WO2012011590A1 - ポリイミド前駆体、ポリイミドおよびその製造に使用される材料 - Google Patents
ポリイミド前駆体、ポリイミドおよびその製造に使用される材料 Download PDFInfo
- Publication number
- WO2012011590A1 WO2012011590A1 PCT/JP2011/066765 JP2011066765W WO2012011590A1 WO 2012011590 A1 WO2012011590 A1 WO 2012011590A1 JP 2011066765 W JP2011066765 W JP 2011066765W WO 2012011590 A1 WO2012011590 A1 WO 2012011590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide
- general formula
- polyimide precursor
- group
- solvent
- Prior art date
Links
- 0 CC(C1)C1(C)N(C(*1(C(N2C)=O)C2=O)=O)C1=O Chemical compound CC(C1)C1(C)N(C(*1(C(N2C)=O)C2=O)=O)C1=O 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N NC(CC1)CCC1N Chemical compound NC(CC1)CCC1N VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
- C07D307/89—Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1082—Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
Definitions
- the present invention relates to a polyimide having both high transparency, high mechanical strength, and a low linear thermal expansion coefficient, and a polyimide precursor suitable for its production.
- optical materials such as an optical fiber and optical waveguide in the optical communication field, a liquid crystal alignment film in the display device field, and a protective film for a color filter is progressing.
- plastic substrates that are lightweight and have excellent flexibility as glass substrate substitutes are being studied, and displays that can be bent and rolled are being actively developed.
- Non-Patent Document 1 Japanese Patent Laid-Open No. 2002-348374 (Patent Document 1) JP 2005-15629 A (Patent Document 2), JP 2002-161136 A (Patent Document 3), Non-Patent Document 2 ⁇ .
- semi-alicyclic polyimides using trans-1,4-diaminocyclohexanes as the diamine component and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the tetracarboxylic acid component are excellent. It is known to have both high transparency, high heat resistance, and low thermal linear expansion coefficient (Patent Document 3). Thus, using alicyclic diamine as a monomer component is an effective method for obtaining a transparent polyimide. However, a film obtained from this semi-alicyclic polyimide has an elongation at break of 5 to 7%, which is insufficient for use as a base material for flexible displays (Non-patent Document 2).
- Patent Document 3 a method of solubilizing by heating the polymerization reaction mixture at a high temperature, for example, 120 ° C. for a short time after salt formation at the initial stage of the polymerization reaction.
- the molecular weight of the polyimide precursor varies depending on the temperature history at the time of polymerization, and imidization proceeds by heat, so that the polyimide precursor cannot be produced stably.
- the resulting polyimide precursor solution needs to dissolve the salt at a high temperature in the preparation process, so the concentration cannot be increased, and the film thickness of the polyimide film is difficult to control. The property was not good either.
- One of the tetracarboxylic acid components of the polyimide raw material is 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
- This 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, which are widely used as raw materials for polyimide.
- the purification method and the like have not been sufficiently studied.
- Patent Document 4 discloses that 2,3,3 ′, 4′-biphenyltetracarboxylic acid is sufficient to complete the dehydration at 180 to 195 ° C. in an inert gas atmosphere.
- Japanese Patent Application Laid-Open No. 2009-019014 Patent Document 5 describes a melt in a state in which 2,3,3 ′, 4′-biphenyltetracarboxylic acid is melted at a temperature of 200 ° C. or higher under an inert gas flow.
- a process for producing 2,3,3,4-biphenyltetracarboxylic dianhydride by heating and dehydrating is disclosed.
- the obtained 2,3,3,4-biphenyltetracarboxylic dianhydride is cooled and solidified, and then pulverized by a pulverizer or the like to obtain powdery 2,3,3 ′, 4′-biphenyltetracarboxylic acid.
- the acid dianhydride is obtained.
- Patent Document 6 discloses biphenyltetracarboxylic acid anhydride comprising hydrolyzing and dehydrating tetramethyl biphenyltetracarboxylate, adding an adsorbent in a solvent, filtering, and recrystallizing. And the acetic anhydride is preferred as the solvent used for recrystallization.
- acetic anhydride is preferred as the solvent used for recrystallization.
- 33 ′, 4,4′-biphenyltetracarboxylic dianhydride which comprises 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. There was no description of the anhydride.
- Patent Document 7 discloses 3 , 3 ', 4,4'-biphenyltetracarboxylic acid heat-dehydrated product is heated and melted and then evaporated at a temperature of 307 ° C or higher and 330 ° C or lower while maintaining the oxygen concentration in the system at 10 ppm or lower under reduced pressure. It is described that 3,3 ′, 4,4′-biphenyltetracarboxylic acid heat-dehydrated product with less coloration is obtained by cooling and vaporizing the vapor and crystallizing.
- Patent Document 8 discloses that 3,3 ′, 4,4′-biphenyltetracarboxylic acid has a maximum temperature of 210 ° C. under a specific pressure condition using a specific heating device. 3,3 ′, 4,4′-biphenyltetracarboxylic acid by dehydration and cyclization by keeping the temperature within a range of up to 250 ° C., raising the temperature at a specific heating rate, and holding at 150 ° C. to 250 ° C.
- the dianhydride is obtained, and the obtained 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is further subjected to sublimation purification treatment under reduced pressure at a temperature of 250 ° C. or higher to reduce 3, It is described that 3 ', 4,4'-biphenyltetracarboxylic acid heat dehydration product is obtained.
- Patent Document 6 tetramethyl 3,3 ′, 4,4′-biphenyltetracarboxylate is hydrolyzed and dehydrated, adsorbent is added in a solvent, filtered, and recrystallized.
- the method for purifying biphenyltetracarboxylic acid anhydrides is described, and it is described that acetic anhydride is suitable as a solvent used for recrystallization.
- trans-1,4-diaminocyclohexane which is a raw material for the diamine component of the semi-alicyclic polyimide
- US Pat. No. 2,606,925, US Pat. No. 3,636,108, and JP-A-2008-74754 Patent Document
- various studies on production methods aimed at simplifying the process and improving the yield have been conducted.
- Non-Patent Document 2 there has been no study on trans-1,4-diaminocyclohexane powder with reduced coloring or polyimide with reduced coloring using the powder as a diamine component.
- Patent Document 12 Japanese Patent Application Laid-Open No. 2000-281616 describes a manufacturing process. A simplified production method for obtaining 2,2 ′, 3,3′-biphenyltetracarboxylic acid with high yield and a polyimide resin using the same are disclosed.
- JP 2009-79909 A Patent Document 13
- 2,2 ′, 3,3′-biphenyltetracarboxylic acid is dehydrated using acetic anhydride
- 2,2 ′, 3,3′-biphenyltetra A method for obtaining a carboxylic dianhydride is disclosed.
- a method for synthesizing 2,2 ′, 3,3′-biphenyltetracarboxylic acid and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride There is no description or suggestion of a method for purifying 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride aimed at reducing coloring.
- One aspect of the present invention is capable of producing a stable copolymerized polyimide precursor under mild conditions, and has excellent transparency, high heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion.
- Another object of the present invention is to provide a copolymerized polyimide having both bending resistance (toughness, that is, sufficiently high elongation at break).
- a different aspect of the present invention aims to provide a raw material suitable for obtaining a highly transparent polyimide. The purpose of each aspect of the present invention will become apparent from the following description.
- Part A A copolymer polyimide precursor having a unit structure represented by the following general formula (A1) and a unit structure represented by the following general formula (A2).
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a carbon number. 3 to 9 alkylsilyl groups.
- R 4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 5 and R 6 are independently hydrogen, an alkyl group having 1 to 6 carbon atoms, 3 to 9 alkylsilyl groups
- X represents a tetravalent group other than the following general formula (A3).
- Part B A polyimide precursor comprising a unit structural formula represented by the following general formula (B1).
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 is a hydrogen atom or an alkylsilyl group having a carbon number of 3 ⁇ 9
- R 2 At least one of R 3 is an alkylsilyl group having 3 to 9 carbon atoms.
- 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride of 1 g / 100 g or more, and 2,3,3 ′, 4′-biphenyltetracarboxylic
- the acid dianhydride powder is mixed in a non-uniform state in which at least a portion of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is not dissolved, and then undissolved from the mixture.
- a method for purifying 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder, comprising separating and recovering 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder.
- ⁇ Fourth aspect (part D)> A solvent having a solubility at 25 ° C. in 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride of 0.1 g / 100 g or more, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
- the powder is mixed in a heterogeneous state in which at least a portion of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder is not dissolved, and then undissolved 3,3 ′ from the mixture.
- a method for purifying 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride dianhydride powder which comprises separating and recovering 4,4′-biphenyltetracarboxylic dianhydride powder.
- Part E Trans-, characterized by having a light transmittance of 90% or more at a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving trans-1,4-diaminocyclohexane powder in pure water at a concentration of 10% by mass. 1,4-diaminocyclohexane powder.
- a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component The diamine component is a diamine having no aromatic ring having a light transmittance of 90% or more (including derivatives thereof, the same applies hereinafter), or a diamine having an aromatic ring having a light transmittance of 80% or more (derivative thereof). (The same applies hereinafter.)
- the transmittance of the diamine component is 400 nm with respect to a solution obtained by dissolving 10% by mass in pure water or N, N-dimethylacetamide, and the optical path length is 1 cm. Represents light transmittance).
- the tetracarboxylic acid component contains tetracarboxylic acids (including derivatives thereof, the same shall apply hereinafter) having a light transmittance of 75% or more (provided that the transmittance of the tetracarboxylic acid component is in a 2N sodium hydroxide solution). It represents the transmittance of a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving at a concentration of 10% by mass.) Polyimide characterized by that.
- Part H A method for producing a varnish containing at least an organic solvent and a polyimide precursor represented by the following general formula (H1) or a polyimide represented by the following general formula (H2),
- a polyimide precursor represented by the following general formula (H1) or a polyimide represented by the following general formula (H2) As the organic solvent to be contained in the varnish (hereinafter referred to as the organic solvent to be used), an organic solvent having an optical path length of 1 cm and a light transmittance at 400 nm of 89% or more is used to produce the varnish.
- the manufacturing method of the varnish characterized by the above-mentioned.
- a 1 is a tetravalent aliphatic group or aromatic group
- B 1 is a divalent aliphatic group or aromatic group
- R 1 and R 2 are independently of each other.
- a 2 is a tetravalent aliphatic group or aromatic group
- B 2 is a divalent aliphatic group or aromatic group.
- a stable copolymerized polyimide precursor can be produced under mild conditions, and further has excellent transparency, high heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion.
- the polyimide of the present invention can be suitably used as a transparent substrate and a solar cell substrate in display devices such as flexible displays and touch panels.
- the raw material suitable in order to obtain a highly transparent polyimide can be provided. The effect of each aspect of the present invention will become apparent from the following description.
- Results of dynamic viscoelasticity measurement of the film obtained in Example A8 results of dynamic viscoelasticity measurement obtained in Example A9
- Results of dynamic viscoelasticity measurement of the film obtained in Example A14 6 is a chart showing the results of GC analysis of N-methyl-2-pyrrolidone (NMP) with a purity of 99.96%. It is a chart which shows the result of GC analysis of N, N- dimethylacetamide (DMAc) purity 99.99%.
- 2 is a chart showing the results of GC analysis of N-methyl-2-pyrrolidone (NMP) with a purity of 99.62%.
- 1 is a chart showing the results of GC analysis of 1,3-dimethyl-2-imidazolidinone (DMI) with a purity of 99.30%.
- the “present invention” generally means the invention described in that part, but may also mean the invention described in other parts as long as there is no contradiction. However, if there is a contradiction with the invention of another part in view of the context or the gist of the invention described in that part, only the invention described in that part is meant. Further, the inventions described in Part A to Part H can be combined as long as no contradiction arises.
- Part A The invention disclosed in Part A is capable of producing a stable copolymerized polyimide precursor under mild conditions, and has excellent transparency, high heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion. Another object of the present invention is to provide a copolymerized polyimide having both bending resistance (toughness, that is, sufficiently high elongation at break).
- the invention disclosed in Part A relates to the following items.
- Copolymer polyimide precursor having a unit structure represented by the following general formula (A1) and a unit structure represented by the following general formula (A2).
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a carbon number. 3 to 9 alkylsilyl groups.
- R 4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 5 and R 6 are independently hydrogen, an alkyl group having 1 to 6 carbon atoms, 3 to 9 alkylsilyl groups
- X represents a tetravalent group other than the following general formula (A3).
- the ratio of the unit structure represented by the general formula (A1) to the unit structure represented by the general formula (A2) [number of general formula (A1) / number of general formula (A2)] is 50/50 to 99.99.
- Item 5 The copolymerized polyimide precursor according to Item 1, which is 5 / 0.5.
- X in general formula (A2) is either the tetravalent group represented by the following general formula (A4), or those mixtures,
- Item 4 The copolymerized polyimide precursor according to any one of Items 1 to 3, wherein a logarithmic viscosity in a 0.5 g / dL N, N-dimethylacetamide solution at 30 ° C. is 0.2 dL / g or more.
- Item 5 The method for producing a copolymerized polyimide precursor according to any one of Items 1 to 4, wherein a diamine component and a tetracarboxylic acid component are reacted in a solvent at a temperature of 100 ° C or lower.
- Copolymer polyimide having a unit structure represented by the following general formula (A5) and a unit structure represented by the following general formula (A6).
- R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- X represents a tetravalent group other than the general formula (A3).
- the ratio of the unit structure represented by the general formula (A5) to the unit structure represented by the general formula (A6) [number of general formula (A5) / number of general formula (A6)] is 50/50 to 99.99.
- the above-mentioned item is characterized by having a toughness having a modulus of elasticity at room temperature of 3 GPa or more, a breaking elongation of 10% or more and a light transmittance of 400 nm of 75% or more when a film having a thickness of 10 ⁇ m is formed.
- the copolymerized polyimide according to any one of 8 to 11.
- the storage elastic modulus is higher than the minimum value of the storage elastic modulus on the glass transition temperature obtained from the maximum point of tan ⁇ . 14.
- the invention disclosed in Part A it is possible to produce a copolymerized polyimide precursor that is stable under mild conditions, and has excellent transparency, high heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion. Further, it is possible to provide a copolymerized polyimide having both bending resistance (toughness, that is, sufficiently high breaking elongation).
- the polyimide of the present invention can be suitably used as a transparent substrate or a solar cell substrate in a display device such as a flexible display or a touch panel.
- the copolymerized polyimide precursor of the invention disclosed in this part has a unit structure represented by the general formula (A1) and a unit structure represented by the general formula (A2).
- the ratio of the unit structure represented by the general formula (A1) and the unit structure represented by the general formula (A2) [number of general formula (A1) / number of general formula (A2)] is particularly limited.
- the ratio of the unit structure represented by the general formula (A1) is preferably 40/60 or more, more preferably 50/50 or more, still more preferably 80/20 or more, and particularly preferably 90/10. It is the above range, Preferably it is 99.5 / 0.5 or less, More preferably, it is the range of 98/2 or less.
- the ratio of the unit structure represented by the general formula (A1) is too low, the coefficient of thermal expansion of the resulting copolymerized polyimide may increase. If it is too high, the solubility of the polyimide precursor is poor when it is produced. Salt formation may occur, making it impossible to produce under mild conditions, and toughness (sufficiently high elongation at break) of the resulting copolymerized polyimide may not be obtained.
- X in the general formula (A2) of the copolymerized polyimide precursor of the present invention is not particularly limited as long as it is a tetravalent group other than the general formula (A3), but is preferably represented by the general formula (A4). Any of the tetravalent groups or a mixture thereof is preferred.
- the copolymerized polyimide precursor of the present invention includes a unit structure (first unit structure) represented by the general formula (A1) and a unit structure (second unit) represented by the general formula (A2).
- a third unit structure can be included within the scope of the effect of the present invention.
- the third unit structure a unit structure in which X in the unit structure represented by the general formula (A2) represents a tetravalent aromatic or aliphatic group is preferable. Therefore, the third unit structure is different from the unit structure (first unit structure) represented by the general formula (A1), and more preferably, X is a tetravalent group represented by the formula (A4).
- X in the third unit structure is selected so as to be different from the unit structure (second unit structure) represented by the general formula (A2) which is a group and a mixture thereof.
- a tetravalent aromatic of the following general formula (A7) is more preferable because of its high elastic modulus at high temperatures.
- the third unit structure is not particularly limited, but is usually 20% or less, preferably 10% or less, more preferably 5% or less, based on the total number of unit structures.
- R 1 and R 4 in the general formula (A1) and general formula (A2) of the copolymerized polyimide precursor of the present invention are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as n-butyl group, iso-butyl group, sec-butyl group and the like. Since the thermal expansion coefficient of the polyimide obtained is low, R 1 and R 4 are each independently preferably a hydrogen atom or a methyl group, and more preferably R 1 and R 4 are hydrogen.
- the substitution position of cyclohexane and amino group in general formula (A1) or general formula (A2) is preferably 50% to 100%, more preferably 80%. It is preferable that it is a 1,4-position substitution product of ⁇ 100%, more preferably 90% ⁇ 100%, particularly preferably 100%.
- the isomeric structure of the 1,4-cyclohexane substituted product is preferably from 50% to 100%, more preferably from 80% to 100%, still more preferably from 90% to 100%, particularly preferably from 100% of the trans isomer. It is preferable to become.
- the content of 1,4-cyclohexane-substituted product or isomer of trans configuration is decreased, the molecular weight of the polyimide precursor is difficult to increase, and the thermal expansion coefficient of the resulting polyimide may be increased or may be easily colored. .
- R 2 , R 3 , R 5 , R 6 in the general formula (A1) and general formula (A2) of the copolymerized polyimide precursor of the present invention are not particularly limited, but are hydrogen or alkyl having 1 to 6 carbon atoms.
- a group a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, etc.
- Examples include isopropylsilyl group, tert-butyldimethylsilyl group, and triisopropylsilyl group.
- a trimethylsilyl group is more preferable from the viewpoint of economy.
- R 2 and R 3 in the general formula (A1) is an alkyl group having 1 to 6 carbon atoms or an alkylsilyl group having 3 to 9 carbon atoms
- R 5 in the general formula (A2) , R 6 is preferably an alkyl group having 1 to 6 carbon atoms or an alkylsilyl group having 3 to 9 carbon atoms.
- the logarithmic viscosity of the copolymerized polyimide precursor of the present invention is not particularly limited, but the logarithmic viscosity in a temperature: 30 ° C., concentration: 0.5 g / dL, solvent: N, N-dimethylacetamide solution is 0.2 dL / g or more. , Preferably 0.5 dL / g or more. At 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, so the mechanical strength of the resulting polyimide film is improved.
- the logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, but is preferably 2.5 dL / g or less, more preferably 2.0 dL / g or less, and particularly preferably 1.5 dL / g or less. When the logarithmic viscosity is low, the viscosity of the polyimide precursor varnish is low, and the handleability of the film forming process is good.
- the copolymerized polyimide precursor of the present invention is classified as a chemical structure into 1) polyamic acid, 2) polyamic acid ester, and 3) polyamic acid silyl ester according to the chemical structure taken by R 2 , R 3 , R 5 , and R 6. can do. And it can manufacture easily with the following manufacturing methods for every said classification.
- the manufacturing method of the polyimide precursor of this invention is not necessarily limited to the following manufacturing methods.
- a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent. Since the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
- a diamine and a silylating agent are reacted to obtain a silylated diamine (if necessary, the silylated diamine is purified by distillation or the like) and dehydrated in a solvent.
- the silylated diamine is dissolved, and while stirring, tetracarboxylic dianhydride is gradually added, and the mixture is stirred at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours, A polyimide precursor is obtained.
- the reaction is carried out at 80 ° C.
- the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds by heat, so there is a possibility that the polyimide precursor cannot be produced stably.
- a silylating agent not containing chlorine examples include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
- N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are preferred because they do not contain fluorine atoms and are low in cost.
- amine-based catalysts such as pyridine, piperidine, and triethylamine can be used in the silylation reaction of diamine in order to accelerate the reaction. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
- any of the above production methods can be suitably performed in an organic solvent, and as a result, the copolymerized polyimide precursor solution composition of the present invention can be easily obtained.
- the molar ratio of the tetracarboxylic acid component / diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- tetracarboxylic acid component of the copolymerized polyimide precursor of the present invention 3,3 ′, 4,4′-biphenyltetracarboxylic acids constituting the tetracarboxylic acid component of the general formula (A1) are used. Tetracarboxylic acid components other than 3,3 ′, 4,4′-biphenyltetracarboxylic acids and pyromellitic acids constituting the tetracarboxylic acid component (A2) are used.
- Tetracarboxylic acid components other than 3,3 ′, 4,4′-biphenyltetracarboxylic acids and pyromellitic acids are not particularly limited, and any tetracarboxylic acids that are employed in ordinary polyimides may be used. Aromatic tetracarboxylic acids are preferred.
- Such tetracarboxylic acids include 2,3,3 ′, 4′-biphenyltetracarboxylic acids, 2,2 ′, 3,3′-biphenyltetracarboxylic acids, oxydiphthalic acids, 3,3 ′, 4,4 '-Benzophenone tetracarboxylic acids, 3,3', 4,4'-diphenylsulfone tetracarboxylic acids, m-terphenyl-3,3 ', 4,4'-tetracarboxylic acids, 4,4'-(2, 2-hexafluoroisopropylene) diphthalic acids, 2,2'-bis (3,4-dicarboxyphenyl) propanes, 1,4,5,8-naphthalenetetracarboxylic acids, 2,3,6,7-naphthalene Tetracarboxylic acids, (1,1 ′: 3 ′, 1 ′′ -terphenyl) -3,3 ′′, 4,4 ′′ -t
- ', 4'-biphenyltetracarboxylic acids, 2,2', 3,3'-biphenyltetracarboxylic acids, and oxydiphthalic acids is particularly preferred because the coefficient of thermal expansion is low, and 4,4'- When (2,2-hexafluoroisopropylene) diphthalic acid or 4,4 '-(dimethylsiladiyl) diphthalic acid is used, it can exhibit very high transparency. Particularly preferred from.
- the tetracarboxylic acids include derivatives such as tetracarboxylic acid, tetracarboxylic dianhydride, and tetracarboxylic acid ester, and are used as compounds having a chemical structure suitable as a raw material for the production method.
- a diamine having a cyclohexane structure which may have a substituent and which constitutes the general formula (A1) and the general formula (A2) is suitably used.
- 1,4-diaminocyclohexane 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane and 1,2-diaminocyclohexane
- the organic solvent used in the production method can be used without any problem as long as the raw material monomer and the polyimide precursor to be produced are dissolved. Therefore, the structure is not particularly limited, but for example, N, N-dimethylformamide, N, N Amide solvents such as dimethylacetamide and N-methylpyrrolidone, cyclic ester solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ethylene carbonate Carbonate solvents such as propylene carbonate, glycol solvents such as triethylene glycol, phenol solvents such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol, acetophenone, 1,3-dimethyl-2- Imidazolidinone, sulfora , Dimethyl sulfoxide is preferably used.
- aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide and the like are more preferable because of excellent solubility. .
- organic solvents used in the production method are referred to as “organic solvents used in the production method” in other parts of this part and in other parts, and preferred organic solvents are the same unless otherwise specified.
- the organic solvent used in this part refers to the organic solvent used in all steps involved in the production of the polyimide precursor varnish.
- the organic solvent used in the step, the organic solvent used in the step of diluting the varnish to the target concentration / viscosity, the organic solvent used in preparing the diluted solution in advance when the additive, etc. are added are shown.
- the carboxylic acid derivative in an amount roughly corresponding to the number of moles of excess diamine is added as necessary.
- the molar ratio of the carboxylic acid component and the diamine component can be brought close to the equivalent.
- a carboxylic acid derivative here, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution (that is, it does not substantially participate in molecular chain extension), or a tricarboxylic acid that functions as a terminal terminator and its anhydride. Dicarboxylic acid and its anhydride.
- tetracarboxylic acid derivatives examples include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, and 2,2 ′, 3,3′-biphenyltetracarboxylic acid.
- Acid, 1,2,3,4-butanetetracarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid, and tricarboxylic acid include trimellitic acid, cyclohexane-1,2,4-tricarboxylic acid, Examples of these acid anhydrides and dicarboxylic acids include phthalic acid, tetrahydrophthalic acid, cis-norbornene-endo-2,3-dicarboxylic acid, cyclohexanedicarboxylic acid, succinic acid, maleic acid, and acid anhydrides thereof. be able to.
- carboxylic acid derivatives thermal coloring and thermal deterioration during heating may be prevented.
- tetracarboxylic acid derivatives such as biphenyltetracarboxylic acid and carboxylic acid derivatives having a reactive functional group are preferable because they can react when imidized to improve heat resistance.
- the copolymerized polyimide precursor solution composition of the present invention contains at least the copolymerized polyimide precursor of the present invention and a solvent.
- the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more with respect to the total amount of the solvent, the tetracarboxylic acid component and the diamine component. It is preferable that In general, the content is preferably 60% by mass or less, and preferably 50% by mass or less. If the concentration is too low, it may be difficult to control the thickness of the copolymerized polyimide film obtained.
- the solvent contained in the copolymerized polyimide precursor solution composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and is not particularly limited to its structure.
- Specific examples of the solvent include those exemplified as the aforementioned “solvent used in the production method”.
- a plurality of the exemplified solvents can be used in combination. These solvents are preferably removed from the acidic component, alkali component, metal component, and moisture by purification such as distillation and dehydrating agent treatment, and the purity thereof is 99.5% or more, preferably 99.7%. As mentioned above, More preferably, it is 99.9% or more.
- the polyimide precursor solution composition of the present invention may contain chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers, dyes, pigments, silanes as necessary.
- chemical imidizing agents such as acetic anhydride, amine compounds such as pyridine and isoquinoline
- antioxidants such as pyridine and isoquinoline
- fillers such as coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like can be added.
- the copolymer polyimide of the present invention is characterized by comprising a unit structure represented by the general formula (A5) and a unit structure represented by the general formula (A6).
- a suitable copolymerized polyimide can be obtained by subjecting the copolymerized polyimide precursor to a dehydration ring-closing reaction (imidation reaction). Therefore, the matters (for example, the ratio of the unit structure, the third unit structure, etc.) described with respect to the copolymer polyimide precursor described above are applied to the resulting polyimide, that is, the copolymer polyimide of the present invention.
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be suitably applied.
- a film, a laminate of the polyimide film and another substrate, a coating film, powder, beads, a molded body, a foam, a varnish, and the like can be preferably exemplified.
- the copolymerized polyimide of the present invention is preferably a film having a thickness of 10 ⁇ m, the elongation at room temperature in the tensile test is 8% or more, and the light transmittance at 400 nm is 50% or more, more preferably,
- the elastic modulus at room temperature is 3 GPa or more, the breaking elongation is 10% or more, and the light transmittance at 400 nm is 75% or more, and it has excellent transparency and toughness (sufficient breaking elongation) that can withstand bending.
- the copolymerized polyimide of the present invention is not limited, but the average thermal linear expansion coefficient in the film surface direction at 50 ° C. to 200 ° C. when formed into a film is 20 ppm / K or less, more preferably 15 ppm / K or less.
- the copolymerized polyimide of the present invention is not limited, but in the dynamic viscoelasticity measurement when a film having a film thickness of 10 ⁇ m is used, the storage elastic modulus at the glass transition temperature or higher obtained from the maximum point of tan ⁇ is minimized. It is preferable that the storage elastic modulus has a maximum value at a temperature equal to or higher than the minimum value. By having the maximum value of the storage elastic modulus above the glass transition temperature, it is possible to prevent a decrease in elastic modulus at a high temperature, and a polyimide film corresponding to a process at a high temperature can be obtained.
- the film made of the copolymerized polyimide of the present invention is preferably about 1 ⁇ m to 250 ⁇ m, more preferably about 1 ⁇ m to 150 ⁇ m, although it depends on the application.
- the polyimide of the present invention has excellent properties such as transparency, bending resistance, and high heat resistance, and also has an extremely low thermal linear expansion coefficient and solvent resistance. Therefore, a transparent substrate for display, a transparent substrate for touch panel, Or it can use suitably in the use of the board
- the polyimide precursor solution composition of the present invention is cast on a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
- a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
- a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
- a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
- inert gas or in the air using hot air or infrared rays at a temperature of 20 to 180 ° C., preferably 20 to 150 ° C.
- a polyimide film / substrate laminate or a polyimide film can be produced by heat imidization in air using hot air or infrared rays at a temperature of about 200 to 500 ° C., more preferably about 250 to 450 ° C.
- the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
- the imidation reaction of the polyimide precursor contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine instead of the heating imidation by the heat treatment as described above. It is also possible to carry out by chemical treatment such as immersion in a solution. Also, a partially imidized polyimide precursor is prepared by previously charging and stirring these dehydrating cyclization reagents in a polyimide precursor solution composition, and casting and drying them on a substrate. In addition, a polyimide film / substrate laminate or a polyimide film can be obtained by further heat-treating this as described above.
- a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine
- a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
- a polyimide precursor solution composition is applied to a ceramic substrate, a metal substrate, or a heat-resistant plastic substrate, and is then subjected to nitrogen in vacuum. Alternatively, in the air, heating to 200 to 500 ° C. to imidize to produce a polyimide / substrate laminate, and without removing the polyimide from the substrate, the ceramic thin film or metal thin film on the polyimide surface of the obtained laminate Forming a thin film / polyimide / substrate laminate, and then peeling the polyimide from the substrate.
- a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, a conductive material (metal or metal oxide) is formed on the polyimide film surface by sputtering deposition, printing or the like without peeling the polyimide film / substrate laminate from the substrate. , Conductive organic material, conductive carbon, etc.) are formed, and a conductive laminate of conductive layer / polyimide film / base material is manufactured. Then, if necessary, a transparent and flexible conductive substrate composed of a conductive layer / polyimide film laminate can be obtained by peeling the electric conductive layer / polyimide film laminate from the base material.
- a conductive material metal or metal oxide
- the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon or the like can be formed in the same manner as in the first method, and a transparent and flexible conductive substrate composed of a conductive layer / polyimide film laminate can be obtained.
- a gas barrier layer such as water vapor or oxygen, a light adjusting layer, or the like by sputtering vapor deposition or gel-sol method.
- An inorganic layer such as may be formed.
- the conductive layer is preferably formed with a circuit by a photolithography method, various printing methods, an inkjet method, or the like.
- substrate of this invention has a circuit of a conductive layer on the surface of the polyimide film comprised by the polyimide of this invention through a gas barrier layer and an inorganic layer as needed.
- This substrate is flexible, excellent in transparency, bendability, and heat resistance, and has an extremely low coefficient of thermal expansion and solvent resistance, so that a fine circuit can be easily formed. Therefore, this board
- the application example of the above polyimide precursor can also be applied to the polyimide precursor disclosed in other parts.
- Part B The invention disclosed in Part B provides a polyimide precursor using an alicyclic diamine, which can be produced by a production method suitable for actual industrial production and has good handling properties and storage stability. With the goal.
- the polyimide obtained from this polyimide precursor has both high transparency, high glass transition temperature, low linear thermal expansion coefficient, and sufficient toughness. Therefore, glass for display devices such as liquid crystal displays, EL displays, and electronic papers in particular. It can be suitably used as a plastic substrate for substrate replacement.
- the invention disclosed in Part B relates to the following items.
- a polyimide precursor comprising a unit structural formula represented by the following general formula (B1).
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 is a hydrogen atom or an alkylsilyl group having a carbon number of 3 ⁇ 9
- R 2 At least one of R 3 is an alkylsilyl group having 3 to 9 carbon atoms.
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 is a hydrogen atom or an alkylsilyl group having a carbon number of 3 ⁇ 9
- R 2 At least one of R 3 is an alkylsilyl group having 3 to 9 carbon atoms.
- Item 3 The polyimide precursor according to Item 1 or 2, wherein the 1,4-cyclohexane structure of the general formula (B1) is composed of a trans isomer.
- Item 4 The polyimide precursor according to any one of Items 1 to 3, wherein the logarithmic viscosity in a 0.5 g / dL N, N-dimethylacetamide solution at 30 ° C. is 0.2 dL / g or more.
- a polyimide precursor solution composition wherein the polyimide precursor according to any one of Items 1 to 4 is uniformly dissolved in a solvent.
- Item 7 The polyimide according to Item 6, wherein when the film is 10 ⁇ m thick, the light transmittance at 400 nm is 50% or more and the elongation at break is 8% or more.
- Item 7 The polyimide according to Item 6, wherein an average linear thermal expansion coefficient at 50 ° C. to 200 ° C. when a film having a thickness of 10 ⁇ m is 19 ppm / K or less.
- a method for producing a polyimide precursor comprising obtaining a polyimide precursor containing a unit structure of the general formula (B1), wherein a polymerization temperature condition is 0 ° C. to 100 ° C.
- R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 is a hydrogen atom or an alkylsilyl group having a carbon number of 3 ⁇ 9
- R 2 At least one of R 3 is an alkylsilyl group having 3 to 9 carbon atoms.
- a method for producing a polyimide precursor comprising obtaining a polyimide precursor having a unit structure of the general formula (B1) using a silylating agent not containing a chlorine atom or a bromine atom.
- Part B it is possible to produce a polyimide precursor using an alicyclic diamine that can be produced by a production method suitable for actual industrial production and has good handling properties and storage stability. it can.
- the polyimide obtained from this polyimide precursor has both high transparency, high glass transition temperature, low linear thermal expansion coefficient, and sufficient toughness. Therefore, glass for display devices such as liquid crystal displays, EL displays, and electronic papers in particular. It can be suitably used as a plastic substrate for substrate replacement.
- the polyimide precursor characterized by including the unit structural formula of the said general formula (B1) of this invention is not specifically limited
- the diamine of the said general formula (B3) silylated beforehand, and tetracarboxylic dianhydride Can be obtained by a method of reacting diamine, tetracarboxylic dianhydride and a silylating agent simultaneously.
- the former method is preferable because salt formation at the initial stage of the polymerization reaction is suppressed.
