CN108478533B - β环糊精-LPC脂质体制备方法及其作为药物载体的应用 - Google Patents

β环糊精-LPC脂质体制备方法及其作为药物载体的应用 Download PDF

Info

Publication number
CN108478533B
CN108478533B CN201810364704.5A CN201810364704A CN108478533B CN 108478533 B CN108478533 B CN 108478533B CN 201810364704 A CN201810364704 A CN 201810364704A CN 108478533 B CN108478533 B CN 108478533B
Authority
CN
China
Prior art keywords
lpc
beta
liposome
drug
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810364704.5A
Other languages
English (en)
Other versions
CN108478533A (zh
Inventor
魏光成
闫苗苗
蔡安然
李静
辛美秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN INNERSE PHARMACEUTICAL Inc
Original Assignee
Binzhou Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou Medical College filed Critical Binzhou Medical College
Priority to CN201810364704.5A priority Critical patent/CN108478533B/zh
Publication of CN108478533A publication Critical patent/CN108478533A/zh
Application granted granted Critical
Publication of CN108478533B publication Critical patent/CN108478533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及医药领域,具体涉及β‑CD‑LPC纳米脂质体及其制备方法。首先将对苯二甲酸单甲酯羧酸基团活化,与β‑CD‑NH2分子结合形成β‑CD‑NH‑CO‑C6H4‑COOCH3。然后在氢氧化钠作用下将对苯二甲酸单甲酯中的酯键水解,在催化剂作用下羧酸基团与LPC通过酯键结合,最终形成β‑CD‑NH‑CO‑C6H4‑COO‑LPC分子。本发明中的此脂质体制备简单,能够很好的负载抗癌药物;β‑CD‑LPC‑Dox脂质体纳米药具有pH响应性的缓慢释放性质,能很好的诱导细胞凋亡;对小鼠体重影响较小,对肿瘤具有良好的治疗效果。因此β‑CD‑LPC形成的脂质体在生物医药领域具有非常好的应用前景。

