WO2011111612A1 - 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体 - Google Patents

微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体 Download PDF

Info

Publication number
WO2011111612A1
WO2011111612A1 PCT/JP2011/054988 JP2011054988W WO2011111612A1 WO 2011111612 A1 WO2011111612 A1 WO 2011111612A1 JP 2011054988 W JP2011054988 W JP 2011054988W WO 2011111612 A1 WO2011111612 A1 WO 2011111612A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine cellulose
cellulose fiber
fiber dispersion
water
dispersion
Prior art date
Application number
PCT/JP2011/054988
Other languages
English (en)
French (fr)
Inventor
明子 佐伯
友美子 大森
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44563416&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011111612(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020127025404A priority Critical patent/KR101795824B1/ko
Priority to JP2012504426A priority patent/JP5765331B2/ja
Priority to CN201180012862.0A priority patent/CN102791789B/zh
Priority to US13/583,126 priority patent/US9534091B2/en
Priority to EP11753271.3A priority patent/EP2546297B1/en
Publication of WO2011111612A1 publication Critical patent/WO2011111612A1/ja
Priority to US15/342,510 priority patent/US9850352B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • C09D101/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a technique relating to fine cellulose fibers that can be used as a functional film substrate, a coating agent, or various additives, and a dispersion containing cellulose fine fibers, a method for producing the same, and a dispersion containing fine cellulose fibers.
  • the present invention relates to a cellulose film and a laminate using the liquid.
  • Patent Document 1 describes a method of defibrating (miniaturizing) a cellulose suspension by ejecting it from a high-pressure atmosphere of 100 MPa or more and reducing the pressure.
  • Patent Document 2 discloses a fine cellulose fiber in which cellulose in which a hydroxyl group is partially oxidized to a carboxyl group using a TEMPO (2,2,6,6-tetramethylpiperidinooxy radical) catalyst is dispersed in a medium. Is described. According to this method, it is possible to relatively easily obtain fine cellulose fibers having a cellulose I-type crystal structure by utilizing the electrical repulsion action of a negatively charged carboxyl group.
  • TEMPO 2,2,6,6-tetramethylpiperidinooxy radical
  • Patent Document 3 discloses a finely modified cellulose obtained by dispersing cellulose in which a hydroxyl group is partially oxidized to a carboxyl group using a TEMPO catalyst to obtain fine cellulose fibers and then treating with an organic onium compound. A method is described in which fibers are added to an epoxy resin to obtain an epoxy resin composite.
  • Patent Document 4 prepares a gas barrier material containing fine cellulose fibers having an average fiber diameter of 200 nm or less by dispersing oxidized cellulose obtained by TEMPO oxidation treatment in water. A method is described in which a gas barrier composite molded body is obtained by coating on a substrate and drying.
  • Patent Document 1 describes that fine cellulose fibers having an average fiber diameter of 4 to 200 nm can be obtained.
  • defibration requires a plurality of treatments at a very high pressure, and the apparatus that can be used is limited. It is done.
  • the use of the obtained fine cellulose fiber is only described about the compounding with the synthetic polymer, and the fine cellulose fiber alone is not shown.
  • the carboxyl group has a metal ion such as sodium ion as a counter ion.
  • a metal ion such as sodium ion as a counter ion.
  • fine cellulose fibers that are easily dispersed in a resin are obtained by ion exchange of metal ions present as counter ions of carboxyl groups to organic onium by organic onium treatment.
  • metal ions present as counter ions of carboxyl groups
  • the fine cellulose fibers become aggregates, and the effect of dispersing and refining cellulose in the previous step of the organic onium treatment is lost.
  • membrane formed using the aqueous dispersion liquid of the fine cellulose fiber like patent document 4 has low adhesiveness to base materials, such as PET film, for the rigid shape and low reactivity of a fine cellulose fiber
  • base materials such as PET film
  • delamination between the substrate and the undercoat may occur. It sometimes occurred. This is because the materials such as paper and polylactic acid are natural products, so they are more unstable than the synthetic resins derived from petroleum, such as PET, due to chemical instability, low molecular weight bleed, crystallization, and surface degradation.
  • This invention is made
  • Another object of the present invention is to provide a cellulose film and a laminate obtained from fine cellulose fibers having improved water resistance. Further, as an undercoat of a film substrate, particularly a substrate made of a naturally derived material such as polylactic acid, a fine cellulose fiber dispersion forming a film with improved adhesion to the substrate and a laminate using the same The purpose is to provide.
  • the invention described in claim 1 of the present invention is a fine cellulose fiber dispersion characterized by containing at least fine cellulose fibers and ammonia or organic alkali.
  • the invention described in claim 2 is the fine cellulose according to claim 1, wherein the organic alkali is either an amine or an organic onium compound having a hydroxide ion as a counter ion. It is a fiber dispersion.
  • the invention described in claim 3 is the fine cellulose fiber dispersion liquid according to claim 1, wherein the organic alkali is a quaternary ammonium compound having a hydroxide ion as a counter ion. .
  • the invention described in claim 4 is the fine cellulose fiber obtained by adjusting cellulose to pH 4 or more and pH 12 or less using aqueous ammonia or organic alkali in an aqueous medium and dispersing the cellulose. It is a fine cellulose fiber dispersion liquid of Claim 1 characterized by the above-mentioned.
  • the aqueous medium is water or a mixture of water and alcohol, and the alcohol is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2
  • the invention described in claim 6 is the fine cellulose fiber dispersion according to claim 1, further comprising a water-soluble organic solvent.
  • the water-soluble organic solvent is methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,4-dioxane, tetrahydrofuran, N, N-dimethylformamide, N, N—
  • the invention described in claim 8 is characterized in that the amount of the water-soluble organic solvent is 0.1% by weight or more based on the whole fine cellulose fiber dispersion. It is a cellulose fiber dispersion.
  • the invention described in claim 9 is the fine cellulose fiber dispersion according to claim 1, further comprising an additive composed of a compound having a reactive functional group.
  • the fine cellulose fiber is an oxidized cellulose having a carboxyl group introduced by an oxidation reaction, and the carboxyl group content is 0.1 mmol / g or more and 2 mmol / g or less.
  • the invention described in claim 11 is the fine cellulose fiber dispersion according to claim 10, wherein the number average fiber diameter of the fine cellulose fibers is 0.003 ⁇ m or more and 0.050 ⁇ m or less. is there.
  • the invention described in claim 12 is a cellulose film formed by drying the fine cellulose fiber dispersion liquid described in any one of claims 1-11.
  • the invention described in claim 13 is characterized in that the fine cellulose fiber dispersion according to any one of claims 1 to 11 is applied to at least one surface of a substrate to form a film. Is a laminate.
  • the invention described in claim 14 is the laminate according to claim 13, wherein the coating film is an undercoat layer.
  • the oxidation step of oxidizing cellulose to obtain oxidized cellulose, and the oxidized cellulose obtained in the oxidation step are adjusted to pH 4 or more and pH 12 or less using ammonia water or organic alkali.
  • a dispersion step of obtaining a fine cellulose fiber dispersion by performing a dispersion treatment in an adjusted aqueous medium is adjusted to pH 4 or more and pH 12 or less using ammonia water or organic alkali.
  • the invention described in claim 16 is characterized in that the organic alkali is either an amine or an organic onium compound having a hydroxide ion as a counter ion. It is a manufacturing method of a fiber dispersion liquid.
  • the organic alkali is a quaternary ammonium compound having a hydroxide ion as a counter ion.
  • Production of a fine cellulose fiber dispersion liquid according to claim 15 Is the method.
  • the aqueous medium is water or a mixture of water and alcohol, and the alcohol is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2
  • the aqueous medium contains a water-soluble organic solvent
  • the water-soluble organic solvent is methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,4-dioxane, tetrahydrofuran.
  • the fine cellulose fiber dispersion according to claim 15, which is one or more organic solvents selected from N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, or ethyl acetate. It is a manufacturing method of a liquid.
  • the invention described in claim 20 includes a preparation step of adding a water-soluble organic solvent to the obtained fine cellulose fiber dispersion after the dispersion step, wherein the water-soluble organic solvent is methanol, ethanol, 2 -One or more organic solvents selected from propanol, acetone, methyl ethyl ketone, 1,4-dioxane, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile or ethyl acetate It is a manufacturing method of the fine cellulose fiber dispersion liquid of Claim 15 characterized by these.
  • the present invention it is possible to obtain a uniform fine cellulose fiber dispersion by effectively using cellulose, which is a natural resource that is biodegradable and has a small environmental load in disposal.
  • cellulose which is a natural resource that is biodegradable and has a small environmental load in disposal.
  • a cellulose film having high heat resistance, low linear expansion coefficient, high elastic modulus, high strength and high transparency and improved water resistance can be produced. This can be used for packaging materials (particularly gas barrier materials), structures, display members, and the like.
  • the inorganic alkali used conventionally is not used in the dispersion process, it is also suitable for electronic member applications that do not like mixing of metal ions such as sodium.
  • a fine cellulose fiber dispersion for forming a film having improved adhesion to the substrate as an undercoat of a film substrate, particularly a substrate made of a naturally derived material such as polylactic acid.
  • various functional material films such as a gas barrier layer and a water vapor barrier layer can be formed on a substrate with good coatability and adhesiveness, and a laminate comprising the functional material film can be provided.
  • the fine cellulose fiber dispersion of this embodiment is produced by, for example, the following method.
  • a carboxyl group is introduced into cellulose as a raw material.
  • material naturally-derived cellulose having a crystal structure of cellulose I can be used.
  • naturally occurring cellulose as a raw material include wood pulp, non-wood pulp, cotton cellulose, bacterial cellulose, and squirt cellulose.
  • the method for oxidizing cellulose is not particularly limited as long as it is a method for introducing a carboxyl group into cellulose as a raw material, and is appropriately selected according to the purpose.
  • it can be appropriately selected from the generally known methods of oxidizing from hydroxyl group to carboxylic acid via aldehyde.
  • a method using a nitroxy radical derivative as a catalyst and using a hypohalite or a halite as a co-oxidant is preferable.
  • an aqueous medium containing sodium hypochlorite and sodium bromide using TEMPO (2,2,6,6-tetramethylpiperidinooxy radical) as a catalyst and under alkaline conditions preferably in the range of pH 9 to pH 11
  • the TEMPO oxidation method carried out in the method is preferable from the viewpoints of availability of reagents, cost, reaction stability, selectivity to the microfibril surface, and efficient introduction of carboxyl groups.
  • alkali is consumed as the reaction proceeds, so it is preferable to add an aqueous alkaline solution as needed to keep the pH in the system constant.
  • TEMPO oxidation the 6-position hydroxyl group of the pyranose ring (glucose) of the cellulose molecule is selectively oxidized, and a carboxyl group can be introduced via an aldehyde group.
  • oxidation occurs only on the surface of crystalline microfibrils, which is a structural unit of cellulose, and no oxidation occurs inside the crystal. For this reason, it is possible to obtain fine cellulose fibers while maintaining the crystal structure of cellulose I, and the fine cellulose fibers to be produced have characteristics such as high heat resistance, low linear expansion coefficient, high elastic modulus, high strength, and gas barrier properties.
  • the reaction temperature is preferably 0 ° C. or more and 60 ° C. or less, and a sufficient amount of carboxyl groups can be introduced to form fine fibers and exhibit dispersibility in about 1 to 12 hours.
  • TEMPOs and sodium bromide may be used in an amount as a catalyst during the reaction, and can also be recovered after the reaction.
  • sodium chloride is the only theoretical by-product, and the waste liquid can be easily treated with a low environmental burden.
  • the content of the carboxyl group can be adjusted by appropriately setting the conditions for TEMPO oxidation.
  • Cellulose fibers are dispersed in an aqueous medium due to the electric repulsive force of the carboxyl group. Therefore, if the content of the carboxyl group is too small, the cellulose fiber cannot be stably dispersed in the aqueous medium.
  • the coating property is poor, and the gas barrier performance is low.
  • the amount is too large, the affinity for water increases and water resistance decreases, or crystallinity decreases, strength decreases, and gas barrier performance also decreases.
  • the carboxyl group content is preferably 0.1 mmol / g or more and 3.5 mmol / g or less, more preferably 0.1 mmol / g or more and 2 mmol / g or less, and still more preferably 0.8. It is 6 mmol / g or more and 2 mmol / g or less.
  • an aldehyde group that is an intermediate of the oxidation reaction is generated, and the aldehyde group remains in the final product. If the content of the aldehyde group is too large, dispersibility in an aqueous medium is lowered. Therefore, the content of the aldehyde group is preferably 0.01 mmol / g or more and 0.3 mmol / g or less.
  • the oxidation reaction is stopped by adding an excessive amount of other alcohol and completely consuming the co-oxidant in the system.
  • the alcohol to be added it is desirable to use a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction.
  • ethanol is preferable in consideration of safety and by-products generated by oxidation.
  • the produced oxidized cellulose can be recovered from the reaction solution by filtration.
  • the carboxyl group forms a salt using a metal ion derived from a co-oxidant or an inorganic alkali for pH adjustment as a counter ion.
  • a recovery method a method in which the carboxyl group is filtered while forming a salt, a method in which an acid is added to the reaction solution and the pH is adjusted to 3 or less to filter it out as a carboxylic acid, and an organic solvent is added to cause aggregation.
  • the metal ion content contained in the oxidized cellulose can be examined by various analysis methods. For example, it can be simply examined by elemental analysis using an EPMA method or an X-ray fluorescence analysis method using an electron beam microanalyzer. be able to.
  • the content of metal ions is 5 wt% or more, whereas when recovered by the method of filtering after carboxylic acid, the metal ion content is 1 wt% or less It becomes.
  • the recovered oxidized cellulose can be purified by repeated washing, and residues such as catalyst, salt and ions can be removed.
  • water is preferable as the cleaning liquid, and further, after adjusting and cleaning to acidic conditions of pH 3 or lower, more preferably pH 1.8 or lower using hydrochloric acid or the like, the metal ions are analyzed by the above analysis method. It can be made below the detection limit amount in. Alternatively, cleaning under acidic conditions may be performed a plurality of times in order to further reduce the amount of remaining metal ions.
  • salt or the like remains in the cellulose, it is difficult to disperse in the dispersion step described later.
  • the process of preparing a fine cellulose fiber dispersion using the oxidized cellulose obtained in the above process will be described.
  • the oxidized cellulose is immersed in an aqueous medium that is a dispersion medium.
  • the aqueous medium is preferably water or a mixed liquid of water and alcohol.
  • the alcohol used include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol.
  • One kind or two or more kinds of organic solvents may be mixed.
  • the amount of alcohol added at this time is not particularly limited, but is preferably 1% or more and 60% or less with respect to water. More preferably, they are 1% or more and 50% or less, More preferably, they are 1% or more and 20% or less.
  • paintability at the time of using a dispersion liquid as a coating agent or an additive can be improved, and a drying energy can be made less than water simple substance.
  • the pH of the immersed liquid is, for example, 4 or less. Oxidized cellulose is insoluble in an aqueous medium and becomes a non-uniform suspension when immersed. It is also possible to prepare a fine cellulose fiber dispersion using only alcohol as a dispersion medium without containing water.
  • a water-soluble organic solvent that can be uniformly mixed with water may be contained.
  • the water-soluble organic solvent used here include alcohols such as methanol, ethanol and 2-propanol (IPA) mentioned above as alcohols, ketones such as acetone and methyl ethyl ketone (MEK), and 1,4-dioxane.
  • Ethers such as tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetonitrile, ethyl acetate and the like. Any one of these may be used alone, or two or more mixed solvents may be used.
  • THF tetrahydrofuran
  • DMF N-dimethylformamide
  • DMAc N-dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetonitrile ethyl acetate and the like. Any one of these may be used alone, or two or more mixed solvents may be used.
  • the blending ratio is appropriately determined in consideration of the type of the water-soluble organic solvent and the affinity between water and the water-soluble organic solvent. .
  • the pH of the suspension is adjusted to a range of pH 4 to pH 12 using alkali.
  • the pH is made alkaline between pH 7 and pH 12 to form a carboxylate.
  • alkali in order to avoid that a metal ion is accompanied with a fine cellulose fiber dispersion, pH is adjusted using ammonia water or an organic alkali.
  • the amount of alkali to be added may be equal to or less than the carboxyl group content in terms of molar ratio, and can be dispersed even at 2/3 or less. A large amount of alkali to be added is not preferable because it causes coloring of the dispersion.
