WO2017073700A1 - 修飾セルロース微細繊維及びその製造方法 - Google Patents

修飾セルロース微細繊維及びその製造方法 Download PDF

Info

Publication number
WO2017073700A1
WO2017073700A1 PCT/JP2016/081969 JP2016081969W WO2017073700A1 WO 2017073700 A1 WO2017073700 A1 WO 2017073700A1 JP 2016081969 W JP2016081969 W JP 2016081969W WO 2017073700 A1 WO2017073700 A1 WO 2017073700A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
catalyst
acid anhydride
modified cellulose
cellulose fine
Prior art date
Application number
PCT/JP2016/081969
Other languages
English (en)
French (fr)
Inventor
蓮貞 林
彩子 丸田
Original Assignee
株式会社Kri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kri filed Critical 株式会社Kri
Priority to CA3003100A priority Critical patent/CA3003100A1/en
Priority to JP2017547871A priority patent/JP6454427B2/ja
Priority to EP16859929.8A priority patent/EP3369748B1/en
Priority to US15/769,836 priority patent/US20180312609A1/en
Priority to DK16859929.8T priority patent/DK3369748T3/da
Priority to CN201680059688.8A priority patent/CN108350089A/zh
Publication of WO2017073700A1 publication Critical patent/WO2017073700A1/ja
Priority to HK18115874.9A priority patent/HK1256791A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • C08B3/10Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate with five or more carbon-atoms, e.g. valerate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a modified cellulose fine fiber whose surface is esterified with a monobasic carboxylic acid anhydride and a method for producing the same.
  • Cellulose fibers are aggregates of cellulose fine fibers (microfibrils).
  • Cellulose fine fibers have mechanical properties comparable to steel and have a nanostructure with a diameter of about 30 nm, and thus are attracting social attention as a reinforcing agent.
  • cellulose fine fibers are bound by hydrogen bonds between the fibers, and in order to take out the fine fibers, it is necessary to break down the hydrogen bonds and separate (defibrate) the microfibrils. Therefore, such separation of microfibrils is called defibration, and a mechanical defibration method with intense physical force has been developed as a defibration method of cellulose fine fibers (cellulose nanofibers).
  • an underwater mechanical defibrating method for mechanically defibrating cellulose fibers in water is widely used.
  • cellulose fibers are swollen by water and softened in a high pressure state.
  • Natural cellulose microfibrils are composed of a crystal zone (crystal region) and an amorphous zone (amorphous region).
  • the amorphous zone absorbs and swells a swellable solvent such as water. Then, it is deformed by strong shear. Therefore, the cellulose fiber is damaged by shearing and has a branched shape that is likely to be entangled and caught.
  • a powerful mechanical pulverization method such as a ball mill causes mechanochemical reaction peculiar to the solid state, and it is inevitable that the crystal structure of cellulose is broken or dissolved by this action. As a result, the yield decreases and the crystallinity tends to decrease.
  • cellulose fine fibers can be used as a reinforcing material for resins.
  • underwater mechanical defibration requires dehydration and modification of the fiber surface to make it hydrophobic after defibration. Yes, this dehydration process requires high energy.
  • Patent Document 1 discloses butylmethyl chloride.
  • a method for producing polysaccharide nanofibers is disclosed in which a cellulose-based material is swollen and / or partially dissolved using a mixed solvent containing an ionic liquid such as imidazolium and an organic solvent, and then esterified.
  • acetic anhydride and butyric anhydride are used as esterifying agents.
  • Patent Document 2 cellulose mixed with cellulose and an organic solvent, added with an esterifying agent to the mixture, physically crushed and esterified with hydroxyl groups on the surface of the cellulose fiber.
  • a method for producing a nanofiber suspension is disclosed. Examples of this document describe examples of mixing cellulose with chloroform, then adding succinic anhydride and ultrasonically crushing, mixing cellulose with pyridine, adding lauroyl chloride, and polishing with balls. Has been. Japanese Patent Application Laid-Open No.
  • Patent Document 3 describes a step of obtaining a modified cellulose by modifying cellulose before fibrillation obtained from wood with an aromatic ring-containing substituent, and the obtained modified cellulose has an average fiber diameter of 100 nm.
  • a method for producing a modified cellulose fiber dispersion through a step of defibrating and obtaining a modified cellulose fiber dispersion is disclosed below.
  • cellulose is modified with benzoyl chloride or naphthoyl chloride, and then defibrated with an ultrahigh pressure homogenizer.
  • Patent Document 4 discloses a cellulose which is subjected to wet atomization treatment after oxidizing a cellulosic raw material using an oxidizing agent in the presence of an N-oxyl compound such as TEMPO and bromide and / or iodide. A method for producing a nanofiber dispersion is disclosed.
  • cellulose nanofibers obtained by the TEMPO oxidation method have high hydrophilicity and water dispersibility, but have low dispersibility in organic media. Furthermore, since an expensive TEMPO catalyst and a large amount of alkaline substance are used, the economy is low, wastewater treatment is difficult, and the burden on the environment is large.
  • JP 2010-104768 A (Claim 1, Example) JP-T-2015-500334 gazette (Claim 1, Example) JP 2011-16995 A (Claim 1, Example) WO 2010/116794 pamphlet (Claim 6)
  • the object of the present invention is to be able to produce easily and efficiently without strong crushing, nano-size, high crystallinity, little damage to fiber shape, large aspect ratio, and dispersion in organic solvent It is to provide a modified cellulose fine fiber having excellent properties and a method for producing the same.
  • Another object of the present invention is to provide a modified cellulose fine fiber having a high affinity with an organic medium and a method for producing the same.
  • Still another object of the present invention is to provide a modified cellulose fine fiber having a high fibrillation efficiency, a high modification rate, and suppressed decomposition and coloring, and a method for producing the same.
  • the present inventors have conducted a reaction comprising a base or an organic acid catalyst, a monobasic carboxylic acid anhydride, and an aprotic solvent having a donor number of 26 or more without strongly crushing.
  • Penetration defibrated solution into cellulose, esterified cellulose and chemically defibrated, specific modified cellulose fine fiber, that is, nano-sized, high crystallinity, less fiber shape damage and large aspect ratio In addition, the inventors have found that modified cellulose fine fibers excellent in dispersibility in organic solvents can be easily and efficiently produced by an energy-saving method, and completed the present invention.
  • the method for producing a modified cellulose fine fiber of the present invention uses a reactive fibrillation solution containing a catalyst containing a base catalyst or an organic acid catalyst, a monobasic carboxylic acid anhydride, and an aprotic solvent having a donor number of 26 or more as cellulose.
  • This is a manufacturing method in which cellulose is esterified and chemically defibrated.
  • the monobasic carboxylic acid anhydride is at least one selected from the group consisting of an aliphatic monocarboxylic acid anhydride, an alicyclic monocarboxylic acid anhydride and an aromatic monocarboxylic acid anhydride (particularly a C 1-6 alkane). -Monocarboxylic acid anhydride).
  • the aprotic solvent having a donor number of 26 or more may be at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide and N-methyl-2-pyrrolidone.
  • the catalyst may be at least one base catalyst selected from alkali metal compounds, alkaline earth metal compounds, amines and quaternary ammonium salts, and preferably contains pyridines.
  • the ratio of the monobasic carboxylic acid anhydride is about 3 to 50% by weight with respect to the entire reactive defibrating solution.
  • the ratio of the base catalyst is about 0.05 to 90% by weight with respect to the entire reactive defibrating solution.
  • the base catalyst may be a combination of pyridines and an alkali metal compound and / or an alkaline earth metal compound.
  • the ratio of the base catalyst is 0. 0 to the entire reactive defibrating solution. It is about 05 to 20% by weight.
  • the saturated absorption rate of cellulose with respect to the reactive defibrating solution is about 10 to 100 times.
  • a monobasic carboxylic acid anhydride in the present invention, can be dispersed in a hydrophobic solvent, has a crystallinity of 70% or more, an average fiber diameter of 10 to 800 nm, and an average fiber length of 1 to 200 ⁇ m.
  • the modified cellulose fine fiber is also included.
  • the average degree of substitution of the modified cellulose fine fibers is about 0.05 to 1.0.
  • a reactive fibrillation solution containing a base or organic acid catalyst, a monobasic carboxylic acid anhydride, and an aprotic solvent having a donor number of 26 or more is permeated into cellulose without being crushed strongly by mechanical pulverization or the like. Since cellulose is esterified and chemically defibrated, it can be defibrated without destroying the crystal structure or microfibril structure of naturally derived cellulose. In particular, in the present invention, cellulose can be swollen with the penetration of the reactive defibrating solution, and the defibrating efficiency of cellulose can be improved.
  • cellulose fine fibers that are nano-sized, have high crystallinity, have little fiber shape damage, have a large aspect ratio, and are excellent in dispersibility in organic solvents by an energy-saving method. Furthermore, since the surface of the obtained modified cellulose fine fiber is uniformly modified with a monobasic carboxylic anhydride between the fibers, the affinity with an organic medium such as a resin can be improved. In addition, by combining pyridines with alkali metal compounds and / or alkaline earth metal compounds as a base catalyst, the fibrillation and modification rate of cellulose is improved, and decomposition and coloration of the resulting cellulose fine fibers are suppressed. Moreover, since the defibration and modification can be performed in a shorter time, the productivity of the modified cellulose fine fiber can be improved. Furthermore, coloring can be effectively suppressed by using an organic acid catalyst as a catalyst.
  • FIG. 1 is an IR spectrum of the modified cellulose fine fiber obtained in Example 1.
  • FIG. 2 is a scanning electron microscope (SEM) photograph of the modified cellulose fine fiber obtained in Example 1.
  • FIG. 3 is an IR spectrum of the modified cellulose fine fiber obtained in Example 2.
