CN108478532B - β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用 - Google Patents

β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用 Download PDF

Info

Publication number
CN108478532B
CN108478532B CN201810364582.XA CN201810364582A CN108478532B CN 108478532 B CN108478532 B CN 108478532B CN 201810364582 A CN201810364582 A CN 201810364582A CN 108478532 B CN108478532 B CN 108478532B
Authority
CN
China
Prior art keywords
beta
dppe
liposome
drug
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810364582.XA
Other languages
English (en)
Other versions
CN108478532A (zh
Inventor
魏光成
闫苗苗
蔡安然
李静
辛美秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Yingnashi Biotechnology Co ltd
Original Assignee
Binzhou Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou Medical College filed Critical Binzhou Medical College
Priority to CN201810364582.XA priority Critical patent/CN108478532B/zh
Publication of CN108478532A publication Critical patent/CN108478532A/zh
Application granted granted Critical
Publication of CN108478532B publication Critical patent/CN108478532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

本发明涉及医药领域。首先带氨基的β‑环糊精与对苯二甲酸单甲酯发生酰胺反应,将酯键水解后,生成带有羧酸基团的产物;然后,与二棕榈磷酸乙醇胺发生酰胺化反应,得到β‑CD与DPPE结合的产物分子β‑CD‑DPPE。本发明β‑CD‑DPPE脂质体制备简便,能够很好的负载疏水性的抗癌药物(阿霉素);负载阿霉素的脂质体纳米药具有缓慢释放药物及pH响应性释放的特性;能有效地抑制肿瘤的生长,并能诱导肿瘤内的癌细胞凋亡及癌变组织消亡。因此β‑CD‑DPPE形成的脂质体在生物医药领域具有非常好的应用前景。