- the diamine of the general formula (B3) is not particularly limited, but can be obtained by silylating a diamine represented by the following chemical formula (B4) with a silylating agent or the like.
- R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 1 is a hydrogen atom or a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, etc.
- Examples thereof include diamines having a linear or branched alkyl group having 1 to 4 carbon atoms, among which 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino- 2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2- Isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclo Hexane is preferred, and 1,4-diaminocyclohexane is more preferred because the polyimide film obtained has a low coefficient of thermal expansion.
- a diamine and a silylating agent containing no chlorine atom or bromine atom are reacted in an inert gas atmosphere at 20 to 100 ° C. for 10 minutes to 10 hours, whereby a silyl that is easily silylated is obtained. can get.
- the silylating agent used in the present invention is not particularly limited, but a silylating agent containing no chlorine atom or bromine atom is preferable.
- a silylating agent containing no chlorine atom or bromine atom is preferable.
- N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) ) Acetamide and hexamethyldisilazane When a silylating agent containing no chlorine atom or bromine atom is used, chlorine and bromine compounds that are feared to be added to the environment do not remain as residues even if purification is not performed.
- N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are preferred because they do not contain fluorine atoms and are low in cost.
- a catalyst such as pyridine, piperidine, triethylamine or the like can be used. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
- the silylation rate of the silylated diamine represented by the general formula (B3) is particularly not less than the minimum silylation rate that does not cause defects such as precipitation when producing a polyimide precursor.
- the silylation rate is 25% to 100%, preferably 50% to 100%, based on the total amount of amino groups before silylation of the diamine. When the silylation rate is low, the solubility during the reaction for obtaining the polyimide precursor is lowered and precipitation is likely to occur.
- the silylated diamine represented by the general formula (B3) is represented by the following formula (B3):
- R 1 is a hydrogen atom or a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- Examples thereof include diamines having a linear or branched alkyl group having 1 to 4 carbon atoms such as butyl group, iso-butyl group, sec-butyl group, etc.
- R 1 is a hydrogen atom or a methyl group. It is preferable that R 1 is more preferably hydrogen because the thermal expansion coefficient of the polyimide film obtained is particularly low.
- Any one of R 2 and R 3 may be any alkylsilyl group having 3 to 9 carbon atoms, and is not particularly limited. Groups. A trimethylsilyl group is preferred from the economical viewpoint.
- the 1,4-cyclohexane ring structure in the general formula (B3) is preferably a trans configuration isomer of 50 mol% to 100 mol%, preferably 60 mol% to the total structure. It is 100 mol%, more preferably 80 mol% to 100 mol%.
- the content of isomers in the trans configuration is lowered, the molecular weight of the polyimide precursor is difficult to increase, and the thermal expansion coefficient may be increased.
- Examples of the biphenyltetracarboxylic dianhydride used for producing the polyimide precursor of the present invention include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′- Any structural isomer of biphenyltetracarboxylic dianhydride and 2,3,2 ′, 3′-biphenyltetracarboxylic dianhydride can be used. These structural isomers can be used in combination. At this time, the content of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is not particularly limited as long as the required characteristics are not impaired.
- the range is 50 to 100 mol%, preferably 80 to 100 mol%, more preferably 90 to 100 mol%, and particularly preferably 100 mol%.
- the content of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride is high, the thermal expansion coefficient of the resulting polyimide film is small.
- biphenyltetracarboxylic dianhydride used for producing the polyimide precursor of the present invention 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,3,2 ′, 3 ′ -When biphenyltetracarboxylic dianhydride is used, the solubility of the polyimide precursor is improved, so that it is easy to produce, and further, the elongation at break and the light transmittance increase when polyimide is used.
- tetracarboxylic dianhydride used for producing the polyimide precursor of the present invention tetracarboxylic dianhydride other than the above-mentioned biphenyltetracarboxylic dianhydride, the total molar amount of tetracarboxylic dianhydride On the other hand, it can be used at 50% or less, preferably 20% or less, particularly preferably 10% or less.
- a tetracarboxylic dianhydride other than biphenyltetracarboxylic dianhydride the solubility of the polyimide precursor is improved and the production becomes easy.
- the tetracarboxylic dianhydride component other than biphenyltetracarboxylic dianhydride is not particularly limited, and any tetracarboxylic dianhydride employed in ordinary polyimides may be used. Acid dianhydride is preferred.
- Such tetracarboxylic dianhydrides include pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4, 4'-diphenylsulfonetetracarboxylic dianhydride, m-terphenyl-3,3 ', 4,4'-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroisopropylene) diphthalate Acid dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propane, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic Acid dianhydride, (1,1 ′: 3 ′, 1 ′′ -terphenyl) -3,3 ′′, 4,4 ′′ -tetracarboxylic dianhydride,
- the method for producing the polyimide precursor of the present invention is not particularly limited, but the tetracarboxylic acid dicarboxylic acid is dissolved while stirring the silylated diamine in a dehydrated solvent under an inert gas atmosphere such as nitrogen. A method of adding an anhydride is preferred.
- the reaction temperature at this time is 0 to 100 ° C., preferably 20 to 80 ° C., particularly preferably 40 to 80 ° C.
- a reaction temperature of 100 ° C. or lower is preferable because an imidization reaction does not occur, so that a polyimide precursor can be stably obtained and a production cost can be reduced.
- the reaction time is the end point of the reaction when the viscosity of the polyimide precursor becomes constant, but is usually 3 to 12 hours depending on the type and temperature of the tetracarboxylic acid anhydride and diamine.
- the polyimide precursor is excellent in solubility unlike the conventional polyimide precursor (polyamic acid), the salt of the polyimide precursor and the diamine is difficult to precipitate and is suitable for actual industrial production. It is possible to control the molecular weight of the polyimide precursor by adjusting the molar ratio of tetracarboxylic dianhydride and diamine and conducting the polymerization reaction while confirming the molecular weight by viscosity and GPC measurement, and stable production. Is possible. Moreover, since the polyimide precursor of this invention is excellent in solubility, a comparatively high concentration polyimide precursor solution (composition) can be manufactured.
- an organic solvent In the method for producing a polyimide precursor of the present invention, it is preferable to use an organic solvent.
- the organic solvent include those exemplified as “organic solvents used in the production method” in Part A.
- the polyimide precursor solution (composition) finally obtained is not particularly limited in the concentration of the monomer component composed of tetracarboxylic dianhydride and diamine, but the total amount of the monomer component and the solvent. On the other hand, it is 5% by weight or more, preferably 10% by weight or more, and more preferably 15 to 50% by weight. When the concentration of the monomer component is high, a thick polyimide film can be obtained.
- the molar ratio of tetracarboxylic dianhydride and diamine to be used [tetracarboxylic dianhydride / diamine] can be arbitrarily set depending on the required viscosity of the polyimide precursor, preferably 0.90 to 1.10, More preferably, it is 0.95 to 1.05.
- a tetraacid derivative or an acid anhydride derivative is further added to the polyimide precursor solution. Can be added.
- Examples of the tetraacid derivative include 1,2,3,4-butanetetracarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid, biphenyltetracarboxylic acid, and examples of the acid anhydride include phthalic anhydride, Examples thereof include tetrahydrophthalic anhydride, cis-norbornene-endo-2,3-dicarboxylic anhydride, cyclohexanedicarboxylic anhydride, succinic anhydride, maleic anhydride and the like.
- thermal coloring and thermal deterioration during heating can be further prevented.
- the logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, but the logarithmic viscosity at 30 ° C. in a 0.5 g / dL N, N-dimethylacetamide solution is preferably 0.2 dL / g or more, and 0.5 dL / g or more. Is more preferable. If it is 0.2 dL / g or less, the molecular weight of the polyimide precursor is low, so the mechanical strength of the resulting polyimide film is lowered.
- the logarithmic viscosity is preferably 2.5 dL / g or less, and more preferably 2.0 dL / g or less. When the viscosity is 2.0 dL / g or less, the polyimide precursor solution composition has a low viscosity, so that the handleability during the production of the polyimide film is good.
- the polyimide precursor solution composition (varnish) of the present invention is a polyimide precursor solution composition mainly composed of a polyimide precursor and a solvent, and the concentration of the monomer component composed of tetracarboxylic dianhydride and diamine is the above monomer component. And 10% by weight or more based on the total amount of the solvent and more preferably 15% by weight to 50% by weight. When the monomer concentration is 10% by weight or less, it is difficult to control the thickness of the resulting polyimide film. Since the polyimide precursor of the present invention has high solubility, a relatively high concentration polyimide precursor solution composition can be obtained.
- the solvent contained in the polyimide precursor composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and is not particularly limited to its structure.
- Specific examples of the solvent include those exemplified as “organic solvent used in the production method” in Part A.
- the polyimide precursor solution composition of the present invention can be prepared by using a chemical imidizing agent (acid anhydrides such as acetic anhydride and amine compounds such as pyridine and isoquinoline), antioxidants, fillers and dyes as required.
- a chemical imidizing agent acid anhydrides such as acetic anhydride and amine compounds such as pyridine and isoquinoline
- antioxidants such as pyridine and isoquinoline
- the polyimide of the present invention can be produced by subjecting the polyimide precursor of the present invention to a ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- Examples of usable forms of polyimide include films, metal / polyimide film laminates, ceramic / polyimide film laminates, plastic film / polyimide laminates, powders, molded articles, and varnishes.
- the light transmittance at 400 nm is preferably 50% or more, more preferably 75% or more, and further preferably 80% or more, and excellent transparency.
- the polyimide of the present invention has an average coefficient of thermal expansion at 50 ° C. to 200 ° C. when formed into a film, preferably 50 ppm / K or less, more preferably ⁇ 5 to 19 ppm / K, still more preferably 0 to 15 ppm / K. Have a very low coefficient of thermal expansion.
- the film made of the polyimide of the present invention is preferably about 1 ⁇ m to 250 ⁇ m, more preferably about 1 ⁇ m to 150 ⁇ m, although it depends on the application.
- the polyimide of the present invention has excellent properties such as transparency, bending resistance, and high heat resistance, and also has an extremely low thermal linear expansion coefficient and solvent resistance. Therefore, a transparent substrate for display, a transparent substrate for touch panel, Or it can use suitably in the use of the board
- a polyimide film / substrate laminate or a polyimide film can be produced using the polyimide precursor of the present invention.
- An example of the manufacturing method is as described in Part A.
- a polyimide film / base laminate or a polyimide film can be manufactured in the same manner as in Part A, and a flexible conductive substrate can be manufactured in the same manner. .
- Part C relates to a method for purifying 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder with little coloration, the powder, and a polyimide using the same.
- the 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is substantially composed mainly of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. It is a powder suitably used as a chemical raw material comprising 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
- JP-A-2006-328040 and JP-A-2009-019014 are high purity 2,3,3 ′, 4′-biphenyl capable of obtaining a polyamic acid with high logarithmic viscosity
- the object is to produce a tetracarboxylic dianhydride powder, which achieves that purpose, but the 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride powder.
- the powder of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is 3,3 ′, 4, It behaves completely different from 4′-biphenyltetracarboxylic dianhydride powder. That is, the crystallinity is low, and an amorphous part is easily generated together with a crystalline part. This amorphous part is considered to cause quality deterioration, and not only the difference between crystallinity and amorphous property but also the color composition and the component composition such as water content are clearly different.
- the invention disclosed in Part C has been made as a result of various studies for the purpose of improving the coloring of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder having such unique properties. It is. That is, the invention disclosed in Part C is a refining method for obtaining 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder that is easily colored with a simple operation, It is an object of the present invention to provide 3 ′, 4′-biphenyltetracarboxylic dianhydride powder and a polyimide having improved light transmittance that can be suitably used for high performance optical materials.
- the invention disclosed in Part C relates to the following items.
- a solvent having a solubility at 25 ° C. in 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride of 1 g / 100 g or more, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder Are mixed in a heterogeneous state in which at least a portion of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is not dissolved, and then undissolved 2,3,3 ′ from the mixture.
- a method for purifying 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder which comprises separating and recovering 4,4′-biphenyltetracarboxylic dianhydride powder.
- Item 2 The purification method according to Item 1, wherein the solubility of the solvent in 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride at 25 ° C. is 1 g / 100 g to 30 g / 100 g.
- 2,3,3 ′, 4′-biphenyl characterized by having a light transmittance of 85% or more at a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution dissolved in a 2N aqueous sodium hydroxide solution at a concentration of 10% by mass Tetracarboxylic dianhydride powder.
- Item 7 The polyimide according to Item 6, wherein the light transmittance at 400 nm when the film is 10 ⁇ m thick is 70% or more.
- a purification method for obtaining 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder with less coloration by a simple operation, 2,3,3 ′ with less coloration , 4′-biphenyltetracarboxylic dianhydride powder and a polyimide with improved light transmission that can be suitably used for high-performance optical materials can be provided.
- the 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder obtained by the invention disclosed in Part C is a 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride of the prior art.
- the 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder obtained by the invention disclosed in Part C is also preferably used for the preparation of the polyimide precursors described in Part A and Part B .
- the method for purifying the 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder of the invention disclosed in Part C is 25 to 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
- the solvent used in the present invention has a solubility at 25 ° C. in 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride of 1 g / 100 g or more, preferably 3 g / 100 g or more, more preferably 7 g / 100 g or more.
- the solvent is preferably 100 g / 100 g or less, more preferably 50 g / 100 g or less, still more preferably 30 g / 100 g or less, and particularly preferably 20 g / 100 g or less. If the solubility is too low, it is difficult to easily obtain 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride powder with little coloration.
- This solvent does not need to be a single type of solvent, and may be a mixture of a plurality of types of solvents as long as the solubility as a mixture is 1 g / 100 g or more.
- the solvent used in the present invention is not particularly limited.
- n-hexane, cyclohexane, heptane, octane and other aliphatic hydrocarbons, benzene, toluene, xylene and other aromatic hydrocarbons methanol, Alcohols such as ethanol, butanol, isopropyl alcohol, normal propyl alcohol, butanol, tertiary butanol, butanediol, ethylhexanol, benzyl alcohol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate, Methyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, normal propyl acetate, isopropyl
- the solubility of the mixture can be set to 1 g / 100 g or more in combination with a solvent having a solubility of 1 g / 100 g or more.
- a solvent having a solubility of 1 g / 100 g or more When alcohols, water, or the like is used, it may react with an acid anhydride to cause a ring-opening reaction. Therefore, it is preferable to perform heat treatment after purification.
- these solvents are preferably high-purity solvents that do not contain moisture or alcohol.
- acetone methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, tetrahydrofuran and the like are particularly preferable because of their high purification efficiency and easy handling.
- the solubility at 25 ° C. in 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is the solvent targeted by 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride at 25 ° C. It is the amount (g) dissolved in 100 g.
- this solubility was measured by the following method. That is, 10 g of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder having a purity of 99% or more and 20 g of the target solvent are mixed and stirred at 25 ° C. for 3 hours to obtain a mixed solution. (Confirm in advance that it will be saturated under this stirring condition.
- a solvent having a solubility at 25 ° C. in 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride of 1 g / 100 g or more, 2,3,3 ′, 4′-biphenyltetra Carboxylic dianhydride powder is mixed in a non-uniform state in which at least a part of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is not dissolved.
- the mixed solution obtained here is mixed with 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder in an amount exceeding its solubility in a solvent, and a part of the powder is dissolved, but the rest The powder is an undissolved mixed solution in a non-uniform mixed state. Therefore, the mixing ratio of the solvent and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is the same as the mixing ratio of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder.
- the ratio may exceed the solubility at the temperature of the mixed solution (preferably at 25 ° C.), but the ratio is preferably 2 to 100 times, more preferably 2 to 50 times, particularly preferably about 5 to 20 times the solubility. Is preferred. If the amount is too small, the ratio of dissolution and recovery cannot be increased, which is not economical. If the amount is too large, the purification effect may be insufficient.
- the temperature at which the mixed solution is handled is not particularly limited, but preferably about room temperature (about 0 to 50 ° C.) is convenient and economical. Low and high temperatures complicate the process and are not economical.
- the mixed solution is used to suppress the reaction of water or the functional group with the acid anhydride. It is preferable to handle at a lower temperature.
- the 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride powder used here is not particularly limited, and a conventionally known powder can be suitably used.
- a conventionally known powder can be suitably used.
- it may be manufactured by a manufacturing method described in Patent Documents 1 and 2, or may be manufactured by other known manufacturing methods.
- a material having a purity of 98% by mass or more, preferably 99% by mass or more, more preferably 99.5% by mass or more is suitable.
- the particle diameter and the form of the particles are not particularly limited, but usually a powder having a particle diameter of 5 mm or less, preferably 1 mm or less is suitable.
- the degree of crystallinity of the powder is not particularly limited.
- a part of 2,3,3 ′, 4′-biphenyltetracarboxylic acid dianhydride obtained by mixing 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder in a solvent is used.
- the mixed solution in which the anhydride powder is dissolved and the remaining 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder is undissolved is preferably stirred using a stirrer. .
- the stirring time is not particularly limited as long as the purification effect is sufficiently obtained.
- the solution portion in the mixed solution is not necessarily saturated, and is not particularly limited as long as a part of the powder is dissolved and coloring is improved.
- the stirring time is usually about 0.5 to 6 hours.
- the undissolved 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride powder in the mixed solution is separated from the solvent and recovered.
- the separation step can usually be suitably performed by filtration.
- the separated 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride powder contains a solvent. For this reason, it is sufficiently dried by heating, blowing, decompressing, etc. in an inert atmosphere as necessary.
- a part of the anhydrous ring may be converted into a dicarboxylic acid group by hydrolysis during the purification process. It is preferable to perform drying and dehydration simultaneously at a high temperature (100 ° C. or higher, preferably 150 ° C. or higher) at which dehydration easily occurs.
- the 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder of the present invention is less colored and highly transparent, and dissolved in a 2N aqueous sodium hydroxide solution at a concentration of 10% by mass.
- the light transmittance at a wavelength of 400 nm to the solution is 85% or more, preferably 90% or more. Since 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride having such light transmittance can increase the transparency of the polyimide using the same, polyimide for high performance optical materials can be used. It is extremely suitable as a tetracarboxylic acid component.
- the polyimide of the present invention has a light transmittance at a wavelength of 400 nm of 85% or more, preferably 90% or more with respect to a solution dissolved in a 2N aqueous sodium hydroxide solution at a concentration of 10% by mass.
- a polyimide using '-biphenyltetracarboxylic dianhydride powder as a tetracarboxylic acid component characterized in that it has improved light transmittance when formed into a film.
- the polyimide is preferably characterized in that the light transmittance at 400 nm when the film is 10 ⁇ m thick is 70% or more.
- the polyimide of the present invention can be suitably obtained by using 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder that satisfies the above-mentioned regulations as at least part of the tetracarboxylic acid component.
- the tetracarboxylic acid component other tetracarboxylic acid components other than 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride satisfying the above-mentioned definition may be included.
- tetracarboxylic acid components include, but are not limited to, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, Preferable examples include oxydiphthalic dianhydride.
- the diamine component is not particularly limited, and any of the known diamine components may be used as the diamine component of the polyimide.
- aliphatic diamines, diamines having an alicyclic structure, and Selected from the group consisting of aromatic diamines having any one of a halogen group, a carbonyl group, and a sulfonyl group in other words, aromatic diamines having any one of a halogen group, a carbonyl group, and a sulfonyl group as a substituent
- aromatic diamines having any one of a halogen group, a carbonyl group, and a sulfonyl group as a substituent It is preferable to use diamines.
- the diamine is a diamine or a diamine derivative such as diamine or diisocyanate which is usually employed as a raw material for polyimide.
- the diamine derivative may be a diamine derivative obtained by reacting a diamine with a silylating agent (such as an amide-based silylating agent) for the purpose of imparting reactivity or product solubility.
- aliphatic diamines examples include linear and branched aliphatic diamines such as diaminobutane, diaminopentane, diaminohexane, diaminoheptane, diaminooctane, diaminononane, diaminodecane, diaminoundecane, diaminododecane, and derivatives thereof. It can be illustrated.
- diamine having an alicyclic structure examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 3-methyl-1,4-diaminocyclohexane, 3-methyl-, 3- Aminomethyl-, 5,5-dimethylcyclohexylamine, 1,3-bisaminomethylcyclohexane, bis (4,4'-aminocyclohexyl) methane, bis (3,3'-methyl-4,4'-aminocyclohexyl)
- diamines having an alicyclic structure such as methane, bis (aminomethyl) norbornane, bis (aminomethyl) -tricyclo [5,2,1,0] decane, isophoronediamine, 1,3-diaminoadamantane, and derivatives thereof. .
- aromatic diamines having a substituent of any one of a halogen group, a carbonyl group, and a sulfonyl group include 3,5-diaminobenzotrifluoride, 2- (trifluoromethyl) -1,4-phenylenediamine, 5- (trifluoromethyl) -1,3-phenylenediamine, 1,3-diamino-2,4,5,6-tetrafluorobenzene, 2,2-bis [4- (4-aminophenoxy) phenyl]- Hexafluoropropane, 2,2-bis (3-aminophenyl) 1,1,1,3,3,3-hexafluoropropane, 2,2′-bis- (4-aminophenyl) -hexafluoropropane, 4 , 4-Bis (trifluoromethoxy) benzidine, 3,3′-diamino-5,5′-trifluoromethylbiphenyl, 3,3′-dia
- 1,4-diaminocyclohexane, bis (4,4'-aminocyclohexyl) methane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'- Diaminodiphenyl sulfone and derivatives thereof are more preferable because the resulting polyimide has excellent transparency and heat resistance, and trans-1,4-diaminocyclohexane and derivatives thereof are particularly preferable because the resulting polyimide has a low coefficient of thermal expansion. .
- the polyimide of the present invention can be suitably obtained by a conventionally known production method. After reacting a tetracarboxylic acid component and a diamine component in a solvent at a relatively low temperature to form a polyimide precursor polyamic acid, it is heat-treated to imidize, or chemically imidized with acetic anhydride, etc. By doing so, it can be suitably obtained. Or it can obtain suitably by making a tetracarboxylic-acid component and a diamine component in a solvent react at a comparatively high temperature, and producing
- polyimide is particularly preferably formed into a film shape.
- Part D relates to a method for purifying 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with little coloration and a polyimide using the same.
- the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder is mainly composed of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and is substantially 3 , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride is a powder suitably used as a chemical raw material.
- the invention disclosed in Part D requires 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with little coloration by a method by simple operation under mild conditions without requiring large equipment. As a result of various studies on a purification method that can be easily obtained. That is, the invention disclosed in Part D does not require large-scale equipment, and the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is less colored by a simple operation method under mild conditions.
- the invention disclosed in Part D relates to the following items.
- the powder is mixed in a heterogeneous state in which at least a portion of the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder is not dissolved, and then undissolved 3,3 ′ from the mixture.
- a method for purifying 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride dianhydride powder which comprises separating and recovering 4,4′-biphenyltetracarboxylic dianhydride powder.
- Item 2 The purification method according to Item 1, wherein the solubility of the solvent in 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride at 25 ° C. is 1 g / 100 g or more.
- Item 3 The purification method according to Item 1 or 2, wherein the solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, or N-ethyl-2-pyrrolidone.
- Item 5 The purification method according to any one of Items 1 to 4, wherein the separated and recovered 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride powder is further sublimated.
- the tetracarboxylic acid component comprises 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder separated and recovered by the purification method of any one of Items 1 to 5, and the diamine component is a fat
- a film thickness of 10 ⁇ m composed of a diamine selected from the group consisting of aromatic diamines, diamines having an alicyclic structure, and aromatic diamines having a substituent of any one of a halogen group, a carbonyl group and a sulfonyl group
- a polyimide characterized by having a light transmittance of 80% or more at 400 nm when the film is formed.
- a tetracarboxylic acid component comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder separated and recovered by the purification method of any one of Items 1 to 5, an aliphatic diamine, Polymerization imidization of diamines having an alicyclic structure and diamine components composed of diamines selected from the group consisting of aromatic diamines having a substituent of any one of a halogen group, a carbonyl group and a sulfonyl group
- a method for producing polyimide comprising:
- 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with little coloration can be obtained by a method by a simple operation under mild conditions without requiring large equipment.
- a purification method that can be easily obtained can be provided.
- the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with little coloration obtained by the purification method of the present invention is used for a high-performance optical material having good transparency, particularly flexible.
- a polyimide that can be suitably used for a transparent substrate in a display device such as a display or a touch panel can be provided.
- the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder obtained by the invention disclosed in Part D is a prior art 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. By substituting the product powder, it is possible to obtain a more transparent final product, particularly polyimide.
- the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder obtained by the invention disclosed in Part D is also preferably used for the preparation of the polyimide precursors described in Part A and Part B .
- 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is s-BPDA
- 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder is s-BPDA powder.
- the method for purifying 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder of the invention disclosed in Part D includes a solvent having a solubility at 25 ° C.
- s-BPDA 0.1 g / 100 g or more
- the raw s-BPDA powder is mixed in a non-uniform state in which at least a part of the s-BPDA powder is not dissolved, and then undissolved s-BPDA powder is separated and recovered from the mixed solution. .
- the solvent having a solubility of s-BPDA at 25 ° C. of 0.1 g / 100 g or more means that 0.1 g or more of s-BPDA is dissolved in 100 g of the target solvent at 25 ° C.
- the solubility of s-BPDA was measured by the following method. That is, 5.0 g of s-BPDA powder with a purity of 99% or more and 50.0 g of the target solvent are mixed and stirred at 25 ° C. for 3 hours to obtain a mixed solution. (Confirm in advance that it will be saturated under this stirring condition.
- the solubility of s-BPDA at 25 ° C. is 0.1 g / 100 g or more, preferably 1.0 g / 100 g or more, more preferably 2.0 g / 100 g or more, preferably 100
- a solvent of 0.0 g / 100 g or less, more preferably 30.0 g / 100 g or less can be suitably used. If the solubility is low, it is difficult to obtain s-BPDA powder with little coloration. If the solubility is high, s-BPDA powder with little coloration can be obtained, but it is not economical because the raw material dissolves excessively and the recovery rate decreases.
- This solvent does not need to be a single type of solvent, and may be a mixture of a plurality of types of solvents as long as the solubility as a mixture is 0.1 g / 100 g or more.
- the solvent used in the present invention is not particularly limited.
- Particularly preferred are dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone.
- the solubility of the mixture can be set to 0.1 g / 100 g or more in combination with a solvent having a solubility of 0.1 g / 100 g or more.
- these solvents are preferably high-purity solvents that do not contain moisture or alcohol.
- a solvent having an appropriate solubility and s-BPDA powder are mixed in a non-uniform state in which at least a part of the s-BPDA powder is not dissolved, thereby causing a coloring cause of the s-BPDA powder.
- the mixing ratio of the solvent and the s-BPDA powder may be a ratio that exceeds the solubility of the mixed liquid mixture at the temperature of the mixed liquid (preferably at 25 ° C.).
- a ratio of about 5000 times, more preferably 5 to 2000 times, still more preferably 5 to 200 times, and particularly preferably about 5 to 100 times is suitable. If the amount is too small, the ratio of dissolution and recovery cannot be increased, which is not economical. If the amount is too large, the purification effect may be insufficient.
- the temperature at which the solvent and the s-BPDA powder are mixed is preferably a relatively low temperature below the boiling point of the solvent. Specifically, it is 150 ° C. or less, preferably 100 ° C. or less, more preferably less than 70 ° C., and further preferably 0 to 50 ° C. In particular, it is preferable to carry out at a room temperature of 0 to 50 ° C. without heat treatment.
- the solvent When heated to a high temperature or refluxed, the solvent may react, decompose, or oxidatively deteriorate and become colored.
- the s-BPDA powder itself may be colored by oxidation or the like.
- the mixed solution is preferably stirred by a stirring device.
- the stirring time is not particularly limited as long as the purification effect is sufficiently obtained.
- the solution portion in the mixed solution is not necessarily saturated, and it is sufficient that a part of the powder is dissolved to improve the coloring.
- the stirring time is usually about 0.5 to 6 hours.
- the raw material s-BPDA powder used in the purification method of the present invention is not limited, and conventionally known s-BPDA powder can be suitably used.
- it may be manufactured by the s-BPDA manufacturing method described in Patent Documents 1 and 2, or may be manufactured by other known manufacturing methods.
- a material having a purity of 98% by mass or more, preferably 99% by mass or more, more preferably 99.5% by mass or more is suitable.
- the particle diameter and the form of the particles Usually, it is a powder having a particle diameter of 5 mm or less, preferably about 1 mm or less. Further, there is no particular limitation on the crystallinity (crystallinity) of the powder.
- undissolved s-BPDA powder in the mixed solution is separated from the solvent and recovered.
- the cause of coloring is separated together with the solvent, and the s-BPDA powder with little coloring can be suitably recovered.
- known methods such as filtration at normal pressure, pressure filtration, suction filtration, and centrifugal filtration can be suitably used.
- the color-causing substance once dissolved in the solvent may precipitate again to color the s-BPDA powder.
- a solvent is adhered and remains on the separated and recovered s-BPDA powder.
- part of the acid anhydride may cause a ring-opening reaction during the purification process. In that case, it is preferable to close the ring by heating or the like during drying.
- a solvent having a solubility at 25 ° C. in s-BPDA of 0.1 g / 100 g or more and s-BPDA powder are non-uniform in which at least a part of s-BPDA powder is not dissolved. It is preferable to further sublimate the s-BPDA obtained by mixing in the state and then separating and recovering the undissolved s-BPDA powder from the mixed solution. This sublimation does not need to be performed under special conditions, and can be suitably performed under conventionally known conditions. As disclosed in Japanese Patent Application Laid-Open Nos. 2005-314296 and 2006-45198, s-BPDA powder is heated and melted and then evaporated at a high temperature of 250 ° C.
- s-BPDA crystals with less coloring can be suitably obtained by sublimation at a relatively low temperature of about 100 to 250 ° C. without melting by heating. Even if this s-BPDA crystal is solidified, it can be easily pulverized by grinding.
- the obtained s-BPDA powder has a light transmittance at a wavelength of 400 nm of more than 75%, preferably 80% or more with respect to a solution obtained by dissolving it in a 2N aqueous sodium hydroxide solution at a concentration of 10% by mass. is there.
- the s-BPDA powder obtained by the purification method of the present invention it is possible to easily obtain a polyimide that can be suitably used for a high-performance optical material having good permeability.
- the present invention also relates to the following polyimide and a method for producing the polyimide. That is, the polyimide of the present invention comprises a tetracarboxylic acid component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder separated and recovered by the purification method of the present invention, and a diamine component.
- the polyimide is characterized in that the light transmittance at 400 nm when the film is 10 ⁇ m thick is 70% or more.
- the tetracarboxylic acid component is a tetracarboxylic acid component other than the s-BPDA powder of the present invention, based on the total molar amount of the tetracarboxylic acid component, preferably 50% or less, preferably 25% or less. Preferably, 10% or less may be used.
- a tetracarboxylic acid component other than s-BPDA the solubility of the polyimide precursor may be improved and production may be facilitated.
- the tetracarboxylic acid component other than the s-BPDA powder of the present invention is not particularly limited, and any tetracarboxylic acid component employed as a raw material for a normal polyimide may be used, but aromatic tetracarboxylic dianhydride Things are preferred.
- tetracarboxylic dianhydrides examples include 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, pyromerit Acid dianhydride, oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, m- Terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4 ′-(2,2-hexafluoroisopropylene) diphthalic dianhydride, 2,2′-bis (3 4-dicarboxyphenyl) propanes, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarbox
- the diamine component the diamines described in Part C can be used.
- these diamines include 1,4-diaminocyclohexane, bis (4,4′-aminocyclohexyl) methane, 2,2′-bis (trifluoromethyl) -4,4′-diamino.
- Biphenyl, 4,4′-diaminodiphenylsulfone and its derivatives are more preferable because the resulting polyimide has excellent transparency and heat resistance, and trans-1,4-diaminocyclohexane and its derivatives are more preferable for the thermal linear expansion of the resulting polyimide. Particularly preferred because of its low coefficient.
- the polyimide of the present invention is characterized by having a light transmittance of 80% or more at 400 nm when a film having a thickness of 10 ⁇ m is formed. Therefore, it can be suitably used as an optical material.
- the polyimide production method of the present invention comprises a tetracarboxylic acid component comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder separated and recovered by the purification method of the present invention, and an aliphatic group.
- a diamine component composed of a diamine, a diamine having an alicyclic structure, and a diamine selected from the group consisting of aromatic diamines having a substituent of any one of a halogen group, a carbonyl group, and a sulfonyl group, It is characterized by polymerization imidization.
- the method and conditions for polymerization imidation are not particularly limited, and the method and conditions for polymerization imidization employed in conventional polyimide production methods can be suitably employed, but production via a polyimide precursor described below It can be manufactured more easily by the method.
- a diamine and a silylating agent are reacted in advance to obtain a silylated diamine. If necessary, the diamine silylated by distillation or the like is purified.
- a polyimide precursor is obtained by dissolving a silylated diamine in a dehydrated solvent, gradually adding tetracarboxylic dianhydride while stirring, and stirring for 1 to 72 hours in the range of 0 to 100 ° C. Is obtained. If a silylating agent not containing chlorine is used as the silylating agent used here, it is not necessary to purify the silylated diamine, which is preferable.
- Examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane. Further, N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are preferred because they do not contain fluorine atoms and are low in cost.
- amine-based catalysts such as pyridine, piperidine, and triethylamine can be used in the silylation reaction of diamine in order to accelerate the reaction. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
- the molar ratio of the tetracarboxylic acid component and the diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- the organic solvent used in the production method is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- the organic solvent that can be used include those listed as “Organic solvents used in the production method” in Part A.
- the polyimide precursor solution composition may contain a chemical imidizing agent (an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline), an antioxidant, a filler, a dye, an inorganic as necessary.
- a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as
- the polyimide of the present invention can be produced by subjecting a polyimide precursor to a dehydration ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- the form of the obtained polyimide can mention a film, a polyimide laminated body, a powder, a bead, a molded object, a foam, a varnish, etc. suitably.
