WO2020045533A1 - 繊維状セルロース含有組成物、液状組成物及び成形体 - Google Patents

繊維状セルロース含有組成物、液状組成物及び成形体 Download PDF

Info

Publication number
WO2020045533A1
WO2020045533A1 PCT/JP2019/033800 JP2019033800W WO2020045533A1 WO 2020045533 A1 WO2020045533 A1 WO 2020045533A1 JP 2019033800 W JP2019033800 W JP 2019033800W WO 2020045533 A1 WO2020045533 A1 WO 2020045533A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
fine fibrous
ion
containing composition
mass
Prior art date
Application number
PCT/JP2019/033800
Other languages
English (en)
French (fr)
Inventor
孟晨 趙
雄右 轟
裕一 野口
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2020539563A priority Critical patent/JP7351305B2/ja
Priority to KR1020217006993A priority patent/KR20210040430A/ko
Priority to US17/271,052 priority patent/US20210253830A1/en
Priority to CN201980056088.XA priority patent/CN112673061A/zh
Priority to EP19854453.8A priority patent/EP3845590A1/en
Publication of WO2020045533A1 publication Critical patent/WO2020045533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a fibrous cellulose-containing composition, a liquid composition, and a molded article.
  • cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like.
  • a fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is known in addition to a fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less.
  • Fine fibrous cellulose is attracting attention as a new material, and its use is diversified. For example, development of sheets, resin composites, and thickeners containing fine fibrous cellulose has been promoted.
  • fine fibrous cellulose is stably dispersed in an aqueous solvent, it is provided in the form of an aqueous dispersion and is often used for various purposes.
  • a composite or the like is produced by mixing fine fibrous cellulose with a resin, there is a demand that the fine fibrous cellulose be mixed with an organic solvent and used.
  • Patent Documents 1 to 3 a technique for producing a fine fibrous cellulose-containing dispersion in which fine fibrous cellulose is dispersed in a dispersion medium containing an organic solvent has been studied (Patent Documents 1 to 3).
  • Patent Document 1 discloses a fine fibrous cellulose composite in which a surfactant is adsorbed to fine fibrous cellulose having a carboxy group.
  • a method of agglomerating and dispersing the fine fibrous cellulose in an organic solvent or a method of obtaining fine fibrous cellulose by refining the cellulose fibers in an organic solvent is used. It has been disclosed.
  • Patent Document 2 discloses a process of preparing an aqueous dispersion of fine fibrous cellulose having a carboxylate type group, and converting the carboxylate type group to a carboxylic acid amine salt type of an amine having an organic group.
  • Patent Document 3 discloses that a fine fibrous cellulose in which a polyetheramine having a predetermined structure is bonded to part or all of an anionic functional group of the fine fibrous cellulose, an organic solvent, and a coloring agent.
  • An oil-based ink composition is disclosed.
  • the present inventors have developed a fine fibrous cellulose-containing composition in which an organic solvent slurry in which fine fibrous cellulose is dispersed can exhibit high viscosity and high transparency in order to solve such problems of the prior art.
  • the study was conducted for the purpose of providing.
  • the present inventors have found that a fibrous cellulose-containing composition containing an organic onium ion as a counter ion of an anionic group that fine fibrous cellulose has, It has been found that by setting the amount of metal ions contained in the composition to a predetermined range, the organic solvent slurry in which the fine fibrous cellulose-containing composition is dispersed can exhibit high viscosity and high transparency.
  • the present invention has the following configuration.
  • a fibrous cellulose-containing composition having a fiber width of 1000 nm or less and containing fibrous cellulose having an anionic group and metal ions, Including an organic onium ion as a counter ion of the anionic group, A fibrous cellulose-containing composition in which the content of metal ions in the absolutely dry solid content is 80 ppm or more and 700 ppm or less when the solid content contained in the fibrous cellulose-containing composition is in a completely dried state.
  • [3] The fibrous cellulose-containing composition according to [1] or [2], wherein the organic onium ion satisfies at least one condition selected from the following (a) and (b): (A) containing a hydrocarbon group having 5 or more carbon atoms; (B) The total number of carbon atoms is 17 or more.
  • [5] The fibrous cellulose-containing composition according to any one of [1] to [4], wherein the metal ion is at least one selected from alkali metal ions and alkaline earth metal ions.
  • the liquid composition according to [9] further including a resin.
  • a fine fibrous cellulose-containing composition in which an organic solvent slurry in which fine fibrous cellulose is dispersed can exhibit high viscosity and high transparency.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
  • the present invention relates to a fibrous cellulose-containing composition having a fiber width of 1,000 nm or less and containing fibrous cellulose having an anionic group and metal ions.
  • the fibrous cellulose-containing composition of the present invention contains an organic onium ion as a counter ion of an anionic group, and when the solid content contained in the fibrous cellulose-containing composition is in a completely dried state, Is from 80 ppm to 700 ppm.
  • fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
  • the fibrous cellulose-containing composition of the present invention has the above configuration, when the fine fibrous cellulose-containing composition is dispersed in an organic solvent, the organic solvent slurry exhibits high viscosity and high transparency. Can be.
  • the fibrous cellulose-containing composition of the present invention contains an organic onium ion as a counter ion of the anionic group of the fine fibrous cellulose, and the amount of metal ions contained in the fibrous cellulose-containing composition is within a predetermined range. In particular, it exhibits good dispersibility in an organic solvent. Therefore, the organic solvent slurry in which the fine fibrous cellulose-containing composition is dispersed in the organic solvent has high viscosity and high transparency.
  • the viscosity of the organic solvent slurry obtained by dispersing the fine fibrous cellulose in the organic solvent depends on the type of the organic solvent as the dispersion medium and the concentration of the fine fibrous cellulose in the dispersion. For example, when the concentration of fine fibrous cellulose in the organic solvent slurry is 2.0% by mass and the organic solvent is N-methyl-2-pyrrolidone (NMP), the viscosity of the dispersion is 500 mPa ⁇ s or more. Is preferably 1000 mPa ⁇ s or more, more preferably 3000 mPa ⁇ s or more, still more preferably 5000 mPa ⁇ s or more, and particularly preferably 8000 mPa ⁇ s or more.
  • NMP N-methyl-2-pyrrolidone
  • the viscosity of the dispersion is preferably 500 mPa ⁇ s or more, and preferably 1000 mPa ⁇ s. It is more preferably at least 2,000 mPa ⁇ s, more preferably at least 2,000 mPa ⁇ s, still more preferably at least 3,000 mPa ⁇ s, particularly preferably at least 4,000 mPa ⁇ s.
  • the viscosity of the dispersion is preferably 4000 mPa ⁇ s or more, and 6000 mPa ⁇ s or more. More preferably, it is more preferably 8000 mPa ⁇ s or more, further preferably 10,000 mPa ⁇ s or more, particularly preferably 15000 mPa ⁇ s or more.
  • the fine fibrous cellulose is dispersed in an organic solvent such that the solid content concentration becomes 2.0% by mass or 4.0% by mass.
  • the organic solvent slurry obtained by dispersing in a solvent is allowed to stand at 25 ° C. for 24 hours, and then measured using a B-type viscometer.
  • the B-type viscometer for example, an analog viscometer T-LVT manufactured by BLOOKFIELD can be used.
  • the measurement conditions are 25 ° C., and the viscosity when rotated at 3 rpm for 3 minutes is measured.
  • the solvent is a non-polar solvent (relative permittivity is less than 5.0)
  • the solid content concentration is set to 4.0% by mass. %.
  • the light transmittance at a wavelength of 600 nm of an organic solvent slurry obtained by dispersing fine fibrous cellulose in an organic solvent depends on the type of the organic solvent as a dispersion medium and the concentration of the fine fibrous cellulose in the dispersion.
  • the concentration of the fine fibrous cellulose in the organic solvent slurry is 2.0% by mass and the organic solvent is N-methyl-2-pyrrolidone (NMP)
  • NMP N-methyl-2-pyrrolidone
  • the light transmittance of the dispersion at a wavelength of 600 nm is as follows. , 50% or more, more preferably 70% or more, even more preferably 80% or more.
  • the concentration of the fine fibrous cellulose in the organic solvent slurry is 4.0% by mass and the organic solvent is toluene
  • the light transmittance of the dispersion at a wavelength of 600 nm is preferably 60% or more. , 70% or more, and even more preferably 75% or more.
  • the concentration of the fine fibrous cellulose in the organic solvent slurry is 2.0% by mass and the organic solvent is methanol
  • the light transmittance of the dispersion at a wavelength of 600 nm is preferably 60% or more. %, More preferably 70% or more.
  • the solid content concentration should be 2.0% by mass or 4.0% by mass.
  • the light transmittance at a wavelength of 600 nm of an organic solvent slurry obtained by dispersing fibrous cellulose in an organic solvent is measured.
  • the measurement of the light transmittance at a wavelength of 600 nm is performed using an ultraviolet / visible spectrophotometer and a glass cell for liquid having an optical path length of 1 cm.
  • the ultraviolet / visible spectrophotometer for example, SP3000nano manufactured by Optima can be used, and as the glass cell for liquid, for example, MG-40, manufactured by Fujiwara Seisakusho, and a reverse optical path can be used.
  • the zero point measurement is performed using ion-exchanged water placed in the glass cell.
  • the solvent is a non-polar solvent (dielectric constant is less than 5.0)
  • the solid content concentration is set to 4.0% by mass.
  • the concentration is 2.0% by mass.
  • the fine fibrous cellulose used in the present invention has good dispersibility in an organic solvent and does not form a precipitate in the dispersion. Therefore, an organic solvent slurry obtained by dispersing fine fibrous cellulose in an organic solvent has a high viscosity and a high transparency. Further, the fine fibrous cellulose used in the present invention has good dispersibility in an organic solvent, so that the energy required for dispersing the fine fibrous cellulose in the organic solvent can be reduced.
  • the fibrous cellulose-containing composition of the present invention is not particularly limited as long as it contains an anionic group, a fine fibrous cellulose containing an organic onium as a counter ion of the anionic group, and a metal ion.
  • the concentrate is a fine fibrous cellulose concentrate.
  • the fine fibrous cellulose-containing composition include liquids, gels, and solids.
  • the fine fibrous cellulose-containing composition is preferably a solid.
  • the form is not particularly limited, but, for example, is preferably a sheet or a granular material, and is a granular material Is more preferred.
  • the granular material is a powdery and / or granular substance. Note that the powdery substance is smaller than the granular substance.
  • a powdery substance refers to fine particles having a particle diameter of 1 nm or more and less than 0.1 mm
  • a granular substance refers to particles having a particle diameter of 0.1 mm to 10 mm, but is not particularly limited.
  • a granular material may be called a powder.
  • the particle diameter of the granular material in the present specification can be measured and calculated using a laser diffraction method. Specifically, it is a value measured using a laser diffraction / scattering type particle size distribution analyzer (Microtrac 3300EXII, Nikkiso Co., Ltd.).
  • the solid content concentration of the fibrous cellulose-containing composition is preferably 80% by mass or more, more preferably 85% by mass or more, and preferably 90% by mass or more based on the total mass of the fibrous cellulose-containing composition. Is more preferable.
  • the upper limit of the solid concentration of the fibrous cellulose-containing composition is not particularly limited, and may be 100% by mass.
  • the content of water in the fibrous cellulose-containing composition of the present invention is small.
  • the content of water in the fibrous cellulose-containing composition is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total mass of the fibrous cellulose-containing composition. Further, the content of water in the fibrous cellulose-containing composition is also preferably 0% by mass. As described above, since the fibrous cellulose-containing composition of the present invention has a low water content, the amount of water brought into an organic solvent slurry obtained by dispersing fine fibrous cellulose in an organic solvent can be suppressed.
  • the water content in the fibrous cellulose-containing composition is measured by placing 200 mg of the fibrous cellulose-containing composition on a moisture meter (MS-70, manufactured by A & D Corporation) and heating at 140 ° C. be able to.
  • the water content in the fibrous cellulose-containing composition can be calculated from the measured water content.
  • the fibrous cellulose-containing composition of the present invention is also characterized in that the content of anions derived from strong acids such as halide ions and sulfate ions is suppressed. Since anions derived from strong acids such as halide ions and sulfate ions have metal corrosiveness and rubber corrosiveness, fibrous cellulose-containing compositions and fibrous cellulose-containing compositions in which the content of these anions is suppressed. It can be said that a molded article containing an object does not have a metal corrosion action or a rubber corrosion action.
  • the content of chloride ion in the absolutely dry solid content is determined by an organic onium obtained by neutralizing a primary to tertiary amine.
  • the ion is a counter ion of an anionic group, a smaller amount is preferable.
  • the content of chloride ions in the absolutely dry solid content of the fibrous cellulose-containing composition is preferably 100 ppm or less, more preferably 90 ppm or less, and further preferably 80 ppm or less. preferable.
  • the content may be 4000 ppm or less or 2500 ppm or less.
  • the fibrous cellulose-containing composition is dried at 105 ° C. until it is completely dried (for example, 3 hours or more).
  • the absolutely dry solid content is burned in an oxygen atmosphere using a total chlorine content tester (manufactured by Yoshida Seisakusho, cylinder type) in accordance with JIS Z 7302-6, and then ion chromatography (thermo-fisher scientific) is performed.
  • the amount of chloride ion contained in the absolutely dry solid content of the fine fibrous cellulose concentrate is measured using ICS2100 (manufactured by KK Corporation).
  • the fibrous cellulose-containing composition is obtained as sodium ions (Na + ) without changing the counter ion of the anionic group contained in the fine fibrous cellulose to hydrogen ions.
  • the amount can be in a preferable range, whereby the metal corrosion action and rubber corrosion action are suppressed.
  • the fibrous cellulose-containing composition of the present invention has a fiber width of 1000 nm or less and contains fibrous cellulose having an anionic group.
  • the fiber width of the fibrous cellulose having an anionic group is preferably 100 nm or less, more preferably 8 nm or less.
  • the fiber width of the fibrous cellulose can be measured by, for example, observation with an electron microscope.
  • the average fiber width of the fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fibrous cellulose is, for example, preferably from 2 nm to 1000 nm, more preferably from 2 nm to 100 nm, further preferably from 2 nm to 50 nm, and more preferably from 2 nm to 10 nm. Particularly preferred.
  • the fibrous cellulose is, for example, a monofibrous cellulose.
  • the average fiber width of the fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less was prepared, and this suspension was cast on a carbon film-coated grid that had been subjected to a hydrophilization treatment, and a TEM observation sample was prepared. And In the case of including a wide fiber, an SEM image of a surface cast on glass may be observed. Next, observation with an electron microscope image is performed at a magnification of 1,000 times, 5000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the width of the fiber that intersects the straight line X and the straight line Y is visually read for an observation image satisfying the above conditions. In this way, at least three or more sets of observation images of the surface portions that do not overlap each other are obtained.
  • the fiber length of the fibrous cellulose is not particularly limited, but is preferably, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 600 ⁇ m or less. preferable.
  • the fiber length of the fibrous cellulose can be determined by, for example, image analysis using TEM, SEM, or AFM.
  • the fibrous cellulose preferably has an I-type crystal structure.
  • the proportion of the type I crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. Thereby, further excellent performance can be expected in terms of heat resistance and low linear thermal expansion coefficient.
  • the crystallinity can be determined by measuring the X-ray diffraction profile and using the pattern by a conventional method (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fibrous cellulose is not particularly limited, but is preferably, for example, 20 or more and 10,000 or less, and more preferably 50 or more and 1000 or less.
  • the axial ratio is equal to or more than the lower limit, a sheet containing fine fibrous cellulose is easily formed. It is preferable that the axial ratio be equal to or less than the above upper limit, for example, when handling fibrous cellulose as an aqueous dispersion, handling such as dilution becomes easy.
  • the fibrous cellulose in the present embodiment has, for example, both a crystalline region and an amorphous region.
  • the fine fibrous cellulose having both the crystalline region and the non-crystalline region and having a high axial ratio is realized by the method for producing fine fibrous cellulose described below.
  • Fibrous cellulose has an anionic group.
  • the anionic group include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (which may be simply referred to as a sulfone group), and preferably at least one selected from a phosphate group and a carboxy group. More preferably, it is particularly preferably a phosphate group.
  • a phosphate group has a larger number of anionic groups per molecule than a carboxy group or the like, and thus may have more organic onium ions as counterions. Thereby, it is considered that the dispersibility and the like of the fine fibrous cellulose can be further improved.
  • the phosphate group or a substituent derived from a phosphate group is, for example, a substituent represented by the following formula (1), and is generalized as a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid.
  • the phosphate group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxy group. Specifically, it is a group represented by —PO 3 H 2 .
  • the substituent derived from the phosphate group includes substituents such as a salt of the phosphate group and a phosphate group.
  • the substituent derived from the phosphate group may be contained in the fibrous cellulose as a group in which the phosphate group is condensed (for example, a pyrophosphate group).
  • the phosphate group may be, for example, a phosphite group (phosphonate group), and the substituent derived from the phosphate group may be a salt of a phosphite group, a phosphite ester group, or the like. Is also good.
  • R represents a hydrogen atom, a saturated-straight hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-straight hydrocarbon group, or an unsaturated-branched hydrocarbon group, respectively.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, but are not particularly limited.
  • Examples of the saturated-branched hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited.
  • Examples of the unsaturated-branched hydrocarbon group include an i-propenyl group and a 3-butenyl group, but are not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • a group is mentioned, it is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic or inorganic substance.
  • the monovalent or higher cation composed of an organic substance include aliphatic ammonium and aromatic ammonium, and at least a part of ⁇ b + is an organic onium ion described later.
  • the monovalent or higher cation composed of an inorganic substance include ions of alkali metals such as sodium, potassium, and lithium, and cations of divalent metals such as calcium and magnesium, and hydrogen ions. There is no particular limitation. These can be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic or inorganic substance is preferably, but not particularly limited to, sodium or potassium ions that are less likely to yellow when a ⁇ -containing fiber material is heated and are easily industrially used.