Description

β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用
技术领域
本发明属于医药领域,具体涉及水溶性好、pH响应的缓慢释放、生物毒性极低及抗癌活性好的纳米脂质体及纳米脂质体药物的制备方法。
背景技术
目前癌症的发病率迅速的增长,是引起全球死亡的主要原因。化学疗法是治疗癌症的有效方法,但是化疗药物因其缺乏特异性及半衰期短等缺点在临床使用中受到很大的限制。传统的纳米药物分为脂质体类和聚合物类纳米药。脂质体由磷脂分子自组装形成,主要用于装载亲脂性药物分子。对磷脂分子进行修饰可克服脂质体包载率低(特别是亲脂性药物)、体内不稳定性以及药物的突然释放等缺点,同时赋予其更多优异的性能,促进其在医药方面的应用。β-环糊精(β-CD)是环糊精的一种,由七个吡喃葡萄糖环化而成,具有亲水的外层结构,并拥有独特的疏水空腔结构,可与疏水性药物分子形成主-客体复合物,能延缓药物的释放,同时提高了亲脂性药物的水溶性、安全性、稳定性及生物利用度。
本发明将β-环糊精(6A-Amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin Hydrate,简称β-CD-NH2)与二棕榈酰基磷酯酰乙醇胺(1,2-Dipalmitoyl–sn-glycero-3-Phosphoethanolamine,简称DPPE)磷脂偶联,得到β-CD-DPPE两亲性分子,水化后形成脂质体,将此脂质体进行药物(模型药物阿霉素Dox)的包载形成脂质体纳米药(脂质体包载的阿霉素,简写为β-CD-DPPE-Dox),研究脂质体及形成的脂质体纳米药的相关物理化学性能,并通过细胞实验及植瘤小鼠实验模型评价此脂质体纳米药的体外体内抗癌抗肿瘤活性。结果表明,经修饰后的脂质体具有较好的亲水性、较高的药物包载率及极低的生物毒性,同时形成的纳米药具有很好的抗癌抗肿瘤活性。
发明内容
本发明是合成一种新颖的脂质体,并将其应用于亲脂类药物的装载形成脂质体纳米药。该脂质体对亲脂性药物具有较高的包载率,极低的生物毒性,较好的水溶性,同时形成的纳米药具有缓释的效果,并能有效地诱导癌细胞的凋亡及癌变组织的消亡。
本发明β-CD-DPPE形成的脂质体及脂质体纳米药物β-CD-DPPE-Dox的制备是通过以下技术方案实现的:β-CD-DPPE脂质体是β-CD-DPPE分子自组装形成,β-CD-DPPE-Dox脂质体纳米药物是β-CD-DPPE分子在自组装的过程中将Dox包载在形成的脂质体中形成。
β-CD-DPPE分子结构式如下所示。
Figure GDA0001726391050000021
本发明的制备方法是首先将对苯二甲酸单甲酯中的羧酸基团在催化剂作用下形成具有活性的羧酸基团,然后与β-CD-NH2发生酰胺反应结合到一起,进行水解反应,将对苯二甲酸单甲酯的酯键水解,暴露出羧酸基团,然后将羧酸基团活化,再与DPPE在催化剂作用下发生酰胺反应,最终形成两亲性的分子β-CD-DPPE。具体制备及检验方法如下:
(1)环糊精对苯甲酸(β-CD-NH-CO-C6H4-COOH)的合成
称取一定量对苯二甲酸单甲酯(CH3O-C6H4-COOH)与DCC、NHS反应48h后加入β-CD-NH2(摩尔比1:1),反应36h,在氢氧化钠水溶液中水解,水解完后调节溶液pH值至中性,溶液冷冻干燥得到环糊精对苯甲酸(β-CD-NH-CO-C6H4-COOH)粗品。经过DIAION-HP-20大孔树脂纯化得到β-CD-NH-CO-C6H4-COOH纯品。
(2)β-CD-DPPE的合成
β-CD-NH-CO-C6H4-COOH与DCC、NHS反应在DMF溶液中搅拌24h活化羧酸基团,然后加入DPPE反应48h小时,得到β-CD-NH-CO-C6H4-CO-NH-DPPE(β-CD-DPPE)粗品。接着对β-CD-DPPE粗品进行硅胶柱纯化,得到β-CD-DPPE纯品。
(3)采用溶剂挥发法对脂质体进行药物(Dox)的包载,得到脂质体纳米药β-CD-DPPE-Dox。
(4)采用透析方法对脂质体纳米药β-CD-DPPE-Dox进行体外模拟释放,模拟肿瘤微环境考察不同pH值下的释放行为。发现在低pH下的释放速度明显高于正常生理pH下的释放速度,表明此脂质体纳米药是pH响应性的缓慢释放。
(5)体外抗癌实验采用MTT方法检测脂质体β-CD-DPPE的细胞毒性及脂质体纳米药β-CD-DPPE-Dox诱导癌细胞的凋亡情况。实验表明β-CD-DPPE脂质体具有极低的毒副作用,脂质体纳米药β-CD-DPPE-Dox具有良好的抗癌活性。
(6)体内实验采用植瘤小鼠作为实验模型,并对小鼠体重及肿瘤大小进行测量,最后小鼠处死后将肿瘤组织取出,进行甲醛固定、脱水、切片处理,最后进行HE染色,观察肿瘤组织的变化情况。
附图说明
图1:β-CD-DPPE脂质体的TEM形貌(a)和脂质体的粒径分布情况(b);
图2:β-CD-DPPE-Dox脂质体纳米药不同温度(25℃、37℃)和不同pH值(pH=5.0、pH=7.4)条件下的Dox释放行为;