Description

β环糊精-LPC脂质体制备方法及其作为药物载体的应用
技术领域
本发明属于医药领域,具体涉及本身生物相容性好、水溶性好、性质稳定,负载抗癌药物后能增强疏水性药物的水溶性、稳定性,同时具有pH响应性、缓慢释放、降低抗癌药物本身固有的不良性质的脂质体及其制备方法。
背景技术
癌症的发病率逐年增加,2012年癌症患者人数达到1410万,预计到2024年癌症患者的人数将增至1900万,癌症已经成为导致人类死亡的重要原因。由此,癌症治疗则显得尤为重要。目前来说,治疗肿瘤的传统方法主要有手术、放疗、化疗以及随后发展的生物疗法。但是不同方法对于不同的癌症或者是不同癌症阶段的适用性不一样。比如对于已经扩散的癌细胞,手术治疗与放疗的效果就微乎其微。化学治疗虽然可以很快的达到抑制治疗肿瘤的目的,但是受损的肿瘤细胞仍然比正常细胞分化快并且副作用较大。而生物疗法治疗肿瘤的侧重点是调节机体自身的生物反应,增强自身对肿瘤细胞的免疫能力,达到降低肿瘤细胞的分化和增殖能力的目的。但是生物疗法的疗效慢,不完善,容易复发。因此,研究并发展新型有效的治疗方法,可以克服生物障碍,区分良性恶性细胞,能够特异性识别靶向的癌细胞,并可以灵敏的响应体内微环境的变化。在合适的区域释放合适剂量的药物是一个亟待解决问题。
为了解决这一问题,各种各样新颖的药物运载体就相应的出现,其中包括树枝状大分子,脂质体,胶束或者囊泡,以及基于无机纳米粒子的药物运载体系统。其中,脂质体是由含有亲水基团和疏水尾部组成的磷脂分子自组装形成具有双分子层结构的闭合囊泡。由于形成脂质体的磷脂大多是细胞膜的主要成分,所以脂质体具有非常优异的生物相容性;同时它既可以装载亲水性的药物也可以装载亲脂性药物。传统的脂质体存在一定的缺点,比如对亲脂性药物的包载率较低、在体内的稳定性较差、会产生突然释放现象。为解决这一问题,可对磷脂分子进行修饰。环糊精(Cyclodextrin,CD)是天然环形的低聚糖,内部空腔疏水而外部亲水,可以与各种疏水性客体分子进行相互作用形成超分子包合物。因此环糊精常被用来提高脂溶性药物的生物利用度,主要通过增强疏水性药物的溶解性、分散性及药物的渗透性来实现。尤其羟丙基环糊精已被FDA批准广泛应用于制药领域及超分子领域的研究。
本发明将磷脂分子与环糊精分子连接到一起得到一个新的含有亲水基团和疏水基团的两亲分子β-CD-LPC,此分子在水中可自组装形成β-CD-LPC脂质体。该体系的创新点主要有以下几个方面:1)由于修饰了环糊精,可以将亲脂性药物阿霉素(Dox)包载于其空腔当中,实现亲脂性药物的运输,使得治疗效果最大化而毒副作用最小化。2)保护抗癌药物在到达病灶处免受细胞内极端环境(比如,胃液的酸性环境、细胞中溶酶体、血液循环系统中的蛋白酶以及其它酶)的破坏。3)首次将环糊精与磷脂相结合构建脂质体,其尺寸大约在104nm左右,有利于在体内进行血液循环。4)该脂质体可以作为一个药物仓库,源源不断释放药物,从而避免突然释放现象的发生。5)该脂质体具有非常好的生物相容性。
发明内容
本发明的目的是合成性能更好的磷脂分子,并将该磷脂分子自组装形成的脂质体应用于抗癌药物的负载,从而增强脂溶性抗癌药物的水溶性、稳定性,安全性及生物利用度。形成的负载抗癌药物的脂质体具有缓慢释放性质,并能够有效的发挥抗癌的作用。
本发明β-CD-LPC脂质体的制备及作为药物运载体的应用是通过以下技术方案实现的:该脂质体通过β-CD-NH2(6A-氨基-3A-脱氧-(2AS,3AS)-β-环糊精水合物,β-CD)与LPC(1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine,LPC)通过对苯二甲酸结合到一起,得到β-CD-NH2-LPC分子(β-CD-LPC),然后β-CD-LPC分子在水中自组装形成β-CD-LPC脂质体,β-CD-LPC分子结构式如下所示:
Figure GDA0002633615300000021