  • the amount of anionic group introduced into the fibrous cellulose is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of the fibrous cellulose, more preferably 0.20 mmol / g or more. It is more preferably at least 0.50 mmol / g, particularly preferably at least 1.00 mmol / g.
  • the amount of the anionic group introduced into the fibrous cellulose is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of the fibrous cellulose. More preferably, it is not more than 00 mmol / g.
  • the unit mmol / g indicates the amount of the substituent per 1 g of the mass of fibrous cellulose when the counter ion of the anionic group is a hydrogen ion (H + ).
  • the amount of anionic group introduced into fibrous cellulose can be measured, for example, by conductivity titration.
  • the amount of introduction is measured by determining the change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity.
  • the amount of phosphate groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 1 is obtained. As shown in FIG.
  • first region the electrical conductivity sharply decreases at first
  • second region the conductivity starts to slightly increase
  • third region the increment of the conductivity increases
  • boundary point between the second region and the third region is defined as the point at which the amount of change in the conductivity twice (ie, the increment (slope) of the conductivity) becomes maximum.
  • the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration
  • the amount of alkali required in the second region is equal to the amount of weakly acidic groups in the slurry used for titration.
  • the amount of the strongly acidic group matches the amount of the phosphorus atom regardless of the presence or absence of condensation.
  • the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the phosphate group introduction amount (mmol / mmol). g).
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
  • the amount of carboxy groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, before the treatment with the strongly acidic ion exchange resin, a fibrillation treatment similar to the fibrillation treatment step described later may be performed on the measurement target. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 2 is obtained. As shown in FIG.
  • the titration curve shows a first region where the increment (slope) of the conductivity becomes substantially constant after the decrease in the electric conductivity, and thereafter, the increment (slope) of the conductivity increases. It is divided into a second area. Note that the boundary point between the first region and the second region is defined as a point at which the amount of change in the conductivity twice (in other words, the increment (slope) of the conductivity becomes maximum).
  • the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the slurry containing fine fibrous cellulose to be titrated is the amount of carboxy group introduced ( mmol / g).
  • the above-mentioned carboxy group introduction amount (mmol / g) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + ) (hereinafter referred to as the carboxy group amount (acid Type).
  • the carboxy group amount (acid Type) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + )
  • the carboxy group amount (acid Type) refers to the amount of the substituent per mass of fibrous cellulose when the counter ion of the carboxy group is a hydrogen ion (H + )
  • the carboxy group amount (acid Type) the amount of carboxy groups of the fibrous cellulose having the cation C as a counter ion.
  • carboxy group introduction amount is calculated by the following formula.
  • Carboxy group introduction amount (C type) carboxy group amount (acid type) / ⁇ 1+ (W-1) ⁇ (carboxy group amount (acid type)) / 1000 ⁇ W: Formula weight per valence of cation C (eg, 23 for Na, 9 for Al)
  • the amount of the substituent may be lower than it should be. It is desirable to titrate the aqueous sodium solution by 50 ⁇ L every 30 seconds.
  • Fine fibrous cellulose is produced from a fiber raw material containing cellulose.
  • the fiber material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive.
  • Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of the wood pulp include, but are not particularly limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • Non-wood pulp includes, but is not limited to, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • Examples of the deinked pulp include, but are not particularly limited to, deinked pulp made from waste paper.
  • one of the above-mentioned types may be used alone, or two or more types may be used in combination.
  • wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • cellulose ratio is large and the yield of fine fibrous cellulose at the time of defibration treatment is high, and the decomposition of cellulose in pulp is small, and fine fibrous cellulose of long fibers having a large axial ratio can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable.
  • fine fibrous cellulose of long fibers having a large axial ratio is used, the viscosity tends to increase.
  • cellulose raw material containing cellulose for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used.
  • a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can be used in place of the fiber material containing cellulose.
  • the step of producing the fine fibrous cellulose includes a step of introducing a phosphate group.
  • the phosphate group introduction step at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a cellulose-containing fiber material (hereinafter, also referred to as “compound A”) is converted into cellulose. This is a step of acting on a fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
  • the reaction between the fiber material containing cellulose and the compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). You may.
  • the reaction between the fiber raw material containing cellulose and the compound A may be performed in a state where the compound B is not present.
  • a method of mixing compound A and compound B with a dry, wet, or slurry fiber raw material may be mentioned.
  • a fiber material in a dry state or a wet state it is preferable to use a fiber material in a dry state, because of high uniformity of the reaction.
  • the form of the fiber raw material is not particularly limited, but is preferably, for example, cotton or a thin sheet.
  • the compound A and the compound B may be added to the fiber material in the form of a powder, a solution dissolved in a solvent, or a state in which the compound A and the compound B are heated to a melting point or higher and melted.
  • the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture.
  • the method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in a solution state, the fiber raw material may be immersed in the solution, absorbed and then taken out. May be added dropwise to the solution.
  • the necessary amount of compound A and compound B may be added to the fiber raw material, or the excessive amount of compound A and compound B may be added to the fiber raw material, respectively, and then the excess compound A and compound B may be squeezed or filtered. It may be removed.
  • Examples of the compound A used in the present embodiment include a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and specifically, phosphoric acid or a salt thereof, phosphorous acid or a salt thereof, dehydration condensation Examples thereof include phosphoric acid or a salt thereof, phosphoric anhydride (diphosphorus pentoxide), and the like, but are not particularly limited.
  • phosphoric acid those having various purities can be used. For example, 100% phosphoric acid (normal phosphoric acid) and 85% phosphoric acid can be used.
  • Examples of the phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • examples of the phosphate, phosphite, and dehydrated condensed phosphate include phosphoric acid, lithium salt, sodium salt, potassium salt, and ammonium salt of phosphoric acid or dehydrated condensed phosphoric acid. It can be the sum.
  • phosphoric acid, phosphoric acid, phosphoric acid from the viewpoint of high efficiency of introduction of the phosphate group, easier to improve the defibration efficiency in the defibration step described later, low cost, and industrially applicable
  • a sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
  • the amount of the compound A added to the fiber raw material is not particularly limited.
  • the amount of the phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, further preferably 2% by mass or more and 30% by mass or less.
  • the amount of the phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, the effect of improving the yield and the cost can be balanced.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • the compound B is preferably used as an aqueous solution.
  • the amount of the compound B to be added to the fiber raw material is not particularly limited, but is, for example, preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
  • amides or amines may be included in the reaction system.
  • the amide include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, it is known that triethylamine particularly works as a good reaction catalyst.
  • the phosphoric acid group introduction step it is preferable to add or mix the compound A or the like to the fiber raw material and then perform a heat treatment on the fiber raw material.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis of the fiber.
  • the heat treatment temperature is, for example, preferably from 50 ° C. to 300 ° C., more preferably from 100 ° C. to 250 ° C., and even more preferably from 130 ° C. to 200 ° C.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll heating apparatus, a plate heating apparatus, a fluidized bed drying apparatus, an air current A drying device, a reduced-pressure drying device, an infrared heating device, a far-infrared heating device, and a microwave heating device can be used.
  • the compound A is added to a thin sheet-form fiber material by impregnation or the like, and then the fiber material and the compound A are heated while kneading or stirring with a kneader or the like.
  • the concentration unevenness of the compound A in the fiber raw material and more uniformly introduce the phosphate group to the surface of the cellulose fiber contained in the fiber raw material.
  • the dissolved compound A is attracted to the water molecules by the surface tension and moves to the fiber material surface similarly (that is, the concentration unevenness of the compound A decreases). It can be considered that this is caused by the fact that it can be suppressed.
  • the heating device used for the heat treatment always generates, for example, the water retained by the slurry and the water generated by the dehydration condensation (phosphate esterification) reaction between compound A and the hydroxyl group contained in cellulose or the like in the fiber material. It is preferable that the device can be discharged outside the device system. As such a heating device, for example, an air-blowing oven or the like can be mentioned. By constantly discharging the water in the system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphorylation, and also to suppress the acid hydrolysis of the sugar chains in the fiber. it can. For this reason, it becomes possible to obtain fine fibrous cellulose having a high axial ratio.
  • the time of the heat treatment is, for example, preferably from 1 second to 300 minutes after water is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. Is more preferable.
  • the amount of the phosphate group introduced can be set in a preferable range.
  • the phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, a large number of phosphate groups can be introduced into the fiber raw material.
  • a case where the phosphate group introduction step is performed twice is exemplified.
  • the amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and more preferably 0.50 mmol / g per 1 g (mass) of fine fibrous cellulose. g or more, more preferably 1.00 mmol / g or more. Further, the amount of the phosphate group introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of fine fibrous cellulose. More preferably, it is not more than 00 mmol / g.
  • the amount of the phosphoric acid group By setting the amount of the phosphoric acid group to be in the above range, the fineness of the fiber raw material can be easily made, and the stability of the fine fibrous cellulose can be increased. Further, by setting the amount of the phosphate group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be adjusted to an appropriate range, whereby the dispersion of the fibrous cellulose in the organic solvent can be performed. Sex can be effectively improved.
  • the step of producing the fine fibrous cellulose includes a step of introducing a carboxy group.
  • the carboxy group introduction step has a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group, or a carboxylic acid-derived compound or a carboxylic acid-derived group, for a fiber raw material containing cellulose, such as ozone oxidation or oxidation by the Fenton method, or TEMPO oxidation treatment. It is carried out by treating with an acid anhydride of a compound or a derivative thereof.
  • Examples of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and citric acid and aconitic acid. Tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized product of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imidized product of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include imidized products of dicarboxylic acid compounds such as maleimide, succinimide and phthalic imide.
  • Examples of the acid anhydride of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and dicarboxylic acid compounds such as itaconic anhydride. Acid anhydrides.
  • the derivative of the acid anhydride of the compound having a group derived from a carboxylic acid is not particularly limited. For example, dimethylmaleic anhydride, diethylmaleic anhydride, and a compound having a carboxy group such as diphenylmaleic anhydride can be used.
  • An acid anhydride in which at least a part of hydrogen atoms are substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
  • the treatment be performed, for example, at a pH of 6 to 8.
  • a neutral TEMPO oxidation process is also called a neutral TEMPO oxidation process.
  • the TEMPO oxidation treatment may be performed at a pH of 10 or more and 11 or less. Such a treatment is also called an alkaline TEMPO oxidation treatment.
  • the alkali TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
  • the amount of the carboxy group introduced into the fiber raw material varies depending on the type of the substituent.
  • the amount is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. , 0.20 mmol / g or more, more preferably 0.50 mmol / g or more, particularly preferably 0.90 mmol / g or more. Further, it is preferably at most 2.5 mmol / g, more preferably at most 2.20 mmol / g, even more preferably at most 2.00 mmol / g.
  • the substituent when it is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose. Furthermore, by setting the amount of the carboxy group to be in the above range, the content of organic onium ions that can be included in the fibrous cellulose can be in an appropriate range, thereby dispersing the fibrous cellulose in an organic solvent. Can be effectively increased.
  • a washing step can be performed on the anionic group-introduced fiber as necessary.
  • the washing step is performed, for example, by washing the anionic group-introduced fiber with water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of times of cleaning performed in each cleaning step is not particularly limited.
  • the fiber raw material may be subjected to an alkali treatment between the anionic group introduction step and the defibration treatment step described below.
  • the method of the alkali treatment is not particularly limited, and includes, for example, a method of dipping the anionic group-introduced fiber in an alkaline solution.
  • the alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkali compound because of high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of high versatility.
  • the temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less.
  • the immersion time of the anionic group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkali solution used in the alkali treatment is not particularly limited. Is more preferable.
  • the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkali treatment step. After the alkali treatment step and before the fibrillation treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving the handleability.
  • an acid treatment may be performed on the fiber raw material between the step of introducing an anionic group and the defibration step described below.
  • an anionic group introduction step, an acid treatment, an alkali treatment, and a fibrillation treatment may be performed in this order.
  • the method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid-containing acid solution.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably, for example, 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • As the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid and the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 ° C or more and 100 ° C or less, more preferably 20 ° C or more and 90 ° C or less.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably, for example, 100% by mass to 100,000% by mass, and more preferably 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the fiber material. Is more preferred.
  • Fine fibrous cellulose is obtained by defibrating the anionic group-introduced fiber in the defibration step.
  • a defibrating device can be used.
  • the defibrating apparatus is not particularly limited, but includes, for example, a high-speed defibrillator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high-pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc refiner, a conical refiner, and a twin-screw.
  • a kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • the fibrillation treatment step for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more kinds selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but, for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • the alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone and methyl ethyl ketone (MEK).
  • the ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, and propylene glycol monomethyl ether.
  • the esters include ethyl acetate, butyl acetate and the like.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in the dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having hydrogen bonding properties.
  • the fibrous cellulose-containing composition of the present invention contains an organic onium ion as a counter ion of the anionic group of the fine fibrous cellulose.
  • an organic onium ion is present as a counter ion of the fine fibrous cellulose, but in the fibrous cellulose-containing composition, a free organic onium ion may be present. . Note that the organic onium ion does not form a covalent bond with the fibrous cellulose.
  • the organic onium ion preferably satisfies at least one condition selected from the following (a) and (b).
  • the organic onium ion satisfies at least one condition selected from the above (a) and (b)
  • the dispersibility of the fine fibrous cellulose in the organic solvent can be more effectively improved.
  • the hydrocarbon group having 5 or more carbon atoms is preferably an alkyl group having 5 or more carbon atoms or an alkylene group having 5 or more carbon atoms, and an alkyl group having 6 or more carbon atoms or an alkylene having 6 or more carbon atoms.
  • the organic onium ion is preferably an organic onium ion having an alkyl group having 5 or more carbon atoms, more preferably an organic onium ion having an alkyl group having 5 or more carbon atoms and having a total carbon number of 17 or more. preferable.
  • the organic onium ion is preferably an organic onium ion represented by the following general formula (A).
  • M is a nitrogen atom or a phosphorus atom
  • R 1 to R 4 each independently represent a hydrogen atom or an organic group.
  • at least one of R 1 to R 4 is preferably an organic group having 5 or more carbon atoms, or the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • M is preferably a nitrogen atom. That is, the organic onium ion is preferably an organic ammonium ion.
  • at least one of R 1 to R 4 is preferably an alkyl group having 5 or more carbon atoms, and the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • Such organic onium ions include, for example, lauryl trimethyl ammonium, cetyl trimethyl ammonium, stearyl trimethyl ammonium, octyl dimethyl ethyl ammonium, lauryl dimethyl ethyl ammonium, didecyl dimethyl ammonium, lauryl dimethyl benzyl ammonium, tributyl benzyl ammonium, methyl tri-n -Octyl ammonium, hexyl ammonium, n-octyl ammonium, dodecyl ammonium, tetradecyl ammonium, hexadecyl ammonium, stearyl ammonium, N, N-dimethyldodecyl ammonium, N, N-dimethyltetradecyl ammonium, N, N-dimethylhexadecyl Ammonium, N, N-dimethyl-n-octadecyl
  • the central element of the organic onium ion is bonded to a total of four groups or hydrogen.