图3:β-CD-DPPE脂质体细胞毒性和β-CD-DPPE-Dox脂质体诱导癌细胞(HepG2和MCF-7癌细胞)凋亡的MTT测试情况;
图4:β-CD-DPPE-Dox脂质体纳米药在不同浓度(10μg·mL-1(a-c)、20μg·mL-1(d-f))和不同时间(2h(a、d)、8h(b、e)、24h(c、f))时被HepG2细胞的摄取情况图,g为阴性对照;
图5:β-CD-DPPE-Dox脂质体纳米药在不同浓度(10μg·mL-1(a-c)、20μg·mL-1(d-f))和不同时间(2h(a、d)、8h(b、e)、24h(c、f))下在HepG2细胞内分布情况图;
图6:β-CD-DPPE脂质体及β-CD-DPPE-Dox脂质体纳米药对小鼠体重及肿瘤的影响。植瘤小鼠注射PBS、β-CD-DPPE脂质体、β-CD-DPPE-Dox脂质体纳米药前(对应a-c图)和注射PBS、β-CD-DPPE脂质体、β-CD-DPPE-Dox脂质体纳米药12天后(对应d-f图)小鼠肿瘤变化图、小鼠体重(g图)以及小鼠肿瘤大小(h图)数据图;
图7:植瘤小鼠在注射PBS(a)、β-CD-DPPE脂质体(b)、β-CD-DPPE-Dox脂质体纳米药(c)12天后对肿瘤组织处理后的变化情况。
具体实施方式
以下给出本发明的具体实施方式,用来对本发明的构成作进一步的说明,但并不认为本发明仅局限于下述的实施方式。
本发明β-CD-DPPE分子形成的脂质体制备及作为纳米药的应用是通过以下技术方案实现的:
(1)β-CD-NH-CO-C6H4-COOH的合成
称取一定量的对苯二甲酸单甲酯、DCC、NHS,溶于THF中,室温下反应48h,反应结束后,静置离心将沉淀除去,得到上清溶液。将一定量(与对苯二甲酸单甲酯物质的量相等)的β-CD-NH2溶于DMF中,与上一步上清溶液进行混合,室温下磁力搅拌36h。反应结束后将其冷冻干燥,然后将其溶于蒸馏水中加入1mol·L-1氢氧化钠,并在此溶液中水解1h,而后用柠檬酸将溶液调至中性,冷冻干燥得粗品。经过DIAION-HP-20大孔树脂纯化得到β-CD-NH-CO-C6H4-COOH纯品。
(2)β-CD-DPPE的合成
将上一步得到的β-CD-NH-CO-C6H4-COOH纯品与DCC、NHS一起溶于DMF中反应48h,过滤,除去沉淀,得上清液。然后于上清液中加入溶有DPPE(与β-CD-NH-CO-C6H4-COOH物质的量相等)的THF溶液,室温下搅拌24h,冷冻干燥得粗品。然后进行硅胶柱纯化。用二氯甲烷:甲醇(75:25)、二氯甲烷:甲醇(1:1)、水:甲醇(60:40)洗脱液依次进行洗脱,最终,得到纯品β-CD-DPPE。水化后得到球形脂质体,如图1所示。
(3)脂质体纳米药的制备
在室温下将1mg阿霉素溶于10mL甲醇中(物质的量比为阿霉素:三乙胺=1:2加入),将β-CD-DPPE粉末超声溶解于二氯甲烷:甲醇(体积比1:1)中(质量比为阿霉素:β-CD-DPPE=1:1),然后将阿霉素的甲醇溶液与β-CD-DPPE的二氯甲烷甲醇混合液(体积比1:1)在茄形瓶中混合并在50℃环境下孵育30min,接着将有机溶剂减压旋转蒸发除去,茄形瓶壁上形成一层磷脂膜,向茄形瓶中加入磷酸盐缓冲溶液(pH=7.4)水化,形成脂质体包载的阿霉素纳米药β-CD-DPPE-Dox。
(4)体外释放实验
为确定药物从脂质体中的释放行为,模拟在较低pH肿瘤微环境(如pH=5.0)以及正常生理条件下(pH=7.4)药物的释放行为。另外,研究了不同温度(25℃、37℃)下对药物(Dox)的释放行为。取少量β-CD-DPPE-Dox纳米药加入4mL PBS中使其水化,将其转移到透析袋(最大截留分子量为8000D)透析。将透析袋放入盛有20mL PBS的缓冲溶液中,25℃下搅拌。在规定的时间点(1h、4h、8h、12h、24h、36h、48h、60h、72h)下从透析袋外取出4mL溶液,将此溶液进行紫外可见光谱测试,测完后倒掉此溶液。然后加4mL PBS溶液于透析袋外的溶液中。到达规定时间再次进行重复操作。
(5)体外抗癌实验
HepG2和MCF-7细胞存活率通过MTT法进行检测。将HepG2和MCF-7细胞依次接种到96孔板中,每孔细胞密度为5×103个,加入200μL DMEM High Glucose培养液,37℃、5%CO2培养箱中孵育24h。将板中旧的培养液移出,然后分别加入一系列浓度梯度的游离阿霉素、β-CD-DPPE-Dox纳米药以及β-CD-DPPE脂质体,孵育24h。到达规定时间后,每孔加入20μLMTT(5mg·mL-1),孵育4h,然后将培养液全部移除,每孔加入150μL DMSO,室温下在摇床中避光摇10min,最后,吸光度通过酶标仪检测,测试波长为570nm。本实验中,未经处理的细胞作为对照组。
