WO2012028101A1 - 一种难溶性药物的液体组合物及其制备方法 - Google Patents

一种难溶性药物的液体组合物及其制备方法 Download PDF

Info

Publication number
WO2012028101A1
WO2012028101A1 PCT/CN2011/079194 CN2011079194W WO2012028101A1 WO 2012028101 A1 WO2012028101 A1 WO 2012028101A1 CN 2011079194 W CN2011079194 W CN 2011079194W WO 2012028101 A1 WO2012028101 A1 WO 2012028101A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
lecithin
mixture
oil
injection
Prior art date
Application number
PCT/CN2011/079194
Other languages
English (en)
French (fr)
Inventor
张强
代文兵
王坚成
张烜
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US13/819,407 priority Critical patent/US9339553B2/en
Priority to EP11821127.5A priority patent/EP2612655A4/en
Priority to JP2013526308A priority patent/JP2013536805A/ja
Publication of WO2012028101A1 publication Critical patent/WO2012028101A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention belongs to the field of pharmaceutical preparations, and relates to a technique for increasing the solubility of a poorly soluble drug, and more particularly to a liquid composition of a poorly soluble drug and a preparation method thereof.
  • solubilization of poorly water-soluble drugs is one of the important topics in pharmaceutics research.
  • Commonly used solubilization methods include pH adjustment, application of latent solvents, cosolvents, cyclodextrin inclusion complexes, phospholipid complexes, surfactant solubilization, preparation of micelles, liposomes, microspheres, solid lipid nanoparticles , microemulsion, fat emulsion, etc.; or chemically, using a structurally appropriate group of the drug to introduce a water-soluble group to obtain a more water-soluble derivative.
  • Some drug molecules are weak acids or weak bases that can be dissociated. Dissolving the insoluble drug by adjusting the pH of the solution is a simple and effective method to increase the solubility. In the administration of injection, it is necessary to pay attention to the buffering capacity problem. Due to the good buffering capacity of blood, the poorly soluble drug is easily supersaturated due to blood thinning.
  • a mixture of a less polar organic solvent (latent solvent) and water is used to dissolve the drug.
  • latent solvent a less polar organic solvent
  • 10% use latent solvents.
  • These prescriptions can not only significantly increase the solubility of certain drugs, but also reduce the hydrolysis reaction of some drugs in solution and increase the stability of the preparation.
  • a higher proportion of organic solvents is required to achieve solubility requirements.
  • phenobarbital injection requires 10% ethanol and 67.8% propylene glycol to dissolve.
  • a high proportion of organic solvents tend to cause local irritation at the injection site and phlebitis. If the formulation contains more than 10% ethanol, significant injection pain will occur.
  • Cyclodextrin inclusion can be used in a variety of drugs, its unique cage structure can form a host-guest complex, non-polar drug molecules are located inside a non-polar cage structure, polyhydroxyl and polar outside the cyclodextrin
  • the water molecules have a strong affinity, which has the effect of improving the solubility.
  • the drug loading is low.
  • the solubilization effect of the drug in cyclodextrin depends on the binding constant of the drug molecule to the cyclodextrin.
  • the binding constant of the benzodiazepine drug is relatively low.
  • the traditional one is still selected.
  • Submersible solvent prescription In other words, not all drugs can be packaged with cyclodextrin.
  • the types of cyclodextrins are limited, and there are more obvious toxicities. At present, there are not many applications in injections.
  • Liposomes, microspheres, solid lipid nanoparticles, microemulsions, and hydrophilic derivatives have also been used in recent years to increase the water solubility of poorly soluble drugs.
  • Many studies and patents have been made at home and abroad. Although some progress has been made in these studies, there are still problems such as unstable effects, complicated prescription processes, low drug loading, high toxicity of surfactants, and high development costs.
  • surfactants increase the solubility of non-polar drugs in water by forming micelles. Many of the poorly soluble antitumor drugs must be prepared by the use of surfactants for clinical injection.
  • surfactants for injection in China and abroad are polysorbate (mainly polysorbate 80, ie Tween 80), poloxamer (mainly poloxamer 188), polyoxyethylene castor oil (mainly Cremophor EL) and phospholipids.
  • poloxamer 188 and phospholipids have stronger emulsifying ability and weaker solubilizing ability, and are mainly used for intravenous fat emulsion for injection. Cremophor EL and Tween 80 have strong solubilization and emulsifying ability.
  • Soluble drugs can be dissolved in non-aqueous medium. When used, they can be prepared by using water for injection (or physiological saline solution for injection, glucose solution for injection). Aqueous solution or emulsion. Among such ready-to-use injections, the solubilizing ability and emulsifying ability of Cremophor EL or Tween 80 play an important role.
  • the paclitaxel and teniposide injections that have been marketed contain a large amount of Cremophor EL, and can be formulated into an aqueous solution by using an aqueous medium such as water for injection; the paclitaxel injection contains a large amount of Tween 80, and the water for injection is used for water use.
  • the medium can be formulated into an aqueous solution; there are also many other related patents, all of which use Cremophor EL or Tween 80.
  • CN200610037337.3 Patent application for preparing an injection of paclitaxel poorly soluble drugs by using brick grease, other surfactants (Tween 80, poloxamer 188 and Cremophor EL) and nonaqueous solvent; Chinese invention patent (200710198956.7) relates to an injection for injection
  • the romanceside injection contains Tween 80 as a surfactant in the formulation.
  • Cremophor EL or Tween 80 injection in the prescription, after administration, some patients may have adverse reactions such as drug rash, shortness of breath, bronchospasm, hypotension, hemolysis, etc., which makes the clinical application very inconvenient. It brings great pain to the patient and the medication is poorly compliant.
  • many domestic and foreign pharmacy workers have been working to reduce or replace Cremophor EL.
  • Tween 80's new anti-tumor drug delivery system Since these two types of surfactants can cause more serious side effects, they are generally only used in a limited amount in injections. Obviously, if the two types of surfactants are not used in the injection, it is more advantageous to improve the compliance of the drug. Summary of the invention
  • the poorly soluble drug can be prepared into a clear liquid (true solution).
  • the solution is hydrated with an injection solvent (such as 5% dextrose solution, physiological saline, water for injection) and remains stable for 8 hours, which meets the requirements for clinical use.
  • an injection solvent such as 5% dextrose solution, physiological saline, water for injection
  • a liquid composition of such a poorly soluble drug is selected from the group consisting of safe and pharmaceutically acceptable excipients such as ingredients and injectable oils, and anhydrous ethanol, and does not contain a surfactant which causes significant side effects, and can be eliminated from the market.
  • the Cremophor EL or Tween 80 bow in the preparation has a serious side effect, which significantly improves the patient's compliance.
  • the liquid composition of such a poorly soluble drug is a true solution which has good stability and can be dispersed by an injection solution to form an emulsion for intravenous injection.
  • the liquid composition of such a poorly soluble drug has a simple formulation process and is suitable for industrial production as compared with some commercially available formulations.
  • the liquid composition of the poorly soluble drug of the present invention contains a poorly soluble drug, an injectable oil, a phospholipid, and a solvent, and the weight percentages of the components are as follows:
  • the components and weight percentages of the liquid composition of the poorly soluble drug of the present invention are as follows: poorly soluble drug 0.1 - 2.5%,
  • the components of the liquid composition of the poorly soluble drug of the present invention and the weight percentage thereof are:
  • the “poorly soluble drug” refers to a drug which is known to be applicable in the field of medicine and which has a low solubility in water relative to its effective administration amount.
  • the solubility of the substances described in the "slightly soluble", “very slightly soluble, or “almost insoluble or insoluble” words refers to the Chinese Pharmacopoeia "Examples, the solubility of the substances described in the "slightly soluble", “very slightly soluble, or “almost insoluble or insoluble” words.
  • Amount of water refers to the amount of solvent needed to dissolve lg or 1mL of solute (Amount of water) is a drug of 100 mL or more (concentration: 1% or less), preferably 1000 mL (concentration: 0.1% or less), and more preferably 100 mL (concentration: 0.01% or less).
  • the poorly soluble drug includes, but is not limited to, docetaxel, paclitaxel, capecitabine, oxaliplatin, gefitinib, doxorubicin, Irinotecan, gemcitabine, pemetrexed, temozolomide, imatinib, vinorelbine, letrozole, teniposide, etoposide, podophyllotoxin, camptothecin, 10-hydroxycamptothecin , 9-hydroxycamptothecin, 7-ethyl-10-hydroxycamptothecin SN-38, topotecan, irinotecan, vinblastine, vincristine, vindesine, vinflunine, vinpocetine , deuterin, silibinin, propofol, florfenicol, mitiglinide, artemisinin, dihydroartemisinin, sirolimus, buprofolol,
  • a poorly soluble antitumor drug such as paclitaxel, docetaxel, capecitabine, vinorelbine, Temozolomide, doxorubicin, gefitinib, teniposide, etoposide, podophyllotoxin, artemisinin, camptothecin, vinblastine, etc. or mixtures thereof.
  • the poorly soluble drug is paclitaxel, docetaxel, capecitabine, vinorelbine, temozolomide, doxorubicin, gefitinib, teniposide, etoposide, artemisinin, Camptothecin or a mixture of paclitaxel and teniposide.
  • the phospholipids in the liquid composition of the poorly soluble drug of the present invention include natural phospholipids, semisynthetic phospholipids, synthetic phospholipids or mixtures thereof. It is preferably one of natural phospholipids or a mixture thereof.
  • the natural phospholipid is preferably lecithin, more preferably egg yolk lecithin, soy lecithin or a mixture thereof in any ratio.
  • the semi-synthetic phospholipids and synthetic phospholipids include, but are not limited to, hydrogenated soybean phosphatidylcholine (HSPC), dioleoyl lecithin (DOPC), dimyristoyl erythroylethanolamine (DMPE), dipalmitoyl alcohol emulsion (DPPE) , dimyristoylphosphatidylserine (DMPS), distearoylphosphatidylethanolamine (DSPE), dilauroyl lecithin (DLPC), dimyristoyl lecithin (DMPC), dipalmitoyl lecithin (DPPC) , distearyl lecithin (DPPC), distearoyl lecithin (DSPC), 1-myristoyl-2-palmitoyl lecithin (MPPC), a PEGylated derivative of the above-mentioned monument (eg, poly Ethylene glycol-distearoylethanolamine) or a mixture thereof, preferably
  • the injection oil may be specifically selected from the group consisting of soybean oil, corn oil, medium chain triglyceride (MCT), castor oil, olive oil, peanut oil, cottonseed oil, and sesame oil. a mixture of one or more of safflower oil, glyceryl monostearate or glyceryl monooleate. Preferred are soybean oil, corn oil, medium chain triglycerides or mixtures thereof.
  • the injectable oil may also contain long-chain and medium-chain fatty acids, long-chain and medium-chain fatty acid glycerides, long-chain fatty alcohols, and mixtures of the above, including their saturated and unsaturated, linear and branched forms. Wait.
  • the solvent may be selected from the group consisting of: anhydrous ethanol, glycerin, propylene glycol, polyethylene glycol, hydrazine, hydrazine-dimercaptoacetamide, phenyl benzyl benzyl ester, oil A mixture of one or more of ethyl acetate, benzoquinone, and the like.
  • anhydrous ethanol or a mixture of absolute ethanol and hydrazine, hydrazine-dimercaptoacetamide, or a mixture of absolute ethanol and polyethylene glycol, or a mixture of glycerin and hydrazine, hydrazine-dimercaptoacetamide.
  • the polyethylene glycol comprises polyethylene glycols of different weight average molecular weight or a mixture thereof, and the weight average molecular weight ranges from 200 to 2,000, preferably from 200 to 400.
  • the solid polyethylene glycol needs to be dissolved in other solvents first.
  • a pharmaceutically acceptable pharmaceutical additive such as a co-emulsifier, a stabilizer, a pH adjuster, an antioxidant or the like may be added as needed.
  • the stabilizer may be cholesterol, polyethylene glycol and its derivatives, glycerin, xylitol, sorbitol, mannitol, propylene glycol, glycerol, urea, sodium salicylate, phosphatidic acid, oleic acid , sodium oleate, cholic acid, sodium cholate, hydroxypropyl hydrazine cellulose, sodium carboxymethyl cellulose, starch and its derivatives, poloxamer, gelatin and its derivatives, alginic acid and its sodium salt, poly A combination of one or more of vinylpyrrolidone, hydroxypropyl- ⁇ -cyclodextrin.
  • the pH adjusting agent may be one or more of maleic acid, hydrochloric acid, tartaric acid, sodium hydroxide, acetic acid, acetate, phosphoric acid, phosphate, citric acid, citrate, ethanolamine, triethanolamine, diethanolamine.
  • the pH range of the liquid composition is adjusted to 4-8.
  • the co-emulsifier includes one of various small molecule alcohols and derivatives of polyglycerol or a mixture thereof.
  • the antioxidant includes one of ⁇ -tocopherol, ⁇ -tocopheryl succinate, ascorbyl palmitate, t-butyl p-hydroxyanisole ( ⁇ ), dibutyl phenol ( ⁇ ) or propyl gallate. Or a variety.
  • the liquid composition of the poorly soluble drug of the present invention may be in the form of a concentrated solution for injection, generally a 'J, a volume of concentrated solution for injection, aseptically filled into an ampoule or a small volume control bottle;
  • the preparations for sale such as Taxol (Paclitaxel Injection) and Taxotere (Docetaxel Injection) are similar, that is, they are prepared by injection before use, and are used for injection.
  • the concentrated solution for injection is dispersed in a clinical use with a 5% dextrose solution or physiological saline or water for injection or a mixture thereof to form a uniform hydration solution for injection, particularly for intravenous injection.
  • the hydration liquid has an average particle size ranging from 10 to 5000 ⁇ .
  • liquid combination of the poorly soluble drug of the present invention can also be carried out according to a conventional method of pharmacy.
  • the preparation is prepared into a capsule, a soft gelatin or an oral liquid preparation for oral use and the like.
  • Cremophor EL and Tween 80 are difficult to prepare injections of insoluble drugs, including ready-to-use injections. Because if the solubilizing ability of the surfactant is not strong, when it is formulated with an aqueous medium such as water for injection, a poorly soluble drug such as paclitaxel or the like is likely to precipitate crystals.
  • the present inventors have found through extensive research that only when a poorly soluble drug, an oil phase, a phospholipid and an organic solvent have a very suitable ratio, the liquid composition prepared can be clarified, transparent, and hydrated with an injectable solution. It can be kept stable within 8 hours, no drug crystallization, no delamination, no flocculation, and meet the needs of clinical medication.
  • the reason for this result may be due to the solubility of poorly soluble drugs in both organic solvents and oil phases.
  • the solubility can be maximized, while phospholipids have a certain viscosity and supersaturation.
  • the drug When emulsified with water, the drug can be maintained at the oil phase, oil-water interface or form a complex phospholipid complex. The above comprehensive reasons cause the drug to not crystallize in a short time.
  • the amount of each component used in the present invention is very important. It is only within the range of the amount of the present invention that it is possible to prepare an injection of a poorly soluble drug having a stable stability.