本发明的制备方法是首先通过催化剂将对苯二甲酸单甲酯羧酸基团活化为具有活性的羧酸基团,接下来与β-CD-NH2通过酰胺键结合到一起。然后在氢氧化钠作用下将对苯二甲酸单甲酯中的酯键水解,暴露出羧酸基团,然后羧酸基团与LPC中的羟基通过酯键结合,最终得到两亲性β-CD-LPC分子。具体制备方法如下:
(1)环糊精对苯甲酸(β-CD-NH-CO-C6H4-COOH)的合成:
称取一定质量对苯二甲酸单甲酯(CH3O-CO-C6H4-COOH)与DCC、NHS反应24h后加入β-CD-NH2(摩尔比为1:1),室温下搅拌36h,然后加入氢氧化钠进行水解,最后通过柠檬酸调节反应体系pH值至中性,得到环糊精对苯甲酸(β-CD-NH-CO-C6H4-COOH)粗品。冷冻干燥后,经过DIAION-HP-20大孔树脂纯化得到β-CD-NH-CO-C6H4-COOH纯品。
(2)β-CD-LPC的合成
β-CD-NH-CO-C6H4-COOH溶于DMF中,加入EDC、DMAP、DIPEA,然后加入溶有LPC的CHCl3溶液室温搅拌48h。得到β-CD-NH-CO-C6H4-COO-LPC(β-CD-LPC)粗品。粗品经中性氧化铝纯化得到β-CD-LPC纯品。
(3)采用有机溶剂挥发法,选取阿霉素(Dox)作为药物模型进行包载,得到阿霉素脂质体纳米药β-CD-LPC-Dox。
(4)采用透析方法对β-CD-LPC-Dox脂质体纳米药进行体外模拟释放,根据肿瘤微环境性质考察了不同pH值下的释放行为。发现在较低pH条件下比生理pH条件下释放速度快,表明此脂质体纳米药具有pH响应性的缓慢释放性质。
(5)体外抗癌实验通过MTT方法评价β-CD-LPC脂质体的细胞毒性及β-CD-LPC-Dox脂质体纳米药的抗癌活性。实验表明该β-CD-LPC脂质体具有极低的毒副作用,同时β-CD-LPC-Dox脂质体纳米药具有良好的抗癌活性。
(6)体内抗肿瘤研究以植瘤小鼠作为研究模型,同时对小鼠肿瘤大小及体重进行测量,最后小鼠处死后将肿瘤取出进行固定、脱水、包埋、切片及HE染色,观察肿瘤组织变化。
附图说明
图1:β-CD-LPC脂质体TEM形貌和脂质体粒径分布图;
图2:β-CD-LPC-Dox脂质体药物体外释放情况;
图3:β-CD-LPC脂质体细胞毒性及β-CD-LPC-Dox脂质体纳米药诱导癌细胞凋亡情况;
图4:β-CD-LPC-Dox脂质体纳米药在细胞中的摄取情况;
图5:β-CD-LPC-Dox脂质体纳米药在细胞中的分布情况;
图6:β-CD-LPC脂质体及β-CD-LPC-Dox脂质体纳米药对小鼠体重及肿瘤的影响;
图7::β-CD-LPC脂质体及β-CD-LPC-Dox脂质体纳米药对小鼠尾静脉注射12天后肿瘤组织变化情况。
具体实施方式
以下给出本发明的具体实施方式,用来对本发明的构成作进一步的说明,但并不认为本发明仅局限于下述的实施方式。
β-CD-LPC形成的脂质体制备及作为纳米药的应用是通过以下技术方案实现的:
(1)β-CD-NH-CO-C6H4-COOH的合成
称取一定量的对苯二甲酸单甲酯、DCC、NHS,溶于THF,室温下反应24h,反应结束后,静置离心将沉淀除去,得到上清液。将一定量(与对苯二甲酸单甲酯摩尔比1:1)的β-CD溶于DMF中,与上一步的溶液进行混合,室温下搅拌36h。反应结束后将其进行冷冻干燥,然后将其溶于蒸馏水中加入1mol·L-1氢氧化钠进行水解,水解1h后用柠檬酸调节pH值至中性,冷冻干燥得到β-CD-NH-CO-C6H4-COOH粗品。经过DIAION-HP-20大孔树脂柱纯化得到β-CD-NH-CO-C6H4-COOH纯品。
(2)β-CD-LPC的合成
将上一步得到的β-CD-NH-CO-C6H4-COOH纯品溶于DMF中,加入EDC、DMAP、DIPEA,然后与溶有LPC的CHCl3(β-CD-NH-CO-C6H4-COOH与LPC摩尔比为1:1)溶液混合,室温搅拌48h,冷冻干燥得粗品。然后通过中性氧化铝柱纯化,流动相互依次用乙酸乙酯、二氯甲烷:甲醇(95:5)、二氯甲烷:甲醇(85:15)进行洗脱,最后将中性氧化铝取出,用蒸馏水进行浸泡,最后将浸泡液冷冻干燥,得到纯品β-CD-LPC。水化后得到脂质体,如图1所示。