定量检测细胞对阿霉素的摄取情况通过流式细胞术进行表征。HepG2细胞中加入β-CD-DPPE-Dox纳米药(10μg·mL-1和20μg·mL-1)样品。2h,8h和24h后用流式细胞仪进行检测。激发与发射光波长分别为488nm和590nm。
同样地,HepG2细胞中加入β-CD-DPPE-Dox纳米药(10,20μg·mL-1)后按规定的时间孵育(2h,8h和24h),随后将旧培养液移出加入2mL新鲜培养液,用激光共聚焦进行阿霉素的荧光信号检测。
(6)体内抗癌实验
将小鼠左侧腋下的毛剪掉,然后将小鼠放入含有乙醚蒸汽的玻璃器皿中,当小鼠被麻醉后迅速在其左侧腋下注射H22瘤细胞(5×104·mL-1,0.5mL),注射完毕后将小鼠放回继续喂养,用以评价β-CD-DPPE脂质体及β-CD-DPPE-Dox纳米药在体内的毒理情况。每天对小鼠进行观察,在小鼠左腋下会有肿瘤长出,当肿瘤长大至100~200mm3时将小鼠随机分成3组(n=4per group):PBS对照组,β-CD-DPPE脂质体组,β-CD-DPPE-Dox纳米药组。β-CD-DPPE载体组(3mg·mL-1)、β-CD-DPPE-Dox纳米药(3mg·mL-1)组每组每次各注射200μL,对照组的小鼠每次注射等量的PBS,各组每2天进行注射一次,并同时测量小鼠体重与肿瘤大小。观察12天后将小鼠处死,把肿瘤解剖出来,浸泡于多聚甲醛中固定48h,然后将肿瘤组织进行脱水处理,对处理好的组织进行石蜡包埋、切片,最后将肿瘤切片进行HE染色。
本发明方法制备的脂质体纳米粒,具有良好的生物医学性能:
(1)本脂质体纳米药具有pH响应性及缓慢释放的作用
本发明利用透析的方法对β-CD-DPPE-Dox纳米药进行体外释放的研究,如图2所示,37℃条件下,24h后,pH=7.4时药物(Dox)累计释放量为30.32%,而同样条件下pH=5.0时药物累计释放量为36.74%。随着时间的延长pH=5.0条件下的释放速度比pH=7.4时的释放速度明显加快,72h后pH=5.0条件下药物累计释放量为60.33%,而pH=7.4条件下药物累计释放量为46.86%。说明该β-CD-DPPE-Dox纳米药在较低pH下释放速度明显比pH=7.4时释放快,表明药物具有缓慢释放的性质,同时是pH响应性的释放,由于癌变组织周围的体液pH较正常组织周围的pH低,因此pH响应性的脂质体纳米药对癌变组织更有针对性。
(2)本脂质体及脂质体纳米药体外细胞毒性低
本发明采用MTT方法检验脂质体β-CD-DPPE的细胞毒性和纳米药β-CD-DPPE-Dox的体外抗癌实验结果如图3,β-CD-DPPE脂质体浓度为120μg·mL-1时HepG2和MCF-7细胞存活率仍然在80%以上,说明脂质体无毒。脂质体纳米药β-CD-DPPE-Dox在浓度为10μg·mL-1时的HepG2和MCF-7细胞存活率均在70%以上,随着β-CD-DPPE-Dox纳米药浓度增加,HepG2和MCF-7细胞存活率降低。说明β-CD-DPPE-Dox纳米药对两种细胞具有时间和剂量依赖性作用,β-CD-DPPE-Dox纳米药具有良好的抗癌作用。
流式细胞术图(图4)随着β-CD-DPPE-Dox纳米药物浓度的增加,细胞摄取量增大:β-CD-DPPE-Dox纳米药浓度为10μg·mL-1时,2h后约有9%的纳米药物被细胞摄取;β-CD-DPPE-Dox纳米药浓度为10μg·mL-1时,2h后约有9.3%的纳米药物被细胞摄取。随着时间的延长,细胞对β-CD-DPPE-Dox纳米药的摄取量逐渐增加:24h后β-CD-DPPE-Dox纳米药浓度为10μg·mL-1时约有19.7%的纳米药物被细胞摄取;β-CD-DPPE-Dox纳米药浓度为20μg·mL-1时约有42.3%的纳米药物被细胞摄取。激光共聚焦图(图5)显示,随着时间增长和β-CD-DPPE-Dox纳米药浓度的增加,阿霉素在细胞内的荧光强度增加。流式细胞术和激光共聚焦实验表明脂质体纳米药对癌细胞的作用具有时间和剂量依赖性,同时表明β-CD-DPPE-Dox纳米药物能够很好的被细胞摄取,细胞摄取脂质体纳米药后能很好的将阿霉素从脂质体中释放,进而发挥抗癌作用。
(3)本脂质体纳米药体内抗癌效果明显
本发明采用对植瘤小鼠进行尾静脉注射的方式,连续12天观察小鼠的体重及肿瘤大小变化,以及对肿瘤组织的影响。小鼠体重在12天内变化不大,而小鼠肿瘤在12天内变化显著,可以看出肿瘤体积变小,表明脂质体纳米药对肿瘤的治疗有良好的效果,如图6所示。肿瘤组织在12天后进行HE染色,从图7可以看出脂质体纳米药的肿瘤染色图片中出现细胞核固缩,甚至出现无细胞核情况,同时出现大面积组织坏死情况,说明脂质体纳米药对肿瘤的治疗有很好的效果。
综上所述,环糊精与磷脂进行偶合生成的β-CD-DPPE分子形成的脂质体纳米药具有很好的水溶性,具有pH响应性的缓慢释放,具有极低的毒副作用,同时装载药物后能够有效的诱导癌细胞及肿瘤组织的凋亡,是一种综合性能非常好的脂质体。
以上所述仅为本发明的优选实例,并不用于限制本发明。凡在本发明的基础之上的任何改动、修改、替换等,均应包含在本发明的保护范围内。