  • the number of bonding groups is less than four, the remaining hydrogen atoms are bonded to form an organic onium ion.
  • N N-didodecylmethylammonium
  • hydrogen is bonded to the other one to form an organic onium ion.
  • the mass ratio of C atoms to O atoms is preferably as large as possible.
  • C / O ratio it is preferable that C / O> 5.
  • an organic onium ion or a compound capable of forming an organic onium ion by neutralization is added to the slurry containing fine fibrous cellulose to obtain a fine fibrous cellulose concentrate. It becomes easy to be.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the content of the organic onium ion is preferably at least 5.0% by mass, more preferably at least 10% by mass, and preferably at least 15% by mass, based on the total mass of the fibrous cellulose-containing composition. Is more preferred. Further, the content of the organic onium ion is preferably 80% by mass or less, more preferably 70% by mass or less, based on the total mass of the fibrous cellulose-containing composition.
  • the content of the organic onium ion in the fibrous cellulose-containing composition is preferably from equimolar to 2 times the molar amount of the anionic group contained in the fine fibrous cellulose, but is particularly limited. Not done.
  • the content of the organic onium ion can be measured by tracking atoms typically contained in the organic onium ion. Specifically, the nitrogen atom is measured when the organic onium ion is an ammonium ion, and the phosphorus atom is measured when the organic onium ion is a phosphonium ion.
  • the fine fibrous cellulose contains a nitrogen atom or a phosphorus atom in addition to the organic onium ion
  • a method of extracting only the organic onium ion for example, performing an extraction operation with an acid, and then reducing the amount of the target atom You only need to measure it.
  • the fibrous cellulose-containing composition of the present invention contains a metal ion.
  • the fine fibrous cellulose has as a counter ion of the anionic group. It is preferable that the metal ion is used, but the metal ion is not limited to this.
  • the metal ion may be a metal ion separately added to the fibrous cellulose-containing composition.
  • the content of metal ions in the completely dried solid content may be 80 ppm or more, preferably 90 ppm or more, and is preferably 100 ppm. More preferably, it is the above. Further, the content of metal ions in the absolutely dry solid content may be 700 ppm or less, preferably 600 ppm or less, and more preferably 500 ppm or less.
  • the fibrous cellulose-containing composition is dried at 105 ° C. until it becomes completely dried (for example, 3 hours or more). Then, when measuring the content of metal ions in the absolutely dry solids, after adding 5.0 mL of nitric acid to 0.1 g of absolutely dry solids and performing wet decomposition using a wet decomposition apparatus, The amount of metal ions is measured using an ICP emission spectrometer.
  • ICP emission spectrometer For example, MARS5 manufactured by CEM can be used as a wet decomposition apparatus, and CIROS120 manufactured by Ametech can be used as an ICP emission spectrometer.
  • the metal ion is not particularly limited, but is preferably at least one selected from alkali metal ions and alkaline earth metal ions.
  • examples of the metal ion include a sodium ion, a potassium ion, a magnesium ion, and a calcium ion.
  • the metal ion is preferably a sodium ion.
  • the fibrous cellulose-containing composition of the present invention may further contain an organic solvent.
  • the fibrous cellulose-containing composition is referred to as a liquid composition described later.
  • the organic solvent is not particularly limited, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, m-cresol, glycerin, acetic acid, pyridine, tetrahydrofuran (THF), acetone , Methyl ethyl ketone (MEK), ethyl acetate, aniline, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), hexane, cyclohexane, benzene, toluene, p-xylene, Examples thereof include diethyl ether chloroform. Among them, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK), toluene and methanol are preferably used.
  • NMP N-methyl
  • the relative dielectric constant of the organic solvent at 25 ° C. is preferably 60 or less, more preferably 50 or less. Since the fine fibrous cellulose of the present invention can exhibit excellent dispersibility even in an organic solvent having a low relative dielectric constant, the relative dielectric constant at 25 ° C. of the organic solvent may be 45 or less, It may be 40 or less, or 35 or less.
  • the organic solvent of Hansen Solubility Parameter (Hansen solubility parameter, HSP value) .delta.p of is preferably 5 MPa 1/2 or more 20 MPa 1/2 or less, more preferably 10 MPa 1/2 or more 19 MPa 1/2 or less , further preferably 12 MPa 1/2 or more 18 MPa 1/2 or less. Further, .delta.h, it is preferably, more preferably 5 MPa 1/2 or more 30 MPa 1/2 or less, 5 MPa 1/2 or 20 MPa 1/2 or less is 5 MPa 1/2 or more 40 MPa 1/2 or less Is more preferable. It is also preferable that ⁇ p is in the range of 0 MPa 1/2 to 4 MPa 1/2 and ⁇ h is in the range of 0 MPa 1/2 to 6 MPa 1/2 at the same time.
  • the content of the organic solvent contained in the fibrous cellulose-containing composition is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the solid content contained in the fibrous cellulose-containing composition. Is more preferable, and even more preferably 20% by mass or less.
  • the fibrous cellulose-containing composition of the present invention may further contain a resin.
  • the type of the resin is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • the resin examples include polyolefin resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, silicone resin, fluorine resin, chlorine resin, epoxy resin, melamine resin, phenol resin, and polyurethane resin.
  • Resins, diallyl phthalate resins, alcohol resins, cellulose derivatives, and precursors of these resins can be mentioned.
  • a cellulose derivative carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, etc. can be mentioned, for example.
  • the fine cellulose-containing composition of the present invention may contain a resin precursor as the resin.
  • the type of the resin precursor is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin precursor.
  • the precursor of the thermoplastic resin means a monomer or an oligomer having a relatively low molecular weight used for producing the thermoplastic resin.
  • the precursor of the thermosetting resin means a monomer or an oligomer having a relatively low molecular weight that can form a thermosetting resin by causing a polymerization reaction or a cross-linking reaction by the action of light, heat, and a curing agent.
  • the fibrous cellulose-containing composition of the present invention may further contain, as a resin, a water-soluble polymer in addition to the above-mentioned resin species.
  • a water-soluble polymer examples include synthetic water-soluble polymers (eg, carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, propylene) Glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide, etc.), thickening polysaccharides (eg, xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed) , Alginic acid, pullulan, carrageenan, pectin, etc.), cationized starch, raw star
  • the content of the resin contained in the fibrous cellulose-containing composition is preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the solid content contained in the fibrous cellulose-containing composition. More preferably, it is even more preferably 20% by mass or less.
  • the fibrous cellulose-containing composition may further contain other optional components.
  • the optional components may be added to and mixed with the fibrous cellulose-containing composition obtained after concentration, or may be contained in a slurry before concentration.
  • a hygroscopic agent can be mentioned.
  • the moisture absorbent include silica gel, zeolite, alumina, carboxymethyl cellulose, polyvinyl alcohol-soluble cellulose acetate, polyethylene glycol, sepiolite, calcium oxide, diatomaceous earth, activated carbon, activated clay, white carbon, calcium chloride, magnesium chloride, and potassium acetate. , Sodium diphosphate, sodium citrate, and a water-absorbing polymer.
  • surfactants organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, defoamers, organic particles, lubricants, antistatic agents, ultraviolet protection agents, Dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, crosslinking agents, and the like can be given.
  • the content of the optional components contained in the fibrous cellulose-containing composition is preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the solid content contained in the fibrous cellulose-containing composition. Is more preferable, and even more preferably 20% by mass or less.
  • the step of producing the fibrous cellulose-containing composition includes a step of adding an organic onium ion or a compound that forms an organic onium ion by neutralization to the fine fibrous cellulose-containing slurry.
  • the above-mentioned organic onium ion or a compound that forms an organic onium ion by neutralization is added to the fine fibrous cellulose-containing slurry obtained in the above-mentioned fibrillation treatment step.
  • the organic onium ion is preferably added as a solution containing the organic onium ion, and more preferably as an aqueous solution containing the organic onium ion.
  • the aqueous solution containing an organic onium ion usually contains an organic onium ion and a counter ion (anion).
  • a counter ion anion
  • the organic onium ion may be dissolved in water as it is.
  • the organic onium ion salt when it is hardly soluble in water at room temperature, it is preferable to dissolve it in hot water.
  • the temperature of the hot water is not particularly limited as long as it is a temperature at which the salt dissolves, but is preferably 70 ° C. or higher, more preferably 80 ° C. or higher. Further, the temperature is preferably 100 ° C. or lower.
  • the organic onium ion by adjusting the organic onium ion under the above conditions, it becomes easy to control the metal ion content in the fibrous cellulose-containing composition within a predetermined range.
  • Organic onium ions may be generated only after neutralization with an acid, for example, dodecylamine.
  • the organic onium ion is obtained by reacting a compound that forms an organic onium ion by neutralization with an acid.
  • the acid used for neutralization include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as lactic acid, acetic acid, formic acid, and oxalic acid.
  • the metal ion content in the fibrous cellulose-containing composition can be controlled within a predetermined range by performing the neutralization. It will be easier.
  • the step of adding an organic onium ion or a compound that forms an organic onium ion by neutralization to the fine fibrous cellulose-containing slurry preferably further includes a stirring step.
  • the liquid temperature of the fine fibrous cellulose-containing slurry to which the organic onium ions are added (hereinafter, also referred to as stirring processing temperature) is preferably 60 ° C, more preferably 50 ° C, The temperature is more preferably 40 ° C, particularly preferably 30 ° C.
  • stirring processing temperature is preferably 60 ° C, more preferably 50 ° C
  • the temperature is more preferably 40 ° C, particularly preferably 30 ° C.
  • the reaction temperature and reaction conditions of the organic onium ion and the fine fibrous cellulose are adjusted, and the pretreatment conditions of the organic onium ion and the fine fibrous cellulose before being reacted with the organic onium are controlled.
  • the ions it becomes easy to control the amount of metal ions contained in the obtained fibrous cellulose-containing composition to an appropriate range.
  • the amount of metal ions contained in the obtained fibrous cellulose-containing composition can be within a desired range.
  • the addition amount of the organic onium ion is preferably 2% by mass or more, more preferably 10% by mass or more, even more preferably 50% by mass or more, based on the total mass of the fine fibrous cellulose. It is particularly preferred that the content be 100% by mass or more. In addition, it is preferable that the addition amount of an organic onium ion is 1000 mass% or less with respect to the total mass of fine fibrous cellulose.
  • the number of moles of the organic onium ion to be added is preferably 0.2 times or more, and more preferably 1.0 times, the value obtained by multiplying the amount (number of moles) of the anionic group contained in the fine fibrous cellulose by the valence. More preferably, it is more preferably at least 2.0 times.
  • the number of moles of the organic onium ion to be added is preferably 10 times or less the value obtained by multiplying the amount (mole number) of the anionic group contained in the fine fibrous cellulose by the valence.
  • the organic onium ion When the organic onium ion is added and stirred, agglomerates are generated in the slurry containing fine fibrous cellulose. This aggregate is formed by agglomeration of fine fibrous cellulose having an organic onium ion as a counter ion. By filtering the slurry containing fine fibrous cellulose in which the aggregate has been generated under reduced pressure, the fine fibrous cellulose aggregate can be recovered.
  • the obtained fine fibrous cellulose aggregate may be washed with ion-exchanged water. By repeatedly washing the fine fibrous cellulose aggregate with ion-exchanged water, excess organic onium ions and the like contained in the fine fibrous cellulose aggregate can be removed.
  • the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fine fibrous cellulose aggregate is preferably larger than 1.2, and more preferably 2.0. More preferred. Further, the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fine fibrous cellulose aggregate is preferably 5.0 or less.
  • the content of P atoms and the content of N atoms in the fine fibrous cellulose aggregate can be appropriately calculated by elemental analysis. As the elemental analysis, for example, a trace nitrogen analysis or a molybdenum blue method can be performed after an appropriate pretreatment.
  • the composition other than the fine fibrous cellulose aggregate contains P atoms and N atoms, the composition may be separated from the fine fibrous cellulose aggregate by an appropriate method, and then elemental analysis may be performed.
  • the solid content concentration of the obtained fine fibrous cellulose aggregate is preferably 20% by mass or more, more preferably 30% by mass or more, even more preferably 40% by mass or more.
  • the upper limit of the solid content concentration of the fine fibrous cellulose aggregate is not particularly limited, and may be 100% by mass.
  • a fine fibrous cellulose concentrate By drying the fine fibrous cellulose aggregate under a constant temperature and humidity condition, a fine fibrous cellulose concentrate can be obtained.
  • the temperature at which the fibrous cellulose aggregate (concentrate) is dried under a constant temperature and humidity condition is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.
  • the temperature under constant temperature and humidity conditions is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower.
  • the relative humidity under the condition of constant temperature and constant humidity is preferably 20% or more, and more preferably 30% or more.
  • the relative humidity under constant temperature and humidity conditions is preferably 70% or less.
  • the drying time for drying under constant temperature and humidity conditions is preferably 10 minutes or more, more preferably 20 minutes or more, and even more preferably 30 minutes or more.
  • the drying time for drying under constant temperature and humidity conditions is preferably 100 hours or less, and more preferably 80 hours or less.
  • the fibrous cellulose-containing composition of the present invention is preferably used for mixing an organic solvent. That is, it can be used as a thickener or a particle dispersion stabilizer containing an organic solvent. Particularly, it can be preferably used for mixing with an organic solvent containing a resin component.
  • a resin composite in which the fine fibrous cellulose is uniformly dispersed can be formed.
  • a film can be formed using a re-dispersed slurry of fine fibrous cellulose and used as various films.
  • the fibrous cellulose-containing composition of the present invention can be used, for example, as a reinforcing agent or an additive in cements, paints, inks, lubricants, and the like.
  • a molded article obtained by applying the fibrous cellulose-containing composition on a substrate is a reinforcing material, an interior material, an exterior material, a packaging material, an electronic material, an optical material, an acoustic material, a process material, and a transportation material. It is also suitable for uses such as members of equipment, members of electronic equipment, members of electrochemical elements, and the like.
  • the present invention also relates to a liquid composition obtained by mixing the above-mentioned fibrous cellulose-containing composition and an organic solvent.
  • the liquid composition is a fibrous cellulose-containing dispersion (redispersion) in which the above-described fine fibrous cellulose-containing composition is dispersed in a dispersion medium containing an organic solvent.
  • the dispersion medium of the liquid composition of the present invention is preferably an organic solvent, but may further contain water in addition to the organic solvent.
  • the organic solvent the above-mentioned organic solvents can be listed.
  • the content of the organic solvent in the liquid composition is preferably at least 50% by mass, more preferably at least 60% by mass, and preferably at least 70% by mass, based on the total mass of the liquid composition. More preferred.
  • the content of the organic solvent is preferably 99% by mass or less based on the total mass of the fibrous cellulose-containing composition.
  • the solid content concentration in the liquid composition is preferably 1% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more.
  • the solid content concentration in the liquid composition is preferably less than 50% by mass.
  • the liquid composition may further contain a resin.
  • a resin is not particularly limited, for example, the above-mentioned resins can be listed.
  • the present invention also relates to a molded article formed from the above-mentioned fibrous cellulose-containing composition or the above-mentioned liquid composition.
  • the fibrous cellulose-containing composition and the liquid composition preferably contain a resin.
  • the molded article since the fine fibrous cellulose having excellent compatibility with the organic solvent and the resin is used, the molded article has an excellent flexural modulus, and also has excellent strength and dimensional stability.
  • the molded article of the present invention has excellent transparency.
  • the form of the molded article of the present invention is not particularly limited, but the molded article is preferably, for example, a sheet.
  • the present invention may relate to a sheet formed from the above-mentioned fibrous cellulose-containing composition or the above-mentioned liquid composition.
  • the molding method of the molded body there is no particular limitation on the molding method of the molded body, and an injection molding method, a heat and pressure molding method, or the like can be employed. Further, when the molded body is molded from a sheet, it may be molded by a press molding method or a vacuum molding method.
  • the method for molding the molded article preferably includes a step of applying the above-described liquid composition on a substrate.
  • the material of the base material used in the coating step is not particularly limited, but those having a higher wettability to the liquid composition may be able to suppress shrinkage of the sheet during drying, etc., but the sheet formed after drying. It is preferable to select a material that can be easily peeled off. Above all, a resin film or plate or a metal film or plate is preferable, but not particularly limited.
  • acrylic films polyethylene terephthalate, vinyl chloride, polystyrene, polypropylene, polycarbonate, polyvinylidene chloride, and other resin films and plates, aluminum, zinc, copper, and iron metal films and plates, and those obtained by oxidizing their surfaces
  • a stainless steel film or plate, a brass film or plate, or the like can be used.
  • a damping frame is fixed on the base material. May be used.
  • the damming frame is not particularly limited. For example, it is preferable to select a frame that can easily peel off the end of the sheet that adheres after drying. From such a viewpoint, a resin plate or a metal plate is more preferable.
  • a resin plate such as an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polypropylene plate, a polycarbonate plate, a polyvinylidene chloride plate, and a metal plate such as an aluminum plate, a zinc plate, a copper plate, and an iron plate And those whose surfaces are oxidized, and those formed of a stainless steel plate, a brass plate or the like can be used.