- a polyimide / substrate laminate and a polyimide film can be produced using a polyimide precursor.
- An example of the production method is as described in Part A.
- a polyimide film / base laminate or a polyimide film can be produced in the same manner as in Part A, and a flexible conductive substrate can be produced in the same manner. .
- This polyimide film or polyimide / substrate laminate is required to have transparency as a material by forming a ceramic thin film or a metal thin film on the surface of the polyimide, for example, a transparent substrate for display, a transparent substrate for touch panel, It can be suitably used as a transparent substrate for solar cells.
- the invention disclosed in Part E relates to trans-1,4-diaminocyclohexane powder with reduced color and polyimide using it as a diamine component.
- the trans-1,4-diaminocyclohexane powder is a powder suitably composed of trans-1,4-diaminocyclohexane as a main component and substantially used as a chemical raw material substantially composed of trans-1,4-diaminocyclohexane. That is.
- the invention disclosed in Part E is variously aimed at improving the coloring of trans-1,4-diaminocyclohexane powder with the aim of developing into high performance optical materials that have not been sufficiently studied as a conventional polyimide application. It was made as a result of examination. That is, an object of the invention disclosed in Part E is to propose a trans-1,4-diaminocyclohexane powder with reduced coloring and a polyimide with reduced coloring using the powder as a diamine component.
- the invention disclosed in Part E relates to the following matters.
- Trans- characterized by having a light transmittance of 90% or more at a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving trans-1,4-diaminocyclohexane powder in pure water at a concentration of 10% by mass. 1,4-diaminocyclohexane powder.
- Item 2 The trans-1,4-diaminocyclohexane powder according to Item 1, which has a light transmittance of 95% or more at a wavelength of 400 nm and an optical path length of 1 cm. 3.
- the trans 1,4-diaminocyclohexane powder described in the above item 1 or 2 is used as the diamine component, and the light transmittance at 400 nm when the film is 10 ⁇ m thick is 80% or more.
- Polyimide. 4 The polyimide according to Item 3, wherein the polyimide is used as an optical material.
- trans-1,4-diaminocyclohexane powder with reduced coloring and a polyimide with reduced coloring using it as a diamine component.
- the polyimide using the trans-1,4-diaminocyclohexane powder with reduced coloring according to the present invention has a light transmittance of 80% or more at 400 nm and can be suitably used as a polyimide for optical materials.
- the trans-1,4-diaminocyclohexane powder obtained by the invention disclosed in Part E replaces the prior art trans-1,4-diaminocyclohexane powder to give a more transparent end product, particularly polyimide. Obtainable.
- the trans-1,4-diaminocyclohexane powder obtained by the invention disclosed in Part E is also preferably used for the production of the polyimide precursors described in Part A and Part B.
- trans-1,4-diaminocyclohexane powder of the invention disclosed in Part E (hereinafter, trans-1,4-diaminocyclohexane is abbreviated as t-DACH, and trans-1,4-diaminocyclohexane powder is abbreviated as t-DACH powder.
- t-DACH trans-1,4-diaminocyclohexane powder of the invention disclosed in Part E
- the raw raw t-DACH can be synthesized by any method, but the nitro group and benzene ring of p-nitroaniline are hydrogenated and reduced to 1,4-diaminocyclohexane (US Pat. No. 2,606,925). (Patent Document 9)) or a method of producing hydrogenated p-phenylenediamine ⁇ US Pat. No. 3,636,108, JP 2008-74754 (Patent Documents 10 and 11) ⁇ can be suitably used. .
- (crude) t-DACH powder having a purity of 95% or more, preferably 99% or more, which can be used in conventional polyimide production can be obtained by the above-described production method.
- the t-DACH powder with reduced coloring according to the present invention can be suitably obtained by (1) a purification method for sublimating (crude) t-DACH powder and (2) a purification method for treating with an adsorbent.
- These purification methods may be carried out by any one of the purification methods, but may be purified by repeating a plurality of times or by combining them.
- the purity of (crude) t-DACH used for these purifications is 90% or more, more preferably 95% or more. If it is less than 90%, coloring may not be sufficiently removed by these purification steps.
- the purification method for sublimation is not particularly limited, but the material t-DACH is sublimated by heating in an inert gas at normal pressure or reduced pressure, and the sublimate is attached to the cooled wall surface. By pulverizing as necessary, t-DACH powder (crystals) with reduced coloring can be obtained.
- the pressure is normal pressure or lower, preferably 50 Torr or lower, more preferably 1 Torr or lower, and the temperature is 20 ° C. to 150 ° C. under reduced pressure, preferably 50 ° C. to 100 ° C., and 120 ° C. under normal pressure.
- ° C to 200 ° C preferably 150 ° C to 180 ° C.
- the purification method using an adsorbent includes a method of dissolving in a solvent and bringing it into contact with the adsorbent, and a method of heating and melting and bringing into contact with the adsorbent.
- the adsorbent for example, activated carbon, graphite carbon black, activated clay, diatomaceous earth, activated alumina, silica gel, molecular sieve, carbon molecular sieve, synthetic adsorbent, basic anion exchange resin, chelate resin, etc. are preferably used. it can.
- the amount of adsorbent used is 0.001 to 0.5 times, preferably 0.005 to 0.1 times the amount of t-DACH.
- the conditions are not particularly limited, but the temperature is 150 ° C. or less, preferably 100 ° C. or less, the treatment time is 5 minutes to 2 hours, preferably 30 minutes to 1 hour, and the atmosphere is an inert gas atmosphere. It is preferable to carry out with.
- the solvent to be used is not particularly limited as long as it dissolves t-DACH, but is not limited to aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, alcohol solvents, ketone solvents, ester solvents, ether solvents, Examples include nitrile solvents, amide solvents, sulfone solvents, carbonate solvents, phenol solvents, water, and the like.
- aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and n-peptane are suitable because they are suitable for subsequent recrystallization.
- the polyimide with reduced coloring according to the present invention is suitably obtained by using a trans-1,4-diaminocyclohexane powder having a light transmittance at 400 nm with reduced coloring of 90% or more, preferably 95% or more as the diamine component. Obtainable.
- a diamine other than t-DACH can be used at the same time.
- the diamine component other than t-DACH is not particularly limited, and any diamine can be used as long as it is used for a normal polyimide.
- the diamines described in Part C are preferable in order to improve the transparency of the polyimide. (However, t-DACH is excluded.) These diamines are used as a diamine component if necessary in addition to t-DACH.
- the diamine component used in the polyimide of the present invention can be suitably used as a diamine derivative by reacting the diamine with a silylating agent (such as an amide silylating agent) for the purpose of imparting reactivity or product solubility. .
- a silylating agent such as an amide silylating agent
- the tetracarboxylic acid component of the polyimide of the present invention is not particularly limited and may be any tetracarboxylic acid component employed in ordinary polyimides, but may be any aromatic tetracarboxylic dianhydride or alicyclic tetracarboxylic acid. Acid dianhydride is preferred.
- Aromatic tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ', 3,4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 3,3 ' , 4,4'-diphenylsulfonetetracarboxylic dianhydride, m-terphenyl-3,3 ', 4,4'-tetracarboxylic dianhydride, 4,4'-(2,2-hexafluoroiso Propylene) diphthalic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propanes, 1,4,5,8-naphthale
- the polyimide of the present invention is obtained by polymerizing imidation of a tetracarboxylic acid component and a trans-1,4-diaminocyclohexane powder having a reduced color transmittance of 90% or more, preferably 95% or more. It can be suitably obtained.
- the method and conditions for polymerization imidation are not particularly limited, and the method and conditions for polymerization imidization employed in conventional polyimide production methods can be suitably employed, but the polyimide precursor production method described in Part D That is, it can be more easily produced by a production method via 1) polyamic acid or 2) polyamic acid silyl ester.
- the molar ratio of the tetracarboxylic acid component and the diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- the organic solvent used in the production method is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- the organic solvent that can be used include those listed as “Organic solvents used in the production method” in Part A.
- the polyimide precursor solution composition may contain a chemical imidizing agent (an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline), an antioxidant, a filler, a dye, an inorganic as necessary.
- a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as
- the polyimide of the present invention can be produced by subjecting a polyimide precursor to a dehydration ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- the form of the obtained polyimide can mention a film, a polyimide laminated body, a powder, a bead, a molded object, a foam, a varnish, etc. suitably.
- a polyimide / substrate laminate and a polyimide film can be produced using a polyimide precursor.
- An example of the production method is as described in Part A.
- a polyimide film / base laminate or a polyimide film can be produced in the same manner as in Part A, and a flexible conductive substrate can be produced in the same manner. .
- This polyimide film or polyimide / substrate laminate is required to have transparency as a material by forming a ceramic thin film or metal thin film on the surface of the polyimide, for example, a transparent substrate for display, a transparent substrate for touch panel, It can use suitably as optical materials, such as a transparent substrate for solar cells.
- Part F The invention disclosed in Part F relates to a method for purifying 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder with less coloring, the powder, and a polyimide using the same.
- 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder is composed mainly of 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, and is substantially 2 , 2 ′, 3,3′-biphenyltetracarboxylic dianhydride is a powder suitably used as a chemical raw material.
- Japanese Patent Application Laid-Open No. 2000-281616 discloses a method for producing 2,2 ′, 3,3′-biphenyltetracarboxylic acid, but 2,2 ′, 3,3 ′. -No preparation of biphenyltetracarboxylic dianhydride is described. Further, it is described that a polyimide resin obtained from 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride and 4,4′-oxydialine is less colored than a conventional polyimide resin.
- the invention disclosed in Part F improves the coloring of 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride powder with the aim of expanding into high performance optical materials beyond the conventional use of polyimide It was made as a result of various studies for the purpose. That is, the invention disclosed in Part F is a purification method for obtaining 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder that is easily colored with a simple operation, 2,2 ′, It is an object of the present invention to provide 3,3′-biphenyltetracarboxylic dianhydride powder and a polyimide having improved light transmittance using the same.
- the invention disclosed in Part F relates to the following items.
- Item 2 The 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride powder according to Item 1, wherein the light transmittance at a wavelength of 400 nm and an optical path length of 1 cm is 90% or more.
- the solvent includes at least one of an alcohol solvent, a ketone solvent, an ester solvent, an ether solvent, a nitrile solvent, an amide solvent, a sulfone solvent, a carbonate solvent, a phenol solvent, and water.
- a powder containing 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride is heated to 150 ° C. to 350 ° C. and sublimated under a reduced pressure of 50 Torr or less. , 3′-biphenyltetracarboxylic dianhydride powder purification method.
- Item 10 The polyimide according to Item 10, wherein the film has a light transmittance of 80% or more at 400 nm when formed into a film having a thickness of 10 ⁇ m.
- a purification method for obtaining 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder that is easily colored with a simple operation, 2,2 ′, 3 with less coloration , 3′-biphenyltetracarboxylic dianhydride powder and a polyimide with improved light transmittance using the powder can be provided.
- the 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder of the invention disclosed in Part F is the same as the prior art 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder.
- a more transparent end product in particular a polyimide
- a more transparent end product in particular a polyimide
- the 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder of the invention disclosed in Part F is also preferably used in the production of the polyimide precursor described in Part A and Part B.
- 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder of the invention disclosed in Part F (hereinafter 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride is converted to i-BPDA) 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder is sometimes abbreviated as i-BPDA powder.)
- i-BPDA powder 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride powder is sometimes abbreviated as i-BPDA powder.
- Is dissolved in 2N aqueous sodium hydroxide solution at a concentration of 10% by mass The light transmittance at a wavelength of 400 nm and an optical path length of 1 cm with respect to the obtained solution is 80% or more. When the light transmittance is less than 80%, a light yellow color is exhibited and the object of the present invention cannot be achieved.
- the method for synthesizing i-BPDA is arbitrary, but it can be obtained by obtaining 2,2 ′, 3,3′-biphenyltetracarboxylic acid as an intermediate and then dehydrating it.
- a method for synthesizing 2,2 ′, 3,3′-biphenyltetracarboxylic acid a) Journal of Chemical Society, 1914, vol. 105, p.
- a production method using a so-called Ullmann reaction in which a coupling reaction is performed by heating at a high temperature in the presence of copper powder described in 2471, and b) a reduction reaction using a dialkylbenzene mononitro compound described in Patent Document 1 as a starting material, and benzidine
- a manufacturing method is preferred.
- a known method can be suitably used as a method for synthesizing i-BPDA by dehydrating 2,2 ', 3,3'-biphenyltetracarboxylic acid.
- a method of dehydrating by adding an acid anhydride such as acetic anhydride a method of dehydrating by adding a solvent azeotropic with water, a method of dehydrating by heating under an inert gas or reduced pressure, and the like can be mentioned.
- i-BPDA powder having a purity of 90% or more, preferably 95% or more, which can be used in conventional polyimide production can be obtained by the above production method.
- i-BPDA powder of the present invention for the purpose of reducing coloring, (1) A purification method in which a solvent and i-BPDA powder are mixed in a non-uniform state in which at least a part of i-BPDA powder is not dissolved, and then undissolved i-BPDA powder is separated and recovered from the mixed solution , (2) A purification method in which recrystallization is performed with a solution containing an acid anhydride, (3) It is preferable to include any purification step such as a purification method that sublimates under heating and reduced pressure. Further, these methods can be repeated a plurality of times or combined and purified. Further, the purity of i-BPDA before purification is 90% or more, preferably 95% or more, more preferably 98% or more. If it is less than 90%, coloring may not be sufficiently removed by these purification steps.
- a solvent having an i-BPDA solubility of 0.5 g / 100 g or more at 25 ° C. is used, and at least a part of the i-BPDA powder is not dissolved. It is possible to use a purification method of mixing in a non-uniform state and then separating and recovering undissolved i-BPDA powder from the mixed solution.
- the solvent in which the solubility of i-BPDA at 25 ° C. is 0.5 g / 100 g or more refers to a solvent capable of dissolving 0.5 g or more of i-BPDA in 100 g of solvent at 25 ° C.
- the solubility of i-BPDA in the present invention is determined by the method described in the examples.
- a solvent having i-BPDA solubility at 25 ° C. of 0.5 g / 100 g or more, preferably 3 g / 100 g to 20 g / 100 g can be used.
- This solvent does not need to be a single type of solvent, and may be a mixture of a plurality of types of solvents as long as the solubility as a mixture is 0.5 g / 100 g or more.
- Suitable solvents include, but are not limited to, alcohols such as methanol, ethanol, butanol, isopropyl alcohol, normal propyl alcohol, butanol, tertiary butanol, butanediol, ethylhexanol, benzyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone , Diisobutyl ketone, ketone solvent of cyclohexanone, ethyl acetate, methyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, butyl lactate, ⁇ -valerolactone, Esters such as ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇
- Examples include carbonate solvents, phenolic solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, water, etc. Particularly preferred are dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone. These solvents are preferably high-purity solvents that do not contain impurities, metal components, and moisture. When an alcohol solvent or water is used, a part of the acid anhydride may cause a ring-opening reaction. Therefore, it is preferable to close the ring by heating or the like in a later operation.
- phenolic solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, acetophenone, 1,3-dimethyl-2-imi
- the temperature at which the solvent and the i-BPDA powder are mixed may be less than the boiling point of the solvent, but is 150 ° C. or less, preferably 100 ° C. or less, more preferably 0 to 50 ° C.
- the solvent may be colored due to reaction, decomposition, or oxidative degradation.
- known methods such as filtration at normal pressure, pressure filtration, suction filtration, and centrifugal filtration are suitable. Available to: When solvent extraction is performed at room temperature or higher, heating is preferably performed to prevent precipitation. Moreover, when the temperature at the time of extraction falls by the time of filtering, since the impurity melt
- the i-BPDA powder is preferably separated and recovered and then dried.
- drying method known methods such as hot air drying, heat drying under an inert gas stream, and vacuum drying can be suitably used. Since part of the acid anhydride may cause a ring-opening reaction during solvent extraction, it is more preferable to close the ring by heating or the like during drying.
- a purification step of recrystallizing a powder containing 90% or more of i-BPDA with a solution containing an acid anhydride can be suitably used.
- the solution containing an acid anhydride used here is a solution containing an aliphatic acid anhydride such as acetic anhydride or propionic anhydride at least twice as much as 2,2 ′, 3,3′-biphenyltetracarboxylic acid. It is preferable.
- the solvent a solvent similar to the purification method of (1) can be preferably used. The method described above can be suitably used for the filtration and drying of the purified product.
- a purification step of sublimating i-BPDA under reduced pressure at a temperature of 350 ° C. or lower and 50 Torr or lower can be suitably used.
- Sublimation purification conditions include a temperature of 350 ° C. or lower and a reduced pressure of 50 Torr or lower, preferably a temperature of 150 to 300 ° C. or lower and a reduced pressure of 5 Torr or lower.
- i-BPDA may be decomposed and colored, and when it is 150 ° C. or lower, the production efficiency is lowered.
- the pressure is reduced to 50 Torr or more, i-BPDA may be oxidized and colored. Further, it can be continuously produced by the production methods described in JP-A-2005-314296 and JP-A-2006-45198.
- the polyimide of the present invention is obtained by reacting i-BPDA having a light transmittance of 400% with an optical path length of 1 cm of 80% or more and a diamine component, i-BPDA having a light transmittance of 400 nm of less than 80%.
- the light transmittance of polyimide is improved as compared with that obtained by reacting the diamine component.
- the light transmittance at 400 nm when a film having a thickness of 10 ⁇ m is 70% or more, more preferably 80% or more.
- tetracarboxylic dianhydride other than i-BPDA is further 90% or less, preferably 50%, based on the total molar amount of tetracarboxylic dianhydride. It can be used in the following.
- a tetracarboxylic dianhydride other than i-BPDA the solubility of the polyimide precursor is improved and the production becomes easier.
- the tetracarboxylic dianhydride component other than i-BPDA is not particularly limited and may be any tetracarboxylic dianhydride employed in ordinary polyimides, but aromatic tetracarboxylic dianhydrides.
- Such tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride, pyromellitic Acid dianhydride, oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, m- Terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4 ′-(2,2-hexafluoroisopropylene) diphthalic dianhydride, 2,2′-bis (3 4-dicarboxyphenyl) propanes, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenete
- the diamine component used in the polyimide of the present invention is not particularly limited, and the diamines described in Part C can be used.
- these diamines include 1,4-diaminocyclohexane, bis (4,4′-aminocyclohexyl) methane, 2,2′-bis (trifluoromethyl) -4,4′-diamino.
- Biphenyl, 4,4′-diaminodiphenyl sulfone and derivatives thereof are more preferred because the resulting polyimide is excellent in transparency and heat resistance, and trans-1,4-diaminocyclohexane is particularly preferred because of its lower thermal linear expansion coefficient.
- the diamine component can be suitably used as a diamine derivative by reacting the diamine with a silylating agent (such as an amide silylating agent) for the purpose of imparting reactivity or product solubility.
- a silylating agent such as an amide silylating agent
- the polyimide precursor of the present invention is not particularly limited, but is easily produced by the method for producing the polyimide precursor described in Part D, that is, the production method via 1) polyamic acid or 2) polyamic acid silyl ester. be able to.
- the polyimide precursor solution composition of the present invention can be easily obtained.
- the molar ratio of the tetracarboxylic acid component and the diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- the organic solvent used in the production method is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- the organic solvent that can be used include those listed as the organic solvent used in the production method in Part A.
- the polyimide precursor of the present invention may contain chemical imidization agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers, dyes, inorganic pigments, and silane couplings as necessary.
- chemical imidization agents such as acetic anhydride, amine compounds such as pyridine and isoquinoline
- antioxidants such as pyridine and isoquinoline
- fillers dyes, inorganic pigments, and silane couplings
- dyes such as acetic anhydride
- inorganic pigments such as pyridine and isoquinoline
- silane couplings as necessary.
- Agents, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like can be added.
- the polyimide of the present invention can be produced by subjecting the polyimide precursor of the present invention to a dehydration ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- the form of the obtained polyimide can mention a film, a polyimide laminated body, a powder, a bead, a molded object, a foam, a varnish, etc. suitably.
- the polyimide of the present invention is not limited, but the average coefficient of thermal expansion at 50 ° C. to 200 ° C. when formed into a film is 50 ppm / K or less, preferably 30 ppm / K or less, more preferably 20 ppm / K or less.
- the film made of the polyimide of the present invention is preferably about 1 ⁇ m to 200 ⁇ m, more preferably about 1 ⁇ m to 100 ⁇ m, although it depends on the application.
- the polyimide of the present invention is not particularly limited, but is suitable as an optical material because of its excellent transparency and toughness.
- it can be suitably used as a transparent substrate for display, a transparent substrate for touch panel, and a transparent substrate for solar cell.
- a polyimide / substrate laminate and a polyimide film can be produced using a polyimide precursor.
- An example of the manufacturing method is as described in Part A.
- a polyimide film / base laminate or a polyimide film can be manufactured in the same manner as in Part A, and a flexible conductive substrate can be manufactured in the same manner. .
- Part G relates to a polyimide having high transparency, high mechanical strength, and a low linear thermal expansion coefficient, and a polyimide precursor thereof.
- the purpose of the invention disclosed in Part G is a polyimide having both excellent transparency, high mechanical strength, and low coefficient of thermal expansion suitable for transparent substrates, solar cells, and touch panels, and a polyimide precursor thereof.
- a polyimide precursor thereof By strictly controlling the transmittance of diamine and tetracarboxylic dianhydride, the transparency of the conventional polyimide has been greatly improved.
- the invention disclosed in Part G relates to the following items.
- a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component The diamine component is a diamine having no aromatic ring having a light transmittance of 90% or more (including derivatives thereof, the same applies hereinafter), or a diamine having an aromatic ring having a light transmittance of 80% or more (derivative thereof). (The same applies hereinafter.)
- the transmittance of the diamine component is 400 nm with respect to a solution obtained by dissolving 10% by mass in pure water or N, N-dimethylacetamide, and the optical path length is 1 cm. Represents light transmittance).
- the tetracarboxylic acid component contains tetracarboxylic acids (including derivatives thereof, the same shall apply hereinafter) having a light transmittance of 75% or more (provided that the transmittance of the tetracarboxylic acid component is in a 2N sodium hydroxide solution). It represents the transmittance of a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving at a concentration of 10% by mass.) Polyimide characterized by that.
- Item 3 The polyimide according to Item 1 or 2, wherein at least one of tetracarboxylic acids and diamines is an aromatic compound.
- Item 3 The polyimide according to Item 1 or 2, wherein the tetracarboxylic acid is an aromatic tetracarboxylic acid compound and the diamine is an aliphatic diamine compound.
- Item 5 The polyimide according to any one of Items 1 to 4, wherein the tetracarboxylic acid is a biphenyltetracarboxylic acid.
- Item 5 The polyimide according to any one of Items 1 to 4, wherein the diamine is trans-1,4-diaminocyclohexane.
- Item 7 The polyimide according to any one of Items 1 to 6, wherein when the film has a thickness of 10 ⁇ m, the light transmittance at 400 nm is 80% or more.
- Item 8 The polyimide according to any one of Items 1 to 7, which is used for optical materials.
- a polyimide precursor containing 50 mol% or more of diamines having no aromatic ring with respect to the total molar amount of the diamine component used, and with respect to a solution obtained by dissolving in a polar solvent at a concentration of 10 mass% A polyimide precursor characterized by having a light transmittance of 90% or more at a wavelength of 400 nm and an optical path length of 1 cm.
- Item 10 The polyimide precursor according to any one of Items 9 or 10, wherein the logarithmic viscosity in a solution of 30 g, 0.5 g / dL N, N-dimethylacetamide is 0.2 dL / g or more.
- X represents a tetravalent organic group
- R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 represent a hydrogen atom, and 1 to 6 carbon atoms.
- a polyimide precursor solution composition wherein the polyimide precursor according to any one of Items 9 to 12 above is uniformly dissolved in a solvent.
- the invention disclosed in Part G provides a polyimide having excellent transparency, high mechanical strength, and low coefficient of thermal expansion suitable for transparent substrates, solar cells, and touch panels, and a polyimide precursor thereof. can do.
- the polyimide of the invention disclosed in Part G is a polyimide obtained by reacting a diamine component and a tetracarboxylic acid component,
- the diamine component has a light transmittance of 90% or more, preferably 95% or more and does not have an aromatic ring (including derivatives thereof as described above), or a light transmittance of 70% or more, preferably Contains diamines having an aromatic ring of 80% or more (including derivatives thereof as described above) (however, the light transmittance is dissolved in pure water or N, N-dimethylacetamide at a concentration of 10% by mass) And a light transmittance of a wavelength of 400 nm and an optical path length of 1 cm with respect to the solution thus obtained),
- the tetracarboxylic acid component contains tetracarboxylic acids (including derivatives thereof as described above) having a light transmittance of 80% or more, preferably 85% or more, more preferably 90% or more (provided that light transmission is performed).
- the rate is characterized by having a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving in a 2N sodium hydroxide solution at a concentration of 10% by mass.
- the light transmittance of the diamine constituting the diamine component and the tetracarboxylic acid constituting the tetracarboxylic acid component is in the above range, the resulting polyimide is reduced in color, which is favorable.
- the light transmittance is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and most preferably 100% of the diamines constituting the diamine component (one or more). Meet.
- 80% or more, more preferably 90% or more, still more preferably 95% or more, and most preferably 100% of the tetracarboxylic acids (one or two or more) constituting the tetracarboxylic acid component have the above light transmission. Meet the rate.
- the polyimide of the present invention is not particularly limited, but it is preferable that at least one of the tetracarboxylic acid component and the diamine component is an aromatic compound because of high heat resistance. Furthermore, since the tetracarboxylic acid component is substantially composed of aromatic tetracarboxylic acids and the diamine component is substantially composed of aliphatic diamines, transparency can be improved and a low linear thermal expansion coefficient can be achieved. More preferred.
- the tetracarboxylic acid component used in the polyimide of the present invention is not particularly limited and may be any tetracarboxylic acid component employed in ordinary polyimides, but aromatic tetracarboxylic dianhydride, alicyclic tetra Carboxylic dianhydrides are preferred.
- Aromatic tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides include those exemplified in Part E.
- polyimide has excellent mechanical properties and heat resistance
- dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic acid
- a dianhydride is particularly preferred because of its low coefficient of thermal expansion.
- the tetracarboxylic acids used in the present invention are preferably purified for the purpose of reducing coloring.
- the purification method is not particularly limited and a known method can be used, but the following method is preferred.
- a solvent and a tetracarboxylic acid powder (for example, tetracarboxylic dianhydride) are mixed in a non-uniform state in which at least a part of the tetracarboxylic acid powder is not dissolved, and then undissolved from the mixed solution.
- a purification method for separating and recovering tetracarboxylic acid powders (2) A purification method in which recrystallization is performed with a solution containing an acid anhydride, (3) Purification method in which sublimation is performed under heating and reduced pressure. These methods may be repeated a plurality of times or in combination.
- the diamine component is not particularly limited, and any diamine can be used as long as it is employed in ordinary polyimides. However, the diamines described in Part C are preferably used in order to improve the transparency of the polyimide.
- 1,4-diaminocyclohexane bis (4,4'-aminocyclohexyl) methane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diaminodiphenyl sulfone was used.
- Polyimide is more preferable because of its excellent transparency and heat resistance, and trans-1,4-diaminocyclohexane is particularly preferable because of its low coefficient of thermal expansion.
- the diamines used in the present invention are preferably purified for the purpose of reducing coloring.
- the purification method is not particularly limited and a known method can be used, but the following method is preferred. (1) Purification method for sublimation (2) Purification method for treatment with adsorbent (3) Purification method by recrystallization Further, these methods can be repeated a plurality of times or in combination.
- a compound obtained by reacting the above-described diamine with a silylating agent such as an amide-based silylating agent
- a silylating agent such as an amide-based silylating agent
- the polyimide precursor of the present invention has a concentration of 10% by mass in the polar solvent when the polyimide precursor contains 50 mol% or more of diamines having no aromatic ring with respect to the total molar amount of the diamine component used.
- the light transmittance at a wavelength of 400 nm and an optical path length of 1 cm with respect to the solution obtained by dissolution in is 90% or more, preferably 95% or more.
- a polyimide precursor containing 50 mol% or more of diamines having an aromatic ring with respect to the total molar amount of the diamine component used it was obtained by dissolving in a polar solvent at a concentration of 10% by mass.
- the light transmittance of the solution with a wavelength of 400 nm and an optical path length of 1 cm is 50% or more, preferably 55% or more.
- the polar solvent used in the measurement is not particularly limited as long as it can dissolve the polyimide precursor, but N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl Amide solvents such as -2-pyrrolidone, cyclic ester solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, etc.
- Carbonate solvents such as triethylene glycol, phenol solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, Sulfolane, dimethyl sulfoxide, etc. It is preferably used.
- the polyimide precursor of the present invention is not particularly limited, but the production method of the polyimide precursor described in Part D, that is, 1) polyamic acid or 2) production method via polyamic acid silyl ester, or the following 3) polyamide It can be easily produced by a production method via an acid ester.
- a polyimide precursor is obtained by reacting the diester dicarboxylic acid chloride and diamine.
- a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent. Further, since this polyimide precursor is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
- any of the above production methods (the production methods 1) to 3) above can be suitably carried out in an organic solvent, as a result, the polyimide precursor solution composition of the present invention can be easily obtained. Can do.
- the molar ratio of the tetracarboxylic acid component and the diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but is preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- the organic solvent used in the production method is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
- the organic solvent that can be used include those listed as “Organic solvents used in the production method” in Part A.
- the logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, but the temperature: 30 ° C., concentration: 0.5 g / dL, solvent: logarithmic viscosity in N, N-dimethylacetamide solution is preferably 0.2 dL / g or more, preferably Is 0.5 dL / g or more. At 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, so the mechanical strength of the resulting polyimide film is improved.
- the logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, but is preferably 2.5 dL / g or less, more preferably 2.0 dL / g or less, and particularly preferably 1.5 dL / g or less.
- the logarithmic viscosity is low, since the viscosity of the polyimide precursor varnish is low, the handling property of the polyimide film manufacturing process is improved.
- the polyimide precursor of the present invention is not particularly limited, but preferably includes a unit structural formula of the following general formula (G1).
- X represents a tetravalent organic group
- R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 2 and R 3 represent a hydrogen atom, and 1 to 6 carbon atoms.
- X is more preferably a tetravalent organic group represented by the following general formula (G2), particularly preferably a tetravalent biphenyl isomer.
- the polyimide of the present invention can be produced by subjecting a polyimide precursor to a dehydration ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- the form of the obtained polyimide can mention a film, a polyimide laminated body, a coating film, a powder, a bead, a molded object, a foam, a varnish, etc. suitably.
- the polyimide of the present invention is not limited, the light transmittance at 400 nm when it is formed into a film having a thickness of 10 ⁇ m is 80% or more, preferably 85% or more, more preferably 90% or more, and excellent transparency. Have.
- the polyimide of the present invention is not limited, but the average coefficient of thermal expansion at 50 ° C. to 200 ° C. when formed into a film is 50 ppm / K or less, preferably 30 ppm / K or less, more preferably 20 ppm / K or less.
- the film made of the polyimide of the present invention is preferably about 1 ⁇ m to 200 ⁇ m, more preferably about 1 ⁇ m to 100 ⁇ m, although it depends on the application.
- the polyimide of the present invention is not particularly limited, but is suitable as an optical material because of its excellent transparency and toughness.
- it can be suitably used as a transparent substrate for display, a transparent substrate for touch panel, and a transparent substrate for solar cell.
- a polyimide / substrate laminate and a polyimide film can be produced using a polyimide precursor.
- An example of the manufacturing method is as described in Part A.
- a polyimide film / base laminate or a polyimide film can be manufactured in the same manner as in Part A, and a flexible conductive substrate can be manufactured in the same manner. .
- Part H relates to a polyimide precursor varnish capable of obtaining a highly transparent polyimide that is optimal as a high heat-resistant optical material, and a method for producing a polyimide varnish. In particular, these are achieved by strictly controlling the purity of the organic solvent used.
- the object of the invention disclosed in Part H is to produce a polyimide precursor varnish capable of obtaining a polyimide having high transparency optimal for a transparent substrate, a solar cell, and a transparent substrate for a touch panel, and production of a polyimide varnish Is to provide a method.
- the invention disclosed in Part H relates to the following items.
- a method for producing a varnish containing at least an organic solvent and a polyimide precursor represented by the following general formula (H1) or a polyimide represented by the following general formula (H2) As the organic solvent to be contained in the varnish (hereinafter referred to as the organic solvent to be used), an organic solvent having an optical path length of 1 cm and a light transmittance at 400 nm of 89% or more is used to produce the varnish.
- the manufacturing method of the varnish characterized by the above-mentioned.
- a 1 is a tetravalent aliphatic group or aromatic group
- B 1 is a divalent aliphatic group or aromatic group
- R 1 and R 2 are independently of each other.
- a 2 is a tetravalent aliphatic group or aromatic group
- B 2 is a divalent aliphatic group or aromatic group.
- Item 3 The method for producing a varnish according to Item 1 or 2, wherein an organic solvent having a purity determined by gas chromatography analysis of 99.8% or more is used as the organic solvent used.
- an organic solvent to be used an organic solvent in which the total amount of impurity peaks appearing on the long time side is less than 0.2% with respect to the retention time of the main component peak obtained by gas chromatography analysis is used. 4. The method for producing a varnish according to any one of items 1 to 3 above.
- Item 5 The method for producing a varnish according to any one of Items 1 to 4, wherein the purity of the organic solvent used is 99.9% or more.
- Item 6 The method for producing a varnish according to any one of Items 1 to 5, wherein a non-volatile component at 250 ° C. of the organic solvent used is 0.1% or less.
- Item 7 The method for producing a varnish according to any one of Items 1 to 6, wherein the content of the metal component of the organic solvent used is 10 ppm or less.
- Item 8 The method for producing a varnish according to any one of Items 1 to 7, wherein the organic solvent used is a nitrogen-containing compound.
- the organic solvent used is composed of N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylimidazolidinone, and combinations of two or more thereof.