Claims (9)

1.一种β-CD-DPPE脂质体,其特征在于:所述β-CD-DPPE由环糊精6A-Amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin Hydrate和磷脂二棕榈酰基磷脂酰乙醇胺(DPPE)组成,所述环糊精简写为β-CD-NH2,两种化合物之间采用对苯二甲酸连接,由对苯二甲酸单甲酯进行相关反应得到,其结构式如下图所示:
Figure FDA0002750162960000011
2.根据权利要求1所述的β-CD-DPPE脂质体的制备方法,其特征在于,具体包含如下步骤:首先将对苯二甲酸单甲酯中的羧酸基团在催化剂作用下形成具有活性的羧酸基团,然后与β-CD-NH2发生酰胺反应结合到一起;然后进行水解反应将对苯二甲酸单甲酯的酯键水解,暴露出羧酸基团,接着将羧酸基团活化,再与DPPE在催化剂作用下发生酰胺反应,最终β-CD-NH2与DPPE通过中间的对苯二甲酸偶联形成两亲性化合物β-CD-DPPE,化合物β-CD-DPPE进一步通过有机溶剂挥发法制备得到β-CD-DPPE脂质体。
3.根据权利要求2所述的β-CD-DPPE脂质体的制备方法,其特征在于:化合物β-CD-DPPE的制备步骤如下:
(1)环糊精对苯甲酸的合成,所述环糊精对苯甲酸简写为β-CD-NH-CO-C6H4-COOH:
称取一定量CH3O-CO-C6H4-COOH与DCC、NHS反应48h,然后加入与CH3O-CO-C6H4-COOH等摩尔量的β-CD-NH2,继续反应36h,得到β-CD-NH-CO-C6H4-COOCH3样品;β-CD-NH-CO-C6H4-COOCH3样品在氢氧化钠条件下水解,水解完成后调节反应溶液体系pH值至中性,得到β-CD-NH-CO-C6H4-COOH粗品,粗品经过DIAION-HP-20大孔树脂纯化得到β-CD-NH-CO-C6H4-COOH纯品;
(2)β-CD-DPPE的合成
β-CD-NH-CO-C6H4-COOH与DCC、NHS搅拌反应24h活化羧酸基团,然后加入DPPE反应48h,得到β-CD-NH-CO-C6H4-CO-NH-DPPE,简写为β-CD-DPPE粗品;接着对β-CD-DPPE粗品进行硅胶柱纯化,采用二氯甲烷:甲醇75:25、二氯甲烷:甲醇1:1、水:甲醇60:40洗脱液依次进行洗脱,最终得到β-CD-DPPE纯品。
4.一种β-CD-DPPE-Dox脂质体纳米药,其特征在于:所述脂质体纳米药是采用溶剂挥发法对如权利要求1所述的β-CD-DPPE脂质体进行Dox的包载而制备得到的。
5.根据权利要求4所述的脂质体纳米药,其特征在于:所述脂质体纳米药是pH响应性的缓慢释放,在低pH下的释放速度高于正常生理pH下的释放速度。
6.根据权利要求4所述的脂质体纳米药,其特征在于:所述β-CD-DPPE脂质体具有低毒副作用。
7.根据权利要求4所述的脂质体纳米药,其特征在于:所述脂质体纳米药具有抗癌活性。
8.根据权利要求1所述的β-CD-DPPE脂质体在制备药物装载材料中的应用。
9.根据权利要求4所述的脂质体纳米药在制备抗癌药物中的应用。
CN201810364582.XA 2018-04-23 2018-04-23 β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用 Active CN108478532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810364582.XA CN108478532B (zh) 2018-04-23 2018-04-23 β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810364582.XA CN108478532B (zh) 2018-04-23 2018-04-23 β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用