(3)脂质体纳米药的准备
选择阿霉素(Dox)作为亲脂性抗癌药物模型进行脂质体纳米药装载。室温下将1mgDox溶于10mL甲醇中(加入摩尔比为1:2的Dox与三乙胺),超声溶解并暗处搅拌过夜。将1mgβ-CD-LPC粉末溶于二氯甲烷:甲醇(体积比1:1)中,然后将Dox的甲醇溶液与溶有β-CD-LPC粉末的二氯甲烷:甲醇(体积比1:1)在茄形瓶中混合并在50℃环境下孵育30min,接着将有机溶液减压旋转蒸发除去,然后向茄形瓶中加入磷酸缓冲溶液(pH=7.4)水化,得到负载阿霉素的脂质体纳米药β-CD-LPC-Dox。
(4)体外释放实验
为了确定药物从脂质体中的释放行为,模拟在肿瘤微环境(pH5.0)和正常生理环境下(pH7.4)的释放行为,同时研究了两种温度(25℃和37℃)下的释放情况。取少量β-CD-LPC-Dox脂质体纳米药加入4mL PBS缓冲溶液使其水化,将水化后溶液放入透析袋内(最大截留分子量为8000D)。将透析袋放入盛有20mL缓冲溶液的烧杯中,25℃和37℃环境下进行搅拌。在规定时间后(1h、4h、8h、12h、24h、36h、48h、60h、72h)从烧杯中取出4mL溶液进行紫外可见光谱测试,然后在烧杯中补加4mL新的缓冲溶液溶液。
(5)体外抗癌实验
通过MTT方法对HepG2和MCF-7细胞进行细胞存活率研究。将HepG2和MCF-7细胞依次接种到96孔板中,每孔细胞密度为5×103个,每孔加入200μL DMEM High Glucose培养液,37℃、5%CO2培养箱中孵育24h细胞贴壁。然后将旧培养液移出,加入一系列浓度梯度的β-CD-LPC脂质体、β-CD-LPC-Dox脂质体纳米药及Dox,孵育24h。到达孵育时间后每孔加入20μL MTT(5mg·mL-1),孵育4h,将所有培养液全部移出,每孔加入150μL DMSO,室温下避光放入摇床中10min,最后吸光度通过酶标仪进行检测,检测波长为570nm.未作处理细胞作为对照组。
为了研究β-CD-LPC-Dox脂质体纳米药在亚细胞中的分布情况采用激光共聚焦检测。在HepG2细胞中加入阿霉素脂质体纳米药(10μg·mL-1和20μg·mL-1)后,在规定的时间(2h、8h及24h)下进行孵育,然后将旧培养液移出,加入2mL新鲜培养液进行激光共聚焦观察,观察阿霉素的荧光信号出现的位置。
进一步定量研究了HepG2细胞对β-CD-LPC-Dox脂质体纳米药的摄取情况进行了流式细胞术检测。HepG2细胞加入β-CD-LPC-Dox脂质体纳米药10μg·mL-1和20μg·mL-1)后在规定时间(2h、8h及24h)条件下进行孵育,孵育结束后用流式细胞仪进行检测。检测激发波长和发射波长分别为488nm和525nm。
(6)体外抗癌实验
将注射H22瘤细胞小鼠作为实验研究模型用以研究β-CD-LPC脂质体、β-CD-LPC-Dox脂质体纳米药的体内毒理性质。将小鼠左侧腋下的鼠毛剪掉,然后注射H22瘤细胞(5×104·mL-1,0.5mL)。当腋下肿瘤长大至100~200mm3时表示荷瘤小鼠模型已经建立成功,将小鼠随机分成3组(每组4只),分别为PBS组、β-CD-LPC脂质体组、β-CD-LPC-Dox脂质体纳米药组,β-CD-LPC脂质体(3mg·mL-1)组、β-CD-LPC-Dox脂质体纳米药(3mg·mL-1)组每次每组注射200μL,PBS组每次注射等体积PBS溶液,每组每隔一天注射一次,并同时测量小鼠体重与肿瘤大小。观察12天后将小鼠处死,把肿瘤进行解剖处理,将解剖处理的肿瘤组织放于多聚甲醛中固定24小时。固定好的肿瘤组织进行脱水处理后,进行石蜡包埋、切片,最后将肿瘤组织切片进行HE染色。