- a 1 in general formula (H1) and A 2 in general formula (H2) are tetravalent aromatic groups, and B 1 in general formula (H1) and B 2 in general formula (H2) are divalent.
- Item 10 The method for producing a varnish according to any one of Items 1 to 9, wherein the varnish is an aromatic group.
- a 1 in general formula (H1) and A 2 in general formula (H2) are tetravalent aromatic groups, and B 1 in general formula (H1) and B 2 in general formula (H2) are divalent.
- Item 10 The method for producing a varnish according to any one of Items 1 to 9, wherein the varnish is an aliphatic group.
- a 1 in general formula (H1) and A 2 in general formula (H2) are tetravalent aliphatic groups, and B 1 in general formula (H1) and B 2 in general formula (H2) are divalent.
- Item 10 The method for producing a varnish according to any one of Items 1 to 9, wherein the varnish is an aromatic group.
- a 1 in general formula (H1) and A 2 in general formula (H2) are selected from the group consisting of tetravalent aliphatic groups represented by general formula (H4) below.
- R 3 to R 5 independently represent a CH 2 group, a C 2 H 4 group, an oxygen atom, or a sulfur atom
- R 6 represents a direct bond, a CH 2 group, a C ( CH 3 ) 2 group, SO 2 group, Si (CH 3 ) 2 group, C (CF 3 ) 2 group, oxygen atom or sulfur atom are represented.
- B 1 in the general formula (H1) and B 2 in the general formula (H2) are selected from the group consisting of divalent aromatic groups represented by the following general formulas (H5-1) to (H5-5) Item 13.
- R 7 is hydrogen, a methyl group, an ethyl group
- R 8 is a monovalent organic group
- Ar 1 ⁇ Ar 28 are each independently
- n 1 is an integer of 1 to 5
- n 2 to n 7 are each independently an integer of 0 to 5.
- Item 11 is characterized in that B 1 in the general formula (H1) and B 2 in the general formula (H2) are selected from the group consisting of divalent aliphatic groups represented by the following general formula (H6). The manufacturing method of varnish of description.
- R 9 represents hydrogen or a hydrocarbon group having 1 to 3 carbon atoms
- R 10 represents a direct bond, CH 2 group, C (CH 3 ) 2 group, SO 2 group, Si 2 (CH 3 ) 2 groups, C (CF 3 ) 2 groups, an oxygen atom or a sulfur atom is represented.
- a method for producing polyimide comprising producing a polyimide using the varnish produced by the production method according to any one of Items 1 to 18.
- polyimide precursor varnish capable of obtaining a highly transparent polyimide and a method for producing the polyimide varnish.
- These polyimide precursor varnishes and polyimide varnishes are suitably used as transparent heat-resistant substrates for flexible displays, solar cells, and touch panels.
- the present inventor has found that the purity of the organic solvent strongly affects the coloring of the polyimide.
- the coloration of polyimide is generally considered to be based on its chemical structure, and on the other hand, it was thought that the nitrogen-containing solvent was deteriorated and colored at high temperature, so the purity of the organic solvent was It was unexpected that it strongly influenced the coloring of the polyimide.
- the organic solvent since the organic solvent has a large weight in the varnish, a very small amount of impurities are considered to cause the polyimide to be colored.
- characteristics relating to the purity of the organic solvent used that is, light transmittance, light transmittance after heating reflux treatment, purity by gas chromatography analysis, ratio of impurity peak by gas chromatography analysis
- an organic solvent whose purity is strictly controlled by using at least one of the content of the non-volatile component and the content of the metal component as an index
- a varnish containing the polyimide precursor or polyimide is produced.
- a more transparent polyimide can be obtained as compared with a polyimide produced by a conventional production method.
- the invention disclosed in Part H is also preferably used for the production of the polyimide precursor described in Part A and Part B.
- the varnish produced by the invention disclosed in Part H contains at least an organic solvent and a polyimide precursor represented by the following general formula (H1) or a polyimide represented by the following general formula (H2).
- a 1 is a tetravalent aliphatic group or aromatic group
- B 1 is a divalent aliphatic group or aromatic group
- R 1 and R 2 are independently of each other.
- a 2 is a tetravalent aliphatic group or aromatic group
- B 2 is a divalent aliphatic group or aromatic group.
- varnish means both a varnish containing a polyimide precursor represented by the general formula (H1) and a varnish containing a polyimide represented by the general formula (H2) unless otherwise specified. To do.
- organic solvent is used in several steps of the varnish manufacturing process.
- the organic solvent used in the production process will be contained in the varnish almost as it is, except for a small amount of evaporation.
- the “organic solvent used” means the sum of the organic solvents used in all the processes relating to the production of varnish. More specifically, the “organic solvent to be used” includes an organic solvent as a polymerization solvent used in the polymerization step, and further dilutes a solvent to be used, for example, varnish to a desired concentration and viscosity.
- the organic solvent used in the process, the organic solvent used when preparing the diluted solution in advance when the additive is added, and the like are included.
- the organic solvent used has the following properties relating to purity: (a) light transmittance, (b) light transmittance after heat reflux treatment, (c) purity by gas chromatography analysis, ( d) The conditions specified below are satisfied with respect to at least one of the characteristics consisting of the ratio of impurity peaks by gas chromatography analysis, (e) the amount of non-volatile components, and (f) the content of metal components.
- the present invention is a method for producing a varnish containing at least an organic solvent and a polyimide precursor represented by the general formula (H1) or a polyimide represented by the general formula (H2), wherein the conditions (a) to (F): (A) producing the varnish using an organic solvent having an optical path length of 1 cm and an optical transmittance of 89% or more at 400 nm as the organic solvent used; (B) As an organic solvent to be used, an organic solvent having an optical path length of 1 cm after heating and refluxing in nitrogen for 3 hours and an optical transmittance of 20% or more at 400 nm; (C) Use an organic solvent having a purity of 99.8% or more determined by gas chromatography analysis as the organic solvent used; (D) As an organic solvent to be used, an organic solvent in which the total amount of impurity peaks appearing on the long time side is less than 0.2% with respect to the retention time of the main component peak obtained by gas chromatography analysis is used. ; (E) The non-volatile component at 250 °
- the conditions in these characteristics are based on the sum of the organic solvents used. That is, the organic solvent used is not limited to one type and may be two or more types. Two or more types of organic solvents are used when a mixed solvent is used in a specific process or when a different solvent is used depending on the process, for example, when a polymerization solvent and a diluent solvent for an additive are different. Also means. When two or more types of organic solvents are used (hereinafter referred to as mixed solvents), the conditions of each characteristic relating to purity are applied to the entire mixed solvent, and when organic solvents are used in multiple steps The condition of each characteristic relating to purity is applied to a mixed solvent in which all organic solvents to be finally contained in the varnish are mixed.
- Each characteristic may be measured by actually mixing an organic solvent, or the characteristics of each organic solvent may be obtained, and the characteristics of the entire mixture may be obtained by calculation. For example, when 70 parts of solvent A having a purity of 100% and 30 parts of solvent B having a purity of 90% are used, the purity of the organic solvent used is calculated to be 97%.
- the organic solvent used has a light transmittance at an optical path length of 1 cm and 400 nm of preferably 89% or more, more preferably 90% or more, and particularly preferably 91% or more.
- a solvent having a high light transmittance it is preferable because coloring of the film is reduced in the production process of the polyimide film.
- the organic solvent used is preferably heated and refluxed for 3 hours in a nitrogen atmosphere, and then the light transmittance at an optical path length of 1 cm and 400 nm is preferably 20% or more. 40% or more is more preferable, and 80% or more is particularly preferable.
- a solvent having a high light transmittance when heated to reflux in nitrogen for 3 hours it is preferable because coloring of the film is reduced in the production process of the polyimide film.
- the organic solvent to be used has a purity of 99.8% or more, more preferably 99.9% or more, more preferably 99.99%, as determined by gas chromatography analysis. That's it.
- the purity of the organic solvent is high, the polyimide film finally obtained has a high light transmittance, which is preferable.
- the purity of the organic solvent used is within the above range.
- the organic solvent may contain a trace amount of other solvents (for example, those other than the organic solvents exemplified later), but those that do not affect the coloring (for example, those having a boiling point lower than that of the main component) are the present invention. However, it does not consider “impurities” that affect the purity of organic solvents.
- the total amount of impurity peaks appearing on the long side with respect to the retention time of the main component peak obtained by gas chromatography analysis is preferably 0. It is less than 2%, more preferably 0.1% or less, and particularly preferably 0.05% or less.
- Impurities that appear on the long side of the retention time for the main component peak of the solvent are high boiling point impurities or impurities with large intermolecular interactions, so they are difficult to volatilize in the polyimide film manufacturing process, Since it tends to remain as impurities in the film, it causes coloring.
- the total amount of impurity peaks appearing on the long time side is in the above range from the main component peak appearing on the long time side in gas chromatography analysis.
- the organic solvent used in the present invention is preferably 0.1% or less, more preferably 0.05% or less, of the organic solvent to be used after heating at 250 ° C. for 30 minutes. 0.01% or less is particularly preferable. Since the non-volatile component of the solvent is less likely to volatilize in the production process of the polyimide film and easily remains as an impurity in the film, it is preferable that the non-volatile component is small.
- the organic solvent used is a metal of the organic solvent used (for example, Li, Na, Mg, Ca, Al, K, Ca, Ti, Cr, Mn, Fe, Co, Ni,
- the content of the Cu, Zn, Mo, Cd) component is preferably 10 ppm or less, more preferably 1 ppm or less, particularly 500 ppb or less, and particularly preferably 300 ppb or less.
- the content rate of a metal component is low, since the coloring to the solvent at the time of carrying out a high temperature process is low and coloring of a film reduces at the manufacturing process of a polyimide film, it is preferable.
- the conditions described in the above (a) to (f) can be independently employed as conditions for giving a highly transparent polyimide. That is, one aspect of the present invention is established independently for each of the conditions described for (a) to (f). However, it is also preferable to satisfy all two or more of the conditions (a) to (f), and it is usually preferable to satisfy more conditions.
- the type of the organic solvent used is not particularly limited as long as it is a solvent capable of dissolving the polyimide precursor or polyimide (in the case of a mixed solvent, it is sufficient that the polyimide precursor or polyimide can be dissolved as a mixed solvent).
- amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- Cyclic ester solvents such as ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenol solvents such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol Acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably used.
- aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide and the like are more preferable because of excellent solubility. .
- Nitrogen-containing compounds are preferred because of the excellent solubility of the polyimide precursor varnish and the polyimide varnish.
- N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl- 2-pyrrolidone and dimethylimidazolidinone are more preferable.
- N, N-dimethylacetamide is preferable because it is difficult to be colored at high temperatures, and the coloration of the film is reduced in the production process of the polyimide film.
- the polyimide precursor or polyimide contained in the varnish produced in the present invention is as described above.
- the tetravalent aliphatic group or aromatic group represented by A 1 in the general formula (H1) and A 2 in the general formula (H2) is obtained by removing four carboxyl groups (—COOH) from a tetracarboxylic acid.
- the tetracarboxylic acid and its anhydride, which are tetravalent residues and excluding four carboxyl groups, are hereinafter referred to as a tetracarboxylic acid component.
- the divalent aliphatic group or aromatic group represented by B 1 in the general formula (H1) and B 2 in the general formula (H2) is obtained by removing two amino groups (—NH 2 ) from the diamine.
- a diamine that is a residue and before removing two amino groups is hereinafter referred to as a diamine component.
- Combination of tetracarboxylic acid component and diamine component is aromatic tetracarboxylic acid component / aromatic diamine component, aromatic tetracarboxylic acid component / aliphatic diamine component, aliphatic tetracarboxylic acid component / Aromatic diamine components are preferred because of their excellent heat resistance, and when aliphatics are used for each component, those having an alicyclic structure are more preferred.
- the aromatic tetracarboxylic acid component is not particularly limited as long as it is an aromatic tetracarboxylic acid component that is generally used as a tetracarboxylic acid component of polyimide, but A 1 or A 2 is represented by the formula (H3).
- the tetracarboxylic acid component selected from the group is preferable because the resulting polyimide has high heat resistance.
- a tetracarboxylic acid component selected from 4′-oxydiphthalic acid, 4,4 ′-(dimethylsiladiyl) diphthalic acid and acid anhydrides thereof is more preferable because the resulting polyimide has high transparency, and 3,3 ′ , 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid and acid anhydrides thereof are further obtained.
- Particularly preferred is a polyimide having a low coefficient of thermal expansion.
- the aliphatic tetracarboxylic acid component is not particularly limited as long as it is an aliphatic tetracarboxylic acid component generally used as a tetracarboxylic acid component of polyimide, but has an alicyclic structure because the resulting polyimide has high heat resistance.
- a tetracarboxylic acid component is preferred, and A 1 or A 2 is represented by the general formula (H4):
- R 3 to R 5 independently represent a CH 2 group, a C 2 H 4 group, an oxygen atom, or a sulfur atom
- R 6 represents a direct bond, a CH 2 group, a C ( CH 3 ) 2 group, SO 2 group, Si (CH 3 ) 2 group, C (CF 3 ) 2 group, oxygen atom or sulfur atom are represented.
- a tetracarboxylic acid component having a 6-membered alicyclic structure represented by the formula is more preferable, and among them, polyalicyclic and cross-linked tetracarboxylic acid components are further low in heat resistance and thermal expansion coefficient of the resulting polyimide. This is particularly preferable.
- Examples of the aliphatic tetracarboxylic acid component having a 6-membered alicyclic structure include cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-3,3 ′, 4,4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,2 ', 3,3'-tetracarboxylic acid, 4,4'-methylenebis (cyclohexane-1,2-dicarboxylic acid), 4,4'-(propane-2,2-diyl) bis (cyclohexane-1,2- Dicarboxylic acid), 4,4′-oxybis (cyclohexane-1,2-dicarboxylic acid), 4,4′-thiobis (cyclohexane-1,2-
- polyalicyclic or bridged ring type aliphatic tetracarboxylic acid component examples include octahydropentalene-1,3,4,6-tetracarboxylic acid, bicyclo [2.2.1] heptane-2,3, 5,6-tetracarboxylic acid, 6- (carboxymethyl) bicyclo [2.2.1] heptane-2,3,5-tricarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6 -Tetracarboxylic acid, bicyclo [2.2.2] oct-5-ene-2,3,7,8-tetracarboxylic acid, tricyclo [4.2.2.02,5] decane-3,4,7 , 8-tetracarboxylic acid, tricyclo [4.2.2.02,5] dec-7-ene-3,4,9,10-tetracarboxylic acid, 9-oxatricyclo [4.2.1.02 , 5] nonane-3,
- bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, decahydro- 1,4: 5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid and these acid anhydrides are preferable because the production method is easy and the resulting polyimide has excellent heat resistance.
- the aromatic diamine component is not particularly limited as long as it is an aromatic diamine component generally used as a diamine component of polyimide, but B 1 or B 2 is represented by the general formulas (H5-1) to (H5-5).
- a diamine component selected from the divalent aromatic groups represented is preferable because the resulting polyimide has high heat resistance.
- Diamines represented by the above general formulas (H5-3) to (H5-5) as B 1 or B 2 are more preferred because the resulting polyimide has a low coefficient of thermal expansion.
- R 7 is hydrogen, a methyl group, an ethyl group
- R 8 is a monovalent organic group
- Ar 1 ⁇ Ar 28 are each independently
- n 1 is an integer of 1 to 5
- n 2 to n 7 are each independently an integer of 0 to 5.
- Examples of the aromatic diamine represented by the general formula (H5-1) include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 2,4-toluenediamine, 2,5-toluenediamine, 2,6- Examples thereof include toluenediamine and derivatives thereof. Of these, p-phenylenediamine and 2,5-toluenediamine are particularly preferable because of excellent heat resistance.
- Examples of the aromatic diamine having an ether bond represented by the general formula (H5-2) include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, Examples include 1,3-bis (3-aminophenoxy) benzene and derivatives thereof.
- 4,4'-diaminodiphenyl ether is preferable because it is particularly excellent in heat resistance.
- Examples of the aromatic diamine having an amide bond represented by the general formula (H5-3) include 4,4′-diaminobenzanilide, 3′-chloro-4,4′-diaminobenzanilide, and 2′-chloro- 4,4'-diaminobenzanilide, 2 ', 6'-dichloro-4,4'-diaminobenzanilide, 3'-methyl-4,4'-diaminobenzanilide, 2'-methyl-4,4'- Diaminobenzanilide, 2 ′, 6′-dimethyl-4,4′-diaminobenzanilide, 3′-trifluoromethyl-4,4′-diaminobenzanilide, 2′-trifluoromethyl-4,4′-diamino Benzanilide, 3-chloro-4,4′-diaminobenzanilide, 3-bromo-4,4′-diaminobenzanilide, 3-methyl-4
- Examples of the aromatic diamine having an ester bond represented by the general formula (H5-4) include 4-aminophenyl-4-aminobenzoate, 3-aminophenyl-4-aminobenzoate, 4-aminophenyl-3-aminobenzoate Bis (4-aminophenyl) terephthalic acid, bis (4-aminophenyl) isophthalic acid, bis (4-aminophenyl) biphenyl-4,4′-dicarboxylic acid, 1,4-bis (4-aminobenzoyloxy) Examples thereof include benzene, 1,3-bis (4-aminobenzoyloxy) benzene, biphenyl-4,4′-diyl bis (4-aminobenzoate), and derivatives thereof.
- 4-aminophenyl-4-aminobenzoate, bis (4-aminophenyl) terephthalic acid, and 1,4-bis (4-aminobenzoyloxy) benzene have particularly low thermal expansion coefficients of the resulting polyimide.
- 1,4-bis (4-aminobenzoyloxy) benzene is particularly preferable because the polyimide obtained has excellent light transmittance.
- examples of the organic group represented by R 8 include hydrogen, an alkyl or aryl group having up to 20 carbon atoms, an alkyl group having up to 20 carbon atoms, or an aryl group. Examples include a good amino group.
- the aromatic diamine having a triazine structure represented by the general formula (H5-5) includes 2,4-bis (4-aminoanilino) -1,3,5-triazine, 2,4-bis.
- the polyimide obtained in particular has a low coefficient of thermal expansion, so that 2,4-bis (4-aminoanilino) -6-amino-1,3,5-triazine, 2,4-bis (4-aminoanilino)- 6-methylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-ethylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6- Anilino-1,3,5-triazine is preferred, and 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine is more preferred.
- the aliphatic diamine component is not particularly limited as long as it is an aliphatic diamine component that is generally used as a diamine component of polyimide, but since the resulting polyimide has high heat resistance, a diamine component having a divalent alicyclic structure is used.
- a diamine component in which B 1 or B 2 is selected from a 6-membered alicyclic structure represented by the general formula (H6) is more preferable.
- R 9 represents hydrogen or a hydrocarbon group having 1 to 3 carbon atoms
- R 10 represents a direct bond, CH 2 group, C (CH 3 ) 2 group, SO 2 group, Si 2 (CH 3 ) 2 groups, C (CF 3 ) 2 groups, an oxygen atom or a sulfur atom is represented.
- Examples of the diamine component having a 6-membered alicyclic structure represented by the general formula (H6) include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino- 2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2- Isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, bi (cyclohexane) -4,4′-diamine, 4,4'-methylened
- 1,4-diaminocyclohexane is more preferable because the thermal expansion coefficient of the resulting polyimide is low.
- the steric structure at the 1,4-position of the diamine having the 1,4-cyclohexane structure is not particularly limited, but is preferably a trans structure.
- the cis structure may cause problems such as easy coloring.
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkyl group having 3 to 9 carbon atoms. It is a silyl group.
- R 1 and R 2 are both hydrogen atoms, it is preferable in terms of low production cost.
- R 1 and R 2 are each independently a methyl group, an ethyl group, a propyl group, or an isopropyl group, it is preferable in terms of excellent viscosity stability of the polyimide precursor varnish and excellent heat resistance of the resulting polyimide. .
- R 1 and R 2 are each independently a trimethylsilyl group, a t-butyldimethylsilyl group, or a triisopropylsilyl group, problems such as precipitation occurring during the production of the polyimide precursor varnish can be improved, and the heat resistance of the resulting polyimide can be improved. It is preferable in terms of excellent properties.
- the polyimide varnish produced in the present invention is preferable in that a polyimide film can be produced at a lower temperature than the polyimide precursor varnish.
- the varnishes produced in the present invention can be classified according to chemical structure into 1) polyamic acid varnish, 2) polyamic acid ester varnish, 3) polyamic acid silyl ester varnish, and 4) polyimide varnish.
- 1) to 3) are varnishes containing a polyimide precursor, classified according to the chemical structure taken by R 1 and R 2 in the general formula (H1), and 4) is represented by the general formula (H2). It is a varnish containing polyimide. And it can manufacture easily with the following polymerization methods for every classification of these chemical structures.
- the manufacturing method of the polyimide precursor varnish or the polyimide varnish of the present invention is not limited to the following manufacturing method.
- a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent. Since the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
- the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds by heat, so there is a possibility that the polyimide precursor cannot be produced stably.
- a silylating agent not containing chlorine examples include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
- N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are preferred because they do not contain fluorine atoms and are low in cost.
- amine-based catalysts such as pyridine, piperidine, and triethylamine can be used in the silylation reaction of diamine in order to accelerate the reaction. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
- polyimide varnish A method in which the polyimide precursor of the above 1) to 3) is obtained in advance, or after adding a tetracarboxylic acid component, a diamine component and a solvent, and then heated to 150 ° C. or higher for thermal imidization.
- a polyimide varnish can be obtained by a method of adding a chemical imidizing agent (for example, an acid anhydride such as acetic anhydride and an amine catalyst such as pyridine or isoquinoline).
- a chemical imidizing agent for example, an acid anhydride such as acetic anhydride and an amine catalyst such as pyridine or isoquinoline.
- the reaction is preferably carried out in a nitrogen atmosphere in order to reduce the coloring of the solvent.
- any of the above production methods can be suitably performed in an organic solvent, and as a result, the polyimide precursor varnish or the polyimide varnish of the present invention can be easily obtained.
- the molar ratio of the tetracarboxylic acid component / diamine component can be arbitrarily set depending on the required viscosity of the polyimide precursor, but preferably 0.90 to 1.10, more preferably 0.95 to 1.05.
- the carboxylic acid derivative in an amount roughly corresponding to the number of moles of excess diamine is added as necessary.
- the molar ratio of the carboxylic acid component and the diamine component can be brought close to the equivalent.
- the carboxylic acid derivative here, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution (that is, it does not substantially participate in molecular chain extension), a tricarboxylic acid that functions as a terminal stopper, and its anhydride, Selected from dicarboxylic acids and their anhydrides.
- carboxylic acid derivatives used 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Tetracarboxylic acids such as carboxylic acid, 1,2,3,4-butanetetracarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid; trimellitic acid, cyclohexane-1,2,4-tricarboxylic acid, etc.
- Tricarboxylic acids and acid anhydrides thereof Tricarboxylic acids and acid anhydrides thereof; dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, cis-norbornene-endo-2,3-dicarboxylic acid, cyclohexanedicarboxylic acid, succinic acid, maleic acid, and the acid anhydrides thereof Can be mentioned.
- carboxylic acid derivatives thermal coloring and thermal deterioration during heating may be prevented.
- tetracarboxylic acid derivatives such as biphenyltetracarboxylic acid and carboxylic acid derivatives having a reactive functional group are preferable because they can react when imidized to improve heat resistance.
- the total amount of the tetracarboxylic acid component and the diamine component is 5% by mass or more, preferably 10% by mass or more, with respect to the total amount of the organic solvent, the tetracarboxylic acid component and the diamine component. More preferably, the ratio is 15% by mass or more. In general, the content is preferably 60% by mass or less, and preferably 50% by mass or less. If the concentration is too low, it may be difficult to control the thickness of the resulting polyimide film.
- an organic solvent can be further added for dilution.
- the organic solvent used for dilution is also preferably an organic solvent that satisfies at least one of the conditions selected from the above-mentioned conditions (a) to (f).
- a chemical imidizing agent an acid anhydride such as acetic anhydride or an amine compound such as pyridine or isoquinoline
- an antioxidant an antioxidant
- a filler an additive
- Additives such as coupling agents such as pigments and silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), and release agents can be added.
- a polyimide precursor varnish or a polyimide varnish can also be produced by dissolving or dispersing and adding.
- the light transmittance at 400 nm is preferably 70% or more, more preferably 75% or more, and 80% or more. More preferably it is.
- the varnish produced by the production method of the present invention is used in optical applications, for example, optical material applications that transmit or reflect light, because the resulting polyimide has improved coloration and excellent light transmittance. Suitable as varnish.
- polyimide can be produced as follows. First, in the case of a polyimide precursor varnish, a polyimide can be suitably produced by subjecting the polyimide precursor to a dehydration ring-closing reaction (imidation reaction).
- the imidization method is not particularly limited, and known thermal imidization and chemical imidization methods can be applied.
- a polyimide varnish a polyimide can be obtained by heating and evaporating the organic solvent contained in a polyimide varnish, depressurizingly evaporating, or depositing a polyimide.
- the form of the obtained polyimide is not particularly limited, preferred examples include films, laminates of polyimide films and other base materials, coating films, powders, hollow beads, molded bodies, foams, and the like.
- CTE Coefficient of thermal expansion
- Example A1 10.82 g (0.0947 mol) of trans-1,4-diaminocyclohexane (hereinafter sometimes abbreviated as t-DACH) was placed in a reaction vessel, and dehydrated using molecular sieve, N, N-dimethylacetamide (Hereafter, it may be abbreviated as DMAc.) Dissolved in 313.0 g.
- t-DACH trans-1,4-diaminocyclohexane
- the obtained polyimide precursor solution composition was applied to a glass substrate, and then heated on the substrate for 1 hour at 120 ° C., 30 minutes at 150 ° C., 30 minutes at 200 ° C., and finally heated to 400 ° C. Thermal imidization was performed to obtain a colorless and transparent copolymer polyimide / glass laminate. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A1.
- Example A2 6.851 g (0.06 mol) of trans-1,4-diaminocyclohexane was placed in the reaction vessel, and dissolved in 220.5 g of N, N-dimethylacetamide dehydrated using a molecular sieve. To this solution was added 15.89 g (0.054 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1.765 g of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
- the obtained polyimide precursor solution composition was applied to a glass substrate, and then heated on the substrate for 1 hour at 120 ° C., 30 minutes at 150 ° C., 30 minutes at 200 ° C., and finally heated to 400 ° C. Thermal imidization was performed to obtain a colorless and transparent copolymer polyimide / glass laminate. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A1.
- Example A3 2.28 g (0.02 mol) of trans-1,4-diaminocyclohexane was put in a reaction vessel, and dehydrated using molecular sieve (hereinafter, unless otherwise specified, purity (GC) 99.99% high-purity DMAc was used.) After dissolving in 73.51 g, 4.71 g (0.016 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was added to this solution. Then, 1.18 g (0.004 mol) of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride was gradually added and stirred at 25 ° C. for 24 hours. A uniform and viscous polyimide precursor solution composition was obtained.
- GC molecular sieve
- the obtained polyimide precursor solution composition was applied to a glass substrate, and then heated on the substrate for 1 hour at 120 ° C., 30 minutes at 150 ° C., 30 minutes at 200 ° C., and finally heated to 400 ° C. Thermal imidization was performed to obtain a colorless and transparent copolymer polyimide / glass laminate. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A1.
- Example A4 In a nitrogen atmosphere, 3.00 g (0.026 mol) of trans-1,4-diaminocyclohexane was dissolved in 52.39 g of N, N-dimethylacetamide. Next, 6.18 g (0.021 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1.55 g of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (0.005 mol) was added. Stir at 40 ° C. and after 80 minutes all solids have dissolved. The mixture was further stirred for 8 hours to obtain a viscous polyimide precursor.
- Example A5 Trans-1,4-diaminocyclohexane (3.00 g, 0.026 mol) was used in a nitrogen atmosphere with N-methylpyrrolidone (hereinafter referred to as purity (GC) 99.96% unless otherwise specified). It may be abbreviated as NMP.) Dissolved in 52.38 g. Next, 6.18 g (0.021 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1.55 g of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (0.005 mol) was added. Stir at 40 ° C. and after 135 minutes all solids have dissolved. The mixture was further stirred for 8 hours to obtain a viscous polyimide precursor.
- NMP N-methylpyrrolidone
- Example A6 In a reaction vessel, 3.00 g (0.026 mol) of trans-1,4-diaminocyclohexane was dissolved in 60.35 g of N, N-dimethylacetamide under a nitrogen atmosphere. Thereafter, 5.55 g (0.0273 mol) of N, O-bis (trimethylsilyl) acetamide was added, and the mixture was stirred at 80 ° C. for 2 hours for silylation.
- the obtained polyimide precursor solution was applied to a glass substrate, and the substrate was kept under a nitrogen atmosphere (oxygen concentration of 200 ppm or less) as it was at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then at 350 ° C. Heat treatment was performed for 3 minutes to thermally imidize, and a colorless transparent copolymer polyimide / glass laminate was obtained. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A1.
- the obtained polyimide precursor solution composition was applied to a glass substrate, and then heated on the substrate for 1 hour at 120 ° C., 30 minutes at 150 ° C., 30 minutes at 200 ° C., and finally heated to 400 ° C.
- Thermal imidization was performed to obtain a colorless and transparent polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A1.
- the copolymerized polyimide precursor of the present invention can be polymerized even under mild conditions of 25 ° C by copolymerization, while at a polymerization temperature of 40 ° C a uniform solution in a short time. It was confirmed that Furthermore, the copolymerized polyimide obtained from this polymerized polyimide precursor has excellent light transmittance when used as a film and a low coefficient of linear thermal expansion, and has a sufficiently high elongation at break compared to Comparative Example A1. Have.
- polyamic acid silyl ester type copolymer polyimide precursor (Example A6) can have a lower linear thermal expansion coefficient when used as a polyimide film than the polyamic acid copolymer polyimide precursor (Example A2). I understand.
- t-DACH trans-1,4-diaminocyclohexane purity (GC) 99.1% was purified by recrystallization or sublimation.
- t-1,2-DACH trans-1,2-diaminocyclohexane purity (GC) 99.9% was used.
- s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride purity 99.9% (determined by HPLC analysis of 3,3 ′, 4,4′-biphenyltetracarboxylic acid after ring opening) Purity), acid anhydride rate 99.8%, Na, K, Ca, Al, Cu, Si: ⁇ 0.1 ppm, Fe: 0.1 ppm, Cl: ⁇ 1 ppm, and N-methyl-2 of the same mass After adding pyrrolidone and stirring at room temperature for 3 hours, the powder which remained undissolved was collected and vacuum-dried.
- a-BPDA 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride purity 99.6% (determined by HPLC analysis of 2,3,3 ′, 4′-biphenyltetracarboxylic acid after ring opening) Purity), acid anhydride rate 99.5%, Na, K, Al, Cu, Si: ⁇ 0.1 ppm each, Ca, Fe: 0.1 ppm each, and Cl: ⁇ 1 ppm with the same mass of acetone and room temperature After stirring for 3 hours, the undissolved powder was recovered and vacuum-dried.
- i-BPDA 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride purity 99.9% (determined by HPLC analysis of 2,2 ′, 3,3′-biphenyltetracarboxylic acid after ring opening) And N-methyl-2-pyrrolidone of the same mass was added to 99% acid anhydride, and the mixture was stirred at room temperature for 3 hours. The undissolved powder was recovered and vacuum-dried.
- 6FDA 4,4 ′-(2,2-hexafluoroisopropylene) diphthalic dianhydride Purity 99.77% (purity determined by H-NMR) ODPA: 4,4′-oxydiphthalic dianhydride purity 99.9% (purity determined by HPLC analysis of 4,4′-oxydiphthalic acid after ring opening), acid anhydride rate 99.7% DPSDA: 4,4 ′-(dimethylsiladiyl) diphthalic dianhydride purity 99.8% (HPLC analysis) BTDA: 3,3 ′, 4,4′-benzophenonecarboxylic dianhydride purity 97% or more PMDA: pyromellitic dianhydride purity 97% or more was recrystallized with acetic anhydride.
- s-BPTA 3,3 ′, 4,4′-biphenyltetracarboxylic acid
- DMAc N, N-dimethylacetamide Distilled product Purity (GC) High purity product 99.99%
- NMP N-methyl-2-pyrrolidone purity (GC) High-purity 99.96%, general-purpose 99.62%
- Example A7 1.40 g (12.2 mmol) of t-DACH was placed in a reaction vessel substituted with nitrogen gas, 36.6 g of N, N-dimethylacetamide dehydrated using molecular sieves was added, and the mixture was heated to 60 ° C. to dissolve. .
- 36.6 g of N, N-dimethylacetamide dehydrated using molecular sieves was added, and the mixture was heated to 60 ° C. to dissolve. .
- 3.46 g (11.8 mmol) of s-BPDA and 0.09 g (0.3 mmol) of a-BPDA were gradually added, and the temperature was raised to 70 ° C. and stirred.
- 0.03 g (0.1 mmol) of s-BPTA was added and further stirred for 2 hours to obtain a uniform and viscous polyimide precursor solution.
- Table A2 This was filtered with a PTFE membrane filter and used for production of a film.
- the obtained polyimide precursor solution was applied to a glass substrate, and the substrate was kept under a nitrogen atmosphere (oxygen concentration of 200 ppm or less) as it was at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then at 350 ° C. Heat treatment was performed for 3 minutes to thermally imidize, and a colorless transparent copolymer polyimide / glass laminate was obtained. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A2.
- Example A8 1.40 g (12.2 mmol) of t-DACH as a diamine component is placed in a reaction vessel substituted with nitrogen gas, charged with N, N-dimethylacetamide dehydrated using molecular sieve, and monomers (diamine component and carboxylic acid component) was dissolved in an amount (28.4 g) to be 15% by mass.
- This solution was heated to 50 ° C., and 3.24 g (11.0 mol) of s-BPDA and 0.35 g (1.2 mmol) of a-BPDA were gradually added. The mixture was stirred at 50 ° C. for 8 hours to obtain a uniform and viscous polyimide precursor solution. The results of measuring the properties of this polyimide precursor solution are shown in Table A2.