  • the amount thereof may vary somewhat, but it is still within the range of the present invention;
  • the amount of the component exceeds the range of the amount used in the present invention, a phenomenon such as failure to form a clear and transparent solution, a too large viscosity of the solution or precipitation of crystals within 8 hours of hydration may occur, which is disadvantageous for clinical use.
  • the types of the various components in the present invention are also very important. Among them, the action of phospholipids and organic solvents is indispensable. For some extremely poorly soluble drugs, organic solvents need to use hydrazine, hydrazine-dimercaptoacetamide and absolute ethanol at the same time; for other poorly soluble drugs, such as Docetaxel or paclitaxel, the organic solvent can be used alone or in combination with both. In contrast, in terms of in vitro stability, the oil phase has a smaller effect, and can be prepared as an injection when not in use, or it can be kept stable for 8 hours. Liposomes can be formed when water is not added, and the liposome and emulsion have different processes in the body, and each has its own characteristics. Therefore, both the oiled phase and the non-oiled phase are within the scope of the present invention.
  • Another object of the present invention is to provide a process for preparing a liquid composition of a poorly soluble drug of the present invention.
  • the preparation method of the present invention comprises: dissolving a poorly soluble drug in a solvent or injecting The oil or a mixture thereof is further added to the tablet and other components in the liquid composition, and uniformly mixed to form a transparent and clear liquid composition, that is, a liquid composition of the poorly soluble drug of the present invention.
  • the preparation method of the present invention comprises: directly dissolving a poorly soluble drug in a mixture of a solvent, an injectable oil, a phospholipid, and other components in a liquid composition, and uniformly mixing to form a transparent and clear liquid, that is, A liquid composition of the poorly soluble drug of the invention.
  • the preparation method of the invention comprises: first dissolving the poorly soluble drug in a part of the solvent, adding to the mixture of the phospholipid, the injectable oil, the residual solvent and other components, and uniformly mixing to form a transparent and clear liquid. That is, it is a liquid composition of a poorly soluble drug of the present invention.
  • the liquid composition of the poorly soluble drug of the present invention can be prepared into a certain specification of a drug by a filtration, a filling process or the like.
  • the poorly soluble drug is dissolved in an organic solvent or an injectable oil or a mixture thereof, which can prevent oxidation, hydrolysis, etc. of the poorly soluble drug in an aqueous medium, and can increase the stability of the preparation and extend the expiration date.
  • an organic solvent or an injectable oil or a mixture thereof which can prevent oxidation, hydrolysis, etc. of the poorly soluble drug in an aqueous medium, and can increase the stability of the preparation and extend the expiration date.
  • it is a small volume of concentrate, which is easy to transport and store.
  • the liquid composition is simple in preparation process and convenient for industrial production.
  • the clinical application method is almost the same as the preparation method of the existing preparation, which does not increase the difficulty of use, and is beneficial to improve the compliance of the medicine.
  • the liquid composition is hydrated by an injection solution (e.g., 5% dextrose solution, physiological saline, water for injection) and stabilized within 8 hours, which meets the requirements for clinical use.
  • an injection solution e.g., 5% dextrose solution, physiological saline, water for injection
  • Figure 1 Photograph showing the crystallization of the hydration solution after the liquid composition 3 of Example 1 was injected into 50 ml of 5% glucose injection for 8 hours;
  • Figure 2 Shows the liquid composition 1 of Example 1 injected into 50 ml of 5% dextrose injection Photograph of hydration fluid after 8 hours;
  • Figure 3 A photograph showing the crystallization of the hydration liquid after the liquid composition 15 of Example 2 was injected into 200 ml of 5% glucose injection for 8 hours;
  • Figure 4 A photograph of the hydration solution after the liquid composition 11 of Example 2 was injected into 200 ml of 5% glucose injection for 8 hours;
  • FIG. 1 Photograph showing the crystallization of the hydration liquid after the liquid composition of Example 23 was injected into 300 ml of 5% dextrose injection for 8 hours;
  • FIG. 6 A photograph of the hydration solution after the liquid composition of Example 22 was injected into 300 ml of 5% dextrose injection for 8 hours. Preferred embodiment of the invention
  • paclitaxel Guilin Hui An Biochemical Pharmaceutical Co., Ltd.
  • 3g of absolute ethanol stir, and then completely dissolve the paclitaxel, then add 1.2g of egg yolk lecithin (eggeg E80, LIPOID ) and 0.12g of soybean oil (Longyou County Tianyu Mountain Tea Oil Development Co., Ltd.), continue to stir to form liquid composition 1;
  • Liquid compositions 2-10 were prepared in the same manner according to the composition of the liquid composition in Table 1 below.
  • For the liquid compositions 1-10 observe the appearance, properties and dissolution state of each component of the liquid composition; if the obtained liquid composition is transparent, clarified, and then inject it into 50 ml of 5% glucose injection, shake gently with shaking To form a uniform hydration solution, and observe it for observation. After 8 hours, visually observe the appearance and traits of the hydration solution. At the same time, observe the hydration solution with a microscope (Olympus XDS-1B inverted microscope, 40 ⁇ ). The drug crystallized out.
  • the composition and screening results of the liquid composition of paclitaxel are shown in Table 1. Photomicrographs of Liquid Composition 3 and Liquid Composition 1 are shown in Figures 1 and 2. Table 1. Composition and screening results of liquid compositions of paclitaxel
  • Phospholipids are not completely dissolved: visible phospholipid clusters or floes;
  • the average particle diameter of the hydration liquid obtained in the liquid compositions 1, 2, 4 and 7 was also measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle diameter of the hydration liquid was measured at 10 In the range of -5000nm, it meets the requirements of clinical use.
  • the average particle diameter of the hydration liquid obtained by the liquid compositions 11-14 was also measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle diameter of the hydration liquid was measured in the range of 10 to 5000 nm. Within, meet the requirements of clinical medication.
  • the inventors of the present invention further prepared the paclitaxel and the docetaxel of the present invention.
  • Other liquid compositions of cedarol, as well as liquid compositions of other poorly soluble drugs, were observed for their liquid properties and stability within 8 hours after injection into the injectable solution.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) was added to lg of absolute ethanol. After completely dissolved, add lecithin (S100, LIPOID) 1.2g, soybean oil 0.12g and absolute ethanol 2g. Stirring them to form a clear clear liquid composition after mixing. The liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser granulometer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements of clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • capecitabine (Taizhou Wardkai Chemical Materials Co., Ltd.) was added to lg of absolute ethanol, and after complete dissolution, lecithin E80 (LIPOID) 1.2 g, soybean oil 0.12 g and absolute ethanol 2 g were added. The mixture was stirred to homogenize to form a clear clear liquid composition.
  • the liquid composition was poured into 500 ml of 5% glucose injection, shaken gently to form a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser granulometer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements of clinical use.
  • a laser particle size analyzer Zetasizer Nano ZS, Malvern, UK
  • temozolomide (Dalian Meilun Biotechnology Co., Ltd.) O. lg to lg of absolute ethanol. After complete dissolution, add lecithin E80 (LIPOID) 1.2g, soybean oil 0.12g and absolute ethanol 2g, stir. They are mixed to form a clear, clear liquid composition.
  • the liquid composition was poured into 200 ml of physiological saline solution, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy (Olin Bass XDS-1B inverted microscope, 40 ⁇ ) Observed that the hydration solution was free of drug crystals.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • gefitinib (Dalian Meilun Biotechnology Co., Ltd.) was added to lg of absolute ethanol, and after completely dissolved, lecithin E80 (LIPOID) 1.2g, soybean oil 0.12g and anhydrous ethanol 2g were added. Stirring them to form a clear clear liquid composition after mixing.
  • the liquid composition was poured into 250 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • Soybean oil 0.2g ⁇ , ⁇ -dimercaptoacetamide 0.3g
  • etoposide (Dalian Meilun Biotechnology Co., Ltd.) was added to 0.3 g of hydrazine, hydrazine-dimercaptoacetamide and 2 g of absolute ethanol. After complete dissolution, lecithin E80 (LIPOID) was added. 3 g, soybean oil 0.2 g and anhydrous ethanol 3 g were stirred to homogenize them to form a clear and clear liquid composition. The liquid composition was poured into 100 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) to 2g of absolute ethanol, and after completely dissolving, add lecithin E80 (LIPOID) 6g, soybean oil 0.4g and absolute ethanol 8g, stir. They are uniformly mixed to form a clear, clear liquid composition.
  • the liquid composition was poured into 250 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • a laser particle size analyzer Zetasizer Nano ZS, Malvern, UK
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) was added to 0.06g of hydrazine, hydrazine-dimercaptoacetamide and 2g of absolute ethanol. After completely dissolved, lecithin E80 (LIPOID) was added. 1.2 g, soybean oil 0.12 g and anhydrous ethanol 3 g were stirred to homogenize them to form a clear and clear liquid composition. The liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements of clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements of clinical use.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • Liquid composition Paclitaxel
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) was added to lg of absolute ethanol, and after complete dissolution, lecithin E80 (LIPOID) 3g, polyethylene glycol-distearoyl ester was added.
  • Acetylethanolamine (DSPE-PEG) (Japan NOF) 0.4 g, soybean oil 0.2 g, and anhydrous ethanol 4 g were stirred and mixed to form a clear and clear liquid composition.
  • the liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) to lg of absolute ethanol, and after completely dissolving, add lecithin E80 (LIPOID) 3g, corn oil 0.2g and absolute ethanol 4g, stir They are uniformly mixed to form a clear, clear liquid composition.
  • the liquid composition was poured into 50 ml of 5% dextrose injection and shaken gently to form a uniform hydration solution. After standing for observation, after 8 hours, the hydration solution was visually observed without delamination and flocculation, and the microscope (Olympus XDS-1B inverted microscope, 40 ⁇ ) was observed to have no drug crystals precipitated.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.)
  • a mixed solution of 1.25 g of polyethylene glycol 400 and 1.25 g of absolute ethanol After completely dissolved, add lecithin E80 ( LIPOID ) 3 g.
  • Soybean oil 0.2 g, absolute ethanol 1.25 g and polyethylene glycol 400 1.25 g were stirred to homogenize them to form a clear and clear liquid composition.
  • the liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to form a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.)
  • polyethylene glycol 400 After completely dissolved, add lecithin E80 (LIPOID) 3g, soybean oil 0.2g and polyethylene 4 g of alcohol 400, stirred and mixed uniformly, and adjusted to pH 4-8 with maleic acid to obtain a transparent and clear liquid composition.
  • lecithin E80 LIPOID
  • the liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm. The requirements for clinical use.
  • paclitaxel Guilin Huiang Biochemical Pharmaceutical Co., Ltd.
  • teniposide Beijing Kaisenlai Pharmaceutical Technology Co., Ltd.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization. See Figure 6 for a photomicrograph.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • Example 24 0.03g of teniposide (Beijing Kaisenlai Pharmaceutical Technology Co., Ltd.) was added to lg absolute ethanol and 0.3g of lanthanum-dimercaptoacetamide mixed solution. After completely dissolved, lecithin was added. ⁇ 80 (LIPOID) 1.2g, soybean oil 0.2g and absolute ethanol 4g were stirred to homogenize them to form a clear and clear liquid composition. The liquid composition was poured into 300 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy. Linbus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid has drug crystals precipitated. See Figure 5 for a photomicrograph.
  • Example 24 0.03g of teniposide (Beijing Kaisenlai Pharmaceutical Technology Co., Ltd.) was added to lg absolute
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) was added to the mixed solution of anhydrous ethanol lg and PEG200 lg. After completely dissolved, lecithin (S100, LIPOID) 1.2g and soybean oil 0.12g were added. 2 g of absolute ethanol and stirring were mixed to form a clear and clear liquid composition. The liquid composition was poured into 50 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation. After 8 hours, the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • paclitaxel (Guilin Huiang Biochemical Pharmaceutical Co., Ltd.) was added to 2g of absolute ethanol. After completely dissolved, PEG2000 lg, lecithin (S100, LIPOID) 1.2g, soybean oil 0.12g and anhydrous were added. 2 g of ethanol was stirred to homogenize them to form a clear, clear liquid composition. The liquid composition was poured into 100 ml of 5% glucose injection, shaken gently to make a uniform hydration solution, and allowed to stand for observation.
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle diameter of the hydration liquid was measured in the range of 10 to 5000 nm, which was in compliance with the requirements for clinical use.
  • MCT Medium chain triglyceride
  • the hydration solution was visually observed without delamination, flocculation, and microscopy ( Olympus XDS-1B inverted microscope, 40 ⁇ ) Observed hydrated liquid without drug crystallization.
  • the average particle size of the hydration solution was measured by a laser particle size analyzer (Zetasizer Nano ZS, Malvern, UK), and the average particle size of the hydration solution was measured in the range of 10-5000 nm, which met the requirements for clinical use.
  • the liquid composition of the present invention is injected into a different volume of 5% dextrose solution or physiological saline in clinical use, and is appropriately shaken and shaken for administration by intravenous injection or intravenous drip.
  • the poorly soluble drug is dissolved in an organic solvent or an injectable oil or a mixture thereof, which can prevent oxidation, hydrolysis, etc. of the poorly soluble drug in an aqueous medium, and can increase the stability of the preparation and extend the expiration date.
  • an organic solvent or an injectable oil or a mixture thereof which can prevent oxidation, hydrolysis, etc. of the poorly soluble drug in an aqueous medium, and can increase the stability of the preparation and extend the expiration date.
  • it is a small volume of concentrate, which is easy to transport and store.
  • the liquid composition is simple in preparation process and convenient for industrial production.
  • the clinical application method is almost the same as the preparation method of the existing preparation, which does not increase the difficulty of use, and is beneficial to improve the compliance of the medicine.
  • the liquid composition is hydrated by an injection solution (e.g., 5% dextrose solution, physiological saline, water for injection) and stabilized within 8 hours, which meets the requirements for clinical use.
  • an injection solution e.g., 5% dextrose solution, physiological saline, water for injection

