WO2019188380A1 - ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法 - Google Patents

ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法 Download PDF

Info

Publication number
WO2019188380A1
WO2019188380A1 PCT/JP2019/010718 JP2019010718W WO2019188380A1 WO 2019188380 A1 WO2019188380 A1 WO 2019188380A1 JP 2019010718 W JP2019010718 W JP 2019010718W WO 2019188380 A1 WO2019188380 A1 WO 2019188380A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
polyimide film
diamine
group
general formula
Prior art date
Application number
PCT/JP2019/010718
Other languages
English (en)
French (fr)
Inventor
中山 博文
真理 宇野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020509916A priority Critical patent/JP7292260B2/ja
Priority to CN201980024265.6A priority patent/CN111971327B/zh
Publication of WO2019188380A1 publication Critical patent/WO2019188380A1/ja
Priority to US17/037,012 priority patent/US20210009760A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/204Plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polyamic acid, a polyamic acid solution, a polyimide and a polyimide film, and a flexible device using the polyimide film.
  • the electronic device manufacturing process can be divided into batch type and roll-to-roll type.
  • a resin solution is applied on a glass support and dried to form a laminate of the glass support and a film substrate. After forming an element on the laminate, the film substrate is peeled off from the glass support.
  • the current glass substrate process equipment can be used.
  • the film substrate is a polyimide
  • a polyamic acid solution as a polyimide precursor is applied onto the support, and the polyamic acid is heated together with the support to perform imidization, whereby a laminate of the support and the polyimide film. Is obtained.
  • the substrate material is required to be transparent.
  • polyimide using a monomer having a rigid structure or a fluorine-based monomer has high transparency and low thermal expansion (Patent Documents 1 and 2).
  • silicone as the polyimide material reduces the stress at the interface between the glass support and the polyimide film (Patent Documents 3 and 4).
  • An object of the present invention is to provide a polyimide film excellent in transparency and heat resistance, and a polyamic acid as a precursor thereof.
  • One embodiment of the present invention is a polyamic acid containing a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2).
  • Polyamic acid can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine in an organic solvent.
  • tetracarboxylic dianhydride 2,2′-bis (trifluoromethyl) benzidine (TFMB) and a silicone diamine represented by the following general formula (3) as the diamine, the structural unit represented by the general formula (1) and the general formula A polyamic acid having the structural unit represented by (2) is obtained.
  • the plurality of R 2 are each independently an alkyl group having 1 to 3 carbon atoms or an aryl group, and a methyl group is preferable.
  • a plurality of Y are each independently an alkylene group having 1 to 3 carbon atoms or an arylene group, and a propylene group is preferred.
  • m is an integer of 51 to 199.
  • R ⁇ 1 > is respectively independently a hydrogen atom, an alkyl group, or an aryl group, and it is preferable that it is a hydrogen atom.
  • the tetravalent organic group X is a residue of tetracarboxylic dianhydride.
  • the polyamic acid may contain, for example, the following structures (A), (B), and (C) as the organic group X.
  • the organic group X includes (A) and / or (B). And (C).
  • the polyamic acid is such that X in the general formulas (1) and (2) contains the organic group of the above (C), and the ratio of the structure (C) to the total amount of X is 30 mol% or more.
  • the polyamic acid may be a block copolymer.
  • a first segment including a structural unit represented by the general formula (1) but not a structural unit represented by the general formula (2), and a structure represented by the general formula (2)
  • a block copolymer having a second segment containing units may be an ABA type triblock copolymer in which a second segment is bonded to both ends of the first segment.
  • a tetracarboxylic dianhydride and a first diamine are reacted in an organic solvent to form a polyamic acid segment, and then a second diamine is added to obtain a block copolymer.
  • the first diamine contains TFMB and the second diamine contains silicone diamine
  • an ABA type triblock copolymer in which the second segment is bonded to both ends of the first segment is obtained.
  • the amount (in moles) of tetracarboxylic dianhydride used to form the polyamic acid segment (first segment) by the reaction of tetracarboxylic dianhydride with the first diamine is the amount of the first diamine (mol). Number) is preferably 1.01 times or more and less than 1.10 times.
  • the polyamic acid solution contains the above polyamic acid and an organic solvent.
  • a polyimide is obtained by dehydration cyclization of the above polyamic acid.
  • the polyimide film contains the polyimide.
  • a polyamic acid solution is applied to a support to form a laminate in which a film-like polyamic acid is provided on the support, and the laminate is heated to imidize the polyamic acid.
  • the 1% weight loss temperature of the polyimide film is preferably 450 ° C. or higher.
  • the glass transition temperature of the polyimide film is preferably 300 ° C. or higher.
  • the laminate of the support and the polyimide film preferably has a residual stress at room temperature of 25 MPa or less.
  • a flexible device can be obtained by forming an electronic element on a polyimide film.
  • An electronic element may be formed on a polyimide film of a laminate in which a polyimide film is provided on a support, and the polyimide film may be peeled from the support after the electronic element is formed.
  • the above-mentioned polyimide film is suitable as a substrate material for electronic devices that require a low residual stress of a laminate with an inorganic support, excellent heat resistance and transparency, and transparency.
  • Polyamide acid is obtained by polyaddition reaction of tetracarboxylic dianhydride and diamine, and polyimide is obtained by dehydration ring closure reaction of polyamide acid. That is, polyimide is a polycondensation reaction product of tetracarboxylic dianhydride and diamine.
  • polyamide acid The polyamic acid according to the embodiment of the present invention is represented by a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as “structural unit 1”) and the following general formula (2).
  • structural unit 2 A structural unit (hereinafter sometimes referred to as “structural unit 2”).
  • the structural unit 1 is formed by reaction of 2,2′-bis (trifluoromethyl) benzidine (TFMB) with a tetracarboxylic dianhydride having a tetravalent organic group X.
  • the structural unit 2 is formed by a reaction between a silicone diamine represented by the following general formula (3) and a tetracarboxylic dianhydride having a tetravalent organic group X.
  • X is a tetravalent organic group, and is a residue of tetracarboxylic dianhydride.
  • R ⁇ 1 > is a hydrogen atom, a monovalent
  • R 1 is a hydrogen atom.
  • a plurality of R 2 are each independently an alkyl group having 1 to 3 carbon atoms or an aryl group.
  • a plurality of Y are each independently an alkylene group having 1 to 3 carbon atoms or an arylene group.
  • m is an integer of 51 to 199.
  • the transparency of the polyimide film obtained by imidation of the polyamic acid can be improved.
  • the content of the structural unit represented by the general formula (1) in the polyamic acid is 60 to 99. 7 mol% is preferable, 70 to 99.5 mol% is more preferable, and 80 to 99.3 mol% is more preferable.
  • the heat resistance of the polyimide film obtained by imidization of the polyamic acid can be improved.
  • the content of the structural unit represented by the general formula (2) in the polyamic acid is preferably 0.3 to 7 mol%, more preferably 0.5 to 5 mol%, and further preferably 0.7 to 4 mol%.
  • Polyamic acid may contain structural units other than structural unit 1 and structural unit 2.
  • the content of structural units other than the structural unit 1 and the structural unit 2 may be 29 mol% or less, 20 mol% or less, 10 mol% or less, or 5 mol% or less, and the polyamic acid is composed of the structural unit 1 and the structural unit 2 only. It may be a thing.
  • the weight average molecular weight of the polyamic acid is, for example, 10,000 to 1,000,000, preferably 30,000 to 500,000, and more preferably 40,000 to 100,000. If the weight average molecular weight is 10,000 or more, the mechanical strength of the polyimide film can be secured. When the weight average molecular weight is 1,000,000 or less, a polyamic acid exhibits sufficient solubility in a solvent, and a coating film or film having a smooth surface and a uniform film thickness can be obtained.
  • the molecular weight is a value in terms of polyethylene oxide by gel permeation chromatography (GPC).
  • the organic group X is a residue of tetracarboxylic dianhydride, which is a tetravalent organic group derived from tetracarboxylic dianhydride used for polymerization of polyamic acid. .
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3′4,4′-biphenyltetracarboxylic acid, 1,4-phenylenebis (trimellitic acid dianhydride), 2,3 , 6,7-Naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorenic dianhydride, 4,4' -(Hexafluoroisopropylidene) diphthalic anhydride, dicyclohexyl-3,3 ', 4,4'-tetracarboxylic dianhydr
  • pyromellitic dianhydride (PMDA) and 3,3′4,4′-biphenyltetracarboxylic acid (BPDA) are the viewpoints for improving the heat resistance and mechanical strength of the polyimide film. Is preferable. From the viewpoint of improving the transparency of the polyimide film (reducing yellowness), 9,9-bis (3,4-dicarboxyphenyl) fluorenic dianhydride (BPAF), 4,4 ′ is used as tetracarboxylic dianhydride.
  • a tetracarboxylic dianhydride having a bent structure such as-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 4,4'-oxyphthalic dianhydride (OPDA).
  • 6FDA hexafluoroisopropylidene diphthalic anhydride
  • OPDA 4,4'-oxyphthalic dianhydride
  • BPAF is preferable because birefringence of the polyimide film can be reduced.
  • the PMDA residue is a tetravalent organic group represented by the formula (A)
  • the BPDA residue is a tetravalent organic group represented by the formula (B)
  • the BPAF residue is (C) The tetravalent organic group represented by these.
  • the polyamic acid has a tetracarboxylic dianhydride-derived structure (the organic group X in the general formula (1) and the general formula (2)) and the tetravalent organic group represented by the formula (A) and the formula (B 1) or more selected from the group consisting of tetravalent organic groups represented by formula (C)) and a tetravalent organic group represented by formula (C).
  • a preferred combination of tetracarboxylic dianhydrides is a combination of PMDA and BPAF.
  • the polyamic acid is represented by the formula (A) as the organic group X in the general formula (1) and the general formula (2).
  • the sum of PMDA, BPDA and BPAF is 60 mol with respect to 100 mol% of the total amount of tetracarboxylic dianhydride components of the polyamic acid. % Or more is preferable, 70 mol% is more preferable, and 80 mol% or more is more preferable.
  • the total of PMDA, BPDA and BPAF may be 90 mol% or more, or 100 mol%.
  • the amount of BPAF with respect to 100 mol% of the total amount of the tetracarboxylic dianhydride component of the polyamic acid is preferably 30 mol% or more, more preferably 35 mol% or more, and even more preferably 40 mol% or more.
  • the total of PMDA and BPDA is preferably 10 mol% or more, more preferably 20 mol% or more, more preferably 30 mol% or more with respect to 100 mol% of the total amount of the tetracarboxylic dianhydride component of the polyamic acid. Is more preferable.
  • the amount of BPAF with respect to the total of PMDA and BPAF is preferably 30 to 90 mol%, 35 to 70 mol% is more preferable, and 40 to 60 mol% is more preferable.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • silicone diamine the structural unit 1 is formed.
  • the amount of TFMB with respect to the total amount of 100 mol% of the diamine component of the polyamic acid is preferably 60 to 99.7 mol%, more preferably 70 to 99.5 mol%, and still more preferably 80 to 99.3 mol%.
  • the structural unit 2 is formed by using the silicone diamine represented by the general formula (3) as the diamine.
  • the silicone diamine represented by the general formula (3) is a diamine derived from a silicone compound (both terminal amino-modified silicone).
  • Specific examples of the alkylene group Y in the general formula (2) and the general formula (3) include an ethylene group, a propylene group, and a phenylene group, and among them, a propylene group is preferable.
  • R 2 include a methyl group, an ethyl group, a propyl group, and a phenyl group.
  • R 2 is preferably an alkyl group, and particularly preferably a methyl group, because it is excellent in heat resistance and hardly undergoes thermal decomposition at the heating temperature during imidization and element formation.
  • the number m of repeating units is less than 200, the solubility of the polyamic acid solution can be maintained, so that a polyimide film having high transparency and low haze can be obtained.
  • the number m of repeating units is preferably less than 160, and more preferably less than 80.
  • silicone diamine examples include amino-modified methylphenyl silicone at both ends, amino-modified dimethyl silicone at both ends (for example, “KF-8012” (number average molecular weight 4,400) manufactured by Shin-Etsu Chemical, and “KF-8008” (number Average molecular weight 11,400); manufactured by Chisso "Silaplane FM-3321" (number average molecular weight 5,000)) and the like. From the viewpoint of improving the heat resistance of the polyimide film and reducing the residual stress in the laminate of the polyimide film and the inorganic support, both terminal amino-modified dimethyl silicones are preferred.
  • the amount of the silicone diamine represented by the general formula (3) is preferably 0.3 to 7 mol%, more preferably 0.5 to 5 mol%, and more preferably 0.7 to 4 mol% with respect to 100 mol% of the total amount of diamine components of the polyamic acid. Is more preferable.
  • the copolymerization ratio of the silicone diamine is preferably in the range of 2 to 30% by mass, more preferably 5 to 25% by mass with respect to the mass of the polyamic acid (total amount of tetracarboxylic dianhydride and diamine). More preferable is 20% by mass.