  • Organic alkalis include various aliphatic amines, aromatic amines, amines such as diamines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, benzyltrimethylammonium hydroxide, 2-hydroxyhydroxide
  • An ammonium hydroxide compound represented by NR 4 OH R is an alkyl group, a benzyl group, a phenyl group, or a hydroxyalkyl group, and four Rs may be the same or different), such as ethyltrimethylammonium;
  • Examples thereof include organic onium compounds having a hydroxide ion such as tetraethylphosphonium hydroxide as a counter ion, such as a phosphonium hydroxide compound, an oxonium hydroxide compound, and a sulfonium hydroxide compound.
  • the fiber can be refined by a dispersion treatment equal to or less than that when an inorganic alkali is used, regardless of the type of alkali.
  • the bulk has the effect of promoting dispersion due to repulsion of cellulose microfibrils.
  • the fine cellulose fiber obtained using the organic alkali has an effect of improving the water resistance of the cellulose film and the cellulose film described later due to the hydrophobicity of the organic alkali.
  • an organic alkali when used as an aqueous medium, the affinity for alcohol is high, so that a uniformly dispersed fine cellulose fiber dispersion can be prepared. Furthermore, when an organic alkali is used, even if a water-soluble organic solvent described later is added to a fine cellulose fiber dispersion that has been dispersed in an aqueous medium, the dispersed fine cellulose fibers are agglomerated, and the fine cellulose fiber dispersion is agglomerated. This is effective because it does not cause white turbidity or unevenness.
  • the dispersion treatment can be performed with a lower energy and in a shorter time than when an inorganic alkali having a metal ion as a counter ion is used as the alkali.
  • the transparency of the fine cellulose fiber dispersion finally reached can be improved. This is considered to be because the use of organic alkali has a larger effect of separating fine cellulose fibers in the dispersion medium because the ionic diameter of the counter ion is larger.
  • the fine cellulose fiber dispersion usually becomes a gel and the viscosity increases as the concentration is increased, a large amount of energy is required in the dispersion treatment, which makes the dispersion treatment difficult.
  • an organic alkali compared to the case of using an inorganic alkali, the viscosity and thixotropy of the dispersion liquid can be reduced, and the ease of dispersion treatment and the ease of application in the coating process described later are reduced. This is advantageous.
  • the fine cellulose fiber dispersion becomes a gel, and the viscosity increases as the concentration is increased. Therefore, a large amount of energy is required in the dispersion treatment, and the dispersion treatment becomes difficult. Dispersion treatment becomes easy because the viscosity of the resin decreases.
  • the combination of the organic alkali and a water-soluble organic solvent described later can adjust the viscosity characteristics of the dispersion and can also improve the coatability.
  • the fine cellulose fiber dispersion thus prepared contains fine cellulose fibers having a carboxyl group and organic alkali-derived amines or organic onium ions.
  • fine cellulose fibers having a carboxyl group with amines or organic onium ions as counter ions can be obtained.
  • the organic onium ion include onium ions such as quaternary ammonium ions, quaternary phosphonium ions, tertiary oxonium ions, and tertiary sulfonium ions, which are the above-mentioned organic alkali cations.
  • the phosphonium ion is a counter ion, it is effective in improving the heat resistance, and the compatibility with the resin by the onium ion species can be controlled.
  • an inorganic alkali such as sodium hydroxide
  • a fine cellulose fiber dispersion with an inorganic alkali containing metal ions when a water-soluble organic solvent is added, the dispersed fine cellulose fibers are aggregated, causing aggregation of the fine cellulose fiber dispersion to cause turbidity and non-uniformity. .
  • a water-soluble organic solvent described later is added to adjust the fine cellulose fiber dispersion to a desired viscosity or solid content concentration. If the dispersion is used as a coating agent, the coating property is lowered, and the mechanical strength, transparency, and barrier properties of the formed film or laminated material are also lowered.
  • various known dispersion treatments are possible.
  • homomixer processing mixer processing with rotary blade, high pressure homogenizer processing, ultra high pressure homogenizer processing, ultrasonic homogenizer processing, nanogenizer processing, disc type refiner processing, conical type refiner processing, double disc type refiner processing, grinder processing, ball mill processing And underwater facing processing.
  • the mixer treatment with a rotary blade, the high-pressure homogenizer treatment, the ultra-high pressure homogenizer treatment, and the ultrasonic homogenizer treatment are preferable from the viewpoint of miniaturization efficiency.
  • the suspension becomes a visually transparent dispersion.
  • Oxidized cellulose is refined by the dispersion treatment to form fine cellulose fibers.
  • the fine cellulose fibers after the dispersion treatment preferably have a number average fiber diameter (width in the minor axis direction of the fibers) of 0.001 ⁇ m or more and 0.200 ⁇ m or less, more preferably 0.001 ⁇ m or more and 0.050 ⁇ m or less.
  • the fiber diameter of the fine cellulose fiber can be confirmed by a scanning electron microscope (SEM) or an atomic force microscope (AFM).
  • the coating properties of the dispersion containing fine cellulose fibers will be reduced.
  • the film is formed, there is a problem that the transparency, smoothness and gas barrier property of the film are remarkably lowered. Furthermore, it is difficult to uniformly disperse when mixed with other materials as an additive.
  • the transmittance of the obtained fine cellulose fiber dispersion is preferably 90% or more at a solid content concentration of 0.5%.
  • the transmittance of the obtained fine cellulose fiber dispersion is 90% or more, the cellulose film or laminated material formed using the fine cellulose fiber dispersion can have sufficient transparency.
  • the transmittance of the resulting fine cellulose fiber dispersion is more preferably 97% or more at a solid content concentration of 0.5%.
  • a water-soluble organic solvent may be further added to the fine cellulose fiber dispersion obtained by the dispersion treatment.
  • the water-soluble organic solvent added to the fine cellulose fiber dispersion may be one that is soluble in water. Specifically, methanol, ethanol, or 2 mentioned as the water-soluble organic solvent contained in the aqueous medium in the above-described dispersion step.
  • Alcohols such as propanol, ketones such as acetone and methyl ethyl ketone (MEK), ethers such as 1,4-dioxane and tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N, N-dimethylacetamide ( DMAc), dimethyl sulfoxide (DMSO), acetonitrile, ethyl acetate and the like.
  • THF 1,4-dioxane and tetrahydrofuran
  • DMF N-dimethylformamide
  • DMAc N-dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetonitrile ethyl acetate and the like.
  • the amount of the water-soluble organic solvent to be added depends on the type of the water-soluble organic solvent to be used, but the lower limit is preferably 0.1% by weight or more and the upper limit is approximately 60% by weight with respect to the whole fine cellulose fiber dispersion. The following is preferable. However, among water-soluble organic solvents, for water-soluble organic solvents having a relatively high affinity with water such as alcohols and acetone, the upper limit is set to about 99.9% by weight or less as necessary. . On the other hand, for a water-soluble organic solvent having a relatively low affinity with water, for example, the upper limit is set to about 50% by weight or less as necessary.
  • the amount of the water-soluble organic solvent to be added is less than 0.1% by weight, it is insufficient in terms of enhancing the solubility of the resin, improving the drying efficiency described later, and improving the coating property of the fine cellulose fiber dispersion. is there.
  • the amount of the water-soluble organic solvent to be added is preferably 10% by weight or more, more preferably 30% by weight or more, the effect of increasing the solubility of the resin, the improvement of the drying efficiency described later, and the fine cellulose fiber dispersion liquid A sufficient effect can be obtained in terms of improvement in coatability.
  • the blending ratio is determined using the solid content and viscosity of the fine cellulose fiber dispersion, and the fine cellulose fiber dispersion. It is appropriately determined in consideration of the characteristics required for the formed film and laminated material.
  • the water-soluble organic solvent may be used as a dispersion medium of oxidized cellulose, that is, an aqueous medium in the dispersion step, and is not used as an aqueous medium but is added to the fine cellulose fiber dispersion obtained in the dispersion step. It may be used as a solvent.
  • oxidized cellulose suspension is dispersed to prepare a fine cellulose fiber dispersion, and then the obtained fine cellulose fiber dispersion is dissolved in a water-soluble organic material.
  • Examples thereof include a method of adding a solvent, and (2) a method of dispersing a oxidized cellulose suspension using a mixed solvent of water and a water-soluble organic solvent as an aqueous medium to prepare a fine cellulose fiber dispersion.
  • the same water-soluble organic solvent or other water-soluble organic solvent used as the aqueous medium may be added to the obtained fine cellulose fiber dispersion.
  • the methods (1) and (2) are examples of the embodiment of the present invention, and the embodiment of the present invention is not limited to this.
  • the surface tension of the fine cellulose fiber dispersion can be lowered and the wettability with respect to the substrate can be improved.
  • the water-soluble organic solvent it is preferable to use a solvent having a high substrate solubility.
  • the surface of the base material is slightly eroded after coating to improve adhesion, but methanol, ethanol, 2-propanol (IPA) and the like having low solubility are preferable, and acetone , Methyl ethyl ketone (MEK), tetrahydrofuran (THF), ethyl acetate and the like are more preferable.
  • the adhesion mechanism it is considered that the organic solvent erodes the surface of the base material, and the coating solution of the fine cellulose fiber dispersion is infiltrated there.
  • the fine cellulose fiber has high crystallinity and a small linear expansion coefficient, it has an effect of suppressing the thermal shrinkage of the base material when formed as a coating on the base material.
  • the laminate described later is configured, if there is a difference in linear expansion coefficient between the base material and the functional material, there is a problem of causing interfacial delamination between layers when heated during drying or molding.
  • By forming a coating film containing fine cellulose fibers it is possible to suppress the shrinkage of the base material and to prevent peeling from the base material as a result.
  • a compound having a reactive functional group such as amino group, epoxy group, hydroxyl group, carbodiimide group, polyethyleneimine, isocyanate, alkoxy group, silanol group, oxazoline group as an additive is dispersed in fine cellulose fiber. It may be added to the liquid.
  • These additives react with hydroxyl groups, carboxyl groups, and aldehyde groups in the oxidized cellulose, and are effective in improving the performance of the coating, particularly film strength, water resistance, moisture resistance, or adhesion to the substrate.
  • the compound having a silanol group include silane coupling agents, alkoxysilanes, and hydrolysates thereof.
  • the silane coupling agent is a silane compound having at least two hydrolyzable groups bonded to a silicon atom.
  • the hydrolyzable group is a group that can be converted into a hydroxyl group by hydrolysis. When this hydrolysis occurs, silanol groups (Si—OH) are generated in the silane coupling agent.
  • Examples of the hydrolyzable group include an alkoxy group, an acetoxy group, and a chlorine atom, and among these, an alkoxy group is preferable. That is, as the silane coupling agent, alkoxysilane is preferable.
  • the alkyl group in the alkoxy group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably a methyl group or an ethyl group, and particularly preferably an ethyl group.
  • the silane coupling agent preferably further has a reactive functional group.
  • the reactive functional group functional groups present on the surface of the cellulose nanofiber or on the substrate surface from those generally used as the functional group of an organic group bonded to the Si atom by the silane coupling agent Those capable of forming a chemical bond (covalent bond) by reacting with (carboxy group, hydroxyl group, etc.) or those capable of interacting (hydrogen bonding) can be appropriately selected.
  • Specific examples include vinyl group, epoxy group, methacryloxy group, acryloxy group, amino group, ureido group, mercapto group, chlorine atom, isocyanate group and the like.
  • an epoxy group, a methacryloxy group, an acryloxy group, and an amino group are preferable, and an amino group is particularly preferable.
  • these reactive compounds especially compounds having alkoxy groups and silanol groups, to improve the performance of the coating, especially the effect of improving the film strength, water resistance, moisture resistance, or adhesion to the substrate, how uniform It is important to mix them.
  • the fine cellulose fiber dispersion of the present invention has a low viscosity, can be mixed with alcohol, has no metal ions such as sodium, and can suppress these reactive agglomerations and heterogeneous reactions. Therefore, it is preferable.
  • an inorganic layered compound may be added and used as an additive.
  • the inorganic layered compound refers to a crystalline inorganic compound having a layered structure, and examples thereof include clay minerals represented by kaolinite group, smectite group, mica group and the like. As long as it is an inorganic layered compound, its kind, synthesis or natural origin, production area, particle size, aspect ratio, etc. can be appropriately selected according to the required characteristics, and are not particularly limited.
  • examples of the smectite group inorganic layered compound include montmorillonite, hectorite, saponite and the like. I can give you.
  • the addition of the inorganic layered compound is particularly effective for improving gas barrier properties.
  • the obtained fine cellulose fiber can be mixed with a resin such as an epoxy resin, a polyester resin, an acrylic resin, a urethane resin, a polyolefin resin, a polyimide resin, or a polyamide resin to form a composite composition. Furthermore, a uniform and transparent composite material can be formed using the composite composition.
  • the composite composition is effective in improving the mechanical strength, lowering the linear expansion coefficient, and increasing the elastic modulus of the obtained composite material. In particular, when a composite composition is formed using the aqueous resin, a more uniform composition is obtained, the fiber dispersibility in the molded product is high, and the above effects are also high.
  • the drying energy is kept low, the dispersibility and stability of the emulsion are high, re-aggregation and precipitation do not occur, and various resins. Can be combined.
  • the composite composition may be a silane coupling agent, a leveling agent, an antifoaming agent, inorganic particles, organic particles, a lubricant, an antistatic agent, an ultraviolet absorber, Various additives such as pigments, dyes, light stabilizers, antioxidants, plasticizers, flame retardants, dispersants, foaming agents and fillers may be included.
  • the composite material formed using the composite composition examples include paint, ink, a transparent substrate, a film substrate, a molded body, a container, a casing, and an electronic member.
  • a composite material formed using the composite composition it can be used as a transparent substrate from the viewpoint of improving mechanical strength, lowering the linear expansion coefficient, and increasing the elastic modulus by using the composite composition. preferable.
  • the fine cellulose fiber dispersion of the present invention can be uniformly dispersed and compounded without causing aggregation or precipitation even when added to a solvent-free or solvent-free resin in addition to an aqueous resin.
  • the fine cellulose fiber dispersion of the present invention can be used as a material for forming a self-supporting film of a cellulose film by a method such as casting or forming a film on a substrate by coating and extrusion, followed by drying and peeling. Is possible. Since the fine cellulose fiber dispersion of the present invention uses an organic alkali, the viscosity of the fine cellulose fiber dispersion can be lowered and the solid content concentration can be increased to 2% or more. Thereby, since a high concentration fine cellulose fiber dispersion liquid can be used, a thick film base material can also be formed easily.
  • the fine cellulose fiber dispersion contains the above-mentioned mixed solvent of water and a water-soluble organic solvent in terms of reducing the drying energy.
  • the water-soluble organic solvent used at this time is preferably a low molecular weight alcohol such as methanol, ethanol, 1-propanol or 2-propanol, or a ketone such as acetone or methyl ethyl ketone, particularly from the viewpoint of cost and boiling point.
  • the formed cellulose film can be expected to be applied to insulating films, electrolyte films, and display members of fuel cells.
  • the fine cellulose fiber dispersion contains a mixed solvent of water and alcohol
  • the dispersion medium does not remain in the coating film after drying, and a dense film can be formed, thereby improving the mechanical strength and water resistance of the film. be able to.
  • the fine cellulose fiber dispersion is, for example, a gravure coating method, a gravure reverse coating method, a roll coating method, a reverse roll coating method, a micro gravure coating method, a comma coating method, an air knife coating method, a bar coating method, a Mayer bar coating method. It can be coated on a substrate by a known coating method such as a dip coating method, a die coating method, a spray coating method, a slit coating method, or a screen printing method to form a laminate.
  • a base material It does not specifically limit as a base material, It can select and use suitably according to a use from the various sheet-like base materials (a film-like thing is included) generally used.
  • a base material include biodegradable plastics such as paper, paperboard, polylactic acid, and polybutyl succinate, polyolefin resins (polyethylene, polypropylene, etc.), polyester resins (polyethylene terephthalate, polybutylene terephthalate). Polyethylene naphthalate, etc.), polyamide resins (nylon-6, nylon-66, etc.), polyvinyl chloride resins, polyimide resins, copolymers of any two or more of these monomers Is mentioned.