  • FIG. 4 is an SEM photograph of the modified cellulose fine fiber obtained in Example 2.
  • FIG. 5 is an IR spectrum of the modified cellulose fine fiber obtained in Example 3.
  • FIG. 6 is an SEM photograph of the modified cellulose fine fiber obtained in Example 3.
  • FIG. 7 is an IR spectrum of the modified cellulose fine fiber obtained in Example 4.
  • FIG. 8 is an SEM photograph of the modified cellulose fine fiber obtained in Example 4.
  • FIG. 9 is an IR spectrum of the modified cellulose fine fiber obtained in Example 10.
  • FIG. 10 is an SEM photograph of the modified cellulose fine fiber obtained in Example 10.
  • FIG. 11 is an SEM photograph of the modified cellulose fine fiber obtained in Example 11.
  • FIG. 12 is an SEM photograph of the modified cellulose fine fiber obtained in Example 12.
  • FIG. 13 is an SEM photograph of the modified cellulose fine fiber obtained in Example 13.
  • the method for producing the modified cellulose fine fiber (esterified cellulose fine fiber) of the present invention comprises a reactive solution comprising a catalyst containing a base catalyst or an acid catalyst, a monobasic carboxylic acid anhydride, and an aprotic solvent having a donor number of 26 or more.
  • Surface-esterified modified cellulose fine fibers are obtained through a step of impregnating cellulose with a fine liquid (reactive defibrating solution or mixed liquid) to esterify the cellulose and chemically defibrating.
  • a fine liquid reactive defibrating solution or mixed liquid
  • the reactive fibrillation solution containing the catalyst, the monobasic carboxylic acid anhydride, and the solvent is a solution having low solubility in cellulose, and this solution penetrates between the microfibrils of cellulose to swell the cellulose.
  • the hydroxyl group on the surface of the microfibril is modified. Furthermore, this modification breaks the hydrogen bonds between the microfibrils, and the microfibrils are easily separated and fibrillated.
  • the said solution does not osmose
  • cellulose can be defibrated without using a mechanical defibrating means by the action of a shearing force, so that there is little damage due to physical action. Therefore, it can be estimated that the obtained modified cellulose fine fiber has high strength.
  • the cellulose used as the raw material may be in the form of cellulose alone or in the form of a mixture containing non-cellulose components such as lignin and hemicellulose.
  • Examples of the cellulose in a single form include, for example, pulp (for example, wood pulp, bamboo pulp, walla pulp, bagasse pulp, linter pulp, flax pulp, hemp pulp, straw pulp, and three straw pulp) ), Squirt cellulose, bacterial cellulose, cellulose powder, crystalline cellulose and the like.
  • pulp for example, wood pulp, bamboo pulp, walla pulp, bagasse pulp, linter pulp, flax pulp, hemp pulp, straw pulp, and three straw pulp
  • Squirt cellulose for example, wood pulp, bamboo pulp, walla pulp, bagasse pulp, linter pulp, flax pulp, hemp pulp, straw pulp, and three straw pulp
  • Squirt cellulose for example, wood pulp, bamboo pulp, walla pulp, bagasse pulp, linter pulp, flax pulp, hemp pulp, straw pulp, and three straw pulp
  • Squirt cellulose for example, wood pulp, bamboo pulp, walla pulp, bagasse pulp, linter pulp, flax pulp, hemp pulp, straw pulp, and three straw pulp
  • Examples of the mixed form of cellulose include, for example, wood [eg, conifers (pine, fir, spruce, tsuga, cedar, etc.), hardwoods (beech, hippopotamus, poplar, maple, etc.), herbaceous plants [hemp Varieties (hemp, flax, manila hemp, ramie, etc.), straw, bagasse, mitsumata, etc.], seed hair fibers (cotton linters, Bombax cotton, kapok, etc.), bamboo, sugar cane, paper and the like.
  • wood eg, conifers (pine, fir, spruce, tsuga, cedar, etc.
  • hardwoods beech, hippopotamus, poplar, maple, etc.
  • herbaceous plants hemp Varieties (hemp, flax, manila hemp, ramie, etc.), straw, bagasse, mitsumata, etc.]
  • seed hair fibers cotton linter
  • celluloses can be used alone or in combination of two or more.
  • the proportion of non-cellulose components may be 90% by weight or less, for example, 1 to 90% by weight, preferably 3 to 80% by weight, more preferably about 5 to 70% by weight. Good. When there are too many ratios of another component, there exists a possibility that manufacture of a modified cellulose fine fiber may become difficult.
  • the cellulose preferably contains crystalline cellulose (particularly type I crystalline cellulose), and may be a combination of crystalline cellulose and amorphous cellulose (such as amorphous cellulose).
  • the proportion of crystalline cellulose may be 10% by weight or more based on the whole cellulose, for example, 30 to 99% by weight, preferably 50 to 98.5% by weight, more preferably 60 to It is about 98% by weight. If the proportion of crystalline cellulose is too small, the heat resistance and strength of the modified cellulose fine fiber may be reduced.
  • wood pulp for example, softwood pulp, hardwood pulp, etc.
  • seed hair fiber pulp for example, cotton linter pulp
  • cellulose powder and the like are widely used because they are easily modified and defibrated.
  • the pulp may be a mechanical pulp obtained by mechanically treating a pulp material, but a chemical pulp obtained by chemically treating a pulp material is preferable because the content of non-cellulosic components is small.
  • the moisture content of cellulose may be 1% by weight or more, for example, 1 to 100% by weight, preferably 2 to 80% by weight, more preferably 3 to 60% by weight (particularly 5%). ⁇ 50% by weight).
  • the cellulose preferably contains moisture in such a range.
  • the cellulose pulp is used as it is without being dried. May be. If the water content is too small, the fibrillation property of cellulose may be reduced.
  • the cellulose raw material (especially when pulp is used) is torn or shredded according to the size of the defibration reactor, and is crushed to a size that fits into the defibration reactor or container. It is preferable to use for a defibration reaction process. From the viewpoint of defibration efficiency, strong pulverization compacts cellulose pulp or cellulose fiber having a high porosity, so that the cellulose pulp or fiber becomes dense and the reactive defibrating solution may not easily penetrate into cellulose. Is not preferable.
  • the saturated absorption rate of cellulose with respect to the reactive defibrating solution is 10 times or more (for example, about 10 to 200 times), preferably 20 times or more (for example, about 20 to 150 times), more preferably 30 times or more (for example, 30 to 100 times). Twice as high). If the saturated absorptivity is too low, the cellulose defibration property and the uniformity of the fine fibers obtained may be reduced.
  • a monobasic carboxylic acid (monocarboxylic acid) anhydride is a compound obtained by dehydrating and condensing two molecules of independently present carboxylic acid, and has the formula: R 1 CO—O—OCR 2 (wherein , R 1 and R 2 are the same or different and each is a saturated or unsaturated aliphatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group or an aromatic hydrocarbon group).
  • the monobasic carboxylic acid anhydride includes an aliphatic monocarboxylic acid anhydride, an alicyclic monocarboxylic acid anhydride, and an aromatic monocarboxylic acid anhydride.
  • aliphatic monocarboxylic acid anhydrides include saturated aliphatic monocarboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, and propanoic anhydride.
  • Unsaturated aliphatic monocarboxylic anhydrides such as acrylic acid, crotonic anhydride, and oleic anhydride.
  • the alicyclic monocarboxylic acid anhydride include cyclohexane carboxylic acid anhydride and tetrahydrobenzoic acid anhydride.
  • aromatic monocarboxylic acid anhydride examples include aromatic monocarboxylic acid anhydrides such as benzoic anhydride and 4-methylbenzoic acid anhydride. These monobasic carboxylic acid anhydrides can be used alone or in combination of two or more.
  • carbon number of 2 to 7 (particularly acetic anhydride, propionic anhydride, butyric anhydride, (meth) acrylic anhydride, crotonic anhydride, etc.)
  • the lower aliphatic monocarboxylic acid anhydrides 2 to 5 are preferred, and C 1-6 alkane-monocarboxylic acid anhydrides (particularly C 1-4 alkane-monocarboxylic acid anhydrides) are particularly preferred. If the number of carbon atoms is too large, there is a possibility that the permeability to the microfibrils and the reactivity with respect to the cellulose hydroxyl group may be lowered.
  • C 1-6 alkane-monocarboxylic acid anhydride (especially C 1-4 alkane-monocarboxylic acid) At least a C 1-3 alkane-monocarboxylic acid anhydride (especially acetic anhydride).
  • acetic anhydride and C 2-3 alkane-monocarboxylic anhydride (propionic anhydride and / or butyric anhydride) is combined. Also good.
  • a highly hydrophobic monobasic carboxylic acid anhydride having 5 or more carbon atoms for example, C 4-18 alkane-monocarboxylic acid anhydride
  • C 1-3 alkane-monocarboxylic acid anhydride is used. You may combine with (especially acetic anhydride from the point of a fibrillation effect).
  • the concentration (weight ratio) of the monobasic carboxylic acid anhydride in the reactive defibrating solution is 1 to 50% by weight (for example, 3 to 3%) from the viewpoint of excellent balance between permeability to microfibrils and reactivity to cellulose hydroxyl groups.
  • concentration (weight ratio) of the monobasic carboxylic acid anhydride in the reactive defibrating solution is 1 to 50% by weight (for example, 3 to 3%) from the viewpoint of excellent balance between permeability to microfibrils and reactivity to cellulose hydroxyl groups.
  • 2 to 40% by weight preferably 3 to 30% by weight, more preferably about 5 to 20% by weight.
  • a catalyst is used in addition to the monobasic carboxylic acid anhydride to promote the esterification of cellulose.
  • the catalyst includes a base catalyst and an organic acid catalyst.