  • the amount of silicone diamine having a number of repeating units m of the siloxane structure in the range of 51 to 199 is within the above range, the polyimide film obtained by imidization of the polyamic acid is excellent in heat resistance and transparency, glass, etc.
  • the residual stress of the laminate with the inorganic substrate material tends to be small.
  • the polyamic acid of this embodiment may contain a structural unit other than the structural unit 1 and the structural unit 2 as long as the performance is not impaired. That is, as the diamine component, a diamine component other than TFMB and silicone diamine may be included.
  • the diamine include 1,4-diaminocyclohexane, 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-oxydianiline, 3,4′-oxydianiline, 2,2′-bis ( Trifluoromethyl) -4,4′-diaminodiphenyl ether, 4,4′-diaminobenzanilide, 4′-aminophenyl-4-aminobenzene, N, N′-bis (4-aminophenyl) terephthalamide, 4, 4′-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4 ′ ′-bis (aminophenoxy) biphenyl
  • the arrangement of the structural unit 1 and the structural unit 2 in the polyamic acid may be random or block.
  • the polyamic acid may be a block copolymer having a first segment including the structural unit 1 and not including the structural unit 2 and a second segment including the structural unit 2.
  • As the arrangement of blocks in the block copolymer AB type in which the second segment is bonded to one end of the first segment, ABA type in which the second segment is bonded to both ends of the first segment, Examples include (AB) n- type in which segments and second segments are arranged alternately. Since the polyamic acid is easily polymerized and a block structure is easily formed, the block copolymer is preferably an ABA type triblock structure.
  • the first segment is a segment composed of repeating structural units 1.
  • the content of the structural unit 1 in the first segment is preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more.
  • the second segment may be composed of only the structural unit 2 and may include the structural unit 1 and the structural unit 2. Since silicone diamine has a high molecular weight (specifically, m in the general formula (3) is 51 or more) and has a long-chain siloxane structure, even when the structural unit 2 is not continuous in the polymer sequence, it is the same as the block structure Of microdomains.
  • a polyimide film is formed by imidizing a polyamic acid containing a long-chain siloxane structure having a repeating unit number m of 51 or more as a structural unit 2 on an inorganic support such as glass, a laminate of the inorganic support and the polyimide film Residual stress tends to be small.
  • a domain derived from silicone long-chain siloxane
  • the domain derived from silicone undergoes micro plastic deformation when stress occurs in the polyimide film. It is considered that the residual stress of the entire polyimide film is reduced because the stress is relieved by.
  • polyamic acid and polyimide are block copolymers and include a domain (second segment) and a continuous phase (first segment), and the domain and the continuous phase have a difference in elastic modulus, they are formed by the second segment. It is considered that the stress is concentrated in the domain, and the stress is effectively relieved.
  • the component constituting the domain and the component constituting the continuous phase are highly compatible, a clear interface is not formed, and stress concentration on the domain is less likely to occur due to partial compatibility, reducing the stress relaxation effect.
  • silicone has a low glass transition temperature
  • the domain of the second segment is partially compatible with the continuous phase, the glass transition temperature (Tg) tends to shift to a low temperature side.
  • the silicone-derived domain (second segment) has low compatibility with the continuous phase of polyamic acid and polyimide.
  • the polyamic acid is a block copolymer having a first segment that does not contain the structure 2
  • the compatibility between the first segment and the second segment is low, so that a phase separation structure is easily formed.
  • the polyimide obtained by imidation of the polyamic acid may be phase-separated to the extent that the first segment and the second segment exhibit independent glass transition temperatures. It is not always necessary to have blockiness.
  • the polyamic acid may contain segments other than the first segment and the second segment as long as they do not affect the independent Tg of the first segment and the second segment.
  • a polyamic acid is obtained by reacting diamine and tetracarboxylic dianhydride in an organic solvent.
  • the diamine is dissolved or dispersed in a slurry form in an organic solvent to form a diamine solution, and the diamine is dissolved in a solution or solid state in which tetracarboxylic dianhydride is dissolved or dispersed in an organic solvent. What is necessary is just to add in a solution.
  • a diamine may be added to the tetracarboxylic dianhydride solution.
  • the organic solvent used for the polyamic acid synthesis reaction is not particularly limited.
  • the organic solvent is preferably one that can dissolve the tetracarboxylic dianhydride and diamine to be used and can dissolve the polyamic acid formed by polymerization.
  • Specific examples of the organic solvent used in the polyamic acid synthesis reaction include urea solvents such as tetramethylurea and N, N-dimethylethylurea; sulfoxides such as dimethyl sulfoxide, diphenylsulfone, and tetramethylsulfone; and sulfone solvents; Ester solvents such as N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF), N, N′-diethylacetamide, N-methyl-2-pyrrolidone (NMP), ⁇ -butyrolactone; hexamethyl Amide solvents such as phosphoric triamide; Alkyl halide solvents such as chloroform and
  • the organic solvent used in the polyamic acid synthesis reaction is preferably selected from amide solvents, ketone solvents, ester solvents and ether solvents, and particularly DMF. Amide solvents such as DMAC and NMP are preferred. In order to improve the stability of the solution, an ether solvent such as diethylene glycol or tetrahydrofuran may be added.
  • a polyamic acid having a plurality of types of organic groups X can be obtained by using a plurality of tetracarboxylic dianhydrides.
  • a polyamic acid having the structure (A) and the structure (C) as the tetravalent organic group X is obtained.
  • Two or more kinds of polyamic acids can be blended to obtain a polyamic acid containing a plurality of tetracarboxylic dianhydrides and diamines.
  • the dissolution and reaction of the diamine and tetracarboxylic dianhydride are preferably carried out in an inert gas atmosphere such as argon or nitrogen.
  • the temperature condition for the reaction between the diamine and tetracarboxylic dianhydride is not particularly limited, but is, for example, 25 ° C. to 150 ° C., from the viewpoint of sufficiently proceeding the reaction of the silicone diamine and suppressing the decomposition of the polyamic acid. 40 to 150 ° C is preferable, and 60 to 120 ° C is more preferable.
  • the reaction time may be arbitrarily set, for example, in the range of 10 minutes to 30 hours. As the reaction proceeds, the molecular weight of the polyamic acid increases and the viscosity of the reaction solution increases.
  • Fluorine-containing diamines such as TFMB have a lower reaction rate than aromatic diamines not containing fluorine.
  • the reaction rate can be increased by increasing the concentration of tetracarboxylic dianhydride and diamine in the reaction solution.
  • the charged concentration of the raw materials (diamine and tetracarboxylic dianhydride) in the reaction solution is preferably 15 to 30% by weight.
  • a block copolymer can be formed by controlling the charging order, charging ratio, synthesis order, etc. of tetracarboxylic dianhydride and diamine.
  • the first segment polyamic acid polyamic acid containing structural unit 1 but not structural unit 2
  • the second segment polyamic acid polyamic acid containing structural unit 2
  • both are mixed.
  • a polyamic acid having a first segment and a second segment is obtained.
  • the end of one segment is an amino group and the end of the other segment is an acid anhydride group
  • the amino group at the end of one segment reacts with the acid anhydride group at the end of the other segment.
  • a block copolymer in which the first segment and the second segment are bonded is obtained.
  • both segments may be terminal amino groups or acid anhydride groups, and tetracarboxylic dianhydride or diamine corresponding to the molar ratio may be added to form a bond between the segments.
  • a first segment is formed by reacting a tetracarboxylic dianhydride and a first diamine in an organic solvent.
  • a 1st diamine is components other than silicone diamine among diamine which comprises a polyamic acid, and contains TFMB.
  • the first diamine may be TFMB alone or may contain a diamine other than silicone diamine in addition to TFMB.
  • the input amount (total number of moles) of tetracarboxylic dianhydrides at the time of forming the first segment is preferably larger than the input amount (total number of moles) of the first diamine.
  • the input amount of tetracarboxylic dianhydride is large, a polyamic acid (first segment) having an acid anhydride group at the terminal is formed.
  • the input amount of tetracarboxylic dianhydride is excessively large, the molecular weight of the first segment may not be sufficiently increased.
  • the total number of moles of tetracarboxylic dianhydride is preferably larger than 1.000 times the total number of moles of the first diamine, more preferably 1.01 times or more and less than 1.10 times. Preferably, it is 1.03 times or more and 1.08 times or less.
  • the acid anhydride group at the end of the first segment reacts with the second diamine, and both ends are A polyamic acid having a residue of a secondary diamine is obtained. If some of the tetracarboxylic dianhydride remains unreacted during the formation of the first segment, the reaction between the unreacted tetracarboxylic dianhydride and the second diamine results in both ends of the first segment. The second segment extends. After the formation of the first segment, tetracarboxylic dianhydride may be additionally added in addition to the second diamine.
  • the second diamine contains silicone diamine, a block copolymer in which the second segment containing the structural unit 2 is bonded to both ends of the first segment not containing the structural unit 2 is obtained.
  • the second diamine may be a silicone diamine alone or may contain a diamine other than the silicone diamine.
  • the 2nd segment may contain the structure derived from the 1st diamine which remained unreacted at the time of formation of the 1st segment.
  • the polyamic acid solution contains polyamic acid and a solvent.
  • a solution obtained by reacting diamine and tetracarboxylic dianhydride can be used as it is as a polyamic acid solution.
  • the concentration of the polyamic acid and the viscosity of the solution may be adjusted by removing a part of the solvent from the polymerization solution or adding a solvent.
  • the solvent to be added may be different from the solvent used for the polymerization of the polyamic acid.
  • a polyamic acid solution may be prepared by dissolving a solid polyamic acid resin obtained by removing the solvent from the polymerization solution in a solvent.
  • the organic solvent for the polyamic acid solution amide solvents, ketone solvents, ester solvents and ether solvents are preferable, and among them, amide solvents such as DMF, DMAC, and NMP are preferable.
  • an organic or inorganic low-molecular or high-molecular compound may be blended in the polyamic acid solution.
  • the additive include dyes, pigments, surfactants, leveling agents, plasticizers, silicones, sensitizers, fillers, and fine particles.
  • the polyamic acid solution may contain a resin component such as a photocurable component, a thermosetting component, and a non-polymerizable resin in addition to the polyamic acid.
  • an imidizing agent and / or a dehydrating agent may be added to the polyamic acid solution.
  • the imidizing agent is not particularly limited, it is preferable to use a tertiary amine, and among them, a heterocyclic tertiary amine is preferable.
  • the heterocyclic tertiary amine include pyridine, picoline, quinoline, and isoquinoline.
  • the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, and the like.
  • Imidazoles may be added to the polyamic acid solution.
  • Imidazoles include 1H-imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl It is a compound containing a 1,3-diazole ring structure such as -4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like.
  • 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferable, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are particularly preferable.
  • the amount of imidazoles added is preferably about 0.005 to 0.1 mol, more preferably 0.01 to 0.08 mol, and more preferably 0.015 to 0.050 mol with respect to 1 mol of the amide group of the polyamic acid. Further preferred. “Amido group of polyamic acid” means an amide group formed by a polyaddition reaction of diamine and tetracarboxylic dianhydride. If the amount of imidazoles added is in the above range, in addition to improving the storage stability of the polyamic acid solution, it can be expected to improve the heat resistance of the polyimide film and reduce the residual stress of the laminate of the inorganic support and the polyimide film.
  • imidazoles When imidazoles are added, it is preferable to add polyamic acid after polymerization.
  • the imidazoles may be added to the polyamic acid solution as it is, or may be added to the polyamic acid solution as an imidazole solution.
  • a silane coupling agent may be added to the polyamic acid solution for the purpose of developing appropriate adhesion to the support.
  • the kind of silane coupling agent is not particularly limited, a silane coupling agent containing an amino group is preferable from the viewpoint of reactivity with polyamic acid.
  • the addition amount of the silane coupling agent is preferably 0.5 parts by weight or less, more preferably 0.1 parts by weight or less, based on 100 parts by weight of the polyamic acid. More preferably, it is at most 05 parts by weight. Since the polyimide film formed by imidation of the polyamic acid having the structural unit 2 is excellent in adhesion to the support, it exhibits sufficient adhesion even when no silane coupling agent is added. When a silane coupling agent is used for the purpose of improving the adhesion between the polyimide film and the support, the addition amount of the silane coupling agent is 0.01 parts by weight or more with respect to 100 parts by weight of the polyamic acid. Also good.