  • the base material may contain known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant.
  • an antistatic agent such as an ultraviolet absorber, a plasticizer, a lubricant, and a colorant.
  • a base material made of biomass-derived materials such as biodegradable plastics such as paper, polylactic acid and polybutyl succinate, biopolyethylene, etc. is used as the base material, This is preferable because the advantages of certain fine cellulose fibers can be maximized.
  • the surface of the substrate may be subjected to surface treatment such as corona treatment, plasma treatment, ozone treatment, or flame treatment.
  • surface treatment such as corona treatment, plasma treatment, ozone treatment, or flame treatment.
  • the thickness of the substrate can be appropriately set according to the use of the laminate.
  • it is usually in the range of 10 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m.
  • a fine cellulose fiber film By drying the coating film of the fine cellulose fiber dispersion with an oven or the like, a fine cellulose fiber film can be formed on the substrate.
  • the fine cellulose fiber dispersion is mixed with water and alcohol, etc.
  • a solvent is preferred.
  • the alcohol is preferably a low molecular weight alcohol as described above.
  • the fine cellulose fiber dispersion can be used as a composition for bonding, anchor coating, or primer containing fine cellulose fibers and an organic solvent.
  • the fine cellulose fiber dispersion is used by coating on a substrate such as polylactic acid, and forms a biomass-derived film that is excellent in coating property to the substrate and has high adhesion.
  • a substrate such as polylactic acid
  • a functional material layer (second coating layer) made of a functional material such as a gas barrier material or ink described later is laminated.
  • a functional laminate having high adhesion to the substrate can be provided.
  • the functional material layer can be formed on the fine cellulose fiber film by the known coating method or printing method described above.
  • the functional material layer is made of a coating liquid containing fine cellulose fibers, it has high affinity with an undercoat layer made of a fine cellulose fiber dispersion, and can be formed with good adhesion while suppressing repelling.
  • the above-described cellulose film or laminate may be further bonded to a thermoplastic resin layer, a print layer, an adhesive layer, an antistatic layer, an antireflection layer, an antiglare layer, a polarizing layer, a layer that can be thermally welded.
  • Various functional material layers such as a phase difference layer, a protective layer for preventing scratches and antifouling, a vapor deposition layer, a gas barrier layer such as oxygen, a water vapor barrier layer, a drug barrier layer, an adsorption layer, and a catalyst layer may be provided.
  • the vapor deposition layer is particularly effective in improving gas barrier properties.
  • the inorganic compound constituting the vapor deposition layer is not particularly limited, and those conventionally used for forming a vapor deposition film in a gas barrier material or the like can be used. Specific examples include inorganic oxides such as aluminum oxide, magnesium oxide, silicon oxide, and tin oxide. These may be used alone or in combination of two or more.
  • the optimum thickness of the vapor-deposited layer varies depending on the type and configuration of the inorganic compound used. In general, the thickness of the vapor-deposited layer is within a range of several nm to 500 nm, preferably within a range of 5 to 300 nm. It chooses suitably in consideration. If the thickness of the vapor deposition layer is too thin, the continuity of the vapor deposition film will not be maintained. On the other hand, if it is too thick, the flexibility will be reduced and cracks will easily occur, and the gas barrier properties of the vapor deposition layer will not be fully demonstrated. There is a fear.
  • the vapor deposition layer can be formed by a known method such as a vacuum vapor deposition method, a sputtering method, a plasma vapor deposition method (CVD method), or a commercially available film or sheet on which the vapor deposition layer is formed can be used as a substrate. .
  • thermoplastic resin layer that can be thermally welded is useful as a packaging material because it can be processed and sealed by heat sealing.
  • the heat-sealable thermoplastic resin layer include polypropylene films such as unstretched polypropylene film (CPP), polyethylene films such as low-density polyethylene film (LDPE), and linear low-density polyethylene film (LLDPE). It is done.
  • the thermoplastic resin layer is usually laminated on a cellulose film or laminate by extrusion molding or via an adhesive layer.
  • Example 1> (Preparation of fine cellulose fiber dispersion) Distilled water was added to 57.14 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain a 400 g oxidized cellulose suspension. The pH was adjusted to 8 using 10 wt% tetraethylammonium hydroxide (TEAH, manufactured by Kanto Chemical Co., Inc.). The prepared dispersion was treated with a mixer with a rotary blade for 60 minutes to obtain a fine cellulose fiber dispersion.
  • TEAH tetraethylammonium hydroxide
  • Example 2 (Preparation of fine cellulose fiber dispersion) Ethanol (EtOH) 199 g and distilled water were added to 28.57 g (solid content 2 g) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain a total of 400 g of oxidized cellulose suspension. The pH was adjusted to 8 using 10 wt% tetraethylammonium hydroxide. The prepared dispersion was treated with a mixer with a rotary blade for 60 minutes to obtain a fine cellulose fiber dispersion.
  • Ethanol (EtOH) 199 g and distilled water were added to 28.57 g (solid content 2 g) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain a total of 400 g of oxidized cellulose suspension. The pH was adjusted to 8 using 10 wt% tetraethylammonium hydroxide. The prepared dispersion was treated with a mixer with a
  • ⁇ Comparative Example 1> (Preparation of fine cellulose fiber dispersion) Distilled water was added to 57.14 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain a 400 g oxidized cellulose suspension. The pH was adjusted to 8 using an aqueous sodium hydroxide solution (NaOH). The prepared dispersion was treated with a mixer with a rotary blade for 60 minutes to obtain a fine cellulose fiber dispersion.
  • the amount of sodium ions in the cellulose film was measured by the EPMA method using an X-ray microanalyzer.
  • Table 1 shows the transmittance of the fine cellulose fiber dispersions of Examples 1 and 2 and Comparative Examples 1 and 2, the sodium ion content of the cellulose film, and the results of the swelling test.
  • Example 1 The cellulose films of Examples 1 and 2 were less likely to swell against water than the cellulose film of the comparative example, and were excellent in water resistance.
  • Example 2 in which ethanol was mixed as a dispersion medium was able to suppress the change in weight during swelling.
  • Example 3> (Preparation of fine cellulose fiber dispersion) Distilled water and 10 wt% tetramethylammonium hydroxide (TMAH, manufactured by Kanto Chemical Co., Inc.) are added to 28.57 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above, and a pH 10 oxidized cellulose suspension is added. 400 g. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • TMAH t% tetramethylammonium hydroxide
  • Example 4> (Preparation of fine cellulose fiber dispersion) Distilled water and 10 wt% tetraethylammonium hydroxide were added to 28.57 g (2 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • Example 5 (Preparation of fine cellulose fiber dispersion) Distilled water and 0.4 mol / l tetra-n-butylammonium hydroxide (TBAH, manufactured by Kanto Chemical Co., Inc.) were added to 28.57 g (solid content 2 g) of oxidized cellulose having a solid content concentration of 7% prepared as described above. 400 g of oxidized cellulose suspension was used. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • TBAH mol / l tetra-n-butylammonium hydroxide
  • Example 6> (Preparation of fine cellulose fiber dispersion) Distilled water and 10 wt% tetraethylammonium hydroxide were added to 114.29 g (solid content 8 g) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • Example 7 (Preparation of fine cellulose fiber dispersion) Ethanol (199 g), distilled water, and 10 wt% tetraethylammonium hydroxide were added to 28.57 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • ⁇ Comparative Example 3> (Preparation of fine cellulose fiber dispersion) Distilled water and 0.5N aqueous sodium hydroxide solution were added to 28.57 g (2 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • ⁇ Comparative Example 4> (Preparation of fine cellulose fiber dispersion) Distilled water and 0.5N aqueous sodium hydroxide solution were added to 114.29 g (solid content 8 g) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion.
  • the shear viscosity of the fine cellulose fiber dispersions of Examples 3 to 7 and Comparative Examples 3 to 5 was measured with a rheometer (MAAKE, MARS) using a cone plate having an inclination angle of 1 ° and a cone diameter of 35 mm. The temperature of the measurement part was adjusted to 23 ° C., the shear viscosity was continuously measured at a shear rate of 0.01 to 100 s ⁇ 1 , and the value at the shear rate of 1 s ⁇ 1 was obtained.
  • the TI value was obtained from the ratio of shear viscosity ⁇ 1s ⁇ 1 / ⁇ 10 s ⁇ 1 at the shear rate of 1 s ⁇ 1 and the shear rate of 10 s ⁇ 1 of the fine cellulose fiber dispersions of Examples 3 to 5 and Comparative Example 3. It was.
  • the amount of sodium ions in the cellulose film was measured by the EPMA method using an X-ray microanalyzer.
  • Table 2 shows the transmittance, shear viscosity, TI value, contact angle, and sodium content of the cellulose film of the fine cellulose fiber dispersions of Examples 3 to 7 and Comparative Examples 3 to 5.
  • the fine cellulose fiber dispersions of Examples 3 to 7 had higher transmittance than the fine cellulose fiber dispersions of Comparative Examples 3 to 5.
  • the fine cellulose fiber dispersions of Comparative Examples 4 and 5 were not sufficiently dispersed and remained cloudy.
  • the fine cellulose fiber dispersion prepared with an organic alkali decreased in viscosity and thixotropy of the fine cellulose fiber dispersion.
  • alcohol was used as the dispersion medium, the contact angle with respect to the substrate was reduced and wettability was improved.
  • sodium ions were not detected in the cellulose films of Examples 3 to 7 which were subjected to dispersion treatment using organic alkali.
  • Example 8> (Preparation of fine cellulose fiber dispersion) Distilled water and 10 wt% tetraethylammonium hydroxide (TEAH, manufactured by Kanto Chemical Co., Inc.) were added to 57.14 g of oxidized cellulose having a solid content concentration of 7% (solid content of 4 g) prepared as described above, and 400 g of oxidized cellulose suspension at pH 10 was added. It was. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 9.95 g of methanol and 0.05 g of distilled water were added thereto and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • TEAH tetraethylammonium hydroxide
  • Example 9 A fine cellulose fiber dispersion was prepared in the same manner as in Example 8, except that the methanol used in Example 8 was changed to ethanol.
  • Example 10 A fine cellulose fiber dispersion was prepared in the same manner as in Example 8, except that methanol used in Example 8 was changed to 2-propanol (IPA).
  • IPA 2-propanol
  • Example 11 A fine cellulose fiber dispersion was prepared in the same manner as in Example 8, except that the methanol used in Example 8 was changed to acetone.
  • ⁇ Comparative Example 6> (Preparation of fine cellulose fiber dispersion) Distilled water and 0.5N sodium hydroxide aqueous solution (NaOH) were added to 57.14 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 9.95 g of methanol and 0.05 g of distilled water were added thereto and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • NaOH sodium hydroxide aqueous solution
  • the fine cellulose fiber dispersions of Examples 8 to 11 were not visually clouded or agglomerated and the transmittance was not lowered even when any solvent was added.
  • the fine cellulose fiber dispersions of Comparative Examples 6 to 9 when ethanol, 2-propanol, and acetone were added, the liquid became cloudy and became non-uniform on the naked eye, and the transmittance was also reduced.
  • sodium hydroxide is used as the alkali
  • adding a water-soluble organic solvent to the obtained fine cellulose fiber dispersion will cause the dispersed fine cellulose fibers to aggregate, causing aggregation of the fine cellulose fiber dispersion and turbidity and non-uniformity.
  • Example 12 (Preparation of fine cellulose fiber dispersion) Distilled water and 10 wt% tetraethylammonium hydroxide (TEAH, manufactured by Kanto Chemical Co., Inc.) are added to 57.14 g of oxidized cellulose having a solid content of 7% (solid content of 4 g) prepared as described above, and 400 g of oxidized cellulose suspension at pH 10 is added. It was. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 9.95 g of acetone and 0.05 g of distilled water were added thereto and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • TEAH tetraethylammonium hydroxide
  • Example 13 Distilled water and 10 wt% tetrabutylphosphonium hydroxide (TBPH, manufactured by Kanto Chemical Co., Inc.) are added to 57.14 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above, and the oxidized cellulose suspension has a pH of 10 400 g.
  • the prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 9.95 g of acetone and 0.05 g of distilled water were added thereto and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • Example 14 Distilled water and 0.1N aqueous ammonia solution were added to 57.14 g of oxidized cellulose having a solid content concentration of 7% (solid content of 4 g) prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 0.1 g of water-soluble polycarbodiimide SV-02 (Nisshinbo) was added thereto. 9.95 g of acetone and 0.05 g of distilled water were added and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • Example 15 Distilled water and 0.1N aqueous ammonia solution were added to 57.14 g of oxidized cellulose having a solid content concentration of 7% (solid content of 4 g) prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 0.05 g of Epocros WS-500 (manufactured by Nippon Shokubai) was added thereto. 9.95 g of acetone and 0.05 g of distilled water were added and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • Epocros WS-500 manufactured by Nippon Shokubai
  • a 25 ⁇ m-thick polylactic acid (PLA) film whose surface was plasma-treated was prepared.
  • the fine cellulose fiber dispersions of Examples 12 to 15 obtained were applied on the plasma-treated surface of the base material using a bar coater, and then dried at 70 ° C. for 20 minutes to form a film having a thickness of about 200 nm.
  • First coating layer was formed. This first coating layer was used as an undercoat layer, and a gas barrier material was applied onto the first coating layer with a bar coater.
  • a coating liquid containing known fine cellulose fibers was used. After coating, the film was dried at 70 ° C.
  • a gas barrier layer (second coating layer) having a thickness of about 0.5 ⁇ m.
  • a 70 ⁇ m-thick polypropylene (PP) film is laminated by dry lamination, thereby forming a first coating layer formed from the fine cellulose fiber dispersion, and a gas barrier property.
  • a four-layer laminate including a second coating layer having the material was obtained.
  • ⁇ Comparative Example 10> (Preparation of fine cellulose fiber dispersion) Distilled water and 0.5N sodium hydroxide aqueous solution (NaOH) were added to 57.14 g (7 g solid content) of oxidized cellulose having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer with a rotary blade to obtain a fine cellulose fiber dispersion. 10 g of the obtained fine cellulose fiber dispersion was weighed, and 9.95 g of acetone and 0.05 g of distilled water were added thereto and stirred to prepare a fine cellulose fiber dispersion having a solid content concentration of 0.5%.
  • NaOH sodium hydroxide aqueous solution
  • ⁇ Comparative Example 11> (Production of laminate) As a base material, a 25 ⁇ m-thick polylactic acid (PLA) film whose surface was plasma-treated was prepared. On the plasma-treated surface of the substrate, the same gas barrier material as in Example 12 was applied with a bar coater and dried at 70 ° C. for 30 minutes to form a gas barrier layer having a thickness of about 0.5 ⁇ m. Furthermore, by using a urethane polyol adhesive on the gas barrier layer, a 70 ⁇ m-thick polypropylene (PP) film was bonded by dry lamination to obtain a three-layer laminate including the gas barrier layer.
  • PVA polylactic acid
  • PP polypropylene
  • ⁇ Transmittance measurement> The transparency of the fine cellulose fiber dispersions of Examples 12 to 15 and Comparative Example 10 were compared by measuring transmittance at 660 nm with a spectrophotometer. Table 4 shows the measurement results.
  • ⁇ Evaluation of wettability> For each of the laminates of Examples 12 to 15 and Comparative Example 10, the wettability when the fine cellulose fiber dispersion was applied onto the PLA substrate was measured for each of the laminates of Examples 12 to 15 and Comparative Examples 10 and 11. The wettability when a gas barrier material was applied onto the undercoat layer was evaluated visually. The evaluation results are shown in Table 4.
  • the fine cellulose fiber dispersion and the organic solvent were uniformly mixed, and a highly transparent fine cellulose fiber dispersion could be prepared.
  • the undercoat layer (1st coating layer) formed on the base material by this fine cellulose fiber dispersion was also high in the wettability with respect to a base material, and there was no generation
  • the improvement of the adhesiveness of the undercoat layer with respect to the base material was also confirmed.
  • the functional material layer (second coating layer) containing the gas barrier material also has high wettability with respect to the undercoat layer and high adhesion strength, and thus improved coatability was confirmed.
  • Comparative Examples 10 and 11 had low wettability to the base material and could not form a uniform coating film.
  • the fine cellulose fiber dispersion of the present invention is excellent in transmittance, wettability, adhesion evaluation and adhesion strength, and has good coatability and adhesion as various functional material coatings such as a gas barrier layer and a water vapor barrier layer. It has been demonstrated that it can be formed on a substrate. Therefore, by using the fine cellulose fiber dispersion produced by the method for producing a fine cellulose fiber dispersion of the present invention, the adhesion with the substrate is improved, and a mechanically stable laminate can be provided. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】均一に有機溶剤や樹脂に分散可能で、かつ電子部材用途にも応用可能な微細セルロース繊維を含む分散液を提供する。また、耐水性の向上された微細セルロース繊維から得られるセルロースフィルムおよび積層体を提供する。また、フィルム基材、特にポリ乳酸等の天然由来材料からなる基材のアンダーコートとして、該基材との密着性を向上させた膜を形成する微細セルロース繊維分散液およびそれを用いた積層体を提供する。 【解決手段】微細セルロース繊維分散液は、少なくとも、微細セルロース繊維と、アンモニアまたは有機アルカリとを含む。