Description

一种难溶性药物的液体组合物及其制备方法
技术领域
本发明属于药物制剂领域, 涉及到增加难溶性药物溶解度的技术, 具体 涉及一种难溶性药物的液体组合物及其制备方法。
背景技术
据统计, 新药开发中约 40%的药物因水溶解度问题而使开发受到限制, 一些药物甚至难溶于常用的一些有机溶剂。 水难溶性药物的增溶是药剂学研 究的重要课题之一。 常用的增溶方法有调节 pH值、 应用潜溶剂、 助溶剂、 环糊精包合物、 磷脂复合物、 表面活性剂增溶、 制备胶束、 脂质体、 微球、 固体脂质纳米粒、 微乳、 脂肪乳等; 或以化学方法, 利用药物结构上适当的 基团引入水溶性基团, 以获得水溶性较大的衍生物。
部分药物分子是可以解离的弱酸或弱碱, 通过调节溶液的 pH值, 使难 溶性药物解离是一种简单有效的增加溶解度的方法。 在注射给药中, 要注意 緩冲对容量问题, 由于血液有很好的緩冲能力, 难溶性药物容易由于血液稀 释而过饱和。
对于一些非极性药物, 常用极性较小的有机溶媒(潜溶剂)与水的混合 物来溶解药物。 在 FDA批准的注射剂中, 有 10%应用了潜溶剂, 这类处方 不但能显著增加某些药物的溶解度, 还可以减少一些药物在溶液中的水解反 应, 增加制剂的稳定性。 但对于部分难溶性药物, 需要通过较高比例的有机 溶剂才能达到溶解度要求, 如苯巴比妥注射液需要用 10%乙醇和 67.8%的丙 二醇来溶解。但高比例的有机溶剂容易引起注射部位的局部刺激性和静脉炎, 如处方中含有高于 10%的乙醇时, 就会产生明显的注射疼痛。
环糊精包合可用于多种药物, 其独特的笼状结构可以形成主客分子复合 物, 非极性药物分子位于非极性的笼状结构内部, 环糊精外部的多羟基与极 性的水分子亲和力强,从而有提高溶解度的效果。但对部分难溶性药物而言, 载药量偏低。 药物在环糊精中的增溶效果取决于药物分子与环糊精的结合常 数, 如苯二氮卓类药物的结合常数比较低, 在经过比较后, 仍选用了传统的 潜溶剂处方。 换言之, 并非所有的药物都能用环糊精包合。 而且, 环糊精的 种类有限, 还有较明显的毒性, 目前注射剂中应用还不多。
脂质体、 微球、 固体脂质纳米粒、 微乳以及亲水性衍生物近年来也较多 应用于增加难溶性药物的水溶性, 国内外已有许多研究和专利。 这些研究虽 然取得了一定进展, 但还是存在如效果不稳定、 处方工艺复杂、 载药量低、 表面活性剂毒性大以及开发成本较高等问题。
表面活性剂通过形成胶束来增加非极性药物在水中的溶解度。 很多难溶 性抗肿瘤药物临床注射使用时, 都必须釆用表面活性剂来增溶。 目前国内外 批准的可供注射用的表面活性剂有聚山梨酯 (主要是聚山梨酯 80, 即 Tween 80 )、泊洛沙姆(主要是 poloxamer 188 )、聚氧乙烯蓖麻油类(主要是 Cremophor EL )和磷脂。 其中 poloxamer 188和磷脂的乳化能力较强, 而增溶能力较弱, 主要用于注射用静脉脂肪乳中。 Cremophor EL和 Tween 80增溶和乳化能力 都比较强, 可将难溶药物增溶于非水介质中, 临用时用注射用水(或注射用 生理盐水溶液、 注射用葡萄糖溶液)等配制, 可形成水溶液或乳剂。 在这类 即用型注射剂中, Cremophor EL或 Tween 80的增溶能力和乳化能力都发挥 了重要作用。
例如, 已上市的紫杉醇、 替尼泊苷注射剂中含有大量的 Cremophor EL, 临用时用注射用水等水性介质可配成水溶液; 多西紫杉醇注射剂中含有大量 的 Tween 80, 临用时用注射用水等水性介质可配成水溶液; 还有^ ^多其它的 相关专利 4艮导, 都选用了 Cremophor EL或 Tween 80。 CN200610037337.3专 利中, 应用磚脂、 其它表面活性剂 (Tween 80、 poloxamer 188和 Cremophor EL ) 和非水溶剂制备紫杉醇难溶性药物的注射剂; 中国发明专利 ( 200710198956.7 ) 涉及一种供注射用的替尼泊苷注射剂, 处方中含有吐温 80作为表面活性剂。 一般情况下, 不用 Cremophor EL或 Tween 80难以制备 成难溶性药物的注射剂。
但是, 处方中应用 Cremophor EL或 Tween 80的注射液, 给药后, 部分 病人会出现药物性皮疹、 呼吸急促、 支气管痉挛、 低血压、 溶血等不良反应, 从而导致临床上应用起来非常不方便, 给病人带来很大的痛苦, 用药的顺应 性差。 近年来, 很多国内外药学工作者致力于研究减少或替代 Cremophor EL 或 Tween 80的新的抗肿瘤给药系统。由于这两类表面活性剂可引起比较严重 的副作用, 所以一般仅有限地应用于注射剂中, 显然, 如果注射剂中不用这 两类表面活性剂将更有利于提高用药的顺应性。 发明内容
基于上述背景, 我们进行了一系列的研究, 结果意外发现, 在适当的条 件下, 不含有表面活性剂 Cremophor EL或 Tween 80时, 也能将难溶性药物 制备成澄清的液体 (真溶液) , 且该溶液用注射用溶剂 (如 5%葡萄糖溶液、 生理盐水、 注射用水) 水化后, 8 小时内保持稳定, 符合临床用药的要求。 由此, 我们设计了一种不含有表面活性剂 Cremophor EL或 Tween 80的难溶 性药物的液体组合物。
因此, 本发明的首要目的在于提供一种难溶性药物的液体组合物。 此类 难溶性药物的液体组合物中选用安全性好、 可静脉注射的药用辅料碑脂和注 射用油以及无水乙醇等溶剂, 不含可引起明显副作用的表面活性剂, 可消除 市售制剂中 Cremophor EL或 Tween 80弓 |起严重副反应的隐患, 明显提高患 者的顺应性。 此类难溶性药物的液体组合物是一种真溶液, 稳定性好, 可用 注射用溶液分散后形成乳剂供静脉注射用。 此类难溶性药物的液体组合物与 现有的一些市售制剂相比, 处方工艺简单, 适合工业化生产。
具体地,本发明的难溶性药物的液体组合物含有难溶性药物、注射用油、 磷脂、 溶剂, 各组份重量百分比如下:
难溶性药物 0.01 - 10%,
注射用油 0% - 20%,
碑脂 10 - 80%,
溶剂 20 - 89%,
优选地,本发明的难溶性药物的液体组合物中各组份及重量百分比如下: 难溶性药物 0.1 - 2.5%,
注射用油 0.5% - 10%,
磷脂 20 - 45%, 溶剂 42.5 - 79%。
更优选地, 本发明的难溶性药物的液体组合物中各组份及其重量百分比 下:
难溶性药物 0.1 - 2.5%,
注射用油 0.5% - 3%,
磷脂 25-40%,
溶剂 55-70%。
在本发明的难溶性药物的液体组合物中, 所述"难溶性药物,,是指已知在 医药领域中可以应用, 且在水中的溶解度相对于其有效给药量较低的药物。 具体是指中国药典"凡例,,中记载的溶解度中使用"微溶"、 "极微溶,,或"几乎不 溶或不溶"用语的药物。换言之,是指溶解 lg或 lmL溶质所需要的溶剂量(水 的量)在 lOOmL以上(浓度为 1%以下)、优选 lOOOmL (浓度为 0.1%以下)、 更加优选 lOOOOmL (浓度为 0.01%以下) 的药物。
在本发明的难溶性药物的液体组合物中, 所述难溶性药物包括, 但不限 于: 多西紫杉醇、 紫杉醇、 卡培他滨、 奥沙利泊、 吉非替尼、 多柔比星、 伊 立替康、 吉西他滨、 培美曲赛、 替莫唑胺、 依麦替尼布、 长春瑞滨、 来曲唑、 替尼泊苷、 依托泊苷、 鬼臼毒素、 喜树碱、 10-羟基喜树碱、 9-羟基喜树碱、 7 -乙基 - 10 -羟基喜树碱 SN-38、拓朴替康、伊立替康、长春碱、长春新碱、 长春地辛、 长春氟宁、 长春西汀、 去曱基斑螯素、 水飞蓟宾、 丙泊酚、 氟苯 尼考、 米格列奈、 青蒿素、 二氢青蒿素、 西罗莫司、 布洛酚、 尼群地平、 尼 卡地平、 尼莫地平、 格列齐特、 西沙必列、 硝苯地平、 非洛地平、 格列本脲、 阿昔洛韦、 齐墩果酸、 灯盏花素、 阿魏酸、 对乙酰基氨基酚、 棕榈酰根霉素、 本可麦定、 维生素 A、 他莫昔芬、 诺维本、 丙戊酸、 他克莫司、 环孢素 A、 两性霉素^ 酮康唑、 多潘立酮、 舒必利、 非诺贝特、 苯扎贝特、 阿齐霉素、 伊曲康唑、 咪康唑、 溴莫尼定、 拉坦前列素、 水飞蓟宾、 红霉素、 罗红霉素、 利福西明、 西沙比利、 环孢菌素、 双氯芬酸、 非洛地平、 布洛芬、 吲哚美辛、 尼卡地平、 硝苯地平、 特非那丁、 茶碱、 酮洛芬、 呋噻米、 螺内酯、 双嘧达 莫、 吡罗昔康、 曱芬那酸、 三氯噻嗪、 吲哚洛尔等, 或它们的混合物, 其中 优选为难溶性抗肿瘤药物, 如紫杉醇、 多西紫杉醇、 卡培他滨、 长春瑞滨、 替莫唑胺、 多柔比星、 吉非替尼、 替尼泊苷、 依托泊苷、 鬼臼毒素、 青蒿素、 喜树碱、 长春碱等或它们的混合物。 更优选地, 所述难溶性药物为紫杉醇、 多西紫杉醇、 卡培他滨、 长春瑞滨、 替莫唑胺、 多柔比星、 吉非替尼、 替尼 泊苷、 依托泊苷、 青蒿素、 喜树碱或紫杉醇与替尼泊苷的混合物。
本发明的难溶性药物的液体组合物中的磷脂包括天然磷脂、半合成磷脂、 合成磷脂或它们的混合物。 优选为天然磷脂中的一种或它们的混合物。 所述 天然磷脂优选为卵磷脂, 更优选是蛋黄卵磷脂、 大豆卵磷脂或它们以任何比 例组成的混合物。
所述半合成磷脂和合成磷脂包括但不限于氢化豆磷脂(HSPC )、二油酰 基卵磷脂(DOPC )、 二肉豆蔻酰碑脂酰乙醇胺(DMPE )、 二棕榈酰碑脂酰 乙醇胺(DPPE ) 、 二肉豆蔻酰磷脂酰丝氨酸(DMPS ) 、 二硬脂酰磷脂酰乙 醇胺(DSPE ) 、 二月桂酰卵磷脂(DLPC ) 、 二肉豆蔻酰卵磷脂(DMPC ) 、 二棕榈酰卵磷脂( DPPC )、二硬脂酰卵磷脂( DPPC )、二硬脂酰卵磷脂( DSPC )、 1-肉豆蔻酰 -2-棕榈酰卵磷脂 (MPPC ) 、 上述碑脂的聚乙二醇化衍生物 (如 聚乙二醇 -二硬脂酰碑脂酰乙醇胺)或它们的混合物, 优选为氢化豆磷脂和 聚乙二醇-二硬脂酰碑脂酰乙醇胺。
在本发明的难溶性药物的液体组合物中, 所述注射用油具体可选自大豆 油、 玉米油、 中链甘油三酸酯(MCT )、 蓖麻油、 橄榄油、 花生油、 棉籽油、 芝麻油、 红花油、 单硬脂酸甘油酯或单油酸甘油酯等中的一种或多种的混合 物。 优选为大豆油、 玉米油、 中链甘油三酸酯或它们的混合物。 所述注射用 油还可以含有长链和中链脂肪酸、 长链和中链脂肪酸甘油酯、 长链脂肪醇及 上述几种成分的混合物, 包括它们的饱和和不饱和、 直链和支链形式等。 在本发明的难溶性药物的液体组合物中,所述溶剂可以选自: 无水乙醇、 甘油、 丙二醇、 聚乙二醇、 Ν,Ν-二曱基乙酰胺、 苯曱基苄酯、 油酸乙酯、 苯 曱醇等中的一种或多种的混合物。 其中优选为无水乙醇、 或无水乙醇与 Ν,Ν- 二曱基乙酰胺的混合物、 或无水乙醇与聚乙二醇的混合物、 或甘油与 Ν,Ν- 二曱基乙酰胺的混合物。 其中, 所述聚乙二醇包括不同重均分子量的聚乙二 醇或它们的混合物, 所述重均分子量范围为 200 ~ 2000, 优选为 200-400。 其 中固态的聚乙二醇需先溶于其它溶剂中。 本发明的难溶性药物的液体组合物中, 还可以根据需要加入医药学上可 接受的药用添加剂, 如辅助乳化剂、 稳定剂、 pH值调节剂、 抗氧剂等。
其中, 所述稳定剂可以为胆固醇、 聚乙二醇类及其衍生物、 甘油、 木糖 醇、 山梨醇、 甘露醇、 丙二醇、 丙三醇、 尿素、 水杨酸钠、 磷脂酸、 油酸、 油酸钠、 胆酸、 胆酸钠、 羟丙曱纤维素、 羧曱基纤维素钠、 淀粉及其衍生物、 泊洛沙姆、 明胶及其衍生物、 海藻酸及其钠盐、 聚乙烯吡咯烷酮、 羟丙基 -β- 环糊精中的一种或几种的组合。
所述 pH调节剂可以是马来酸、 盐酸、 酒石酸、 氢氧化钠、 醋酸、 醋酸 盐、 磷酸、 磷酸盐、 柠檬酸、 柠檬酸盐、 乙醇胺、 三乙醇胺、 二乙醇胺中的 一种或几种。 通常, 将液体组合物的 pH值范围调节为 4 ~ 8。
所述辅助乳化剂包括各种小分子醇类及聚甘油的衍生物中的一种或它们 的混合物。
所述抗氧化剂包括 α-生育酚、 α-生育酸琥珀酸酯、 抗坏血酸棕榈酸酯、 叔丁基对羟基茴香醚(ΒΗΑ ) 、 二丁基苯酚(ΒΗΤ )或没食子酸丙酯中的一 种或多种。
应当理解, 本领域技术人员所熟知的任何药用添加剂均可用于本发明的 液体组合物中, 并且其用量基本上为药学领域内的常规使用量。
此外, 在本发明的基础上, 本领域的技术人员知道如何根据已有技术和 所用组份的不同而对本申请中所提供的优选范围进行适当改变。 这些改变没 有脱离本发明的精神, 也落在本发明的权利要求书的保护范围内。
本发明的难溶性药物的液体组合物可以呈注射用浓溶液形式, 一般为 'J、 体积的注射用浓溶液, 无菌灌装到安瓿瓶或小容量管制瓶中; 其给药方式与 市售制剂如泰素 (紫杉醇注射液) 、 泰索帝(多西他赛注射液)相似, 即临 用前用注射用溶液配制后, 供注射用。 优选地, 临床使用时用 5%葡萄糖溶 液或生理盐水或注射用水或它们的混合物将所述注射用浓溶液分散, 形成均 一的水化液, 供注射使用, 特别是供静脉注射使用。 所述水化液的平均粒径 大小在 10-5000匪范围。
另外, 也可以按药剂学的常规方法, 将本发明的难溶性药物的液体组合 物制备成胶嚢剂、 软胶嚢剂或口服液体制剂供口服使用等。
如前所述, 一般情况下, 不用 Cremophor EL和 Tween 80是很难制备难 溶性药物的注射剂的, 包括即用型注射剂。 因为如果表面活性剂的增溶能力 不强, 当用注射用水等水性介质配制时, 难溶药物如紫杉醇等很容易析出结 晶。 本发明通过大量的研究发现, 只有当难溶药物、 油相、 磷脂和有机溶剂 有一个非常适当的比例时, 所制备的液体组合物才能够澄清、 透明, 并且用 注射用溶液水化后, 可在 8小时内保持稳定, 不出现药物结晶、 不分层、 不 絮凝, 符合临床用药的需要。 出现这种结果的原因, 可能是由于难溶药物在 有机溶剂和油相中均有一定的溶解度, 当比例适当时, 溶解度可达最大, 而 磷脂有一定的粘度, 还有过饱和的稳定作用, 遇水乳化时可将药物保持在油 相、 油水界面或形成复杂的磷脂化复合体, 以上综合原因使药物在短时间内 不析出结晶。
本发明中各种组份的用量是非常重要的。 只有在本发明的用量范围内, 才可能制备成稳定性符合要求的难溶药物的注射剂。
本发明中所用到的各组份如难溶性药物、 注射用油、 溶剂或磷脂类型发 生改变时,其用量可能会发生一定的变化,但仍在本发明中的用量范围之内; 但当各组份用量超过本发明中的用量范围之外时, 会出现诸如不能形成澄清 透明的溶液、 溶液粘度太大或水化 8小时内析出结晶等现象, 不利于临床使 用。 部分处方筛选试验及结果见实施例。
同样, 本发明中的各种组份的种类也是非常重要的。 其中磷脂和有机溶 剂的作用是必不可少的, 其中对于某些极难溶性药物, 有机溶剂需要同时用 到 Ν,Ν-二曱基乙酰胺和无水乙醇; 而对于其它一些难溶性药物如多西紫杉醇 或紫杉醇, 有机溶剂单用无水乙醇或两者同时使用均可。 相对而言, 在体外 稳定性方面, 油相的作用要小一些, 不用时也可制备成注射剂, 也可以 8小 时内保持稳定。 不加油相时遇水后可形成脂质体, 而脂质体和乳剂的体内过 程有所不同, 各有特点, 因此加油相与不加油相都在本发明的保护范围内。
本发明的另一目的是提供本发明的难溶性药物的液体组合物的制备方 法。
一方面, 本发明的制备方法包括: 将难溶性药物先溶解在溶剂或注射用 油或它们的混合物中, 再加入碑脂以及液体组合物中的其它组份, 混合均匀 后形成透明澄清的液体组合物, 即为本发明的难溶性药物的液体组合物。
另一方面, 本发明的制备方法包括: 将难溶性药物直接溶解于溶剂、 注 射用油、 磷脂和液体组合物中的其他组份的混合物中, 混合均匀后形成透明 澄清的液体, 即为本发明的难溶性药物的液体组合物。
再一方面,本发明的制备方法包括: 先将难溶性药物溶解于部分溶剂中, 再加入到磷脂、 注射用油、 剩余溶剂及其他组份的混合物中, 混合均匀后形 成透明澄清的液体, 即为本发明的难溶性药物的液体组合物。
本发明的难溶性药物的液体组合物可以经过滤、 灌装等工艺流程制备成 一定规格的药品。
本发明的难溶性药物的液体组合物具有以下优点:
1、以生物相容性好的磷脂、注射用油如大豆油等代替了现有一些难溶性 药物市售注射制剂中的表面活性剂, 如聚氧乙烯蓖麻油 ( Cremophor EL )或 聚山梨脂 80 ( Tween 80 ) , 从配方上消除了难溶性药物制剂严重过敏性和溶 血性等的隐患。
2、本发明中 ,难溶性药物溶解在有机溶剂或注射用油或它们的混合物中 , 能防止难溶性药物在水相介质中的氧化、 水解等, 可增加制剂的稳定性, 延 长有效期。 同时, 由于没有水, 是小体积的浓缩液, 便于运输和储存。