  • Polyimide and polyimide film Polyimide is obtained by dehydration ring closure of the polyamic acid.
  • Dehydration ring closure can be performed by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method.
  • the imidation from the polyamic acid to the polyimide can take an arbitrary ratio of 1 to 100%, and a polyamic acid partially imidized may be synthesized.
  • a method in which a polyamic acid solution is coated in a film form on a support such as a glass plate, a metal plate, or a PET (polyethylene terephthalate) film, and the polyamic acid is dehydrated and closed by heating is preferable.
  • a support such as a glass plate, a metal plate, or a PET (polyethylene terephthalate) film, and the polyamic acid is dehydrated and closed by heating.
  • an imidizing agent and / or a dehydration catalyst may be added to the polyamic acid solution in order to shorten the heating time and develop characteristics.
  • a polyamic acid solution is applied to the support to form a coating film, and the laminate of the support and the polyamic acid coating is formed at a temperature of 40 to 200 ° C. Heat for 3 to 120 minutes to remove the solvent. For example, the drying may be performed at two or more stages, such as 30 minutes at 50 ° C. and then 30 minutes at 100 ° C.
  • the polyamic acid is dehydrated and closed, and a laminate in which the polyimide film is provided on the support is obtained. .
  • the heating rate is preferably 2 to 10 ° C./min, more preferably 4 to 10 ° C./min.
  • the maximum temperature is preferably 250 to 400 ° C. If the maximum temperature is 250 ° C. or higher, imidization proceeds sufficiently, and if the maximum temperature is 400 ° C. or lower, thermal deterioration and coloring of polyimide can be suppressed.
  • the temperature may be maintained at an arbitrary temperature for an arbitrary time until the maximum temperature is reached.
  • the heating atmosphere may be any of air, reduced pressure, or inert gas such as nitrogen. In order to express higher transparency, heating under reduced pressure or in an inert gas is preferable.
  • the heating device include a hot air oven, an infrared oven, a vacuum oven, an inert oven, and a hot plate.
  • the polyimide may be used as it is for a coating or molding process for producing a product or member.
  • the polyimide can be a polyimide film formed into a film.
  • Various inorganic thin films such as metal oxides and transparent electrodes may be formed on the surface of the polyimide film.
  • the method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as CVD, sputtering, vacuum deposition, and ion plating.
  • the polyimide film of the present invention has heat resistance, transparency, and low thermal expansion, it can be used as an alternative material for glass, printed matter, color filter, flexible display, optical film, liquid crystal display device, It is applicable to image display devices such as organic EL and electronic paper, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like.
  • the thickness of the polyimide film is, for example, about 1 to 200 ⁇ m, and preferably about 5 to 100 ⁇ m.
  • the polyimide film of the present invention has a small residual stress in a laminate with a glass support
  • a polyamic acid solution was applied on the support and imidized by heating to form an electronic device or the like on the polyimide film of the laminate. Thereafter, a batch type device manufacturing process in which the polyimide film is peeled off from the support can be applied.
  • the polyamic acid solution is applied onto the support and imidized by heating by the above-described method, and a laminate in which the polyimide film is closely laminated on the support is formed.
  • the An electronic element such as a TFT is formed on the polyimide film of the laminate.
  • an oxide semiconductor, amorphous silicon, or the like is generally formed at a high temperature of 300 ° C. or higher.
  • the 1% weight reduction temperature Td1 of the polyimide film is preferably 450 ° C. or higher.
  • Td1 of the polyimide film is preferably as high as possible, and may be 455 ° C. or higher, 460 ° C. or higher, or 465 ° C. or higher.
  • the Tg of the polyimide film is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, and more preferably 360 ° C. or higher.
  • the polyimide film produced using the polyamic acid solution of the present invention can reduce residual stress in a laminate with a glass support, in addition to heat resistance, transparency and low thermal expansion.
  • the residual stress of the laminate of the support and the polyimide film is preferably 30 MPa or less, more preferably 25 MPa or less, and further preferably 20 MPa or less.
  • the adhesion between the support and the polyimide film is high in order to accurately form or mount an electronic element or the like on the polyimide film.
  • the 90 ° C. peel strength from the support of the polyimide film adhered and laminated on the support is preferably 0.05 N / cm or more, and more preferably 0.1 N / cm or more.
  • the peel strength is preferably 0.25 N / cm or less from the viewpoint of workability when peeling the polyimide film from the support after mounting.
  • the method for peeling the polyimide film from the support is not particularly limited. For example, it may be peeled off by hand, or a peeling device such as a drive roll or a robot may be used. Peeling may be performed by reducing the adhesion between the support and the polyimide film.
  • a polyimide film may be formed on a support provided with a release layer. Peeling may be promoted by forming a silicon oxide film over a substrate having a large number of grooves and infiltrating an etchant. Peeling may be performed by laser light irradiation.
  • the cutoff wavelength of the polyimide film (the wavelength at which the transmittance is 0.1% or less) The wavelength is required to be longer than the wavelength of the laser light to be used.
  • the cutoff wavelength of the polyimide film is preferably 320 nm or more, and more preferably 330 nm or more.
  • the cutoff wavelength is preferably 390 nm or less. From the viewpoint of achieving both transparency (low yellowness) and laser peeling processability, the cutoff wavelength of the polyimide film is preferably 320 to 390 nm, and more preferably 330 to 380 nm.
  • the transparency of the polyimide film can be evaluated by the total light transmittance and haze according to JIS K7105-1981.
  • the total light transmittance of the polyimide film is preferably 80% or more, and more preferably 85% or more.
  • the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and further preferably 1.0% or less. In applications such as displays, the transmittance is required to be high in the entire visible light wavelength region.
  • the yellowness (YI) of the polyimide film is preferably 15 or less, and more preferably 10 or less. YI can be measured according to JIS K7373-2006. Thus, a highly transparent polyimide film can be used as a transparent substrate for glass substitute applications and the like.
  • An organic EL display and organic EL lighting are mentioned as a flexible device which uses a polyimide film as a substrate.
  • organic EL devices There are two types of organic EL devices: a bottom emission method that extracts light from the substrate side, and a top emission method that extracts light from the opposite surface of the substrate.
  • a transparent polyimide film having a high visible light transmittance and a small YI is also suitable as a substrate material for a bottom emission type organic EL device.
  • the substrate material has optical isotropy from the viewpoint of improving visibility in addition to transparency, and is derived from birefringence.
  • the thickness direction retardation (Rth) may be required to be small.
  • the touch panel substrate may be required to have a small Rth.
  • Rth is preferably 300 nm or less, more preferably 200 nm or less, further preferably 100 nm or less, and particularly preferably 50 nm or less, based on the thickness of the polyimide film of 10 ⁇ m.
  • Rth is the product of birefringence in the thickness direction (difference between the in-plane average refractive index and the refractive index in the thickness direction) and the thickness. That is, the birefringence in the thickness direction of the polyimide film is preferably 0.03 or less, more preferably 0.02 or less, still more preferably 0.01 or less, and particularly preferably 0.005 or less.
  • the birefringence of the polyimide film tends to be reduced.
  • Tg Glass transition temperature
  • TMA thermomechanical analyzer
  • a sample with a width of 3 mm and a length of 10 mm was subjected to a 98.0 mN load, and the temperature was raised from 20 ° C to 450 ° C at 10 ° C / min.
  • Temperature and strain (elongation) were plotted (TMA curve). The intersection point extrapolated from the tangent line of the TMA curve before and after the inclination change was defined as the glass transition temperature.
  • ⁇ Residual stress> The polyamic acid solutions prepared in the examples and comparative examples were applied on non-alkali glass (thickness 0.7 mm, 100 mm ⁇ 100 mm) manufactured by Corning, which had previously measured the amount of warpage, using a spin coater, and at 80 ° C. in air.
  • the laminate was heated for 30 minutes at 380 ° C. in a nitrogen atmosphere to obtain a laminate including a 10 ⁇ m-thick polyimide film on a glass substrate.
  • the laminate was dried at 120 ° C. for 10 minutes, and then the amount of warpage of the laminate at 25 ° C. in a nitrogen atmosphere was measured using a thin film stress measuring device (“FLX-2320- S ”) and the residual stress produced between the glass substrate and the polyimide film was evaluated.
  • FLX-2320- S thin film stress measuring device
  • Thickness direction retardation Rth with respect to light having a wavelength of 590 nm was measured using a phase difference meter “OPTIPRO” manufactured by Shintech.
  • Td1 ⁇ 1% weight loss temperature (Td1)> Using “TG / DTA / 7200” manufactured by SII Nano Technology, the temperature at 25 ° C. to 500 ° C. was increased at 20 ° C./min in a nitrogen atmosphere, and the temperature when the weight decreased by 1% was determined as Td1 of the polyimide film. did.
  • Example 1 ⁇ Preparation of polyamic acid solution> NMP: 40.00 g was charged into a 300 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen introduction tube, and TFMB: 4.741 g was added and stirred. PMDA: 1.695 g was added to this solution, and after stirring for 10 minutes or longer, BPAF: 3.563 g was added and stirred at room temperature for 12 hours. To this solution (solid content concentration 25% by weight), NMP was added to dilute to a solid content concentration of 15% by weight, heated in an oil bath at 80 ° C.
  • DGDE KF-8012 2.0 g (20 parts by weight with respect to a total of 100 parts by weight of diamine (TFMB) and tetracarboxylic dianhydride (PMDA and BPAF)) was slowly added dropwise. After stirring for 30 minutes, it was quenched with ice water to obtain a uniform and transparent polyamic acid solution.
  • TFMB diamine
  • PMDA and BPAF tetracarboxylic dianhydride
  • the polyamic acid solution was applied on a glass plate with a spin coater and heated in air at 80 ° C. for 30 minutes and in a nitrogen atmosphere at 380 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 to 15 ⁇ m.
  • Example 2 A polyamic acid solution was prepared in the same manner as in Example 1, and 0.36 g of DMI diluted to 10% by weight with DGDE (3 parts by weight based on 100 parts by weight of the total of diamine, tetracarboxylic dianhydride and silicone diamine) Added. Using this solution, application and heating were performed in the same manner as in Example 1 to obtain a polyimide film.
  • DGDE 3 parts by weight based on 100 parts by weight of the total of diamine, tetracarboxylic dianhydride and silicone diamine
  • Example 3 As silicone diamine, KF-8008: 2.0 g was used instead of KF-8012: 2.0 g. Other than that was carried out similarly to Example 1, the polyamic acid solution was prepared, and the polyimide film was formed.
  • Examples 4, 6, and 9 The ratio of PMDA and BPAF was changed to the ratio shown in Table 1. Other than that was carried out similarly to Example 1, the polyamic acid solution was prepared, and the polyimide film was formed.
  • Examples 5 and 7 The ratio of PMDA and BPAF was changed to the ratio shown in Table 1. Other than that was carried out similarly to Example 2, the polyamic acid solution containing imidazoles was prepared, and the polyimide film was formed.
  • Example 8 to 12 Comparative Examples 1 to 10
  • the types and amounts of diamine and tetracarboxylic dianhydride and the types of silicone diamine were changed as shown in Table 1.
  • the polyamic acid solution was prepared, and the polyimide film was formed.
  • Table 1 shows the composition of the polyamic acid and the evaluation results of the properties of the polyimide film in Examples and Comparative Examples.
  • the amount (mol%) of tetracarboxylic dianhydride in Table 1 is a value obtained by setting the total of diamines to 100 mol%, and the amount (phr) of silicone diamine is the sum of the charged amounts of diamine and tetracarboxylic acid being 100.
  • the amount of 1,2-dimethylimidazole (DMI) is a value obtained by adding 100 parts by weight of the total amount of diamine, tetracarboxylic dianhydride and silicone diamine charged.
  • the polyimide films of all Examples and Comparative Examples had a haze of less than 1%.
  • the polyimide films of the examples using the silicone diamine containing a long-chain siloxane structure having a repeating unit number m of siloxane structural units of 51 or more have Td1 of 450 ° C. or higher and Tg of 300 ° C. or higher. And showed excellent heat resistance. Moreover, as for the laminated body of the polyimide film and glass plate of an Example, all were the residual stress of 30 Mpa or less. From the comparison between Example 1 and Example 2, the comparison between Example 4 and Example 5, and the comparison between Example 6 and Example 7, by adding imidazoles to the polyamic acid solution, the polyimide film It was confirmed that the heat resistance was improved and the residual stress of the laminate was reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)