Description

微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体
 本発明は、機能性フィルム基材、コーティング剤、または各種添加剤として使用可能なセルロースの微細繊維に係る技術に関し、セルロースの微細繊維を含む分散液およびその製造方法ならびにセルロースの微細繊維を含む分散液を用いたセルロースフィルムおよび積層体に関する。
 近年、環境問題への関心が高まる中、従来の石油系樹脂に対し、天然由来の澱粉やセルロース、キチンキトサンなどの各種天然多糖類とその誘導体が、バイオマス材料として注目されている。また、環境中で水と二酸化炭素にまで分解される生分解性樹脂からなる基材も注目され、市販されている。具体的には、微生物によって産生される脂肪族ポリエステルや、天然由来の澱粉やセルロース、キチンキトサンなどの各種多糖類とその誘導体、完全に化学合成により得られる生分解性樹脂、澱粉などを原料として得られた乳酸を重合してえられるポリ乳酸などが挙げられる。
 これらの中でも、地球上で最も多量に生産されているセルロースは、繊維状で高い結晶性を有し、高強度、低線膨張率であり、化学的安定性や生体への安全性に優れることから、機能性材料として注目されている。特に、微細セルロース繊維は、近年、紙力増強剤、ろ過補助剤、食品添加物などに利用され、盛んに開発が進められている。
 微細セルロース繊維の製造方法として、例えば、特許文献1には、セルロース懸濁液を100MPa以上の高圧雰囲気下から噴出させて減圧することにより解繊(微細化)する方法が記載されている。
 また、特許文献2には、TEMPO(2,2,6,6-テトラメチルピペリジノオキシラジカル)触媒を用い水酸基の一部をカルボキシル基に酸化させたセルロースを媒体中に分散させ微細セルロース繊維を得る方法が記載されている。この方法によれば、負の電荷を有するカルボキシル基の電気的反発作用を利用し、セルロースI型の結晶構造を有する微細セルロース繊維を比較的容易に得ることが可能である。
 また、特許文献3には、TEMPO触媒を用い水酸基の一部をカルボキシル基に酸化させたセルロースを媒体中に分散させ微細セルロース繊維を得た後、有機オニウム化合物で処理して得られる微細修飾セルロース繊維をエポキシ樹脂に加えてエポキシ樹脂コンポジットを得る方法が記載されている。
 また、特許文献4には、TEMPO酸化処理により得た酸化セルロースを水中に分散させて平均繊維径200nm以下の微細セルロース繊維を含むガスバリア用材料を調製し、これを、PETフィルムやポリ乳酸等の基材上に塗工し、乾燥させてガスバリア性複合成形体を得る方法が記載されている。
特開2009-155772号公報 特開2008-1728号公報 特開2010-59304号公報 特開2009-57552号公報
 特許文献1には、平均繊維径4~200nm微細セルロース繊維を得ることができると記載されているが、解繊には非常に高い圧力で複数回の処理が必要であり、使用できる装置が限られる。また、均一な微細セルロース繊維を、機械的処理のみによって効率よく得ることは困難である。また、得られた微細セルロース繊維の用途についても、合成高分子との複合化について記載されているのみであり、微細セルロース繊維単体については示されていない。
 また、特許文献2の方法では、その実施例に記載のように、カルボキシル基は対イオンとしてナトリウムイオンなどの金属イオンを有する。微細セルロース繊維を半導体や燃料電池などの電子部材に利用しようとした場合、これらの金属イオンが混入すると電気特性に悪影響を与えるため、金属イオンを含んでいることは好ましくない。また、これらの微細セルロース繊維をキャストし自立膜を形成することが記載されているが、対イオンとして金属イオンを含んだ微細セルロース繊維膜は、耐水性が弱く水に容易に膨潤し強度が低下してしまうという問題がある。
 また、特許文献3の方法では、カルボキシル基の対イオンとして存在している金属イオンを有機オニウム処理により有機オニウムにイオン交換することで、樹脂に分散しやすい微細セルロース繊維が得られるとしている。しかしながら、イオン交換の過程で、微細セルロース繊維は凝集体となり、有機オニウム処理の前工程でセルロースを分散させ微細化させた効果が失われている。一旦凝集した微細セスロース繊維を樹脂中に添加しても、分散が不十分かつ繊維径は不均一となり、高強度で透明性の高い均一な複合材料を得ることはできない。
 また、特許文献4のような微細セルロース繊維の水系分散液を用いて形成された膜は、微細セルロース繊維の剛直な形状と低い反応性のため、PETフィルム等の基材への密着性が低い問題があった。例えば、フィルム基材、特に、ポリ乳酸等の天然由来材料からなる基材のアンダーコートを従来の微細セルロース繊維の水系分散液を用いて形成した場合、前記基材とアンダーコートとの層間剥離が生じることがあった。
 これは、紙やポリ乳酸等の材料が天然物であるため、PET等の石油由来の合成樹脂に比べ、化学的不安定性や低分子量分子のブリード、結晶化、表面劣化のために、基材として塗工の際の濡れ性や密着性が低いことに起因する。したがって、微細セルロース繊維の水系分散液からなる膜(アンダーコート)と、ポリ乳酸等の天然由来材料からなる基材との密着性を向上させるのは困難であった。
 本発明は、上記課題に鑑みてなされたものであり、均一に有機溶剤や樹脂に分散可能で、かつ電子部材用途にも応用可能な微細セルロース繊維を含む分散液を提供することを目的とする。
 また、耐水性の向上された微細セルロース繊維から得られるセルロースフィルムおよび積層体を提供することを目的とする。
 また、フィルム基材、特にポリ乳酸等の天然由来材料からなる基材のアンダーコートとして、該基材との密着性を向上させた膜を形成する微細セルロース繊維分散液およびそれを用いた積層体を提供することを目的とする。
 上記課題を解決するために、本発明における請求項1に記載した発明は、少なくとも、微細セルロース繊維と、アンモニアまたは有機アルカリとを含むことを特徴とする微細セルロース繊維分散液である。
 次に、請求項2に記載した発明は、前記有機アルカリが、アミン類または水酸化物イオンを対イオンとする有機オニウム化合物のいずれかであることを特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項3に記載した発明は、前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム化合物であることを特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項4に記載した発明は、前記微細セルロース繊維が、セルロースを、水系媒体中で、アンモニア水または有機アルカリを用いてpH4以上pH12以下に調整し、分散処理して得られたものであることを特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項5に記載した発明は、前記水系媒体が、水、または水とアルコールの混合液であり、前記アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールのいずれかであることを特徴とする請求項4に記載の微細セルロース繊維分散液である。
 次に、請求項6に記載した発明は、さらに、水溶性有機溶剤を含むことを特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項7に記載した発明は、前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項6に記載の微細セルロース繊維分散液である。
 次に、請求項8に記載した発明は、前記水溶性有機溶剤の量が、微細セルロース繊維分散液全体に対して0.1重量%以上であることを特徴とする請求項7に記載の微細セルロース繊維分散液である。
 次に、請求項9に記載した発明は、さらに、反応性官能基を有する化合物からなる添加剤を含むことを特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項10に記載した発明は、前記微細セルロース繊維が、酸化反応によりカルボキシル基が導入された酸化セルロースであって、カルボキシル基の含有量が、0.1mmol/g以上2mmol/g以下である特徴とする請求項1に記載の微細セルロース繊維分散液である。
 次に、請求項11に記載した発明は、前記微細セルロース繊維の数平均繊維径が、0.003μm以上0.050μm以下であることを特徴とする請求項10に記載の微細セルロース繊維分散液である。
 次に、請求項12に記載した発明は、請求項1~11のいずれか一項に記載の微細セルロース繊維分散液を乾燥して形成したことを特徴とするセルロースフィルムである。
 次に、請求項13に記載した発明は、請求項1~11のいずれか一項に記載の微細セルロース繊維分散液を、基材上の少なくとも片面に塗布して、被膜を形成したことを特徴とする積層体である。
 次に、請求項14に記載した発明は、前記被膜が、アンダーコート層であることを特徴とする請求項13に記載の積層体である。
 次に、請求項15に記載した発明は、セルロースを酸化処理して酸化セルロースを得る酸化工程と、前記酸化工程で得られた酸化セルロースを、アンモニア水または有機アルカリを用いてpH4以上pH12以下に調整された水系媒体中で分散処理して微細セルロース繊維分散液を得る分散工程とを備えることを特徴とする微細セルロース繊維分散液の製造方法である。
 次に、請求項16に記載した発明は、前記有機アルカリが、アミン類または水酸化物イオンを対イオンとする有機オニウム化合物のいずれかであることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法である。
 次に、請求項17に記載した発明は、前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム化合物であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法である。
 次に、請求項18に記載した発明は、前記水系媒体が、水、または水とアルコールの混合液であり、前記アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールのいずれかであることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法である。
 次に、請求項19に記載した発明は、前記水系媒体が、水溶性有機溶剤を含み、前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法である。
 次に、請求項20に記載した発明は、前記分散工程の後、得られた微細セルロース繊維分散液に水溶性有機溶剤を加える調製工程を備え、前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法である。
 本発明によれば、生分解性もあり廃棄処理における環境負荷が小さい天然資源であるセルロースを有効に利用し、均一な微細セルロース繊維分散液を得ることができる。
 この本発明によって得られる微細セルロース繊維分散液からは、高耐熱性、低線膨張率、高弾性率、高強度かつ高い透明性を有し、耐水性の向上したセルロースフィルムが作製できる。これは、包装材料(特に、ガスバリア材)、構造体、表示用部材などに利用可能である。また、分散処理の際、従来用いられていた無機アルカリを使用しないため、ナトリウムなどの金属イオンの混入を好まない電子部材用途にも好適である。さらに、微細セルロース繊維分散液をコーティング剤や添加剤として用い、各種樹脂と均一に複合化させることも可能である。
 また、本発明によれば、フィルム基材、特にポリ乳酸等の天然由来材料からなる基材のアンダーコートとして、該基材との密着性を向上させた膜を形成する微細セルロース繊維分散液を提供することができる。すなわち、ガスバリア層、水蒸気バリア層等の各種機能性材料被膜を塗工性、密着性良く基材上に形成でき、該機能性材料被膜を備える積層体を提供することができる。
 以下、本発明に係る微細セルロース繊維分散液の実施形態について説明する。
 本実施形態の微細セルロース繊維分散液は、例えば次の方法で製造する。まず、原料となるセルロースにカルボキシル基を導入する。
(原料)
 原料としては、セルロースIの結晶構造を有する天然由来のセルロースを用いることができる。原料となる天然由来のセルロースとしては、木材パルプ、非木材パルプ、綿セルロース、バクテリアセルロース、ホヤセルロースなどがある。
(酸化工程)
 セルロースの酸化方法としては、原料となるセルロースにカルボキシル基を導入する方法であれば、特に制限はなく、目的に応じて適宜選択される。例えば、一般的に知られている水酸基からアルデヒドを経てカルボン酸に酸化する方法から適宜選択することができる。その中でも、ニトロキシラジカル誘導体を触媒とし、次亜ハロゲン酸塩や亜ハロゲン酸塩などを共酸化剤として用いる手法が好ましい。特にTEMPO(2,2,6,6-テトラメチルピペリジノオキシラジカル)を触媒とし、アルカリ条件下、好ましくはpH9以上pH11以下の範囲で、次亜塩素酸ナトリウムと臭化ナトリウムを含む水系媒体中で行われるTEMPO酸化法が、試薬の入手しやすさ、コスト、反応の安定性、ミクロフィブリル表面への選択性および効率の良いカルボキシル基の導入という観点から好適である。上記のTEMPO酸化法においては、反応の進行に伴いアルカリが消費されるため、随時アルカリ水溶液を添加して、系内のpHを一定に保つとよい。
 TEMPO酸化においては、セルロース分子のピラノース環(グルコース)の第6位水酸基が選択的に酸化され、アルデヒド基を経てカルボキシル基を導入することができる。また、天然セルロースを用いたTEMPO酸化においては、セルロースの構成単位である結晶性のミクロフィブリル表面にのみ酸化が起こり、結晶内部には酸化が起こらない。このため、セルロースIの結晶構造を維持したまま、微細セルロース繊維を得ることができ、生成する微細セルロース繊維は、高耐熱性、低線膨張率、高弾性率、高強度、ガスバリア性などの特性を有する。
 TEMPO酸化に用いる試薬類は、市販のものを容易に用いることができる。反応温度は0℃以上60℃以下が好適であり、1~12時間程度で微細繊維となり分散性を示すのに十分な量のカルボキシル基を導入できる。
 TEMPO類および臭化ナトリウムは、反応の際に触媒としての量だけ用いればよく、反応後に回収することも可能である。また、上記の反応系では理論上の副生成物は塩化ナトリウムのみであり、廃液の処理も容易で環境への負荷が小さい。
 カルボキシル基の含有量は、TEMPO酸化の条件を適宜設定することにより調整可能である。セルロース繊維は、カルボキシル基の電気的反発力により水系媒体中に分散することから、カルボキシル基の含有量が少なすぎると安定的に水系媒体中に分散させることができないうえ、分散液をコーティング剤や添加剤として用いる際に、各樹脂と均一に複合化させることが困難になり、また、塗工性も悪く、ガスバリア性能も低い。また、多すぎると水への親和性が増し耐水性が低下、または結晶性が低下し、強度が弱くなる上、ガスバリア性能も低下する。この観点から、カルボキシル基の含有量は、好ましくは、0.1mmol/g以上3.5mmol/g以下であり、更に好ましくは0.1mmol/g以上2mmol/g以下であり、さらに好ましくは0.6mmol/g以上2mmol/g以下である。カルボキシル基を導入する過程では、酸化反応の中間体であるアルデヒド基が生成し、最終生成物中にもアルデヒド基は残存する。アルデヒド基の含有量が多すぎると水系媒体中への分散性が低下するため、アルデヒド基の含有量は、好ましくは0.01mmol/g以上0.3mmol/g以下である。
 酸化反応は、他のアルコールを過剰量添加し系内の共酸化剤を完全に消費させることにより停止する。添加するアルコールとしては、反応をすばやく終了させるため、メタノール、エタノール、プロパノールなどの低分子量アルコールを用いるのが望ましい。この中でも、安全性や酸化により生成する副生成物を考慮し、エタノールが好ましい。
(酸化セルロースの回収)
 酸化反応停止後、生成した酸化セルロースは、ろ過により反応液中から回収することができる。反応停止後の酸化セルロースにおいて、カルボキシル基は共酸化剤やpH調整用の無機アルカリに由来する金属イオンを対イオンとした塩を形成している。回収の方法としては、カルボキシル基が塩を形成したまま濾別する方法、反応液に酸を添加しpH3以下に調整しカルボン酸としてから濾別する方法、有機溶剤を添加し凝集させた後に濾別する方法があるが、一旦カルボン酸に変換することで、酸化セルロース中の対イオン(金属イオン)の大部分を除くため、カルボン酸としてから濾別する。また、ハンドリング性や収率、廃液処理の点からもカルボン酸に変換し回収する方法が好適である。カルボン酸に変換することで、水による洗浄の効率化、含有金属イオン量の低減、洗浄回数の低減ができる。
 なお、酸化セルロース中に含まれる金属イオン含有量は、様々な分析方法で調べることができるが、例えば、電子線マイクロアナライザーを用いたEPMA法、蛍光X線分析法の元素分析によって簡易的に調べることができる。塩を形成したまま濾別する方法により回収した場合、金属イオンの含有率は5wt%以上であるのに対し、カルボン酸としてから濾別する方法により回収した場合、金属イオン含有量は1wt%以下となる。
(洗浄)
 回収した酸化セルロースは、洗浄を繰り返すことにより精製でき、触媒や塩、イオンなどの残渣を取り除くことができる。このとき、洗浄液としては水が好ましく、さらに塩酸などを用いpH3以下、より好ましくはpH1.8以下の酸性条件に調整し洗浄を行った後、水による洗浄を行うと、金属イオンを上記分析方法における検出限界量以下とすることができる。または、残存する金属イオン量をより低減させるため、酸性条件での洗浄を複数回行ってもよい。また、セルロース中に塩等が残留していると、後述の分散工程にて分散しにくくなるため、水洗浄は複数回洗浄を行うことが好ましい。
 次に、上記工程で得られた酸化セルロースを用いて微細セルロース繊維分散液を調製する工程を説明する。
(分散工程)
 洗浄した酸化セルロースを微細化する工程としては、まず、酸化セルロースを分散媒である水系媒体に浸漬する。ここで、水系媒体としては、水または水とアルコールとの混合液であることが好ましい。用いられるアルコールとしては、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどが挙げられる。混合する有機溶剤は1種類または2種類以上でもよい。
 この際、媒体にアルコール系の物が含まれていると、分散後に更に有機溶媒を加える際により均一な分散ができる。更には分散液の経時安定性を高めることができる。この際添加するアルコールの添加量は、特に限定しないが、水に対し1%以上60%以下であると好ましい。より好ましくは1%以上50%以下、更に好ましくは1%以上20%以下である。また、ここでアルコールを含むことで、分散液をコーティング剤や添加剤として用いる際の塗工性を高め、乾燥エネルギーを水単体より少なくすることができる。
 この時、浸漬した液のpHは例えば4以下となる。酸化セルロースは水系媒体に不溶であり、浸漬した時点では不均一な懸濁液となっている。
 また、水を含まずに、アルコールのみを分散媒として、微細セルロース繊維分散液を調製することも可能である。
 水系媒体としては、上記の水または水とアルコールとの混合液の他に、水と均一に混和可能な水溶性有機溶剤を含んでいてもよい。ここで用いられる水溶性有機溶剤としては、上記アルコールとして挙げたメタノール、エタノール、2-プロパノール(IPA)などのアルコール類のほかに、アセトン、メチルエチルケトン(MEK)などのケトン類、1,4-ジオキサン、テトラヒドロフラン(THF)などのエーテル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトニトリル、酢酸エチルなどが挙げられる。これらのいずれか1種単独でも、2種以上の混合溶媒でもよい。水系媒体として、水と水溶性有機溶剤との混合溶剤を用いる場合、その配合比は、水溶性有機溶剤の種類や、水と水溶性有機溶剤との親和性などを考慮して適宜決定される。
 次に、アルカリを用いて懸濁液のpHをpH4以上pH12以下の範囲に調整する。特に、pHをpH7以上pH12以下のアルカリ性とし、カルボン酸塩を形成する。これにより、カルボキシル基同士の電気的反発が起こりやすくなるため、分散性が向上し微細セルロース繊維を得やすくなる。ここで、pH4未満でも機械的分散処理によりセルロースを微細繊維化することは可能であるが、分散処理により長時間・高エネルギーを要し、得られる繊維の繊維径も本発明のものより大きくなり、得られる微細セルロース繊維分散液の透明性が劣る。
 アルカリとしては、微細セルロース繊維分散液に金属イオンが同伴されるのを避けるため、アンモニア水または有機アルカリを用いてpHを調整する。添加するアルカリの量は、カルボキシル基の含有量に対しモル比で等量以下で十分であり、3分の2以下でも分散可能である。添加するアルカリの量が多いと分散液の着色の原因となるため好ましくない。有機アルカリとしては、各種脂肪族アミン、芳香族アミン、ジアミンなどのアミン類や水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラn-ブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化2-ヒドロキシエチルトリメチルアンモニウム、などNROH(Rはアルキル基、またはベンジル基、またはフェニル基、またはヒドロキシアルキル基で、4つのRが同一でも異なっていてもよい。)で表される水酸化アンモニウム化合物、水酸化テトラエチルホスホニウムなどの水酸化ホスホニウム化合物、水酸化オキソニウム化合物、水酸化スルホニウム化合物などの水酸化物イオンを対イオンとする有機オニウム化合物が挙げられる。有機アルカリを用いた場合も、アルカリの種類によらず、無機アルカリを用いた場合と同程度か、それ以下の分散処理により繊維を微細化することが可能である。特に、有機アルカリを用いた場合、その嵩の大きさが、セルロースのミクロフィブリルの反発により分散するのを促進する効果がある。また、分散液の粘度を下げる効果がある場合があり、効率の良い分散を可能にする。
 また、有機アルカリを用いて得られた微細セルロース繊維は、有機アルカリの疎水性により、後述するセルロースフィルム及びセルロース被膜の耐水性を向上させる効果がある。
