」、70~90%未満を「可」、70%未満を「不良」で示した。一次被膜残存率が90%以上であれば(つまり、表3中「良」であれば)、一次被膜の母鋼板に対する密着性に優れると判断した。
 [試験結果]
 表3に試験結果を示す。
 試験番号1~21の本発明例は、焼鈍分離剤の化学成分が本発明の一態様で規定する化学成分を満足する。具体的には、焼鈍分離剤のMgOの粒度分布として、粒径1.0μm以下の粒子の含有量が20~30%、粒径10μm以上の粒子の含有量が2~5%であり、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の含有量が、MgOの含有量に対して合計0.5~10.0%の範囲であり、かつ、X/([Ca]+[Sr]+[Ba])が0.80~1.00の範囲を満たし、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmであるとともに、MgOのメジアン径に対するCa、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5であり、さらに、Ti化合物、Y化合物、La化合物またはCe化合物の含有量が、MgOに含有量に対して合計1.0~15.0%である。
 このため、一次被膜の表面から方向性電磁鋼板の板厚方向にグロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピーク位置が、一次被膜の表面から板厚方向へ2.0~12.0μmの範囲に存在し、Al発光強度のピーク位置でのAl酸化物の周長の総和が0.20~1.00μm/μm2であり、かつ、Al酸化物の個数密度が0.02~0.20個/μm2であった。
 その結果、試験番号1~21では、一次被膜が優れた密着性を示し、かつ優れた磁性特性を示した。熱延鋼板がSb、Sn、Cu、Bi、Te、Pbを含有する試験番号2~21は、試験番号1と比較して特に磁気特性に優れていた。
 これに対し、試験番号22~48の比較例は、本発明の一態様の条件を満足しないため、一次被膜の密着性または磁性特性の一方または双方が芳しくない値であった。
 試験番号22~24では、Ca、Sr、Ba化合物の合計含有量が本発明の一態様で規定する上限を上回った。そのため、Alピーク位置DAlおよびAl酸化物の周長の総和が低く、その結果、一次被膜の密着性が低かった。
 試験番号25~27では、Ca、Sr、Ba化合物の合計含有量が本発明の一態様で規定する下限を下回った。そのため、Al酸化物の周長の総和およびAl酸化物の個数密度が低く、その結果、一次被膜の密着性が低かった。また、磁気特性も劣っていた。
 試験番号28では、Ti化合物、Y化合物、La化合物、Ce化合物の合計含有量が本発明の一態様で規定する下限を下回った。そのため、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が低く、その結果、一次被膜の密着性が低かった。
 試験番号29では、X/([Ca]+[Sr]+[Ba])が本発明の一態様で規定する下限を下回り、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が低かった。その結果、一次被膜の密着性が低かった。また、磁気特性も劣っていた。
 試験番号30では、Sr化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明の一態様で規定する上限を上回っていた。その結果、Al酸化物の周長の総和が低く、一次被膜の密着性が低かった。
 試験番号31では、Ti化合物、Y化合物、La化合物、Ce化合物の合計含有量が本発明の一態様で規定する上限を上回った。そのため、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様の上限より高く、その結果、磁気特性が劣っていた。
 試験番号32では、Ca化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明の一態様で規定する上限を上回っていた。さらに、Ti化合物、Y化合物、La化合物、Ce化合物の合計含有量が本発明の一態様で規定する上限を上回った。そのため、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様の上限より高く、磁気特性が劣っていた。
 試験番号33では、Sr化合物の平均粒径が本発明の一態様で規定する下限を下回り、MgOのメジアン径との比も本発明の一態様で規定する下限を下回った。そのため、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様の下限より低く、密着性に劣っていた。また、磁気特性も劣っていた。
 試験番号34~36では、MgOの粒度分布において粒径1.0μm以下の粒子が本発明の一態様で規定する下限を下回った。試験番号35では、さらにCa化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明の一態様で規定する上限を上回っていた。また、試験番号36では、さらにSr化合物の平均粒径が本発明の一態様で規定する下限を下回り、MgOのメジアン径との比も本発明の一態様で規定する下限を下回った。そのため、試験番号34~36では、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様で規定する下限を下回り、密着性が劣っていた。
 試験番号37~39では、MgOの粒度分布において粒径1.0μm以下の粒子が本発明の一態様で規定する上限を上回った。試験番号38では、さらにCa化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明で規定する上限を上回っていた。また、試験番号39では、さらにSr化合物の平均粒径が本発明の一態様で規定する下限を下回り、MgOのメジアン径との比も本発明の一態様で規定する下限を下回った。そのため、試験番号37~39では、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様で規定する下限より低く、密着性が劣っていた。
 試験番号40~42では、MgOの粒度分布において粒径10μm以上の粒子が本発明の一態様で規定する下限を下回った。試験番号41では、さらにCa化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明の一態様で規定する上限を上回っていた。また、試験番号42では、さらにSr化合物の平均粒径が本発明の一態様で規定する下限を下回り、MgOのメジアン径との比も本発明の一態様で規定する下限を下回った。そのため、試験番号40~42では、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様で規定する下限より低く、密着性が劣っていた。
 試験番号43~45では、MgOの粒度分布において粒径10μm以上の粒子が本発明の一態様で規定する上限を上回っていた。試験番号44では、さらにCa化合物の平均粒径が本発明の一態様で規定する上限を上回っており、MgOのメジアン径との比も本発明の一態様で規定する上限を上回っていた。また、試験番号45では、さらにSr化合物の平均粒径が本発明の一態様で規定する下限を下回り、MgOのメジアン径との比も本発明の一態様で規定する下限を下回った。そのため、試験番号43~45では、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様で規定する下限より低く、密着性が劣っていた。
 試験番号46~48は、それぞれ、試験番号5、15、21のそれぞれに対して、Ca、Sr、またはBaの平均粒径とMgOのメジアン径との比のみが異なる。試験番号46ではCaの平均粒径とMgOのメジアン径との比が、試験番号47ではSrの平均粒径とMgOのメジアン径との比が、試験番号48ではBaの平均粒径とMgOのメジアン径との比が、それぞれ本発明の一態様で規定する上限を上回っていた。そのため、試験番号46~48では、Alピーク位置DAl、Al酸化物の周長の総和およびAl酸化物の個数密度が本発明の一態様で規定する下限より低く、密着性が劣っていた。