- the polyimide precursor solution obtained by this method was filtered through a PTFE membrane filter and used for production of a film.
- the obtained polyimide precursor solution was applied to a glass substrate, and the temperature was raised to 350 ° C. in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) as it was on the substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes. Then, the mixture was heated for 5 minutes to thermally imidize to obtain a colorless and transparent polyimide / glass laminate. Next, the obtained polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table A2.
- Examples A9 to 15 The molar amount of the diamine component and the carboxylic acid component listed in Table A2 and the solvent N, N-dimethylacetamide were used in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 15% by mass. Except for the above, a polyimide precursor solution and a copolymerized polyimide film were obtained in the same manner as in Example A8. The results of measuring the properties of this polyimide precursor solution and copolymerized polyimide film are shown in Table A2.
- Examples A16 to 17 N-methyl-2-pyrrolidone having a purity of 99.96% determined by GC analysis in Example A16 as a diamine component and a carboxylic acid component as molar amounts and solvents described in Table A2, and determined by GC analysis in Example A17 Except that each of N-methyl-2-pyrrolidone having a purity of 99.62% was charged and the total amount of monomers (total of diamine component and carboxylic acid component) was 12% by mass, the same as in Example A8, A polyimide precursor solution and a copolymerized polyimide film were obtained. The results of measuring the properties of this polyimide precursor solution and copolymerized polyimide film are shown in Table A2.
- the copolymerized polyimide obtained from the polymerized polyimide precursor of the present invention has excellent light transmittance and low linear thermal expansion coefficient, and is sufficiently compared with Comparative Example A1. Has a high elongation at break. Further, in Comparative Example A5 using s-BPDA and PMDA as carboxylic acid components, a uniform polyimide precursor solution was not obtained, whereas in Example A14, copolymerization of s-BPDA and a-BPDA Furthermore, a uniform polyimide precursor solution was obtained by copolymerizing PMDA as the third carboxylic acid component. Compared with Example A17 using a solvent having a low purity (GC), a high light transmittance could be achieved in an example using a high-purity solvent (comparison with a system using the same raw material monomer).
- GC solvent having a low purity
- the dynamic viscoelasticity measurement results (storage elastic modulus E ′, loss elastic modulus E ′′, tan ⁇ ) of the polyimide films obtained in Examples A8, 9, and 14 are shown in FIGS. 1 to 3, respectively.
- Table A3 shows the glass transition temperature determined from the maximum point of tan ⁇ , the minimum value of the storage elastic modulus on the glass transition temperature, and the maximum value of the elastic modulus above the minimum value of the storage elastic modulus.
- Part A it is possible to produce a stable copolymerized polyimide precursor under mild conditions, and further has excellent transparency, high heat resistance, high glass transition temperature, and low coefficient of thermal expansion. Furthermore, it is possible to provide a copolymerized polyimide having both resistance to bending (toughness, that is, sufficiently high elongation at break).
- the polyimide of the present invention can be suitably used as a transparent substrate particularly in display devices such as flexible displays and touch panels.
- Example of Part B >> In each of the following examples, evaluation was performed by the following method. [Logarithmic viscosity], [light transmittance], [elastic modulus, elongation at break], and [thermal expansion coefficient (CTE)] were evaluated by the methods described in Part A.
- Example B1 Into a reaction vessel, trans-1,4-diaminocyclohexane (hereinafter sometimes abbreviated as t-DACH) 3.220 g (0.0282 mol) was placed, and dehydrated with molecular sieve (N, N-dimethylacetamide ( (Hereafter, it may be abbreviated as DMAc.) After dissolving in 103.7 g, 6.281 g (0.0296 mol) of N, O-bis (trimethylsilyl) acetamide was added with a syringe and stirred at 80 ° C. for 2 hours. Silylation was performed.
- t-DACH trans-1,4-diaminocyclohexane
- DMAc N-dimethylacetamide
- the obtained polyimide precursor solution was applied to a glass substrate, and then directly heated on the substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then heated to 400 ° C. to thermally imidize the polyimide. / A glass laminate was obtained. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of about 10 ⁇ m, and the characteristics of the polyimide film were measured. The results are shown in Table B1.
- Example B2 In a reaction vessel, 3.00 g (0.026 mol) of trans-1,4-diaminocyclohexane was dissolved in 60.35 g of N, N-dimethylacetamide under a nitrogen atmosphere. Thereafter, 5.55 g (0.0273 mol) of N, O-bis (trimethylsilyl) acetamide was added, and the mixture was stirred at 80 ° C. for 2 hours for silylation.
- the obtained polyimide precursor solution was applied to a glass substrate, and the substrate was kept under a nitrogen atmosphere (oxygen concentration of 200 ppm or less) as it was at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then at 350 ° C. Heat treatment was performed for 3 minutes to thermally imidize, and a colorless transparent copolymer polyimide / glass laminate was obtained. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table B1.
- This polyimide precursor varnish is applied to a glass substrate, vacuum-dried at room temperature for 1 hour, and directly heated on the substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then 400 ° C. Imidization was performed to obtain a polyimide / glass laminate. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of about 10 ⁇ m, and the characteristics of the polyimide film were measured. The results are shown in Table B1.
- the obtained polyimide precursor solution composition was applied to a glass substrate, and then heated on the substrate for 1 hour at 120 ° C., 30 minutes at 150 ° C., 30 minutes at 200 ° C., and finally heated to 400 ° C. Thermal imidization was performed to obtain a colorless and transparent copolymer polyimide / glass laminate. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table B1.
- the polyimide precursor of the present invention can be polymerized under mild conditions because precipitation does not occur and is suitable for actual industrial production.
- the resulting polyimide film has excellent light transmittance, sufficient elongation at break, and low coefficient of linear thermal expansion.
- Example B2 it was confirmed that by using a plurality of types of acid components, it was possible to achieve both excellent light transmittance, high elongation at break, and low coefficient of linear thermal expansion.
- Part B it is possible to produce a polyimide precursor using an alicyclic diamine that can be produced by a production method suitable for actual industrial production and has good handling properties and storage stability. it can.
- the polyimide obtained from this polyimide precursor has both high transparency, high glass transition temperature, low linear thermal expansion coefficient, and sufficient toughness. Therefore, glass for display devices such as liquid crystal displays, EL displays, and electronic papers in particular. It can be suitably used as a plastic substrate for substrate replacement.
- a-BPDA 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride
- a predetermined amount of a-BPDA powder was dissolved in a 2N aqueous sodium hydroxide solution to obtain a 10% by mass aqueous solution.
- MCPD-300 manufactured by Otsuka Electronics using a standard cell with an optical path length of 1 cm, a 2N aqueous sodium hydroxide solution was used as a blank, and the light transmittance at 400 nm of a 10% by mass a-BPDA powder / 2N aqueous sodium hydroxide solution was measured. did.
- Example C1 A glass container was charged with 10.0 g of raw material a-BPDA powder and 10.0 g of dimethyl sulfoxide as a solvent, and sufficiently stirred at 25 ° C. for 3 hours. The solution was filtered, and the obtained powder was vacuum-dried at 100 ° C. for 2 hours to obtain a-BPDA powder with reduced coloring. Table C1 shows the results of the solubility of the solvent used and the light transmittance and recovery rate of the obtained a-BPDA powder.
- Examples C2 to 5 An a-BPDA powder with reduced coloring was obtained in the same manner as in Example C1, except that the solvent was changed to the solvent shown in Table C1.
- Table C1 shows the results of the solubility of the solvent used and the light transmittance and recovery rate of the obtained a-BPDA powder.
- the a-BPDA with reduced colorability according to the present invention has an improved light transmittance at 400 nm of 85% or more, preferably 90% or more. It is suitable as a raw material for polyimide.
- Example C6 The reaction vessel was treated with activated carbon and sublimed and purified 1,3-bis (4-aminobenzoyloxy) benzene (13p-BABB) 3.484 g (0.01 mol), dehydrated with molecular sieve, N, N-dimethyl 37.31 g of acetamide (DMAc) was added and dissolved under a nitrogen stream at 50 ° C. To this solution, 3.102 g (0.01 mol) of 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder (a-BPDA powder) obtained in Example C3 was gradually added, And stirred for 12 hours to obtain a uniform and viscous polyimide precursor solution.
- a-BPDA powder 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder
- the obtained polyimide precursor solution was applied to a glass substrate and thermally imidized by heating at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 minutes in a nitrogen atmosphere. Thus, a colorless and transparent polyimide / glass laminate was obtained. Next, the obtained polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table C2.
- Example C5 A polyimide precursor solution and a polyimide film were obtained in the same manner as in Example C6 except that the raw material a-BPDA powder was used without purification. The results of measuring the characteristics are shown in Table C2.
- a purification method for obtaining 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride powder with less coloration by a simple operation, 2,3,3 ′ with less coloration , 4′-biphenyltetracarboxylic dianhydride powder, and a polyimide with improved light transmission that can be suitably used for high performance optical materials can be provided.
- the mass of s-BPDA contained in the saturated solution was determined from the residue after heating, and the solubility was calculated.
- Light transmittance A predetermined amount of s-BPDA powder was dissolved in 2N aqueous sodium hydroxide solution to obtain a 10% by mass solution. Using a MCPD-300 manufactured by Otsuka Electronics Co., Ltd. and a standard cell having an optical path length of 1 cm, a 2N sodium hydroxide aqueous solution was used as a blank, and the light transmittance at 400 nm of the s-BPDA solution was measured.
- Example D1 A glass container was charged with 10.0 g of unpurified s-BPDA and 10.0 g of N, N-dimethylformamide as a solvent, and stirred sufficiently at 25 ° C. for 3 hours. The solution was filtered off, and the resulting solid was vacuum-dried at 100 ° C. for 2 hours to obtain s-BPDA powder. The yield was 9.7 g. The evaluation results of the obtained s-BPDA powder are shown in Table D1.
- Example D2 to 7 An s-BPDA powder was obtained in the same manner as in Example D1, except that the solvent was changed to the solvent described in Table D1. The yields were 9.6 g (Example D2), 9.4 g (Example D3), 9.5 g (Example D4), 9.6 g (Example D5), 9.7 g (Example D6), It was 9.6 g (Example D7).
- the evaluation results of the obtained s-BPDA powder are shown in Table D1.
- Example D8 A glass container was charged with 20.0 g of s-BPDA and 200 g of N-methyl-2-pyrrolidone as a solvent, and sufficiently stirred at 25 ° C. for 3 hours. The solution was filtered, and the obtained solid was vacuum-dried at 100 ° C. for 2 hours to obtain s-BPDA powder. The yield was 15.2g. 5.0 g of this s-BPDA powder is charged into a glass sublimation apparatus, the pressure is reduced to 1 Torr or less, and the temperature of the lower surface of the wall in contact with the s-BPDA powder is heated to 200 to 220 ° C. to sublimate s-BPDA.
- Table D1 shows the evaluation results of the s-BPDA powder not subjected to treatment such as purification.
- s-BPDA with reduced colorability transmits light at a wavelength of 400 nm with respect to a solution obtained by dissolving at a concentration of 10% by mass in a 2N aqueous sodium hydroxide solution.
- the rate is over 75%, preferably 80% or more.
- the tetracarboxylic acid component is configured to contain s-BPDA separated and recovered by the purification method of the present invention
- the diamine component is an aliphatic diamine, a diamine having an alicyclic structure, a halogen group, a carbonyl group
- polyimides selected from the group consisting of aromatic diamines having any substituent of a sulfonyl group will be described with reference to examples.
- Example D9 1.40 g (0.0122 mol) of trans-1,4-diaminocyclohexane (t-DACH) was placed in the reaction vessel, and dissolved in 28.4 g of N, N-dimethylacetamide dehydrated using molecular sieves. This solution was heated to 50 ° C., and 3.50 g (0.0119 mol) of s-BPDA powder obtained in Example D3 and 0.09 g (0.0003 mol) of a-BPDA powder were gradually added. . The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. The obtained polyimide precursor solution was applied to a glass substrate and heated under a nitrogen atmosphere at 120 ° C.
- t-DACH trans-1,4-diaminocyclohexane
- Example D10 Except having used the acid component described in Table D2, it carried out similarly to Example D9, and obtained the polyimide precursor solution and the polyimide film. The results of measuring the film properties are shown in Table D2.
- Example D6 A polyimide precursor solution and a polyimide film were obtained in the same manner as in Example D9, except that the s-BPDA powder that was not purified in Comparative Example D1 was used as the tetracarboxylic acid component. The results of measuring the film properties are shown in Table D2.
- the polyimide produced by Tokai was improved, and the light transmittance at 400 nm when a film having a thickness of 10 ⁇ m was obtained. It can be 80% or more.
- 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with less coloration can be obtained by a method by simple operation under mild conditions without requiring large-scale equipment.
- a purification method that can be easily obtained can be provided.
- the 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder with little coloration obtained by the purification method of the present invention is used for a high-performance optical material having good transparency, particularly flexible.
- a polyimide that can be suitably used for a transparent substrate in a display device such as a display or a touch panel can be provided.
- 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA): Ube Industries, Ltd., purity 99.6% (after ring opening, 2,3,3 ′, 4′-biphenyltetra Purity obtained by HPLC analysis of carboxylic acid), acid anhydride rate of 99.5%, the same mass of acetone was added, and the mixture was stirred at room temperature for 3 hours, and then the undissolved powder was recovered and vacuum-dried.
- 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride (i-BPDA): CHANGZHOU WEIJIA CHEMICAL Co., Ltd.
- trans-1,4-diaminocyclohexane powder Evaluation of trans-1,4-diaminocyclohexane powder [Light transmittance] A predetermined amount of trans-1,4-diaminocyclohexane powder was dissolved in pure water to obtain a 10% by mass solution. The light transmittance at 400 nm of the trans-1,4-diaminocyclohexane solution was measured using MCPD-300 manufactured by Otsuka Electronics Co., Ltd. and a standard cell with an optical path length of 1 cm using pure water as a blank.
- Example E1 10.0 g of unpurified trans-1,4-diaminocyclohexane was charged into a glass sublimation apparatus, and the pressure was reduced to 1 Torr or less. The temperature of the lower surface of the wall in contact with trans-1,4-diaminocyclohexane was heated to 50 ° C., and a sublimate was obtained on the upper surface of the facing wall which was adjusted to 5 ° C. The yield was 8.2g. The results of light transmittance of the trans-1,4-diaminocyclohexane powder obtained by this method are shown in Table E1.
- Example E2 A glass container was charged with 5.0 g of unpurified trans-1,4-diaminocyclohexane and 25 g of n-hexane as a solvent, and dissolved at 60 ° C. in a nitrogen atmosphere.
- adsorbent 0.05 g of an adsorbent (Norit SX Pulses) was added thereto and stirred at 60 ° C. for 1 hour.
- the adsorbent was filtered off while maintaining 60 ° C. to obtain a colorless and transparent solution.
- the solution was gradually cooled to 25 ° C. with stirring to precipitate crystals.
- the crystals were filtered off and the obtained crystals were vacuum dried.
- Table E1 The results of light transmittance of the trans-1,4-diaminocyclohexane powder obtained by this method are shown in Table E1.
- the trans-1,4-diaminocyclohexane with reduced coloring according to the present invention has a light transmittance at 400 nm of 90% or more, preferably 95% or more. Suitable as a raw material.
- Example E3 In a reaction vessel substituted with nitrogen gas, 1.40 g (0.0122 mol) of trans-1,4-diaminocyclohexane (t-DACH) obtained in Example E1 as a diamine component was dehydrated using a molecular sieve. Then, 28.4 g of N, N-dimethylacetamide was charged and dissolved.
- t-DACH trans-1,4-diaminocyclohexane
- the obtained polyimide precursor solution was filtered through a PTFE membrane filter, and then applied to a glass substrate. Under a nitrogen atmosphere, 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 hours. Heat treatment was performed while increasing the temperature stepwise in order of minutes to obtain a colorless and transparent polyimide / glass laminate. Subsequently, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of 10 ⁇ m. The results of measuring the properties of this film are shown in Table E2.
- Example E4 to 7 Using the diamine component and the tetracarboxylic acid component described in Table E2, the concentration of the monomer component (sum of the diamine component and the carboxylic acid component) in the solution was set to 15% by mass, in the same manner as in Example E3, A polyimide film was obtained. The results of measuring the characteristics are shown in Table E2.
- Example E1 A polyimide precursor solution and a polyimide film were obtained in the same manner as in Example E3, except that t-DACH that was not purified in Reference Example E1 was used as the amine component. The results of measuring the characteristics are shown in Table E2.
- the polyimide using the trans-1,4-diaminocyclohexane powder with reduced coloring according to the present invention has a light transmittance of 80% or more at 400 nm, and is used as a polyimide for optical materials. Is preferred.
- trans-1,4-diaminocyclohexane powder with reduced coloring and a polyimide with reduced coloring using it as a diamine component.
- the polyimide using the trans-1,4-diaminocyclohexane powder with reduced coloring according to the present invention has a light transmittance of 80% or more at 400 nm and can be suitably used as a polyimide for optical materials.
- t-DACH trans-1,4-diaminocyclohexane
- BABB 1,4-Bis (4-aminobenzoyloxy) benzene
- a predetermined amount of i-BPDA powder was dissolved in 2N aqueous sodium hydroxide solution to obtain a 10% by mass solution.
- a 2N sodium hydroxide aqueous solution was used as a blank, and the light transmittance at 400 nm of the i-BPDA solution was measured.
- Example F1 A glass container was charged with 10.0 g of i-BPDA and 10.0 g of dimethyl sulfoxide as a solvent, and sufficiently stirred at 25 ° C. for 3 hours. The solution was filtered off, and the obtained solid was vacuum-dried at 100 ° C. for 2 hours to obtain i-BPDA with reduced coloring. The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Example F2 to 3 An i-BPDA with reduced coloring was obtained in the same manner as in Example F1 except that the solvent was changed to the solvent shown in Table F1. The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Example F4 Recrystallization in an inert gas atmosphere 10.0 g of i-BPDA and 150 g of acetic anhydride were charged in a glass container, and dissolved by heating under reflux in a nitrogen stream. Immediately after dissolution, the mixture was cooled to 25 ° C. with stirring to precipitate crystals. The solution was filtered off, and the obtained powder was vacuum-dried at 100 ° C. for 2 hours. Yield was 7.9 g.
- Table F1 The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Example F5 Recrystallization in an inert gas atmosphere
- i-BPDA and 75 g of acetic anhydride were charged and dissolved by heating to 130 ° C. in a nitrogen stream.
- 0.05 g of activated carbon (Norit SX plus) was added and stirred for 30 minutes.
- the activated carbon was removed by filtration, and the filtrate was cooled to 25 ° C. while stirring.
- the obtained powder was vacuum-dried at 100 ° C. for 2 hours. The yield was 4.1 g.
- the results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Example F6 Sublimation at 300 ° C. or lower 10.0 g of i-BPDA obtained by the same method as in Example F6 was charged into a glass sublimation apparatus, and the pressure was reduced to 1 Torr or lower. The temperature of the wall surface in contact with i-BPDA was heated to 230 to 250 ° C., and a sublimate was obtained on the glass surface through which 25 ° C. cooling water was passed. Yield was 8.8 g. The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Example F7 Sublimation at 300 ° C or higher 10.0 g of i-BPDA obtained by the same method as in Example F6 was charged in a glass sublimation apparatus, and the pressure was reduced to 1 Torr or less. The temperature of the wall surface in contact with i-BPDA was heated to 300 to 320 ° C., and a sublimate was obtained on the glass surface through which cooling water of 25 ° C. was passed. Yield was 8.4 g. The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- Table F1 shows the light transmittance of i-BPDA which is not subjected to treatment such as purification.
- Example F2 I-BPDA was obtained in the same manner as in Example F1, except that the solvent was changed to the solvent shown in Table F1.
- Table F1 The results of light transmittance of i-BPDA obtained by this method are shown in Table F1.
- i-BPDA with reduced colorability has a light transmittance at 400 nm of 80% or more, preferably 90% or more, and is suitable as a raw material for polyimide for optical materials. It is.
- Example F8 1.40 g (0.0122 mol) of trans-1,4-diaminocyclohexane (t-DACH) purified by sublimation was placed in a reaction vessel, and dissolved in 28.4 g of N, N-dimethylacetamide dehydrated using a molecular sieve. did. This solution was heated to 50 ° C., and 3.25 g (0.0110 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and i obtained in Example F3 were used. -0.36 g (0.0012 mol) of BPDA was added slowly. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution.
- s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
- BPDA 4,4′-biphenyltetracarboxylic dianhydride
- the obtained polyimide precursor solution was applied to a glass substrate, heated to 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 minutes under a nitrogen atmosphere to thermally imidize.
- a colorless and transparent polyimide / glass laminate was obtained.
- the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of 10 ⁇ m.
- Table F2 The results of measuring the properties of this film are shown in Table F2.
- Example F4 A polyimide film was obtained in the same manner as in Example F9, except that unpurified i-BPDA was used as i-BPDA. The results of measuring the properties of this film are shown in Table F2.
- Example F9 The reaction vessel was treated with activated carbon, and sublimed and purified 1,4-bis (4-aminobenzoyloxy) benzene (BABB) 3.48 g (0.01 mol), dehydrated with molecular sieve N, N-dimethylacetamide 36 .41 g was added and dissolved under a nitrogen stream at 50 ° C. To this solution, 2.94 g (0.01 mol) of i-BPDA obtained in Example F3 was gradually added and stirred at 50 ° C. for 12 hours to obtain a uniform and viscous polyimide precursor solution.
- BABB 1,4-bis (4-aminobenzoyloxy) benzene
- the obtained polyimide precursor solution was applied to a glass substrate and thermally imidized by heating at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 minutes in a nitrogen atmosphere.
- a colorless and transparent polyimide / glass laminate was obtained.
- the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of 10 ⁇ m.
- Table F2 The results of measuring the properties of this film are shown in Table F2.
- 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride is mainly composed of 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride and has little coloration Things can be provided.
- a display device such as a flexible display or a touch panel is particularly preferable. Can be suitably used as a transparent substrate.
- Example of Part G The raw materials used in the following examples are as follows. Trans-1,4-diaminocyclohexane: ZHEJIANG TAIZHOU QINGQUAN MEDICAL & CHEMICAL, Inc. Purity 99.1% (GC analysis) 1,4-bis (4-aminobenzoyloxy) benzene (BABB): BABB manufactured by Mikuni Pharmaceutical Co., Ltd.
- polyimide precursor Logarithmic viscosity Measured as in Part A.
- Light transmittance (polyimide precursor) The polyimide precursor was diluted with N, N-dimethylacetamide so that a 10% by mass polyimide precursor solution was obtained.
- N, N-dimethylacetamide was used as a blank, and the light transmittance at 400 nm of a 10% by mass polyimide precursor solution was measured.
- the temperature of the lower surface of the wall in contact with the BABB was heated to 300 to 350 ° C., and a sublimate was obtained on the upper surface of the facing wall which was adjusted to 25 ° C.
- the yield was 8.5g.
- the results of the light transmittance of BABB obtained by this method are shown in Table G1.
- Example G1 In a reaction vessel, 1.40 g (0.0122 mol) of trans-1,4-diaminocyclohexane (t-DACH) purified by the same method as in Reference Example G1 was placed, and dehydrated using molecular sieves, N, N- Dissolved in 28.4 g of dimethylacetamide. This solution was heated to 50 ° C. and purified in the same manner as in Reference Example G3, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) 3.50 g (0.0119 mol) Then, 0.09 g (0.0003 mol) of a-BPDA purified by the same method as in Reference Example G4 was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution.
- t-DACH trans-1,4-diaminocyclohexane
- the obtained polyimide precursor solution was applied to a glass substrate and thermally imidized by heating to 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 minutes in a nitrogen atmosphere. To obtain a colorless and transparent polyimide / glass laminate. Subsequently, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of 10 ⁇ m. The result of having measured the characteristic of this film is shown in Table G2.
- Example G2 to 6 Except having used the diamine component and acid component which were described in Table G2, it carried out similarly to Example G1, and obtained the polyimide precursor solution and the polyimide film. The results of measuring the characteristics are shown in Table G2.
- the polyimide of the present invention has a light transmittance of 80% or more at 400 nm and is suitable as a polyimide for optical materials.
- the invention disclosed in Part G provides a polyimide having excellent transparency, high mechanical strength, and low thermal linear expansion coefficient suitable for transparent substrates, solar cells, and touch panels, and a polyimide precursor thereof. can do.
- NMP N-methyl-2-pyrrolidone Appropriately treated by precision distillation purification and dehydrated using molecular sieve
- DMAc N, N-dimethylacetamide Appropriately processed by precision distillation purification, etc. Dehydrated using DMI: 1,3-dimethyl-2-imidazolidinone Processed appropriately by precision distillation purification, etc., and dehydrated using molecular sieve
- Non-volatile content 5 g of solvent was weighed in a glass container and heated in a hot air circulating oven at 250 ° C. for 30 minutes. It was cooled to room temperature and the residue was weighed. From the mass, the nonvolatile content (% by mass) of the solvent was determined.
- the metal component contained in the solvent was quantified using ElanDRC II inductively coupled plasma mass spectrometry (ICP-MS) manufactured by Perkin Elmer.
- ICP-MS inductively coupled plasma mass spectrometry
- CTE Coefficient of thermal expansion
- Example H1 Under a nitrogen atmosphere, 1.40 g (0.0122 mol) of trans-1,4-diaminocyclohexane (1,4-t-DACH) was placed in a reaction vessel, and N-methyl-2-pyrrolidone (purity 99.96%). ) Dissolved in 28.4 g. The solution was heated to 50 ° C., and 3.50 g (0.0119 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3 ′, 3,4 0.09 g (0.0003 mol) of '-biphenyltetracarboxylic dianhydride (a-BPDA) was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor varnish. The results of measuring the properties of this varnish are shown in Table H2.
- the obtained polyimide precursor varnish was coated on a glass substrate, and thermally imidized by heating at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 5 minutes in a nitrogen atmosphere. As a result, a colorless and transparent polyimide / glass laminate was obtained. Subsequently, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a polyimide film having a thickness of 10 ⁇ m. The results of measuring the properties of this film are shown in Table H2.
- Example H2 to 18 A polyimide precursor varnish and a polyimide film were obtained in the same manner as in Example H1 except that the diamine component, tetracarboxylic acid component, and organic solvent described in Table H1 were used. The results of measuring the characteristics are shown in Table H2.
- Example H19 In a reaction vessel, 3.00 g (0.026 mol) of trans-1,4-diaminocyclohexane was dissolved in 60.35 g of N, N-dimethylacetamide (purity 99.99%) under a nitrogen atmosphere. Thereafter, 5.55 g (0.0273 mol) of N, O-bis (trimethylsilyl) acetamide was added, and the mixture was stirred at 80 ° C. for 2 hours for silylation.
- the obtained polyimide precursor varnish was applied to a glass substrate, and in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) on the substrate as it was, 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, then 350 ° C. Heat treatment was performed for 3 minutes to thermally imidize, and a colorless transparent copolymer polyimide / glass laminate was obtained. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 ⁇ m. The results of measuring the properties of this film are shown in Table H2.
- Example H20 21.742 g (0.005 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB) in a reaction vessel, dehydrated using molecular sieve, N, N-dimethylacetamide (purity 99.99%) 44 g was added and dissolved under a nitrogen stream at room temperature (25 ° C.). To the solution, 2.70 g (0.0105 mol) of N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and 0.79 g (0.01 mol) of pyridine were added and stirred for 2 hours for silylation. .
- BABB 1,4-bis (4-aminobenzoyloxy) benzene
- the obtained polyimide precursor varnish was applied to a glass substrate and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 ⁇ m, and the characteristics of the film were measured. The results are shown in Table H2.
- Example H21 2.00 g (10 mmol) of 4,4′-oxydianiline was placed in a reaction vessel substituted with nitrogen gas, and N, N-dimethylacetamide (purity 99.99%) dehydrated using molecular sieve was charged. 24.03 g of an amount that (the total of the diamine component and the carboxylic acid component) is 15% by mass was added, and the mixture was stirred at 50 ° C. for 2 hours.
- a polyimide varnish filtered through a PTFE membrane filter is applied to a glass substrate, and then in a nitrogen atmosphere (oxygen concentration 200 ppm or less) as it is on a glass substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, 350 ° C.
- the mixture was heated up to 5 minutes and heated to obtain a colorless and transparent polyimide film / glass laminate.
- the obtained polyimide film / glass laminate was immersed in water and then peeled to obtain a polyimide film having a film thickness of about 10 ⁇ m.
- the polyimide precursor varnish obtained by the production method of the present invention and the polyimide film obtained from the polyimide varnish have a light transmittance of at least 70% at 400 nm, and are polyimides for optical materials. It was suitable as.
- the polyimide precursor varnish produced using an inappropriate solvent had a light transmittance of less than 70% at 400 nm, and yellow coloration was confirmed.
- Examples H22 to 31 and Comparative examples H3 to 4 Except having used the organic solvent described in Table H3, it carried out similarly to Example H1, and obtained the polyimide precursor varnish and the polyimide film. The results of measuring the characteristics are shown in Table H3.
- FIG. 8 shows the relationship between the purity (%) of the solvent and the 400 nm light transmittance (%) of the polyimide film.
- FIG. 9 shows the peak area (%) of the long retention time impurities and the 400 nm light transmittance (%) of the polyimide film.
- FIG. 10 shows the relationship between the 400 nm light transmittance (%) of the solvent and the 400 nm light transmittance (%) of the polyimide film, and
- FIG. 11 shows the 400 nm light transmittance (%) of the solvent after reflux. ) And 400 nm light transmittance (%) of the polyimide film.
- a polyimide precursor varnish capable of obtaining a highly transparent polyimide and a method for producing a polyimide varnish can be provided.