 また、有機アルカリを用いると、水系媒体としてアルコールなどを用いた際にも、アルコールに対する親和性が高いため、均一に分散された微細セルロース繊維分散液を調製することができる。さらに、有機アルカリを用いると、水系媒体中で分散処理した微細セルロース繊維分散液に、後述する水溶性有機溶剤を加えても、分散させた微細セルロース繊維が凝集し、微細セルロース繊維分散液の凝集白濁、不均一化を起こすことがないため有効である。
 また、アルカリとして有機アルカリを用いる場合、アルカリとして金属イオンを対イオンとする無機アルカリを用いた場合よりも低エネルギー、短時間で分散処理を行うことができる。また、最終的に到達する微細セルロース繊維分散液の透明性を向上させることができる。これは、有機アルカリを用いた方が対イオンのイオン径が大きいため分散媒中で微細セルロース繊維同士をより引き離す効果が大きいためと考えられる。
 さらに、通常、微細セルロース繊維分散液はゲル状となり、高濃度化するに従い粘度が上昇するため、分散処理において大きなエネルギーが必要となり、分散処理が困難になってくる。これに対し、有機アルカリを用いる場合、無機アルカリを用いる場合と比べ、分散液の粘度とチキソ性を低下させることができ、分散処理のし易さと、後述する塗工工程での塗り易さの点で有利である。通常、微細セルロース繊維分散液はゲル状となり、高濃度化するに従い粘度が上昇するため、分散処理において大きなエネルギーが必要となり、分散処理が困難になってくるが、有機アルカリを用いると、分散液の粘度が低下するため、分散処理が容易になる。さらに、有機アルカリと後述する水溶性有機溶剤の組み合わせにより、分散液の粘度特性を調整することが可能であり、塗工性も高めることができる。
 このようにして調整した微細セルロース繊維分散液には、カルボキシル基を有する微細セルロース繊維と、有機アルカリ由来のアミン類または有機オニウムイオンが含まれている。微細セルロース繊維分散液を公知の手法により単離・乾燥・濾別などすることで、アミン類や有機オニウムイオンを対イオンとするカルボキシル基を有する微細セルロース繊維を得ることができる。
 有機オニウムイオンとしては、上記の有機アルカリのカチオンである、4級アンモニウムイオン、4級ホスホニウムイオン、3級オキソニウムイオン、3級スルホニウムイオンなどのオニウムイオンなどが挙げられる。ホスホニウムイオンが対イオンの場合、耐熱性の向上に効果があり、また、オニウムイオン種による樹脂との相溶性を制御することができる。
 一方、水酸化ナトリウム等の無機アルカリを用いると、溶剤中での微細化や溶剤との混合は困難である。金属イオンを含んだ無機アルカリによる微細セルロース繊維分散液では、水溶性有機溶剤を加えると、分散させた微細セルロース繊維が凝集し、微細セルロース繊維分散液の凝集白濁、不均一化を起してしまう。このことは、例えば、微細セルロース繊維分散液を用いてフィルムや積層材料を形成する際、微細セルロース繊維分散液を所望の粘度や固形分濃度に調整するために、後述する水溶性有機溶剤を加える場合に問題となり、分散液をコーティング剤として用いる際の塗工性の低下や、形成されるフィルムや積層材料の機械的強度や透明性およびバリア性も低下してしまう。
 水系媒体への分散処理の方法としては、既に知られている各種分散処理が可能である。例えば、ホモミキサー処理、回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理、ナノジナイザー処理、ディスク型レファイナー処理、コニカル型レファイナー処理、ダブルディスク型レファイナー処理、グラインダー処理、ボールミル処理、水中対向処理などがある。この中でも、微細化効率の面から回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理が好適である。なお、これらの処理のうち二つ以上の処理方法を組み合わせて分散を行うことも可能である。
 上記分散処理を行うと、懸濁液は目視上均一な透明分散液となる。分散処理により酸化セルロースは微細化し、微細セルロース繊維となる。
 分散処理後の微細セルロース繊維は、好ましくは数平均繊維径(繊維の短軸方向の幅)が0.001μm以上0.200μm以下であり、より好ましくは0.001μm以上0.050μm以下である。微細セルロース繊維の繊維径は、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)により確認することができる。分散が不十分・不均一で、一部に繊維径の大きいもの(数平均繊維径が0.200μmを超えるもの)が含まれていると、微細セルロース繊維を含む分散液の塗工性が低下し、を製膜した際、膜の透明性や平滑性、ガスバリア性が著しく低下してしまう問題がある。更に、添加剤として他の材料と混ぜる際にも均一に分散することが困難になる。
 アルカリとして有機アルカリを用いる場合、得られる微細セルロース繊維分散液の透過率は、固形分濃度0.5%において90%以上であることが好ましい。得られる微細セルロース繊維分散液の透過率が90%以上である場合、その微細セルロース繊維分散液を用いて形成したセルロースフィルムや積層材料が、十分な透明性を有することができる。特に、得られる微細セルロース繊維分散液の透過率は、固形分濃度0.5%において97%以上であることがより好ましい。
(調製工程)
 分散処理して得られた微細セルロース繊維分散液に、さらに水溶性有機溶剤を加えてもよい。微細セルロース繊維分散液に加える水溶性有機溶剤としては、水に可溶性のものならよく、具体的には、前述の分散工程において水系媒体に含まれる水溶性有機溶剤として挙げた、メタノール、エタノールまたは2-プロパノールなどのアルコール類、アセトン、メチルエチルケトン(MEK)などのケトン類、1,4-ジオキサン、テトラヒドロフラン(THF)などのエーテル類、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトニトリル、酢酸エチルなどが挙げられる。これは、樹脂の溶解性を高めるという点で樹脂との複合材料形成の際に有効である。
 また、用いる水溶性有機溶剤は、上記で挙げた水溶性有機溶剤を単独で用いてもよく、複数組み合わせて用いてもよい。また、上記で挙げた水溶性有機溶剤と水とを組み合わせて用いてもよい。
 加える水溶性有機溶剤の量は、用いる水溶性有機溶剤の種類にもよるが、微細セルロース繊維分散液全体に対して、下限値は0.1重量%以上が好ましく、上限値はおおよそ60重量%以下であることが好ましい。ただし、水溶性有機溶剤のうち、アルコール類やアセトンなどの水との親和性が比較的大きい水溶性有機溶剤については、必要に応じて、例えば、上限値をおおよそ99.9重量%以下とする。一方、水との親和性が比較的小さい水溶性有機溶剤については、必要に応じて、例えば、上限値をおおよそ50重量%以下とする。
 なお、加える水溶性有機溶剤の量が0.1重量%より少ない場合、樹脂の溶解性を高める効果、後述する乾燥効率の向上、微細セルロース繊維分散液の塗工性改善の点で不十分である。一方、加える水溶性有機溶剤の量が、好ましくは10重量%以上、より好ましくは30重量%以上であると、樹脂の溶解性を高める効果、後述する乾燥効率の向上、微細セルロース繊維分散液の塗工性改善の点で十分な効果が得られる。
 また、水溶性有機溶剤を複数組み合わせて用いる場合や水溶性有機溶剤と水とを組み合わせて用いる場合、その配合比は、微細セルロース繊維分散液の固形分や粘度、微細セルロース繊維分散液を用いて形成されるフィルムや積層材料に要求される特性などを考慮して適宜決定される。
 水溶性有機溶剤は、前述の通り、分散工程において、酸化セルロースの分散媒すなわち水系媒体として用いてもよく、また、水系媒体として用いず、分散工程で得られた微細セルロース繊維分散液に加える有機溶剤として用いてもよい。
 具体例としては、(1)水系媒体として水のみを用いて、酸化セルロース懸濁液を分散処理し、微細セルロース繊維分散液を調整し、その後、得られた微細セルロース繊維分散液に水溶性有機溶剤を加える方法や、(2)水系媒体として水と水溶性有機溶剤との混合溶剤を用いて、酸化セルロース懸濁液を分散処理し、微細セルロース繊維分散液を調整する方法などが挙げられる。(2)の方法は、さらに、得られた微細セルロース繊維分散液に、水系媒体として用いた同一の水溶性有機溶剤や他の水溶性有機溶剤を加えてもよい。なお、上記(1)および(2)の方法は本発明の実施形態の一例であり、本発明の実施形態はこれに限定されない。
 分散処理して得られた微細セルロース繊維分散液に、水溶性有機溶剤を加えることにより、微細セルロース繊維分散液の表面張力を下げ、基材に対する濡れ性を向上させることができる。特に、上記水溶性有機溶剤としては、基材の溶解性が高い溶剤を用いるのが好ましい。例えば、基材としてポリ乳酸を採用した場合、塗工後、基材表面がわずかに侵食され密着性が向上するが、溶解性が低いメタノール、エタノール、2-プロパノール(IPA)等が好ましく、アセトン、メチルエチルケトン(MEK)、テトラヒドロフラン(THF)、酢酸エチル等がより好ましい。密着のメカニズムについては、有機溶剤が基材表面を侵食し、そこへ微細セルロース繊維分散液の塗液が食いこむように密着しているものと考えられる。
 また、微細セルロース繊維は、結晶性が高く線膨張率が小さいため、基材上に被膜として形成した際、基材の熱収縮を抑制する効果がある。後述する積層体を構成した場合、基材と機能性材料で線膨張率に差があると、乾燥時や成形加工時に加熱した際、に層間で界面剥離を起こす問題があるが、基材上に微細セルロース繊維を含む被膜が形成されることで、基材の収縮を抑え、結果として基材からの剥離を防止することができる。
 微細セルロース繊維分散液には、添加剤としてアミノ基、エポキシ基、水酸基、カルボジイミド基、ポリエチレンイミン、イソシアネート、アルコキシ基、シラノール基、オキサゾリン基などの反応性官能基を有する化合物を、微細セルロース繊維分散液に添加しても良い。これらの添加剤は、酸化セルロース中の水酸基、カルボキシル基、アルデヒド基と反応し被膜の各性能、特に膜強度、耐水性、耐湿性、または基材との密着性向上に効果がある。
 シラノール基を有する化合物に該当するものとしては、シランカップリング剤、アルコキシシラン、それらの加水分解物等が挙げられる。シランカップリング剤は、ケイ素原子に結合した加水分解性基を少なくとも2個有するシラン化合物である。
 加水分解性基は、加水分解により水酸基となり得る基である。この加水分解が生じると、シランカップリング剤中にシラノール基(Si-OH)が生成する。
 加水分解性基としては、たとえばアルコキシ基、アセトキシ基、塩素原子等が挙げられ、これらの中でもアルコキシ基が好ましい。すなわち、シランカップリング剤としては、アルコキシシランが好ましい。上記アルコキシ基におけるアルキル基は、炭素数1~5のアルキル基が好ましく、メチル基またはエチル基がより好ましく、エチル基が特に好ましい。
 シランカップリング剤中の加水分解性基の数が2または3個である場合、シランカップリング剤は、さらに、反応性官能基を有することが好ましい。
 上記反応性官能基としては、一般的にシランカップリング剤にてSi原子に結合する有機基が有する官能基として用いられているものの中から、セルロースナノファイバー表面や基材表面に存在する官能基(カルボキシ基、水酸基等)と反応して化学結合(共有結合)を形成し得るもの、又は相互作用(水素結合)し得るものを適宜選択できる。具体例として、たとえばビニル基、エポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基、塩素原子、イソシアネート基等が挙げられる。これらの中でも、エポキシ基、メタクリロキシ基、アクリロキシ基、アミノ基が好ましく、特にアミノ基が好ましい。
 これらの反応性化合物、特にアルコキシ基、シラノール基を有する化合物を用いて被膜の各性能、特に、膜強度、耐水性、耐湿性、または基材との密着性向上の効果を高める場合、いかに均一に混合するかが重要になる。特に本発明の微細セルロース繊維分散液は、その粘度の低さや、アルコールと混合することができる点、ナトリウムなどの金属イオンがなく、これらの反応性の凝集や不均一な反応を抑えることができるため、好ましい。
 さらに、添加剤として、無機層状化合物を添加して使用してもよい。無機層状化合物とは、層状構造を有する結晶性の無機化合物をいい、例えば、カオリナイト族、スメクタイト族、マイカ族等に代表される粘土鉱物をあげることができる。無機層状化合物である限り、その種類、合成または天然由来、産地、粒径、アスペクト比等は、その要求特性に応じて適宜選択することができ、特に限定されない。一般的には、スメクタイト族の無機層状化合物として、モンモリロナイト、ヘクトライト、サポナイト等をあげることができ、これらの中でも、塗液中の安定性や、塗工性等の点から好ましいものとしてモンモリロナイトをあげることができる。無機層状化合物の添加は、特にガスバリア性の向上に効果がある。
 また、得られた微細セルロース繊維は、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂などの樹脂と混合して複合組成物とすることができる。さらに、その複合組成物を用いて、均一かつ透明な複合材料を形成することができる。複合組成物は、得られる複合材料の機械的強度向上、低線膨張率化、高弾性率化に効果がある。
 特に、水系の上記樹脂を用いて複合組成物を形成する場合、より均一な組成物となり、成形物中の繊維分散性も高く、上記の効果も高い。また、エマルジョン系の上記の樹脂を用いて複合組成物を形成する場合、乾燥エネルギーが低く押さえられる上、エマルジョンの分散性や安定性も高く、再凝集・沈殿などが起こらず、かつ多様な樹脂との複合化が可能となる。
 複合組成物は、微細セルロース繊維と樹脂のほかに、必要に応じて、シランカップリング剤、レベリング剤、消泡剤、無機系粒子、有機系粒子、潤滑剤、帯電防止剤、紫外線吸収剤、顔料、染料、光安定剤、酸化防止剤、可塑剤、難燃剤、分散剤、発泡剤、充填剤などの各種添加剤等を含んでもよい。
 複合組成物を用いて形成される複合材料としては、塗料、インキ、透明基材、フィルム基材、成形体、容器、筐体、電子部材などが挙げられる。その中でも、複合組成物を用いて形成される複合材料としては、複合組成物を用いることによる機械的強度向上、低線膨張率化、高弾性率化の点から、透明基材としての用途が好ましい。
 本発明の微細セルロース繊維分散液は、水系樹脂のほか無溶剤や溶剤系樹脂に添加しても凝集や沈殿を生じることなく均一に分散し複合化することが可能である。
 次に、本発明に係る微細セルロース繊維分散液を用いて形成されるセルロースフィルム、積層体について説明する。
(セルロースフィルム)
 本発明の微細セルロース繊維分散液は、キャスト法または基材上にコーティング、押出しにより製膜した後、乾燥させ剥離するなどの方法により、セルロースフィルムの自立膜を形成するための材料として用いることが可能である。本発明の微細セルロース繊維分散液は、有機アルカリを用いているため、微細セルロース繊維分散液の粘度を低下させ、固形分濃度が2%以上に上げることができる。これにより、高濃度の微細セルロース繊維分散液を用いることができるため、厚膜のフィルム基材も容易に形成することができる。
 この際、乾燥エネルギーを低下させるという点で、微細セルロース繊維分散液が前述の水と水溶性有機溶剤との混合溶剤を含むと好適である。このとき用いられる水溶性有機溶剤は、特にコストや沸点の面から、メタノール、エタノール、1-プロパノール、2-プロパノール、などの低分子量アルコールやアセトン、メチルエチルケトンなどのケトン類、が好ましい。形成されたセルロースフィルムは、燃料電池の絶縁膜や電解質膜、表示部材への応用が期待できる。
 さらに、微細セルロース繊維分散液が、水とアルコールとの混合溶剤を含む場合、乾燥後の塗膜に分散媒が残りにくく緻密な膜が形成できるため、フィルムの機械的強度と耐水性を向上させることができる。
(積層体)
 また、微細セルロース繊維分散液は、例えば、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、マイクログラビアコート法、コンマコート法、エアナイフコート法、バーコート法、メイヤーバーコート法、ディップコート法、ダイコート法、スプレーコート法、スリットコート法、スクリーン印刷法など公知の塗工方法によって基材上に塗工し、積層体とすることができる。
 基材としては、特に限定されず、一般的に使用されている種々のシート状の基材(フィルム状のものを含む)の中から、用途に応じて適宜選択して使用することができる。このような基材の材質としては、例えば、紙、板紙、ポリ乳酸、ポリブチルサクシネート等の生分解性プラスチック、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン等)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系樹脂(ナイロン-6、ナイロン-66等)、ポリ塩化ビニル系樹脂、ポリイミド系樹脂、これらの高分子を構成するモノマーのいずれか2種以上の共重合体等が挙げられる。基材は、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤等の公知の添加剤を含有してもよい。
 ここで、基材として、特に、紙やポリ乳酸、ポリブチルサクシネート等の生分解性プラスチック、バイオポリエチレン等、バイオマス由来材料からできた基材を用いると、環境負荷の少ない天然物由来材料である微細セルロース繊維の利点を最大限に生かすことができるため、好ましい。
 基材は、表面に、コロナ処理、プラズマ処理、オゾン処理、フレーム処理等の表面処理が施されていてもよい。表面処理を施すことで、表面に積層される層(微細セルロース繊維分散液を有する層)との濡れ性や密着性がさらに向上する。これらの表面処理は公知の方法により実施できる。
 基材の厚さは、積層体の用途に応じて適宜設定できる。例えば、包装材料として用いられる場合、通常、10μm以上200μm以下の範囲内であり、10μm以上100μm以下が好ましい。
 微細セルロース繊維分散液の塗膜をオーブン等によって乾燥させることにより、基材上に微細セルロース繊維の被膜が形成できる。この際、塗膜の表面張力を低下させて、塗工の際のはじきを抑えて濡れ性を向上させるため、かつ乾燥エネルギーを低下させるため、微細セルロース繊維分散液が、水とアルコールなどの混合溶剤であると好適である。また、上記と同様の理由により、塗膜の機械的強度やガスバリア性も向上させることができる。アルコールは、上記の様な低分子量アルコールが好ましい。
 また、微細セルロース繊維分散液は、微細セルロース繊維と有機溶剤を含む接着用、アンカーコート用、又はプライマー用組成物として用いることができる。特に、微細セルロース繊維分散液は、ポリ乳酸等の基材上に塗工することにより使用し、基材への塗工性に優れ、密着性も高いバイオマス由来の膜を形成するものである。
 例えば、アンダーコート層(第一被膜層)として微細セルロース繊維分散液の膜を形成した後、後述するガスバリア性材料やインク等の機能性材料からなる機能性材料層(第二被膜層)を積層して積層体とすることで、基材との密着性の高い機能性積層体を提供することができる。機能性材料層は、微細セルロース繊維の膜上に、上述した公知の塗工方法や印刷方法により形成することができる。
 特に、機能性材料層が微細セルロース繊維を含む塗液からなる場合、微細セルロース繊維分散液からなるアンダーコート層と親和性が高く、はじきを抑え、密着性よく形成することが可能となる。
 さらに、必要に応じて、上述のセルロースフィルムや積層体に、さらに、熱溶着が可能な熱可塑性樹脂層、印刷層、接着層、帯電防止層、反射防止層、防眩層、偏光層、位相差層、傷防止や防汚のための保護層、蒸着層、酸素等のガスバリア層、水蒸気バリア層、薬剤バリア層、吸着層、触媒層などの各種機能性材料層を設けてもよい。
 上記機能性材料層のうち、蒸着層は、特にガスバリア性の向上に効果がある。
 蒸着層を構成する無機化合物としては、特に限定されず、従来、ガスバリア材等において蒸着膜を形成するために用いられているものが利用できる。具体例として、例えば、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化スズ等の無機酸化物が挙げられる。これらはいずれか1種を単独で用いても2種以上を併用してもよい。
 蒸着層の厚さは、用いられる無機化合物の種類・構成により最適条件が異なるが、一般的には数nm~500nmの範囲内、好ましくは5~300nmの範囲内で、所望のガスバリア性等を考慮して適宜選択される。この蒸着層の厚さが薄すぎると蒸着膜の連続性が維持されず、反対に厚すぎると可撓性が低下し、クラックが発生しやすくなって、蒸着層のガスバリア性が充分に発揮されないおそれがある。
 蒸着層は、真空蒸着法、スパッタリング法、プラズマ気相成長法(CVD法)等の公知の方法により形成できるほか、基材として、蒸着層が形成された市販のフィルム又はシートを用いることもできる。
 また、上記機能性材料層のうち、熱溶着が可能な熱可塑性樹脂層は、ヒートシールによる加工、密封等が可能であることから、包装材料として有用である。熱溶着可能な熱可塑性樹脂層としては、例えば、未延伸ポリプロピレンフィルム(CPP)等のポリプロピレンフィルム、低密度ポリエチレンフィルム(LDPE)、直鎖状低密度ポリエチレンフィルム(LLDPE)等のポリエチレンフィルム等が挙げられる。
 熱可塑性樹脂層は、通常、押し出し成形によって、又は接着剤層を介して、セルロースフィルムや積層体上に積層される。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は下記実施例に限定されるものではない。
(酸化セルロースの調製)
 セルロースとして汎用的に入手可能な針葉樹漂白パルプを用いた。
 セルロース30g(絶乾質量換算)を蒸留水600gに加え撹拌し、膨潤させた後ミキサーにより解繊した。ここに蒸留水1200gと、予め蒸留水200gに溶解させたTEMPOを0.3g、臭化ナトリウム3gの溶液を加え、2mol/L濃度の次亜塩素酸ナトリウム水溶液86gを滴下により添加し、酸化反応を開始した。反応温度は常に20℃以下に維持した。反応中は系内のpHが低下するが、0.5NのNaOH水溶液を逐次添加し、pH10に調整した。そして、3時間反応させた時点で、エタノール30gを添加し、反応を停止した。続いて反応液に0.5NのHClを滴下しpHを1.8まで低下させた。ナイロンメッシュを用いてこの反応液をろ過し、固形分をさらに水で数回洗浄し、反応試薬や副生成物を除去し、固形分濃度7%の水を含有した酸化セルロースを得た。