Abstract

ポリアミド酸は、下記一般式(1)で表される構造単位、および下記一般式(2)で表される構成単位を含む。複数のR1は、それぞれ独立に、水素原子、一価の脂肪族基または芳香族基である。複数のRは、それぞれ独立に、炭素数1~3のアルキル基、または炭素数6~10のアリール基である。Xは4価の有機基である。複数のYは、それぞれ独立に、炭素数1~3のアルキレン基、または炭素数6~10のアリーレン基である。mは51~199の整数である。

Description

ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
 本発明は、ポリアミド酸、ポリアミド酸溶液、ポリイミドおよびポリイミド膜、ならびにポリイミド膜を用いたフレキシブルデバイスに関する。
 液晶、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル、照明装置等のデバイスにおいて、薄型化、軽量化、およびフレキシブル化が要求されており、ガラス基板に代えてプラスチックフィルム基板の利用が検討されている。電子デバイスの製造プロセスでは、基板上に、薄膜トランジスタや透明電極等の電子素子が設けられる。電子素子の形成は高温プロセスを要し、プラスチックフィルム基板には高温プロセスに適応可能な耐熱性が要求されるため、プラスチックフィルム基板の材料として、ポリイミドの使用が検討されている。
 電子デバイスの製造プロセスは、バッチタイプとロール・トゥ・ロールタイプに分けられる。バッチプロセスでは、ガラス支持体上に樹脂溶液を塗布、乾燥して、ガラス支持体とフィルム基板との積層体を形成し、その上に素子を形成した後、ガラス支持体からフィルム基板を剥離すればよく、現行のガラス基板用プロセス設備を利用できる。フィルム基板がポリイミドである場合は、支持体上にポリイミド前駆体としてのポリアミド酸溶液を塗布し、支持体とともにポリアミド酸を加熱してイミド化を行うことにより、支持体とポリイミド膜との積層体が得られる。
 ディスプレイ等の光学デバイスでは、素子から発せられる光がフィルム基板を通って出射するため、基板材料に透明性が求められる。剛直な構造のモノマーやフッ素系モノマーを用いたポリイミドは、透明性が高く、かつ低熱膨張性を示すことが知られている(特許文献1、2)。ポリイミドの材料として、シリコーンを用いることにより、ガラス支持体とポリイミド膜との界面の応力が低下することが知られている(特許文献3、4)。
特開2002-161136号公報 特開2012-41530号公報 特開2017-226847号公報 特許第5948545号明細書
 特許文献3、4に記載のポリイミドは透明性に優れるものの、熱分解温度が低く、電子素子形成時に、ポリイミド膜からのアウトガス等に起因する生産性の低下や製造装置の汚染等の懸念がある。本発明は、透明性および耐熱性に優れるポリイミド膜、およびその前駆体としてのポリアミド酸の提供を目的とする。
 本発明の一実施形態は、下記一般式(1)で表される構造単位、および下記一般式(2)で表される構成単位を含むポリアミド酸である。
Figure JPOXMLDOC01-appb-C000005
 ポリアミド酸は、例えば、有機溶媒中でテトラカルボン酸二無水物とジアミンとを反応させることにより得られる。ジアミンとして、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)および下記一般式(3)で表されるシリコーンジアミンを用いることにより、一般式(1)で表される構造単位と一般式(2)で表される構造単位を有するポリアミド酸が得られる。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)および一般式(3)において、複数のRは、それぞれ独立に、炭素数1~3のアルキル基、またはアリール基であり、メチル基が好ましい。複数のYは、それぞれ独立に、炭素数1~3のアルキレン基、またはアリーレン基であり、プロピレン基が好ましい。mは51~199の整数である。
  一般式(1)および一般式(2)において、複数のR1は、それぞれ独立に、水素原子、アルキル基、またはアリール基であり、水素原子であることが好ましい。4価の有機基Xは、テトラカルボン酸二無水物の残基である。ポリアミド酸は、有機基Xとして、例えば、下記の(A)、(B)、(C)の構造を含んでいてもよく、好ましくは、有機基Xとして、(A)および/または(B)と、(C)とを含む。
Figure JPOXMLDOC01-appb-C000007
 好ましい形態において、ポリアミド酸は、一般式(1)および(2)におけるXが上記(C)の有機基を含み、Xの全量に対する構造(C)の比率が30mol%以上である。
 ポリアミド酸はブロック共重合体でもよい。ブロック共重合体の例として、一般式(1)で表される構造単位を含み一般式(2)で表される構造単位を含まない第一セグメントと、一般式(2)で表される構造単位を含む第二セグメントとを有するブロック共重合体が挙げられる。ブロック共重合体は、第一セグメントの両末端に第二セグメントが結合したABA型トリブロック共重合体でもよい。
 例えば、有機溶媒中でテトラカルボン酸二無水物と第一ジアミンとを反応させてポリアミド酸セグメントを形成した後、第二ジアミンを添加することにより、ブロック共重合体が得られる。第一ジアミンがTFMBを含み、第二ジアミンがシリコーンジアミンを含むことにより、第一セグメントの両末端に第二セグメントが結合したABA型トリブロック共重合体が得られる。テトラカルボン酸二無水物と第一ジアミンとの反応によりポリアミド酸セグメント(第一セグメント)を形成する際のテトラカルボン酸二無水物の仕込み量(モル数)は、第一ジアミンの仕込み量(モル数)の1.01倍以上、1.10倍未満が好ましい。
 ポリアミド酸溶液は、上記のポリアミド酸と有機溶媒とを含有する。上記のポリアミド酸の脱水環化によりポリイミドが得られる。ポリイミド膜は、当該ポリイミドを含む。一実施形態では、ポリアミド酸溶液を支持体に塗布して、支持体上に膜状のポリアミド酸が設けられた積層体を形成し、積層体を加熱してポリアミド酸をイミド化する。
 ポリイミド膜の1%重量減少温度は450℃以上が好ましい。ポリイミド膜のガラス転移温度は300℃以上が好ましい。支持体とポリイミド膜との積層体は、室温における残留応力が25MPa以下であることが好ましい。
 ポリイミド膜上に電子素子を形成することによりフレキシブルデバイスが得られる。支持体上にポリイミド膜が設けられた積層体のポリイミド膜上に電子素子を形成し、電子素子を形成後に支持体からポリイミド膜を剥離してもよい。
 上記のポリイミド膜は、無機支持体との積層体の残留応力が小さく、耐熱性および透明性に優れ、透明性が必要とされる電子デバイス用の基板材料として好適である。
 以下、本発明の実施形態について説明するが、本発明はこれらに限定されるものではない。
 テトラカルボン酸二無水物とジアミンの重付加反応によりポリアミド酸が得られ、ポリアミド酸の脱水閉環反応によりポリイミドが得られる。すなわち、ポリイミドはテトラカルボン酸二無水物とジアミンの重縮合反応物である。
[ポリアミド酸]
 本発明の実施形態にかかるポリアミド酸は、下記一般式(1)で表される構造単位(以下、「構造単位1」と記載する場合がある)と、下記一般式(2)で表される構造単位(以下、「構造単位2」と記載する場合がある)を含む。
Figure JPOXMLDOC01-appb-C000008
 構造単位1は、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)と4価の有機基Xを有するテトラカルボン酸二無水物との反応により形成される。構造単位2は、下記一般式(3)で表されるシリコーンジアミンと4価の有機基Xを有するテトラカルボン酸二無水物との反応により形成される。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)および一般式(2)において、Xは4価の有機基であり、テトラカルボン酸二無水物の残基である。複数のR1は、それぞれ独立に、水素原子、一価の脂肪族基または芳香族基である。テトラカルボン酸二無水物とジアミンとの反応により得られるポリアミド酸では、Rは、水素原子である。ポリアミド酸のカルボキシ基をエステル化することによりRがアルキル基またはアリール基であるポリアミド酸(ポリアミド酸エステル)が得られる。ポリアミド酸エステルは、加水分解が生じ難く、溶液の安定性に優れている。
 一般式(2)および一般式(3)において、複数のRは、それぞれ独立に、炭素数1~3のアルキル基、またはアリール基である。複数のYは、それぞれ独立に、炭素数1~3のアルキレン基、またはアリーレン基である。mは51~199の整数である。
 構造単位1を含むことにより、ポリアミド酸のイミド化により得られるポリイミド膜の透明性を向上できる。ポリイミド膜の透明性、耐熱性、機械強度、低残留応力、および低吸湿・低吸水性の観点から、ポリアミド酸における一般式(1)で表される構造単位の含有量は、60~99.7mol%が好ましく、70~99.5mol%がより好ましく、80~99.3mol%がさらに好ましい。
 構造単位2を含むことにより、ポリアミド酸のイミド化により得られるポリイミド膜の耐熱性を向上できる。ポリアミド酸における一般式(2)で表される構造単位の含有量は、0.3~7mol%が好ましく、0.5~5mol%がより好ましく、0.7~4mol%がさらに好ましい。
 ポリアミド酸は、構造単位1および構造単位2以外の構造単位を含んでいてもよい。構造単位1および構造単位2以外の構造単位の含有量は、29mol%以下、20mol%以下、10mol%以下または5mol%以下であってもよく、ポリアミド酸は構造単位1および構造単位2のみからなるものでもよい。
 ポリアミド酸の重量平均分子量は、例えば10,000~1,000,000であり、30,000~500,000が好ましく、40,000~100,000がより好ましい。重量平均分子量が10,000以上であれば、ポリイミド膜の機械強度を確保できる。重量平均分子量が1,000,000以下であれば、ポリアミド酸が溶媒に対して十分な溶解性を示し、表面が平滑で膜厚が均一な塗膜またはフィルムが得られる。分子量は、ゲルパーミレーションクロマトグラフィー(GPC)によるポリエチレンオキシド換算の値である。
<テトラカルボン酸二無水物>
 一般式(1)および(2)において、有機基Xはテトラカルボン酸二無水物の残基であり、ポリアミド酸の重合に用いられるテトラカルボン酸二無水物に由来する4価の有機基である。
 テトラカルボン酸二無水物の具体的としては、ピロメリット酸二無水物、3,3’4,4’-ビフェニルテトラカルボン酸、1,4-フェニレンビス(トリメリテート酸二無水物)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、2’-オキソジスピロ[2.2.1]ヘプタン-2,1”-シクロヘプタン-3,2”-ビシクロ[2.2.1]ヘプタン-5,5’-6,6’-テトラカルボン酸二無水物等が挙げられる。複数のテトラカルボン酸二無水物を用いた場合、一般式(1)および一般式(2)において複数種の有機基Xを有するポリアミド酸が得られる。
 例示のテトラカルボン酸二無水物の中でも、ピロメリット酸二無水物(PMDA)および3,3’4,4’-ビフェニルテトラカルボン酸(BPDA)が、ポリイミド膜の耐熱性および機械強度向上の観点で好ましい。ポリイミド膜の透明性向上(黄色度低減)の観点から、テトラカルボン酸二無水物として、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物(BPAF)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、4,4’-オキシフタル酸二無水物(OPDA)等の屈曲構造を有するテトラカルボン酸二無水物を用いることが好ましい。これらの中でも、ポリイミド膜の複屈折を低減できることから、BPAFが好ましい。
 耐熱性に優れ、かつ低複屈折のポリイミド膜を得る観点からは、テトラカルボン酸二無水物として、PMDAおよび/またはBPDA、ならびにBPAFを用いることが好ましい。PMDAの残基は式(A)で表される4価の有機基であり、BPDAの残基は式(B)で表される4価の有機基であり、BPAFの残基は(C)で表される4価の有機基である。
Figure JPOXMLDOC01-appb-C000010