- These polyimide precursor varnishes and polyimide varnishes are suitably used as transparent heat-resistant substrates for flexible displays, solar cells, and touch panels.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
しかしながら、この半脂環式ポリイミドから得られる膜は、破断伸度が5~7%とフレキシブルディスプレイなどの基材として用いるためには、不十分であった(非特許文献2)。また、脂肪族ジアミンは、重合初期に生成した低分子量アミド酸中のカルボキシル基と反応して溶媒不溶性の塩を形成し、しばしば重合の進行を妨げるといった重大な問題を引き起こす。これを避ける方法として、重合反応初期での塩形成後、重合反応混合物を高温例えば120℃で短時間加熱することにより、可溶化する方法が知られている(特許文献3)。ところが、この方法では、ポリイミド前駆体の分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造することができない。さらに、得られるポリイミド前駆体溶液は、調製工程で塩を高温で溶解する必要があるため、濃度を高くすることができず、さらにポリイミド膜の膜厚制御が難しいなどハンドリング性が劣り、保存安定性も良好ではなかった。
一方、透明性に関しては、トランス-1,4-ジアミノシクロヘキサンを用いた半脂環式ポリイミドの場合でも、光透過スペクトルに400nm付近の吸収が見られた。これは、ポリイミドの着色が、電荷移動錯体形成による吸収などの分子構造に由来する着色だけでなく、ポリイミド前駆体ワニスの原料に由来する着色に起因しているためと推定される。
特開2006-328040号公報(特許文献4)には、2,3,3’,4’-ビフェニルテトラカルボン酸を不活性ガス雰囲気下、180~195℃で無水化を完了するのに十分な時間、加熱して無水化することを特徴とする粉末状の2,3,3,4-ビフェニルテトラカルボン酸二無水物の製造方法が開示されている。
特開2009-019014号公報(特許文献5)には、2,3,3’,4’-ビフェニルテトラカルボン酸を不活性ガスの流通下、200℃以上の温度で溶融させた状態で溶融物を撹拌して、加熱無水化して2,3,3,4-ビフェニルテトラカルボン酸二無水物を製造する方法が開示されている。ここでは、得られた2,3,3,4-ビフェニルテトラカルボン酸二無水物は冷却固化後、粉砕機などによって粉砕されて、粉末状の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を得ている。
特開2004-196687号公報(特許文献6)には、ビフェニルテトラカルボン酸テトラメチルを加水分解、脱水し、溶媒中で吸着剤を加え濾過後、再結晶することからなるビフェニルテトラカルボン酸無水物の精製方法が記載され、再結晶に用いる溶媒として無水酢酸が好適であることが記載されている。しかしながら、ここに記載されているのは、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の精製方法であって、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物についての記載はなかった。
本発明の態様の一つは、温和な条件で安定した共重合ポリイミド前駆体の製造が可能であり、さらに優れた透明性、高耐熱性、高いガラス転移温度、及び低熱線膨張係数を有するとともに、折り曲げ耐性(靭性、すなわち十分に大きい破断伸度)をも両立して有する共重合ポリイミドを提供することを目的とする。
本発明の異なる態様は、透明性の高いポリイミドを得るために適した原料を提供することを目的とする。
本発明のそれぞれの態様の目的は、以下の記載から明らかになる。
<第1の態様(パートA)>
下記一般式(A1)で表される単位構造と、下記一般式(A2)で表される単位構造とを有する共重合ポリイミド前駆体。
下記一般式(B1)で表される単位構造式を含むことを特徴とするポリイミド前駆体。
(主要な態様) 2規定の水酸化ナトリウム水溶液に10質量%の濃度で溶解した溶液に対する波長400nm、光路長1cmの光透過率が85%以上であることを特徴とする2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末。
(異なる主要な態様) 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が1g/100g以上の溶剤と、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法。
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が0.1g/100g以上の溶剤と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする3,3’,4,4’-ビフェニルテトラカルボン酸二無水物二無水物粉末の精製方法。
純水にトランス-1,4-ジアミノシクロヘキサン粉末を10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が90%以上であることを特徴とするトランス-1,4-ジアミノシクロヘキサン粉末。
溶媒の2規定の水酸化ナトリウム水溶液に10質量%の濃度で溶解した溶液に対する波長400nm、光路長1cmの光透過率が80%以上であることを特徴とする2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末。
(主要な態様) ジアミン成分とテトラカルボン酸成分を反応させて得られるポリイミドであって、
前記ジアミン成分が、光透過率が90%以上である芳香環を有しないジアミン類(その誘導体を含む。以下同じ)、または光透過率が80%以上である芳香環を有するジアミン類(その誘導体を含む。以下同じ)を含有し(但し、ジアミン成分の透過率は、純水もしくはN、N-ジメチルアセトアミドに10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率を表す。)、
前記テトラカルボン酸成分が、光透過率が75%以上であるテトラカルボン酸類(その誘導体を含む。以下同じ)を含有する(但し、テトラカルボン酸成分の透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)
ことを特徴とするポリイミド。
(異なる主要な態様) 使用されるジアミン成分の総モル量に対し、芳香環を有しないジアミン類が50モル%以上含まれるポリイミド前駆体であって、極性溶剤に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が90%以上であることを特徴とするポリイミド前駆体。
(異なる主要な態様) 使用されるジアミン成分の総モル量に対し、芳香環を有するジアミン類が50モル%以上含まれるポリイミド前駆体であって、極性溶剤に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が50%以上であることを特徴とするポリイミド前駆体。
少なくとも有機溶剤と、下記一般式(H1)であらわされるポリイミド前駆体または下記一般式(H2)であらわされるポリイミドを含有するワニスの製造方法であって、
前記ワニス中に含まれることになる有機溶剤(以下、使用される有機溶剤という)として、光路長1cm、400nmにおける光透過率が89%以上である有機溶剤を使用して、前記ワニスを製造することを特徴とするワニスの製造方法。
本発明の異なる態様によれば、透明性の高いポリイミドを得るために適した原料を提供することができる。
本発明のそれぞれの態様による効果は、以下の記載から明らかになる。
パートAで開示される発明は、温和な条件で安定した共重合ポリイミド前駆体の製造が可能であり、さらに優れた透明性、高耐熱性、高いガラス転移温度、及び低熱線膨張係数を有するとともに、折り曲げ耐性(靭性、すなわち十分に大きい破断伸度)をも両立して有する共重合ポリイミドを提供することを目的とする。
このパートで開示される発明の共重合ポリイミド前駆体は、前記一般式(A1)で表される単位構造と、前記一般式(A2)で表される単位構造を有することを特徴とする。
ここで、一般式(A1)で表される単位構造と一般式(A2)で表される単位構造との比率[一般式(A1)の数/一般式(A2)の数]は、特に限定されるものではないが、好ましくは一般式(A1)で表される単位構造の比率が40/60以上、より好ましくは50/50以上、更に好ましくは80/20以上、特に好ましくは90/10以上の範囲であり、且つ好ましくは99.5/0.5以下、より好ましくは98/2以下の範囲である。一般式(A1)で表される単位構造の比率が低過ぎると、得られる共重合ポリイミドの熱線膨張係数が大きくなる可能性があり、高過ぎると、ポリイミド前駆体の製造時に、溶解性の乏しい塩形成が生じ、温和な条件で製造できなくなり、また、得られる共重合ポリイミドの靭性(十分に大きい破断伸度)が得られなくなる可能性がある。
有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
テトラカルボン酸二無水物を任意のアルコールで反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加え再沈殿などの精製をおこなうこともできる。
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得(必要に応じて、蒸留等によりシリル化されたジアミンの精製をおこなう。)、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが好ましい。また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
なお、前記テトラカルボン酸類は、テトラカルボン酸、テトラカルボン酸二無水物、及びテトラカルボン酸エステル化物などの誘導体を含み、前記製造方法の原料として好適な化学構造の化合物として用いられる。
第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。以上のポリイミド前駆体の応用例は、他のパートにおいて開示されたポリイミド前駆体にも適用することができる。
パートBで開示される発明は、実際の工業的製造に適した製造方法で製造することができ、ハンドリング性や保存安定性が良好な、脂環式ジアミンを用いたポリイミド前駆体を提供することを目的とする。このポリイミド前駆体から得られるポリイミドは、高透明性、高ガラス転移温度、低線熱膨張係数、及び十分な強靱さを併せ持つので、特に液晶ディスプレイ、ELディスプレイ、電子ペーパーなどの表示装置用のガラス基板代替用のプラスチック基板として好適に利用できる。
本発明の前記一般式(B1)の単位構造式を含むことを特徴とするポリイミド前駆体は、特に限定されないが、あらかじめシリル化した前記一般式(B3)のジアミンと、テトラカルボン酸二無水物を反応させる方法や、ジアミン、テトラカルボン酸二無水物及びシリル化剤を同時に加え反応させる方法によって得ることができる。前者の方法が重合反応初期での塩形成が抑制されるため、好ましい。
パートCで開示される発明は、着色の少ない2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法、該粉末、及びそれを用いたポリイミドに関する。ここで、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末とは、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を主成分とした、実質的に2,3,3’,4’-ビフェニルテトラカルボン酸二無水物からなる化学原料として好適に用いられる粉末のことである。
なお、特開2009-019014号公報(段落0032~0033など)に記載のように、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の粉末は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の粉末とは全く違った挙動を示す。すなわち、結晶性が低く、容易に結晶部とともに非晶部を生成する。この非晶部は、品質劣化を引き起こす原因になると考えられ、結晶性と非晶性との相違だけでなく、色合いや、例えば水分含量などの成分組成が明らかに相違する。
すなわち、パートCで開示される発明は、簡単な操作によって容易に着色の少ない2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を得る精製方法、着色の少ない2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末、及び高性能光学材料用として好適に用いることができる光透過性が改良されたポリイミドを提供することを目的とする。
1. 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が1g/100g以上の溶剤と、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法。
パートCで開示される発明によって得られた2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末は、従来技術の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を代替することで、より透明な最終製品、特にはポリイミドを得ることができる。
パートCで開示される発明によって得られた2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末は、パートAおよびパートBで説明したポリイミド前駆体の製造にも好ましく使用される。
パートCで開示される発明の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法は、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が1g/100g以上の溶剤と、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする。
ブチロニトリルなどのニトリル類、N-メチル-2-ピロリドン、N,N-ジメトルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類、ジメチルスルホキシドなどのスルホン類、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノールなどのフェノール類、その他、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、水などを例示することができる。溶解度が1g/100gより小さい溶剤では、溶解度が1g/100g以上の溶剤と組み合わせて、混合物の溶解度を1g/100g以上として用いることができる。アルコール類や水などを用いる場合には、酸無水物と反応して開環反応を起こすことがあるため、精製後に加熱処理などを行うことが好ましい。また、精製後の加熱処理なしで済ませるためには、これらの溶剤は水分やアルコール分を含まない高純度溶剤が好ましい。
本発明において、この溶解度は以下の方法で測定した。
すなわち、純度99%以上の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末10gと対象とする溶剤20gとを混合し、25℃で3時間撹拌して混合液を得る。(この攪拌条件で飽和状態となることを事前に確認する。飽和にならないときは粉末の量を2倍、3倍・・・と増やす。)この混合液中の未溶解の2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末をアドバンテック社製のろ紙5Aを用いてろ別し、ろ液として2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の飽和溶液を得る。この2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の飽和溶液の5gをシャーレに秤取り、それを80℃で1時間次いで200℃で1時間加熱して溶剤を除去する。加熱後のシャーレの2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の質量を求め、その値から25℃の溶解度を算出する。
本発明のポリイミドは、上記の規定を満たす2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末を、テトラカルボン酸成分の少なくとも一部として用いることによって好適に得ることができる。テトラカルボン酸成分としては、上記の規定を満たす2,3,3’,4’-ビフェニルテトラカルボン酸二無水物以外の他のテトラカルボン酸成分を含んでも構わない。他のテトラカルボン酸成分としては、限定するものではないが、例えばピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、オキシジフタル酸二無水物などを好適に挙げることができる。
5-(トリフルオロメチル)-1,3-フェニレンジアミン、1,3 -ジアミノ-2,4,5,6-テトラフルオロベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)1,1,1,3,3,3-ヘキサフルオロプロパン、2,2’-ビス-(4-アミノフェニル)-ヘキサフルオロプロパン、4,4-ビス(トリフルオロメトキシ)ベンジジン、3,3’-ジアミノ-5,5’-トリフルオロメチルビフェニル、3,3’-ジアミノ-6,6’-トリフルオロメチルビフェニル、3,3’-ビス(トリフルオロメチル)ベンジジン;2,2-ビス[4-(4-アミノフェノキシ)フェニル]
ヘキサフルオロプロパン、4,4’-トリフルオロメチル-2,2’- ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3-ジクロロ-4,4’-ジアミノビフェニル、2,2’,5,5’-ジクロロ-4,4’-ジアミノビフェニル、4,4’-メチレン-ビス(2-クロロアニリン)などのハロゲン基を有する芳香族ジアミンおよびその誘導体、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4-アミノフェニルー4-アミノベンゾエート、テレフタル酸ビス(4-アミノフェニル)エステル、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン、1,3-ビス(4-アミノベンゾイルオキシ)ベンゼン、4,4’-ジアミノベンズアニライド、N,N-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、N,N’-m-フェニレンビス(p-アミノベンズアミド)などのカルボニル基を有する芳香族ジアミンおよびその誘導体、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3、3’-ジアミノー4,4’-ジヒドロキシジフェニルスルホン、O-トリジンスルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホンなどのスルホニル基を有する芳香族ジアミンおよびその誘導体を例示できる。
パートDで開示される発明は、着色の少ない3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法、及びそれを用いたポリイミドに関する。ここで、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末とは、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を主成分とし、実質的に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる化学原料として好適に用いられる粉末のことである。
特開2004-196687号公報の製造方法では、アルカリ金属を低減した3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が得られている。しかしながら、無水酢酸での再結晶では、着色の低減の効果は十分ではなかった。
すなわちパートDで開示される発明は、大掛かりな設備を必要とせず、温和な条件下で簡便な操作による方法によって、着色の少ない3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を容易に得ることができる精製方法提供すること、およびその精製方法によって得られた着色の少ない3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を用いて透過性が良好なポリイミドを得ることを目的とする。
1. 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が0.1g/100g以上の溶剤と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする3,3’,4,4’-ビフェニルテトラカルボン酸二無水物二無水物粉末の精製方法。
パートDで開示される発明によって得られた3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末は、従来技術の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を代替することで、より透明な最終製品、特にはポリイミドを得ることができる。
パートDで開示される発明によって得られた3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末は、パートAおよびパートBで説明したポリイミド前駆体の製造にも好ましく使用される。
以下の記載において、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物をs-BPDA、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末をs-BPDA粉末、と略記することもある。
パートDで開示される発明の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末の精製方法は、s-BPDAに対する25℃の溶解度が0.1g/100g以上の溶剤と、原料のs-BPDA粉末とを、少なくとも一部のs-BPDA粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解のs-BPDA粉末を分離回収することを特徴とする。
本発明において、s-BPDAの溶解度は以下の方法で測定した。
すなわち、純度99%以上のs-BPDA粉末5.0gと対象とする溶剤50.0gとを混合し、25℃で3時間撹拌して混合液を得る。(この攪拌条件で飽和状態となることを事前に確認する。飽和にならないときは粉末の量を2倍、3倍・・・と増やす。)この混合液中の未溶解のs-BPDA粉末をアドバンテック社製のろ紙5Aを用いてろ別し、ろ液としてs-BPDAの飽和溶液を得る。このs-BPDAの飽和溶液の5gをシャーレに秤取り、それを80℃で1時間次いで200℃で1時間加熱して溶剤を除去する。加熱後のシャーレのs-BPDAの質量を求め、その値から25℃の溶解度を算出する。
分離回収されたs-BPDA粉末には、溶剤が付着し残存している。このため、好ましくは不活性雰囲気中で、熱風乾燥、加熱乾燥、真空乾燥などの公知の方法によって十分に乾燥することが好適である。なお、精製工程中に酸無水物の一部が開環反応を起こすことがある。その場合には、乾燥時の加熱等によって、閉環することが好ましい。
この昇華は、特別の条件下で行う必要はなく、従来公知の条件で好適に行うことができる。特開2005-314296号公報、特開2006-45198号公報で開示されているような、s-BPDA粉末を加熱溶融させた後、減圧下に250℃以上の高温で蒸発させ、その蒸気を冷却し結晶化する方法でも構わない。また加熱溶融せず、100~250℃程度の比較的低温で昇華させることによっても、より着色が少ないs-BPDA結晶を好適に得ることができる。このs-BPDA結晶は、凝固していても、粉砕によって容易に粉末化できる。
本発明のs-BPDA粉末以外のテトラカルボン酸成分としては、特に限定はなく、通常のポリイミドに原料として採用されるテトラカルボン酸成分であればいずれでも構わないが、芳香族テトラカルボン酸二無水物が好ましい。その様なテトラカルボン酸二無水物としては、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン類、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、(1,1’:3’,1”-ターフェニル)-3,3”,4,4”-テトラカルボン酸二無水物、4,4’-(ジメチルシラジイル)ジフタル酸二無水物、4,4’-(1,4-フェニレンビス(オキシ))ジフタル酸二無水物、など、より好ましくは2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を好適に挙げることができる。
重合イミド化する方法や条件には特に限定はなく、従来のポリイミドの製造方法で採用される重合イミド化する方法や条件を好適に採用できるが、以下に説明するポリイミドの前駆体を経由する製造方法によって、より容易に製造することができる。
有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~100℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等によりシリル化されたジアミンの精製をおこなう。脱水された溶剤中にシリル化されたジアミンを溶解させ、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~100℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いると、シリル化されたジアミンを精製する必要がないので好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。さらにフッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが好ましい。また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
パートEで開示される発明は、着色が低減したトランス-1,4-ジアミノシクロヘキサン粉末、及びそれをジアミン成分に用いたポリイミドに関する。ここで、トランス-1,4-ジアミノシクロヘキサン粉末とは、トランス-1,4-ジアミノシクロヘキサンを主成分とし、実質的にトランス-1,4-ジアミノシクロヘキサンからなる化学原料として好適に用いられる粉末のことである。
すなわち、パートEで開示される発明は、着色が低減したトランス-1,4-ジアミノシクロヘキサン粉末、及びそれをジアミン成分に用いた着色が低減したポリイミドを提案することを目的とする。
1. 純水にトランス-1,4-ジアミノシクロヘキサン粉末を10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が90%以上であることを特徴とするトランス-1,4-ジアミノシクロヘキサン粉末。
2. 波長400nm、光路長1cmの光透過率が95%以上であることを特徴とする前記項1に記載のトランス-1,4-ジアミノシクロヘキサン粉末。
3. ジアミン成分として、前記項1または2に記載のトランス-1,4-ジアミノシクロヘキサン粉末を用いた、膜厚10μmのフィルムにしたときの400nmにおける光透過率が80%以上であることを特徴とするポリイミド。
4. 光学材料用途であることを特徴とする前記項3に記載のポリイミド。
パートEで開示される発明によって得られたトランス-1,4-ジアミノシクロヘキサン粉末は、従来技術のトランス-1,4-ジアミノシクロヘキサン粉末を代替することで、より透明な最終製品、特にはポリイミドを得ることができる。
パートEで開示される発明によって得られたトランス-1,4-ジアミノシクロヘキサン粉末は、パートAおよびパートBで説明したポリイミド前駆体の製造にも好ましく使用される。
パートEで開示される発明のトランス-1,4-ジアミノシクロヘキサン粉末(以下、トランス-1,4-ジアミノシクロヘキサンをt-DACH、トランス-1,4-ジアミノシクロヘキサン粉末をt-DACH粉末、と略記することもある。)は、純水に10質量%の濃度で溶解して得られた溶液に対する波長400nmの光透過率が90%以上、好ましくは95%以上であることを特徴とする。光透過率が90%未満の場合は、淡黄色を呈し、本発明の目的を達成することが出来ない。
芳香族テトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン類、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、(1,1’:3’,1”-ターフェニル)-3,3”,4,4”-テトラカルボン酸二無水物、4,4’-(ジメチルシラジイル)ジフタル酸二無水物、4,4’-(1,4-フェニレンビス(オキシ))ジフタル酸二無水物など、脂環式テトラカルボン酸二無水物としては、例えば、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル)-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、3c-カルボキシメチルシクロペンタン-1r,2c,4c-トリカルボン酸1,4,2,3-二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等が挙げられる。特にポリイミドの機械特性や耐熱性が優れるため、ビフェニルテトラカルボン酸二無水物が好適である。
重合イミド化する方法や条件には特に限定はなく、従来のポリイミドの製造方法で採用される重合イミド化する方法や条件を好適に採用できるが、パートDで説明したポリイミドの前駆体の製造方法、即ち、1)ポリアミド酸または2)ポリアミド酸シリルエステルを経由する製造方法によって、より容易に製造することができる。
パートFで開示される発明は、着色の少ない2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末の精製方法、該粉末、及びそれを用いたポリイミドに関する。ここで、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末とは、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物を主成分とし、実質的に2,2’,3,3’-ビフェニルテトラカルボン酸二無水物からなる化学原料として好適に用いられる粉末のことである。
特開2009-79009号公報には、無水酢酸や、加熱により2,2’,3,3’-ビフェニルテトラカルボン酸二無水物を得る方法が記載されているが、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物の精製方法や、その着色については記載されていない。
すなわちパートFで開示される発明は、簡単な操作によって容易に着色の少ない2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末を得る精製方法、着色の少ない2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末、及びそれを用いた光透過性が改良されたポリイミドを提供することを目的とする。
パートFで開示される発明の2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末は、従来技術の2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末を代替することで、より透明な最終製品、特にはポリイミドを得ることができる。
パートFで開示される発明の2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末は、パートAおよびパートBで説明したポリイミド前駆体の製造にも好ましく使用される。
2,2’,3,3’-ビフェニルテトラカルボン酸の合成方法としては、a)Journal of Chemical Society,1914, vol.105, p.2471記載の銅粉存在下、高温に加熱してカップリング反応を行う、いわゆるウルマン反応を用いる製造方法や、b)特許文献1記載のジアルキルベンゼンモノニトロ化合物を出発原料として、還元反応と、ベンジジン転位反応と、脱アミノ化反応と、酸化反応とを順次おこなう製造方法や、c)特許文献2記載の2-ジメチル-3-クロロベンゼンを出発原料として、カップリング反応と、酸化反応とを順次おこなう製造方法が好適である。
(1)溶剤と、i-BPDA粉末を、少なくとも一部のi-BPDA粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解のi-BPDA粉末を分離回収する精製方法、
(2)酸無水物を含む溶液で再結晶する精製方法、
(3)加熱減圧下で昇華する精製方法
など、いずれかの精製工程を含むことが好ましい。また、これらの方法を複数繰り返すことや、組み合わせて精製することもできる。また、精製前のi-BPDAの純度としては、90%以上、好ましくは95%以上、より好ましくは98%以上である。90%未満では、これらの精製工程で十分に着色を取り除くことができないことがある。
ブチロニトリルなどのニトリル系溶剤、N-メチル-2-ピロリドン、N,N-ジメトルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系溶剤、ジメチルスルホキシドなどのスルホン系溶剤、ジメチルカーボネート、ジエチルカーボネート等のカーボネート溶剤、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶剤、その他、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、水などが挙げられ、特にジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルー2-ピロリドン、N-エチル-2-ピロリドンは好適である。これらの溶剤は、不純物、金属成分、水分を含まない高純度溶剤が好ましい。アルコール系溶剤や水などを用いる場合、酸無水物の一部が開環反応を起こすことがあるため、後の操作で加熱等により閉環することが好ましい。
パートGで開示される発明は、高い透明性、高い機械強度、そして低線熱膨張係数を併せ持つポリイミド及び、そのポリイミド前駆体に関する。
1. ジアミン成分とテトラカルボン酸成分を反応させて得られるポリイミドであって、
前記ジアミン成分が、光透過率が90%以上である芳香環を有しないジアミン類(その誘導体を含む。以下同じ)、または光透過率が80%以上である芳香環を有するジアミン類(その誘導体を含む。以下同じ)を含有し(但し、ジアミン成分の透過率は、純水もしくはN、N-ジメチルアセトアミドに10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率を表す。)、
前記テトラカルボン酸成分が、光透過率が75%以上であるテトラカルボン酸類(その誘導体を含む。以下同じ)を含有する(但し、テトラカルボン酸成分の透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)
ことを特徴とするポリイミド。
ジアミン成分が、光透過率が90%以上、好ましくは95%以上である芳香環を有しないジアミン類(前述のとおり、その誘導体を含む。)、もしくは、光透過率が70%以上、好ましくは80%以上である芳香環をするジアミン類(前述のとおり、その誘導体を含む。)を含有し(但し、光透過率は、純水もしくはN、N-ジメチルアセトアミドに10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率)、
テトラカルボン酸成分が、光透過率が80%以上、好ましくは85%以上、より好ましくは90%以上であるテトラカルボン酸類(前述のとおり、その誘導体を含む。)を含有する(但し、光透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率)ことを特徴とする。ジアミン成分を構成するジアミン類、テトラカルボン酸成分を構成するテトラカルボン酸類の光透過率が上記の範囲の場合は、得られるポリイミドの着色が低減されるため、良好である。また、ジアミン成分を構成するジアミン類(1種または2種以上)の好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは100%が、上記の光透過率を満たす。テトラカルボン酸成分を構成するテトラカルボン酸類(1種または2種以上)の好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは100%が、上記の光透過率を満たす。
(1)溶剤と、テトラカルボン酸類(例えばテトラカルボン酸二無水物)の粉末を、少なくとも一部のテトラカルボン酸類粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解のテトラカルボン酸類の粉末を分離回収する精製方法、
(2)酸無水物を含む溶液で再結晶する精製方法、
(3)加熱減圧下で昇華する精製方法
また、これらの方法を複数繰り返すことや、組み合わせて精製することもできる。
(1)昇華する精製方法
(2)吸着剤で処理する精製方法
(3)再結晶による精製方法
また、これらの方法を複数繰り返すことや、組み合わせて精製することもできる。
テトラカルボン酸二無水物を任意のアルコールで反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを反応させることで、ポリイミド前駆体が得られる。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。また、このポリイミド前駆体は、安定なため水やアルコールなどの溶剤を加え再沈殿などの精製をおこなうこともできる。
得られるポリイミドの耐熱性が高いことから、Xは下記一般式(G2)の4価の有機基であることがより好ましく、4価のビフェニル異性体であることが特に好ましい。
パートHで開示される発明は、高耐熱性の光学材料として最適な高い透明性有するポリイミドを得ることができるポリイミド前駆体ワニス、およびポリイミドワニスの製造方法に関する。詳細には、使用される有機溶剤の純度を厳密に管理することにより、これらが達成される。
前記ワニス中に含まれることになる有機溶剤(以下、使用される有機溶剤という)として、光路長1cm、400nmにおける光透過率が89%以上である有機溶剤を使用して、前記ワニスを製造することを特徴とするワニスの製造方法。
パートHで開示される発明により製造されるワニスは、少なくとも有機溶剤と、下記一般式(H1)であらわされるポリイミド前駆体または下記一般式(H2)であらわされるポリイミドとを含有する。
本明細書において、用語「ワニス」は、特に明示しない場合、一般式(H1)で表されるポリイミド前駆体を含有するワニスおよび一般式(H2)であらわされるポリイミドを含有するワニスの両方を意味する。
(a)使用される有機溶剤として、光路長1cm、400nmにおける光透過率が89%以上である有機溶剤を使用して、前記ワニスを製造すること;
(b)使用される有機溶剤として、窒素中で3時間加熱還流した後の光路長1cm、400nmにおける光透過率が20%以上である有機溶剤を使用すること;
(c)使用される有機溶剤として、ガスクロマトグラフィー分析より求められた純度が99.8%以上である有機溶剤を使用すること;
(d)使用される有機溶剤として、ガスクロマトグラフィー分析で求められる主成分ピークの保持時間に対し、長時間側に現れる不純物ピークの総量が、0.2%未満である有機溶剤を使用すること;
(e)使用される有機溶剤の250℃での不揮発成分が0.1%以下であること;および
(f)使用される有機溶剤の金属成分の含有率が、10ppm以下であること
から選ばれる条件の少なくとも1つ満たす。
使用される有機溶剤は、光路長1cm 400nmにおける光透過率が、89%以上が好ましく、90%以上がより好ましく、91%以上が特に好ましい。光透過率の高い溶剤を用いた場合、ポリイミドフィルムの製造工程でフィルムの着色が低減するため好ましい。
使用される有機溶剤は、使用する有機溶剤を窒素雰囲気下で3時間加熱還流した後、光路長1cm 400nmにおける光透過率が、20%以上が好ましく、40%以上がより好ましく、80%以上が特に好ましい。窒素中で3時間加熱還流した際の光透過率高い溶剤を用いた場合、ポリイミドフィルムの製造工程でフィルムの着色が低減するため好ましい。上記の範囲を満たすように純度が管理された有機溶剤を使用することで、「10μm膜厚で波長400nmにおける透過率70%以上」のポリイミドを与えるワニスを得ることができる(実施例参照)。
使用される有機溶剤は、ガスクロマトグラフィー分析より求められた純度が99.8%以上が好ましく、より好ましくは99.9%以上、さらに好ましくは99.99%以上である。有機溶剤の純度が高い場合、最終的に得られるポリイミドフィルムの光透過率が高いため、好適である。
使用される有機溶剤は、ガスクロマトグラフィー分析で求められる主成分ピークの保持時間に対し、長時間側に現れる不純物ピークの総量が、好ましくは0.2%未満であり、より好ましくは0.1%以下であり、特に好ましくは0.05%以下である。溶剤の主成分ピークの対し、保持時間が長時間側に現れる不純物は、高沸点な不純物であったり、分子間相互作用が大きい不純物であったりするため、ポリイミドフィルムの製造工程で揮発しにくく、フィルム中の不純物として残りやすいため、着色の原因となる。2種以上の有機溶剤が使用される場合、ガスクロマトグラフィー分析で保持時間が長時間側に現れる主成分のピークより、長時間側に現れる不純物ピークの総量が、上記範囲であることが好ましい。
本発明で使用する有機溶剤は、使用する有機溶剤の250℃、30分加熱後の不揮発成分が、0.1%以下が好ましく、0.05%以下がより好ましく、0.01%以下が特に好ましい。溶剤の不揮発成分は、ポリイミドフィルムの製造工程で揮発しにくく、フィルム中の不純物として残りやすくフィルムの着色原因となるため、少ないことが好ましい。
使用される有機溶剤は、使用する有機溶剤の金属(例えば、Li,Na,Mg,Ca,Al,K,Ca,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Cd)成分の含有率が10ppm以下が好ましく、1ppm以下がより好ましく、特に500ppb以下、より特に好ましくは300ppb以下である。金属成分の含有率が低い場合、高温処理にした場合の溶剤への着色が低く、ポリイミドフィルムの製造工程でフィルムの着色が低減するため好ましい。
で示される6員環の脂環構造を有するテトラカルボン酸成分がより好ましく、その中でも多脂環型や架橋環型のテトラカルボン酸成分は、更に得られるポリイミドの耐熱性、熱膨張係数が低いことから特に好ましい。
有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
テトラカルボン酸二無水物を任意のアルコールで反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加え再沈殿などの精製をおこなうこともできる。
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る(必要に応じて、蒸留等によりシリル化されたジアミンの精製をおこなう。)。脱水された溶剤中にシリル化されたジアミンを溶解させ、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが好ましい。また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
あらかじめ前述の1)~3)のポリイミド前駆体を得た後、もしくはテトラカルボン酸成分、ジアミン成分と溶剤を加えた後、150℃以上に加熱し熱イミド化する方法、または、化学イミド化剤(例えば、無水酢酸などの酸無水物および、ピリジン、イソキノリンなどのアミン系触媒)を加える方法により、ポリイミドワニスが得られる。なお、熱イミド化する場合、溶剤の着色を低減するため、窒素雰囲気中で反応させることが好ましい。
以下の各例において評価は次の方法で行った。
[ワニス固形分]
アルミシャーレにポリイミド前駆体溶液1gを量り取り、200℃の熱風循環オーブン中で2時間加熱して固形分以外を除去し、その残分の質量よりワニス固形分(加熱残分 質量%)を求めた。
[回転粘度]
東機産業製TV-22 E型回転粘度計を用い、温度25℃せん断速度20sec-1でのポリイミド前駆体溶液の粘度を求めた。
[対数粘度]
0.5g/dL ポリイミド前駆体のN,N-ジメチルアセトアミド溶液を、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
[溶剤の純度]
島津製作所製GC-2010を用い以下の条件で測定した。純度(GC)はピーク面積分率より求めた。
カラム: J&W社製DB-FFAP 0.53mmID×30m
温度:40℃(5分保持)+40℃~250℃(10分/分)+250℃(9分保持)
注入口温度: 240℃
検出器温度: 260℃
キャリアガス: ヘリウム 10ml/分
注入量: 1μL
[光透過率]
大塚電子製MCPD-300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率を測定した。
[弾性率、破断伸度]
膜厚約10μmのポリイミド膜をIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間 30mm、引張速度 2mm/minで、初期の弾性率、破断伸度を測定した。
[熱膨張係数(CTE)]
膜厚約10μmのポリイミド膜を幅4mmの短冊状に切り取って試験片とし、島津製作所製TMA-50を用い、チャック間長15mm、荷重2g、昇温速度20℃/minで300℃まで昇温した。得られたTMA曲線から、50℃から200℃までの平均熱膨張係数を求めた。
[動的粘弾性測定]
膜厚約10μmのポリイミド膜を短冊状に切り取って試験片とし、TA Instruments社製固体粘弾性アナライザー RSAIIIを用い以下の条件で測定した。
測定モード: 引っ張りモード
SWEEP TYPE: 温度ステップ 3℃/min Soak時間 0.5min
周波数: 10Hz
(62.8rad/sec)
ひずみ: 0.2~2%
温度範囲: 25℃~測定限界まで
雰囲気: 窒素気流中
反応容器中にトランス-1,4-ジアミノシクロヘキサン(以下、t-DACHと略記することもある)10.82g(0.0947モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド(以下、DMAcと略記することもある。)313.0gに溶解した。この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、s-BPDAと略記することもある)26.48g(0.090モル)と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(以下、a-BPDAと略記することもある)1.394g(0.0047モル)とを徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン6.851g(0.06モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド220.5gに溶解した。この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物15.89g(0.054モル)と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物1.765g(0.006モル)とを徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン2.28g(0.02モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド(以下、特に記載がない限り、純度(GC)99.99%の高純度DMAcを使用した。)73.51gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物4.71g(0.016モル)と、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物1.18g(0.004モル)を徐々に加え、25℃で24時間撹拌した。均一で粘稠なポリイミド前駆体溶液組成物を得た。
トランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN,N-ジメチルアセトアミド52.39gに溶解した。次に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.18g(0.021モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物1.55g(0.005モル)を添加した。40℃で攪拌し、80分後すべての固体が溶解した。更に8時間撹拌し、粘稠なポリイミド前駆体を得た。
トランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN-メチルピロリドン(以下、特に記載がない限り、純度(GC) 99.96%を使用した。以下、NMPと略記することもある。)52.38gに溶解した。次に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.18g(0.021モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物1.55g(0.005モル)を添加した。40℃で攪拌し、135分後すべての固体が溶解した。更に8時間撹拌し、粘稠なポリイミド前駆体を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN,N-ジメチルアセトアミド60.35gに溶解した。その後、N,O-ビス(トリメチルシリル)アセトアミド 5.55g(0.0273モル)を加え、80℃で2時間攪拌してシリル化を行った。この溶液を40℃に冷却した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.77g(0.023モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物0.88g(0.003モル)を添加した。40℃で攪拌し、1時間以内にすべての固体が溶解した。更に40℃で8時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン2.284g(0.02モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド(汎用品)73.51gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物5.884g(0.02モル)を徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌した。反応容器の壁面に白い析出物が確認されたが、加圧ろ過を行うことで均一で粘稠なポリイミド前駆体溶液組成物を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン2.284g(0.02モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド73.51gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物5.884g(0.02モル)を徐々に加え、25℃で48時間撹拌した。この溶液は、白色固体の不溶分があり、均一なポリイミド前駆体溶液は得られなかった。
トランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN,N-ジメチルアセトアミド52.39gに溶解した。次に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物7.73g(0.026モル)を添加した。40℃で攪拌し、16時間後すべての固体が溶解した。更に8時間撹拌し、粘稠なポリイミド前駆体を得た。
トランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN-メチルピロリドン(純度(GC) 99.62%) 52.38gに溶解した。次に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物7.73g(0.026モル)を添加した。40℃で攪拌し、11時間後すべての固体が溶解した。更に8時間撹拌し、粘稠なポリイミド前駆体を得た。
更に、ポリアミド酸シリルエステル型の共重合ポリイミド前駆体(実施例A6)では、ポリアミド酸の共重合ポリイミド前駆体(実施例A2)に比べ、ポリイミドフィルムとしたときの線熱膨張係数が更に低くできることがわかる。
t-DACH: トランス-1,4-ジアミノシクロヘキサン 純度(GC) 99.1%を再結晶精製もしくは昇華精製した。
t-1,2-DACH: トランス-1,2-ジアミノシクロヘキサン 純度(GC) 99.9%を用いた。
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%、Na,K,Ca,Al,Cu,Si:それぞれ<0.1ppm、Fe:0.1ppm、Cl:<1ppm に同質量のN-メチル-2-ピロリドンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
a-BPDA:2,3,3’,4’-ビフェニルテトラカルボン酸二無水物 純度99.6%(開環した後2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%、Na,K,Al,Cu,Si:それぞれ<0.1ppm、Ca,Fe:それぞれ0.1ppm、Cl:<1ppm に同質量のアセトンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
i-BPDA:2,2’,3,3’-ビフェニルテトラカルボン酸二無水物 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99% に同質量のN-メチル-2-ピロリドンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
6FDA:4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物 純度 99.77%(H-NMRで求めた純度)
ODPA:4,4’-オキシジフタル酸二無水物 純度 99.9%(開環した後4,4’-オキシジフタル酸のHPLC分析で求めた純度)、酸無水化率 99.7%
DPSDA:4,4’-(ジメチルシラジイル)ジフタル酸二無水物 純度99.8%(HPLC分析)
BTDA:3,3’,4,4’-ベンゾフェノンカルボン酸二無水物 純度97%以上
PMDA:ピロメリット酸二無水物 純度 97%以上を無水酢酸で再結晶した。
s-BPTA:3,3’,4,4’-ビフェニルテトラカルボン酸
DMAc:N,N-ジメチルアセトアミド 蒸留精製品 純度(GC)高純度品99.99%
NMP: N-メチル-2-ピロリドン 純度(GC) 高純度品99.96%、汎用品99.62%
窒素ガスで置換した反応容器中にt-DACH 1.40g(12.2ミリモル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド 36.6gを加え、60℃に加熱し溶解した。この溶液にs-BPDA 3.46g(11.8ミリモル)とa-BPDA 0.09g(0.3ミリモル)とを徐々に加え、70℃まで昇温し、攪拌した。回転粘度が5Pa・secを超えたところで、s-BPTA 0.03g(0.1ミリモル)を加え、さらに2時間攪拌し、均一で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の特性を測定した結果を表A2に示す。これをPTFE製メンブレンフィルターでろ過し、フィルムの作製に用いた。
窒素ガスで置換した反応容器中にジアミン成分としてt-DACH 1.40g(12.2ミリモル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が15質量%となる量(28.4g)に溶解した。この溶液を50℃に加熱し、s-BPDA 3.24g(11.0モル)と、a-BPDA 0.35g(1.2ミリモル)とを徐々に加えた。50℃で8時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の特性を測定した結果を表A2に示す。この方法で得たポリイミド前駆体溶液をPTFE製メンブレンフィルターでろ過し、フィルムの作製に用いた。
ジアミン成分、カルボン酸成分を表A2に記載したモル量、溶剤のN,N-ジメチルアセトアミドは、それぞれ仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が15質量%となる量を用いた以外は、実施例A8と同様にして、ポリイミド前駆体溶液、共重合ポリイミドフィルムを得た。このポリイミド前駆体溶液、共重合ポリイミドフィルムの特性を測定した結果を表A2に示す。
ジアミン成分、カルボン酸成分を表A2に記載したモル量、溶剤として、実施例A16でGC分析で求めた純度 99.96%のN-メチル-2-ピロリドン、実施例A17でGC分析で求めた純度 99.62%のN-メチル-2-ピロリドンをそれぞれ仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が12質量%となる量を用いた以外は、実施例A8と同様にして、ポリイミド前駆体溶液、共重合ポリイミドフィルムを得た。このポリイミド前駆体溶液、共重合ポリイミドフィルムの特性を測定した結果を表A2に示す。
窒素ガスで置換した反応容器中にジアミン成分としてt-DACH 10ミリモル(1.14g)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミドを、仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が15質量%となる量(22.7g)を加え、溶解した。この溶液にカルボン酸成分として、s-BPDA 9ミリモル(2.65g)とPMDA 1ミリモル(0.218g)とを徐々に加え、50℃に昇温し、12時間攪拌した。この溶液は、白色固体の不溶分があり、均一なポリイミド前駆体溶液は得られなかった。
更に、カルボン酸成分として、s-BPDA,PMDAを用いた比較例A5では、均一なポリイミド前駆体溶液は得られなかったのに対し、実施例A14では、s-BPDAとa-BPDAの共重合へ、更に第3のカルボン酸成分として、PMDAを共重合することにより、均一なポリイミド前駆体溶液が得られた。
純度(GC)が低い溶剤を用いた実施例A17と比較し、高純度溶剤を用いた実施例(同じ原料モノマーを用いた系との比較)では、高い光透過率が達成できた。
以下の各例において評価は次の方法で行った。
[対数粘度]、[光透過率]、[弾性率、破断伸度]、および[熱膨張係数(CTE)]は、パートAで説明した通りの方法で評価した。
反応容器中にトランス-1,4-ジアミノシクロヘキサン(以下、t-DACHと略記することもある) 3.220g(0.0282モル)を入れ、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド(以下、DMAcと略記することもある)103.7gに溶解した後、シリンジにてN,O-ビス(トリメチルシリル)アセトアミド 6.281g(0.0296モル)を加え、80℃で2時間攪拌してシリル化を行った。この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、s-BPDAと略記することもある)8.272g(0.0281モル)を徐々に加え、室温で8時間撹拌することで、均一で粘稠なポリイミド前駆体溶液を得た。
結果を表B1に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN,N-ジメチルアセトアミド60.35gに溶解した。その後、N,O-ビス(トリメチルシリル)アセトアミド 5.55g(0.0273モル)を加え、80℃で2時間攪拌してシリル化を行った。この溶液を40℃に冷却した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.77g(0.023モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物0.88g(0.003モル)を添加した。40℃で攪拌し、1時間以内にすべての固体が溶解した。更に40℃で8時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
反応容器中にトランス-1,4-ジアミノシクロヘキサン 2.284g(0.02モル)を入れ、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド 73.51gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 5.884g(0.02モル)を徐々に加え、室温で8時間撹拌した。
しかしながら、この反応溶液は白濁したままであり、均一なポリイミド前駆体溶液は得られなかった。
結果を表B1に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン 6.85g(0.06モル)を入れ、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド 98.02gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 17.65g(0.06モル)を徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌した。
しかしながら、この反応溶液には白色の沈殿物が残り、均一なポリイミド前駆体溶液は得られなかった。
結果を表B1に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン 2.284g(0.02モル)を入れ、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド 73.51gに溶解した後、この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 5.884g(0.02モル)を徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌した。
この反応溶液には、反応容器の壁面に白い析出物が確認されたが、加圧ろ過を行うことで均一で粘稠なポリイミド前駆体溶液を得た。
結果を表B1に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン6.851g(0.06モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド220.5gに溶解した。この溶液に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物15.89g(0.054モル)と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物1.765g(0.006モル)とを徐々に加え、120℃まで加熱し、5分程度で塩が溶解し始めたのを確認した後、室温まで急冷し、そのまま室温で8時間撹拌し、均一で粘稠な共重合ポリイミド前駆体溶液組成物を得た。
以下の各例で使用した原材料は、次のとおりである。
2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA):宇部興産株式会社製 純度99.6%(開環した2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%
1,3-ビス(4-アミノベンゾイルオキシ)ベンゼン(13P-BABB):三國製薬工業株式会社製 を活性炭処理後、昇華精製したものを用いた。
各溶剤:和光純薬株式会社製 特級もしくは1級相当品
2N 水酸化ナトリウム水溶液:東京化成株式会社製 水酸化ナトリウム水溶液
2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)の評価
[25℃のa-BPDAの溶解度]
ガラス製容器に純度99.6%、酸無水化率99.5%のa-BPDA粉末 10.0g、溶剤 20.0gを仕込み、25℃で3時間、十分に攪拌した。溶け残ったa-BPDAをアドバンテック製のろ紙5Aを用いてろ別し、a-BPDA飽和溶液を得た。a-BPDA飽和溶液5gをアルミ製シャーレに入れ、80℃で1時間、200℃で1時間加熱した。加熱後残分より飽和溶液中に含まれていたa-BPDAの質量を求め、溶解度を算出した。
[光透過率]
所定量のa-BPDA粉末を、2規定の水酸化ナトリウム水溶液に溶解し、10質量%水溶液を得た。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、2規定の水酸化ナトリウム水溶液をブランクとし、10質量% a-BPDA粉末/2規定水酸化ナトリウム水溶液の400nmにおける光透過率を測定した。
[対数粘度]
パートAと同様に測定した。
[光透過率]
10質量%のポリイミド前駆体溶液となる様に、ポリイミド前駆体をN,N-ジメチルアセトアミドで希釈した。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、N,N-ジメチルアセトアミドをブランクとし、10質量%のポリイミド前駆体溶液の400nmにおける光透過率を測定した。
[光透過率]、[弾性率]、[熱膨張係数(CTE)]については、パートAと同様に測定した。
ガラス製容器に原料のa-BPDA粉末 10.0g、溶剤としてジメチルスルホキシド 10.0gを仕込み、25℃で3時間、十分に攪拌した。その溶液をろ別し、得られた粉末を100℃で2時間真空乾燥し、着色が低減されたa-BPDA粉末を得た。用いた溶剤の溶解度、得られたa-BPDA粉末の光透過率や回収率の結果を表C1に示す。
溶剤を表C1記載の溶剤へ変更した以外は、実施例C1と同様にして着色が低減されたa-BPDA粉末を得た。用いた溶剤の溶解度、得られたa-BPDA粉末の光透過率や回収率の結果を表C1に示す。
本発明の精製方法を行う前の原料のa-BPDA粉末の光透過率を表C1に示す。
溶剤を表C1記載の溶剤へ変更した以外は、実施例C1と同様にしてa-BPDA粉末を得た。用いた溶剤の溶解度、得られたa-BPDA粉末の光透過率や回収率の結果を表C1に示す。
ガラス製容器に原料のa-BPDA 10.0g、無水酢酸 90.0gを仕込み、120℃3時間攪拌し、すべてのa-BPDA溶解した。加熱溶解時に溶液へ着色が確認された。攪拌しながら25℃まで冷却し、結晶を析出させた。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥した。収量は、6.0gであった。再結晶により得られたa-BPDA粉末の光透過率の結果を表C1に示す。
反応容器に、活性炭処理後、昇華精製した1,3-ビス(4-アミノベンゾイルオキシ)ベンゼン(13p-BABB) 3.484g(0.01モル)、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド(DMAc) 37.31gを加え、50℃、窒素気流下で溶解した。この溶液に実施例C3で得られた2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末(a-BPDA粉末) 3.102g(0.01モル)を徐々に加え、50℃で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
原料のa-BPDA粉末を未精製のまま用いた以外は、実施例C6と同様にして、ポリイミド前駆体溶液、及びポリイミドフィルムを得た。特性を測定した結果を表C2に示す。
以下の各例で使用した原材料は、次のとおりである。
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA):宇部興産株式会社製 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%
2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(以下、a-BPDAと略記することがある):宇部興産株式会社製 純度99.6%(開環した後2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%をアセトンにて洗浄したものを使用
2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(以下、i-BPDAと略記することがある):CHANGZHOU WEIJIA CHEMICAL株式会社製 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%をNMPにて洗浄したものを使用
各溶剤:和光純薬株式会社製 特級もしくは1級相当品
2N 水酸化ナトリウム水溶液:東京化成株式会社製 水酸化ナトリウム水溶液
トランス-1,4-ジアミノシクロヘキサン(以下、t-DACHと略記することがある)):ZHEJIANG TAIZHOU QINGQUAN MEDICAL & CHEMICAL株式会社製 純度 99.1%(GC分析)を昇華精製したものを使用
[25℃のs-BPDAの溶解度]
ガラス製容器に純度99.9%、酸無水化率99.8%のs-BPDA粉末 5.0g、溶剤 50.0gを仕込み、25℃で3時間、十分に攪拌した。溶け残ったs-BPDAをアドバンテック製ろ紙5Aを用いてろ別し、s-BPDA飽和溶液を得た。s-BPDA飽和溶液5gをアルミ製シャーレに入れ、80℃で1時間、200℃で1時間加熱した。加熱後残分より飽和溶液中に含まれていたs-BPDAの質量を求め、溶解度を算出した。
[光透過率]
所定量のs-BPDA粉末を2N水酸化ナトリウム水溶液に溶解し、10質量%溶液を得た。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、2N水酸化ナトリウム水溶液をブランクとし、s-BPDA溶液の400nmにおける光透過率を測定した。
[対数粘度]
パートAと同様に測定した。
[光透過率(ポリイミド前駆体)]
パートCと同様に測定した。
[光透過率(ポリイミド)]、[弾性率、破断伸度]、[熱膨張係数(CTE)]については、パートAと同様に測定した。
ガラス製容器に未精製のs-BPDA 10.0g、溶媒としてN,N-ジメチルホルムアミド 10.0gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥し、s-BPDA粉末を得た。なお、収量は、9.7gであった。得られたs-BPDA粉末の評価結果を表D1に示す。
溶媒を表D1記載の溶剤へ変更した以外は、実施例D1と同様にして、s-BPDA粉末を得た。なお、収量は、9.6g(実施例D2)、9.4g(実施例D3)、9.5g(実施例D4)、9.6g(実施例D5)、9.7g(実施例D6)、9.6g(実施例D7)であった。得られたs-BPDA粉末の評価結果を表D1に示す。
ガラス製容器にs-BPDA 20.0g、溶媒としてN-メチル-2-ピロリドン 200gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥したてs-BPDA粉末を得た。収量は、15.2gであった。
このs-BPDA粉末 5.0gをガラス製昇華装置に仕込み、1Torr以下に減圧し、s-BPDA粉末が接している壁下面の温度を200~220℃に加熱してs-BPDAを昇華させ、昇華装置の上部に設けられた25℃に温調された壁面に冷却固化したs-BPDA結晶粉末を得た。収量は、3.1gであった。得られたs-BPDA粉末の評価結果を表D1に示す。
精製等の処理を行っていないs-BPDA粉末の評価結果を表D1に示す。
溶媒を表D1記載の溶剤へ変更した以外は、実施例D1と同様にして、s-BPDA粉末を得た。なお、収量は、9.7g(比較例D2)、9.7g(比較例D3)であった。得られたs-BPDA粉末の評価結果を表D1に示す。
精製等の処理を行っていないs-BPDA粉末 5.0gをガラス製昇華装置に仕込み、実施例D8と同様にして昇華を行った。収量は、4.4gであった。得られたs-BPDA粉末の評価結果を表D1に示す。
ガラス製容器にs-BPDA粉末 5.0g、無水酢酸 200gを仕込み、加熱還流し、3時間攪拌し溶解した。この時、溶液が黄色に着色した。25℃まで冷却し析出させた。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥してs-BPDA粉末を得た。収量は、4.2gであった。得られたs-BPDA粉末の評価結果を表D1に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン(t-DACH) 1.40g(0.0122モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド 28.4gに溶解した。この溶液を50℃に加熱し、実施例D3で得られたs-BPDA粉末 3.50g(0.0119モル)と、a-BPDA粉末 0.09g(0.0003モル)とを徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
得られたポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下120℃で1時間、150℃で30分間、200℃で30分間、350℃まで昇温して5分間、加熱して熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。次いで、得られたポリイミド/ガラス積層体を水に浸漬した後剥離し、膜厚が10μmのポリイミドフィルムを得た。
フィルムの特性を測定した結果を表D2に示す。
表D2に記載した酸成分を用いた以外は、実施例D9と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。
フィルムの特性を測定した結果を表D2に示す。
比較例D1の精製をおこなっていないs-BPDA粉末をテトラカルボン酸成分として用いた以外は、実施例D9と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。
フィルムの特性を測定した結果を表D2に示す。
以下の各例で使用した原材料は、次のとおりである。
トランス-1,4-ジアミノシクロヘキサン:ZHEJIANG TAIZHOU QINGQUAN MEDICAL & CHEMICAL株式会社製 純度 99.1%(GC分析)
吸着剤:日本ノリット株式会社製 活性炭 Norit SX Plus BET法で求めた比表面積1100m2/g
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA):宇部興産株式会社製 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%、同質量のN-メチル-2-ピロリドンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA):宇部興産株式会社製 純度99.6%(開環した後2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%、同質量のアセトンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA):CHANGZHOU WEIJIA CHEMICAL株式会社製 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%、同質量のN-メチル-2-ピロリドンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物(6FDA):WEYLCHEM株式会社製 純度 99.77%(H-NMRで求めた純度)
4,4’-(ジメチルシラジイル)ジフタル酸二無水物(DPSDA):東レ・ファインケミカル株式会社製 純度99.8%(HPLC分析)
2N 水酸化ナトリウム水溶液:東京化成株式会社製 水酸化ナトリウム水溶液
各溶剤:和光純薬株式会社製 特級もしくは1級相当品
[光透過率]
所定量のトランス-1,4-ジアミノシクロヘキサン粉末を純水に溶解し、10質量%溶液を得た。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、純水をブランクとし、トランス-1,4-ジアミノシクロヘキサン溶液の400nmにおける光透過率を測定した。
[対数粘度]
パートAと同様に測定した。
[光透過率(ポリイミド前駆体)]
パートCと同様に測定した。
[光透過率(ポリイミド)]、[弾性率、破断伸度]、[熱膨張係数(CTE)]については、パートAと同様に測定した。
ガラス製昇華装置に未精製のトランス-1,4-ジアミノシクロヘキサン 10.0gを仕込み、1Torr以下に減圧した。トランス-1,4-ジアミノシクロヘキサンが接している壁下面の温度を50℃に加熱し、5℃に温調された対面した壁上面に昇華物を得た。収量は、8.2gであった。この方法で得られたトランス-1,4-ジアミノシクロヘキサン粉末の光透過率の結果を表E1に示す。
ガラス製容器に未精製のトランス-1,4-ジアミノシクロヘキサン 5.0g、溶媒としてn-ヘキサン 25gを仕込み、窒素雰囲気下60℃で溶解した。そこへ吸着剤として、吸着剤(Norit SX Puls) 0.05gを加え、60℃で1時間攪拌した。60℃を保ったまま、吸着剤をろ別し、無色透明な溶液を得た。この溶液を攪拌しながら、25℃まで徐々に冷却し、結晶を析出させた。結晶をろ別し、得られた結晶を真空乾燥させた。この方法で得られたトランス-1,4-ジアミノシクロヘキサン粉末の光透過率の結果を表E1に示す。
精製をおこなわないトランス-1,4-ジアミノシクロヘキサン粉末の光透過率を表E1に示す。
ガラス製容器に未精製のトランス-1,4-ジアミノシクロヘキサン 5.0g、溶媒としてn-ヘキサン 25gを仕込み、60℃で加熱溶解した。不溶分をデカンテーションで取り除き、25℃まで冷却し、結晶を析出させた。結晶をろ別し、得られた結晶を真空乾燥させた。この方法で得られたトランス-1,4-ジアミノシクロヘキサン粉末の光透過率の結果を表E1に示す
窒素ガスで置換した反応容器中に、ジアミン成分として実施例E1で得られたトランス-1,4-ジアミノシクロヘキサン(t-DACH) 1.40g(0.0122モル)と、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド 28.4gとを仕込み溶解した。この溶液を50℃に加熱し、この溶液に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA) 3.50g(0.0119モル)と、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA) 0.09g(0.0003モル)とを徐々に加えた。この溶液のモノマー成分(ジアミン成分とカルボン酸成分の総和)濃度は15質量%である。この溶液を50℃で6時間撹拌して、均一で粘稠なポリイミド前駆体溶液を得た。
このポリイミド前駆体溶液の特性を測定した結果を表E2に示す。
表E2に記載したジアミン成分とテトラカルボン酸成分を用い、溶液のモノマー成分(ジアミン成分とカルボン酸成分の総和)濃度を15質量%として、実施例E3と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。特性を測定した結果を表E2に示す。
参考例E1の精製をおこなっていないt-DACHをアミン成分として用いた以外は、実施例E3と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。特性を測定した結果を表E2に示す。
以下の各例で使用した原材料は、次のとおりである。
2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA):CHANGZHOU
WEIJIA CHEMICAL株式会社製 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA):宇部興産株式会社製 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%に同質量のN-メチル-2-ピロリドンを加え室温下3時間攪拌後、溶け残った粉末を回収し、真空乾燥させたものを用いた。
2N 水酸化ナトリウム水溶液:東京化成株式会社製 水酸化ナトリウム水溶液
トランス-1,4-ジアミノシクロヘキサン(t-DACH):ZHEJIANG TAIZHOU QINGQUAN MEDICAL & CHEMICAL株式会社製 純度 99.1%(GC分析)を昇華精製したものを使用
1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン(BABB):三國製薬工業株式会社製を、活性炭処理後、昇華精製したものを使用
ガラス製容器に純度99.9%、酸無水化率99%のi-BPDA粉末 5.0g、溶剤 50.0gを仕込み、25℃で3時間、十分に攪拌した。溶け残ったi-BPDAをアドバンテック製ろ紙5Aを用いろ別し、i-BPDA飽和溶液を得た。i-BPDA飽和溶液5gをアルミ製シャーレに入れ、80℃で1時間、200℃で1時間加熱した。加熱後残分より飽和溶液中に含まれていたi-BPDAの質量を求め、溶解度を算出した。
[光透過率]
所定量のi-BPDA粉末を2N水酸化ナトリウム水溶液に溶解し、10質量%溶液を得た。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、2N水酸化ナトリウム水溶液をブランクとし、i-BPDA溶液の400nmにおける光透過率を測定した。
[対数粘度]
パートAと同様に測定した。
[光透過率(ポリイミド前駆体)]
パートCと同様に測定した。
[光透過率(ポリイミド)]、[弾性率、破断伸度]、[熱膨張係数(CTE)]については、パートAと同様に測定した。
ガラス製容器にi-BPDA 10.0g、溶媒としてジメチルスルホキシド 10.0gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥し、着色が低減されたi-BPDAを得た。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
溶媒を表F1記載の溶剤へ変更した以外は、実施例F1と同様にして着色が低減されたi-BPDAを得た。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
ガラス製容器にi-BPDA 10.0g、無水酢酸 150gを仕込み、窒素気流下、加熱還流し溶解した。溶解後すぐに攪拌しながら25℃まで冷却し、結晶を析出させた。溶液をろ別し、得られた粉末を100℃ 2時間真空乾燥した。収量は、7.9gであった。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
ガラス製容器にi-BPDA 5.0g、無水酢酸 75gを仕込み、窒素気流下、130℃に加熱し溶解した。溶解後、活性炭(Norit SXプラス) 0.05gを加え、30分攪拌した。活性炭をろ過で取り除き、ろ液を攪拌しながら25℃まで冷却した。得られた粉末を100℃ 2時間真空乾燥した。収量は、4.1gであった。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
ガラス製昇華装置に実施例F6と同様の方法で得たi-BPDA 10.0gを仕込み、1Torr以下に減圧した。i-BPDAが接している壁面の温度を230~250℃に加熱し、25℃の冷却水を通したガラス面に昇華物を得た。収量は、8.8gであった。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
ガラス製昇華装置に実施例F6と同様の方法で得たi-BPDA 10.0gを仕込み、1Torr以下に減圧した。i-BPDAが接している壁面の温度を300~320℃に加熱し、25℃の冷却水を通したガラス面に昇華物を得た。収量は、8.4gであった。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
精製等の処理をおこなわないi-BPDAの光透過率を表F1に示す。
溶媒を表F1記載の溶剤へ変更した以外は、実施例F1と同様にしてi-BPDAを得た。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
ガラス製容器にi-BPDA 5.0g、無水酢酸 75gを仕込み、空気雰囲気下、3時間加熱還流した。溶解後25℃まで冷却し結晶を析出させた。溶液をろ別し、得られた粉末を100℃ 2時間真空乾燥した。収量は、3.6gであった。この方法で得られたi-BPDAの光透過率の結果を表F1に示す。
反応容器中に昇華精製したトランス-1,4-ジアミノシクロヘキサン(t-DACH) 1.40g(0.0122モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド 28.4gに溶解した。この溶液を50℃に加熱し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA) 3.25g(0.0110モル)と、実施例F3で得られたi-BPDA 0.36g(0.0012モル)とを徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
i-BPDAとして、未精製のi-BPDAを用いた以外は、実施例F9と同様の方法で、ポリイミドフィルムを得た。このフィルムの特性を測定した結果を表F2に示す。
反応容器に、活性炭処理後、昇華精製した1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン(BABB) 3.48g(0.01モル)、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド 36.41gを加え、50℃、窒素気流下で溶解した。この溶液に実施例F3で得られたi-BPDA 2.94g(0.01モル)を徐々に加え、50℃で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
以下の各例で使用した原材料は、次のとおりである。
トランス-1,4-ジアミノシクロヘキサン:ZHEJIANG TAIZHOU QINGQUAN MEDICAL & CHEMICAL株式会社製 純度 99.1%(GC分析)
1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン(BABB):三國製薬工業株式会社製 BABB
3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA):宇部興産株式会社製 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%、Na,K,Ca,Al,Cu,Si:それぞれ<0.1ppm、Fe:0.1ppm、Cl:<1ppm
2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA):宇部興産株式会社製 純度99.6%(開環した後2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%、Na,K,Al,Cu,Si:それぞれ<0.1ppm、Ca,Fe:それぞれ0.1ppm、Cl:<1ppm
2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA):CHANGZHOU
WEIJIA CHEMICAL株式会社製 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%
4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物(6FDA):ダイキン工業株式会社製 純度99%
4,4’-(ジメチルシラジイル)ジフタル酸二無水物、(DPSDA):東レ・ファインケミカル株式会社製 純度99.8%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%
各溶剤:和光純薬株式会社製 特級、1級相当品もしくは、それらを精製したもの
2N 水酸化ナトリウム水溶液:東京化成株式会社製 水酸化ナトリウム水溶液
吸着剤:日本ノリット株式会社製 活性炭 Norit SX Plus BET法で求めた比表面積1100m2/g
[光透過率]
所定量のジアミン粉末、テトラカルボン酸無水物粉末を測定溶剤に溶解し、10質量%溶液を得た。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、測定溶剤をブランクとし、ジアミン粉末、テトラカルボン酸無水物粉末の400nmにおける光透過率を測定した。
[対数粘度]
パートAと同様に測定した。
[光透過率(ポリイミド前駆体)]
10質量%のポリイミド前駆体溶液となる様に、ポリイミド前駆体をN,N-ジメチルアセトアミドで希釈した。大塚電子製MCPD-300、光路長1cmの標準セルを用いて、N,N-ジメチルアセトアミドをブランクとし、10質量%のポリイミド前駆体溶液の400nmにおける光透過率を測定した。
[光透過率(ポリイミド)]、[弾性率、破断伸度]、[熱膨張係数(CTE)]については、パートAと同様に測定した。
ガラス製昇華装置に未精製のトランス-1,4-ジアミノシクロヘキサン 10.0gを仕込み、1Torr以下に減圧した。トランス-1,4-ジアミノシクロヘキサンが接している壁下面の温度を50℃に加熱し、5℃に温調された対面した壁上面に昇華物を得た。収量は、8.2gであった。この方法で得られたトランス-1,4-ジアミノシクロヘキサン粉末の光透過率の結果を表G1に示す。
ガラス製容器にBABB 20.0g、N,N-ジメチルアセトアミド 140gを仕込み、60℃に加熱し溶解した。溶液に吸着剤(Norit SX Plus)0.20gを加え、2時間攪拌した。吸着剤をろ過で取り除き、純水を加え、5℃まで冷却し、析出物を回収した。さらに、得られた析出物 10.0gをガラス製昇華装置に仕込み、1Torr以下に減圧した。BABBが接している壁下面の温度を300~350℃に加熱し、25℃に温調された対面した壁上面に昇華物を得た。収量は、8.5gであった。この方法で得られたBABBの光透過率の結果を表G1に示す。
ガラス製容器に未精製のs-BPDA 10.0g、溶媒としてN-メチル-2-ピロリドン 10.0gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥し、着色が低減されたs-BPDA粉末を得た。光透過率の結果を表G1に示す。
ガラス製容器に未精製のa-BPDA 10.0g、溶媒としてアセトン 10.0gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥し、着色が低減されたa-BPDA 9.4gを得た。光透過率の結果を表G1に示す。
ガラス製容器に未精製のi-BPDA 10.0g、溶媒としてN-メチル-2-ピロリドン 10.0gを仕込み、25℃で3時間、十分に攪拌した。溶液をろ別し、得られた固体を100℃ 2時間真空乾燥し、着色が低減されたi-BPDAを得た。光透過率の結果を表G1に示す。
反応容器中に参考例G1と同様の方法で精製したトランス-1,4-ジアミノシクロヘキサン(t-DACH) 1.40g(0.0122モル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド 28.4gに溶解した。この溶液を50℃に加熱し、参考例G3と同様の方法で精製した3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA) 3.50g(0.0119モル)と、参考例G4と同様の方法で精製したa-BPDA 0.09g(0.0003モル)とを徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
表G2に記載したジアミン成分、酸成分を用いた以外は、実施例G1と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。特性を測定した結果を表G2に示す。
表G2に記載したジアミン成分、酸成分を用いた以外は、実施例G1と同様にして、ポリイミド前駆体溶液及び、ポリイミドフィルムを得た。特性を測定した結果を表G2に示す。
[ジアミン成分]
1,4-t-DACH: トランス-1,4-ジアミノシクロヘキサン 純度 99.1%(GC分析)
1,2-t-DACH: トランス-1,2-ジアミノシクロヘキサン
ODA: 4,4’-オキシジアニリン 純度 99.9%(GC分析)
DABAN: 4,4’-ジアミノベンズアニリド 純度 99.90%(GC分析)
4-APTP: N,N’-ビス(4-アミノフェニル)テレフタルアミド 純度 99.95%(GC分析)
AZDA: 2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン 純度 99.9%(GC分析)
BABB: 1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン 純度 99.8%(GC分析)
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 純度99.9%(開環した後3,3’,4,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.8%、Na,K,Ca,Al,Cu,Si:それぞれ<0.1ppm、Fe:0.1ppm、Cl:<1ppm
a-BPDA:2,3,3’,4’-ビフェニルテトラカルボン酸二無水物 純度99.6%(開環した後2,3,3’,4’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99.5%、Na,K,Al,Cu,Si:それぞれ<0.1ppm、Ca,Fe:それぞれ0.1ppm、Cl:<1ppm
i-BPDA:2,2’,3,3’-ビフェニルテトラカルボン酸二無水物 純度 99.9%(開環した後2,2’,3,3’-ビフェニルテトラカルボン酸のHPLC分析で求めた純度)、酸無水化率 99%
6FDA:4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物 純度99%
ODPA:4,4’-オキシジフタル酸二無水物 純度100%(開環した後4,4’-オキシジフタル酸のHPLC分析で求めた純度)、酸無水化率 99.8%
DPSDA:4,4’-(ジメチルシラジイル)ジフタル酸二無水物 純度99.8%(開環した後4,4’-(ジメチルシラジイル)ジフタル酸二無水物のHPLC分析で求めた純度)、酸無水化率 99%
PMDA:ピロメリット酸無水物
s-BPTA:3,3’,4,4’-ビフェニルテトラカルボン酸
PMDA-H: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物 純度 92.7%(GC分析),水素化ピロメリット酸二無水物としての純度99.9%(GC分析)
BTA-H: ビシクロ[2.2.2]オクタン-2,3:5,6-テトラカルボン酸二無水物 純度 99.9%(GC分析)
BPDA-H: 3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物純度 99.9%(GC分析)
NMP:N-メチル-2-ピロリドン 適宜、精密蒸留精製等の処理を行い、モレキュラーシーブを用いて脱水したもの
DMAc:N,N-ジメチルアセトアミド 適宜、精密蒸留精製等の処理を行い、モレキュラーシーブを用いて脱水したもの
DMI:1,3-ジメチル-2-イミダゾリジノン 適宜、精密蒸留精製等の処理を行い、モレキュラーシーブを用いて脱水したもの
[GC分析:溶剤の純度]
島津製作所製GC-2010を用い以下の条件で測定した。純度(GC)はピーク面積分率より求めた。
カラム: J&W社製DB-FFAP 0.53mmID×30m
温度:40℃(5分保持)+40℃~250℃(10分/分)+250℃(9分保持)
注入口温度: 240℃
検出器温度: 260℃
キャリアガス: ヘリウム 10ml/分
注入量: 1μL
ガラス製容器に溶剤5gを秤量し、250℃の熱風循環オーブン中で30分加熱した。室温に冷却し、その残分を秤量した。その質量より、溶剤の不揮発分(質量%)を求めた。
大塚電子製MCPD-300、光路長1cmの石英標準セルを用いて測定した。超純水をブランクとして、溶剤の400nmにおける光透過率を測定した。
パーキン・エルマー製ElanDRC II 誘導結合プラズマ質量分析(ICP-MS)を用い、溶剤に含まれる金属成分を定量した。
[ワニス固形分]
アルミシャーレに溶液(ワニス)1gを量り取り、200℃の熱風循環オーブン中で2時間加熱して固形分以外を除去し、その残分の質量よりワニス固形分(加熱残分 質量%)を求めた。
東機産業製TV-22 E型回転粘度計を用い、温度25℃、せん断速度20sec-1での溶液(ワニス)の粘度を求めた。
0.5g/dLのワニスのN,N-ジメチルアセトアミド溶液を、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
[光透過率]
大塚電子製MCPD-300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率を測定した。
ポリイミド膜をIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間 30mm、引張速度 2mm/minで、初期の弾性率、破断伸度を測定した。
ポリイミド膜を幅4mmの短冊状に切り取って試験片とし、島津製作所製TMA-50を用い、チャック間長15mm、荷重2g、昇温速度20℃/minで300℃まで昇温した。得られたTMA曲線から、50℃から200℃までの平均熱膨張係数を求めた。
ポリイミド前駆体ワニス、ポリイミドワニスの製造に用いた有機溶剤の評価を表H1に示す。また、図4~図7に、それぞれN-メチル-2-ピロリドン(NMP) 純度99.96%(図4)、N,N-ジメチルアセトアミド(DMAc) 純度99.99%(図5)、N-メチル-2-ピロリドン(NMP) 純度99.62%(図6)、および1,3-ジメチル-2-イミダゾリジノン(DMI) 純度99.30%(図7)のGC分析の結果を示す。
窒素雰囲気下、反応容器中にトランス-1,4-ジアミノシクロヘキサン(1,4-t-DACH) 1.40g(0.0122モル)を入れ、N-メチル-2-ピロリドン(純度99.96%) 28.4gに溶解した。この溶液を50℃に加熱し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA) 3.50g(0.0119モル)と、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA) 0.09g(0.0003モル)とを徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体ワニスを得た。このワニスの特性を測定した結果を表H2に示す。
表H1に記載したジアミン成分、テトラカルボン酸成分、有機溶剤を用いた以外は、実施例H1と同様にして、ポリイミド前駆体ワニスおよび、ポリイミドフィルムを得た。特性を測定した結果を表H2に示す。
反応容器中にトランス-1,4-ジアミノシクロヘキサン3.00g(0.026モル)を窒素雰囲気下にてN,N-ジメチルアセトアミド(純度99.99%) 60.35gに溶解した。その後、N,O-ビス(トリメチルシリル)アセトアミド 5.55g(0.0273モル)を加え、80℃で2時間攪拌してシリル化を行った。この溶液を40℃に冷却した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.77g(0.023モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物0.88g(0.003モル)を添加した。40℃で攪拌し、1時間以内にすべての固体が溶解した。更に40℃で8時間撹拌し、均一で粘稠なポリイミド前駆体ワニスを得た。