Publications (2)

Publication Number Publication Date
CN108478532A CN108478532A (zh) 2018-09-04
CN108478532B true CN108478532B (zh) 2020-12-15

Family

ID=63313781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810364582.XA Active CN108478532B (zh) 2018-04-23 2018-04-23 β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用

Country Status (1)

Country Link
CN (1) CN108478532B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113490691A (zh) 2019-01-03 2021-10-08 劣势者药物有限公司 环糊精二聚体、其组合物及其用途
CN111184702A (zh) * 2020-03-20 2020-05-22 滨州医学院 可延缓肿瘤生长的β-CD-PEG-G分子的合成及作为药物递送系统的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241825A (zh) * 2010-05-14 2011-11-16 同济大学 一种超分子聚合物胶束的制备方法
CN102311512A (zh) * 2010-07-09 2012-01-11 国家纳米科学中心 环糊精-脂肪族聚酯-磷脂酰乙醇胺接枝聚合物及其制备方法
CN103242519A (zh) * 2013-04-27 2013-08-14 深圳先进技术研究院 两亲性聚合物及其制备方法和应用
CN104434792A (zh) * 2013-09-12 2015-03-25 中国科学院深圳先进技术研究院 聚合物胶束及其制备方法和抗肿瘤药物组合物、制剂及其制备方法
CN104739769A (zh) * 2015-03-04 2015-07-01 王海龙 一种脂质体的制备方法及其制备的产品
WO2015160597A1 (en) * 2014-04-16 2015-10-22 Trustees Of Boston University Gm3 functionalized nanoparticles
WO2017213328A1 (ko) * 2016-06-07 2017-12-14 한국과학기술원 합성 수용체-인지질의 접합체를 포함하는 리포좀 및 상기 합성 수용체에 결합 가능한, 기능성 물질이 결합된 리간드를 유효성분으로 함유하는 기능성 물질 전달용 조성물
CN108026131A (zh) * 2015-06-23 2018-05-11 吴念 聚合物-环糊精-脂质的缀合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241825A (zh) * 2010-05-14 2011-11-16 同济大学 一种超分子聚合物胶束的制备方法
CN102311512A (zh) * 2010-07-09 2012-01-11 国家纳米科学中心 环糊精-脂肪族聚酯-磷脂酰乙醇胺接枝聚合物及其制备方法
CN103242519A (zh) * 2013-04-27 2013-08-14 深圳先进技术研究院 两亲性聚合物及其制备方法和应用
CN104434792A (zh) * 2013-09-12 2015-03-25 中国科学院深圳先进技术研究院 聚合物胶束及其制备方法和抗肿瘤药物组合物、制剂及其制备方法
WO2015160597A1 (en) * 2014-04-16 2015-10-22 Trustees Of Boston University Gm3 functionalized nanoparticles
CN104739769A (zh) * 2015-03-04 2015-07-01 王海龙 一种脂质体的制备方法及其制备的产品
CN108026131A (zh) * 2015-06-23 2018-05-11 吴念 聚合物-环糊精-脂质的缀合物
WO2017213328A1 (ko) * 2016-06-07 2017-12-14 한국과학기술원 합성 수용체-인지질의 접합체를 포함하는 리포좀 및 상기 합성 수용체에 결합 가능한, 기능성 물질이 결합된 리간드를 유효성분으로 함유하는 기능성 물질 전달용 조성물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A liposome preparation based on β-CD-LPC molecule and its application as drug-delivery system";Anran Cai等;《Nanomedicine》;20180924;第13卷(第18期);第2777–2790页 *
"Cationic Polymethacrylate-Modified Liposomes Significantly Enhanced Doxorubicin Delivery and Antitumor Activity";Wenxi Wang等;《Scientific Reports》;20170222;第7卷;第1-10页 *
"Cyclodextrin-functionalized polymers as drug carriers for cancer therapy";Hua Wei等;《Biomaterials Science》;20150223;第3卷;第1050–1060页 *
"Preparation of β-CD-DPPE –Dox Nanomedicine and Its’ Application as the Anticancer and Antitumor Drug";Miaomiao Yan 等;《Scientific Reports》;20190920;第6卷;第1-11页 *