3、 该液体组合物制备工艺简单, 便于工业化生产。
4、临床上应用时与现有制剂的配制方法几乎一致,不会增加使用的难度, 有利于提高用药的顺应性。
5、 该液体组合物用注射用溶液(如 5%葡萄糖溶液、 生理盐水、 注射用 水)水化后, 8小时内保持稳定, 符合临床用药的要求。 附图概述
图 1. 显示实施例 1中的液体组合物 3注入到 50ml的 5%葡萄糖注射液 中 8小时后, 水化液结晶析出的照片;
图 2. 显示实施例 1中的液体组合物 1注入到 50ml的 5%葡萄糖注射液 中 8小时后, 水化液的照片;
图 3. 显示实施例 2中的液体组合物 15注入到 200ml的 5%葡萄糖注射 液中 8小时后, 水化液结晶析出的照片;
图 4. 显示实施例 2中的液体组合物 11注入到 200ml的 5%葡萄糖注射 液中 8小时后, 水化液的照片;
图 5. 显示实施例 23的液体组合物注入到 300ml的 5%葡萄糖注射液中 8 小时后, 水化液结晶析出的照片;
图 6. 显示实施例 22中的液体组合物注入到 300ml的 5%葡萄糖注射液 中 8小时后, 水化液的照片。 本发明的较佳实施方式
以下通过实施例进一步说明和解释本发明, 但不作为本发明的限制。 本 文所包括的实施例仅仅是为了帮助更完整地理解本文所述的发明。 这些实施 例不以任何方式限制本文所述的或本文所要求保护的范围。
实施例 1、 紫杉醇的液体组合物的筛选
称取 0.03g的紫杉醇(桂林晖昂生化药业有限责任公司), 加入到 3g的 无水乙醇中,搅拌,待紫杉醇完全溶解后,再依次加入 1.2g的蛋黄卵磷脂(卵 碑脂 E80 , LIPOID )和 0.12g的大豆油(龙游县田雨山茶油开发有限公司), 继续搅拌形成液体组合物 1 ;
以同样的方法按照下表 1中的液体组合物的组成制备液体组合物 2-10。 对于液体组合物 1-10 , 观察液体组合物的外观、 性状及各组份溶解状态; 如 得到的液体组合物透明、 澄清, 再将其注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水 化液外观、 性状, 同时, 取水化液用显微镜观察(奥林巴斯 XDS-1B倒置显 微镜, 40χ )有无药物结晶析出。 紫杉醇的液体组合物的组成与筛选结果见 表 1。 液体组合物 3和液体组合物 1的显微照片参见图 1和图 2。 表 1. 紫杉醇的液体组合物的组成与筛选结果
Figure imgf000011_0001
稳定: 7J化液无分层、 絮凝, 且无药物结晶析出;
结晶析出: 显微镜镜检观察到明显的药物结晶;
流动性差: 液体流动緩慢, 不适合取样及装样;
磷脂未完全溶解: 可见明显的磷脂团状物或絮状物;
N/A: 不可用。
结果显示, 在紫杉醇的液体组合物的各组份的重量百分比含量在本发明 范围内时得到澄清透明的溶液, 并且注入到 50ml的 5%葡萄糖注射液中形成 均一的水化液后 8小时内保持稳定, 无结晶析出。 而当紫杉醇的液体组合物 的各组份的重量百分比含量不在本发明的范围内时则得不到澄清透明的溶 液, 或者即便得到澄清透明的溶液, 注入到 50ml的 5%葡萄糖注射液中形成 均一的水化液后 8小时内也会有结晶析出。此外,还用激光粒度仪(Zetasizer Nano ZS, Malvern, 英国 )检测了液体组合物 1、 2、 4和 7所得的水化液的 平均粒径, 测得水化液的平均粒径均在 10-5000nm的范围内, 符合临床用药 的要求。
实施例 2、 多西紫杉醇的液体组合物的筛选
先将 1.6g的蛋黄卵磷脂 (卵磷脂 E80, LIPOID ) 、 0.16g大豆油 (龙游 县田雨山茶油开发有限公司)加入到 4g无水乙醇中,搅拌均一后,再将 0.08g 多西紫杉醇(桂林晖昂生化药业有限责任公司)加入到上述混合物中, 继续 搅拌形成液体组合物 11。 对于液体组合物 11-15 , 观察液体组合物的外观、 性状及各组份溶解状态; 如得到的液体组合物透明、 澄清, 再将其注入到 200ml的 5%葡萄糖注射液 中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观 察水化液外观、 性状, 同时, 取水化液用显微镜(奥林巴斯 XDS-1B倒置显 微镜, 40χ )观察有无药物结晶析出。 多西紫杉醇的液体组合物组成与筛选 结果见表 2。 液体组合物 15和 11的显微照片参见图 3和图 4。
表 2. 多西紫杉醇的液体组合物组成与筛选结果
Figure imgf000012_0001
稳定: 7J化液无分层、 絮凝, 且无药物结晶析出;
结晶析出: 显微镜镜检观察到明显的药物结晶;
结果显示, 在多西紫杉醇的液体组合物的各组份的重量百分比含量在本 发明范围内时得到澄清透明的溶液, 并且注入到 200ml的 5%葡萄糖注射液 中形成均一的水化液后 8小时内保持稳定, 无结晶析出。 而当多西紫杉醇的 液体组合物的各组份的重量百分比含量不在本发明的范围内时则即便得到澄 清透明的溶液的情况下, 注入到 200ml的 5%葡萄糖注射液中形成均一的水 化液后 8小时内也会有结晶析出。此外,还用激光粒度仪(Zetasizer Nano ZS , Malvern, 英国 )检测了液体组合物 11-14所得的水化液的平均粒径, 测得水 化液的平均粒径均在 10-5000nm的范围内, 符合临床用药的要求。
在此基础上, 本发明的发明人又进一步制备了本发明的紫杉醇、 多西紫 杉醇的其他液体组合物、 以及其他难溶性药物的液体组合物, 并对其液体性 质和注入到注射用溶液后 8小时内的稳定性进行了观察。
实施例 3
液体组合物:
紫杉醇 0.03g
大豆卵磷脂 (卵磷脂 S100 ) 1.2g
大豆油 0.12g
无水乙醇 3g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到无水乙醇 lg 中, 待完全溶解后, 再加入卵磷脂 (S100, LIPOID ) 1.2g、 大豆油 0.12g和 无水乙醇 2g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组 合物注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水 化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥 林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒 度仪 ( Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径, 测得水 化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 4、
液体组合物:
多西紫杉醇 0.08g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.6g
大豆油 0.16g
无水乙醇 4g
制备方法:
将多西紫杉醇(桂林晖昂生化药业有限责任公司) 0.08g加入到 2g的无 水乙醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.6g、 大豆油 0.16g 和无水乙醇 2g, 搅拌使它们混合均匀后形成透明澄清的液体组合物。 将液体 组合物注入到 400ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一 的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜 (奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激 光粒度仪 ( Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径, 测 得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 5、
液体组合物:
多西紫杉醇 0.08g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.6g
无水乙醇 4g
制备方法:
将多西紫杉醇(桂林晖昂生化药业有限责任公司) 0.08g加入到 2g的无 水乙醇中,待完全溶解后,再加入卵磷脂 E80 ( LIPOID ) 1.6g和无水乙醇 2g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注入到 200ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置 观察, 8小时后, 肉眼观察水化液无分层、絮凝,且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。用激光粒度仪(Zetasizer Nano ZS , Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 6、
液体组合物:
卡培他滨 0.5g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g 大豆油 0.12g
无水乙醇 5g
制备方法:
将卡培他滨(台州沃德凯化工原料有限公司) 0.5g加入到无水乙醇 lg 中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.2g、 大豆油 0.12g和无 水乙醇 2g, 搅拌使它们混合均匀后形成透明澄清的液体组合物。 将液体组合 物注入到 500ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水 化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥 林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒 度仪 ( Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径, 测得水 化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 7、
液体组合物:
长春瑞滨 0.0 lg
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g
大豆油 0.12g
无水乙醇 3g
制备方法:
将长春瑞滨(武汉远成化工) O.Olg加入到无水乙醇 lg中, 待完全溶解 后, 再加入卵磷脂 E80 ( LIPOID ) 1.2g、 大豆油 0.12g和无水乙醇 2g, 搅拌 使它们混合均匀后形成透明澄清的液体组合物。 将液体组合物注入到 100ml 的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒 置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪(Zetasizer Nano ZS , Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。 实施例 8、
液体组合物:
替莫唑胺 O.lg
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g
大豆油 0.12g
无水乙醇 3g
制备方法:
将替莫唑胺(大连美仑生物技术有限公司) O. lg加入到无水乙醇 lg中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.2g、 大豆油 0.12g和无水乙 醇 2g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注 入到 200ml的生理盐水液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置 观察, 8小时后, 肉眼观察水化液无分层、絮凝,且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。用激光粒度仪(Zetasizer Nano ZS , Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 9、
液体组合物:
多柔比星 0.05g
蛋黄卵磷脂 (卵磷脂 E80 ) 2.4g
大豆油 0.12g
无水乙醇 3g
制备方法:
将多柔比星(浙江海正药业股份有限公司) 0.05g加入到无水乙醇 lg中, 待完全溶解后, 再加入卵碑脂 E80 ( LIPOID ) 2.4g、 大豆油 0.12g和无水乙 醇 2g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注 入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均粒径, 测得水化液 的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 10、
液体组合物:
吉非替尼 0.25g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g
大豆油 0.12g
无水乙醇 3g
制备方法:
将吉非替尼(大连美仑生物技术有限公司)0.25g加入到无水乙醇 lg中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.2g、 大豆油 0.12g和无水乙 醇 2g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注 入到 250ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均粒径, 测得水化液 的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 11、
液体组合物:
依托泊苷 0.05g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g Ν,Ν-二曱基乙酰胺 0.3g
无水乙醇 5g
制备方法:
将依托泊苷(大连美仑生物技术有限公司) 0.05g加入到 0.3g的 Ν,Ν-二 曱基乙酰胺和 2g的无水乙醇中,待完全溶解后,再加入卵磷脂 E80( LIPOID ) 3g、 大豆油 0.2g和无水乙醇 3g,搅拌使它们混合均匀后形成透明澄清的液体 组合物。 将液体组合物注入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮 凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结 晶析出。 用激光粒度仪 ( Zetasizer Nano ZS, Malvern, 英国)检测水化液的 平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的 要求。
实施例 12、
液体组合物:
紫杉醇 0.15g
蛋黄卵磷脂 (卵磷脂 E80 ) 6.0g
大豆油 0.4g
无水乙醇 10g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.15g加入到 2g的无水乙 醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 6g、 大豆油 0.4g和无水 乙醇 8g, 搅拌使它们混合均匀后形成透明澄清的液体组合物。 将液体组合物 注入到 250ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化 液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林 巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度 仪(Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径, 测得水化 液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。 实施例 13、
液体组合物:
紫杉醇 0.03g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g
大豆油 0.12g
Ν,Ν-二曱基乙酰胺 0.06g
无水乙醇 5g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到 0.06g的 Ν,Ν- 二曱基乙酰胺和 2g 的无水乙醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.2g、 大豆油 0.12g和无水乙醇 3g, 搅拌使它们混合均匀后形成 透明澄清的液体组合物。 将液体组合物注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水 化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察 水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国) 检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符 合临床用药的要求。
实施例 14、
液体组合物:
多西紫杉醇 0.08g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 lg
无水乙醇 5g
制备方法:
将多西紫杉醇(桂林晖昂生化药业有限责任公司) 0.08g加入到 lg的大 豆油中, 搅拌均匀后, 再加入卵磷脂 E80 ( LIPOID ) 3g、 和无水乙醇 5g, 搅 拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注入到 200ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置 观察, 8小时后, 肉眼观察水化液无分层、絮凝,且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察,有多西紫杉醇药物结晶析出。用激光粒度仪( Zetasizer Nano ZS, Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径 在 10-5000nm的范围内, 符合临床用药的要求。
实施例 15、
液体组合物:
喜树碱 0.05g
氢化豆磷脂 3.0g
大豆油 0.2g
Ν,Ν-二曱基乙酰胺 0.3g
无水乙醇 10g
制备方法:
将喜树碱(成都元成生物科技有限公司) 0.05g加入到 0.3g的 Ν,Ν-二曱 基乙酰胺中, 待完全溶解后, 再加入氢化豆磷脂 HSPC ( LIPOID ) 3g、 大豆 油 0.2g和无水乙醇 10g,搅拌使它们混合均匀后形成透明澄清的液体组合物。 将液体组合物注入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形 成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且 显微镜 (奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 16、
液体组合物: 紫杉醇
蛋黄卵磷脂 (卵磷脂 E80 )
聚乙二醇-二硬脂酰碑脂酰乙醇胺
大豆油
无水乙醇
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到 lg的无水乙 醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 3g、 聚乙二醇-二硬脂 酰碑脂酰乙醇胺 (DSPE-PEG) (日本 NOF ) 0.4g、 大豆油 0.2g和无水乙醇 4g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置 观察, 8小时后, 肉眼观察水化液无分层、絮凝,且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。用激光粒度仪(Zetasizer Nano ZS , Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 17、
液体组合物:
紫杉醇 0.03g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
玉米油 0.2g
无水乙醇 5g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到 lg的无水乙 醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 3g、 玉米油 0.2g和无水 乙醇 4g, 搅拌使它们混合均匀后形成透明澄清的液体组合物。 将液体组合物 注入到 50ml的 5%葡萄糖注射液中,轻微振荡摇晃,使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均粒径, 测得水化液 的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 18、
液体组合物:
青蒿素 0.05g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g
Ν,Ν-二曱基乙酰胺 0.3g
甘油 5g
制备方法:
将青蒿素 (湖南华诚制药有限公司) 0.05g加入到 0.3g的 Ν,Ν-二曱基乙 酰胺中, 待完全溶解后, 再加入卵磷脂 Ε80 ( LIPOID ) 3g、 大豆油 0.2g和甘 油 5g, 搅拌使它们混合均勾后形成透明澄清的液体组合物。 将液体组合物注 入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B 倒置显微镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均粒径, 测得水化液 的平均粒径在 10-5000nm的范围内, 符合临床用药的要求。
实施例 19、
液体组合物:
紫杉醇 0.03g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g 无水乙醇 2.5g
聚乙二醇 400 2.5g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司)0.03g加入到 1.25 g的聚乙 二醇 400和 1.25g无水乙醇的混合溶液中 ,待完全溶解后,再加入卵磷脂 E80 ( LIPOID ) 3g、 大豆油 0.2g、 无水乙醇 1.25g和聚乙二醇 400 1.25g, 搅拌使 它们混合均匀后形成透明澄清的液体组合物。 将液体组合物注入到 50ml 的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置 显微镜, 40χ )观察水化液无药物结晶析出。用激光粒度仪( Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径,测得水化液的平均粒径在 10-5000nm 的范围内, 符合临床用药的要求。
实施例 20、
紫杉醇 0.03g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g
聚乙二醇 400 5g
马来酸 适量
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到 1 g的聚乙二 醇 400 中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 3g、 大豆油 0.2g 和聚乙二醇 400 4g, 搅拌使它们混合均匀后, 用马来酸调 pH值 4 ~ 8, 即得 透明澄清的液体组合物。 将液体组合物注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼观察水 化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察 水化液无药物结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国) 检测水化液的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符 合临床用药的要求。
实施例 21、
液体组合物:
紫杉醇 0.03g
替尼泊苷 0.03g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g
Ν,Ν-二曱基乙酰胺 0.3g
无水乙醇 5g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g、 替尼泊苷(北京凯 森莱医药科技有限公司) 0.03g分别加入到 lg无水乙醇和 0.3g的 Ν,Ν-二曱 基乙酰胺混合溶液中, 待完全溶解后, 再加入卵磷脂 Ε80 ( LIPOID ) 3g、 大 豆油 0.2g和无水乙醇 4g, 搅拌使它们混合均匀后形成透明澄清的液体组合 物。 将液体组合物注入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使 之形成均一的水化液, 静置观察, 8小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析 出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均 粒径,测得水化液的平均粒径在 10-5000nm的范围内,符合临床用药的要求。
实施例 22、
液体组合物:
替尼泊苷 0.05g
蛋黄卵磷脂 (卵磷脂 E80 ) 3.0g
大豆油 0.2g
Ν,Ν-二曱基乙酰胺 0.3g 无水乙醇 5g
制备方法:
将替尼泊苷(北京凯森莱医药科技有限公司) 0.03g分别加入到 lg无水 乙醇和 0.3g的 Ν,Ν-二曱基乙酰胺混合溶液中, 待完全溶解后, 再加入卵磷 脂 Ε80 ( LIPOID ) 3g、 大豆油 0.2g和无水乙醇 4g, 搅拌使它们混合均匀后 形成透明澄清的液体组合物。 将液体组合物注入到 300ml的 5%葡萄糖注射 液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼 观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ ) 观察水化液无药物结晶析出。 其显微照片参见图 6。 用激光粒度仪(Zetasizer Nano ZS, Malvern, 英国 )检测水化液的平均粒径, 测得水化液的平均粒径 在 10-5000nm的范围内, 符合临床用药的要求。
实施例 23
液体组合物:
替尼泊苷 0.05g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.2g
大豆油 0.2g
Ν,Ν-二曱基乙酰胺 0.3g
无水乙醇 5g
制备方法:
将替尼泊苷(北京凯森莱医药科技有限公司) 0.03g分别加入到 lg无水 乙醇和 0.3g的 Ν,Ν-二曱基乙酰胺混合溶液中, 待完全溶解后, 再加入卵磷 脂 Ε80 ( LIPOID ) 1.2g、 大豆油 0.2g和无水乙醇 4g, 搅拌使它们混合均匀后 形成透明澄清的液体组合物。 将液体组合物注入到 300ml的 5%葡萄糖注射 液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时后, 肉眼 观察水化液无分层、 絮凝, 显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ ) 观察水化液有药物结晶析出。 其显微照片参见图 5。 实施例 24、
液体组合物:
紫杉醇 0.03g
大豆卵磷脂 (卵磷脂 S100 ) 1.2g
大豆油 0.12g
PEG200 lg
无水乙醇 3g
制备方法:
将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到无水乙醇 lg 和 PEG200 lg的混合溶液中,待完全溶解后,再加入卵磷脂( S100, LIPOID ) 1.2g、 大豆油 0.12g和无水乙醇 2g, 搅拌使它们混合均匀后形成透明澄清的 液体组合物。 将液体组合物注入到 50ml的 5%葡萄糖注射液中, 轻微振荡摇 晃, 使之形成均一的水化液, 静置观察, 8小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物 结晶析出。 用激光粒度仪 ( Zetasizer Nano ZS, Malvern, 英国)检测水化液 的平均粒径, 测得水化液的平均粒径在 10-5000nm的范围内, 符合临床用药 的要求。
实施例 25、
液体组合物:
紫杉醇 0.03g
大豆卵磷脂 (卵磷脂 S100 ) 1.2g
大豆油 0.12g
PEG2000 lg
无水乙醇 4g
制备方法: 将紫杉醇(桂林晖昂生化药业有限责任公司) 0.03g加入到无水乙醇 2g 中, 待完全溶解后, 再加入 PEG2000 lg、 卵磷脂 ( S100, LIPOID ) 1.2g、 大 豆油 0.12g和无水乙醇 2g, 搅拌使它们混合均匀后形成透明澄清的液体组合 物。 将液体组合物注入到 100ml的 5%葡萄糖注射液中, 轻微振荡摇晃, 使 之形成均一的水化液, 静置观察, 8小时后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微镜, 40χ )观察水化液无药物结晶析 出。 用激光粒度仪 ( Zetasizer Nano ZS , Malvern, 英国)检测水化液的平均 粒径,测得水化液的平均粒径在 10-5000nm的范围内,符合临床用药的要求。
实施例 26、
液体组合物:
多西紫杉醇 0.08g
蛋黄卵磷脂 (卵磷脂 E80 ) 1.6g
中链甘油三酸酯 (MCT) 0.2g
无水乙醇 4g
制备方法:
将多西紫杉醇(桂林晖昂生化药业有限责任公司) 0.08g加入到 2g的无 水乙醇中, 待完全溶解后, 再加入卵磷脂 E80 ( LIPOID ) 1.6g、 中链甘油三 酸酯(MCT, 铁岭北亚药用油有限公司) 0.2g和无水乙醇 2g, 搅拌使它们混 合均匀后形成透明澄清的液体组合物。 将液体组合物注入到 200ml的 5%葡 萄糖注射液中, 轻微振荡摇晃, 使之形成均一的水化液, 静置观察, 8 小时 后, 肉眼观察水化液无分层、 絮凝, 且显微镜(奥林巴斯 XDS-1B倒置显微 镜, 40χ )观察水化液无药物结晶析出。 用激光粒度仪(Zetasizer Nano ZS, Malvern, 英国)检测水化液的平均粒径,测得水化液的平均粒径在 10-5000nm 的范围内, 符合临床用药的要求。
本发明的液体组合物, 临床使用时, 将其注入到不同体积的 5%葡萄糖 溶液或生理盐水中, 适当振荡摇晃后, 供静脉注射或静脉滴注方式给药。
上述实施例的结果显示, 本发明的液体组合物只要组份和各组份的含量 在本发明的范围内, 便可得到澄清的溶液, 并且在用注射用溶液(如 5%葡 萄糖溶液、 生理盐水、 注射用水)水化后, 8 小时内保持稳定, 符合临床用 药的要求。 中重复。 所釆用的术语和措辞用作说明并且不具有限制性, 并且使用这些术 语和措辞时不旨在排除所显示和描述的特征的任何等同形式或其部分, 应认 识到多种改动是可能在本发明的范围内的。
工业实用性
本发明的难溶性药物的液体组合物具有以下优点:
1、以生物相容性好的磷脂、 大豆油等代替了现有一些难溶性药物市售注 射制剂中的表面活性剂, 如聚氧乙烯蓖麻油( Cremophor EL )或聚山梨脂 80 ( Tween 80 ) , 从配方上消除了难溶性药物制剂严重过敏性和溶血性等的隐 、
2、本发明中 ,难溶性药物溶解在有机溶剂或注射用油或它们的混合物中 , 能防止难溶性药物在水相介质中的氧化、 水解等, 可增加制剂的稳定性, 延 长有效期。 同时, 由于没有水, 是小体积的浓缩液, 便于运输和储存。
3、 该液体组合物制备工艺简单, 便于工业化生产。
4、临床上应用时与现有制剂的配制方法几乎一致,不会增加使用的难度, 有利于提高用药的顺应性。
5、 该液体组合物用注射用溶液(如 5%葡萄糖溶液、 生理盐水、 注射用 水)水化后, 8小时内保持稳定, 符合临床用药的要求。