 すなわち、ポリアミド酸は、テトラカルボン酸二無水物由来構造(一般式(1)および一般式(2)における有機基X)として、式(A)で表される4価の有機基および式(B)で表される4価の有機基からなる群から選択される1種以上、ならびに式(C)で表される4価の有機基を含むことが好ましい。テトラカルボン酸二無水物の好ましい組み合わせは、PMDAとBPAFの組み合わせであり、この場合、ポリアミド酸は、一般式(1)および一般式(2)における有機基Xとして、式(A)で表される4価の有機基および式(C)で表される4価の有機基を含む。
 ポリイミド膜の透明性および耐熱性の向上、ならびに複屈折および残留応力低減の観点から、PMDA、BPDAおよびBPAFの合計は、ポリアミド酸のテトラカルボン酸二無水物成分の全量100mol%に対して、60mol%以上が好ましく、70mol%がより好ましく、80mol%以上がさらに好ましい。PMDA、BPDAおよびBPAFの合計は、90mol%以上でもよく、100mol%でもよい。
 低複屈折のポリイミド膜を得る観点から、ポリアミド酸のテトラカルボン酸二無水物成分の全量100mol%に対するBPAFの量は、30mol%以上が好ましく、35mol%以上がより好ましく、40mol%以上がさらに好ましい。耐熱性に優れたポリイミド膜を得る観点から、ポリアミド酸のテトラカルボン酸二無水物成分の全量100mol%に対するPMDAおよびBPDAの合計は、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上がさらに好ましい。
 テトラカルボン酸二無水物がPMDAとBPAFの組み合わせである場合、高透明かつ低複屈折のポリイミド膜を得る観点から、PMDAとBPAFの合計に対するBPAFの量は、30~90mol%が好ましく、35~70mol%がより好ましく、40~60mol%がさらに好ましい。
<ジアミン>
 ジアミンとしては、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、およびシリコーンジアミンが用いられる。ジアミンとしてTFMBを用いることにより、構造単位1が形成される。ポリアミド酸のジアミン成分の全量100mol%に対するTFMBの量は、60~99.7mol%が好ましく、70~99.5mol%がより好ましく、80~99.3mol%がさらに好ましい。
 ジアミンとして一般式(3)で表されるシリコーンジアミンを用いることにより、構造単位2が形成される。一般式(3)で表されるシリコーンジアミンは、シリコーン化合物由来のジアミン(両末端アミノ変性シリコーン)である。一般式(2)および一般式(3)におけるアルキレン基Yの具体例としては、エチレン基、プロピレン基およびフェニレン基が挙げられ、中でもプロピレン基が好ましい。Rとしては、メチル基、エチル基、プロピル基およびフェニル基等が挙げられる。耐熱性に優れ、イミド化時および素子形成時の加熱温度での熱分解が生じ難いことから、Rはアルキル基が好ましく、中でもメチル基が好ましい。
 シロキサン構造の繰り返し単位数mが51以上の長鎖シリコーンであることにより、ミクロドメインが形成されやすく、熱分解温度が高く耐熱性に優れるポリイミド膜が得られる。繰り返し単位数mが200未満であれば、ポリアミド酸溶液の溶解性を維持できるため、透明性の高くヘイズの小さいポリイミド膜が得られる。繰り返し単位数mは、160未満が好ましく、80未満がより好ましい。
 シリコーンジアミンの具体例としては、両末端アミノ変性メチルフェニルシリコーン、両末端アミノ変性ジメチルシリコーン(例えば、信越化学製「KF-8012」(数平均分子量4,400)、および「KF-8008」(数平均分子量11,400);チッソ製「サイラプレーンFM―3321」(数平均分子量5,000))等が挙げられる。ポリイミド膜の耐熱性向上、およびポリイミド膜と無機支持体との積層体における残留応力低減の観点から、両末端アミノ変性ジメチルシリコーンが好ましい。
 ポリアミド酸のジアミン成分の全量100mol%に対する一般式(3)で表されるシリコーンジアミンの量は、0.3~7mol%が好ましく、0.5~5mol%がより好ましく、0.7~4mol%がさらに好ましい。シリコーンジアミンの共重合割合は、ポリアミド酸の質量(テトラカルボン酸二無水物およびジアミンの合計仕込み量)に対して、2~30質量%の範囲が好ましく、5~25質量%がより好ましく、10~20質量%がより好ましい。シロキサン構造の繰り返し単位数mが51~199の範囲内であるシリコーンジアミンの量が上記範囲であれば、ポリアミド酸のイミド化により得られるポリイミド膜が、耐熱性および透明性に優れるとともに、ガラス等の無機基板材料との積層体の残留応力が小さくなる傾向がある。
 本実施形態のポリアミド酸は、その性能を損なわない範囲で、構造単位1および構造単位2以外の構造単位を含んでいてもよい。すなわち、ジアミン成分として、TFMBおよびシリコーンジアミン以外のジアミン成分を含んでもよい。ジアミンとしては、1,4-ジアミノシクロヘキサン、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンズアニリド、4’-アミノフェニル-4-アミノベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ジアミノジフェニルスルフォン、m-トリジン、o-トリジン、4,4 ’-ビス(アミノフェノキシ)ビフェニル、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、3,5-ジアミノ安息香酸、4,4’-ジアミノ-3,3’ジヒドロキシビフェニル、4,4’-メチレンビス(シクロヘキサンアミン)等が挙げられる。
<ポリアミド酸のシーケンス>
 ポリアミド酸における構造単位1と構造単位2の並びはランダムでもブロックでもよい。ポリアミド酸は、構造単位1を含み構造単位2を含まない第一セグメントと、構造単位2を含む第二セグメントを有するブロック共重合体でもよい。ブロック共重合体におけるブロックの並びとしては、第一セグメントの一方の末端に第二セグメントが結合しているAB型、第一セグメントの両末端に第二セグメントが結合しているABA型、第一セグメントと第二セグメントが交互に並んでいる(AB)型等が挙げられる。ポリアミド酸の重合が容易でありブロック構造を形成しやすいことから、ブロック共重合体は、ABA型トリブロック構造が好ましい。
 ポリアミド酸のジアミン成分として、TFMBとシリコーンジアミンのみを用いる場合、第一セグメントは、構造単位1の繰り返しからなるセグメントである。ジアミン成分として、TFMBおよびシリコーンジアミン以外のジアミンを用いる場合、第一セグメントにおける構造単位1の含有量は、60mol%以上が好ましく、70mol%以上がより好ましく、80mol%以上がさらに好ましい。
 第二セグメントは、構造単位2のみからなるものでもよく、構造単位1と構造単位2を含んでいてもよい。シリコーンジアミンが高分子量(具体的には、一般式(3)におけるmが51以上)であり長鎖シロキサン構造を有するため、ポリマーシーケンスにおいて構造単位2が連続していない場合でも、ブロック構造と同様のミクロドメインを構成し得る。
 構造単位2として、繰り返し単位数mが51以上の長鎖シロキサン構造を含むポリアミド酸をガラス等の無機支持体上でイミド化してポリイミド膜を形成すると、無機支持体とポリイミド膜との積層体における残留応力が小さくなる傾向がある。その詳細なメカニズムは明確ではないが、シリコーン(長鎖シロキサン)に由来するドメインがポリイミド膜中に存在すると、ポリイミド膜に応力が生じた際に、シリコーン由来のドメインがミクロな塑性変形をすることにより応力を緩和するため、ポリイミド膜全体の残留応力が低減すると考えられる。
 特に、ポリアミド酸およびポリイミドがブロック共重合体であり、ドメイン(第二セグメント)と連続相(第一セグメント)を含み、ドメインと連続相が弾性率差を有する場合は、第二セグメントにより形成されるドメインに応力が集中し、効果的に応力が緩和されると考えられる。ドメインを構成する成分と連続相を構成する成分の相溶性が高い場合は、明確な界面が形成されず、部分的な相溶によりドメインへの応力集中が生じにくくなり、応力緩和効果が低減する傾向がある。また、シリコーンはガラス転移温度が低いため、第二セグメントのドメインが連続相と部分的に相溶すると、ガラス転移温度(Tg)が低温側にシフトする傾向がある。そのため、シリコーン由来のドメイン(第二セグメント)は、ポリアミド酸およびポリイミドの連続相との相溶性が低い方が好ましい。上記のように、ポリアミド酸が、構造2を含まない第一セグメントを有するブロック共重合体であれば、第一セグメントと第二セグメントとの相溶性が低いため、相分離構造が形成されやすい。
 ポリアミド酸がブロック共重合体である場合、ポリアミド酸のイミド化により得られるポリイミドは、第一セグメントと第二セグメントが互いに独立したガラス転移温度を示す程度に相分離していればよく、完全なブロック性を有することは必ずしも必要ではない。第一セグメントおよび第二セグメントの独立したTgに影響を及ぼさない程度であれば、ポリアミド酸は、第一セグメントおよび第二セグメント以外のセグメントを含んでいてもよい。
<ポリアミド酸の合成>
 有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることによりポリアミド酸が得られる。例えば、ジアミンを、有機溶媒中に溶解またはスラリー状に分散させて、ジアミン溶液とし、テトラカルボン酸二無水物を、有機溶媒に溶解もしくはスラリー状に分散させた溶液または固体の状態で、上記ジアミン溶液中に添加すればよい。テトラカルボン酸二無水物溶液中に、ジアミンを添加してもよい。
 ポリアミド酸の合成反応に使用する有機溶媒は特に限定されない。有機溶媒は、使用するテトラカルボン酸二無水物およびジアミンを溶解可能であり、かつ重合により生成するポリアミド酸を溶解可能であるものが好ましい。ポリアミド酸の合成反応に使用する有機溶媒の具体例としては、テトラメチル尿素、N,N-ジメチルエチルウレア等のウレア系溶媒;ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォン等のスルホキシドあるいはスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N,N’-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、γ―ブチロラクトン等のエステル系溶媒;ヘキサメチルリン酸トリアミド等のアミド系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒:シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせてもよい。ポリアミド酸の溶解性および反応性を高めるために、ポリアミド酸の合成反応に使用する有機溶媒は、アミド系溶媒、ケトン系溶媒、エステル系溶媒およびエーテル系溶媒より選択されることが好ましく、特にDMF、DMAC、NMP等のアミド系溶媒が好ましい。溶液の安定性を高めるために、ジエチレングリコールやテトラヒドロフラン等のエーテル系溶媒を添加してもよい。
 ジアミンとテトラカルボン酸二無水物を用いてポリアミド酸を合成する場合、ジアミンおよびテトラカルボン酸二無水物のいずれか一方または両方に、複数種を用い、その仕込み量を調整することにより、複数種の構造単位を有するポリアミド酸共重合体が得られる。ジアミンとしてTFMBおよびシリコーンジアミンを用いることにより、構造単位1および構造単位2を有するポリアミド酸が得られる。TFMBとシリコーンジアミンの比率を変更することにより、ポリアミド酸における構造単位1と構造単位2の比率を任意に調整できる。同様に、複数のテトラカルボン酸二無水物を用いることにより、複数種の有機基Xを有するポリアミド酸が得られる。例えば、テトラカルボン酸二無水物としてPMDAおよびBPAFを用いることにより、4価の有機基Xとして、構造(A)および構造(C)を有するポリアミド酸が得られる。2種以上のポリアミド酸をブレンドして、複数のテトラカルボン酸二無水物およびジアミンを含有するポリアミド酸を得ることもできる。