(官能基の導入量の測定)
 絶乾質量換算で0.2gの湿潤酸化セルロースをビーカーに量りとり、蒸留水を加えて60gとした。0.1MのNaCl水溶液を0.5mL加え、0.5Mの塩酸でpHを1.8とした後、0.5MのNaOH水溶液を滴下して伝導度測定を行った。測定は、pHが11程度になるまで続けた。弱酸の中和段階に相当する部分がカルボキシル基の含有量となるので、得られた伝導度曲線からNaOHの添加量を読み取ると、カルボキシル基の含有量は、1.6mmol/gであった。
 次に、絶乾質量換算で2g湿潤酸化セルロースに、0.5Mの酢酸20mLと蒸留水60mLと亜塩素酸ナトリウム1.8gを加え、pH4に調整し48時間反応させた。この後、上記と同様の手法でカルボキシル基の含有量を測定したところ、1.8mmol/gであった。これより、アルデヒド基の含有量は、0.2mmol/gと算出できた。
<実施例1>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水を加え400gの酸化セルロース懸濁液とした。10wt%水酸化テトラエチルアンモニウム(TEAH、関東化学社製)を用いてpH8に調整した。調製した分散液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<実施例2>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)にエタノール(EtOH)199gと蒸留水を加え、全体で400gの酸化セルロース懸濁液とした。10wt%水酸化テトラエチルアンモニウムを用いてpH8に調整した。調製した分散液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<比較例1>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水を加え400gの酸化セルロース懸濁液とした。水酸化ナトリウム水溶液(NaOH)を用いてpH8に調整した。調製した分散液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<比較例2>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)にエタノール199gと蒸留水を加え、全体で400gの酸化セルロース懸濁液とした。水酸化ナトリウム水溶液を用いてpH8に調整した。調製した分散液を回転刃つきミキサーにて60分間処理した。
(微細セルロース繊維分散液の透過率測定)
 実施例1、2および比較例1、2の微細セルロース繊維分散液の透明性を、分光光度計にて660nmの透過率測定を行うことで比較した。
(セルロースフィルム)
 実施例1、2および比較例1、2の微細セルロース繊維分散液を、角型プラスチック容器に流し込み、50℃で一晩乾燥させ、続いて120度で1時間乾燥させることによりセルロースフィルムを得た。
(ナトリウムイオン含有量の測定)
 X線マイクロアナライザーを用いたEPMA法により、セルロースフィルム中のナトリウムイオン量を測定した。
(膨潤性試験)
 セルロースフィルムを蒸留水に1分間浸漬し、浸漬前後での重量を比較することにより、セルロースフィルムの膨潤性試験(N=2)を行った。
 実施例1、2および比較例1、2の微細セルロース繊維分散液の透過率、およびセルロースフィルムのナトリウムイオン含有量と膨潤性試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、2および比較例1の微細セルロース繊維分散液は透過率70%以上であったのに対し、比較例2の微細セルロース繊維分散液は、ほとんど分散せず白濁したままであった。
 有機アルカリを用いて分散処理を行った実施例1、2のセルロースフィルムはナトリウムイオンが検出されなかった。
 実施例1および2のセルロースフィルムは比較例のセルロースフィルムに対し、水に対して膨潤しにくく、耐水性に優れていた。特に、分散媒としてエタノールを混合した実施例2は、膨潤時の重量変化をより小さく抑えることができた。
<実施例3>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)に蒸留水と、10wt%水酸化テトラメチルアンモニウム(TMAH、関東化学社製)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<実施例4>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)に蒸留水と、10wt%水酸化テトラエチルアンモニウムを加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<実施例5>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)に蒸留水と、0.4mol/l水酸化テトラn-ブチルアンモニウム(TBAH、関東化学社製)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<実施例6>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース114.29g(固形分8g)に蒸留水と、10wt%水酸化テトラエチルアンモニウムを加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<実施例7>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)にエタノール199gと蒸留水と、10wt%水酸化テトラエチルアンモニウムを加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<比較例3>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)に蒸留水と、0.5N水酸化ナトリウム水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<比較例4>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース114.29g(固形分8g)に蒸留水と、0.5N水酸化ナトリウム水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
<比較例5>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース28.57g(固形分2g)にエタノール199gと蒸留水と、0.5N水酸化ナトリウム水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。
(微細セルロース繊維分散液の透過率測定)
 実施例3~7および比較例3~5の微細セルロース繊維分散液の透明性を、分光光度計にて660nmの透過率測定を行うことで比較した。
(微細セルロース繊維分散液の粘度測定)
 実施例3~7および比較例3~5の微細セルロース繊維分散液のせん断粘度を、レオメータ(HAAKE社 MARS)にて傾斜角1°、コーン直径35mmのコーンプレートを用いて測定した。測定部を23℃に温調し、せん断速度0.01~100s-1について連続的にせん断粘度を測定し、せん断速度1s-1のときの値を求めた。また、実施例3~5および比較例3の微細セルロース繊維分散液のせん断速度1s-1のときとせん断速度10s-1の時のせん断粘度の比η1s-1/η10s-1よりTI値を求めた。
(微細セルロース繊維分散液の接触角測定)
 実施例3~7および比較例3~5の微細セルロース繊維分散液の、PETフィルム基材(12μm厚、コロナ処理面)に対する接触角を、自動接触角計(協和界面科学 CA―V)にて測定した。測定は液滴法にて行い、着滴から20秒後の接触角を測定した。
(セルロースフィルム)
 実施例3~7および比較例3~5の微細セルロース繊維分散液を、角型プラスチック容器に流し込み、50℃で一晩乾燥させ、続いて120度で1時間乾燥させることによりセルロースフィルムを得た。
(ナトリウムイオン含有量の測定)
 X線マイクロアナライザーを用いたEPMA法により、セルロースフィルム中のナトリウムイオン量を測定した。
 実施例3~7および比較例3~5の微細セルロース繊維分散液の透過率、せん断粘度、TI値、接触角、およびセルロースフィルムのナトリウム含有量を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3~7の微細セルロース繊維分散液は比較例3~5の微細セルロース繊維分散液に対し高い透過率であった。一方、比較例4、5の微細セルロース繊維分散液は、十分に分散せず白濁したままであった。また、有機アルカリにより調製した微細セルロース繊維分散液は、微細セルロース繊維分散液の粘度とチキソ性が低下した。分散媒にアルコールを用いると、基材に対する接触角が小さくなり、濡れ性が向上した。さらに、有機アルカリを用いて分散処理を行った実施例3~7のセルロースフィルムはナトリウムイオンが検出されなかった。
 次に、実施例8~11および比較例6~9について説明する。
(酸化セルロースの調製)
 セルロースとして汎用的に入手可能な針葉樹漂白パルプを用いた。
 セルロース60g(絶乾質量換算)を蒸留水1000gに加え撹拌し、膨潤させた後ミキサーにより解繊した。ここに蒸留水2200gと、予め蒸留水400gに溶解させたTEMPOを0.6g、臭化ナトリウム6gの溶液を加え、2mol/L濃度の次亜塩素酸ナトリウム水溶液172gを滴下により添加し、酸化反応を開始した。反応温度は常に30℃以下に維持した。反応中は系内のpHが低下するが、0.5NのNaOH水溶液を逐次添加し、pH10に調整した。NaOH水溶液の添加量をモニタリングをしながら反応を続け、4時間反応させた時点で、エタノール60gを添加し、反応を停止した。続いて反応液に0.5NのHClを滴下しpHを1.8まで低下させた。ナイロンメッシュを用いてこの反応液をろ過し、固形分をさらに水で数回洗浄し、反応試薬や副生成物を除去し、固形分濃度7%の水を含有した酸化セルロースを得た。
(官能基の導入量の測定)
 絶乾質量換算で0.2gの湿潤酸化セルロースをビーカーに量りとり、蒸留水を加えて60gとした。0.1MのNaCl水溶液を0.5mL加え、0.5Mの塩酸でpHを1.8とした後、0.5MのNaOH水溶液を滴下して伝導度測定を行った。測定は、pHが11程度になるまで続けた。弱酸の中和段階に相当する部分がカルボキシル基の含有量となるので、得られた伝導度曲線からNaOHの添加量を読み取ると、カルボキシル基の含有量は、2.0mmol/gであった。
 次に、絶乾質量換算で2g湿潤酸化セルロースに、0.5Mの酢酸20mLと蒸留水60mLと亜塩素酸ナトリウム1.8gを加え、pH4に調整し48時間反応させた。この後、上記と同様の手法でカルボキシル基の含有量を測定したところ、2.1mmol/gであった。これより、アルデヒド基の含有量は、0.1mmol/gと算出できた。
<実施例8>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、10wt%水酸化テトラエチルアンモニウム(TEAH、関東化学社製)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへメタノール9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
<実施例9>
 実施例8で用いたメタノールをエタノールに変更したほかは、実施例8と同様にして微細セルロース繊維分散液を調製した。
<実施例10>
 実施例8で用いたメタノールを2-プロパノール(IPA)に変更したほかは、実施例8と同様にして微細セルロース繊維分散液を調製した。
<実施例11>
 実施例8で用いたメタノールをアセトンに変更したほかは、実施例8と同様にして微細セルロース繊維分散液を調製した。
<比較例6>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、0.5N水酸化ナトリウム水溶液(NaOH)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへメタノール9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
<比較例7>
 比較例6で用いたメタノールをエタノールに変更したほかは、比較例6と同様にして微細セルロース繊維分散液を調製した。
<比較例8>
 比較例6で用いたメタノールを2-プロパノール(IPA)に変更したほかは、比較例6と同様にして微細セルロース繊維分散液を調製した。
<比較例9>
 比較例6で用いたメタノールをアセトンに変更したほかは、比較例6と同様にして微細セルロース繊維分散液を調製した。
(微細セルロース繊維分散液の透過率測定)
 実施例8~11および比較例6~9の微細セルロース繊維分散液の透明性を、分光光度計にて660nmの透過率測定を行うことで比較した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例8~11の微細セルロース繊維分散液は、いずれの溶剤を添加しても目視上分散液の白濁や凝集が無く、透過率も低下しなかった。一方、比較例6~9の微細セルロース繊維分散液では、エタノール、2-プロパノール、アセトンを添加すると、目視上液が白濁し不均一となり、透過率も低下した。すなわち、アルカリとして水酸化ナトリウムを用いた場合、得られた微細セルロース繊維分散液に水溶性有機溶剤加えると、分散させた微細セルロース繊維が凝集し、微細セルロース繊維分散液の凝集白濁、不均一化を起こすことがわかった。
 次に、実施例12~15および比較例10、11について説明する。
(酸化セルロースの調製)
 セルロースとして汎用的に入手可能な針葉樹漂白パルプを用いた。
 セルロース60g(絶乾質量換算)を蒸留水1000gに加え撹拌し、膨潤させた後ミキサーにより解繊した。ここに蒸留水2200gと、予め蒸留水400gに溶解させたTEMPOを0.6g、臭化ナトリウム6gの溶液を加え、2mol/L濃度の次亜塩素酸ナトリウム水溶液172gを滴下により添加し、酸化反応を開始した。反応温度は常に20℃以下に維持した。反応中は系内のpHが低下するが、0.5NのNaOH水溶液を逐次添加し、pH10に調整した。NaOH水溶液の添加量をモニタリングをしながら反応を続け、4時間反応させた時点で、エタノール60gを添加し、反応を停止した。続いて反応液に0.5NのHClを滴下しpHを1.8まで低下させた。ナイロンメッシュを用いてこの反応液をろ過し、固形分をさらに水で数回洗浄し、反応試薬や副生成物を除去し、固形分濃度7%の水を含有した酸化セルロースを得た。
(官能基の導入量の測定)
 絶乾質量換算で0.2gの湿潤酸化セルロースをビーカーに量りとり、蒸留水を加えて60gとした。0.1MのNaCl水溶液を0.5mL加え、0.5Mの塩酸でpHを1.8とした後、0.5MのNaOH水溶液を滴下して伝導度測定を行った。測定は、pHが11程度になるまで続けた。弱酸の中和段階に相当する部分がカルボキシル基の含有量となるので、得られた伝導度曲線からNaOHの添加量を読み取ると、カルボキシル基の含有量は、2.0mmol/gであった。
 次に、絶乾質量換算で2g湿潤酸化セルロースに、0.5Mの酢酸20mLと蒸留水60mLと亜塩素酸ナトリウム1.8gを加え、pH4に調整し48時間反応させた。この後、上記と同様の手法でカルボキシル基の含有量を測定したところ、2.1mmol/gであった。これより、アルデヒド基の含有量は、0.1mmol/gと算出できた。
<実施例12>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、10wt%水酸化テトラエチルアンモニウム(TEAH、関東化学社製)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへアセトン9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
<実施例13>
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、10wt%水酸化テトラブチルホスホニウム(TBPH、関東化学社製)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへアセトン9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
<実施例14>
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、0.1Nアンモニア水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへ水溶性ポリカルボジイミドSV-02(日清紡製)を0.1g添加した。アセトン9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
<実施例15>
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、0.1Nアンモニア水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへエポクロスWS-500(日本触媒製)を0.05g添加した。アセトン9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
(積層体の作製)
 基材として、表面をプラズマ処理した膜厚25μmのポリ乳酸(PLA)フィルム用意した。基材のプラズマ処理面上に、得られた実施例12~15の微細セルロース繊維分散液を、バーコーターを用いて塗布した後、70℃で20分間乾燥処理することにより膜厚約200nmの膜(第一被膜層)を形成した。この第一被膜層をアンダーコート層とし、該第一被膜層上にガスバリア性材料をバーコーターにより塗工した。ガスバリア性材料としては、公知の微細セルロース繊維を含む塗液を用いた。塗工後、70℃で30分間乾燥することにより、膜厚約0.5μmのガスバリア層(第二の被膜層)を形成した。
 さらに、ガスバリア層上にウレタンポリオール系接着剤を用いて、ドライラミネートにより膜厚70μmのポリプロピレン(PP)フィルムを貼り合わせることにより、微細セルロース繊維分散液により形成される第一被膜層と、ガスバリア性材料を有する第二被膜層を含む4層積層体を得た。
<比較例10>
(微細セルロース繊維分散液の調製)
 上記により調製した固形分濃度7%の酸化セルロース57.14g(固形分4g)に蒸留水と、0.5N水酸化ナトリウム水溶液(NaOH)を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液を得た。得られた微細セルロース繊維分散液を10g量りとり、そこへアセトン9.95gと蒸留水0.05gを加えて撹拌し、固形分濃度0.5%の微細セルロース繊維分散液を調製した。
(積層体の作製)
 得られた微細セルロース繊維分散液を用いて、実施例12~15と同様に、微細セルロース繊維分散液により形成される第一被膜層と、ガスバリア性材料を有する第二被膜層を含む4層積層体を作製した。
<比較例11>
(積層体の作製)
 基材として、表面をプラズマ処理した膜厚25μmのポリ乳酸(PLA)フィルム用意した。基材のプラズマ処理面上に、上記実施例12と同様のガスバリア性材料をバーコーターにより塗工し、70℃で30分間乾燥することにより、膜厚約0.5μmのガスバリア層を形成した。
 さらに、ガスバリア層上にウレタンポリオール系接着剤を用いて、ドライラミネートにより膜厚70μmのポリプロピレン(PP)フィルムを貼り合わせることにより、ガスバリア層を含む3層の積層体を得た。
<透過率測定>
 実施例12~15および比較例10の微細セルロース繊維分散液の透明性を、分光光度計にて660nmの透過率測定を行うことで比較した。測定結果を表4に示す。
<ぬれ性の評価>
 実施例12~15、比較例10の各積層体について、PLA基材上へ微細セルロース繊維分散液を塗工したときのぬれ性を、実施例12~15、比較例10、11の各積層体について、アンダーコート層上へガスバリア性材料を塗工したときのぬれ性を、それぞれ目視により評価した。評価結果を表4に示す。
<密着性評価>
 実施例12~15、比較例10の各積層体について、基材上の微細セルロース繊維分散液により形成された膜を、クロスカットガイド「CCJ-1」(コーテック社製)を用い、縦×横にそれぞれ10本×10本の碁盤目(間隔1mm、計100カット)に切り、その上にセロテープ(登録商標)(ニチバン社製「CT24」)を貼り付けて剥離試験を行った。剥離後、基材表面に、剥離せず残った残存碁盤目数(残った碁盤目の数/100)を数えた。評価結果を表4に示す。
<密着強度の測定>
 実施例12~15、比較例10、11の各積層体を、幅15mm×長さ10cmの短冊状に切り抜き、試験片とした。該試験片について、JIS-K-7127に準拠して、引張り速度300mm/minでT字剥離を行って、基材とPPフィルムの間の密着強度(N/15mm)を測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例12~15は、微細セルロース繊維分散液と有機溶剤が均一に混合し、透明性の高い微細セルロース繊維分散液を調製することができた。そして、この微細セルロース繊維分散液によって基材上に形成されたアンダーコート層(第一被膜層)は、基材に対するぬれ性も高く、はじきの発生がなかった。また、基材に対するアンダーコート層の密着性の向上も確認された。さらに、ガスバリア性材料を含む機能性材料層(第二被膜層)も、アンダーコート層に対するぬれ性が高く、密着強度も高いため、塗工性の向上が確認された。
 一方、比較例10、11は、基材へのぬれ性が低く、均一な塗膜を形成することができなかった。このように、本発明の微細セルロース繊維分散液は、透過率、ぬれ性、密着性評価、密着強度に優れ、ガスバリア層、水蒸気バリア層等の各種機能性材料被膜として塗工性、密着性よく基材上に形成できることが実証された。したがって、本発明の微細セルロース繊維分散液の製造方法によって作製された微細セルロース繊維分散液を用いることで、基材との密着性が向上し、機械的に安定した積層体を提供することができる。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。