  • Examples of the base catalyst include alkali metal compounds, alkaline earth metal compounds, amines, quaternary ammonium salts and the like. These base catalysts can be used alone or in combination of two or more.
  • alkali metal compound examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; sodium hydrogen carbonate, potassium hydrogen carbonate, and the like.
  • Alkali metal hydrogen carbonates such as sodium hydride and potassium hydride; alkali metal carboxylic acid salts such as sodium acetate, potassium acetate, sodium propionate, potassium propionate and sodium butyrate; sodium metaborate, four Alkali metal borates such as sodium borate (borax); Alkali metal phosphates such as trisodium phosphate; Alkali hydrogen phosphates such as sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate Metal salt; sodium Kishido, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium t- butoxide, and alkali metal alkoxides such as potassium t- butoxide.
  • alkaline earth metal compound examples include alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; alkaline earth metal carbonates such as magnesium carbonate; alkaline earth metal hydrogen carbonates such as magnesium hydrogen carbonate Carboxylic acid alkaline earth metal salts such as calcium acetate; alkaline earth metal alkoxides such as calcium t-butoxide;
  • tertiary amines are usually used.
  • trialkylamines such as trimethylamine, triethylamine, diethylmethylamine, diisopropylethylamine, tri-n-propylamine, tributylamine; triethanolamine, dimethylamino Alkanolamines such as ethanol; tricycloalkylamines such as tricyclohexylamine; alkyldicycloalkylamines such as methyldicyclohexylamine; picoline, pyridine, pyrazine, pyrimidine, pyridazine, 1-methylimidazole, triethylenediamine, N, N— And heterocyclic amines such as dimethylaminopyridine and 1,8-diazabicyclo [5.4.0] unde-7-cene.
  • quaternary ammonium salt examples include tetraalkylammonium acetate (tetraalkylammonium acetate) such as tetraethylammonium acetate and tetrabutylammonium acetate; tetraalkylammonium halides such as tetraethylammonium chloride and tetraethylammonium bromide; And benzyltrialkylammonium halides such as benzyltrimethylammonium chloride.
  • tetraalkylammonium acetate such as tetraethylammonium acetate and tetrabutylammonium acetate
  • tetraalkylammonium halides such as tetraethylammonium chloride and tetraethylammonium bromide
  • benzyltrialkylammonium halides such as benzyltri
  • alkali metal carboxylates such as sodium acetate
  • alkali metal carbonates such as sodium carbonate
  • alkali metal hydrogen carbonates such as sodium hydrogen carbonate
  • tri-C 1-4 alkyl amines such as triethylamine, pyridine, etc.
  • These heterocyclic amines are widely used.
  • organic acid catalyst examples include carboxylic acids (aliphatic monocarboxylic acids such as formic acid; aliphatic dicarboxylic acids such as oxalic acid), sulfonic acids (alkane sulfones such as methanesulfonic acid, ethanesulfonic acid, and trifluoromethanesulfonic acid). Acid, benzenesulfonic acid, p-toluenesulfonic acid, arenesulfonic acid such as naphthalenesulfonic acid) and the like. These acid catalysts can be used alone or in combination of two or more.
  • carboxylic acids such as formic acid and oxalic acid
  • arene sulfonic acids such as toluene sulfonic acid or salts thereof (particularly salts with metals showing weak alkalinity such as lithium, magnesium, calcium and iron)
  • Arenesulfonic acid such as toluenesulfonic acid is particularly preferable.
  • base catalysts such as heterocyclic amines are preferred, and base catalysts containing pyridines are particularly preferred from the viewpoint that not only the catalytic action in the esterification reaction but also defibration can be promoted.
  • base catalysts containing pyridines are particularly preferred from the viewpoint that not only the catalytic action in the esterification reaction but also defibration can be promoted.
  • pyridines since pyridines have a low boiling point, they can be easily recovered and reused.
  • pyridines particularly pyridine
  • they may be blended at a ratio exceeding the amount of the catalyst to have a function as a solvent.
  • pyridines examples include pyridine; C 1-4 alkyl pyridine such as methyl pyridine (picoline) and ethyl pyridine; di-C 1-4 alkyl pyridine such as dimethyl pyridine (lutidine); and tri-C such as trimethyl pyridine (collidine). 1-4 alkylpyridine and the like. Of these, pyridine is preferred.
  • the pyridines can be used alone or in combination of two or more.
  • the preferred embodiment of the base catalyst only needs to contain pyridines (particularly pyridine), and may be pyridines alone, but improves the productivity (production efficiency, fibrillation and modification) of modified cellulose fine fibers.
  • Pyridines (especially pyridine) and alkali metal compounds and / or alkaline earth metal compounds (hereinafter, both compounds are collectively referred to as “metal compounds” in terms of being capable of inhibiting coloring and decomposition of the modified cellulose fine fibers. ) Is a particularly preferred embodiment.
  • the metal compound to be combined with pyridines may be any of the alkali metal compounds and alkaline earth metal compounds.
  • the combination with pyridines can achieve both the productivity and physical properties of cellulose fine fibers.
  • Alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; carboxylic acid alkali metal salts such as sodium acetate; alkali metal borates such as sodium tetraborate (borax); Alkali metal phosphates such as sodium; alkali metal phosphates such as sodium dihydrogen phosphate, potassium dihydrogen phosphate and disodium hydrogen phosphate; alkaline earth metal carbonates such as magnesium carbonate; magnesium hydrogen carbonate and the like Alkaline earth metal hydrogen carbonates such as calcium acetate
  • carboxylic acid alkaline earth metal salts alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; C 1-4 alkanes such as sodium
  • the ratio of metal compounds is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of pyridines, The amount is preferably 2 to 30 parts by weight, more preferably 3 to 20 parts by weight (particularly 5 to 15 parts by weight). If the proportion of the metal compound is too small, the modification rate of the cellulose fine fiber may decrease or the reaction time may be prolonged. Conversely, if it is too large, the yield of the cellulose fine fiber decreases due to over-modification. There is a risk of doing.
  • the ratio of the catalyst may be 0.05 to 99% by weight (for example, 0.1 to 98% by weight), for example, 0.2 to 99% by weight (for example) For example, it is 1 to 97% by weight), preferably 2 to 95% by weight, more preferably 5 to 90% by weight (particularly 10 to 90% by weight).
  • the ratio of the catalyst may be 0.5 to 50% by weight (for example, 1 to 35% by weight), for example, 2 to 30% by weight (for example, 3 to 3%). 25% by weight), preferably 5 to 20% by weight, more preferably about 7 to 15% by weight.
  • the ratio of the catalyst may be selected according to the function of the catalyst. When only the action as a catalyst is expressed, for example, 0.01 to 20% by weight, preferably 0.05% with respect to the entire reactive defibrating solution. About 18 to 18% by weight, more preferably about 0.1 to 15% by weight (particularly 3 to 12% by weight). For example, when the catalyst is composed of a combination of pyridines and a metal compound, the ratio (total ratio) of the catalyst may be in this range.
  • the ratio of the catalyst may be 20% by weight or more based on the entire reactive defibrating solution, For example, it is about 20 to 80% by weight, preferably about 23 to 50% by weight, and more preferably about 25 to 40% by weight.
  • the ratio of the catalyst may be within this range.
  • the ratio of the catalyst is too small, the modification rate of the cellulose is lowered, and there is a possibility that the action of defibrating the cellulose is also lowered.
  • the ratio of the catalyst is too large, the cellulose may be decomposed violently, and the permeability of the reactive defibrating liquid to the cellulose may be reduced, and the action of defibrating the cellulose may be reduced.
  • the solvent is not particularly limited as long as it does not impair the reactivity of the monobasic carboxylic acid anhydride and the defibrillation of the cellulose, but can promote the permeability of the monobasic carboxylic acid anhydride between the microfibrils, and the cellulose. Since the reactivity with respect to the hydroxyl group can be appropriately adjusted, a solvent containing an aprotic solvent having a donor number of 26 or more is preferred. The number of donors of such an aprotic solvent is, for example, about 26 to 35, preferably 26.5 to 33, and more preferably about 27 to 32.
  • aprotic solvent examples include alkyl sulfoxides, alkyl amides, pyrrolidones and the like. These solvents can be used alone or in combination of two or more.
  • alkyl sulfoxides examples include di-C 1-4 alkyl sulfoxides such as dimethyl sulfoxide (DMSO), methyl ethyl sulfoxide, and diethyl sulfoxide.
  • DMSO dimethyl sulfoxide
  • methyl ethyl sulfoxide methyl ethyl sulfoxide
  • diethyl sulfoxide diethyl sulfoxide
  • alkylamides include N, N-dimethylformamide (DMF) and N, N-diC 1-4 alkylformamide such as N, N-diethylformamide; N, N-dimethylacetamide (DMAc), N, And N, N-diC 1-4 alkylacetamide such as N-diethylacetamide.
  • DMF N-dimethylformamide
  • DMAc N-dimethylacetamide
  • N-diC 1-4 alkylacetamide such as N-diethylacetamide.
  • pyrrolidones examples include pyrrolidone such as 2-pyrrolidone and 3-pyrrolidone; N—C 1-4 alkylpyrrolidone such as N-methyl-2-pyrrolidone (NMP) and the like.
  • aprotic solvents can be used alone or in combination of two or more.
  • numbers in parentheses are the number of donors
  • DMSO 29.8
  • DMF 26.6
  • DMAc 27.8
  • NMP 27.3
  • alkyl sulfoxides and / or alkyl acetamides can be highly promoted in the penetration of monobasic carboxylic acid anhydrides into microfibrils among aprotic solvents.
  • di-Cs such as DMSO
  • N, N-diC 1-2 alkylacetamide such as 1-2 alkyl sulfoxide and / or DMAc is preferable
  • DMSO is particularly preferable from the viewpoint of improving the fibrillation effect of cellulose
  • DMAc is preferable from the viewpoint of suppressing discoloration. Particularly preferred.