 ジアミンおよびテトラカルボン酸二無水物の溶解および反応は、アルゴン、窒素等の不活性ガス雰囲気中で実施することが好ましい。ジアミンとテトラカルボン酸二無水物との反応の温度条件は、特に限定されないが、例えば、25℃~150℃であり、シリコーンジアミンの反応を十分に進め、かつポリアミド酸の分解を抑制する観点から、40~150℃が好ましく、60~120℃がより好ましい。反応時間は、例えば、10分~30時間の範囲で任意に設定すればよい。反応の進行に伴ってポリアミド酸の分子量が大きくなり、反応液の粘度が上昇する。
 TFMB等のフッ素含有ジアミンは、フッ素を含まない芳香族ジアミンに比べて反応速度が小さい。反応溶液におけるテトラカルボン酸二無水物およびジアミンの濃度を高めることにより、反応速度を上昇できる。反応溶液における原料(ジアミンおよびテトラカルボン酸二無水物)の仕込み濃度は、15~30重量%が好ましい。
 テトラカルボン酸二無水物およびジアミンの仕込み順序、仕込み比、合成順序等を制御することにより、ブロック共重合体を形成できる。例えば、第一セグメントのポリアミド酸(構造単位1を含み構造単位2を含まないポリアミド酸)、および第二セグメントのポリアミド酸(構造単位2を含むポリアミド酸)をあらかじめ調製し、両者を混合して反応させることにより、第一セグメントと第二セグメントを有するポリアミド酸が得られる。この場合、一方のセグメントの末端をアミノ基、他方のセグメントの末端を酸無水物基とすれば、一方のセグメントの末端のアミノ基と他方のセグメントの末端の酸無水物基とが反応するため、第一セグメントと第二セグメントとが結合したブロック共重合体が得られる。また、両方のセグメントをアミノ基末端または酸無水物基末端としておき、モル比に対応したテトラカルボン酸二無水物またはジアミンを添加して、セグメント間の結合を形成してもよい。
 末端に酸無水物基を有する第一セグメントのポリアミド酸を調製し、シリコーンジアミンを添加することにより、第一セグメントの両末端に第二セグメントが結合したABA型トリブロック共重合体が得られる。まず、有機溶媒中でテトラカルボン酸二無水物と第一ジアミンとを反応させることにより、第一セグメントを形成する。第一ジアミンは、ポリアミド酸を構成するジアミンのうち、シリコーンジアミン以外の成分であり、TFMBを含む。第一ジアミンはTFMBのみでもよく、TFMBに加えて、シリコーンジアミン以外のジアミンを含んでいてもよい。
 第一セグメント形成時のテトラカルボン酸二無水物類の投入量(総モル数)は、第一ジアミンの投入量(総モル数)よりも多いことが好ましい。テトラカルボン酸二無水物の投入量が多いことにより、末端に酸無水物基を有するポリアミド酸(第一セグメント)が形成される。一方、テトラカルボン酸二無水物の投入量が過度に大きいと、第一セグメントの分子量が十分に上昇しない場合がある。第一セグメントの形成において、テトラカルボン酸二無水物の総モル数は、第一ジアミンの総モル数の1.000倍よりも大きいことが好ましく、1.01倍以上1.10倍未満がより好ましく、1.03倍以上1.08倍以下がさらに好ましい。
 テトラカルボン酸二無水物と第一ジアミンとの反応により第一セグメントを形成後に、第二ジアミンを添加すると、第一セグメントの末端の酸無水物基と第二ジアミンとが反応し、両末端に第二ジアミンの残基を有するポリアミド酸が得られる。第一セグメントの形成時にテトラカルボン酸二無水物の一部が未反応で残存している場合は、未反応のテトラカルボン酸二無水物と第二ジアミンとの反応により、第一セグメントの両末端で第二セグメントが伸長する。第一セグメントの形成後に、第二ジアミンに加えて、テトラカルボン酸二無水物を追加で添加してもよい。
 第二ジアミンがシリコーンジアミンを含んでいれば、構造単位2を含まない第一セグメントの両末端に、構造単位2を含む第二セグメントが結合したブロック共重合体が得られる。第二ジアミンは、シリコーンジアミンのみでもよく、シリコーンジアミン以外のジアミンを含んでいてもよい。第二セグメントは、第一セグメントの形成時に未反応で残存していた第一ジアミン由来の構造を含んでいてもよい。
[ポリアミド酸溶液]
 ポリアミド酸溶液は、ポリアミド酸と溶媒とを含む。ジアミンとテトラカルボン酸二無水物とを反応させた溶液は、そのままポリアミド酸溶液として使用できる。また、重合溶液から溶媒の一部を除去したり、溶媒を添加することにより、ポリアミド酸の濃度および溶液の粘度を調整してもよい。添加する溶媒は、ポリアミド酸の重合に用いた溶媒と異なっていてもよい。また、重合溶液から溶媒を除去して得られた固体のポリアミド酸樹脂を溶媒に溶解してポリアミド酸溶液を調製してもよい。ポリアミド酸溶液の有機溶媒としては、アミド系溶媒、ケトン系溶媒、エステル系溶媒およびエーテル系溶媒が好ましく、中でも、DMF、DMAC、NMP等のアミド系溶媒が好ましい。
 加工特性や各種機能の付与等を目的として、ポリアミド酸溶液に、有機または無機の低分子または高分子化合物を配合してもよい。添加剤としては、染料、顔料、界面活性剤、レベリング剤、可塑剤、シリコーン、増感剤、充填剤、微粒子等が挙げられる。ポリアミド酸溶液は、ポリアミド酸以外に、光硬化性成分、熱硬化性成分、非重合性樹脂等の樹脂成分を含んでいてもよい。
 イミド化反応の促進等を目的として、ポリアミド酸溶液には、イミド化剤および/または脱水剤を添加してもよい。イミド化剤は特に限定されないが、第三級アミンを用いることが好ましく、中でも複素環式の第三級アミンが好ましい。複素環式の第三級アミンとしては、ピリジン、ピコリン、キノリン、イソキノリン等が挙げられる。脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等が挙げられる。
 ポリアミド酸溶液に、イミダゾール類を添加してもよい。イミダゾール類とは、1H-イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル2-フェニルイミダゾール等の1,3-ジアゾール環構造を含有する化合物である。中でも、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル2-フェニルイミダゾールが好ましく、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾールが特に好ましい。
 イミダゾール類の添加量は、ポリアミド酸のアミド基1モルに対して0.005~0.1モル程度が好ましく、0.01~0.08モルがより好ましく、0.015~0.050モルがさらに好ましい。「ポリアミド酸のアミド基」とは、ジアミンとテトラカルボン酸二無水物の重付加反応によって生成したアミド基を意味する。イミダゾール類の添加量が上記範囲であれば、ポリアミド酸溶液の保存安定性向上に加えて、ポリイミド膜耐熱性向上や、無機支持体とポリイミド膜の積層体の残留応力低減が期待できる。
 イミダゾール類を添加する場合は、ポリアミド酸を重合後に添加を行うことが好ましい。イミダゾール類は、そのままポリアミド酸溶液に添加してもよく、イミダゾール溶液としてポリアミド酸溶液に添加してもよい。
 ポリアミド酸溶液には、支持体との適切な密着性の発現等を目的として、シランカップリング剤を添加してもよい。シランカップリング剤の種類は特に限定されないが、ポリアミド酸との反応性の観点からアミノ基を含有するシランカップリング剤が好ましい。
 ポリアミド酸の分子量低下を抑制する観点から、シランカップリング剤の添加量は、ポリアミド酸100重量部に対して、0.5重量部以下が好ましく、0.1重量部以下がより好ましく、0.05重量部以下がさらに好ましい。構造単位2を有するポリアミド酸のイミド化により形成されるポリイミド膜は、支持体との密着性に優れるため、シランカップリング剤を添加しない場合であっても、十分な密着性を示す。ポリイミド膜と支持体との密着性を向上する目的でシランカップリング剤を使用する場合は、シランカップリング剤の添加量は、ポリアミド酸100重量部に対して0.01重量部以上であってもよい。
[ポリイミドおよびポリイミド膜]
 ポリアミド酸の脱水閉環により、ポリイミドが得られる。脱水閉環は、共沸溶媒を用いた共沸法、熱的手法または化学的手法によって行うことができる。ポリアミド酸からポリイミドへのイミド化は、1~100%の任意の割合をとることができ、一部がイミド化されたポリアミド酸を合成してもよい。
 ポリイミド膜を得るためには、ガラス板、金属板、PET(ポリエチレンテレフタレート)フィルム等の支持体にポリアミド酸溶液を膜状に塗布し、加熱によりポリアミド酸を脱水閉環する方法が好ましい。加熱時間の短縮や特性発現のために、前述のように、イミド化剤および/または脱水触媒をポリアミド酸溶液に添加してもよい。バッチタイプのデバイス製造プロセスに適応させるためには、支持体としてガラス基板を用いることが好ましく、無アルカリガラスが好適に用いられる。
 支持体上へのポリイミド膜の形成においては、まず、支持体にポリアミド酸溶液を塗布して塗膜を形成し、支持体とポリアミド酸の塗膜との積層体を40~200℃の温度で3~120分加熱して溶媒を除去する。例えば、50℃にて30分、続いて100℃にて30分のように、2段階以上の温度で乾燥を行ってもよい。
 支持体とポリアミド酸との積層体を、温度200~400℃で3分~300分加熱することにより、ポリアミド酸が脱水閉環して、支持体上にポリイミド膜が設けられた積層体が得られる。このとき低温から徐々に高温にし、最高温度まで昇温することが好ましい。昇温速度は2~10℃/分が好ましく、4~10℃/分がより好ましい。最高温度は250~400℃が好ましい。最高温度が250℃以上であれば、十分にイミド化が進行し、最高温度が400℃以下であれば、ポリイミドの熱劣化や着色を抑制できる。イミド化のための加熱においては、最高温度に到達するまでに任意の温度で任意の時間保持してもよい。
 加熱雰囲気は、空気下、減圧下、または窒素等の不活性ガス中のいずれでもよい。より高い透明性を発現させるためには、減圧下、または不活性ガス中での加熱が好ましい。加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、イナートオーブン、ホットプレート等が挙げられる。
[ポリイミドの特性および用途]
 ポリイミドは、そのまま、製品や部材を作製するためのコーティングや成形プロセスに供してもよい。上記のように、ポリイミドは、フィルム状に成形されたポリイミド膜とすることもできる。ポリイミド膜の表面には、金属酸化物や透明電極等の各種無機薄膜を形成していてもよい。これら無機薄膜の製膜方法は特に限定されるものではなく、例えば、CVD法、スパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法が挙げられる。
 本発明のポリイミド膜は、耐熱性、透明性および低熱膨張性を有しているため、ガラスの代替材料としての利用が可能であり、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、液晶表示装置、有機ELおよび電子ペーパー等の画像表示装置、3Dディスプレイ、タッチパネル、透明導電膜基板、太陽電池等に適用可能である。これらの用途において、ポリイミド膜の厚みは、例えば1~200μm程度であり、5~100μm程度が好ましい。
 本発明のポリイミド膜はガラス支持体との積層体の残留応力が小さいため、支持体上にポリアミド酸溶液を塗布し、加熱してイミド化し、積層体のポリイミド膜上に電子素子等を形成した後、支持体からポリイミド膜を剥がす、バッチタイプのデバイス作製プロセスを適用できる。
 バッチタイプのデバイス作製プロセスにおいては、上記の方法により、支持体上へのポリアミド酸溶液の塗布、および加熱によるイミド化が行われ、支持体上にポリイミド膜が密着積層された積層体が形成される。この積層体のポリイミド膜上に、TFT等の電子素子を形成する。TFT素子の形成においては、一般に300℃以上の高温で酸化物半導体やアモルファスシリコン等が形成される。
 ポリイミド膜の熱分解温度が低い場合、素子形成時の加熱によりポリイミド膜からアウトガスが発生し、ポリイミド膜上に形成した素子の性能低下や剥離の原因となり得る。そのため、ポリイミド膜の1%重量減少温度Td1は450℃以上が好ましい。構造単位1および構造単位2を有するポリアミド酸のイミド化により、耐熱性に優れTd1が450℃以上のポリイミド膜を形成可能である。ポリイミド膜のTd1は高いほど好ましく、455℃以上、460℃以上、または465℃以上であってもよい。