Claims (20)

  1.  少なくとも、微細セルロース繊維と、アンモニアまたは有機アルカリとを含むことを特徴とする微細セルロース繊維分散液。
  2.  前記有機アルカリが、アミン類または水酸化物イオンを対イオンとする有機オニウム化合物のいずれかであることを特徴とする請求項1に記載の微細セルロース繊維分散液。
  3.  前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム化合物であることを特徴とする請求項1に記載の微細セルロース繊維分散液。
  4.  前記微細セルロース繊維が、セルロースを、水系媒体中で、アンモニア水または有機アルカリを用いてpH4以上pH12以下に調整し、分散処理して得られたものであることを特徴とする請求項1に記載の微細セルロース繊維分散液。
  5.  前記水系媒体が、水、または水とアルコールの混合液であり、前記アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールのいずれかであることを特徴とする請求項4に記載の微細セルロース繊維分散液。
  6.  さらに、水溶性有機溶剤を含むことを特徴とする請求項1に記載の微細セルロース繊維分散液。
  7.  前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項6に記載の微細セルロース繊維分散液。
  8.  前記水溶性有機溶剤の量が、微細セルロース繊維分散液全体に対して0.1重量%以上であることを特徴とする請求項7に記載の微細セルロース繊維分散液。
  9.  さらに、反応性官能基を有する化合物からなる添加剤を含むことを特徴とする請求項1に記載の微細セルロース繊維分散液。
  10.  前記微細セルロース繊維が、酸化反応によりカルボキシル基が導入された酸化セルロースであって、カルボキシル基の含有量が、0.1mmol/g以上2mmol/g以下である特徴とする請求項1に記載の微細セルロース繊維分散液。
  11.  前記微細セルロース繊維の数平均繊維径が、0.003μm以上0.050μm以下であることを特徴とする請求項10に記載の微細セルロース繊維分散液。
  12.  請求項1~11のいずれか一項に記載の微細セルロース繊維分散液を乾燥して形成したことを特徴とするセルロースフィルム。
  13.  請求項1~11のいずれか一項に記載の微細セルロース繊維分散液を、基材上の少なくとも片面に塗布して、被膜を形成したことを特徴とする積層体。
  14.  前記被膜が、アンダーコート層であることを特徴とする請求項13に記載の積層体。
  15.  セルロースを酸化処理して酸化セルロースを得る酸化工程と、
     前記酸化工程で得られた酸化セルロースを、アンモニア水または有機アルカリを用いてpH4以上pH12以下に調整された水系媒体中で分散処理して微細セルロース繊維分散液を得る分散工程と
    を備えることを特徴とする微細セルロース繊維分散液の製造方法。
  16.  前記有機アルカリが、アミン類または水酸化物イオンを対イオンとする有機オニウム化合物のいずれかであることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法。
  17.  前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム化合物であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法。
  18.  前記水系媒体が、水、または水とアルコールの混合液であり、前記アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールのいずれかであることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法。
  19.  前記水系媒体が、水溶性有機溶剤を含み、前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法。
  20.  前記分散工程の後、得られた微細セルロース繊維分散液に水溶性有機溶剤を加える調製工程を備え、前記水溶性有機溶剤が、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリルまたは酢酸エチルから選択される1または2以上の有機溶剤であることを特徴とする請求項15に記載の微細セルロース繊維分散液の製造方法。
PCT/JP2011/054988 2010-03-09 2011-03-03 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体 WO2011111612A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127025404A KR101795824B1 (ko) 2010-03-09 2011-03-03 미세 셀룰로오스 섬유 분산액 및 그의 제조 방법, 셀룰로오스 필름 및 적층체
JP2012504426A JP5765331B2 (ja) 2010-03-09 2011-03-03 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体
CN201180012862.0A CN102791789B (zh) 2010-03-09 2011-03-03 微细纤维素纤维分散液及其制造方法、纤维素膜以及层叠体
US13/583,126 US9534091B2 (en) 2010-03-09 2011-03-03 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
EP11753271.3A EP2546297B1 (en) 2010-03-09 2011-03-03 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
US15/342,510 US9850352B2 (en) 2010-03-09 2016-11-03 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010051616 2010-03-09
JP2010-051616 2010-03-09
JP2010157572 2010-07-12
JP2010-157571 2010-07-12
JP2010-157572 2010-07-12
JP2010157571 2010-07-12
JP2010215966 2010-09-27
JP2010-215966 2010-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/583,126 A-371-Of-International US9534091B2 (en) 2010-03-09 2011-03-03 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body
US15/342,510 Division US9850352B2 (en) 2010-03-09 2016-11-03 Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body

Publications (1)

Publication Number Publication Date
WO2011111612A1 true WO2011111612A1 (ja) 2011-09-15

Family

ID=44563416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054988 WO2011111612A1 (ja) 2010-03-09 2011-03-03 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体

Country Status (6)