  • a resin plate such as an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polypropylene plate, a polycarbonate plate, a polyvinylidene chloride plate, and a metal plate such as an aluminum plate, a zinc plate, a copper plate, and an iron plate And those whose surfaces are oxidized, and those formed of a stainless steel plate, a brass plate or the like can be used.
  • the coating machine for applying the liquid composition to the substrate is not particularly limited, and for example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used. Die coaters, curtain coaters, and spray coaters are particularly preferred because the thickness of the coating (sheet) can be made more uniform.
  • the temperature and the ambient temperature of the liquid composition when applying the liquid composition to the substrate are not particularly limited, but are, for example, preferably 5 ° C or more and 80 ° C or less, and more preferably 10 ° C or more and 60 ° C or less.
  • the temperature is more preferably from 15 ° C to 50 ° C, particularly preferably from 20 ° C to 40 ° C.
  • the liquid composition is adjusted so that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less. Is preferably applied to a substrate. By coating so that the grammage is in the above range, a sheet having more excellent strength can be obtained.
  • the coating step includes a step of drying the liquid composition applied on the substrate.
  • the step of drying the liquid composition is not particularly limited, but is performed by, for example, a non-contact drying method, a method of drying while restraining a sheet, or a combination thereof.
  • the non-contact drying method is not particularly limited. For example, a method of drying by heating with hot air, infrared rays, far infrared rays or near infrared rays (heating drying method), or a method of drying by vacuum (vacuum drying method) is applied. can do.
  • the heat drying method and the vacuum drying method may be combined, but usually, the heat drying method is applied.
  • Drying with infrared, far-infrared, or near-infrared light can be performed using, for example, but not limited to, an infrared device, a far-infrared device, or a near-infrared device.
  • the heating temperature in the heating and drying method is not particularly limited, but is, for example, preferably from 20 ° C to 150 ° C, more preferably from 25 ° C to 105 ° C.
  • the heating temperature is equal to or higher than the lower limit, the dispersion medium can be quickly volatilized.
  • the heating temperature is equal to or lower than the upper limit, the cost required for heating and the discoloration of fibrous cellulose due to heat can be suppressed.
  • the raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical impregnated pulp was heated with a hot air drier at 165 ° C. for 200 seconds to introduce a phosphate group into cellulose in the pulp to obtain a phosphorylated pulp.
  • the washing treatment is performed by repeating the operation of pulverizing a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g of phosphorylated pulp (absolute dry mass) so that the pulp is uniformly dispersed, and then filtering and dewatering. went.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • the washed phosphorylated pulp was subjected to a neutralization treatment as follows. First, a phosphorylated pulp slurry having a pH of 12 or more and 13 or less was obtained by diluting the washed phosphorylated pulp with 10 L of ion-exchanged water and then gradually adding a 1N aqueous sodium hydroxide solution with stirring. . Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp subjected to a neutralization treatment. Next, the above-mentioned washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
  • ⁇ ⁇ ⁇ Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid concentration of 2% by mass. This slurry was treated six times at a pressure of 200 MPa with a wet atomizer (manufactured by Sugino Machine Co., Ltd., Starburst) to obtain a fine fibrous cellulose dispersion A containing fine fibrous cellulose.
  • the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.
  • the amount of phosphate groups (the amount of strongly acidic groups) measured by a measurement method described later was 2.0 mmol / g.
  • the raw pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 10 parts by mass of sodium bromide, 10,000 parts by mass of water Parts.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • sodium bromide 10,000 parts by mass of water Parts.
  • a 13% by mass aqueous solution of sodium hypochlorite was added to 1.0 g of the pulp so as to be 10 mmol, and the reaction was started.
  • a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 to 10.5, and the reaction was considered completed when no change in pH was observed.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • ⁇ ⁇ ⁇ Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry having a solid content of 2% by mass.
  • This slurry was treated with a wet atomizer (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa six times to obtain a fine fibrous cellulose dispersion B containing fine fibrous cellulose.
  • the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.
  • the carboxy group content of the TEMPO oxidized pulp measured by a measurement method described later was 1.80 mmol / g.
  • Example 1 (Production of fine fibrous cellulose concentrate) 0.60 g of lactic acid was added to 100 g of a 2.43 mass% N, N-didodecylmethylamine aqueous solution to neutralize it in advance, and then added to 100 g of the fine fibrous cellulose dispersion A obtained in Production Example 1. did.
  • stirring treatment temperature When a stirring treatment was performed for 5 minutes with a disperser while using a heat medium and keeping the liquid temperature at 5 ° C. (hereinafter, referred to as stirring treatment temperature), aggregates were generated in the fine fibrous cellulose dispersion. .
  • the fine fibrous cellulose dispersion in which the aggregate was generated was filtered under reduced pressure to obtain a fine fibrous cellulose aggregate.
  • the resulting fine fibrous cellulose aggregates were repeatedly washed with ion-exchanged water to remove excess N, N-didodecylmethylamine, lactic acid, and eluted ions contained in the fine fibrous cellulose aggregates.
  • the obtained fine fibrous cellulose aggregate was dried at 30 ° C. and a relative humidity of 40% to obtain a fine fibrous cellulose concentrate (fibrous cellulose-containing composition).
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass.
  • the amounts of metal ions and chloride ions contained in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate were measured by the methods described below.
  • NMP N-methyl-2-pyrrolidone
  • Example 2 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 1 except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was set at 20 ° C.
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 95% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 3 The fine fibrous cellulose dispersion B obtained in Production Example 2 was used in place of the fine fibrous cellulose dispersion A. The procedure of Example 1 was repeated, except that 0.32 g of lactic acid was added to 100 g of a 1.32% by mass aqueous solution of N, N-didodecylmethylamine to neutralize the solution, and then added to the fine fibrous cellulose dispersion B. To obtain a fine fibrous cellulose concentrate. The counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was N, N-didodecylmethylammonium (DDMA + ). The solid content concentration of the obtained fine fibrous cellulose concentrate was 90% by mass.
  • DDMA + N-didodecylmethylammonium
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 4 A fine fibrous cellulose concentrate and a redispersed slurry of fine fibrous cellulose were obtained in the same manner as in Example 3 except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was set at 20 ° C.
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 1 A fine fibrous cellulose concentrate and a redispersed slurry of fine fibrous cellulose were obtained in the same manner as in Example 1 except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was set to 80 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 2 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 3 except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was 80 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 1 except that the pre-neutralization with lactic acid was not performed during the production of the fine fibrous cellulose concentrate, and 100 g of a 2.43% by mass aqueous solution of N, N-didodecylmethylamine was directly added to the fine fibrous cellulose dispersion A.
  • a fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained.
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 86% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • reaction step with organic amine After adding 50 g of isopropanol (IPA) to 100 g of the obtained acid-type fine fibrous cellulose gel, the mixture was subjected to ultrasonic treatment for 1 minute using an ultrasonic treatment apparatus (HILSHA, UP400S) to obtain acid-type fine fibrous cellulose. A dispersion was obtained. 50 g of a 3.3% by mass N, N-didodecylmethylamine solution was added to the obtained acid-type fine fibrous cellulose dispersion, followed by stirring for 24 hours. At this time, although the reaction solution became cloudy, generation of aggregates was not confirmed. Next, when the reaction solution was added to 4 L of ion-exchanged water, aggregates were formed in the water.
  • IPA isopropanol
  • the fine fibrous cellulose dispersion in which the aggregate was generated was filtered under reduced pressure to obtain a fine fibrous cellulose aggregate.
  • the obtained fine fibrous cellulose aggregate was repeatedly washed with ion-exchanged water to remove excess N, N-didodecylmethylamine, IPA, eluted ions and the like contained in the fine fibrous cellulose aggregate.
  • the obtained fine fibrous cellulose aggregate was dried at 30 ° C. and a relative humidity of 40% to obtain a fine fibrous cellulose concentrate.
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass.
  • the amounts of metal ions and chloride ions contained in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate were measured by the methods described below.
  • Example 5 3.86 g of di-n-alkyldimethylammonium chloride (having 16 or 18 carbon atoms in the alkyl chain) was dissolved in 96.1 g of ion-exchanged water at 80 ° C., cooled to room temperature, and cooled to 3.86 mass%. Of di-n-alkyldimethylammonium chloride was obtained. 100 g of a 3.86 mass% aqueous solution of di-n-alkyldimethylammonium chloride was used instead of the aqueous solution of N, N-didodecylmethylamine neutralized with lactic acid, and toluene was used instead of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 1 except that the fine fibrous cellulose concentrate was added.
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 91% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 6 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 5, except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was 20 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 90% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 7 2.10 g of di-n-alkyldimethylammonium chloride (having 16 or 18 carbon atoms in the alkyl chain) was dissolved in 97.9 g of ion-exchanged water at 80 ° C., cooled to room temperature, and cooled to 2.10 mass%. Of di-n-alkyldimethylammonium chloride was obtained. Using the fine fibrous cellulose dispersion B obtained in Production Example 2 in place of the fine fibrous cellulose dispersion A, 100 g of a 2.10% by mass aqueous di-n-alkyldimethylammonium chloride solution was dispersed in the fine fibrous cellulose.
  • a fine fibrous cellulose concentrate was obtained in the same manner as in Example 5 except that the concentrate was added to Liquid B.
  • the counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was di-n-alkyldimethylammonium (DADMA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 89% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 6 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 5, except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was 80 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 7 A fine fibrous cellulose concentrate and a redispersed slurry of fine fibrous cellulose were obtained in the same manner as in Example 7, except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was set to 80 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • ⁇ Comparative Example 8> 3.86 g of di-n-alkyldimethylammonium chloride (having 16 or 18 carbon atoms in the alkyl chain) is dissolved in a 67% aqueous IPA solution at room temperature, and 3.86% by mass of di-n-alkyldimethylamine is dissolved. An ammonium chloride solution was obtained. A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 6 except that 100 g of the obtained di-n-alkyldimethylammonium chloride solution was added to the fine fibrous cellulose dispersion A. Was. The solid content concentration of the obtained fine fibrous cellulose concentrate was 93% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 8 2.33 g of alkyldimethylbenzylammonium chloride (having 8 to 18 carbon atoms in the alkyl chain) was dissolved at 80 ° C. in 97.7 g of ion-exchanged water, cooled to room temperature, and cooled to 2.33 mass% of alkyldimethylbenzyl. An aqueous ammonium chloride solution was obtained.
  • aqueous solution of alkyldimethylbenzylammonium chloride 100 g was used in place of the aqueous solution of N, N-didodecylmethylamine neutralized with lactic acid, and methanol was used instead of N-methyl-2-pyrrolidone (NMP) in the form of fine fibers.
  • NMP N-methyl-2-pyrrolidone
  • a fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 1 except that they were added to the cellulose concentrate.
  • the counter ion of the phosphate group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 84% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 9 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 8, except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was 20 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 83% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 10 1.27 g of alkyldimethylbenzylammonium chloride (alkyl chain having 8 to 18 carbon atoms) was dissolved in 98.7 g of ion-exchanged water at 80 ° C., cooled to room temperature, and cooled to 1.27 mass% of alkyldimethylbenzyl. An aqueous ammonium chloride solution was obtained. Using the fine fibrous cellulose dispersion B obtained in Production Example 2 in place of the fine fibrous cellulose dispersion A, 100 g of a 1.27% by mass aqueous solution of alkyldimethylbenzylammonium was added to the fine fibrous cellulose dispersion B.
  • a fine fibrous cellulose concentrate was obtained in the same manner as in Example 8, except that the above procedure was repeated.
  • the counter ion of the carboxy group contained in the fine fibrous cellulose concentrate was alkyldimethylbenzylammonium (ADMBA + ).
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 81% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • Example 9 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 8, except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was 80 ° C. The solid content concentration of the obtained fine fibrous cellulose concentrate was 82% by mass. The metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below. Was measured by
  • Example 10 A fine fibrous cellulose concentrate and a fine fibrous cellulose re-dispersed slurry were obtained in the same manner as in Example 10 except that the stirring treatment temperature during the production of the fine fibrous cellulose concentrate was changed to 80 ° C.
  • the solid content concentration of the obtained fine fibrous cellulose concentrate was 82% by mass.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • the metal ion content and chloride ion content in the absolutely dry solid content of the obtained fine fibrous cellulose concentrate, the viscosity of the obtained fine fibrous cellulose re-dispersed slurry and the light transmittance at a wavelength of 600 nm are described below.
  • the phosphate group content of the fine fibrous cellulose is a fibrous shape prepared by diluting a fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass.
  • the measurement was performed by performing titration using an alkali.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding an aqueous 0.1 N sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin at a rate of 50 ⁇ L once every 30 seconds while maintaining the electrical conductivity of the slurry.
  • the measurement was performed by measuring the change in the value.
  • the amount of phosphoric acid groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in a region corresponding to the first region shown in FIG. 1 in the measurement results by the solid content (g) in the slurry to be titrated. Was calculated.
  • the carboxy group content of the fine fibrous cellulose is a fibrous cellulose prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass.
  • the content of the slurry was measured by performing a treatment with an ion-exchange resin and then performing a titration using an alkali.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution once every 30 seconds to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin while maintaining the electric conductivity of the slurry. This was done by measuring the change in value.
  • the amount of carboxy groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in a region corresponding to the first region shown in FIG. 2 in the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
  • the viscosity of the fine fibrous cellulose-containing slurry was measured by using a B-type viscometer (manufactured by BLOOKFIELD, analog viscometer T-LVT) after allowing the fine fibrous cellulose-containing slurry to stand at 25 ° C. for 24 hours.
  • the concentration of the fine fibrous cellulose re-dispersed slurry at the time of measurement is 2.0% by mass when the relative dielectric constant of the organic solvent to be dispersed is 5.0 or more, and the relative dielectric constant of the organic solvent is less than 5.0. In this case, the content was 4.0% by mass.
  • the measurement was performed at 25 ° C., and the viscosity was measured when rotating at 3 rpm for 3 minutes.
  • the total light transmittance of the fine fibrous cellulose re-dispersed slurry at a wavelength of 600 nm was measured using an ultraviolet / visible spectrophotometer (SP3000 nano, manufactured by Optima) using a liquid glass cell having an optical path length of 1 cm.
  • the concentration of the fine fibrous cellulose re-dispersed slurry at the time of measurement is 2.0% by mass when the relative dielectric constant of the organic solvent to be dispersed is 5.0 or more, and the relative dielectric constant of the organic solvent is less than 5.0. In this case, the content was 4.0% by mass.
  • the fine fibrous cellulose concentrate was dried to absolute dryness at 105 ° C. to obtain an absolutely dry solid content of the fine fibrous cellulose concentrate. After adding 5.0 mL of nitric acid to 0.1 g of the absolute dry solid content and performing wet decomposition using a wet decomposition apparatus (MARS5, manufactured by CEM), an ICP emission spectrometer (CIROS120, manufactured by Ametech) was used. The amount of metal ions contained in the absolute dry solid content of the fine fibrous cellulose concentrate was measured.
  • the fine fibrous cellulose concentrate was dried to absolute dryness at 105 ° C. to obtain an absolutely dry solid content of the fine fibrous cellulose concentrate.
  • This absolutely dry solid content is burned in an oxygen atmosphere using a total chlorine content tester (manufactured by Yoshida Seisakusho, cylinder type) in accordance with JIS Z 7302-6, and then ion chromatography (Thermo Fisher Scientific)
  • the amount of chloride ions contained in the absolute dry solid content of the fine fibrous cellulose concentrate was measured using ICS2100).
  • the fine fibrous cellulose concentrate (fibrous cellulose-containing composition) obtained in the examples since the content of metal ions was within a predetermined range, the fine fibrous cellulose re-dispersed slurry had high viscosity and transparency. It was expensive.
  • Comparative Example 3 the pre-neutralization with lactic acid was not performed during the production of the fine fibrous cellulose concentrate, and the N, N-didodecylmethylamine aqueous solution and the fine fibrous cellulose were mixed. Protonation hardly occurred, sodium ion counter ion exchange did not proceed, and the amount of metal ions exceeded 700 ppm.
  • Comparative Example 4 when water was added to the acid-type fine fibrous cellulose gel obtained after the hydrochloric acid treatment, swelling occurred. Therefore, centrifugal washing of hydrochloric acid and eluted ions remaining in the system could not be carried out. No composition was obtained. In Comparative Examples 8 and 11, an alkylammonium solution dissolved in an IPA / water (2/1) solution at room temperature was used, and the amount of metal ions in the obtained fine cellulose-containing composition exceeded 700 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、微細繊維状セルロースを分散させた有機溶媒スラリーが高粘度かつ高透明度を発揮できるような微細繊維状セルロース含有組成物を提供することを課題とする。本発明は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、金属イオンと、を含む繊維状セルロース含有組成物であって、アニオン性基の対イオンとして有機オニウムイオンを含み、繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における金属イオンの含有量が、80ppm以上700ppm以下である繊維状セルロース含有組成物に関する。