 ポリイミド膜のガラス転移温度が電子素子形成時のプロセス温度よりも低い場合は、素子形成中および素子形成後の冷却時の寸法変化により、支持体とポリイミド膜との界面に応力が生じ、反りや破損の原因となり得る。そのため、ポリイミド膜のTgは、300℃以上が好ましく、350℃以上がより好ましく、360℃以上がより好ましい。
 一般的に、ガラスの熱膨張係数は樹脂に比較して小さいため、電子素子形成時の加熱や、その後の冷却の温度変化により、支持体とポリイミド膜との積層体の界面に応力が発生する。支持体と支持体上に形成したポリイミド膜との界面の応力が残留していると、電子素子の形成プロセス等において高温に加熱した後、常温への冷却時にポリイミド膜が収縮すると、積層体の反りやガラス支持体の破損、フレキシブル基板(ポリイミド膜)のガラス支持体からの剥離等の問題が生じる場合がある。
 本発明のポリアミド酸溶液を用いて作製されるポリイミド膜は、耐熱性、透明性および低熱膨張性に加えて、ガラス支持体との積層体における残留応力を小さくできる。支持体とポリイミド膜との積層体の残留応力は、30MPa以下が好ましく、25MPa以下がより好ましく、20MPa以下がさらに好ましい。
 バッチタイプのデバイス作製プロセスにおいて、ポリイミド膜上に電子素子等を正確に形成または実装するために、支持体とポリイミド膜との密着性が高いことが好ましい。支持体上に密着積層されたポリイミド膜の支持体からの90℃ピール強度は、0.05N/cm以上が好ましく、0.1N/cm以上がより好ましい。一方で、実装後に支持体からポリイミド膜を剥離する際の作業性等の観点から、ピール強度は、0.25N/cm以下が好ましい。
 支持体からポリイミド膜を剥離する方法は特に限定されない。例えば、手で引き剥がしてもよく、駆動ロール、ロボット等の剥離装置を用いてもよい。支持体とポリイミド膜との密着性を低下させることにより剥離を行ってもよい。例えば、剥離層を設けた支持体上にポリイミド膜を形成してもよい。多数の溝を有する基板上に酸化シリコン膜を形成し、エッチング液を浸潤させることにより剥離を促進してもよい。レーザー光の照射より剥離を行ってもよい。
 レーザー照射により支持体からポリイミド膜を剥離する場合は、ポリイミド膜にレーザー光を吸収させる必要があるため、ポリイミド膜のカットオフ波長(透過率が0.1%以下となる波長)は、剥離に使用するレーザー光の波長よりも長波長であることが求められる。レーザー剥離には、波長308nmのXeClエキシマーレーザーが用いられることが多いため、ポリイミド膜のカットオフ波長は320nm以上が好ましく、330nm以上がより好ましい。一方、カットオフ波長が長波長であると、ポリイミド膜が黄色に着色する傾向があるため、カットオフ波長は390nm以下が好ましい。透明性(低黄色度合)とレーザー剥離の加工性とを両立する観点から、ポリイミド膜のカットオフ波長は、320~390nmが好ましく、330~380nmがより好ましい。
 ポリイミド膜の透明性は、JIS K7105-1981に従った全光線透過率およびヘイズで評価できる。ポリイミド膜の全光線透過率は、80%以上が好ましく、85%以上がより好ましい。ポリイミド膜のヘイズは、1.5%以下が好ましく、1.2%以下がより好ましく、1.0%以下がさらに好ましい。ディスプレイ等の用途においては、可視光の全波長領域で透過率が高いことが要求される。ポリイミド膜の黄色度(YI)は、15以下が好ましく、10以下がより好ましい。YIは、JIS K7373-2006に従い測定できる。このように透明性の高いポリイミド膜は、ガラス代替用途等の透明基板として使用できる。
 ポリイミド膜を基板とするフレキシブルデバイスとして有機ELディスプレイや有機EL照明が挙げられる。有機ELデバイスは、基板側から光を取り出すボトムエミッション方式と、基板の反対面から光を取り出すトップエミッション方式の2種類がある。可視光の透過率が高くYIが小さい透明ポリイミド膜は、ボトムエミッション方式の有機ELデバイスの基板材料としても適している。
 ボトムエミッション方式の有機ELデバイスでは、基板を通して光が出射されるため、基板材料には、透明性に加えて、視認性向上の観点から、光学的な等方性を有し、複屈折に由来する厚み方向のレタデーション(Rth)が小さいことが要求される場合がある。同様に、タッチパネル用基板にもRthが小さいことが要求される場合がある。具体的には、ポリイミド膜の厚さ10μmを基準として、Rthは300nm以下が好ましく、200nm以下がより好ましくは、100nm以下がさらに好ましく、50nm以下が特に好ましい。Rthは、厚み方向の複屈折(面内の平均屈折率と厚み方向の屈折率との差)と厚みとの積である。すなわち、ポリイミド膜の厚み方向の複屈折は、0.03以下が好ましく、0.02以下がより好ましく、0.01以下がさらに好ましく、0.005以下が特に好ましい。例えば、ポリアミド酸およびポリイミドのテトラカルボン酸二無水物成分としてBPAF等のフルオレン骨格を有するテトラカルボン酸二無水物の比率を高めることにより、ポリイミド膜の複屈折が小さくなる傾向がある。
 以下、実施例を示し具体的に説明するが、これらは説明のために記述されるものであり、本発明は下記の実施例に限定されるものではない。
[評価方法]
<透過率>
 紫外可視近赤外分光光度計(日本分光製「V-650」)を用いて、ポリイミド膜の200~800nmにおける光透過率を測定し、JIS K 7373記載の式から、黄色度(YI)を算出した。
<ガラス転移温度(Tg)>
 熱機械分析装置(日立ハイテクサイエンス製「TMA/SS7100」)を用い、幅3mm、長さ10mmの試料に98.0mNの荷重をかけ、10℃/minで20℃から450℃まで昇温し、温度と歪量(伸び)をプロットした(TMA曲線)。傾きが変化する前後のTMA曲線の接線から外挿した交点をガラス転移温度とした。
<ヘイズ>
 積分球式ヘイズメーター(村上色彩技術研究所製「HM-150N」)により、JIS K7136記載の方法により測定した。
<残留応力>
 あらかじめ反り量を計測していたコーニング社製の無アルカリガラス(厚み0.7mm、100mm×100mm)上に実施例および比較例で調製したポリアミド酸溶液をスピンコーターで塗布し、空気中80℃で30分、窒素雰囲気下380℃で60分加熱し、ガラス基板上に膜厚10μのポリイミド膜を備える積層体を得た。ポリイミド膜の吸水の影響を排除するために、積層体を120℃で10分乾燥させた後、窒素雰囲気下25℃における積層体の反り量を、薄膜応力測定装置(テンコール製「FLX-2320-S」)を用いて測定し、ガラス基板とポリイミド膜の間に生じた残留応力を評価した。
<レターデーション(Rth)>
 シンテック社製の位相差計「OPTIPRO」を用いて、波長590nmの光に対する厚み方向レターデーションRthを測定した。
<1%重量減少温度(Td1)>
 エスアイアイ・ナノテクノロジー製「TG/DTA/7200」を用い、窒素雰囲気下、20℃/minで25℃から500℃まで昇温し、重量が1%減少した際の温度をポリイミド膜のTd1とした。
[化合物および試薬類の略称]
 以下において、化合物および試薬類は下記の略称で記載している。
<溶媒>
 NMP:1-メチル-2-ピロリドン
 DGDE:ジエチレングリコールジエチルエーテル
<テトラカルボン酸二無水物>
 BPDA:3,3’-4,4’-ビフェニルテトラカルボン酸二無水物
 PMDA:ピロメリット酸二無水物
 BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物
 TMHQ:1,4-フェニレンビス(トリメリテート酸二無水物)
 6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
 ODPA:4,4’-オキシジフタル酸二無水物
<ジアミン>
 TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
 4,4’-DDS:4,4’-ジアミノジフェニルスルフォン
<シリコーンジアミン:いずれも信越化学工業製の両末端変性ジメチルシリコーン>
 X-22-1660B-3:一般式(3)におけるRがメチルおよびフェニルであり、フェニルの割合が25モル%、m=40の化合物;Mw=4400
 KF-8010:一般式(3)におけるRがメチル、m=9~10である化合物;Mw=860
 KF-8012:一般式(3)におけるRがメチル、m=57~65である化合物;Mw=4400~5000
 KF-8008:一般式(3)におけるRがメチル、m=145~159である化合物;Mw=11000-12000
<イミダゾール>
 DMI:1,2-ジメチルイミダゾール
[実施例1]
<ポリアミド酸溶液の調製>
 ステンレス製撹拌棒を備えた撹拌機および窒素導入管を装着した300mLのガラス製セパラブルフラスコに、NMP:40.00gを仕込み、TFMB:4.741gを添加して攪拌した。この溶液に、PMDA:1.695gを加え、10分以上攪拌後に、BPAF:3.563gを加え、室温で12時間攪拌した。この溶液(固形分濃度25重量%)に、NMPを加えて固形分濃度15重量%に希釈し、80℃のオイルバスで5分間加熱した後、DGDEで10重量%に希釈したKF-8012:2.0g(ジアミン(TFMB)とテトラカルボン酸二無水物(PMDAおよびBPAF)の合計100重量部に対して20重量部)をゆっくりと滴下した。30分攪拌した後、氷水で急冷して均一で透明なポリアミド酸溶液を得た。
<ポリイミド膜の形成>
 ポリアミド酸溶液をスピンコーターでガラス板上にて塗布し、空気中80℃で30分、窒素雰囲気下380℃で1時間加熱して、膜厚10~15μmのポリイミド膜を得た。
[実施例2]
 実施例1と同様にポリアミド酸溶液を調製し、DGDEで10重量%に希釈したDMIを0.36g(ジアミン、テトラカルボン酸二無水物およびシリコーンジアミンの合計100重量部に対して3重量部)添加した。この溶液を用いて、実施例1と同様に塗布および加熱を行い、ポリイミド膜を得た。
[実施例3]
 シリコーンジアミンとして、KF-8012:2.0gに代えて、KF-8008:2.0gを用いた。それ以外は実施例1と同様にして、ポリアミド酸溶液を調製し、ポリイミド膜を形成した。
[実施例4、6、9]
 PMDAとBPAFの割合を表1記載の割合に変更した。それ以外は実施例1と同様にして、ポリアミド酸溶液を調製し、ポリイミド膜を形成した。
[実施例5、7]
 PMDAとBPAFの割合を表1記載の割合に変更した。それ以外は実施例2と同様にして、イミダゾール類を含むポリアミド酸溶液を調製し、ポリイミド膜を形成した。
[実施例8~12、比較例1~10]
 ジアミンおよびテトラカルボン酸二無水物の種類および仕込み量、ならびにシリコーンジアミンの種類を、表1に示す通りに変更した。それ以外は実施例1と同様にして、ポリアミド酸溶液を調製し、ポリイミド膜を形成した。
 実施例および比較例におけるポリアミド酸の組成、およびポリイミド膜の特性の評価結果を表1に示す。表1におけるテトラカルボン酸二無水物の量(mol%)は、ジアミンの合計を100mol%とした値であり、シリコーンジアミンの量(phr)は、ジアミンとテトラカルボン酸の仕込み量の合計を100重量部とした値であり、1,2-ジメチルイミダゾール(DMI)の量は、ジアミン、テトラカルボン酸二無水物およびシリコーンジアミンの仕込み量の合計を100重量部とした値である。いずれの実施例および比較例のポリイミド膜もヘイズは1%未満であった。
Figure JPOXMLDOC01-appb-T000011
 表1に示すように、シロキサン構造単位の繰り返し単位数mが51以上の長鎖シロキサン構造を含むシリコーンジアミンを用いた実施例のポリイミド膜は、いずれもTd1が450℃以上、Tgが300℃以上であり、優れた耐熱性を示した。また、実施例のポリイミド膜とガラス板との積層体は、いずれも残留応力が30MPa以下であった。実施例1と実施例2との対比、実施例4と実施例5との対比、および実施例6と実施例7との対比から、ポリアミド酸溶液にイミダゾール類を添加することにより、ポリイミド膜の耐熱性が向上し、積層体の残留応力が低減する傾向が確認された。
 繰り返し単位数mが小さいシリコーンジアミンを用いた比較例のポリイミド膜は、いずれもTd1が450℃を下回っており、比較例4ではTgが著しく低下し、フィルムの透明性も悪化していた。これらの結果から、長鎖シロキサン構造を含むポリイミド膜は、透明性および耐熱性に優れ、フレキシブルデバイスの基板材料に適していることが分かる。