本发明方法制备脂质体纳米药,具有良好的生物医学性能:
(1)本脂质体纳米药具有pH响应性和缓慢释放的性质。
本发明通过透析的方法对脂质体纳米药进行体外释放研究,如图2所示,37℃条件下,12h后,pH7.4时有20.45%的阿霉素从β-CD-LPC脂质体中释放出来,而同样温度条件下pH5.0时约33.99%阿霉素被释放。随着释放时间延长药物释放量增多,72h后,pH7.4条件下大约有39.58%药物被释放,而pH5.0时大约45.90%药物被释放。说明该脂质体在较低pH条件下释放速度高于pH7.4时的释放速度,是pH响应性的缓慢释放。这种缓慢释放的性质使得脂质体纳米药作为药物储库可以源源不断的释放药物达到长期治疗的效果。肿瘤组织因病理条件的改变使得其周围pH较低,脂质体纳米药可以在较低pH条件下快速释放的性质有利于药物在肿瘤部位大量积累,达到更好的治疗效果。
(2)本脂质体及脂质体纳米药体外细胞毒性低
本发明利用MTT方法检测β-CD-LPC脂质体及β-CD-LPC-Dox脂质体纳米药对细胞存活率的影响结果如图3所示,在脂质体浓度高达120μg·mL-1时,HepG2和MCF-7细胞的存活率仍然在85%以上,说明脂质体对细胞存活率影响较小,脂质体本身毒性低。随着β-CD-LPC-Dox脂质体纳米药浓度的增加HepG2和MCF-7细胞存活率均下降,说明阿霉素脂质体纳米药对癌细胞具有杀伤作用,具有良好的抗癌作用。
流式细胞术图(图4)显示,随着β-CD-LPC-Dox脂质体纳米药浓度的增加和孵育时间的延长进入HepG2细胞的β-CD-LPC-Dox脂质体纳米药逐渐增多:2h后β-CD-LPC-Dox脂质体纳米药浓度为10μg·mL-1时,约有3.2%的β-CD-LPC-Dox脂质体纳米药被细胞摄取;β-CD-LPC-Dox脂质体纳米药浓度为20μg·mL-1,约有15.8%的β-CD-LPC-Dox脂质体纳米药被细胞摄取。24h后β-CD-LPC-Dox脂质体纳米药浓度为10μg·mL-1时,约有48.4%的β-CD-LPC-Dox脂质体被细胞摄取;β-CD-LPC-Dox脂质体纳米药浓度为20μg·mL-1时,约有58.4%的β-CD-LPC-Dox脂质体纳米药被细胞摄取。激光共聚焦图(图5)显示,随着时间的延长和β-CD-LPC-Dox脂质体纳米药浓度的增加细胞内阿霉素的荧光信号逐渐增加。流式细胞术和激光共聚焦实验表明,细胞能够很好的摄取β-CD-LPC-Dox脂质体纳米药,摄取后能很好的将阿霉素从脂质体中释放,进而发挥抗癌作用。
(3)本脂质体纳米药体内抗癌效果明显
本发明采用植瘤小鼠作为实验模型,对其进行尾静脉注射β-CD-LPC-Dox脂质体纳米药的方式观察肿瘤大小变化趋势、小鼠体重变化及肿瘤组织HE染色后变化来评价β-CD-LPC-Dox脂质体纳米药体内抗癌效果。经过12天的观察,发现小鼠体重并没有发生明显的改变,但是小鼠肿瘤明显变小如图6所示。说明β-CD-LPC-Dox脂质体纳米药具有良好的抗肿瘤效果。12天观察结束后对肿瘤组织HE染色结果如图7所示,与对照组比较β-CD-LPC-Dox脂质体纳米药组中的肿瘤细胞出现了明显的变化,细胞核固缩、细胞核破裂甚至消失甚至出现细胞出现坏死现象,同时可以看出肿瘤组织出现大面积坏死区域,此区域中新的细胞没有完整的细胞结构。体内抗癌实验表明,β-CD-LPC-Dox脂质体纳米药能够在不影响小鼠体重的情况下对肿瘤生长产生抑制作用,同时对肿瘤组织产生损伤作用。
综上所述,环糊精与磷脂偶联形成的β-CD-LPC水化后形成的β-CD-LPC脂质体具有极好的生物相容性。进行负载阿霉素后形成的β-CD-LPC-Dox脂质体纳米药具有很好的安全性、pH响应性的缓慢释放性质,能很好的进入细胞进而诱导细胞死亡,同时对肿瘤具有良好的治疗效果。以上所述仅为本发明的优选实例,并不用于限制本发明。凡在本发明的基础之上的任何改动、修改、替换等,均应包含在本发明的保护范围内。