Also Published As

Publication number Publication date
CN108478532A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN110237035B (zh) 一种主动靶向型两亲性多肽纳米药物载体及其制备与应用
CN107802840B (zh) 一种基于肽类树形分子修饰荧光碳点的肿瘤微环境响应纳米粒及其制备方法
CN108144067B (zh) 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用
CN111330014B (zh) 一种酸响应交联型聚合物前药及其制备方法和应用
CN107936058B (zh) 多西紫杉醇衍生物及其制备方法和应用
CN101254309A (zh) 叶酸受体介导靶向乙酰普鲁兰多糖纳米粒及制备方法
CN110882396B (zh) 肿瘤微环境与氧化还原逐级响应性纳米递药系统的制备方法及应用
CN112773766B (zh) 一种用于肿瘤治疗的脂质体递送系统及其制备方法与应用
Zhou et al. One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy
CN108478532B (zh) β环糊精-二棕榈脂质体制备方法及其作为药物载体的应用
CN111718465A (zh) 一种聚二硫缩醛及其制备方法和应用
CN112656951B (zh) 交联型酸响应天然多糖聚合物前药、制备方法及用途
CN109851799B (zh) 一种c(RGDfk)环肽-壳聚糖硬脂酸嫁接物载药胶束及制备与应用
CN109734921B (zh) 一种聚乙烯亚胺-b-聚乳酸嵌段共聚物、其制备方法及应用
Cheng et al. Diblock copolymer glyco-nanomicelles constructed by a maltoheptaose-based amphiphile for reduction-and pH-mediated intracellular drug delivery
CN113278092B (zh) 一种聚合物载体材料及其制剂和应用
CN108478533B (zh) β环糊精-LPC脂质体制备方法及其作为药物载体的应用
CN113057939B (zh) 一种化学修饰明胶胶束包被的雷公藤红素药物的制备方法和应用
CN109824884B (zh) 一种pH敏感和活性氧增敏的普兰尼克聚合物及其制备方法和应用
CN103304445B (zh) 阳离子聚甘油酯类脂质及其合成方法和应用
CN113616806A (zh) 一种铂-艾考糊精-聚己内酯大分子化合物、纳米载药系统及其应用
CN107744503B (zh) 酶敏感性两亲性聚酯MePEG-Peptide-PER-CL给药纳米粒的制备方法
CN111607093A (zh) 一种pH敏感纳米载体及其在基因药物递送中的应用
CN109125263A (zh) 亚油酸-环糊精分子的合成及其形成的聚集体作为药物递送系统的应用
CN105693544B (zh) 用于抗肿瘤药物递送的小分子材料及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221008

Address after: Room 102, Floor 1, Building B1, Biological Innovation Park, No. 666, Gaoxin Avenue, Wuhan East Lake New Technology Development Zone, Wuhan 430000, Hubei

Patentee after: Hubei yingnashi Biotechnology Co.,Ltd.

Address before: 346 Guanhai Road, Laishan District, Yantai City, Shandong Province

Patentee before: BINZHOU MEDICAL University