Description

繊維状セルロース含有組成物、液状組成物及び成形体
 本発明は、繊維状セルロース含有組成物、液状組成物及び成形体に関する。
 従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。
 一般的に、微細繊維状セルロースは水系溶媒中に安定して分散するため、水分散液の状態で提供され、各種用途に使用されることが多い。一方で、微細繊維状セルロースを樹脂と混合して複合体等を製造する際には、微細繊維状セルロースを有機溶媒と混合して使用したいという要望もある。このような要望に応える技術として、有機溶媒を含む分散媒に微細繊維状セルロースを分散させた微細繊維状セルロース含有分散液を製造する技術が検討されている(特許文献1~3)。
 例えば、特許文献1には、カルボキシ基を有する微細繊維状セルロースに界面活性剤を吸着させた微細繊維状セルロース複合体が開示されている。ここでは、水系溶媒中でセルロース繊維を微細化した後に、微細繊維状セルロースを凝集させ有機溶媒に分散させる方法や、有機溶媒中でセルロース繊維を微細化することで微細繊維状セルロースを得る方法が開示されている。また、特許文献2には、カルボン酸塩型の基を有する微細繊維状セルロースの水分散液を調製する工程と、カルボン酸塩型の基を、有機基を有するアミンのカルボン酸アミン塩型の基に置換する工程と、カルボン酸アミン塩型の基を有する微細繊維状セルロースを有機溶媒に分散させる工程を有する微細繊維状セルロース分散液の製造方法が開示されている。さらに、特許文献3には、微細繊維状セルロースが有するアニオン性官能基の一部、または全てに所定構造を有するポリエーテルアミンが結合してなる微細繊維状セルロースと、有機溶媒と、着色剤を含有する油性インク組成物が開示されている。
特開2011-140738号公報 特開2012-021081号公報 特開2018-044101号公報
 一般的に、有機溶媒の比誘電率は水と比較して低いため、微細繊維状セルロースを分散させる際に必要な静電的な反発力が得られにくいことが知られている。このため、有機溶媒中においては、微細繊維状セルロースの分散性が不十分となる傾向が見られていた。有機溶媒中において、微細繊維状セルロースの分散性が不十分となると、微細繊維状セルロースを分散させた有機溶媒スラリーの粘度が低くなったり、有機溶媒スラリーの透明性が低下する場合がある。
 そこで本発明者らは、このような従来技術の課題を解決するために、微細繊維状セルロースを分散させた有機溶媒スラリーが高粘度かつ高透明度を発揮できるような微細繊維状セルロース含有組成物を提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、微細繊維状セルロースが有するアニオン性基の対イオンとして有機オニウムイオンを含む繊維状セルロース含有組成物において、繊維状セルロース含有組成物中に含まれる金属イオン量を所定範囲内とすることにより、微細繊維状セルロース含有組成物を分散させた有機溶媒スラリーが高粘度かつ高透明度を発揮し得ることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1] 繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、金属イオンと、を含む繊維状セルロース含有組成物であって、
 アニオン性基の対イオンとして有機オニウムイオンを含み、
 繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における金属イオンの含有量が、80ppm以上700ppm以下である繊維状セルロース含有組成物。
[2] 繊維状セルロースにおけるアニオン性基量が、0.50mmol/g以上である[1]に記載の繊維状セルロース含有組成物。
[3] 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす[1]又は[2]に記載の繊維状セルロース含有組成物;
(a)炭素数が5以上の炭化水素基を含む;
(b)総炭素数が17以上である。
[4] 有機オニウムイオンは、有機アンモニウムイオンである[1]~[3]のいずれかに記載の繊維状セルロース含有組成物。
[5] 金属イオンは、アルカリ金属イオン及びアルカリ土類金属イオンから選択される少なくとも一種である[1]~[4]のいずれかに記載の繊維状セルロース含有組成物。
[6] 固形分濃度が、80質量%以上である[1]~[5]のいずれかに記載の繊維状セルロース含有組成物。
[7] 固形状体である[1]~[6]のいずれかに記載の繊維状セルロース含有組成物。
[8] 粉粒物である[1]~[7]のいずれかに記載の繊維状セルロース含有組成物。
[9] [1]~[8]のいずれかに記載の繊維状セルロース含有組成物と、有機溶媒と、を混合してなる液状組成物。
[10] 樹脂をさらに含む[9]に記載の液状組成物。
[11] [1]~[8]のいずれかに記載の繊維状セルロース含有組成物、もしくは、[9]又は[10]に記載の液状組成物、から形成される成形体。
 本発明によれば、微細繊維状セルロースを分散させた有機溶媒スラリーが高粘度かつ高透明度を発揮できるような微細繊維状セルロース含有組成物を提供することができる。
図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(繊維状セルロース含有組成物)
 本発明は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、金属イオンと、を含む繊維状セルロース含有組成物に関する。本発明の繊維状セルロース含有組成物は、アニオン性基の対イオンとして有機オニウムイオンを含み、繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における金属イオンの含有量が、80ppm以上700ppm以下である。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースと呼ぶこともある。
 本発明の繊維状セルロース含有組成物は、上記構成を有するものであるため、微細繊維状セルロース含有組成物を有機溶媒に分散させた際に、有機溶媒スラリーが高粘度かつ高透明度を発揮することができる。本発明の繊維状セルロース含有組成物は、微細繊維状セルロースが有するアニオン性基の対イオンとして有機オニウムイオンを含み、かつ繊維状セルロース含有組成物中に含まれる金属イオン量を所定範囲内とすることに、有機溶媒において良好な分散性を発揮する。このため、微細繊維状セルロース含有組成物を有機溶媒に分散させた有機溶媒スラリーは、高粘度かつ高透明となる。
 微細繊維状セルロースを有機溶媒中に分散させて得られる有機溶媒スラリーの粘度は、分散媒である有機溶媒の種類と分散液中の微細繊維状セルロースの濃度に依存する。例えば、有機溶媒スラリー中の微細繊維状セルロースの濃度が2.0質量%であって、有機溶媒がN-メチル-2-ピロリドン(NMP)である場合、分散液の粘度は、500mPa・s以上であることが好ましく、1000mPa・s以上であることがより好ましく、3000mPa・s以上であることがさらに好ましく、5000mPa・s以上であることが一層好ましく、8000mPa・s以上であることが特に好ましい。また、有機溶媒スラリー中の微細繊維状セルロースの濃度が4.0質量%であって、有機溶媒がトルエンの場合は、分散液の粘度は、500mPa・s以上であることが好ましく、1000mPa・s以上であることがより好ましく、2000mPa・s以上であることがさらに好ましく、3000mPa・s以上であることが一層好ましく、4000mPa・s以上であることが特に好ましい。有機溶媒スラリー中の微細繊維状セルロースの濃度が2.0質量%であって、有機溶媒がメタノールの場合は、分散液の粘度は、4000mPa・s以上であることが好ましく、6000mPa・s以上であることがより好ましく、8000mPa・s以上であることがさらに好ましく、10000mPa・s以上であることが一層好ましく、15000mPa・s以上であることが特に好ましい。
 微細繊維状セルロースを有機溶媒中に分散させて得られる有機溶媒スラリーの粘度を測定する際は、固形分濃度が2.0質量%もしくは4.0質量%となるように微細繊維状セルロースを有機溶媒中に分散して得られる有機溶媒スラリーを、25℃で、24時間静置した後、B型粘度計を用いて測定する。B型粘度計としては、例えば、BLOOKFIELD社製のアナログ粘度計T-LVTを用いることができる。測定条件は、25℃の条件とし、3rpmで3分間回転させた際の粘度を測定する。なお、粘度測定時には、溶媒が非極性溶媒(比誘電率が5.0未満)の場合には、固形分濃度を4.0質量%とし、それ以外については、固形分濃度を2.0質量%とする。
 微細繊維状セルロースを有機溶媒中に分散させて得られる有機溶媒スラリーの波長600nmの光透過率は、分散媒である有機溶媒の種類と分散液中の微細繊維状セルロースの濃度に依存する。例えば、有機溶媒スラリー中の微細繊維状セルロースの濃度が2.0質量%であって、有機溶媒がN-メチル-2-ピロリドン(NMP)である場合、分散液の波長600nmの光透過率は、50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。また、有機溶媒スラリー中の微細繊維状セルロースの濃度が4.0質量%であって、有機溶媒がトルエンの場合は、分散液の波長600nmの光透過率は、60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。有機溶媒スラリー中の微細繊維状セルロースの濃度が2.0質量%であって、有機溶媒がメタノールの場合は、分散液の波長600nmの光透過率は、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。
 微細繊維状セルロースを有機溶媒中に分散させて得られる有機溶媒スラリーの波長600nmの光透過率を測定する際は、固形分濃度が2.0質量%もしくは4.0質量%となるように微細繊維状セルロースを有機溶媒中に分散して得られる有機溶媒スラリーの波長600nmにおける光透過率を測定する。波長600nmにおける光透過率の測定は、紫外・可視分光光度計と、光路長1cmの液体用ガラスセルを用いて行う。紫外・可視分光光度計としては、例えば、オプティマ社製、SP3000nanoを用いることができ、液体用ガラスセルとしては、例えば、藤原製作所製、MG-40、逆光路を用いることができる。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。また、光透過率を測定する際には、溶媒が非極性溶媒(比誘電率が5.0未満)の場合には、固形分濃度を4.0質量%とし、それ以外については、固形分濃度を2.0質量%とする。
 本発明で用いる微細繊維状セルロースは、有機溶媒中での分散性が良好であり、分散液中で沈降物を生成しない。このため、微細繊維状セルロースを有機溶媒中に分散させて得られる有機溶媒スラリーは高粘度であり、かつ高透明である。また、本発明で用いる微細繊維状セルロースは、有機溶媒への分散性が良好であるため、微細繊維状セルロースを有機溶媒に分散させる際にかかるエネルギーを減らすことができる。
 本発明の繊維状セルロース含有組成物は、アニオン性基と、アニオン性基の対イオンとして有機オニウムを含む微細繊維状セルロースと、金属イオンを含むものであれば特に限定されるものではないが、上記微細繊維状セルロースの濃縮物であることが好ましい。微細繊維状セルロース含有組成物としては、液状体、ゲル状体、固形状体といった形態が挙げられる。中でも、微細繊維状セルロース含有組成物は固形状体であることが好ましい。
 本発明の繊維状セルロース含有組成物が固形状体である場合、その形態は特に限定されるものではないが、例えば、シート状物や粉粒物であることが好ましく、粉粒物であることがより好ましい。ここで、粉粒物は、粉状及び/又は粒状の物質である。なお、粉状物質は、粒状物質よりも小さいものをいう。一般的には、粉状物質は粒子径が1nm以上0.1mm未満の微粒子をいい、粒状物質は、粒子径が0.1mm以上10mm以下の粒子をいうが、特に限定されない。なお、本明細書においては、粉粒物は粉体と呼ぶこともある。本明細書における粉粒物の粒子径はレーザー回折法を用いて測定・算出することができる。具体的には、レーザー回折散乱式粒子径分布測定装置(Microtrac3300EXII、日機装株式会社)を用いて測定した値とする。
 繊維状セルロース含有組成物の固形分濃度は、繊維状セルロース含有組成物の全質量に対して、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。なお、繊維状セルロース含有組成物の固形分濃度の上限値は特に限定されるものではなく、100質量%であってもよい。
 本発明の繊維状セルロース含有組成物においては、水の含有量は少ない方が好ましい。繊維状セルロース含有組成物における水の含有量は、繊維状セルロース含有組成物の全質量に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。また、繊維状セルロース含有組成物における水の含有量は0質量%であることも好ましい。このように、本発明の繊維状セルロース含有組成物は、水分の含有量が低いため、微細繊維状セルロースを有機溶媒に分散させて得られる有機溶媒スラリー中に持ち込まれる水分量が抑えられる。なお、繊維状セルロース含有組成物中の水分含有量は、繊維状セルロース含有組成物を水分計(エー・アンド・デイ社製、MS-70)に200mg載せ、140℃で加熱することで測定することができる。測定された水分量から繊維状セルロース含有組成物中の水分含有量を算出することができる。
 本発明の繊維状セルロース含有組成物においては、ハロゲン化物イオンや硫酸イオンといった強酸に由来するアニオンの含有量が抑えられている点にも特徴がある。ハロゲン化物イオンや硫酸イオンといった強酸に由来するアニオンは、金属腐食性やゴム腐食性を有しているため、これらのアニオンの含有量が抑えられた繊維状セルロース含有組成物や繊維状セルロース含有組成物を含む成形体は、金属腐食作用やゴム腐食作用を有さないものであると言える。
 繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における塩化物イオンの含有量は、1級~3級アミンを中和して得られる有機オニウムイオンがアニオン性基の対イオンである場合、少ない方が好ましい。具体的には、繊維状セルロース含有組成物の絶乾固形分中における塩化物イオンの含有量は、100ppm以下であることが好ましく、90ppm以下であることがより好ましく、80ppm以下であることがさらに好ましい。1級~3級アミンを中和して得られる有機オニウムイオン以外の有機オニウムイオンがアニオン性基の対イオンである場合は、4000ppm以下であっても良いし、2500ppm以下であっても良い。
 塩化物イオンの含有量を測定する際には、まず、繊維状セルロース含有組成物を105℃の条件下で絶乾になるまで(例えば、3時間以上)乾燥させる。次いで、絶乾固形分をJIS Z 7302-6に準拠して全塩素分試験機(吉田製作所製、ボンベ式)を用いて酸素雰囲気下で燃焼させた後、イオンクロマトグラフィー(サーモフィッシャサイエンティフィック社製、ICS2100)を用いて微細繊維状セルロース濃縮物の絶乾固形分中に含まれる塩化物イオン量を測定する。
 微細繊維状セルロース中に含まれるアニオン性基の対イオンを水素イオン(H+)にする際には、塩酸や硫酸を混合する手法が選択されることがあるが、この場合、塩酸や硫酸に由来する塩化物イオンや硫酸イオンが繊維状セルロース含有組成物に残留する場合がある。本発明では、微細繊維状セルロース中に含まれるアニオン性基の対イオンを水素イオンにすることなくナトリウムイオン(Na+)として、繊維状セルロース含有組成物を得ているため、塩化物イオンの含有量を好ましい範囲とすることができ、これにより金属腐食作用やゴム腐食作用が抑制される。
(微細繊維状セルロース)
 本発明の繊維状セルロース含有組成物は、繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースを含む。アニオン性基を有する繊維状セルロースの繊維幅は、100nm以下であることが好ましく、8nm以下であることがより好ましい。なお、繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。
 繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。
 繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
 繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
 繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
 本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。
 繊維状セルロースはアニオン性基を有する。アニオン性基としては、たとえばリン酸基またはリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。リン酸基は、カルボキシ基等と比較して、1分子あたりのアニオン性基数が多いため、より多くの有機オニウムイオンを対イオンとして有し得る。これにより、微細繊維状セルロースの分散性等をより高めることができるものと考えられる。
 リン酸基又はリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基であり、リンオキソ酸基またはリンオキソ酸に由来する置換基として一般化される。
 リン酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-PO32で表される基である。リン酸基に由来する置換基には、リン酸基の塩、リン酸エステル基などの置換基が含まれる。なお、リン酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。また、リン酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リン酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR,ORのいずれかである。なお、各αn及びα’の全てがO-であっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、βb+の少なくとも一部は後述する有機オニウムイオンである。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、βb+の少なくとも一部は後述する有機オニウムイオンである。また、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、とくに限定されない。
 繊維状セルロースにおけるアニオン性基の導入量(アニオン性基量)は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維状セルロースにおけるアニオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、アニオン性基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。アニオン性基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。さらに、アニオン性基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。
 繊維状セルロースに対するアニオン性基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。
 図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。
 なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。
すなわち、下記計算式によってカルボキシ基導入量を算出する。
カルボキシ基導入量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
 なお、滴定法による置換基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、例えば、0.1N水酸化ナトリウム水溶液を30秒に50μLずつ滴定するなどが望ましい。
<微細繊維状セルロースの製造工程>
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リン酸基導入工程>
 微細繊維状セルロースがリン酸基を有する場合、微細繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
 本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物が挙げられ、具体的には、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
 リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。
 リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。
 繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。さらに、リン酸基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。
<カルボキシ基導入工程>
 微細繊維状セルロースがカルボキシ基を有する場合、微細繊維状セルロースの製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。
 また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
 繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。さらに、カルボキシ基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロースの有機溶媒に対する分散性を効果的に高めることができる。
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったアニオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。
<酸処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
<解繊処理>
 アニオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
 解繊処理工程においては、たとえばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。
(有機オニウムイオン)
 本発明の繊維状セルロース含有組成物は、微細繊維状セルロースが有するアニオン性基の対イオンとして、有機オニウムイオンを含む。本発明においては、少なくとも一部の有機オニウムイオンは、微細繊維状セルロースの対イオンとして存在しているが、繊維状セルロース含有組成物中には、遊離した有機オニウムイオンが存在していてもよい。なお、有機オニウムイオンは、繊維状セルロースと共有結合を形成するものではない。