反応容器に1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン(BABB)1.742g(0.005モル)、モレキュラーシーブを用い脱水したN,N-ジメチルアセトアミド(純度99.99%) 22.44gを加え、室温(25℃)、窒素気流下で溶解した。その溶液にN,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA) 2.70g(0.0105モル)、ピリジン 0.79g(0.01モル)を加え、2時間攪拌してシリル化を行った。さらに、この溶液に4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)2.223g(0.005モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体ワニスを得た。
窒素ガスで置換した反応容器中に4,4’-オキシジアニリン 2.00g(10ミリモル)を入れ、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド(純度99.99%)を仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が15質量%となる量の24.03gを加え、50℃で2時間攪拌した。
表H2に記載したジアミン成分、テトラカルボン酸成分、有機溶剤を用いた以外は、実施例H1と同様にして、ポリイミド前駆体ワニスおよび、ポリイミドフィルムを得た。特性を測定した結果を表H2に示す。
表H3に記載した有機溶剤を用いた以外は、実施例H1と同様にして、ポリイミド前駆体ワニスおよび、ポリイミドフィルムを得た。特性を測定した結果を表H3に示す。
Claims (25)
- 一般式(A1)で表される単位構造と一般式(A2)で表される単位構造との比率[一般式(A1)の数/一般式(A2)の数]が50/50~99.5/0.5であることを特徴とする請求項1に記載の共重合ポリイミド前駆体。
- 30℃、0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上であることを特徴とする請求項1~3のいずれか記載の共重合ポリイミド前駆体。
- 溶剤中で、ジアミン成分、テトラカルボン酸成分を温度100℃以下で反応させることを特徴とする請求項1~4のいずれか記載の共重合ポリイミド前駆体の製造方法。
- 使用される溶剤の純度(GC分析から求められる純度)が99.8%以上であることをあることを特徴とする請求項5記載の共重合ポリイミド前駆体の製造方法。
- テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰で反応させて得られたポリイミド前駆体へ、さらに過剰ジアミン分のモル数に概略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸及びカルボン酸誘導体成分の概略相当する総量とジアミン成分のモル比を当量に近づけることを特徴とする請求項5又は6に記載の共重合ポリイミド前駆体溶液組成物の製造方法。
- 一般式(A5)で表される単位構造と一般式(A6)で表される単位構造との比率[一般式(A5)の数/一般式(A6)の数]が50/50~99.5/0.5であることを特徴とする請求項8に記載の共重合ポリイミド。
- 一般式(A6)中のXが前記一般式(A4)で表される4価の基のいずれか或いはそれらの混合物であることを特徴とする請求項8または9に記載の共重合ポリイミド。
- 膜厚10μmのフィルムにしたときの室温での破断伸度が8%以上の靭性、且つ400nmの光透過性が50%以上の透明性を有することを特徴とする請求項8~10のいずれかに記載の共重合ポリイミド。
- 膜厚10μmのフィルムにしたときの室温での弾性率が3GPa以上、破断伸度が10%以上の靭性、且つ400nmの光透過性が75%以上の透明性を有することを特徴とする請求項8~11のいずれかに記載の共重合ポリイミド。
- 膜厚10μmのフィルムにしたときの50~200℃における平均の線熱膨張係数が、20ppm/K以下であることを特徴とする請求項8~12のいずれかに記載の共重合ポリイミド。
- 膜厚10μmのフィルムにしたときの動的粘弾性測定において、tan δの極大点から求めたガラス転移温度上での貯蔵弾性率の極小値に比べ、その極小値の温度以上で貯蔵弾性率の極大値を有することを特徴とする請求項8~13のいずれかに記載の共重合ポリイミド。
- 請求項15または16のポリイミド前駆体をイミド化して得られることを特徴とするポリイミド。
- 2規定の水酸化ナトリウム水溶液に10質量%の濃度で溶解した溶液に対する波長400nm、光路長1cmの光透過率が85%以上であることを特徴とする2,3,3’,4’-ビフェニルテトラカルボン酸二無水物粉末。
- 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に対する25℃の溶解度が0.1g/100g以上の溶剤と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末とを、少なくとも一部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末が溶解していない不均一な状態で混合し、次いで混合液から未溶解の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物粉末を分離回収することを特徴とする3,3’,4,4’-ビフェニルテトラカルボン酸二無水物二無水物粉末の精製方法。
- 純水にトランス-1,4-ジアミノシクロヘキサン粉末を10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が90%以上であることを特徴とするトランス-1,4-ジアミノシクロヘキサン粉末。
- 溶媒の2規定の水酸化ナトリウム水溶液に10質量%の濃度で溶解した溶液に対する波長400nm、光路長1cmの光透過率が80%以上であることを特徴とする2,2’,3,3’-ビフェニルテトラカルボン酸二無水物粉末。
- ジアミン成分とテトラカルボン酸成分を反応させて得られるポリイミドであって、
前記ジアミン成分が、光透過率が90%以上である芳香環を有しないジアミン類(その誘導体を含む。以下同じ)、または光透過率が80%以上である芳香環を有するジアミン類(その誘導体を含む。以下同じ)を含有し(但し、ジアミン成分の透過率は、純水もしくはN、N-ジメチルアセトアミドに10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率を表す。)、
前記テトラカルボン酸成分が、光透過率が75%以上であるテトラカルボン酸類(その誘導体を含む。以下同じ)を含有する(但し、テトラカルボン酸成分の透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)
ことを特徴とするポリイミド。 - 使用されるジアミン成分の総モル量に対し、芳香環を有しないジアミン類が50モル%以上含まれるポリイミド前駆体であって、極性溶剤に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が90%以上であることを特徴とするポリイミド前駆体。
- 使用されるジアミン成分の総モル量に対し、芳香環を有するジアミン類が50モル%以上含まれるポリイミド前駆体であって、極性溶剤に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が50%以上であることを特徴とするポリイミド前駆体。
- 少なくとも有機溶剤と、下記一般式(H1)であらわされるポリイミド前駆体または下記一般式(H2)であらわされるポリイミドを含有するワニスの製造方法であって、
前記ワニス中に含まれることになる有機溶剤(以下、使用される有機溶剤という)として、光路長1cm、400nmにおける光透過率が89%以上である有機溶剤を使用して、前記ワニスを製造することを特徴とするワニスの製造方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180045745.4A CN103228704B (zh) | 2010-07-22 | 2011-07-22 | 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料 |
KR1020187012398A KR101897617B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
US13/811,337 US20130178597A1 (en) | 2010-07-22 | 2011-07-22 | Polyimide precursor, polyimide, and materials to be used in producing same |
CN201910951073.1A CN110628025B (zh) | 2010-07-22 | 2011-07-22 | 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料 |
KR1020197032369A KR102106747B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
KR1020137004355A KR101855503B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
KR1020187025658A KR101940494B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
KR1020207011721A KR102229681B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
KR1020197001254A KR102042389B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
KR1020217007636A KR102361736B1 (ko) | 2010-07-22 | 2011-07-22 | 폴리이미드 전구체, 폴리이미드 및 그 제조에 사용되는 재료 |
EP11809760.9A EP2597111A4 (en) | 2010-07-22 | 2011-07-22 | POLYIMIDE PRECURSOR, POLYIMIDE, AND MATERIALS FOR USE IN THE PRODUCTION THEREOF |
Applications Claiming Priority (26)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010165368 | 2010-07-22 | ||
JP2010165367 | 2010-07-22 | ||
JP2010-165367 | 2010-07-22 | ||
JP2010-165368 | 2010-07-22 | ||
JP2010269053 | 2010-12-02 | ||
JP2010-269053 | 2010-12-02 | ||
JP2010-274277 | 2010-12-09 | ||
JP2010274277 | 2010-12-09 | ||
JP2010-279547 | 2010-12-15 | ||
JP2010279547 | 2010-12-15 | ||
JP2011159898A JP2012041529A (ja) | 2010-07-22 | 2011-07-21 | ポリイミド前駆体、その製造方法、及びポリイミド |
JP2011-159902 | 2011-07-21 | ||
JP2011159931A JP2012140399A (ja) | 2010-12-15 | 2011-07-21 | 着色が低減したトランス−1,4−ジアミノシクロヘキサン粉末、及びそれを用いたポリイミド |
JP2011-159850 | 2011-07-21 | ||
JP2011-160371 | 2011-07-21 | ||
JP2011159919A JP5834574B2 (ja) | 2010-12-09 | 2011-07-21 | 3,3’,4,4’−ビフェニルテトラカルボン酸二無水物粉末の精製方法、及びそれを用いたポリイミド |
JP2011159837A JP5923887B2 (ja) | 2011-07-21 | 2011-07-21 | ポリイミド、及びポリイミド前駆体 |
JP2011160371A JP6047864B2 (ja) | 2011-07-21 | 2011-07-21 | ポリイミド前駆体ワニス、およびポリイミドワニスの製造方法 |
JP2011-159910 | 2011-07-21 | ||
JP2011159902A JP5903789B2 (ja) | 2010-07-22 | 2011-07-21 | 共重合ポリイミド前駆体及び共重合ポリイミド |
JP2011-159898 | 2011-07-21 | ||
JP2011-159931 | 2011-07-21 | ||
JP2011159850A JP5903788B2 (ja) | 2011-07-21 | 2011-07-21 | 2,2’,3,3’−ビフェニルテトラカルボン酸二無水物粉末の精製方法、粉末、及びそれを用いたポリイミド |
JP2011-159837 | 2011-07-21 | ||
JP2011-159919 | 2011-07-21 | ||
JP2011159910A JP5834573B2 (ja) | 2010-12-02 | 2011-07-21 | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物粉末の精製方法、粉末、及びそれを用いたポリイミド |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011590A1 true WO2012011590A1 (ja) | 2012-01-26 |
Family
ID=46725727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066765 WO2012011590A1 (ja) | 2010-07-22 | 2011-07-22 | ポリイミド前駆体、ポリイミドおよびその製造に使用される材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130178597A1 (ja) |
EP (1) | EP2597111A4 (ja) |
KR (7) | KR101897617B1 (ja) |
CN (6) | CN106279689B (ja) |
TW (1) | TWI516524B (ja) |
WO (1) | WO2012011590A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013028796A (ja) * | 2011-06-20 | 2013-02-07 | Ube Industries Ltd | ポリイミド前駆体、ポリイミド前駆体溶液組成物、ポリイミド、ポリイミド溶液組成物、ポリイミドフィルム、基板、及び成形品 |
WO2014007112A1 (ja) * | 2012-07-02 | 2014-01-09 | 株式会社カネカ | ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用 |
CN105283487A (zh) * | 2013-07-05 | 2016-01-27 | 三菱瓦斯化学株式会社 | 聚酰亚胺树脂 |
JP2020105504A (ja) * | 2018-12-20 | 2020-07-09 | コーロン インダストリーズ インク | ポリアミック酸、ポリイミド樹脂及びポリイミドフィルム |
KR20210098376A (ko) | 2020-01-31 | 2021-08-10 | 우베 고산 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체 |
KR20220066319A (ko) | 2019-09-20 | 2022-05-24 | 우베 고산 가부시키가이샤 | 폴리이미드 전구체 조성물 및 플렉시블 전자 디바이스의 제조 방법 |
KR20220158783A (ko) | 2020-03-27 | 2022-12-01 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체 |
KR20230106702A (ko) | 2020-11-27 | 2023-07-13 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체 |
KR20230146067A (ko) | 2021-02-19 | 2023-10-18 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름 |
KR20240055121A (ko) | 2022-07-29 | 2024-04-26 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체 |
KR20240070585A (ko) | 2021-09-21 | 2024-05-21 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6261981B2 (ja) * | 2011-10-05 | 2018-01-17 | 日立化成デュポンマイクロシステムズ株式会社 | 高透明ポリイミド |
JP5848154B2 (ja) * | 2012-02-17 | 2016-01-27 | 富士フイルム株式会社 | ガス分離複合膜、その製造方法、それを用いたガス分離モジュール、及びガス分離装置、並びにガス分離方法 |
CN104508009B (zh) * | 2012-05-28 | 2016-09-07 | 宇部兴产株式会社 | 聚酰亚胺前体和聚酰亚胺 |
CA2901239A1 (en) * | 2013-03-19 | 2014-09-25 | Toray Fine Chemicals Co., Ltd. | Method for producing optically active trans-1,2-diaminocyclohexane |
JP6111171B2 (ja) * | 2013-09-02 | 2017-04-05 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP2016529281A (ja) | 2013-09-02 | 2016-09-23 | 日本エア・リキード株式会社 | ピロメリット酸二無水物の製造方法、該方法により製造されたピロメリット酸二無水物、ピロメリット酸二無水物の供給方法および供給装置 |
SG11201601946XA (en) | 2013-09-27 | 2016-04-28 | Toray Industries | Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter |
WO2015053312A1 (ja) * | 2013-10-11 | 2015-04-16 | 宇部興産株式会社 | ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板 |
EP2876129B1 (en) * | 2013-11-25 | 2021-05-12 | Samsung Electronics Co., Ltd. | Composition for preparing polyimide, polyimide, and article including same |
KR102276288B1 (ko) | 2013-11-25 | 2021-07-12 | 삼성전자주식회사 | 폴리이미드 제조용 조성물, 폴리이미드, 상기 폴리이미드를 포함하는 성형품, 및 상기 성형품을 포함하는 디스플레이 장치 |
CN106716237B (zh) * | 2014-09-26 | 2020-09-25 | 日产化学工业株式会社 | 液晶取向处理剂、液晶取向膜和液晶表示元件 |
SG11201702467QA (en) * | 2014-09-30 | 2017-04-27 | Toray Industries | Support substrate for display, color filter employing same and method for manufacturing same, organic led element and method for manufacturing same, and flexible organic el display |
KR102465494B1 (ko) * | 2016-09-29 | 2022-11-09 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막, 및 액정 표시 소자 |
US11167248B2 (en) * | 2016-11-10 | 2021-11-09 | Dow Global Technologies Llc | Method to make carbon molecular sieve hollow fiber membranes |
CN110753715B (zh) * | 2017-06-30 | 2022-05-17 | 韩国爱思开希可隆Pi股份有限公司 | 一种聚酰亚胺前体组合物、其制备方法及由其制造的聚酰亚胺基板 |
CN110945079B (zh) * | 2017-08-02 | 2022-10-28 | 旭化成株式会社 | 聚酰亚胺清漆及其制造方法 |
TWI658067B (zh) * | 2017-11-24 | 2019-05-01 | 台虹科技股份有限公司 | 聚醯亞胺前驅物及其所製得之微影圖案 |
KR102703864B1 (ko) * | 2018-03-30 | 2024-09-05 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막 및 액정 표시 소자 |
WO2019188380A1 (ja) | 2018-03-30 | 2019-10-03 | 株式会社カネカ | ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法 |
CN109134858B (zh) * | 2018-07-27 | 2020-09-15 | 深圳瑞华泰薄膜科技股份有限公司 | 一种透明聚酰亚胺薄膜及其制备方法 |
TWI758624B (zh) * | 2018-08-16 | 2022-03-21 | 長興材料工業股份有限公司 | 聚醯亞胺的製備方法 |
KR101959807B1 (ko) * | 2018-08-22 | 2019-03-20 | 에스케이씨코오롱피아이 주식회사 | 방향족 카르복실산을 포함하는 도체 피복용 폴리이미드 바니쉬 및 이의 제조방법 |
CN108806515A (zh) | 2018-08-30 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种柔性显示面板 |
CN111363354A (zh) * | 2020-03-27 | 2020-07-03 | 中天电子材料有限公司 | 聚酰亚胺无色透明薄膜及其制备方法、光学pi膜 |
TWI811766B (zh) | 2021-08-18 | 2023-08-11 | 元瀚材料股份有限公司 | 1,4-環己烷二胺衍生物以及1,4-二胺環狀化合物的衍生物的製備方法 |
WO2024085488A1 (ko) * | 2022-10-20 | 2024-04-25 | (주)후성 | 6fda의 고순도 정제방법 |
CN115636965B (zh) * | 2022-12-26 | 2023-03-21 | 烟台泰和新材高分子新材料研究院有限公司 | 一种高透过率聚间苯二甲酰间苯二胺膜及其制备方法 |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2606925A (en) | 1949-12-15 | 1952-08-12 | Du Pont | Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds |
US3636108A (en) | 1965-12-23 | 1972-01-18 | Du Pont | Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium |
JP2000281616A (ja) | 1999-03-31 | 2000-10-10 | Jsr Corp | ビフェニルテトラカルボン酸の製造方法およびポリイミド樹脂の製造方法 |
JP2001302654A (ja) * | 2000-04-20 | 2001-10-31 | Ube Ind Ltd | 3,3’,4,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2002034837A (ja) | 2000-07-31 | 2002-02-05 | Matsushita Electric Ind Co Ltd | 手乾燥装置 |
JP2002161136A (ja) | 2000-09-14 | 2002-06-04 | Sony Chem Corp | ポリイミド前駆体、その製造方法及び感光性樹脂組成物 |
JP2002348374A (ja) | 2001-05-25 | 2002-12-04 | Hitachi Cable Ltd | ポリアミック酸又はポリイミド及び液晶配向剤 |
JP2004196687A (ja) | 2002-12-17 | 2004-07-15 | Du Pont Toray Co Ltd | ビフェニルテトラカルボン酸二無水物の精製方法およびその精製物 |
JP2004331801A (ja) * | 2003-05-07 | 2004-11-25 | Jsr Corp | ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料 |
JP2005015629A (ja) | 2003-06-26 | 2005-01-20 | Mitsubishi Gas Chem Co Inc | 溶媒可溶性ポリイミドの製造方法 |
JP2005247987A (ja) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | 半導電性ポリイミド系前駆体組成物及びそれを用いた半導電性ポリイミド系管状物の製造方法 |
JP2005314296A (ja) | 2004-04-28 | 2005-11-10 | Mitsubishi Chemicals Corp | ビフェニルテトラカルボン酸加熱無水化生成物結晶 |
WO2006001443A1 (ja) * | 2004-06-28 | 2006-01-05 | Mitsubishi Chemical Corporation | ビフェニルテトラカルボン酸二無水物及びその製造方法、並びにこれを用いたポリイミド及びその製造方法 |
JP2006045198A (ja) | 2004-06-28 | 2006-02-16 | Mitsubishi Chemicals Corp | ビフェニルテトラカルボン酸二無水物及びその製造方法、並びにこれを用いたポリイミド及びその製造方法 |
JP2006328040A (ja) | 2005-04-28 | 2006-12-07 | Ube Ind Ltd | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2008074754A (ja) | 2006-09-20 | 2008-04-03 | Iwatani Industrial Gases Corp | トランス−1,4−ジアミノシクロヘキサンの製造方法 |
JP2009019014A (ja) | 2007-07-12 | 2009-01-29 | Ube Ind Ltd | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2009079009A (ja) | 2007-09-26 | 2009-04-16 | Tamio Hayashi | ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法 |
JP2009149799A (ja) * | 2007-12-21 | 2009-07-09 | Manac Inc | エステル基含有テトラカルボン酸二無水物、ポリエステルポリイミド前駆体、ポリエステルイミドおよびこれらの製造方法 |
JP2010085430A (ja) * | 2008-09-29 | 2010-04-15 | Dainippon Printing Co Ltd | 感光性樹脂組成物、物品、及びパターン形成方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811540A (ja) | 1981-07-10 | 1983-01-22 | Sumitomo Naugatuck Co Ltd | 熱可塑性樹脂組成物 |
JP2606925B2 (ja) | 1989-07-15 | 1997-05-07 | 富士通株式会社 | 押釦スイッチ |
JPH10265760A (ja) * | 1997-03-24 | 1998-10-06 | Sumitomo Bakelite Co Ltd | フィルム接着剤とその製造方法 |
JP3636108B2 (ja) | 2001-07-10 | 2005-04-06 | 日産自動車株式会社 | シリンダヘッド鋳造用金型の冷却装置 |
CN1218999C (zh) * | 2002-02-07 | 2005-09-14 | 四川大学 | 一种含羟侧基聚酰亚胺/二氧化硅杂化薄膜的制备方法 |
KR20070116228A (ko) * | 2005-03-29 | 2007-12-07 | 닛산 가가쿠 고교 가부시키 가이샤 | 폴리아믹산, 폴리이미드 및 그 제조 방법 |
US7417108B2 (en) * | 2005-04-28 | 2008-08-26 | Ube Industries Ltd. | Process for production of 2,3,3′,4′-biphenyltetracarboxylic dianhydride |
CN101309950B (zh) * | 2005-11-15 | 2011-08-03 | 三菱化学株式会社 | 四羧酸系化合物、该化合物的聚酰亚胺及其制造方法 |
CN101563395A (zh) * | 2006-11-10 | 2009-10-21 | 宇部兴产株式会社 | 聚酰亚胺、二胺化合物及其制备方法 |
KR101167339B1 (ko) * | 2006-12-15 | 2012-07-19 | 코오롱인더스트리 주식회사 | 무색투명한 폴리이미드 수지와 이를 이용한 액정 배향막 및필름 |
CN101230136B (zh) * | 2007-01-22 | 2011-03-16 | 东丽纤维研究所(中国)有限公司 | 聚酰亚胺微粒子及其制备方法 |
CN101016284A (zh) * | 2007-02-13 | 2007-08-15 | 北京益利精细化学品有限公司 | 一种3.4.3'.4'—联苯四酸二酐制备方法 |
US8796411B2 (en) * | 2008-02-25 | 2014-08-05 | Hitachi Chemical Dupont Microsystems, Ltd. | Polyimide precursor composition, polyimide film, and transparent flexible film |
US8071273B2 (en) * | 2008-03-31 | 2011-12-06 | Dai Nippon Printing Co., Ltd. | Polyimide precursor, resin composition comprising the polyimide precursor, pattern forming method using the resin composition, and articles produced by using the resin composition |
WO2010055870A1 (ja) | 2008-11-13 | 2010-05-20 | 宇部興産株式会社 | ポリイミド発泡体及びその製造方法 |
CN101407589A (zh) * | 2008-11-27 | 2009-04-15 | 南京工业大学 | 一种低热膨胀系数热塑性聚酰亚胺薄膜的制备方法 |
CN101704950B (zh) * | 2009-11-03 | 2013-07-31 | 中国科学院宁波材料技术与工程研究所 | 聚硫醚砜酰亚胺三元共聚物及其制备方法 |
-
2011
- 2011-07-22 CN CN201610675914.7A patent/CN106279689B/zh active Active
- 2011-07-22 US US13/811,337 patent/US20130178597A1/en not_active Abandoned
- 2011-07-22 KR KR1020187012398A patent/KR101897617B1/ko active IP Right Grant
- 2011-07-22 WO PCT/JP2011/066765 patent/WO2012011590A1/ja active Application Filing
- 2011-07-22 CN CN201180045745.4A patent/CN103228704B/zh active Active
- 2011-07-22 KR KR1020137004355A patent/KR101855503B1/ko active IP Right Grant
- 2011-07-22 KR KR1020197032369A patent/KR102106747B1/ko active Application Filing
- 2011-07-22 KR KR1020217007636A patent/KR102361736B1/ko active IP Right Grant
- 2011-07-22 CN CN201910482087.3A patent/CN110105572A/zh active Pending
- 2011-07-22 CN CN201910951073.1A patent/CN110628025B/zh active Active
- 2011-07-22 KR KR1020207011721A patent/KR102229681B1/ko active IP Right Grant
- 2011-07-22 KR KR1020187025658A patent/KR101940494B1/ko active IP Right Grant
- 2011-07-22 KR KR1020197001254A patent/KR102042389B1/ko active IP Right Grant
- 2011-07-22 EP EP11809760.9A patent/EP2597111A4/en not_active Withdrawn
- 2011-07-22 TW TW100126008A patent/TWI516524B/zh active
- 2011-07-22 CN CN201610677837.9A patent/CN106279691B/zh active Active
- 2011-07-22 CN CN201610676869.7A patent/CN106279690B/zh active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2606925A (en) | 1949-12-15 | 1952-08-12 | Du Pont | Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds |
US3636108A (en) | 1965-12-23 | 1972-01-18 | Du Pont | Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium |
JP2000281616A (ja) | 1999-03-31 | 2000-10-10 | Jsr Corp | ビフェニルテトラカルボン酸の製造方法およびポリイミド樹脂の製造方法 |
JP2001302654A (ja) * | 2000-04-20 | 2001-10-31 | Ube Ind Ltd | 3,3’,4,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2002034837A (ja) | 2000-07-31 | 2002-02-05 | Matsushita Electric Ind Co Ltd | 手乾燥装置 |
JP2002161136A (ja) | 2000-09-14 | 2002-06-04 | Sony Chem Corp | ポリイミド前駆体、その製造方法及び感光性樹脂組成物 |
JP2002348374A (ja) | 2001-05-25 | 2002-12-04 | Hitachi Cable Ltd | ポリアミック酸又はポリイミド及び液晶配向剤 |
JP2004196687A (ja) | 2002-12-17 | 2004-07-15 | Du Pont Toray Co Ltd | ビフェニルテトラカルボン酸二無水物の精製方法およびその精製物 |
JP2004331801A (ja) * | 2003-05-07 | 2004-11-25 | Jsr Corp | ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料 |
JP2005015629A (ja) | 2003-06-26 | 2005-01-20 | Mitsubishi Gas Chem Co Inc | 溶媒可溶性ポリイミドの製造方法 |
JP2005247987A (ja) * | 2004-03-03 | 2005-09-15 | Gunze Ltd | 半導電性ポリイミド系前駆体組成物及びそれを用いた半導電性ポリイミド系管状物の製造方法 |
JP2005314296A (ja) | 2004-04-28 | 2005-11-10 | Mitsubishi Chemicals Corp | ビフェニルテトラカルボン酸加熱無水化生成物結晶 |
WO2006001443A1 (ja) * | 2004-06-28 | 2006-01-05 | Mitsubishi Chemical Corporation | ビフェニルテトラカルボン酸二無水物及びその製造方法、並びにこれを用いたポリイミド及びその製造方法 |
JP2006045198A (ja) | 2004-06-28 | 2006-02-16 | Mitsubishi Chemicals Corp | ビフェニルテトラカルボン酸二無水物及びその製造方法、並びにこれを用いたポリイミド及びその製造方法 |
JP2006328040A (ja) | 2005-04-28 | 2006-12-07 | Ube Ind Ltd | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2008074754A (ja) | 2006-09-20 | 2008-04-03 | Iwatani Industrial Gases Corp | トランス−1,4−ジアミノシクロヘキサンの製造方法 |
JP2009019014A (ja) | 2007-07-12 | 2009-01-29 | Ube Ind Ltd | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法 |
JP2009079009A (ja) | 2007-09-26 | 2009-04-16 | Tamio Hayashi | ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法 |
JP2009149799A (ja) * | 2007-12-21 | 2009-07-09 | Manac Inc | エステル基含有テトラカルボン酸二無水物、ポリエステルポリイミド前駆体、ポリエステルイミドおよびこれらの製造方法 |
JP2010085430A (ja) * | 2008-09-29 | 2010-04-15 | Dainippon Printing Co Ltd | 感光性樹脂組成物、物品、及びパターン形成方法 |
Non-Patent Citations (4)
Title |
---|
JOURNAL OF CHEMICAL SOCIETY, vol. 105, 1914, pages 2471 |
M. HASEGAWA, HIGH PERFORM.POLYM., vol. 13, 2001, pages 593 - S106 |
POLYMER, vol. 47, 2006, pages 2337 |
See also references of EP2597111A4 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013028796A (ja) * | 2011-06-20 | 2013-02-07 | Ube Industries Ltd | ポリイミド前駆体、ポリイミド前駆体溶液組成物、ポリイミド、ポリイミド溶液組成物、ポリイミドフィルム、基板、及び成形品 |
JPWO2014007112A1 (ja) * | 2012-07-02 | 2016-06-02 | 株式会社カネカ | ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用 |
WO2014007112A1 (ja) * | 2012-07-02 | 2014-01-09 | 株式会社カネカ | ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用 |
CN104395376A (zh) * | 2012-07-02 | 2015-03-04 | 株式会社钟化 | 聚酰胺酸、聚酰亚胺、聚酰胺酸溶液、及聚酰亚胺的利用 |
JP5695276B2 (ja) * | 2012-07-02 | 2015-04-01 | 株式会社カネカ | ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用 |
US9353223B2 (en) | 2012-07-02 | 2016-05-31 | Kaneka Corporation | Polyamic acid, polyimide, polyamic acid solution, and use of polyimide |
US10066058B2 (en) | 2013-07-05 | 2018-09-04 | Mitsubishi Gas Chemical Company, Inc. | Polyimide resin |
CN105283487B (zh) * | 2013-07-05 | 2017-12-19 | 三菱瓦斯化学株式会社 | 聚酰亚胺树脂 |
CN105283487A (zh) * | 2013-07-05 | 2016-01-27 | 三菱瓦斯化学株式会社 | 聚酰亚胺树脂 |
JP2020105504A (ja) * | 2018-12-20 | 2020-07-09 | コーロン インダストリーズ インク | ポリアミック酸、ポリイミド樹脂及びポリイミドフィルム |
JP7041662B2 (ja) | 2018-12-20 | 2022-03-24 | コーロン インダストリーズ インク | ポリアミック酸、ポリイミド樹脂及びポリイミドフィルム |
KR20220066319A (ko) | 2019-09-20 | 2022-05-24 | 우베 고산 가부시키가이샤 | 폴리이미드 전구체 조성물 및 플렉시블 전자 디바이스의 제조 방법 |
KR20210098376A (ko) | 2020-01-31 | 2021-08-10 | 우베 고산 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체 |
KR20220158783A (ko) | 2020-03-27 | 2022-12-01 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체 |
KR20230106702A (ko) | 2020-11-27 | 2023-07-13 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체 |
KR20230146067A (ko) | 2021-02-19 | 2023-10-18 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름 |
KR20240070585A (ko) | 2021-09-21 | 2024-05-21 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물 및 폴리이미드 필름 |
KR20240055121A (ko) | 2022-07-29 | 2024-04-26 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체 |
KR20240123430A (ko) | 2022-07-29 | 2024-08-13 | 유비이 가부시키가이샤 | 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체 |
Also Published As
Publication number | Publication date |
---|---|
CN106279690A (zh) | 2017-01-04 |
KR20180049237A (ko) | 2018-05-10 |
TW201224003A (en) | 2012-06-16 |
CN106279690B (zh) | 2019-07-05 |
KR101940494B1 (ko) | 2019-01-21 |
CN103228704A (zh) | 2013-07-31 |
CN110628025A (zh) | 2019-12-31 |
CN106279689B (zh) | 2019-05-21 |
KR20190126200A (ko) | 2019-11-08 |
KR20210032015A (ko) | 2021-03-23 |
KR20190007531A (ko) | 2019-01-22 |
KR101897617B1 (ko) | 2018-09-12 |
KR20130041241A (ko) | 2013-04-24 |
KR20180102209A (ko) | 2018-09-14 |
CN106279689A (zh) | 2017-01-04 |
KR20200046126A (ko) | 2020-05-06 |
CN110105572A (zh) | 2019-08-09 |
KR102042389B1 (ko) | 2019-11-07 |
CN106279691B (zh) | 2019-11-05 |
KR102229681B1 (ko) | 2021-03-18 |
TWI516524B (zh) | 2016-01-11 |
CN106279691A (zh) | 2017-01-04 |
CN110628025B (zh) | 2022-07-12 |
CN103228704B (zh) | 2016-10-05 |
KR102106747B1 (ko) | 2020-05-04 |
KR101855503B1 (ko) | 2018-05-09 |
EP2597111A1 (en) | 2013-05-29 |
EP2597111A4 (en) | 2015-01-28 |
US20130178597A1 (en) | 2013-07-11 |
KR102361736B1 (ko) | 2022-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012011590A1 (ja) | ポリイミド前駆体、ポリイミドおよびその製造に使用される材料 | |
JP6283954B2 (ja) | ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板 | |
JP6060695B2 (ja) | ポリイミド前駆体及びポリイミド | |
JP6283953B2 (ja) | ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、および基板 | |
WO2014046064A1 (ja) | ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板 | |
WO2012124664A1 (ja) | ポリイミド前駆体及びポリイミド | |
JP7254469B2 (ja) | ポリイミド及びポリイミド前駆体 | |
CN111770949B (zh) | 聚酰亚胺、聚酰亚胺溶液组合物、聚酰亚胺膜和基板 | |
JP6047864B2 (ja) | ポリイミド前駆体ワニス、およびポリイミドワニスの製造方法 | |
JP5923887B2 (ja) | ポリイミド、及びポリイミド前駆体 | |
CN116096820A (zh) | 聚合物组合物、清漆、和聚酰亚胺薄膜 | |
CN116057109B (zh) | 聚合物组合物、清漆、和聚酰亚胺薄膜 | |
JP5903788B2 (ja) | 2,2’,3,3’−ビフェニルテトラカルボン酸二無水物粉末の精製方法、粉末、及びそれを用いたポリイミド | |
JP2019001822A (ja) | 着色が低減したトランス−1,4−ジアミノシクロヘキサン粉末、及びそれを用いたポリイミド | |
JP5834574B2 (ja) | 3,3’,4,4’−ビフェニルテトラカルボン酸二無水物粉末の精製方法、及びそれを用いたポリイミド | |
JP2016130325A (ja) | ポリイミド及びポリイミド前駆体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11809760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137004355 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011809760 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13811337 Country of ref document: US |