Claims

权 利 要 求 书
1、 一种难溶性药物的液体组合物, 该液体组合物含有难溶性药物、 注 射用油、 磷脂、 溶剂, 各组份重量百分比如下:
难溶性药物 0.01 - 10%,
注射用油 0% - 20%,
碑脂 10 - 80%,
溶剂 20 - 89%。
2、 如权利要求 1所述的液体组合物, 其中, 各组份重量百分比如下: 难溶性药物 0.1 - 2.5%,
注射用油 0.5% - 10%,
磷脂 20 - 45%,
溶剂 42.5 - 79%。
3、 如权利要求 1或 2所述的液体组合物, 其中所述难溶性药物选自: 多西紫杉醇、 紫杉醇、 卡培他滨、 奥沙利泊、 吉非替尼、 多柔比星、 伊立替 康、 吉西他滨、 培美曲赛、 替莫唑胺、 依麦替尼布、 长春瑞滨、 来曲唑、 替 尼泊苷、 依托泊苷、 鬼臼毒素、 喜树碱、 10-羟基喜树碱、 9-羟基喜树碱、 7 -乙基 - 10 -羟基喜树碱 SN-38、 拓朴替康、 伊立替康、 长春碱、 长春新碱、 长春地辛、 长春氟宁、 长春西汀、 去曱基斑螯素、 水飞蓟宾、 丙泊酚、 氟苯 尼考、 米格列奈、 青蒿素、 二氢青蒿素、 西罗莫司、 布洛酚、 尼群地平、 尼 卡地平、 尼莫地平、 格列齐特、 西沙必列、 硝苯地平、 非洛地平、 格列本脲、 阿昔洛韦、 齐墩果酸、 灯盏花素、 阿魏酸、 对乙酰基氨基酚、 棕榈酰根霉素、 本可麦定、 维生素 A、 他莫昔芬、 诺维本、 丙戊酸、 他克莫司、 环孢素 A、 两性霉素^ 酮康唑、 多潘立酮、 舒必利、 非诺贝特、 苯扎贝特、 阿齐霉素、 伊曲康唑、 咪康唑、 溴莫尼定、 拉坦前列素、 水飞蓟宾、 红霉素、 罗红霉素、 利福西明、 西沙比利、 环孢菌素、 双氯芬酸、 非洛地平、 布洛芬、 吲哚美辛、 尼卡地平、 硝苯地平、 特非那丁、 茶碱、 酮洛芬、 呋噻米、 螺内酯、 双嘧达 莫、 吡罗昔康、 曱芬那酸、 三氯噻嗪、 吲哚洛尔或它们的混合物, 优选为紫 杉醇、 多西紫杉醇、 卡培他滨、 长春瑞滨、 替莫唑胺、 多柔比星、 吉非替尼、 替尼泊苷、 依托泊苷、 鬼臼毒素、 青蒿素、 喜树碱、 长春碱或它们的混合物, 更优选为紫杉醇、 多西紫杉醇、 卡培他滨、 长春瑞滨、 替莫唑胺、 多柔比星、 吉非替尼、 替尼泊苷、 依托泊苷、 青蒿素、 喜树碱或紫杉醇与替尼泊苷的混 合物。
4、如权利要求 1或 2所述的液体组合物,其中所述碑脂选自:天然磷脂、 半合成磷脂、 合成磷脂或它们的混合物。
5、 如权利要求 4 所述的液体组合物, 其中所述天然磷脂为卵磷脂, 所 述卵磷脂优选选自: 蛋黄卵磷脂、 大豆卵磷脂或它们以任何比例组成的混合 物。
6、 如权利要求 4 所述的液体组合物, 其中所述半合成磷脂和合成磷脂 选自氢化豆磷脂 (HSPC ) 、 二油酰基卵磷脂(DOPC ) 、 二肉豆蔻酰碑脂酰 乙醇胺(DMPE ) 、 二棕榈酰磷脂酰乙醇胺(DPPE ) 、 二肉豆蔻酰磷脂酰丝 氨酸 ( DMPS )、二硬脂酰碑脂酰乙醇胺 ( DSPE )、二月桂酰卵磷脂 ( DLPC )、 二肉豆蔻酰卵磷脂(DMPC ) 、 二棕榈酰卵磷脂(DPPC ) 、 二硬脂酰卵磷脂
( DPPC )、二硬脂酰卵磷脂( DSPC )、 1-肉豆蔻酰 -2-棕榈酰卵磷脂( MPPC )、 上述碑脂的聚乙二醇化衍生物或它们的混合物, 优选为氢化豆磷脂和聚乙二 醇 -二硬脂酰碑脂酰乙醇胺。
7、如权利要求 1或 2所述的液体组合物, 其中所述注射用油选自: 大豆 油、 玉米油、 中链甘油三酸酯(MCT )、 蓖麻油、 橄榄油、 花生油、 棉籽油、 芝麻油、 红花油、 单硬脂酸甘油酯或单油酸甘油酯中一种或多种的混合物, 优选为大豆油、 玉米油、 中链甘油三酸酯或它们的混合物。
8、如权利要求 1或 2所述的液体组合物,其中所述溶剂选自:无水乙醇、 甘油、 丙二醇、 聚乙二醇、 Ν,Ν-二曱基乙酰胺、 苯曱基苄酯、 油酸乙酯、 苯 曱醇中的一种或多种的混合物。
9、如权利要求 8所述的液体组合物, 其中所述溶剂为无水乙醇、或无水 乙醇与 Ν,Ν-二曱基乙酰胺的混合物、 或无水乙醇与聚乙二醇的混合物、 或甘 油与 Ν,Ν-二曱基乙酰胺的混合物。
10、 如权利要求 8或 9所述的液体组合物, 其中所述聚乙二醇包括不同 重均分子量的聚乙二醇或它们的混合物, 所述重均分子量的范围为 200 - 2000, 优选为 200-400。
11、 如权利要求 1或 2所述的液体组合物, 还包含医药学上可接受的药 用添加剂。
12、 如权利要求 11 所述的液体组合物, 其中所述药用添加剂包括: 辅 助乳化剂、 稳定剂、 pH值调节剂和抗氧剂。
13、如权利要求 1-12中任一项所述的液体组合物, 其中所述液体组合物 呈注射用浓溶液形式,临用时用注射用溶液配制以供注射使用; 或呈胶嚢剂、 软胶嚢剂或口服液体制剂形式。
14、如权利要求 13所述的液体组合物,其中所述注射用浓溶液在临床使 用时用 5%葡萄糖溶液或生理盐水或注射用水或它们的混合物分散, 形成均 一的水化液, 供静脉使用。
15、如权利要求 14所述的液体组合物,其中所述水化液的平均粒径大小 在 10-5000匪范围。
16、 如权利要求 1-15中任一项所述的液体组合物的制备方法,其特征在 于, 将难溶性药物溶解在溶剂或注射用油或它们的混合物中, 再加入碑脂以 及液体组合物中的其它组份, 混合均匀后得到所述液体组合物; 或将难溶性 药物溶解于溶剂、 注射用油、 磷脂及其它组份的混合物中, 混合均匀后得到 所述液体组合物; 或先将难溶性药物溶解于部分溶剂中, 再加入到磷脂、 注 射用油、剩余溶剂及其他组份的混合物中,混合均勾后得到所述液体组合物。
PCT/CN2011/079194 2010-09-01 2011-08-31 一种难溶性药物的液体组合物及其制备方法 WO2012028101A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/819,407 US9339553B2 (en) 2010-09-01 2011-08-31 Liquid compositions of insoluble drugs and preparation methods thereof
EP11821127.5A EP2612655A4 (en) 2010-09-01 2011-08-31 LIQUID COMPOSITIONS OF INSOLUBLE DRUGS AND METHODS OF PREPARING THE SAME
JP2013526308A JP2013536805A (ja) 2010-09-01 2011-08-31 難溶性薬物の液体組成物及びその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102689400A CN101926757B (zh) 2010-09-01 2010-09-01 一种难溶性药物的液体组合物及其制备方法
CN201010268940.0 2010-09-01

Publications (1)

Publication Number Publication Date
WO2012028101A1 true WO2012028101A1 (zh) 2012-03-08

Family

ID=43366364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079194 WO2012028101A1 (zh) 2010-09-01 2011-08-31 一种难溶性药物的液体组合物及其制备方法

Country Status (5)

Country Link
US (1) US9339553B2 (zh)
EP (1) EP2612655A4 (zh)
JP (1) JP2013536805A (zh)
CN (1) CN101926757B (zh)
WO (1) WO2012028101A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530331A (ja) * 2013-09-13 2016-09-29 アーバー・セラピューティクス・リミテッド・ライアビリティ・カンパニーArbor Therapeutics,LLC 癌化学療法剤の酸不安定、親油性プロドラッグの標的化送達用ナノ粒子組成物およびそれらの製造
KR101842279B1 (ko) * 2012-03-29 2018-03-26 우석대학교 산학협력단 이리노테칸의 안정성증진을 위한 주사제용 조성물
US10369101B2 (en) 2013-03-15 2019-08-06 Latitude Pharmaceuticals Inc. Parenteral diclofenac composition
US11571385B2 (en) 2017-05-18 2023-02-07 Kewpie Corporation Self-emulsifiable composition, production method therefor, nanoemulsion, and production method therefor