 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たすものであることが好ましい。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
 すなわち、微細繊維状セルロースは、炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンから選択される少なくとも一方を、アニオン性基の対イオンとして含むことが好ましい。有機オニウムイオンを、上記(a)及び(b)から選択される少なくとも一方の条件を満たすものとすることにより、有機溶媒に対する微細繊維状セルロースの分散性をより効果的に高めることができる。
 炭素数が5以上の炭化水素基は、炭素数が5以上のアルキル基又は炭素数が5以上のアルキレン基であることが好ましく、炭素数が6以上のアルキル基又は炭素数が6以上のアルキレン基であることがより好ましく、炭素数が7以上のアルキル基又は炭素数が7以上のアルキレン基であることがさらに好ましく、炭素数が10以上のアルキル基又は炭素数が10以上のアルキレン基であることが特に好ましい。中でも、有機オニウムイオンは炭素数が5以上のアルキル基を有するものであることが好ましく、炭素数が5以上のアルキル基を含み、かつ総炭素数が17以上の有機オニウムイオンであることがより好ましい。
 有機オニウムイオンは、下記一般式(A)で表される有機オニウムイオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(A)中、Mは窒素原子又はリン原子であり、R1~R4は、それぞれ独立に水素原子又は有機基を表す。但し、R1~R4の少なくとも1つは、炭素数が5以上の有機基であるか、R1~R4の炭素数の合計が17以上であることが好ましい。
 中でも、Mは、窒素原子であることが好ましい。すなわち、有機オニウムイオンは有機アンモニウムイオンであることが好ましい。また、R1~R4の少なくとも1つは、炭素数が5以上のアルキル基であり、かつR1~R4の炭素数の合計が17以上であることが好ましい。
 このような有機オニウムイオンとしては、例えば、ラウリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、オクチルジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウム、ジデシルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、トリブチルベンジルアンモニウム、メチルトリ-n-オクチルアンモニウム、ヘキシルアンモニウム、n-オクチルアンモニウム、ドデシルアンモニウム、テトラデシルアンモニウム、ヘキサデシルアンモニウム、ステアリルアンモニウム、N,N-ジメチルドデシルアンモニウム、N,N-ジメチルテトラデシルアンモニウム、N,N-ジメチルヘキサデシルアンモニウム、N,N-ジメチル-n-オクタデシルアンモニウム、ジヘキシルアンモニウム、ジ(2-エチルヘキシル)アンモニウム、ジーn-オクチルアンモニウム、ジデシルアンモニウム、ジドデシルアンモニウム、ジデシルメチルアンモニウム、N,N-ジドデシルメチルアンモニウム、ポリオキシエチレンドデシルアンモニウム、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウム、ベヘニルトリメチルアンモニウム、テトラフェニルホスホニウム、テトラオクチルホスホニウム、アセトニルトリフェニルホスホニウム、アリルトリフェニルホスホニウム、アミルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルプロピルホスホニウム、トリフェニルホスホニウム、トリシクロヘキシルホスホニウム、トリ-n-オクチルホスホニウム等を挙げることができる。なお、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウムにおけるアルキル基として、炭素数が8以上18以下の直鎖アルキル基が挙げられる。
 なお、一般式(A)に示した通り、有機オニウムイオンの中心元素は合計4つの基または水素と結合している。上述した有機オニウムイオンの名称で、結合している基が4つ未満である場合、残りは水素原子が結合して有機オニウムイオンを形成している。例えば、N,N-ジドデシルメチルアンモニウムであれば、名称からドデシル基が2つ、メチル基が1つ結合していると判断できる。この場合、残りの1つには水素が結合し、有機オニウムイオンを形成している。
 有機オニウムがO原子を含む場合、O原子に対するC原子の質量比率(C/O比)は大きいほど好ましく、例えば、C/O>5であることが好ましい。C/O比を5よりも大きくすることにより、微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加した際に、微細繊維状セルロース濃縮物が得られやすくなる。
 有機オニウムイオンの分子量は、2000以下であることが好ましく、1800以下であることがより好ましい。有機オニウムイオンの分子量を上記範囲内とすることにより、微細繊維状セルロースのハンドリング性を高めることができる。また、有機オニウムイオンの分子量を上記範囲内とすることにより、繊維状セルロース含有組成物における繊維状セルロースの含有率が低下してしまうことを抑制できる。
 有機オニウムイオンの含有量は、繊維状セルロース含有組成物の全質量に対して5.0質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。また、有機オニウムイオンの含有量は繊維状セルロース含有組成物の全質量に対して80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 また、繊維状セルロース含有組成物における有機オニウムイオンの含有量は、微細繊維状セルロース中に含まれるアニオン性基量に対して、等モル量から2倍モル量であることが好ましいが、特に限定されない。なお、有機オニウムイオンの含有量は、有機オニウムイオンに典型的に含まれる原子を追跡することで測定することができる。具体的には、有機オニウムイオンがアンモニウムイオンの場合は窒素原子を、有機オニウムイオンがホスホニウムイオンの場合はリン原子の量を測定する。なお、微細繊維状セルロースが有機オニウムイオン以外に、窒素原子やリン原子を含む場合は、有機オニウムイオンのみを抽出する方法、例えば、酸による抽出操作などを行ってから、目的の原子の量を測定すれば良い。
(金属イオン)
 本発明の繊維状セルロース含有組成物は、金属イオンを含む。金属イオンは、後述するように微細繊維状セルロースの濃縮物を得る工程で、有機オニウムイオンと微細繊維状セルロース含有スラリーを混合する前に、微細繊維状セルロースがアニオン性基の対イオンとして有していた金属イオンであることが好ましいが、金属イオンはこれに限定されるものではない。金属イオンは、繊維状セルロース含有組成物中に別途添加された金属イオンであってもよい。
 繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における金属イオンの含有量は、80ppm以上であればよく、90ppm以上であることが好ましく、100ppm以上であることがより好ましい。また、絶乾固形分中における金属イオンの含有量は、700ppm以下であればよく、600ppm以下であることが好ましく、500ppm以下であることがより好ましい。絶乾固形分中における金属イオンの含有量を上記範囲内とすることにより、微細繊維状セルロース含有組成物を有機溶媒に分散させた際に、有機溶媒スラリーの粘度と透明度を高めることができる。さらに、絶乾固形分中における金属イオンの含有量を上記範囲内とすることにより、繊維状セルロース含有組成物中に含まれる塩化物イオンや硫酸イオンの含有量を抑制することもできる。
 繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とする際には、繊維状セルロース含有組成物を105℃の条件下で絶乾になるまで(例えば、3時間以上)乾燥させる。そして、この絶乾固形分中における金属イオンの含有量を測定する際には、絶乾固形分0.1gに硝酸5.0mLを加えて、湿式分解装置を用いて湿式分解を行った後、ICP発光分光分析装置を用いて金属イオン量を測定する。なお、湿式分解装置としては、例えば、CEM社製のMARS5を用いることができ、ICP発光分光分析装置としては、例えば、アメテック社製のCIROS120を用いることができる。
 金属イオンは、とくに限定されるものではないが、アルカリ金属イオン及びアルカリ土類金属イオンから選択される少なくとも一種であることが好ましい。具体的には、金属イオンは、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン等を挙げることができる。中でも、金属イオンは、ナトリウムイオンであることが好ましい。
(有機溶媒)
 本発明の繊維状セルロース含有組成物は、有機溶媒をさらに含むものであってもよい。なお、有機溶媒を含むことにより組成物が液体状となる場合には、繊維状セルロース含有組成物は、後述する液状組成物と呼ぶ。
 有機溶媒は、特に限定されるものではないが、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール(IPA)、1-ブタノール、m-クレゾール、グリセリン、酢酸、ピリジン、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、アニリン、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ヘキサン、シクロヘキサン、ベンゼン、トルエン、p-キシレン、ジエチルエーテルクロロホルム等を挙げることができる。中でも、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、トルエン、メタノールは好ましく用いられる。
 有機溶媒の25℃における比誘電率は、60以下であることが好ましく、50以下であることがより好ましい。本発明の微細繊維状セルロースは、比誘電率の低い有機溶媒中においても優れた分散性を発揮することができるため、有機溶媒の25℃における比誘電率は、45以下であってもよく、40以下であってもよく、35以下であってもよい。
 有機溶媒のハンセン溶解度パラメーター(Hansen solubility parameter,HSP値)のδpは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上19MPa1/2以下であることがより好ましく、12MPa1/2以上18MPa1/2以下であることがさらに好ましい。また、δhは、5MPa1/2以上40MPa1/2以下であることが好ましく、5MPa1/2以上30MPa1/2以下であることがより好ましく、5MPa1/2以上20MPa1/2以下であることがさらに好ましい。また、δpが0MPa1/2以上4MPa1/2以下の範囲であり、δhが0MPa1/2以上6MPa1/2以下の範囲であることを同時に満たすことも好ましい。
 繊維状セルロース含有組成物中に含まれる有機溶媒の含有量は、繊維状セルロース含有組成物中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
(樹脂)
 本発明の繊維状セルロース含有組成物は、樹脂をさらに含むものであってもよい。樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。
 樹脂としては、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体、これらの樹脂の前駆体を挙げることができる。なお、セルロース誘導体としては、たとえば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロースなどを挙げることができる。
 本発明の微細状セルロース含有組成物は、樹脂として、樹脂の前駆体を含んでいてもよい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。
 本発明の繊維状セルロース含有組成物は、樹脂として、上述した樹脂種とは別にさらに水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえば、合成水溶性高分子(例えば、カルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミドなど)、増粘多糖類(例えば、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチンなど)、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン等のグリセリン類等、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。
 繊維状セルロース含有組成物中に含まれる樹脂の含有量は、繊維状セルロース含有組成物中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
(任意成分)
 繊維状セルロース含有組成物は、さらに他の任意成分を含有していてもよい。繊維状セルロース含有組成物が他の任意成分を含有する場合、任意成分は濃縮後に得られた繊維状セルロース含有組成物に添加・混合してもよく、濃縮前のスラリーに含有させてもよい。
 任意成分としては、例えば吸湿剤を挙げることができる。吸湿剤としては、例えば、シリカゲル、ゼオライト、アルミナ、カルボキシメチルセルロース、ポリビニルアルコール水溶性酢酸セルロース、ポリエチレングリコール、セピオライト、酸化カルシウム、ケイソウ土、活性炭、活性白土、ホワイトカーボン、塩化カルシウム、塩化マグネシウム、酢酸カリウム、第二リン酸ナトリウム、クエン酸ナトリウム及び吸水性ポリマー等が挙げられる。
 さらに、任意成分としては、界面活性剤、有機イオン、カップリング剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、架橋剤等を挙げることができる。
 繊維状セルロース含有組成物中に含まれる任意成分の含有量は、繊維状セルロース含有組成物中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
(繊維状セルロース含有組成物の製造方法)
 繊維状セルロース含有組成物の製造工程は、微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する工程を含む。具体的には、上述した解繊処理工程で得られた微細繊維状セルロース含有スラリーに、上述したような有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する。この際、有機オニウムイオンは、有機オニウムイオンを含有した溶液として添加することが好ましく、有機オニウムイオンを含有した水溶液として添加することがより好ましい。
 有機オニウムイオンを含有した水溶液は、通常、有機オニウムイオンと、対イオン(アニオン)を含んでいる。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、そのまま水に溶解させればよい。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、水又は熱水に溶解することが好ましい。この際、溶解する溶媒には有機溶媒が実質的に含まれていないことが好ましい。また、有機オニウムイオン塩が常温の水に難溶である場合、熱水に溶解することが好ましい。熱水の温度は、塩が溶解する温度であれば特に限定されないが、70℃以上であることが好ましく、80℃以上であることがより好ましい。また100℃以下であることが好ましい。本発明においては、有機オニウムイオンを上記条件で調整することにより繊維状セルロース含有組成物中の金属イオン含有量を所定の範囲内にコントロールすることが容易となる。
 また、有機オニウムイオンは、例えば、ドデシルアミンなどのように、酸によって中和されて始めて生成する場合もある。この場合、有機オニウムイオンは、中和により有機オニウムイオンを形成する化合物と酸との反応により得られる。この場合、中和に使用する酸としては、塩酸、硫酸、硝酸等の無機酸や乳酸、酢酸、ギ酸、シュウ酸等の有機酸が挙げられる。本発明においては、有機オニウムイオンが酸によって中和されて始めて生成する場合は、中和を行うことで、繊維状セルロース含有組成物中の金属イオン含有量を所定の範囲内にコントロールすることが容易となる。
 微細繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する工程は、さらに撹拌工程を含むことが好ましい。そして、撹拌工程においては、有機オニウムイオンを添加した微細繊維状セルロース含有スラリーの液温(以下、撹拌処理温度ともいう)は、60℃であることが好ましく、50℃であることがより好ましく、40℃であることがさらに好ましく、30℃であることが特に好ましい。本発明においては、撹拌処理温度を上記範囲内とすることにより、有機オニウムイオンの運動性を適切な範囲にコントロールすることができ、それにより微細繊維状セルロースにおける対イオン交換が十分に進行するため、繊維状セルロース含有組成物中の金属イオン含有量を所定の範囲内にコントロールすることが容易となる。また、撹拌処理温度を上記範囲内とすることにより、繊維状セルロース含有組成物中の塩化物イオンや硫酸イオン濃度を好ましい範囲内にコントロールすることが容易となる。
 このように、本発明においては、有機オニウムイオンと微細繊維状セルロースの反応温度や反応条件を調整したり、有機オニウムイオンの前処理条件や、有機オニウムと反応させる前の微細繊維状セルロースの対イオンを調整することで、得られる繊維状セルロース含有組成物に含まれる金属イオン量を適切な範囲にコントロールしやすくなる。具体的には、有機オニウムイオンと微細繊維状セルロースの反応を適度に促進することにより、得られる繊維状セルロース含有組成物に含まれる金属イオン量を所望の範囲内とすることができる。
 有機オニウムイオンの添加量は、微細繊維状セルロースの全質量に対し、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、100質量%以上であることが特に好ましい。なお、有機オニウムイオンの添加量は、微細繊維状セルロースの全質量に対し、1000質量%以下であることが好ましい。
 また、添加する有機オニウムイオンのモル数は、微細繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の0.2倍以上であることが好ましく、1.0倍以上であることがより好ましく、2.0倍以上であることがさらに好ましい。なお、添加する有機オニウムイオンのモル数は、微細繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の10倍以下であることが好ましい。
 有機オニウムイオンを添加し、撹拌を行うと、微細繊維状セルロース含有スラリー中に凝集物が生じる。この凝集物は、対イオンとして有機オニウムイオンを有する微細繊維状セルロースが凝集したものである。凝集物が生じた微細繊維状セルロース含有スラリーを減圧濾過することで、微細繊維状セルロース凝集物を回収することができる。
 得られた微細繊維状セルロース凝集物は、イオン交換水で洗浄してもよい。微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰な有機オニウムイオン等を除去することができる。
 得られた微細繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は1.2よりも大きいことが好ましく、2.0よりも大きいことがより好ましい。また、得られた微細繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は5.0以下であることが好ましい。なお、微細繊維状セルロース凝集物中のP原子の含有量とN原子の含有量は適宜元素分析により算出することができる。元素分析としては、例えば、適当な前処理の後に微量窒素分析やモリブデンブルー法などを行うことができる。なお、微細繊維状セルロース凝集物以外の組成物が、P原子、N原子を含む場合は、当該組成物と微細繊維状セルロース凝集物を適当な方法で分離した後に元素分析を行ってもよい。
 得られた微細繊維状セルロース凝集物の固形分濃度は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。なお、微細繊維状セルロース凝集物の固形分濃度の上限値は特に限定されるものではなく、100質量%であってもよい。
 微細繊維状セルロース凝集物を、恒温恒湿条件下で乾燥させることで、微細繊維状セルロース濃縮物が得られる。繊維状セルロース凝集物(濃縮物)を恒温恒湿条件下で乾燥する際の温度は、10℃以上であることが好ましく、20℃以上であることがより好ましい。恒温恒湿条件における温度は、100℃以下であることが好ましく、80℃以下であることがより好ましく、60℃以下であることがさらに好ましい。また、恒温恒湿条件における相対湿度は、20%以上であることが好ましく、30%以上であることがより好ましい。恒温恒湿条件における相対湿度は、70%以下であることが好ましい。なお、恒温恒湿条件下で乾燥する際の乾燥時間は、10分以上であることが好ましく、20分以上であることがより好ましく、30分以上であることがさらに好ましい。恒温恒湿条件下で乾燥する際の乾燥時間は、100時間以下であることが好ましく、80時間以下であることがより好ましい。
(用途)
 本発明の繊維状セルロース含有組成物は、有機溶媒混合用として好ましく用いられる。すなわち、有機溶媒を含む系の増粘剤や粒子分散安定剤として使用することができる。特に樹脂成分を含む有機溶媒との混合に好ましく用いることができる。本発明の微細繊維状セルロースと、樹脂成分を含む有機溶媒を混合することで、微細繊維状セルロースが均一に分散した樹脂複合体を形成することができる。同様に微細繊維状セルロース再分散スラリーを用いて製膜し、各種フィルムとして使用することができる。
 また、本発明の繊維状セルロース含有組成物は、例えば、補強剤や添加剤として、セメント、塗料、インク、潤滑剤などに使用することができる。また、繊維状セルロース含有組成物を基材上に塗工することで得られる成形体は、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途にも適している。
(液状組成物)
 本発明は、上述した繊維状セルロース含有組成物と、有機溶媒と、を混合してなる液状組成物に関するものでもある。液状組成物は、上述した微細繊維状セルロース含有組成物が、有機溶媒を含む分散媒中に分散した繊維状セルロース含有分散液(再分散液)である。なお、本発明の液状組成物の分散媒は有機溶媒であることが好ましいが、有機溶媒の他に水をさらに含有していてもよい。なお、有機溶媒としては、上述した有機溶媒を列挙することができる。
 液状組成物における有機溶媒の含有量は、液状組成物の全質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。なお、有機溶媒の含有量は繊維状セルロース含有組成物の全質量に対して、99質量%以下であることが好ましい。
 なお、液状組成物中の固形分濃度は、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。なお、液状組成物中の固形分濃度は、50質量%未満であることが好ましい。
 液状組成物はさらに、樹脂を含むものであってもよい。樹脂の種類は特に限定されるものではないが、例えば、上述した樹脂を列挙することができる。