  • the solvent may include a conventional aprotic solvent having a donor number of less than 26, for example, acetonitrile, dioxane, acetone, dimethyl ether, tetrahydrofuran, or the like as the other solvent. It is preferably contained as a main solvent.
  • the proportion of the aprotic solvent having a donor number of 26 or more may be 50% by weight or more, preferably 80% by weight, more preferably 90% by weight or more, and 100% by weight (number of donors). 26 or more aprotic solvents alone) may be used. When there are too many solvents with the number of donors less than 26, since the permeability of the reactive defibrating liquid between the cellulose microfibrils is lowered, the defibrating effect of cellulose may be lowered.
  • the weight ratio of the catalyst and the solvent affects the modification reaction rate and the penetration rate of the reactive fibrillation solution between cellulose microfibrils.
  • the weight ratio between the two may be selected according to the type of catalyst.
  • a weakly basic catalyst such as a base catalyst (alkaline catalyst), for example, pyridine
  • a weakly alkaline catalyst and a solvent especially The weight ratio to the alkyl sulfoxides and / or alkyl amides
  • the ratio of the catalyst may be small, and a base catalyst (especially a combination of pyridines and an alkali metal compound) and a solvent (especially an alkyl).
  • the organic acid catalyst / solvent may be about 10/90 to 1/99. If the proportion of the solvent is too large, the modification rate of cellulose is lowered, and the efficiency of defibrating cellulose may be lowered.
  • the catalyst contains pyridines
  • the solvent is an alkyl sulfoxide such as dimethyl sulfoxide (DMSO)
  • esterifying agents In the modified fibrillation step, other esterifying agents may be used as long as the effects of the present invention are not impaired.
  • Other esterifying agents include monobasic carboxylic acids [saturated aliphatic monocarboxylic acids such as acetic acid, propionic acid, (iso) butyric acid and valeric acid; and unsaturated aliphatic monocarboxylic acids such as (meth) acrylic acid and oleic acid.
  • Acid cycloaliphatic carboxylic acid, alicyclic monocarboxylic acid such as tetrahydrobenzoic acid; benzoic acid, aromatic monocarboxylic acid such as 4-methylbenzoic acid, etc.], dibasic carboxylic acid or anhydride thereof [eg (anhydrous) (Anhydrous) saturated aliphatic dicarboxylic acids such as succinic acid and adipic acid; (anhydrous) unsaturated aliphatic dicarboxylic acid anhydrides such as (anhydrous) maleic acid and (anhydrous) itaconic acid; (anhydrous) 1-cyclohexene-1, (Anhydrous) alicyclic dicarboxylic acids such as 2-dicarboxylic acid, (anhydrous) hexahydrophthalic acid, (anhydrous) methyltetrahydrophthalic acid; Acid, (anhydrous) aromatic dicarboxylic acid such as naphthalic acid], polybasic carboxylic acids (
  • esterifying agents can be used alone or in combination of two or more.
  • the ratio of the other esterifying agent is 50 parts by weight or less with respect to 100 parts by weight of the monobasic carboxylic acid anhydride, for example, 0 to 35 parts by weight, preferably 0.01 to 20 parts by weight, more preferably 0.8. About 1 to 10 parts by weight. If the ratio of the other esterifying agent is too large, the modification rate by the monobasic carboxylic acid anhydride may be decreased, and the heat resistance of the obtained modified cellulose fine fiber and the dispersibility in a hydrophobic solvent may be decreased. .
  • reaction conditions In the production method of the present invention, a reactive fibrillation solution containing the catalyst, the monobasic carboxylic acid anhydride, and the solvent is infiltrated into the cellulose to swell the cellulose, to esterify the cellulose, and to produce cellulose microfibrils.
  • the chemical defibrating method is not particularly limited.
  • the reactive defibrating solution is prepared and the prepared reactive defibrating solution is used. A method of adding cellulose to the fiber and mixing them can be used.
  • the reactive defibrating solution is prepared by mixing the catalyst, the monobasic carboxylic acid anhydride and the solvent in advance by stirring or the like, and uniformly dissolving the monobasic carboxylic acid anhydride in the catalyst and the solvent. May be.
  • the obtained reactive defibrating solution has high permeability to cellulose. Therefore, by adding cellulose to the reactive defibrating solution and mixing it, the reactive defibrating solution penetrates between the microfibrils and becomes microscopic. By modifying the hydroxyl group present on the surface of the fibril, modification and defibration of cellulose can be performed simultaneously.
  • the chemical defibrating method may be a method in which cellulose is mixed with a reactive defibrating solution and left to esterify for 1 hour or longer. After mixing, the cellulose is kept in a uniform state in the solution. Stirring as much as possible (stirring not to physically defibrate or crush cellulose) may be performed. That is, the reaction proceeds only by mixing cellulose in the reactive defibrating solution and leaving it alone, but in order to promote permeation or uniformity, stirring may be performed using a stirring means.
  • This agitation is not a strong agitation that physically pulverizes or defibrates cellulose, but usually by a magnetic stirrer or a stirring blade (for example, agitation of about 10 to 15000 rpm, preferably about 50 to 10000 rpm) commonly used in chemical reactions. What is necessary is just stirring. In addition, the stirring may be performed continuously or intermittently.
  • the reaction temperature in chemical defibration does not need to be heated and may be reacted at room temperature, and by reacting for 1 hour or longer, cellulose is used without using mechanical defibrating means by the action of shearing force. Can be chemically defibrated. Therefore, in the present invention, cellulose can be defibrated without using extra energy.
  • heating may be performed, and the heating temperature is, for example, 90 ° C. or less (eg, about 40 to 90 ° C.), preferably 80 ° C. or less, more preferably about 70 ° C. or less.
  • the reaction time can be selected depending on the kind of monobasic carboxylic acid anhydride and catalyst and the number of donors of the solvent, and is, for example, 0.5 to 50 hours, preferably 1 to 36 hours, more preferably about 1.5 to 24 hours. It is.
  • a highly polar lower carboxylic acid anhydride such as acetic anhydride and an aprotic polar solvent such as dimethyl sulfoxide (DMSO) having a high donor number
  • the time is about several hours (for example, 1 to 6 hours).
  • it is about 1.5 to 5 hours.
  • the treatment time reaction temperature
  • the treatment time may be increased to shorten the reaction time.
  • reaction time is too short, the reactive defibrating liquid will not sufficiently penetrate between the microfibrils, the reaction will be insufficient, and the degree of defibration may be reduced. On the other hand, if the reaction time is too long, the yield of cellulose fine fibers may decrease.
  • the reaction may be performed in an inert gas atmosphere (such as a rare gas such as nitrogen or argon) or under reduced pressure, but usually it is often performed in a closed reaction vessel.
  • inert gas atmosphere such as a rare gas such as nitrogen or argon
  • Such reaction conditions are preferable because water generated by the esterification reaction is not discharged out of the system and moisture in the air is not sucked into the system.
  • the modified cellulose fine fiber obtained by chemical defibration may be separated and purified by a conventional method (for example, centrifugation, filtration, concentration, precipitation, etc.).
  • a deactivated esterifying agent, a catalyst and a solvent (such as acetone) capable of dissolving the solvent are added to the reaction mixture, and separation and purification (washing) is performed by the separation method (conventional method) such as centrifugation, filtration, and precipitation. )
  • the separation operation can be performed a plurality of times (for example, about 2 to 5 times).
  • a deactivating agent such as water or methanol may be added to deactivate the monobasic carboxylic acid anhydride (esterifying agent).
  • the obtained modified cellulose fine fiber is defibrated to nano size, and the average fiber diameter is, for example, about 5 to 800 nm, preferably 10 to 600 nm, more preferably 12 to 500 nm (especially 15 to 300 nm). Also good.
  • ultrafine fibers can be prepared using a catalyst in which pyridines and a metal compound are combined, and the average fiber diameter of the modified cellulose fine fibers is, for example, 5 to 50 nm, preferably 10 to 40 nm, more preferably 12 to It may be about 30 nm (especially 15 to 25 nm). If the fiber diameter is too large, the effect as a reinforcing material may be reduced, and if it is too small, the handleability and heat resistance of the fine fibers may be reduced.
  • the obtained modified cellulose fine fiber is chemically defibrated, it has a longer fiber length than the fine fiber obtained by the conventional mechanical defibration method, and the average fiber length is 1 ⁇ m or more.
  • the average fiber length is 1 ⁇ m or more.
  • it can be selected from the range of about 1 to 200 ⁇ m, for example, 1 to 100 ⁇ m (for example, 1 to 80 ⁇ m), preferably 2 to 60 ⁇ m, and more preferably about 3 to 50 ⁇ m.
  • the fiber length is too short, the reinforcing effect and film forming function may be reduced.
  • the length is too long, the fibers are easily entangled, and the dispersibility in a solvent or resin may be reduced.
  • the ratio (aspect ratio) of the average fiber length to the average fiber diameter of the modified cellulose fine fiber can be adapted according to the application, and may be, for example, 30 or more, for example, 40 to 1000, preferably 50 to 500, more preferably 60. It may be about 200 (particularly 80 to 150).
  • the average fiber diameter, average fiber length, and aspect ratio of the modified cellulose fine fibers may be calculated by randomly selecting 50 fibers from the image of the scanning electron micrograph and averaging the results. .
  • the modified cellulose fine fiber can be well dispersed in an organic medium such as an organic solvent or a resin because each fiber or all the fibers are uniformly esterified.
  • an organic medium such as an organic solvent or a resin
  • the modified cellulose fine fiber having high crystallinity is preferable. Since the modified cellulose fine fiber of the present invention is chemically defibrated and can maintain the crystallinity of the raw material cellulose, the value of the cellulose can be directly referred to for the crystallinity of the modified cellulose fine fiber.