Claims (7)

  1.  質量%で、C:0.005%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SとSeの合計:0.005%以下、sol.Al:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不純物である化学組成を有する母材鋼板と、該母材鋼板の表面上に形成され、Mg2SiO4を主成分として含有する一次被膜とを備える方向性電磁鋼板であって、
     前記一次被膜の表面から前記方向性電磁鋼板の板厚方向にグロー放電発光分析法による元素分析を行ったときに得られるAl発光強度のピーク位置が、前記一次被膜の表面から前記板厚方向へ2.0~12.0μmの範囲に存在し、
     前記Al発光強度のピーク位置でのAl酸化物の周長の総和が0.20~1.00μm/μm2であり、かつ
     Al酸化物の個数密度が0.02~0.20個/μm2である、方向性電磁鋼板。
  2.  質量%で、C:0.100%以下、Si:2.5~4.5%、Mn:0.050~1.000%、SとSeの合計:0.002~0.050%、sol.Al:0.005~0.050%およびN:0.001~0.030%を含有し、残部がFeおよび不純物である化学組成を有する熱延鋼板に80%以上の冷延率で冷間圧延を行って冷延鋼板を製造する冷間圧延工程と、
     前記冷延鋼板に脱炭焼鈍を行う脱炭焼鈍工程と、
     前記脱炭焼鈍後の前記冷延鋼板の表面に、MgOを主成分とする焼鈍分離剤を含有する水性スラリーを塗布し、400~1000℃の炉で該冷延鋼板の表面の水性スラリーを乾燥した後、該冷延鋼板に仕上げ焼鈍を行う仕上げ焼鈍工程を含み、
     前記焼鈍分離剤は、前記MgOと、Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩を一種以上と、Ti化合物、Y化合物、La化合物またはCe化合物を一種以上とを含有し、
     前記MgOの粒度分布は、前記MgOの含有量に対して、粒径1.0μm以下の粒子の含有量が20~30質量%であるとともに粒径10μm以上の粒子の含有量が2~5質量%であり、
     前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩は、前記MgOの含有量に対して合計0.5~10.0質量%の範囲で含有され、かつ、前記MgOの含有量に対する前記Caの水酸化物、硫酸塩または炭酸塩の含有量を前記Caの水酸化物、硫酸塩または炭酸塩の分子量で割った値、前記MgOの含有量に対する前記Srの水酸化物、硫酸塩または炭酸塩の含有量を前記Srの水酸化物、硫酸塩または炭酸塩の分子量で割った値、及び前記MgOの含有量に対する前記Baの水酸化物、硫酸塩または炭酸塩の含有量を前記Baの水酸化物、硫酸塩または炭酸塩の分子量で割った値をそれぞれ[Ca]、[Sr]、及び[Ba]としたとき、X/([Ca]+[Sr]+[Ba])が0.80~1.00の範囲を満たし、
     前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmであるとともに、前記MgOのメジアン径に対する前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5であり、
     前記Ti化合物、Y化合物、La化合物またはCe化合物の含有量は、前記MgOの含有量に対して合計1.0~15.0質量%である、請求項1に記載の方向性電磁鋼板の製造方法。
     ただし、Xは、[Ca]、[Sr]または[Ba]のうち最も高い値を意味する。
  3.  前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩のうち含有量が最も高い元素の水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmである、請求項2に記載の方向性電磁鋼板の製造方法。
  4.  前記熱延鋼板は、Sb、SnまたはCuの一種以上を、合計で0.30質量%以下含有する、請求項2または3に記載の方向性電磁鋼板の製造方法。
  5.  前記熱延鋼板は、Bi、TeまたはPbの一種以上を、合計で0.0300質量%以下含有する、請求項2~4のいずれかに記載の方向性電磁鋼板の製造方法。
  6.  MgOを主成分とする焼鈍分離剤であって、
    Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩を一種以上と、Ti化合物、Y化合物、La化合物またはCe化合物を一種以上とを含有し、
     前記MgOの粒度分布は、前記MgOの含有量に対して、粒径1.0μm以下の粒子の含有量が20~30質量%であるとともに粒径10μm以上の粒子の含有量が2~5質量%であり、
     前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩は、前記MgOの含有量に対して合計0.5~10.0質量%の範囲で含有され、かつ、前記MgOの含有量に対する前記Caの水酸化物、硫酸塩または炭酸塩の含有量を前記Caの水酸化物、硫酸塩または炭酸塩の分子量で割った値、前記MgOの含有量に対する前記Srの水酸化物、硫酸塩または炭酸塩の含有量を前記Srの水酸化物、硫酸塩または炭酸塩の分子量で割った値、及び前記MgOの含有量に対する前記Baの水酸化物、硫酸塩または炭酸塩の含有量を前記Baの水酸化物、硫酸塩または炭酸塩の分子量で割った値をそれぞれ[Ca]、[Sr]、及び[Ba]としたとき、X/([Ca]+[Sr]+[Ba])が0.80~1.00の範囲を満たし、