(成形体)
 本発明は、上述した繊維状セルロース含有組成物、もしくは、上述した液状組成物から形成される成形体に関するものでもある。この場合、繊維状セルロース含有組成物及び液状組成物は樹脂を含むものであることが好ましい。本発明では、有機溶媒及び樹脂との相溶性に優れた微細繊維状セルロースを用いているため、成形体は、優れた曲げ弾性率を有し、さらに強度と寸法安定性にも優れている。加えて、本発明の成形体は透明性にも優れている。
 本発明の成形体の形態は特に限定されるものではないが、成形体は、例えば、シート状であることが好ましい。本発明は、上述した繊維状セルロース含有組成物、もしくは、上述した液状組成物から形成されるシートに関するものであってもよい。
 成形体の成形方法には特に制限はなく、射出成形法や加熱加圧成形法等を採用することができる。また、成形体をシートから成形する場合、プレス成形法又は真空成形法によって成形してもよい。
 成形体がシート状である場合、成形体の成形方法は、上述した液状組成物を基材上に塗工する工程を含むことが好ましい。塗工工程で用いる基材の材質は、とくに限定されないが、液状組成物に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、とくに限定されない。たとえばアクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。
 塗工工程において、液状組成物の粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、とくに限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリプロピレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
 液状組成物を基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。被膜(シート)の厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。
 液状組成物を基材へ塗工する際の液状組成物の温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。
 塗工工程においては、シートの仕上がり坪量が好ましくは10g/m2以上100g/m2以下となるように、より好ましくは20g/m2以上60g/m2以下となるように、液状組成物を基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、より強度に優れたシートが得られる。
 塗工工程は、基材上に塗工した液状組成物を乾燥させる工程を含む。液状組成物を乾燥させる工程は、とくに限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。非接触の乾燥方法としては、とくに限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、とくに限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。加熱乾燥法における加熱温度は、とくに限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。
 以下の実施例により本発明を更に具体的に説明するが、本発明の範囲は以下の実施例により限定されるものではない。
<製造例1>
〔微細繊維状セルロース分散液Aの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
 この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 洗浄後のリン酸化パルプに対して、さらに上記リン酸化処理、上記洗浄処理をこの順に1回ずつ行った。
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
 得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。
 X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、2.0mmol/gだった。
<製造例2>
〔微細繊維状セルロース分散液Bの製造〕
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してTEMPO酸化処理を次のようにして行った。
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Bを得た。
 X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、TEMPO酸化パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。
<実施例1>
〔微細繊維状セルロース濃縮物の製造〕
 2.43質量%のN,N-ジドデシルメチルアミン水溶液100gに0.60gの乳酸を添加して事前に中和した後、製造例1で得られた微細繊維状セルロース分散液A 100gに添加した。熱媒を使用し、液温を5℃(以下、撹拌処理温度という)に保った状態で、ディスパーザーで5分間撹拌処理を行ったところ、微細繊維状セルロース分散液中に凝集物が生じた。凝集物が生じた微細繊維状セルロース分散液を減圧濾過することにより、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰なN,N-ジドデシルメチルアミン、乳酸及び溶出したイオン等を除去した。得られた微細繊維状セルロース凝集物を30℃、相対湿度40%の条件下で乾燥し、微細繊維状セルロース濃縮物(繊維状セルロース含有組成物)を得た。
 微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、N,N-ジドデシルメチルアンモニウム(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量を後述の方法により測定した。
〔微細繊維状セルロース濃縮物の再分散〕
 微細繊維状セルロース濃縮物に、微細繊維状セルロースの含有量が2.0質量%となるようN-メチルー2ーピロリドン(NMP)を添加した。その後、超音波処理装置(ヒールシャー製、UP400S)を用いて超音波処理を10分間行い、微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例2>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を20℃とした以外は実施例1と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は95質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例3>
 製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用いた。1.32質量%のN,N-ジドデシルメチルアミン水溶液100gに0.32gの乳酸を添加して中和した後に、微細繊維状セルロース分散液Bに添加した以外は、実施例1と同様にして微細繊維状セルロース濃縮物を得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、N,N-ジドデシルメチルアンモニウム(DDMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は90質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例4>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を20℃とした以外は実施例3と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は91質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例1>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例1と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例2>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例3と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例3>
 微細繊維状セルロース濃縮物の製造時に乳酸による事前中和を行わず、2.43質量%のN,N-ジドデシルメチルアミン水溶液100gを直接微細繊維状セルロース分散液Aに添加した以外は実施例2と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は86質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例4>
〔酸型微細繊維状セルロースの製造〕
 製造例1で得られた微細繊維状セルロース分散液A100gに1N塩酸を添加してpHを1に調整し、ディスパーザーで1時間撹拌処理を行った。その後、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000Gで、10分間遠心分離し、微細繊維状セルロースゲルを得た。得られた微細繊維状セルロースゲルにイオン交換水を添加し、撹拌処理を行ったところ、微細繊維状セルロースゲルが膨潤し、微細繊維状セルロースゲル中に含まれる余剰な塩酸、溶出したイオンを除去することができず、有機アミンとの反応工程に供試することができなかった。
<比較例5>
〔酸型微細繊維状セルロースゲルの製造〕
 製造例2で得られた微細繊維状セルロース分散液B150gに1N塩酸を添加してpHを1に調整し、ディスパーザーで1時間撹拌処理を行った。その後、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000Gで、10分間遠心分離し、微細繊維状セルロースゲルを得た。得られた微細繊維状セルロースゲルにイオン交換水を添加し、撹拌処理の後、12000Gで、10分間遠心分離を行い、微細繊維状セルロースゲルを得る工程を4回繰り返すことにより、微細繊維状セルロースゲル中に含まれる余剰な塩酸、溶出したイオンを除去した。得られた微細繊維状セルロースゲルに含まれるカルボキシ基が酸型であった。また、得られた微細繊維状セルロースゲルの固形分濃度は2.5質量%であった。
〔有機アミンとの反応工程〕
 得られた酸型微細繊維状セルロースゲル100gにイソプロパノール(IPA)を50g添加した後、超音波処理装置(ヒールシャー製、UP400S)を用いて1分間超音波処理を行い、酸型微細繊維状セルロース分散液を得た。得られた酸型微細繊維状セルロース分散液に3.3質量%のN,N-ジドデシルメチルアミン溶液50gを添加し、24時間撹拌処理を行った。この時、反応液は白濁するものの、凝集物の生成は確認されなかった。次いで、反応液を4Lのイオン交換水に添加したところ、水中に凝集物が生じた。凝集物が生じた微細繊維状セルロース分散液を減圧濾過することにより、微細繊維状セルロース凝集物を得た。得られた微細繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、微細繊維状セルロース凝集物に含まれる余剰なN,N-ジドデシルメチルアミン、IPA及び溶出したイオン等を除去した。得られた微細繊維状セルロース凝集物を30℃、相対湿度40%の条件下で乾燥し、微細繊維状セルロース濃縮物を得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量を後述の方法により測定した。
〔微細繊維状セルロース濃縮物の再分散〕
 実施例1と同様にして、微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例5>
 3.86gのジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)を80℃で96.1gのイオン交換水に溶解後、常温に冷まし、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液を得た。3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液100gを、乳酸で中和したN,N-ジドデシルメチルアミン水溶液の代わりに用い、N-メチルー2ーピロリドン(NMP)の代わりにトルエンを微細繊維状セルロース濃縮物に添加した以外は、実施例1と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、ジ-n-アルキルジメチルアンモニウム(DADMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は91質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例6>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を20℃とした以外は実施例5と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は90質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例7>
 2.10gのジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)を80℃で97.9gのイオン交換水に溶解後、常温に冷まし、2.10質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液を得た。製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用い、2.10質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液100gを微細繊維状セルロース分散液Bに添加した以外は、実施例5と同様にして微細繊維状セルロース濃縮物を得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、ジ-n-アルキルジメチルアンモニウム(DADMA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は89質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例6>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例5と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例7>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例7と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例8>
 3.86gのジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)を常温で67%のIPA水溶液に溶解し、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド溶液を得た。得られたジ-n-アルキルジメチルアンモニウムクロリド溶液100gを微細繊維状セルロース分散液Aに添加した以外は実施例6と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例8>
 2.33gのアルキルジメチルベンジルアンモニウムクロリド(アルキル鎖の炭素原子数は8~18個)を80℃で97.7gのイオン交換水に溶解後、常温に冷まし、2.33質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液を得た。2.33質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液100gを、乳酸で中和したN,N-ジドデシルメチルアミン水溶液の代わりに用い、N-メチルー2ーピロリドン(NMP)の代わりにメタノールを微細繊維状セルロース濃縮物に添加した以外は、実施例1と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。微細繊維状セルロース濃縮物に含まれるリン酸基の対イオンは、アルキルジメチルベンジルアンモニウム(ADMBA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は84質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例9>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を20℃とした以外は実施例8と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は83質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<実施例10>
 1.27gのアルキルジメチルベンジルアンモニウムクロリド(アルキル鎖の炭素原子数は8~18個)を80℃で98.7gのイオン交換水に溶解後、常温に冷まし、1.27質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液を得た。製造例2で得られた微細繊維状セルロース分散液Bを、微細繊維状セルロース分散液Aの代わりに用い、1.27質量%のアルキルジメチルベンジルアンモニウム水溶液100gを微細繊維状セルロース分散液Bに添加した以外は、実施例8と同様にして微細繊維状セルロース濃縮物を得た。微細繊維状セルロース濃縮物に含まれるカルボキシ基の対イオンは、アルキルジメチルベンジルアンモニウム(ADMBA+)となっていた。得られた微細繊維状セルロース濃縮物の固形分濃度は81質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例9>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例8と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は82質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例10>
 微細繊維状セルロース濃縮物の製造時の撹拌処理温度を80℃とした以外は実施例10と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は82質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<比較例11>
 2.33gのアルキルジメチルベンジルアンモニウムクロリド(アルキル鎖の炭素原子数は8~18個)を常温で67%IPA水溶液に溶解し、3.86質量%のアルキルジメチルベンジルアンモニウムクロリド溶液を得た。得られたアルキルジメチルベンジルアンモニウムクロリド溶液100gを微細繊維状セルロース分散液Aに添加した以外は実施例9と同様にして、微細繊維状セルロース濃縮物及び微細繊維状セルロース再分散スラリーを得た。得られた微細繊維状セルロース濃縮物の固形分濃度は93質量%であった。得られた微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量及び塩化物イオン量、得られた微細繊維状セルロース再分散スラリーの粘度及び波長600nmにおける光透過率を後述の方法により測定した。
<評価>
〔リン酸基量の測定〕
 微細繊維状セルロースのリン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図1に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
〔カルボキシ基量の測定〕
 微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
〔微細繊維状セルロース再分散スラリーの粘度〕
 微細繊維状セルロース含有スラリーの粘度は、微細繊維状セルロース含有スラリーを25℃で、24時間静置した後、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定時の微細繊維状セルロース再分散スラリー濃度は、分散対象の有機溶媒の比誘電率が5.0以上の場合、2.0質量%であり、有機溶媒の比誘電率が5.0未満の場合、4.0質量%とした。測定条件は、25℃の条件とし、3rpmで3分間回転させた際の粘度を測定した。
〔微細繊維状セルロース再分散スラリーの波長600nmにおける全光線透過率の測定〕
 紫外・可視分光光度計(オプティマ社製、SP3000nano)で、光路長1cmの液体用ガラスセルを用いて、微細繊維状セルロース再分散スラリーの波長600nmにおける全光線透過率を測定した。測定時の微細繊維状セルロース再分散スラリー濃度は、分散対象の有機溶媒の比誘電率が5.0以上の場合、2.0質量%であり、有機溶媒の比誘電率が5.0未満の場合、4.0質量%とした。
〔微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量測定〕
 微細繊維状セルロース濃縮物を105℃で絶乾になるまで乾燥し、微細繊維状セルロース濃縮物の絶乾固形分を得た。この絶乾固形分0.1gに硝酸5.0mLを加えて、湿式分解装置(CEM社製、MARS5)を用いて湿式分解を行った後、ICP発光分光分析装置(アメテック社製、CIROS120)を用いて、微細繊維状セルロース濃縮物の絶乾固形分中に含まれる金属イオン量を測定した。
〔微細繊維状セルロース濃縮物の絶乾固形分中に含まれる塩化物イオン量測定〕
 微細繊維状セルロース濃縮物を105℃で絶乾になるまで乾燥し、微細繊維状セルロース濃縮物の絶乾固形分を得た。この絶乾固形分をJIS Z 7302-6に準拠して全塩素分試験機(吉田製作所製、ボンベ式)を用いて酸素雰囲気下で燃焼させた後、イオンクロマトグラフィー(サーモフィッシャサイエンティフィック社製、ICS2100)を用いて微細繊維状セルロース濃縮物の絶乾固形分中に含まれる塩化物イオン量を測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例で得られた微細繊維状セルロース濃縮物(繊維状セルロース含有組成物)は、金属イオンの含有量が所定範囲であったため、微細繊維状セルロース再分散スラリーは高粘度であり、かつ透明度が高いものであった。
 なお、比較例3においては、微細繊維状セルロース濃縮物の製造時に乳酸による事前中和を行わず、N,N-ジドデシルメチルアミン水溶液と微細繊維状セルロースを混合しているため、アミノ基のプロトン化が起こりにくく、ナトリウムイオンの対イオン交換が進行せず、金属イオン量が700ppmを上回っていた。
 比較例4では塩酸処理後に得られた酸型の微細繊維状セルロースゲルに水を添加すると膨潤したため、系内に多く残存する塩酸や溶出イオンの遠心分離洗浄ができず、目的の繊維状セルロース含有組成物が得られなかった。
 比較例8及び11では、IPA/水(2/1)溶液に常温で溶解したアルキルアンモニウム溶液を使用しており、得られた微細セルロース含有組成物の金属イオン量が700ppmを上回っていた。