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926757B (zh) 2010-09-01 2013-01-02 北京大学 一种难溶性药物的液体组合物及其制备方法
US9744132B2 (en) 2010-10-29 2017-08-29 Infirst Healthcare Limited Solid solution compositions and use in chronic inflammation
US9504664B2 (en) 2010-10-29 2016-11-29 Infirst Healthcare Limited Compositions and methods for treating severe pain
US10695432B2 (en) 2010-10-29 2020-06-30 Infirst Healthcare Limited Solid solution compositions and use in severe pain
US9271950B2 (en) 2010-10-29 2016-03-01 Infirst Healthcare Limited Compositions for treating chronic inflammation and inflammatory diseases
US11202831B2 (en) 2010-10-29 2021-12-21 Infirst Healthcare Limited Solid solution compositions and use in cardiovascular disease
US11224659B2 (en) 2010-10-29 2022-01-18 Infirst Healthcare Limited Solid solution compositions and use in severe pain
US11730709B2 (en) 2010-10-29 2023-08-22 Infirst Healthcare Limited Compositions and methods for treating severe pain
US9308213B2 (en) 2010-10-29 2016-04-12 Infirst Healthcare Limited Solid solution compositions and use in chronic inflammation
US8895536B2 (en) 2010-10-29 2014-11-25 Infirst Healthcare Ltd. Compositions and methods for treating chronic inflammation and inflammatory diseases
US10695431B2 (en) 2010-10-29 2020-06-30 Infirst Healthcare Limited Solid solution compositions and use in cardiovascular disease
US9737500B2 (en) 2010-10-29 2017-08-22 Infirst Healthcare Limited Compositions and methods for treating severe pain
BR112013019734A2 (pt) * 2011-02-04 2016-10-25 Biocopea Ltd composições e métodos para tratar inflamação crônica e doenças inflamatórias
CN102579338B (zh) * 2012-03-02 2013-06-19 首都医科大学 一种紫杉醇静脉注射脂肪乳的制备及应用
CN102688190A (zh) * 2012-04-28 2012-09-26 陈建华 一种用于口服齐墩果酸固体脂质纳米粒制剂及其转运机制
CN102697792B (zh) * 2012-06-25 2014-07-02 吉林大学 一种持续释放的治疗青光眼药物及制备工艺
CN103142458B (zh) 2013-01-22 2015-09-09 莱普德制药有限公司 无成瘾性镇痛缓释递药系统的组方与制备方法
CN103405385B (zh) * 2013-08-06 2015-10-21 山东大学 一种替莫唑胺静脉注射脂肪乳及其制备方法
AU2014306759B2 (en) 2013-08-12 2018-04-26 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
EP3033085A1 (en) * 2013-08-14 2016-06-22 ratiopharm GmbH Dosage form comprising enzalutamide
CN103479575B (zh) * 2013-09-23 2015-08-05 安徽丰原药业股份有限公司 一种布洛芬脂肪乳注射液及其制备方法
CN104706584A (zh) * 2013-12-16 2015-06-17 天津迈迪瑞康生物医药科技有限公司 一种伊维菌素脂肪乳浓缩液、其制备方法及用途
CN104706585A (zh) * 2013-12-16 2015-06-17 天津迈迪瑞康生物医药科技有限公司 一种重酒石酸长春瑞滨脂肪乳浓缩液、其制备方法及用途
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
WO2015095391A1 (en) 2013-12-17 2015-06-25 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
CN104230736B (zh) * 2014-05-26 2017-01-04 中国人民解放军第二军医大学 一种抗炎、镇痛的药物及其制剂
CN104055749B (zh) * 2014-05-27 2017-05-24 无锡曙辉药业有限公司 环孢素a的自微乳化软胶囊内容物组合及其制备方法
TWI674097B (zh) * 2014-06-25 2019-10-11 英商努卡那公眾有限公司 磷酸酯衍生物之調配物
CN104027307A (zh) * 2014-07-02 2014-09-10 蚌埠医学院 药物组合物及其制备方法
EP3169315B1 (en) 2014-07-17 2020-06-24 Pharmaceutical Manufacturing Research Services, Inc. Immediate release abuse deterrent liquid fill dosage form
US20160106737A1 (en) 2014-10-20 2016-04-21 Pharmaceutical Manufacturing Research Services, Inc. Extended Release Abuse Deterrent Liquid Fill Dosage Form
CN105983098B (zh) * 2015-01-30 2020-02-21 湖北生物医药产业技术研究院有限公司 用于提高难溶性的抗肿瘤药物生物利用度的固体组合物及其制备方法
JP2018527287A (ja) * 2015-05-15 2018-09-20 アルブヴェックス エルエルシー ドセタキセルおよびヒト血清アルブミンの複合体
US9675609B2 (en) * 2015-11-11 2017-06-13 Cao Pharmaceuticals Inc. Nano- and micro-sized particles of 20-camptothecin or derivative thereof and pharmaceutical compositions containing same, and treatment of cancers therewith
CN105496956A (zh) * 2015-12-22 2016-04-20 上海方予健康医药科技有限公司 一种多西他赛组合物及其制备方法和用途
CN105640884A (zh) * 2016-01-21 2016-06-08 陈小媚 一种氟苯尼考乳剂及其制备方法
CN109069651A (zh) 2016-04-13 2018-12-21 诺迪克控股公司 稳定的尼莫地平肠胃外制剂
US10092553B2 (en) 2016-04-13 2018-10-09 Nortic Holdings Inc. Stable nimodipine parenteral formulation
CN105902504B (zh) * 2016-05-09 2021-04-16 石雷 一种四嗪二甲酰胺纳米制剂及其制备方法
HUE059448T2 (hu) * 2016-10-28 2022-11-28 Servier Lab Liposzómás készítmény, rák kezelésében való alkalmazásra
CN106619509B (zh) * 2016-12-21 2020-02-18 山东大学 一种奥沙利铂和伊立替康共载载药脂肪乳及其制备方法
JP7149611B2 (ja) * 2017-03-31 2022-10-07 テクノガード株式会社 薬物を保持した非水系組成物およびその製造方法
JP7097593B2 (ja) 2017-03-31 2022-07-08 テクノガード株式会社 薬物を保持した脂肪粒子を含む非水系組成物およびその製造方法
CN109248144B (zh) * 2017-07-13 2021-12-28 北京泰德制药股份有限公司 一种透明的脂质乳剂
KR102040034B1 (ko) * 2017-12-13 2019-11-05 주식회사 아이큐어비앤피 페메트렉시드를 포함하는 경구용 약학 조성물 및 이의 제조방법
CN108079306A (zh) * 2017-12-20 2018-05-29 首都医科大学 一种载青蒿素类药物及金属卟啉类化合物的纳米粒及其制备方法和应用
US11517563B2 (en) 2018-01-25 2022-12-06 Azurity Pharmaceuticals, Inc. Liquid nimodipine compositions
US10342787B1 (en) * 2018-01-25 2019-07-09 Arbor Pharmaceuticals, Llc Non-aqueous liquid nimodipine compositions
WO2019162756A2 (en) * 2018-02-20 2019-08-29 Ftf Pharma Private Limited Liquid pharmaceutical compositions of anticancer drugs
CN108478533B (zh) * 2018-04-23 2020-12-08 滨州医学院 β环糊精-LPC脂质体制备方法及其作为药物载体的应用
JP7385881B2 (ja) * 2018-07-18 2023-11-24 テクノガード株式会社 オキシカム系薬物含有注射剤
CN109431997B (zh) * 2018-12-20 2021-06-04 武汉科福新药有限责任公司 一种雷帕霉素局部注射制剂及其制备方法
CN109771371B (zh) * 2019-03-19 2020-03-20 安徽联谊药业股份有限公司 一种克林霉素磷酸酯注射液及其制备方法
US11439653B1 (en) 2021-03-30 2022-09-13 Epalex Corporation Fospropofol formulations
US11478490B1 (en) 2021-03-30 2022-10-25 Epalex Corporation Fospropofol formulations
US11547714B2 (en) 2020-02-05 2023-01-10 Epalex Corporation Fospropofol salts, methods and compositions
US11628178B2 (en) 2019-03-26 2023-04-18 Epalex Corporation Fospropofol methods and compositions
CN111904928A (zh) * 2019-05-07 2020-11-10 江苏恒瑞医药股份有限公司 一种包含布托啡诺的可注射的药物组合物及其制备方法
JP6843917B2 (ja) * 2019-05-15 2021-03-17 キユーピー株式会社 多価アルコール組成物、及び粘性組成物
EP3975994A4 (en) * 2019-05-24 2023-06-14 Piedmont Animal Health Inc. LONG-ACTING INJECTABLE FORMULATIONS AND THEIR USE
CN110123755A (zh) * 2019-06-30 2019-08-16 重庆大学 一种基于阿魏酸左旋咪唑盐的水包油纳米乳液及其制备方法和应用
CN110585171A (zh) * 2019-10-18 2019-12-20 武汉布润脑医学科技有限责任公司 一种替莫唑胺固体脂质纳米粒及其制备方法
AU2021257738A1 (en) * 2020-04-13 2022-05-19 US Nano Food & Drug INC Basic chemotherapeutic intratumour injection formulation
CN112190547B (zh) * 2020-09-30 2023-01-03 北京诺康达医药科技股份有限公司 脂质微球组合物及其制备方法