  • the crystallinity of the modified cellulose may be 50% or more (especially 65% or more), for example, 50 to 98%, preferably 65 to 95%, more preferably 70 to 92% (particularly 75 to 90%). It may be a degree. If the degree of crystallinity is too small, characteristics such as linear expansion characteristics and strength may be deteriorated. The crystallinity can be measured by the method described in Examples described later.
  • the average degree of substitution of the modified cellulose fine fiber depends on the diameter of the fine fiber and the type of the esterifying agent, but is 1.5 or less (for example, 0.02 to 1.2), for example, 0.05 to 1.0 (for example, 0.1 to 1.0), preferably 0.15 to 0.95, more preferably about 0.25 to 0.8 (particularly 0.3 to 0.8). If the average degree of substitution is too large, the crystallinity or yield of the fine fibers may decrease.
  • the average degree of substitution (DS) is the average number of hydroxyl groups substituted per glucose, which is the basic structural unit of cellulose, such as Biomacromolecules 2007, 8, 1973-1978, WO2012 / 124652A1 or WO2014 / 142166A1. You can refer to it.
  • Cellulose pulp Commercial wood pulp (manufactured by George Pacific, trade name: Fluff pulp ARC48000GP, water content 9% by weight) cut to a size (about 1 to 3 cm square) into a sample bottle
  • Other raw materials, catalyst and solvent A reagent manufactured by Nacalai Tesque.
  • the saturated absorption rate R with respect to the reactive defibrating solution of cellulose was evaluated by the following procedure. That is, a certain amount of cellulose pulp W 1 (for example, 0.1 g) is added to the reactive defibrating liquid W 2 (for example, 15 g), left to stand at room temperature for 10 hours, and then weighed (W 3) except for the upper transparent supernatant.
  • the saturated absorption rate R was calculated by the following formula.
  • Defibration progresses and there are almost no fibers having a fiber diameter of 1 ⁇ m or more. ⁇ : Almost all fibers are defibrated, but there are a few fibers having a fiber diameter of 1 ⁇ m or more. ⁇ : Completely defibrated. Although there are no fibers, some fibers have been defibrated or greatly expanded. X: Fibers of raw material cellulose remain as they are.
  • the surface modification rate of the modified cellulose fine fiber is represented by an average degree of substitution and can be measured by the following titration method.
  • the average degree of substitution is the average value of the number of hydroxyl groups modified per cellulose repeating unit (the number of substituents).
  • the number of moles Q of the substituent introduced by chemical modification can be obtained by the following formula.
  • T 162.14 ⁇ Q / [sample amount ⁇ (T ⁇ 17) ⁇ Q] (Wherein T is the molecular weight of the monobasic carboxylic anhydride that is the precursor of the esterified substituent).
  • the shape of the modified cellulose fine fiber was observed using FE-SEM (“JSM-6700F” manufactured by JEOL Ltd., measurement condition: 20 mA, 60 seconds).
  • the average fiber diameter and the average fiber length were calculated by selecting 50 fibers randomly from the image of the SEM photograph and averaging them.
  • Crystallinity The crystallinity of the obtained modified cellulose fine fiber was measured by the XRD analysis method (Segal method) based on the reference: Textile Res. J. 29: 786-794 (1959), and calculated by the following formula.
  • Example 1 3 g of pyridine, 7 g of DMSO and 1.3 g of propionic anhydride were placed in a 20 ml sample bottle and stirred with a stirrer until the mixture was evenly mixed. Next, 0.3 g of cellulose pulp was added, and the mixture was further stirred for 24 hours, and then washed with a mixed solution of acetone and water to remove pyridine, DMSO, and residual propionic anhydride.
  • the solid content was collected, the average degree of substitution was measured for the modified cellulose fine fiber obtained, the modified functional group was confirmed by FT-IR analysis, the shape was observed with a scanning electron microscope (SEM), and the XRD analysis method was used to measure the degree of crystallization and evaluate the degree of defibration and solvent dispersibility.
  • SEM scanning electron microscope
  • the result of FT-IR analysis is shown in FIG. 1, and the SEM photograph is shown in FIG.
  • the average fiber diameter of the fibers was 30 nm, and the average fiber length was 9.5 ⁇ m.
  • the saturated absorption rate of the pulp in the defibrating liquid was 32 times.
  • Example 2 3 g of pyridine, 7 g of DMAc and 1 g of acetic anhydride were put into a 20 ml sample bottle, and modified cellulose fine fibers were obtained in the same manner as in Example 1. The obtained modified cellulose fine fiber was evaluated in the same manner as in Example 1. The result of FT-IR analysis is shown in FIG. 3, and the SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 93 nm, and the average fiber length was 12.3 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 28 times.
  • Example 3 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that the amount of pyridine added was changed to 7 g and DMSO 3 g was put in a sample bottle instead of DMAc 7 g.
  • the obtained modified cellulose fine fiber was evaluated in the same manner as in Example 1.
  • the result of FT-IR analysis is shown in FIG. 5, and the SEM photograph is shown in FIG.
  • the average fiber diameter of the fibers was 110 nm, and the average fiber length was 13.6 ⁇ m.
  • the saturated absorption rate of the pulp in the defibrating liquid was 20 times.
  • Example 4 4.5 g of pyridine, 4.5 g of DMSO, and 1 g of butyric anhydride were put into a sample bottle, and modified cellulose fine fibers were obtained in the same manner as in Example 1. The obtained modified cellulose fine fiber was evaluated in the same manner as in Example 1. The result of FT-IR analysis is shown in FIG. 7, and the SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 136 nm, and the average fiber length was 15.8 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 29 times.
  • Example 5 5 g of pyridine, 5 g of DMSO, 0.2 g of acetic anhydride and 0.8 g of butyric anhydride were placed in a sample bottle, and modified cellulose fine fibers were obtained in the same manner as in Example 1. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 6 Modified in the same manner as in Example 2 except that 1 g of toluenesulfonic acid was placed in a sample bottle instead of 3 g of pyridine, 9 g of DMSO was placed in the sample bottle instead of 7 g of DMAc, and the stirring time after addition of cellulose pulp was changed to 5 hours. Cellulose fine fibers were obtained. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 7 Modified cellulose fine fibers were obtained in the same manner as in Example 3 except that 2 g of benzoic anhydride was put in a sample bottle instead of 1 g of acetic anhydride. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 8 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that DMF was placed in the sample bottle instead of DMAc. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 9 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that NMP was put in a sample bottle instead of DMAc. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 10 Modified cellulose in the same manner as in Example 1 except that 0.5 g of pyridine, 0.05 g of sodium acetate, 9 g of DMSO, and 1 g of acetic anhydride are put into a 20 ml sample bottle, and the stirring time after addition of cellulose pulp is changed to 2 hours. Fine fibers were obtained. The obtained modified cellulose fine fiber was evaluated in the same manner as in Example 1. The result of FT-IR analysis is shown in FIG. 9, and the SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 15 nm, and the average fiber length was 6.1 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 33 times.
  • Example 11 Example 1 except that 1 g of pyridine, 0.15 g of sodium bicarbonate, 9 g of DMSO, and 1.2 g of propionic anhydride were placed in a 20 ml sample bottle and the stirring time after addition of cellulose pulp was changed to 2 hours. Modified cellulose fine fibers were obtained. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis. An SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 15 nm, and the average fiber length was 6.9 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 29 times.
  • Example 12 Modified cellulose in the same manner as in Example 1 except that 1 g of pyridine, 0.1 g of sodium carbonate, 9 g of DMSO, and 1.2 g of butyric anhydride were placed in a 20 ml sample bottle, and the stirring time after addition of cellulose pulp was changed to 2 hours. Fine fibers were obtained. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis. An SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 22 nm, and the average fiber length was 6.5 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 28 times.
  • the obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis. An SEM photograph is shown in FIG. As a result of SEM observation, the average fiber diameter of the fibers was 10 nm, and the average fiber length was 5.3 ⁇ m. In addition, the saturated absorption rate of the pulp in the defibrating liquid was 35 times.
  • Example 1 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that pyridine was not added and the amount of DMAc added was changed to 10 g. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 2 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that pyridine was not added and DMAc was changed to 10 g of DMSO. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Comparative Example 4 Modified cellulose fine fibers were obtained in the same manner as in Example 1, except that the amount of pyridine added was changed to 10 g, DMSO was not added, and propionic anhydride was changed to 1 g of lauryl chloride. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Example 5 Modified cellulose fine fibers were obtained in the same manner as in Example 2 except that the amount of pyridine added was changed to 5 g and DMAc was changed to 1,4 dioxane 5 g. The obtained modified cellulose fine fibers were evaluated in the same manner as in Example 1 except for FT-IR analysis and SEM observation.
  • Table 1 shows the evaluation results of the modified cellulose fine fibers obtained in Examples and Comparative Examples.