Claims (9)

1.一种β-CD-LPC脂质体,其特征在于:所述β-CD-LPC由环糊精6A-Amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin Hydrate和磷脂1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine组成,所述环糊精简写为β-CD-NH2,所述磷脂简写为LPC,两种化合物之间采用对苯二甲酸连接,由对苯二甲酸单甲酯进行相关反应得到,其结构式如下图所示:
Figure FDA0002727746440000011
2.根据权利要求1所述的β-CD-LPC脂质体的制备方法,其特征在于,具体包含如下步骤:
1)化合物β-CD-LPC的制备:
首先将对苯二甲酸单甲酯中的羧酸基团在催化剂作用下形成具有活性的羧酸基团,然后与β-CD-NH2发生酰胺反应结合到一起;然后进行水解反应将对苯二甲酸单甲酯的酯键水解,暴露出羧酸基团,接着将羧酸基团活化,然后在催化剂作用下羧酸基团与LPC中的羟基通过酯键结合,最终得到两亲性化合物β-CD-LPC;
2)β-CD-LPC脂质体的制备:
将步骤1)所制备得到的两亲性化合物β-CD-LPC进一步通过有机溶剂挥发法制备得到β-CD-LPC脂质体。
3.根据权利要求2所述的β-CD-LPC脂质体的制备方法,其特征在于:化合物β-CD-LPC的制备步骤如下:
a)环糊精对苯甲酸的合成,所述环糊精对苯甲酸简写为β-CD-NH-CO-C6H4-COOH:
称取一定量对苯二甲酸单甲酯与DCC、NHS反应24h后加入与对苯二甲酸单甲酯等摩尔量的β-CD-NH2,反应36h后,在氢氧化钠条件下水解,再调整反应体系pH值至中性,得到β-CD-NH-CO-C6H4-COOH粗品;然后经过DIAION-HP-20大孔树脂纯化得到β-CD-NH-CO-C6H4-COOH纯品;
b)β-CD-LPC的合成:
将步骤a)制备得到的β-CD-NH-CO-C6H4-COOH溶于DMF中,加入EDC、DMAP、DIPEA,然后再加入溶有LPC的CHCl3溶液室温搅拌48h,得到β-CD-NH-CO-C6H4-COO-LPC,简写为β-CD-LPC粗品,接着对β-CD-LPC粗品进行纯化,采用中性氧化铝柱纯化得到β-CD-LPC纯品。
4.一种β-CD-LPC-Dox脂质体纳米药,其特征在于:所述脂质体纳米药是采用溶剂挥发对如权利要求1所述的β-CD-LPC脂质体进行Dox的包载而制备得到的。
5.根据权利要求4所述的脂质体纳米药,其特征在于:所述脂质体纳米药是pH响应性的缓慢释放,在低pH下的释放速度高于正常生理pH下的释放速度。
6.根据权利要求4所述的脂质体纳米药,其特征在于:所述β-CD-LPC脂质体具有低毒副作用。
7.根据权利要求4所述的脂质体纳米药,其特征在于:所述脂质体纳米药具有抗癌活性。
8.根据权利要求1所述的β-CD-LPC脂质体在制备药物装载材料中的应用。
9.根据权利要求4所述的脂质体纳米药在制备抗癌药物中的应用。
CN201810364704.5A 2018-04-23 2018-04-23 β环糊精-LPC脂质体制备方法及其作为药物载体的应用 Active CN108478533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810364704.5A CN108478533B (zh) 2018-04-23 2018-04-23 β环糊精-LPC脂质体制备方法及其作为药物载体的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810364704.5A CN108478533B (zh) 2018-04-23 2018-04-23 β环糊精-LPC脂质体制备方法及其作为药物载体的应用