     前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmであるとともに、前記MgOのメジアン径に対する前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩の平均粒径の比が0.8~2.5であり、
     前記Ti化合物、Y化合物、La化合物またはCe化合物の含有量は、前記MgOの含有量に対して合計1.0~15.0質量%である、焼鈍分離剤。
     ただし、Xは、[Ca]、[Sr]または[Ba]のうち最も高い値を意味する。
  7.  前記Ca、SrまたはBaの水酸化物、硫酸塩または炭酸塩のうち含有量が最も高い元素の水酸化物、硫酸塩または炭酸塩の平均粒径が1.0~10.0μmである、請求項6に記載の焼鈍分離剤。
PCT/JP2020/000339 2019-01-08 2020-01-08 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤 WO2020145315A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112021012738-0A BR112021012738A2 (pt) 2019-01-08 2020-01-08 Chapa de aço elétrico de grão orientado, método para fabricar chapa de aço elétrico de grão orientado, e, separador de recozimento
JP2020565184A JP7205555B2 (ja) 2019-01-08 2020-01-08 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤
KR1020217020594A KR102564833B1 (ko) 2019-01-08 2020-01-08 방향성 전자 강판 및 그 제조 방법, 그리고 어닐링 분리제
CN202080008251.8A CN113260720B (zh) 2019-01-08 2020-01-08 方向性电磁钢板及其制造方法以及退火分离剂
EP20738994.1A EP3910081A4 (en) 2019-01-08 2020-01-08 ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MAKING THE SAME, AND ANNEALING RELEASE AGENT
US17/421,562 US11591668B2 (en) 2019-01-08 2020-01-08 Grain-oriented electrical steel sheet and method for manufacturing same and annealing separator
US18/096,276 US20230160034A1 (en) 2019-01-08 2023-01-12 Grain-oriented electrical steel sheet and method for manufacturing same and annealing separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019001196 2019-01-08
JP2019-001196 2019-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/421,562 A-371-Of-International US11591668B2 (en) 2019-01-08 2020-01-08 Grain-oriented electrical steel sheet and method for manufacturing same and annealing separator
US18/096,276 Division US20230160034A1 (en) 2019-01-08 2023-01-12 Grain-oriented electrical steel sheet and method for manufacturing same and annealing separator

Publications (1)

Publication Number Publication Date
WO2020145315A1 true WO2020145315A1 (ja) 2020-07-16

Family

ID=71520471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000339 WO2020145315A1 (ja) 2019-01-08 2020-01-08 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤

Country Status (7)