  • the modified cellulose fine fiber of the present invention can be used for various composite materials and coating agents, and can also be used after being formed into a sheet or film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

塩基触媒又は有機酸触媒を含む触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液をセルロースに浸透させて、セルロースをエステル化して化学解繊し、修飾セルロース微細繊維を製造する。この方法により、ナノサイズで結晶化度が高く、繊維形状の損傷が少なくてアスペクト比が大きく、且つ有機溶媒への分散性が優れた修飾セルロース微細繊維が、強力に破砕することなく、簡便かつ効率良く得られる。前記触媒はピリジン類を含んでいてもよい。前記一塩基カルボン酸無水物はC2-4脂肪族モノカルボン酸無水物であってもよい。得られた修飾セルロース微細繊維は、一塩基カルボン酸無水物で修飾され、結晶化度が70%以上であり、平均繊維径が20~800nmであり、かつ平均繊維長が1~200μmであってもよい。

Description

修飾セルロース微細繊維及びその製造方法
 本発明は、表面が一塩基カルボン酸無水物でエステル化された修飾セルロース微細繊維及びその製造方法に関する。
 セルロース繊維(細胞壁単位)は、セルロース微細繊維(ミクロフィブリル)の集合体である。セルロース微細繊維は、鋼鉄に匹敵する機械特性を持ち、直径約30nmのナノ構造を持つため、補強剤として社会的に熱く注目されている。しかし、セルロース微細繊維は、繊維間が水素結合により結束されており、その微細繊維を取り出すためには、水素結合を解いてミクロフィブリルを分離(解繊)する必要がある。そこで、このようなミクロフィブリルの分離は、解繊と称され、セルロース微細繊維(セルロースナノファイバー)の解繊法として、激しい物理力を加えた機械解繊法が開発された。
 機械解繊法は、水中でセルロース繊維を機械的に解繊する水中機械解繊法が汎用されており、水中機械解繊法では、セルロース繊維は、水により膨潤され、柔らかくなった状態で高圧ホモジナイザーなどの強力な機械剪断によりナノ化される。天然のセルロースミクロフィブリルは、結晶ゾーン(結晶域)と非晶ゾーン(非晶域)とから構成されるが、ナノ化において、非晶ゾーンは、水などの膨潤性溶媒を吸収、膨潤した状態になると、強力な剪断により変形する。そのため、セルロース繊維は、剪断によりダメージを受け、絡み合いや引っ掛かりが生じ易い分岐形状となる。また、ボールミルなどの強力な機械粉砕法により、固体状態特有のメカノケミカル反応が起こり、この作用によりセルロースの結晶構造が破壊されたり、溶解されたりすることが避けられなくなる。その結果、収率は低くなり、結晶化度が低くなり易い。さらに、セルロース微細繊維は樹脂の強化材料として利用できるが、樹脂と複合化するためには、水中機械解繊法では、解繊の後、脱水して繊維表面を修飾して疎水化する必要があり、この脱水工程には高いエネルギーが必要となる。
 そこで、繊維表面がエステル化され、樹脂や有機溶媒などの有機媒体への分散性に優れたセルロース微細繊維の製造方法として、特開2010-104768号公報(特許文献1)には、塩化ブチルメチルイミダゾリウムなどのイオン液体と有機溶媒とを含有する混合溶媒を用いてセルロース系物質を膨潤及び/又は部分溶解させた後、エステル化する多糖類ナノファイバーの製造方法が開示されている。この文献の実施例では、エステル化剤として、無水酢酸、無水酪酸が使用されている。
 しかし、この製造方法では、特殊なイオン液体を使用する必要があり、イオン液体を回収や再利用するための精製工程はセルロースナノファイバーの製造コストの上昇や製造工程の複雑化につながる。
 また、特表2015-500354号公報(特許文献2)には、セルロースと有機溶剤とを混合させ、混合物にエステル化剤を添加して物理破砕すると共にセルロースファイバー表面のヒドロキシル基をエステル化するセルロースナノファイバー懸濁液の製造方法が開示されている。この文献の実施例では、セルロースをクロロホルムと混合した後、無水コハク酸を添加して超音波破砕した例や、セルロースをピリジンと混合した後、塩化ラウロイルを添加してボール研磨した例などが記載されている。特開2011-16995号公報(特許文献3)には、木質から得られる解繊前のセルロースを芳香環含有置換基で修飾し、修飾セルロースを得る工程、得られた修飾セルロースを平均繊維径100nm以下に解繊し、修飾セルロース繊維分散液を得る工程を経て修飾セルロース繊維分散液を製造する方法が開示されている。この文献の実施例では、塩化ベンゾイル又は塩化ナフトイルを用いてセルロースを修飾した後、超高圧ホモジナイザーで解繊している。
 しかし、特許文献2及び3の方法では、強力な機械的破砕により繊維を解繊するため、前述のように、セルロース繊維がダメージを受ける。さらに、機械的破砕のための設備やエネルギーも必要となる。また、エステル化剤を含む溶液はセルロースのミクロフィブリルの間に充分浸透できないためエステル化修飾は殆どセルロース繊維の表面に留まる。その状態で機械解繊を加えてナノサイズまで解繊しても、得られたナノファイバーの多くは修飾されず有機溶媒や樹脂への分散性が低いことが想定できる。
 さらに、強力な解繊や粉砕を必要としない化学解繊法として、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)を用いたTEMPO酸化法も注目されている。WO2010/116794号パンフレット(特許文献4)には、TEMPOなどのN-オキシル化合物と臭化物及び/又はヨウ化物との存在下で酸化剤を用いセルロース系原料を酸化した後、湿式微粒化処理するセルロースナノファイバー分散液の製造方法が開示されている。
 しかし、TEMPO酸化法で得られたセルロースナノファイバーは高い親水性や水分散性を有するが、有機媒体への分散性が低い。さらに、高価なTEMPO触媒や大量のアルカリ物質を用いるため、経済性が低く、排水処理も困難であり、環境に対する負荷も大きい。
特開2010-104768号公報(請求項1、実施例) 特表2015-500354号公報(請求項1、実施例) 特開2011-16995号公報(請求項1、実施例) WO2010/116794号パンフレット(請求項6)
 従って、本発明の目的は、強力に破砕することなく、簡便かつ効率良く生産できるとともに、ナノサイズで結晶化度が高く、繊維形状の損傷が少なくてアスペクト比が大きく、且つ有機溶媒への分散性が優れた修飾セルロース微細繊維及びその製造方法を提供することにある。
 本発明の他の目的は、有機媒体との親和性も高い修飾セルロース微細繊維及びその製造方法を提供することにある。
 本発明のさらに他の目的は、解繊効率が高く、修飾率が大きく、且つ分解や着色が抑制された修飾セルロース微細繊維及びその製造方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、強力に破砕することなく、塩基又は有機酸触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液をセルロースに浸透させて、セルロースをエステル化して化学解繊し、特定の修飾セルロース微細繊維、すなわちナノサイズで結晶化度が高く、繊維形状の損傷が少なくてアスペクト比が大きく、且つ有機溶媒への分散性が優れた修飾セルロース微細繊維を、省エネルギーな方法で簡便かつ効率良く生産できることを見出し、本発明を完成した。
 すなわち、本発明の修飾セルロース微細繊維の製造方法は、塩基触媒又は有機酸触媒を含む触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液をセルロースに浸透させて、セルロースをエステル化して化学解繊する製造方法である。前記一塩基カルボン酸無水物は、脂肪族モノカルボン酸無水物、脂環族モノカルボン酸無水物及び芳香族モノカルボン酸無水物からなる群より選択された少なくとも1種(特にC1-6アルカン-モノカルボン酸無水物)であってもよい。ドナー数26以上の非プロトン性溶媒は、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド及びN-メチル-2-ピロリドンからなる群より選択された少なくとも1種であってもよい。前記触媒は、アルカリ金属化合物、アルカリ土類金属化合物、アミン類及び第4級アンモニウム塩から選択された少なくとも1種の塩基触媒であってもよく、ピリジン類を含むのが好ましい。前記一塩基カルボン酸無水物の割合は、反応性解繊液全体に対して3~50重量%程度である。前記塩基触媒の割合は、反応性解繊液全体に対して0.05~90重量%程度である。前記塩基触媒は、ピリジン類と、アルカリ金属化合物及び/又はアルカリ土類金属化合物との組み合わせであってもよく、その場合、前記塩基触媒の割合は、反応性解繊液全体に対して0.05~20重量%程度である。反応性解繊液に対するセルロースの飽和吸収率が10~100倍程度である。前記セルロースと前記反応性解繊液との重量割合は、前者/後者=1/99~30/70程度である。
 本発明には、一塩基カルボン酸無水物で修飾され、疎水性溶媒に分散でき、結晶化度が70%以上であり、平均繊維径が10~800nmであり、かつ平均繊維長が1~200μmである修飾セルロース微細繊維も含まれる。この修飾セルロース微細繊維の平均置換度は0.05~1.0程度である。
 本発明では、機械粉砕などによって強力に破砕することなく、塩基又は有機酸触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液をセルロースに浸透させて、セルロースをエステル化して化学解繊するため、天然由来のセルロースの結晶構造やミクロフィブリル構造を破壊することなく、解繊できる。特に、本発明では、前記反応性解繊液の浸透に伴ってセルロースを膨潤させることができ、セルロースの解繊効率を向上できる。そのため、ナノサイズで結晶化度が高く、繊維形状の損傷が少なくてアスペクト比が大きく、且つ有機溶媒への分散性が優れたセルロース微細繊維を、省エネルギーな方法で簡便かつ効率良く生産できる。さらに、得られた修飾セルロース微細繊維の表面は、繊維間でむら無く一塩基カルボン酸無水物で修飾されているため、樹脂などの有機媒体との親和性も向上できる。また、塩基触媒として、ピリジン類と、アルカリ金属化合物及び/又はアルカリ土類金属化合物とを組み合わせることにより、セルロースの解繊性及び修飾率を向上し、得られるセルロース微細繊維の分解や着色を抑制でき、さらに短時間で解繊と修飾ができるため修飾セルロース微細繊維の生産性も向上できる。さらに、触媒として有機酸触媒を用いることにより着色を効果的に抑制できる。