CN112315905B (zh) * 2020-12-07 2021-11-30 安徽海洋药业有限公司 一种蒿甲醚注射液及其制备方法
CN114796111A (zh) * 2021-01-28 2022-07-29 北京德立福瑞医药科技有限公司 一种含有难溶性药物的浓缩液以及由其制备的乳剂
CN113398094A (zh) * 2021-05-11 2021-09-17 湖北龙翔药业科技股份有限公司 难溶性兽药纳米混悬剂及其制备方法
CN114533852A (zh) * 2022-02-25 2022-05-27 四川恒通动保生物科技有限公司 一种复方阿莫西林硫酸黏菌素混悬注射液及其制备方法
WO2023174948A2 (en) * 2022-03-14 2023-09-21 TRx Biosciences Limited Compositions having improved bioavailability of therapeutics and uses thereof
CN114796511A (zh) * 2022-05-07 2022-07-29 云南比昂汉普生物科技有限公司 一种混合型增溶剂及其制备方法
CN117177737A (zh) * 2023-05-06 2023-12-05 北京德立英捷医药科技有限公司 可自乳化的多西他赛注射用组合物及其制备方法
CN116687847B (zh) * 2023-06-26 2024-03-29 石家庄四药有限公司 一种药物微晶注射液及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384734A (zh) * 1999-09-21 2002-12-11 Rtp药品公司 生物活性物质的表面改性微粒组合物
CN1562014A (zh) * 2004-04-15 2005-01-12 沈阳药科大学 注射用ve烟酸酯乳剂及其制备方法
CN1634058A (zh) * 2004-10-20 2005-07-06 李晓祥 长春瑞滨乳剂及其制备方法
CN1671370A (zh) * 2002-07-20 2005-09-21 韩国科学技术研究院 增溶紫杉醇的组合物及其制备方法
CN1917859A (zh) * 2003-12-24 2007-02-21 日本株式会社Ltt生物医药 载药纳米微粒及其制备方法以及含有该纳米微粒的非肠道给药用制剂
CN101019832A (zh) * 2007-03-19 2007-08-22 沈阳药科大学 多西他赛脂肪乳剂及其冻干剂与制备方法
CN101926757A (zh) * 2010-09-01 2010-12-29 北京大学 一种难溶性药物的液体组合物及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1323306C (en) 1987-03-05 1993-10-19 Mircea C. Popescu Pharmacological agent-lipid solution preparation
JP2844756B2 (ja) * 1989-12-01 1999-01-06 日本新薬株式会社 脂肪乳剤
SE9003100D0 (sv) 1990-09-28 1990-09-28 Kabivitrum Ab Lipid formulation system
IL122084A (en) 1997-10-31 1999-09-22 Lurident Ltd Formulation for personal care with mucoadhesive properties
EP1080720A4 (en) * 1998-03-05 2002-06-05 Nippon Shinyaku Co Ltd FAT EMULSIONS FOR INHALATIVE ADMINISTRATION
TW422706B (en) * 1999-07-01 2001-02-21 Wang Iz Rung An oil-in-water emulsion type of paclitaxel
DK1389089T3 (da) * 2001-03-27 2009-12-21 Phares Pharm Res Nv Fremgangsmådeog sammensætning til solubilisering af en biologisk aktiv forbindelse med lav vandoplöselighed
AU2002357012A1 (en) * 2001-11-27 2003-06-10 Transform Pharmaceuticals, Inc. Oral pharmaceutical formulations comprising paclitaxel, derivatives and methods of administration thereof
EP1576953A4 (en) 2002-12-06 2008-08-06 Otsuka Pharma Co Ltd FATTY EMULSIONS CONTAINING PROPOFOL
EP1498122A1 (en) * 2003-07-18 2005-01-19 Aventis Pharma S.A. Semi-solid systems containing azetidine derivatives
US8557861B2 (en) 2004-09-28 2013-10-15 Mast Therapeutics, Inc. Low oil emulsion compositions for delivering taxoids and other insoluble drugs
EP1862183B1 (en) * 2005-03-14 2010-11-03 Otsuka Pharmaceutical Factory, Inc. Kit comprising drug and fat emulsion
CN101006997B (zh) * 2006-01-26 2011-07-20 董英杰 复方紫杉醇及衍生物多西他赛脂肪乳剂和制备方法
TWI376239B (en) * 2006-02-01 2012-11-11 Andrew Xian Chen Vitamin e succinate stabilized pharmaceutical compositions, methods for the preparation and the use thereof
WO2008042841A2 (en) 2006-10-02 2008-04-10 Dr. Reddy's Laboratories Limited Docetaxel compositions
US20080145411A1 (en) * 2006-10-06 2008-06-19 Kaneka Corporation Composition of high absorbability for oral administration comprising oxidized coenzyme q10
CN101204373A (zh) * 2006-12-19 2008-06-25 李时海 紫杉醇脂质微球注射液及其制备方法
WO2009011861A1 (en) * 2007-07-16 2009-01-22 Poniard Pharmaceuticals, Inc. Oral formulations for picoplatin
JP5433381B2 (ja) * 2009-01-28 2014-03-05 合同会社IP Bridge1号 口腔内測定装置及び口腔内測定方法
CN102038635A (zh) 2009-10-23 2011-05-04 天津天士力集团有限公司 一种含有pH值调节剂的紫杉烷类药物溶液及其制备方法
CN101829052B (zh) 2010-03-16 2011-12-14 王国强 紫杉烷类化合物的自乳化制剂及其制备方法
JP2012051823A (ja) * 2010-08-31 2012-03-15 Fujifilm Corp 難容性薬物含有水中油型乳化組成物及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384734A (zh) * 1999-09-21 2002-12-11 Rtp药品公司 生物活性物质的表面改性微粒组合物
CN1671370A (zh) * 2002-07-20 2005-09-21 韩国科学技术研究院 增溶紫杉醇的组合物及其制备方法
CN1917859A (zh) * 2003-12-24 2007-02-21 日本株式会社Ltt生物医药 载药纳米微粒及其制备方法以及含有该纳米微粒的非肠道给药用制剂
CN1562014A (zh) * 2004-04-15 2005-01-12 沈阳药科大学 注射用ve烟酸酯乳剂及其制备方法
CN1634058A (zh) * 2004-10-20 2005-07-06 李晓祥 长春瑞滨乳剂及其制备方法
CN101019832A (zh) * 2007-03-19 2007-08-22 沈阳药科大学 多西他赛脂肪乳剂及其冻干剂与制备方法
CN101926757A (zh) * 2010-09-01 2010-12-29 北京大学 一种难溶性药物的液体组合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2612655A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842279B1 (ko) * 2012-03-29 2018-03-26 우석대학교 산학협력단 이리노테칸의 안정성증진을 위한 주사제용 조성물
US10369101B2 (en) 2013-03-15 2019-08-06 Latitude Pharmaceuticals Inc. Parenteral diclofenac composition
JP2016530331A (ja) * 2013-09-13 2016-09-29 アーバー・セラピューティクス・リミテッド・ライアビリティ・カンパニーArbor Therapeutics,LLC 癌化学療法剤の酸不安定、親油性プロドラッグの標的化送達用ナノ粒子組成物およびそれらの製造
US11571385B2 (en) 2017-05-18 2023-02-07 Kewpie Corporation Self-emulsifiable composition, production method therefor, nanoemulsion, and production method therefor

Also Published As

Publication number Publication date
CN101926757B (zh) 2013-01-02
EP2612655A1 (en) 2013-07-10
US9339553B2 (en) 2016-05-17
CN101926757A (zh) 2010-12-29
JP2013536805A (ja) 2013-09-26
EP2612655A4 (en) 2015-08-05
US20130156853A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2012028101A1 (zh) 一种难溶性药物的液体组合物及其制备方法
JP7105338B2 (ja) 眼科用薬物送達のための自己乳化薬物送達システム(sedds)
AU2009280803B2 (en) Stable injectable oil-in-water Docetaxel nanoemulsion
TWI290052B (en) Emulsion vehicle for poorly soluble drugs
KR101505419B1 (ko) 나노분산액
JP4929158B2 (ja) 難水溶性薬物を含有する医薬組成物
WO2010139278A1 (zh) 制备载药乳剂的方法
JP5847722B2 (ja) pH調節剤を含むタキサンの医薬溶液、およびその作製方法
CN108289832A (zh) 用于以输注或注射形式进行静脉给药的左西孟旦以及输注浓缩液的改善配方
WO2011113301A1 (zh) 紫杉烷类化合物的自乳化制剂及其制备方法
US20080171687A1 (en) Compositions And Methods For The Preparation And Administration Of Poorly Water Soluble Drugs
CA2748761C (en) Pharmaceutical microemulsion for preventing supramolecular aggregation of amphiphilic molecules
CN102228431A (zh) 紫杉烷类化合物的自乳化药物组合物
TWI472340B (zh) Taxanes containing solution and a preparation method of the co-solvent
Strickley Solubilizing excipients in pharmaceutical formulations
TW201223560A (en) Drug-loaded emulsion and the preparation method thereof
WO2011047636A1 (zh) 一种含有助溶剂的紫杉烷类药物溶液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819407

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013526308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011821127

Country of ref document: EP