Country Link
US (2) US9534091B2 (ja)
EP (1) EP2546297B1 (ja)
JP (1) JP5765331B2 (ja)
KR (1) KR101795824B1 (ja)
CN (1) CN102791789B (ja)
WO (1) WO2011111612A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067904A (ja) * 2011-09-22 2013-04-18 Nippon Paper Industries Co Ltd 酸化パルプの洗浄及び脱水方法
JP2014084431A (ja) * 2012-10-25 2014-05-12 Oji Holdings Corp 微細セルロース繊維含有シートの製造方法
CN103842384A (zh) * 2011-12-09 2014-06-04 株式会社大赛璐 纤维素水溶液的制造方法和纤维素衍生物的制造方法
JP2014141772A (ja) * 2012-12-28 2014-08-07 Kao Corp 酸化セルロース繊維の製造方法
JP2014180777A (ja) * 2013-03-18 2014-09-29 Mitsubishi Chemicals Corp 繊維樹脂成型体の製造方法
JP2015101694A (ja) * 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法
EP2826792A4 (en) * 2012-03-14 2015-10-21 Jujo Paper Co Ltd PROCESS FOR PRODUCING A DISPERSION LIQUID OF ANION-MODIFIED CELLULOSE NANOFIBERS
JP2015183096A (ja) * 2014-03-24 2015-10-22 凸版印刷株式会社 コーティング剤、バリアフィルム、包装フィルム、及びコーティング剤の製造方法
JP2015196693A (ja) * 2014-03-31 2015-11-09 凸版印刷株式会社 微細セルロース繊維分散液、及びその製造方法、セルロース積層体
EP2867283A4 (en) * 2012-06-28 2016-01-27 Univ Aalto Foundation TOPOGRAPHICALLY FUNCTIONALIZED NFC FILM AS AN IMMUNE PLATFORM FOR FAST DIAGNOSIS
JP2016160406A (ja) * 2015-03-05 2016-09-05 凸版印刷株式会社 ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法
JP2017002231A (ja) * 2015-06-12 2017-01-05 王子ホールディングス株式会社 微細繊維状セルロース濃縮物の製造方法、および微細繊維状セルロースを含む組成物
JP2017008175A (ja) * 2015-06-19 2017-01-12 日本製紙株式会社 セルロースナノファイバーの乾燥固形物の製造方法
JP2017022044A (ja) * 2015-07-14 2017-01-26 国立大学法人九州大学 燃料電池及び電解質膜として用いられるナノセルロース膜
JP2017052943A (ja) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 微細繊維状セルロース再分散スラリーの製造方法および微細繊維状セルロース再分散スラリー
JP2017105040A (ja) * 2015-12-09 2017-06-15 富士通株式会社 セルロースナノファイバーを含有する塗装膜、電子機器筐体及びセルロースナノファイバーを含有する塗装膜の形成方法
JP2018044097A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 接着剤組成物
JP2018059013A (ja) * 2016-10-07 2018-04-12 株式会社大成化研 潤滑油
KR20180051634A (ko) 2015-09-30 2018-05-16 오지 홀딩스 가부시키가이샤 시트 및 적층체
WO2018110525A1 (ja) 2016-12-12 2018-06-21 王子ホールディングス株式会社 繊維状セルロース含有組成物
JP2018100361A (ja) * 2016-12-21 2018-06-28 花王株式会社 セルロース混合物の製造方法
JP2018188673A (ja) * 2018-09-05 2018-11-29 凸版印刷株式会社 セルロースナノファイバー分散体を用いた膜および分散体の製造方法
JP2018188633A (ja) * 2017-05-09 2018-11-29 凸版印刷株式会社 硬化フィルム形成用組成物及び硬化フィルム
US10266968B2 (en) * 2013-12-26 2019-04-23 Kao Corporation Micro cellulose fiber complex
JP2019104833A (ja) * 2017-12-13 2019-06-27 日本製紙株式会社 水系塗料組成物、フィルムおよびフィルムの製造方法
WO2019163797A1 (ja) * 2018-02-23 2019-08-29 王子ホールディングス株式会社 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
JP2020015923A (ja) * 2019-10-16 2020-01-30 凸版印刷株式会社 セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー
WO2020045533A1 (ja) * 2018-08-30 2020-03-05 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JP2020073706A (ja) * 2020-02-18 2020-05-14 凸版印刷株式会社 ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法
JP2020132651A (ja) * 2019-02-12 2020-08-31 王子ホールディングス株式会社 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
JP2020200476A (ja) * 2016-09-16 2020-12-17 第一工業製薬株式会社 接着剤組成物
US20220275156A1 (en) * 2019-08-29 2022-09-01 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and solid additive
US20220281138A1 (en) * 2019-08-29 2022-09-08 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and carbon solids
US12030220B2 (en) * 2020-08-26 2024-07-09 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and carbon solids

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011118361A1 (ja) 2010-03-24 2013-07-04 凸版印刷株式会社 帯電防止用積層体およびこれを備えた積層材料
CN102803385B (zh) * 2010-04-06 2015-07-22 尤尼吉可株式会社 聚酰胺树脂组合物和聚酰胺树脂组合物的制造法
JP5888323B2 (ja) * 2011-03-18 2016-03-22 凸版印刷株式会社 積層体およびその製造方法ならびに成形容器
EP2759402B1 (en) * 2011-09-22 2021-03-24 Toppan Printing Co., Ltd. Laminate and method for manufacturing same, and gas barrier material
JP5823600B2 (ja) * 2013-12-26 2015-11-25 花王株式会社 微細セルロース繊維複合体
TWI667270B (zh) 2014-05-26 2019-08-01 日商王子控股股份有限公司 微細纖維及含微細纖維片的製造方法、由其得到的片及積層樹脂的樹脂複合體
CN105664864B (zh) * 2016-01-08 2018-05-01 中南大学 一种维管植物基多孔氧化聚合螯合吸附材料的制备方法与应用
CN108602896A (zh) * 2016-02-08 2018-09-28 日本制纸株式会社 改性羧甲基化纤维素纳米纤维分散液及其制造方法
DE112017006834T5 (de) * 2017-01-16 2019-09-26 Jgc Catalysts And Chemicals Ltd. Polierzusammensetzung
JP7172033B2 (ja) 2017-03-01 2022-11-16 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース含有組成物、繊維状セルロース分散液及び繊維状セルロースの製造方法
KR101856497B1 (ko) * 2017-05-22 2018-06-19 광성기업 주식회사 미소섬유상 셀룰로오스 및 이의 제조방법
JP6414284B2 (ja) * 2017-07-03 2018-10-31 凸版印刷株式会社 ガスバリア層形成用の塗工液、ガスバリア性積層体及び包装材料
TWI640434B (zh) * 2017-12-14 2018-11-11 明志科技大學 Composite separator and preparation method thereof
JP7388350B2 (ja) * 2018-05-02 2023-11-29 東洋製罐グループホールディングス株式会社 ナノセルロース含有成形物及びその製造方法
US11919974B2 (en) * 2018-08-03 2024-03-05 Toagosei Co., Ltd. Oxidized cellulose, method of producing oxidized cellulose and nanocellulose, and nanocellulose dispersion
KR101991647B1 (ko) * 2019-01-23 2019-06-21 김미순 패류 껍질을 이용한 식품포장용 항균 필름의 제조방법 및 이로부터 제조된 식품포장용 항균 필름
KR102317394B1 (ko) * 2019-04-12 2021-10-28 광성기업 주식회사 셀룰로오스를 포함하는 응집체화 된 컴파운드용 재료의 제조방법 및 그를 이용한 복합재료
CN114669199B (zh) * 2022-03-15 2023-07-25 山东大学 一种改性云母片-纳米纤维素复合纳滤膜及其制备方法
CN115337792A (zh) * 2022-08-12 2022-11-15 中国科学院上海高等研究院 一种以纤维素纳米纤维为基元材料的全生物可降解空气过滤复合膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279016A (ja) * 2000-03-31 2001-10-10 Oji Paper Co Ltd セルロース系生分解性シートおよびその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008274525A (ja) * 2007-04-06 2008-11-13 Asahi Kasei Corp 低目付セルロース不織布
JP2009057552A (ja) 2007-08-07 2009-03-19 Kao Corp ガスバリア用材料
JP2009155772A (ja) 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 微細セルロース繊維の製造方法
JP2009298972A (ja) * 2008-06-17 2009-12-24 Kao Corp セルロース繊維とその製造方法
JP2009299043A (ja) * 2008-05-13 2009-12-24 Mitsubishi Chemicals Corp 微細セルロース繊維分散液、高分子セルロース複合体及びセルロース繊維の解繊方法
JP2010059304A (ja) 2008-09-03 2010-03-18 Teijin Ltd エポキシ樹脂コンポジット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279696A (en) * 1980-06-20 1981-07-21 Armstrong World Industries, Inc. Process for forming friction materials
US5399762A (en) * 1993-06-09 1995-03-21 Lonza, Inc. Quaternary ammonium hydroxide compositions and preparation thereof
US5414079A (en) 1993-08-03 1995-05-09 Biocontrol Incorporated Oxidized cellulose
JP5021537B2 (ja) * 2007-03-28 2012-09-12 三洋化成工業株式会社 セルロースエーテルの製造方法
EP2022802B1 (de) 2007-08-10 2017-03-22 Dow Global Technologies LLC Nanopartikel aus geringfügig oxidierter Cellulose
CN101874043A (zh) * 2007-11-26 2010-10-27 国立大学法人东京大学 纤维素纳米纤维及其制造方法、纤维素纳米纤维分散液
US8012573B2 (en) 2007-12-21 2011-09-06 Mitsubishi Chemical Corporation Fiber composite
WO2009122982A1 (ja) 2008-03-31 2009-10-08 日本製紙株式会社 製紙用添加剤及びそれを含有する紙
JP5299890B2 (ja) 2008-08-10 2013-09-25 国立大学法人 東京大学 複合材料、機能材料、複合材料の製造方法、及び、複合材料薄膜の製造方法
JP5944098B2 (ja) 2009-12-11 2016-07-05 花王株式会社 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279016A (ja) * 2000-03-31 2001-10-10 Oji Paper Co Ltd セルロース系生分解性シートおよびその製造方法
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2008274525A (ja) * 2007-04-06 2008-11-13 Asahi Kasei Corp 低目付セルロース不織布
JP2009057552A (ja) 2007-08-07 2009-03-19 Kao Corp ガスバリア用材料
JP2009155772A (ja) 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 微細セルロース繊維の製造方法
JP2009299043A (ja) * 2008-05-13 2009-12-24 Mitsubishi Chemicals Corp 微細セルロース繊維分散液、高分子セルロース複合体及びセルロース繊維の解繊方法
JP2009298972A (ja) * 2008-06-17 2009-12-24 Kao Corp セルロース繊維とその製造方法
JP2010059304A (ja) 2008-09-03 2010-03-18 Teijin Ltd エポキシ樹脂コンポジット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546297A4

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067904A (ja) * 2011-09-22 2013-04-18 Nippon Paper Industries Co Ltd 酸化パルプの洗浄及び脱水方法
CN103842384A (zh) * 2011-12-09 2014-06-04 株式会社大赛璐 纤维素水溶液的制造方法和纤维素衍生物的制造方法
EP2826792A4 (en) * 2012-03-14 2015-10-21 Jujo Paper Co Ltd PROCESS FOR PRODUCING A DISPERSION LIQUID OF ANION-MODIFIED CELLULOSE NANOFIBERS
EP2867283A4 (en) * 2012-06-28 2016-01-27 Univ Aalto Foundation TOPOGRAPHICALLY FUNCTIONALIZED NFC FILM AS AN IMMUNE PLATFORM FOR FAST DIAGNOSIS
JP2014084431A (ja) * 2012-10-25 2014-05-12 Oji Holdings Corp 微細セルロース繊維含有シートの製造方法
JP2014141772A (ja) * 2012-12-28 2014-08-07 Kao Corp 酸化セルロース繊維の製造方法
JP2014180777A (ja) * 2013-03-18 2014-09-29 Mitsubishi Chemicals Corp 繊維樹脂成型体の製造方法
JP2015101694A (ja) * 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法
US10266968B2 (en) * 2013-12-26 2019-04-23 Kao Corporation Micro cellulose fiber complex
JP2015183096A (ja) * 2014-03-24 2015-10-22 凸版印刷株式会社 コーティング剤、バリアフィルム、包装フィルム、及びコーティング剤の製造方法
JP2015196693A (ja) * 2014-03-31 2015-11-09 凸版印刷株式会社 微細セルロース繊維分散液、及びその製造方法、セルロース積層体
JP2016160406A (ja) * 2015-03-05 2016-09-05 凸版印刷株式会社 ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法
JP2017002231A (ja) * 2015-06-12 2017-01-05 王子ホールディングス株式会社 微細繊維状セルロース濃縮物の製造方法、および微細繊維状セルロースを含む組成物
JP2017008175A (ja) * 2015-06-19 2017-01-12 日本製紙株式会社 セルロースナノファイバーの乾燥固形物の製造方法
JP2017022044A (ja) * 2015-07-14 2017-01-26 国立大学法人九州大学 燃料電池及び電解質膜として用いられるナノセルロース膜
JP2017052943A (ja) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 微細繊維状セルロース再分散スラリーの製造方法および微細繊維状セルロース再分散スラリー
JP7088273B2 (ja) 2015-09-10 2022-06-21 王子ホールディングス株式会社 微細繊維状セルロース再分散スラリーの製造方法および微細繊維状セルロース再分散スラリー
JP2021046551A (ja) * 2015-09-10 2021-03-25 王子ホールディングス株式会社 微細繊維状セルロース再分散スラリーの製造方法および微細繊維状セルロース再分散スラリー
KR20180051634A (ko) 2015-09-30 2018-05-16 오지 홀딩스 가부시키가이샤 시트 및 적층체
JP2017105040A (ja) * 2015-12-09 2017-06-15 富士通株式会社 セルロースナノファイバーを含有する塗装膜、電子機器筐体及びセルロースナノファイバーを含有する塗装膜の形成方法
JP2020200476A (ja) * 2016-09-16 2020-12-17 第一工業製薬株式会社 接着剤組成物
JP2018044097A (ja) * 2016-09-16 2018-03-22 第一工業製薬株式会社 接着剤組成物
JP2018059013A (ja) * 2016-10-07 2018-04-12 株式会社大成化研 潤滑油
WO2018110525A1 (ja) 2016-12-12 2018-06-21 王子ホールディングス株式会社 繊維状セルロース含有組成物
JP2018100361A (ja) * 2016-12-21 2018-06-28 花王株式会社 セルロース混合物の製造方法
JP2018188633A (ja) * 2017-05-09 2018-11-29 凸版印刷株式会社 硬化フィルム形成用組成物及び硬化フィルム
JP7077748B2 (ja) 2017-05-09 2022-05-31 凸版印刷株式会社 硬化フィルム形成用組成物及び硬化フィルム
JP2019104833A (ja) * 2017-12-13 2019-06-27 日本製紙株式会社 水系塗料組成物、フィルムおよびフィルムの製造方法
JP7014585B2 (ja) 2017-12-13 2022-02-01 日本製紙株式会社 水系塗料組成物、フィルムおよびフィルムの製造方法
WO2019163797A1 (ja) * 2018-02-23 2019-08-29 王子ホールディングス株式会社 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
JP7351305B2 (ja) 2018-08-30 2023-09-27 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JPWO2020045533A1 (ja) * 2018-08-30 2021-08-12 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
WO2020045533A1 (ja) * 2018-08-30 2020-03-05 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JP2018188673A (ja) * 2018-09-05 2018-11-29 凸版印刷株式会社 セルロースナノファイバー分散体を用いた膜および分散体の製造方法
JP2020132651A (ja) * 2019-02-12 2020-08-31 王子ホールディングス株式会社 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
US20220281138A1 (en) * 2019-08-29 2022-09-08 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and carbon solids
US20220280903A1 (en) * 2019-08-29 2022-09-08 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and liquid additive
US20220275156A1 (en) * 2019-08-29 2022-09-01 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and solid additive
JP2020015923A (ja) * 2019-10-16 2020-01-30 凸版印刷株式会社 セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー
JP7103327B2 (ja) 2019-10-16 2022-07-20 凸版印刷株式会社 セルロースナノファイバー分散体、ならびに製造方法及びセルロースナノファイバー
JP2020073706A (ja) * 2020-02-18 2020-05-14 凸版印刷株式会社 ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法
US12030220B2 (en) * 2020-08-26 2024-07-09 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and carbon solids
US12037469B2 (en) * 2020-08-26 2024-07-16 Dow Global Technologies Llc Method of making a homogeneous mixture of polyolefin solids and solid additive

Also Published As

Publication number Publication date
US20130000512A1 (en) 2013-01-03
US20170073475A1 (en) 2017-03-16
JPWO2011111612A1 (ja) 2013-06-27
KR20130018722A (ko) 2013-02-25
JP5765331B2 (ja) 2015-08-19
EP2546297B1 (en) 2016-06-08
US9850352B2 (en) 2017-12-26
KR101795824B1 (ko) 2017-11-08
CN102791789B (zh) 2015-10-21
EP2546297A1 (en) 2013-01-16
US9534091B2 (en) 2017-01-03
EP2546297A4 (en) 2013-11-13
CN102791789A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5765331B2 (ja) 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体
JP5928339B2 (ja) 積層体およびその製造方法
JP5704165B2 (ja) 膜形成用組成物およびシート
JP5879674B2 (ja) シートの製造方法
JP6175753B2 (ja) 積層体およびその製造方法
JP5617289B2 (ja) セルロース膜およびそれを用いた積層材料
JP5678450B2 (ja) ガスバリア材およびその製造方法
JP5350825B2 (ja) ガスバリア性積層体とその製造方法
JP6107320B2 (ja) 変性セルロースナノファイバー、その製造方法、ガスバリア層形成材料および、ガスバリア性積層体
JP6326721B2 (ja) ガスバリア性包装材およびその製造方法
JP6065498B2 (ja) セルロースナノファイバー積層体の製造方法
JP2016160406A (ja) ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法
JP5640698B2 (ja) 積層体およびその製造方法
JP5514533B2 (ja) ガスバリア性積層体
JP5195969B2 (ja) コーティング剤を用いた積層材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012862.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504426

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13583126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011753271

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127025404

Country of ref document: KR

Kind code of ref document: A