図1は、実施例1で得られた修飾セルロース微細繊維のIRスペクトルある。 図2は、実施例1で得られた修飾セルロース微細繊維の走査型電子顕微鏡(SEM)写真である。 図3は、実施例2で得られた修飾セルロース微細繊維のIRスペクトルである。 図4は、実施例2で得られた修飾セルロース微細繊維のSEM写真である。 図5は、実施例3で得られた修飾セルロース微細繊維のIRスペクトルである。 図6は、実施例3で得られた修飾セルロース微細繊維のSEM写真である。 図7は、実施例4で得られた修飾セルロース微細繊維のIRスペクトルである。 図8は、実施例4で得られた修飾セルロース微細繊維のSEM写真である。 図9は、実施例10で得られた修飾セルロース微細繊維のIRスペクトルである。 図10は、実施例10で得られた修飾セルロース微細繊維のSEM写真である。 図11は、実施例11で得られた修飾セルロース微細繊維のSEM写真である。 図12は、実施例12で得られた修飾セルロース微細繊維のSEM写真である。 図13は、実施例13で得られた修飾セルロース微細繊維のSEM写真である。
 [修飾セルロース微細繊維の製造方法]
 本発明の修飾セルロース微細繊維(エステル化セルロース微細繊維)の製造方法は、塩基触媒又は酸触媒を含む触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液(反応性解繊溶液又は混合液)をセルロースに浸透させてセルロースをエステル化して化学解繊する工程を経て表面エステル化修飾セルロース微細繊維を得る。本発明では、この工程によってセルロースが修飾されると同時に、解繊される理由は次のように推定できる。すなわち、前記触媒、前記一塩基カルボン酸無水物及び前記溶媒を含む反応性解繊液は、セルロースに対する溶解性の低い溶液であり、この溶液がセルロースのミクロフィブリル間に浸透してセルロースを膨潤させ、ミクロフィブリルの表面の水酸基を修飾する。さらに、この修飾によりミクロフィブリル間の水素結合が破壊され、ミクロフィブリル同士は容易に離れ、解繊される。また、前記溶液は、ミクロフィブリルの結晶ゾーン(ドメイン)に浸透しないため、得られた修飾セルロース微細繊維は、ダメージが少なく、天然のミクロフィブリルに近い構造を有している。同時に、この工程では、剪断力の働きによる機械的解繊手段を用いることなく、セルロースを解繊できるため、物理的な作用によるダメージも少ない。そのため、得られた修飾セルロース微細繊維は、高い強度を保持していると推定できる。
 (セルロース)
 原料となるセルロースは、セルロース単独の形態であってもよく、リグニンやヘミセルロースなどの非セルロース成分を含む混合形態であってもよい。
 単独形態のセルロース(又は非セルロース成分の含有量が少ないセルロース)としては、例えば、パルプ(例えば、木材パルプ、竹パルプ、ワラパルプ、バガスパルプ、リンターパルプ、亜麻パルプ、麻パルプ、楮パルプ、三椏パルプなど)、ホヤセルロース、バクテリアセルロース、セルロースパウダー、結晶セルロースなどが挙げられる。
 混合形態のセルロース(セルロース組成物)としては、例えば、木材[例えば、針葉樹(マツ、モミ、トウヒ、ツガ、スギなど)、広葉樹(ブナ、カバ、ポプラ、カエデなど)など]、草本類[麻類(麻、亜麻、マニラ麻、ラミーなど)、ワラ、バガス、ミツマタなど]、種子毛繊維(コットンリンター、ボンバックス綿、カポックなど)、竹、サトウキビ、紙などが挙げられる。
 これらのセルロースは、単独で又は二種以上組み合わせて使用できる。混合形態のセルロースにおいて、非セルロース成分の割合は90重量%以下であってもよく、例えば1~90重量%、好ましくは3~80重量%、さらに好ましくは5~70重量%程度であってもよい。他の成分の割合が多すぎると、修飾セルロース微細繊維の製造が困難となる虞がある。
 セルロースは、結晶セルロース(特にI型結晶セルロース)を含むのが好ましく、結晶セルロースと非晶セルロース(不定形セルロースなど)との組み合わせであってもよい。結晶セルロース(特にI型結晶セルロース)の割合は、セルロース全体に対して10重量%以上であってもよく、例えば30~99重量%、好ましくは50~98.5重量%、さらに好ましくは60~98重量%程度である。結晶セルロースの割合が少なすぎると、修飾セルロース微細繊維の耐熱性や強度が低下する虞がある。
 これらのうち、修飾及び解繊し易い点から、木材パルプ(例えば、針葉樹パルプ、広葉樹パルプなど)、種子毛繊維のパルプ(例えば、コットンリンターパルプ)、セルロースパウダーなどが汎用される。なお、パルプは、パルプ材を機械的に処理した機械パルプであってもよいが、非セルロース成分の含有量が少ないことからパルプ材を化学的に処理した化学パルプが好ましい。
 セルロースの含水率(乾燥セルロースに対する水分の重量割合)は1重量%以上であってもよく、例えば1~100重量%、好ましくは2~80重量%、さらに好ましくは3~60重量%(特に5~50重量%)程度である。本発明では、解繊性度合や解繊効率の観点から、セルロースは、このような範囲で水分を含むのが好ましく、例えば、市販のセルロースパルプの場合、セルロースパルプを乾燥せずに、そのまま利用してもよい。含水率が小さすぎると、セルロースの解繊性が低下する虞がある。
 セルロース原料の前処理について、解繊反応装置のサイズに応じてセルロース原料(特にパルプを用いた場合))を引き裂く又は千切る方法で解繊反応装置又は容器内に入る程度のサイズに破砕して解繊反応処理に供するのが好ましい。解繊効率の観点から、強力な粉砕は空隙率の高いセルロースパルプ又はセルロース繊維を圧密するため、セルロースパルプ又は繊維が緻密になり、反応性解繊液がセルロースに浸透し難くなる虞があるため、好ましくない。
 セルロースと反応性解繊液との重量割合は、前者/後者=1/99~35/65程度の範囲から選択でき、例えば1.2/98.8~30/70、好ましくは1.5/98.5~25/75、さらに好ましくは2/98~20/80程度である。セルロースの割合が少なすぎると、修飾セルロース微細繊維の生産量が低くなり、多すぎると、反応時間が長くなるため、いずれにしても生産性が低下する虞がある。さらに、セルロースの割合が多すぎると得られた微細繊維のサイズと修飾率の均一性が低下する虞がある。
 反応性解繊液に対するセルロースの飽和吸収率は、10倍以上(例えば10~200倍程度)、好ましくは20倍以上(例えば20~150倍程度)、さらに好ましくは30倍以上(例えば30~100倍程度)である。飽和吸収率が低すぎると、セルロースの解繊性及び得られた微細繊維の均一性が低下する虞がある。
 (一塩基カルボン酸無水物)
 一塩基カルボン酸(モノカルボン酸)無水物(エステル化剤)は、独立して存在する2分子のカルボン酸を脱水縮合させた化合物であり、式:RCO-O-OCR(式中、R及びRは、同一又は異なって、飽和又は不飽和脂肪族炭化水素基、飽和又は不飽和脂環族炭化水素基又は芳香族炭化水素基である)で示される。一塩基カルボン酸無水物には、脂肪族モノカルボン酸無水物、脂環族モノカルボン酸無水物、芳香族モノカルボン酸無水物が含まれる。
 脂肪族モノカルボン酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、エタン酸プロピオン酸無水物などの飽和脂肪族モノカルボン酸無水物;無水(メタ)アクリル酸、無水クロトン酸、無水オレイン酸などの不飽和脂肪族モノカルボン酸無水物などが挙げられる。脂環族モノカルボン酸無水物としては、例えば、シクロヘキサンカルボン酸無水物、テトラヒドロ安息香酸無水物などが挙げられる。芳香族モノカルボン酸無水物としては、例えば、無水安息香酸、4-メチル安息香酸無水物などの芳香族モノカルボン酸無水物などが挙げられる。これらの一塩基カルボン酸無水物は、単独で又は二種以上組み合わせて使用できる。
 これらの一塩基カルボン酸無水物のうち、修飾性及び解繊性の点から、無水酢酸、無水プロピオン酸、無水酪酸、無水(メタ)アクリル酸、無水クロトン酸などの炭素数2~7(特に2~5)の低級脂肪族モノカルボン酸の無水物が好ましく、C1-6アルカン-モノカルボン酸無水物(特にC1-4アルカン-モノカルボン酸無水物)が特に好ましい。炭素数が大きすぎると、ミクロフィブリル間への浸透性とセルロース水酸基に対する反応性が低下する虞があるため、C1-6アルカン-モノカルボン酸無水物(特にC1-4アルカン-モノカルボン酸無水物)を少なくとも含むのが好ましく、解繊速度の点から、C1-3アルカン-モノカルボン酸無水物(特に無水酢酸)を少なくとも含むのが特に好ましい。
 特に、得られる微細繊維の疎水性や有機媒体への分散性を調整するために、無水酢酸とC2-3アルカン-モノカルボン酸無水物(無水プロピオン酸及び/又は無水酪酸)とを組み合わせてもよい。無水酢酸とC2-3アルカン-モノカルボン酸無水物との重量割合は、前者/後者=9/1~0.1/9.9程度の範囲から選択でき、例えば7/3~1/9、好ましくは5/5~1.5/8.5、さらに好ましくは4/6~2/8程度である。
 さらに、疎水性の高い炭素数5以上の一塩基カルボン酸無水物(例えば、C4-18アルカン-モノカルボン酸無水物)を修飾剤として用いる場合、C1-3アルカン-モノカルボン酸無水物(解繊効果の点から、特に無水酢酸)と組み合わせてもよい。炭素数5以上の一塩基カルボン酸無水物とC1-3アルカン-モノカルボン酸無水物との重量割合は、前者/後者=9.9/0.1~5/5程度の範囲から選択でき、例えば9.5/0.5~5.5/4.5、好ましくは9/1~6/4、さらに好ましくは8.5/1.5~6.5/3.5程度である。
 反応性解繊液中の一塩基カルボン酸無水物の濃度(重量割合)は、ミクロフィブリル間への浸透性とセルロース水酸基に対する反応性のバランスに優れる点から、1~50重量%(例えば3~50重量%)程度の範囲から選択でき、例えば2~40重量%、好ましくは3~30重量%、より好ましくは5~20重量%程度である。
 (触媒)
 本発明では、セルロースのエステル化を促進するために、一塩基カルボン酸無水物に加えて触媒を用いる。触媒には、塩基触媒、有機酸触媒が含まれる。