 

Claims (19)

  1.  下記一般式(1)で表される構造単位、および下記一般式(2)で表される構成単位を含むポリアミド酸: 
    Figure JPOXMLDOC01-appb-C000001
     複数のR1は、それぞれ独立に、水素原子、アルキル基、またはアリール基であり、
     複数のRは、それぞれ独立に、炭素数1~3のアルキル基、またはアリール基であり、
     Xは4価の有機基であり、
     複数のYは、それぞれ独立に、炭素数1~3のアルキレン基、またはアリーレン基であり、
     mは51~199の整数である。
  2.  前記一般式(2)において、Rがメチルであり、Yがプロピレン基である、請求項1に記載のポリアミド酸。
  3.  前記一般式(1)および(2)において、Xが、下記の式(A)および(B)で表される4価の有機基からなる群から選択される1種以上、ならびに下記の式(C)で表される4価の有機基を含む、請求項1または2に記載のポリアミド酸。
    Figure JPOXMLDOC01-appb-C000002
  4.  前記一般式(1)および(2)において、Xが、下記式(C)で表される4価の有機基を含み、Xの全量に対する下記式(C)で表される4価の有機基の量が、30mol%以上である、請求項1~3のいずれか1項に記載のポリアミド酸。
    Figure JPOXMLDOC01-appb-C000003
  5.  前記一般式(1)で表される構造単位を含み前記一般式(2)で表される構造単位を含まない第一セグメントと、前記一般式(2)で表される構造単位を含む第二セグメントとを有するブロック共重合体である、請求項1~4のいずれか1項に記載のポリアミド酸。
  6.  前記第一セグメントの両末端に前記第二セグメントが結合したABA型トリブロック共重合体である、請求項5に記載のポリアミド酸。
  7.  請求項1~6のいずれか1項に記載のポリアミド酸の製造方法であって、
     有機溶媒中でテトラカルボン酸二無水物とジアミンとを反応させる、ポリアミド酸の製造方法。
  8.  有機溶媒中でテトラカルボン酸二無水物と第一ジアミンとを反応させてポリアミド酸セグメントを形成した後、第二ジアミンを添加し、
     前記第一ジアミンが2,2’-ビス(トリフルオロメチル)ベンジジンを含み、前記第二ジアミンが下記一般式(3)で表されるシリコーンジアミンである、請求項7に記載のポリアミド酸の製造方法:
    Figure JPOXMLDOC01-appb-C000004
     ただし、一般式(3)におけるR、Y、およびmは、前記一般式(2)におけるR、Y、およびmと同一である。
  9.  前記テトラカルボン酸二無水物の総モル数が、前記第一ジアミンの総モル数の1.01倍以上、1.10倍未満である、請求項8に記載のポリアミド酸の製造方法。
  10.  請求項1~6のいずれか1項に記載のポリアミド酸と有機溶媒とを含有するポリアミド酸溶液。
  11.  請求項1~6のいずれか1項に記載のポリアミド酸の脱水環化物である、ポリイミド。
  12.  請求項11に記載のポリイミドを含むポリイミド膜。
  13.  1%重量減少温度が450℃以上である請求項12に記載のポリイミド膜。
  14.  ガラス転移温度が300℃以上である請求項12または13に記載のポリイミド膜。
  15.  支持体上に請求項12~14のいずれか1項に記載のポリイミド膜が設けられた積層体。
  16.  25℃における残留応力が25MPa以下である、請求項15に記載の積層体。
  17.  請求項10に記載のポリアミド酸溶液を支持体に塗布して、支持体上に膜状のポリアミド酸を形成し、加熱によりポリアミド酸をイミド化して、前記支持体上にポリイミド膜を形成する、積層体の製造方法。
  18.  請求項12~14のいずれか1項に記載のポリイミド膜と、前記ポリイミド膜上に形成された電子素子とを有するフレキシブルデバイス。
  19.  請求項17に記載の方法により積層体を形成し、前記積層体の前記ポリイミド膜上に電子素子を形成した後、前記支持体から前記ポリイミド膜を剥離する、フレキシブルデバイスの製造方法。

     
PCT/JP2019/010718 2018-03-30 2019-03-14 ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法 WO2019188380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509916A JP7292260B2 (ja) 2018-03-30 2019-03-14 ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
CN201980024265.6A CN111971327B (zh) 2018-03-30 2019-03-14 聚酰胺酸、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体、柔性装置及其制造方法
US17/037,012 US20210009760A1 (en) 2018-03-30 2020-09-29 Polyamic acid and method for producing same, polyamic acid solution, polyimide, polyimide film, laminate and method for producing same, and flexible device and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069414 2018-03-30
JP2018-069414 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,012 Continuation US20210009760A1 (en) 2018-03-30 2020-09-29 Polyamic acid and method for producing same, polyamic acid solution, polyimide, polyimide film, laminate and method for producing same, and flexible device and method for producing same

Publications (1)

Publication Number Publication Date
WO2019188380A1 true WO2019188380A1 (ja) 2019-10-03

Family

ID=68059996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010718 WO2019188380A1 (ja) 2018-03-30 2019-03-14 ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法

Country Status (5)

Country Link
US (1) US20210009760A1 (ja)
JP (1) JP7292260B2 (ja)
CN (1) CN111971327B (ja)
TW (1) TWI785224B (ja)
WO (1) WO2019188380A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118794A1 (ja) * 2020-12-03 2022-06-09 三井化学株式会社 ポリアミド酸およびそれを含むワニス、ポリアミド酸の製造方法、ポリイミドおよびそれを含むフィルム、ならびにディスプレイパネル基板
WO2022202769A1 (ja) * 2021-03-23 2022-09-29 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド基板および積層体ならびにそれらの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334446B2 (ja) 2019-04-01 2023-08-29 大日本印刷株式会社 フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
KR20220167506A (ko) 2021-06-14 2022-12-21 에스케이이노베이션 주식회사 커버윈도우용 폴리이미드 필름 및 이를 포함하는 디스플레이 장치
KR20220168256A (ko) 2021-06-16 2022-12-23 에스케이이노베이션 주식회사 커버윈도우용 폴리이미드 필름 형성용 조성물, 이의 제조방법 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
WO2015198970A1 (ja) * 2014-06-25 2015-12-30 旭化成イーマテリアルズ株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板
JP2019077863A (ja) * 2017-10-19 2019-05-23 日鉄ケミカル&マテリアル株式会社 ポリイミド前駆体及びポリイミド

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242876B2 (ja) * 2000-03-24 2013-07-24 ノバルティス アーゲー 架橋結合性または重合性プレポリマー
KR100905682B1 (ko) * 2001-09-26 2009-07-03 닛산 가가쿠 고교 가부시키 가이샤 포지티브형 감광성 폴리이미드 수지 조성물
KR101946092B1 (ko) 2011-09-29 2019-02-08 제이에스알 가부시끼가이샤 수지 조성물 및 그것을 이용한 막 형성 방법
JP5988403B2 (ja) 2012-12-21 2016-09-07 京セラ株式会社 ヒータ
KR101896272B1 (ko) * 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 수지 필름 및 그 제조 방법, 그리고, 적층체 및 그 제조 방법
WO2016159106A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ ポリイミド積層フィルム、ポリイミド積層フィルムの製造方法、熱可塑性ポリイミドの製造方法、およびフレキシブル金属張積層体の製造方法
CN105906813A (zh) * 2016-06-05 2016-08-31 吉林大学 一种规整嵌段共聚聚酰亚胺硅氧烷单层膜的制备方法
KR101787941B1 (ko) * 2017-01-06 2017-10-18 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용하는 폴리이미드 필름

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
WO2015198970A1 (ja) * 2014-06-25 2015-12-30 旭化成イーマテリアルズ株式会社 空隙を有するポリイミドフィルム及びその製造方法
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板
JP2019077863A (ja) * 2017-10-19 2019-05-23 日鉄ケミカル&マテリアル株式会社 ポリイミド前駆体及びポリイミド

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118794A1 (ja) * 2020-12-03 2022-06-09 三井化学株式会社 ポリアミド酸およびそれを含むワニス、ポリアミド酸の製造方法、ポリイミドおよびそれを含むフィルム、ならびにディスプレイパネル基板
WO2022202769A1 (ja) * 2021-03-23 2022-09-29 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド基板および積層体ならびにそれらの製造方法

Also Published As

Publication number Publication date
TW201942202A (zh) 2019-11-01
US20210009760A1 (en) 2021-01-14
CN111971327A (zh) 2020-11-20
CN111971327B (zh) 2023-03-21
TWI785224B (zh) 2022-12-01
JPWO2019188380A1 (ja) 2021-04-01
JP7292260B2 (ja) 2023-06-16

Similar Documents

Publication Publication Date Title
CN108473677B (zh) 粘接力提高了的聚酰胺酸组合物及包含其的聚酰亚胺膜
CN104854165B (zh) 树脂前体和含有它的树脂组合物、树脂薄膜及其制造方法、以及层压体及其制造方法
JP7292260B2 (ja) ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
JP5650458B2 (ja) 積層体の製造方法、及びフレキシブルデバイスの製造方法
JP7157859B2 (ja) 電子デバイスの製造方法
JP7126311B2 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
WO2020189759A1 (ja) ポリアミド酸組成物およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
JP6687442B2 (ja) ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用
JP7349253B2 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法。
KR102040355B1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
JP2022044020A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
WO2022202769A1 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド基板および積層体ならびにそれらの製造方法
JP2021178881A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
KR102040357B1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2023063202A1 (ja) ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
JP2022145217A (ja) ポリアミド酸組成物、ポリイミド、その積層体、フレキシブルデバイス、および積層体の製造方法。
WO2023195525A1 (ja) フィルムおよびその製造方法、ならびに画像表示装置
JP2023038407A (ja) ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびに積層体の製造方法
JP2024014746A (ja) ポリアミック酸樹脂及びこれを用いた透明なポリイミドフィルム
JP2012041529A (ja) ポリイミド前駆体、その製造方法、及びポリイミド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509916

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776724

Country of ref document: EP

Kind code of ref document: A1