Country Link
US (2) US11591668B2 (ja)
EP (1) EP3910081A4 (ja)
JP (1) JP7205555B2 (ja)
KR (1) KR102564833B1 (ja)
CN (1) CN113260720B (ja)
BR (1) BR112021012738A2 (ja)
WO (1) WO2020145315A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617261A (ja) * 1991-07-10 1994-01-25 Nippon Steel Corp 被膜特性と磁気特性に優れた一方向性珪素鋼板
JPH0688171A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH08269552A (ja) 1995-03-28 1996-10-15 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH09249916A (ja) * 1996-03-15 1997-09-22 Kawasaki Steel Corp 方向性けい素鋼板の製造方法及び焼鈍分離剤
JPH11302730A (ja) 1998-04-24 1999-11-02 Kawasaki Steel Corp 被膜特性および低磁場特性に優れた方向性珪素鋼板の製造方法
JP2005290446A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
WO2008062853A1 (fr) * 2006-11-22 2008-05-29 Nippon Steel Corporation Feuille d'acier électromagnétique à orientation unidirectionnelle de grains, ayant une excellente adhésion de film, et son procédé de fabrication
JP2011202224A (ja) * 2010-03-25 2011-10-13 Nippon Steel Corp 方向性電磁鋼板の製造方法
JP2012214902A (ja) 2005-05-23 2012-11-08 Nippon Steel Corp 被膜密着性に優れる方向性電磁鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683076B2 (ja) * 2008-03-03 2015-03-11 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
KR101223115B1 (ko) * 2010-12-23 2013-01-17 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
PL2664689T3 (pl) * 2011-01-12 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych oraz sposób jej wytwarzania
KR101693516B1 (ko) * 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2016105053A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6168173B2 (ja) * 2015-01-30 2017-07-26 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP6519006B2 (ja) * 2015-04-02 2019-05-29 日本製鉄株式会社 一方向性電磁鋼板と一方向性電磁鋼板用脱炭板及びそれらの製造方法
CA3046434C (en) 2016-12-14 2021-03-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP6394837B1 (ja) * 2016-12-21 2018-09-26 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617261A (ja) * 1991-07-10 1994-01-25 Nippon Steel Corp 被膜特性と磁気特性に優れた一方向性珪素鋼板
JPH0688171A (ja) 1992-09-09 1994-03-29 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH08269552A (ja) 1995-03-28 1996-10-15 Nippon Steel Corp 超高磁束密度一方向性電磁鋼板の製造方法
JPH09249916A (ja) * 1996-03-15 1997-09-22 Kawasaki Steel Corp 方向性けい素鋼板の製造方法及び焼鈍分離剤
JPH11302730A (ja) 1998-04-24 1999-11-02 Kawasaki Steel Corp 被膜特性および低磁場特性に優れた方向性珪素鋼板の製造方法
JP2005290446A (ja) 2004-03-31 2005-10-20 Jfe Steel Kk 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
JP2012214902A (ja) 2005-05-23 2012-11-08 Nippon Steel Corp 被膜密着性に優れる方向性電磁鋼板およびその製造方法
WO2008062853A1 (fr) * 2006-11-22 2008-05-29 Nippon Steel Corporation Feuille d'acier électromagnétique à orientation unidirectionnelle de grains, ayant une excellente adhésion de film, et son procédé de fabrication
JP2011202224A (ja) * 2010-03-25 2011-10-13 Nippon Steel Corp 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2020145315A1 (ja) 2021-10-21
CN113260720B (zh) 2023-06-30
CN113260720A (zh) 2021-08-13
US11591668B2 (en) 2023-02-28
BR112021012738A2 (pt) 2021-09-08
US20230160034A1 (en) 2023-05-25
EP3910081A4 (en) 2022-10-05
KR20210096233A (ko) 2021-08-04
KR102564833B1 (ko) 2023-08-09
EP3910081A1 (en) 2021-11-17
JP7205555B2 (ja) 2023-01-17
US20220098688A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5954347B2 (ja) 方向性電磁鋼板およびその製造方法
CN113195753B (zh) 方向性电磁钢板的制造方法及方向性电磁钢板
JP2018053346A (ja) 一方向性電磁鋼板及びその製造方法
US20220081747A1 (en) Method for producing grain oriented electrical steel sheet
JP7010306B2 (ja) 方向性電磁鋼板
WO2020145315A1 (ja) 方向性電磁鋼板およびその製造方法、ならびに焼鈍分離剤
US20220098692A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
KR102554127B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 제조 방법, 및, 방향성 전자 강판의 제조에 이용되는 어닐링 분리제
JP2021123766A (ja) 方向性電磁鋼板、および方向性電磁鋼板の製造方法、ならびに焼鈍分離剤
KR102541760B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 제조 방법 및 방향성 전자 강판의 제조에 이용되는 어닐링 분리제
KR102499090B1 (ko) 방향성 전자 강판, 방향성 전자 강판의 제조 방법, 및 방향성 전자 강판의 제조에 이용되는 어닐링 분리제
RU2773479C1 (ru) Лист анизотропной электротехнической стали, способ его изготовления и отжиговый сепаратор
JP7464818B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板、ならびに焼鈍分離剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565184

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217020594

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012738

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738994

Country of ref document: EP

Effective date: 20210809

ENP Entry into the national phase

Ref document number: 112021012738

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210628