Publications (2)

Publication Number Publication Date
CN108478533A CN108478533A (zh) 2018-09-04
CN108478533B true CN108478533B (zh) 2020-12-08

Family

ID=63312836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810364704.5A Active CN108478533B (zh) 2018-04-23 2018-04-23 β环糊精-LPC脂质体制备方法及其作为药物载体的应用

Country Status (1)

Country Link
CN (1) CN108478533B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184702A (zh) * 2020-03-20 2020-05-22 滨州医学院 可延缓肿瘤生长的β-CD-PEG-G分子的合成及作为药物递送系统的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311512A (zh) * 2010-07-09 2012-01-11 国家纳米科学中心 环糊精-脂肪族聚酯-磷脂酰乙醇胺接枝聚合物及其制备方法
EP2612655A1 (en) * 2010-09-01 2013-07-10 Peking University Liquid compositions of insoluble drugs and preparation methods thereof
US8753673B2 (en) * 2006-05-23 2014-06-17 Taiwan Liposome Co. Ltd. Liposome composition for delivery of a therapeutic agent to eyes
CN106659683A (zh) * 2014-01-14 2017-05-10 约翰斯·霍普金斯大学 包封修饰的环糊精复合物的脂质体组合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753673B2 (en) * 2006-05-23 2014-06-17 Taiwan Liposome Co. Ltd. Liposome composition for delivery of a therapeutic agent to eyes
CN102311512A (zh) * 2010-07-09 2012-01-11 国家纳米科学中心 环糊精-脂肪族聚酯-磷脂酰乙醇胺接枝聚合物及其制备方法
EP2612655A1 (en) * 2010-09-01 2013-07-10 Peking University Liquid compositions of insoluble drugs and preparation methods thereof
CN106659683A (zh) * 2014-01-14 2017-05-10 约翰斯·霍普金斯大学 包封修饰的环糊精复合物的脂质体组合物及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Functional materials from the covalent modification of reduced graphene oxide and β-cyclodextrin as a drug delivery carrier;Guangcheng Wei等;《New J.Chem.》;20140131;第38卷(第1期);第140-145页 *
Synthesis of lipophosphoramidyl-cyclodextrins and their supramolecular properties;Cedric Gervaise等;《Biochimie》;20110921;第94卷(第1期);第66-74页 *
大豆磷脂与β-环糊精包结化合物的制备与性质;谢文磊等;《日用化学工业》;20051013;第30卷(第6期);第5-6页 *

Also Published As

Publication number Publication date
CN108478533A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
Lee et al. Inflammation-responsive drug-conjugated dextran nanoparticles enhance anti-inflammatory drug efficacy
CN107669632B (zh) 药物载体、胶束、药物制剂、及其制备方法和用途
Zhang et al. Redox-and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy
CN104398493A (zh) 一种可逆转肿瘤耐药的肿瘤主动靶向纳米递药系统
CN111437258B (zh) 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用
Yang et al. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo
CN103705534A (zh) 一种天然活性物质构建的高分子复合药物的制备及其在抑制血管生成中的应用
CN103570766B (zh) 一种新型铂类脂质体制剂及其制备方法
CN112843241A (zh) 可生物响应的一氧化氮供体型聚合物前药及其制备方法
Li et al. Effect of a drug delivery system made of quercetin formulated into PEGylation liposomes on cervical carcinoma in vitro and in vivo
CN108478533B (zh) β环糊精-LPC脂质体制备方法及其作为药物载体的应用
CN112656951B (zh) 交联型酸响应天然多糖聚合物前药、制备方法及用途
CN108478532B (zh) β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用
CN109675052B (zh) 生物点击触发的高效靶向偶联物及其多元组合物、制备方法和应用
CN109953974B (zh) 一种酶-还原双响应性透明质酸-聚硫化丙烯共聚物纳米胶囊的制备方法
CN105646861A (zh) 基于聚姜黄素的两亲性嵌段共聚物及其应用
CN107028882B (zh) 一种物理包裹的肿瘤靶向纳米递药系统及制备方法和应用
CN113278092B (zh) 一种聚合物载体材料及其制剂和应用
RU2011101961A (ru) Фармацевтическая композиция, содержащая жасмонаты
CN112076149B (zh) 香豆素靶向控释纳米凝胶及其制备方法
CN111419805B (zh) 一种基于壳聚糖的环境多重响应型聚合物前药胶束及其制备方法
Qin et al. Matrix metalloproteinases sensitive multifunctional micelles for inhibition of metastatic tumor growth and metastasis
CN112386705A (zh) 一种基于透明质酸修饰的金纳米颗粒及其制备方法和作为纳米药物载体的应用
CN107334733B (zh) 一种含藤黄酸的还原敏感型复合物及其制备方法和应用
CN105693544B (zh) 用于抗肿瘤药物递送的小分子材料及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221012

Address after: No. 666, Gaoxin Avenue, Wuhan East Lake Development Zone, Wuhan 430000, Hubei

Patentee after: WUHAN INNERSE PHARMACEUTICAL Inc.

Address before: 346 Guanhai Road, Laishan District, Yantai City, Shandong Province

Patentee before: BINZHOU MEDICAL University

TR01 Transfer of patent right