Claims (11)

  1.  繊維幅が1000nm以下であり、アニオン性基を有する繊維状セルロースと、金属イオンと、を含む繊維状セルロース含有組成物であって、
     前記アニオン性基の対イオンとして有機オニウムイオンを含み、
     前記繊維状セルロース含有組成物中に含まれる固形分を絶乾状態とした場合に、絶乾固形分中における前記金属イオンの含有量が、80ppm以上700ppm以下である繊維状セルロース含有組成物。
  2.  前記繊維状セルロースにおけるアニオン性基量が、0.50mmol/g以上である請求項1に記載の繊維状セルロース含有組成物。
  3.  前記有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす請求項1又は2に記載の繊維状セルロース含有組成物;
    (a)炭素数が5以上の炭化水素基を含む;
    (b)総炭素数が17以上である。
  4.  前記有機オニウムイオンは、有機アンモニウムイオンである請求項1~3のいずれか1項に記載の繊維状セルロース含有組成物。
  5.  前記金属イオンは、アルカリ金属イオン及びアルカリ土類金属イオンから選択される少なくとも一種である請求項1~4のいずれか1項に記載の繊維状セルロース含有組成物。
  6.  固形分濃度が、80質量%以上である請求項1~5のいずれか1項に記載の繊維状セルロース含有組成物。
  7.  固形状体である請求項1~6のいずれか1項に記載の繊維状セルロース含有組成物。
  8.  粉粒物である請求項1~7のいずれか1項に記載の繊維状セルロース含有組成物。
  9.  請求項1~8のいずれか1項に記載の繊維状セルロース含有組成物と、有機溶媒と、を混合してなる液状組成物。
  10.  樹脂をさらに含む請求項9に記載の液状組成物。
  11.  請求項1~8のいずれか1項に記載の繊維状セルロース含有組成物、もしくは、請求項9又は10に記載の液状組成物、から形成される成形体。
PCT/JP2019/033800 2018-08-30 2019-08-28 繊維状セルロース含有組成物、液状組成物及び成形体 WO2020045533A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020539563A JP7351305B2 (ja) 2018-08-30 2019-08-28 繊維状セルロース含有組成物、液状組成物及び成形体
KR1020217006993A KR20210040430A (ko) 2018-08-30 2019-08-28 섬유상 셀룰로오스 함유 조성물, 액상 조성물 및 성형체
US17/271,052 US20210253830A1 (en) 2018-08-30 2019-08-28 Cellulose fiber-containing composition, liquid composition, and molded body
CN201980056088.XA CN112673061A (zh) 2018-08-30 2019-08-28 含有纤维状纤维素的组合物、液状组合物及成形体
EP19854453.8A EP3845590A1 (en) 2018-08-30 2019-08-28 Fibrous cellulose-containing composition, liquid composition, and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162035 2018-08-30
JP2018-162035 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045533A1 true WO2020045533A1 (ja) 2020-03-05

Family

ID=69642755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033800 WO2020045533A1 (ja) 2018-08-30 2019-08-28 繊維状セルロース含有組成物、液状組成物及び成形体

Country Status (6)

Country Link
US (1) US20210253830A1 (ja)
EP (1) EP3845590A1 (ja)
JP (1) JP7351305B2 (ja)
KR (1) KR20210040430A (ja)
CN (1) CN112673061A (ja)
WO (1) WO2020045533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210380724A1 (en) * 2018-05-18 2021-12-09 Daio Paper Corporation Fine cellulose fiber and method for producing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195866A (ja) * 2009-02-23 2010-09-09 Sanyo Chem Ind Ltd カルボキシアルキルセルロース(誘導体)の水性分散体の製造方法
JP2011047084A (ja) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd 有機化繊維、樹脂組成物及びその製造方法
WO2011071156A1 (ja) * 2009-12-11 2011-06-16 花王株式会社 複合材料
JP2011140738A (ja) 2009-12-11 2011-07-21 Kao Corp 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料
WO2011111612A1 (ja) * 2010-03-09 2011-09-15 凸版印刷株式会社 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体
JP2012021081A (ja) 2010-07-14 2012-02-02 Univ Of Tokyo セルロースナノファイバー分散液の製造方法、セルロースナノファイバー分散液、セルロースナノファイバー成形体、及びセルロースナノファイバー複合体
JP2013151661A (ja) * 2011-12-28 2013-08-08 Kao Corp ポリエステル樹脂組成物からなる成形体
WO2016152491A1 (ja) * 2015-03-26 2016-09-29 花王株式会社 粘性水系組成物
JP2017066556A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
JP2017110085A (ja) * 2015-12-16 2017-06-22 第一工業製薬株式会社 粘性水系組成物およびその製造方法
WO2017138574A1 (ja) * 2016-02-08 2017-08-17 日本製紙株式会社 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
JP2018044101A (ja) 2016-09-16 2018-03-22 第一工業製薬株式会社 油性インク組成物
JP2018104502A (ja) * 2016-12-22 2018-07-05 日本製紙株式会社 エステル化セルロースナノファイバー分散液の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197760A (ja) * 2008-02-25 2009-09-03 Calsonic Kansei Corp エキゾーストマニホールドの集合部構造
CA2944415C (en) * 2014-03-31 2018-05-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Production method for readily dispersible cellulose composition, readily dispersible cellulose composition, cellulose dispersion resin composition, and production method for water-based dispersant for cellulose
WO2017073700A1 (ja) * 2015-10-27 2017-05-04 株式会社Kri 修飾セルロース微細繊維及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195866A (ja) * 2009-02-23 2010-09-09 Sanyo Chem Ind Ltd カルボキシアルキルセルロース(誘導体)の水性分散体の製造方法
JP2011047084A (ja) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd 有機化繊維、樹脂組成物及びその製造方法
WO2011071156A1 (ja) * 2009-12-11 2011-06-16 花王株式会社 複合材料
JP2011140738A (ja) 2009-12-11 2011-07-21 Kao Corp 微細セルロース繊維複合体、微細セルロース繊維分散液及び複合材料
WO2011111612A1 (ja) * 2010-03-09 2011-09-15 凸版印刷株式会社 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体
JP2012021081A (ja) 2010-07-14 2012-02-02 Univ Of Tokyo セルロースナノファイバー分散液の製造方法、セルロースナノファイバー分散液、セルロースナノファイバー成形体、及びセルロースナノファイバー複合体
JP2013151661A (ja) * 2011-12-28 2013-08-08 Kao Corp ポリエステル樹脂組成物からなる成形体
WO2016152491A1 (ja) * 2015-03-26 2016-09-29 花王株式会社 粘性水系組成物
JP2017066556A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体
JP2017110085A (ja) * 2015-12-16 2017-06-22 第一工業製薬株式会社 粘性水系組成物およびその製造方法
WO2017138574A1 (ja) * 2016-02-08 2017-08-17 日本製紙株式会社 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
JP2018044101A (ja) 2016-09-16 2018-03-22 第一工業製薬株式会社 油性インク組成物
JP2018104502A (ja) * 2016-12-22 2018-07-05 日本製紙株式会社 エステル化セルロースナノファイバー分散液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEAGAL ET AL., TEXTILE RESEARCH JOURNAL, vol. 29, 1959, pages 786

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210380724A1 (en) * 2018-05-18 2021-12-09 Daio Paper Corporation Fine cellulose fiber and method for producing same
US11584803B2 (en) * 2018-05-18 2023-02-21 Daio Paper Corporation Fine cellulose fiber and method for producing same

Also Published As

Publication number Publication date
EP3845590A1 (en) 2021-07-07
CN112673061A (zh) 2021-04-16
KR20210040430A (ko) 2021-04-13
JP7351305B2 (ja) 2023-09-27
US20210253830A1 (en) 2021-08-19
JPWO2020045533A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
JP7290147B2 (ja) 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
US11578456B2 (en) Cellulose fibers, cellulose fiber-containing composition, cellulose fiber dispersion, and method for producing cellulose fibers
JP7443769B2 (ja) 繊維状セルロース含有樹脂組成物、シート及び成形体
WO2018159743A1 (ja) 繊維状セルロース、繊維状セルロース含有組成物、繊維状セルロース分散液及び繊維状セルロースの製造方法
JP7255106B2 (ja) 固形状体及び繊維状セルロース含有組成物
WO2020045533A1 (ja) 繊維状セルロース含有組成物、液状組成物及び成形体
JP7419819B2 (ja) 繊維状セルロース含有樹脂組成物、シート及び成形体
JP6604448B1 (ja) 繊維状セルロース含有組成物、液状組成物及び成形体
JP6607328B1 (ja) 固形状体及び繊維状セルロース含有組成物
JP7135729B2 (ja) セルロース含有組成物、液状組成物、固形状体及びセルロース含有組成物の製造方法
WO2020050349A1 (ja) 固形状体及び繊維状セルロース含有組成物
JP2020105470A (ja) 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体
JP7452108B2 (ja) 繊維状セルロース、繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体
WO2020050347A1 (ja) 固形状体及び固形状体の製造方法
WO2020050346A1 (ja) 固形状体、シート及び固形状体の製造方法
JP7415675B2 (ja) 繊維状セルロース分散液及び成形体
JP2022063104A (ja) 分散液
JP2020109153A (ja) 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体
JP2022164312A (ja) シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019854453

Country of ref document: EP

Effective date: 20210330