 塩基触媒としては、例えば、アルカリ金属化合物、アルカリ土類金属化合物、アミン類、第4級アンモニウム塩などが挙げられる。これらの塩基触媒は、単独で又は二種以上組み合わせて使用できる。
 アルカリ金属化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩;水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物;酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、酪酸ナトリウムなどのカルボン酸アルカリ金属塩;メタホウ酸ナトリウム、四ホウ酸ナトリウム(ホウ砂)などのホウ酸アルカリ金属塩;リン酸三ナトリウムなどのリン酸アルカリ金属塩;リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウムなどのリン酸水素アルカリ金属塩;ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシドなどのアルカリ金属アルコキシドなどが挙げられる。
 アルカリ土類金属化合物としては、例えば、水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸マグネシウムなどの炭酸アルカリ土類金属塩;炭酸水素マグネシウムなどの炭酸水素アルカリ土類金属塩;酢酸カルシウムなどのカルボン酸アルカリ土類金属塩;カルシウムt-ブトキシドなどのアルカリ土類金属アルコキシドなどが挙げられる。
 アミン類としては、通常、第3級アミン類が使用され、例えば、トリメチルアミン、トリエチルアミン、ジエチルメチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、トリブチルアミンなどのトリアルキルアミン類;トリエタノールアミン、ジメチルアミノエタノールなどのアルカノールアミン類;トリシクロヘキシルアミンなどのトリシクロアルキルアミン;メチルジシクロヘキシルアミンなどのアルキルジシクロアルキルアミン;ピコリン、ピリジン、ピラジン、ピリミジン、ピリダジン、1-メチルイミダゾール、トリエチレンジアミン、N,N-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデ-7-センなどの複素環式アミン類などが挙げられる。
 第4級アンモニウム塩としては、例えば、テトラエチルアンモニウムアセタート、テトラブチルアンモニウムアセタートなどのテトラアルキルアンモニウムアセタート(テトラアルキルアンモニウム酢酸塩);塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウムなどのテトラアルキルアンモニウムハライド;塩化ベンジルトリメチルアンモニウムなどのベンジルトリアルキルアンモニウムハライドなどが挙げられる。
 これらの塩基触媒のうち、酢酸ナトリウムなどのカルボン酸アルカリ金属塩、炭酸ナトリウムなどの炭酸アルカリ金属塩、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩、トリエチルアミンなどのトリC1-4アルキルアミン、ピリジンなどの複素環式アミン類などが汎用される。
 有機酸触媒としては、例えば、カルボン酸(ギ酸などの脂肪族モノカルボン酸;シュウ酸などの脂肪族ジカルボン酸など)、スルホン酸(メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸などのアルカンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸などのアレーンスルホン酸)などが挙げられる。これらの酸触媒は、単独で又は二種以上組み合わせて使用できる。これらの有機酸触媒のうち、ギ酸やシュウ酸などのカルボン酸や、トルエンスルホン酸などのアレーンスルホン酸又はその塩(特に、リチウム、マグネシウム、カルシウム、鉄などの弱アルカリ性を示す金属との塩)が好ましく、トルエンスルホン酸などのアレーンスルホン酸が特に好ましい。
 これらの触媒のうち、エステル化反応における触媒作用だけでなく、解繊も促進できる点から、複素環式アミン類などの塩基触媒が好ましく、ピリジン類を含む塩基触媒が特に好ましい。さらに、ピリジン類は、沸点も低いため、回収も容易であり、再利用し易い。また、ピリジン類(特にピリジン)は、触媒の機能に加えて、溶媒としての機能も有しているため、触媒量を超えた割合で配合し、溶媒としての機能を担わせてもよい。
 ピリジン類としては、例えば、ピリジン;メチルピリジン(ピコリン)、エチルピリジンなどのC1-4アルキルピリジン;ジメチルピリジン(ルチジン)などのジC1-4アルキルピリジン;トリメチルピリジン(コリジン)などのトリC1-4アルキルピリジンなどが挙げられる。これらのうち、ピリジンが好ましい。ピリジン類は、単独で又は二種以上組み合わせて使用できる。
 塩基触媒の好ましい態様は、ピリジン類(特にピリジン)を含んでいればよく、ピリジン類単独であってもよいが、修飾セルロース微細繊維の生産性(生産効率、解繊性及び修飾性)を向上でき、かつ修飾セルロース微細繊維の着色や分解を抑制できる点から、ピリジン類(特にピリジン)と、アルカリ金属化合物及び/又はアルカリ土類金属化合物(以下、両化合物をまとめて「金属化合物」と称する)との組み合わせが特に好ましい態様である。
 ピリジン類(特にピリジン)と組み合わせる金属化合物としては、前記アルカリ金属化合物及びアルカリ土類金属化合物であればよいが、ピリジン類との組み合わせにより、セルロース微細繊維の生産性と物性とを両立できる点から、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;酢酸ナトリウムなどのカルボン酸アルカリ金属塩;四ホウ酸ナトリウム(ホウ砂)などのホウ酸アルカリ金属塩;リン酸三ナトリウムなどのリン酸アルカリ金属塩;リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウムなどのリン酸水素アルカリ金属塩;炭酸マグネシウムなどの炭酸アルカリ土類金属塩;炭酸水素マグネシウムなどの炭酸水素アルカリ土類金属塩;酢酸カルシウムなどのカルボン酸アルカリ土類金属塩が好ましく、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;酢酸ナトリウムなどのC1-4アルカン-モノカルボン酸アルカリ金属塩が特に好ましい。
 ピリジン類と金属化合物とを組み合わせる場合、金属化合物の割合(アルカリ金属化合物とアルカリ土類金属化合物とを組み合わせる場合は合計割合)は、ピリジン類100重量部に対して、例えば1~50重量部、好ましくは2~30重量部、さらに好ましくは3~20重量部(特に5~15重量部)程度である。金属化合物の割合が少なすぎると、セルロース微細繊維の修飾率が低下したり、反応時間が長くなったりする虞があり、逆に多すぎると、過修飾することによりセルロース微細繊維の収率が低下する虞がある。
 塩基触媒の場合、触媒の割合は、反応性解繊液全体に対して0.05~99重量%(例えば0.1~98重量%)であればよく、例えば0.2~99重量%(例えば1~97重量%)、好ましくは2~95重量%、さらに好ましくは5~90重量%(特に10~90重量%)程度である。有機酸触媒の場合、触媒の割合は、反応性解繊液全体に対して0.5~50重量%(例えば1~35重量%)であればよく、例えば2~30重量%(例えば3~25重量%)、好ましくは5~20重量%、さらに好ましくは7~15重量%程度である。
 触媒の割合は、触媒の機能に応じて選択してもよく、触媒としての作用のみ発現させる場合、反応性解繊液全体に対して、例えば0.01~20重量%、好ましくは0.05~18重量%、さらに好ましくは0.1~15重量%(特に3~12重量%)程度である。例えば、触媒をピリジン類と金属化合物との組み合わせで構成する場合、触媒の割合(合計割合)は、この範囲であってもよい。
 一方、触媒が溶媒としての機能も有し、触媒を触媒作用に加えて溶媒としても利用する場合、触媒の割合は、反応性解繊液全体に対して20重量%以上であってもよく、例えば20~80重量%、好ましくは23~50重量%、さらに好ましくは25~40重量%程度である。例えば、触媒がピリジン類を含む場合(特にピリジン類単独の場合)、触媒の割合はこの範囲であってもよい。
 触媒の割合が少なすぎると、セルロースの修飾率が低下し、セルロースを解繊する作用も低下する虞がある。一方、触媒の割合が多すぎると、セルロースが激しく分解する虞がある上に、セルロースへの反応性解繊液の浸透性が低下し、セルロースを解繊する作用も低下する虞がある。
 (溶媒)
 溶媒としては、一塩基カルボン酸無水物の反応性及びセルロースの解繊を損なわない溶媒であれば特に限定されないが、一塩基カルボン酸無水物のミクロフィブリル間への浸透性を促進でき、かつセルロースの水酸基に対する反応性を適度に調整できるため、ドナー数26以上の非プロトン性溶媒を含む溶媒が好ましい。このような非プロトン性溶媒のドナー数は、例えば26~35、好ましくは26.5~33、さらに好ましくは27~32程度である。ドナー数低すぎると、一塩基カルボン酸無水物のミクロフィブリル間への浸透性を向上させる効果が発現しない虞がある。なお、ドナー数については、文献「Netsu Sokutei 28(3)135-143」を参照できる。
 前記非プロトン性溶媒としては、例えば、アルキルスルホキシド類、アルキルアミド類、ピロリドン類などが挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。
 アルキルスルホキシド類としては、例えば、ジメチルスルホキシド(DMSO)、メチルエチルスルホキシド、ジエチルスルホキシドなどのジC1-4アルキルスルホキシドなどが挙げられる。
 アルキルアミド類としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミドなどのN,N-ジC1-4アルキルホルムアミド;N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミドなどのN,N-ジC1-4アルキルアセトアミドなどが挙げられる。
 ピロリドン類としては、例えば、2-ピロリドン、3-ピロリドンなどのピロリドン;N-メチル-2-ピロリドン(NMP)などのN-C1-4アルキルピロリドンなどが挙げられる。
 これらの非プロトン性溶媒は、単独で又は二種以上組み合わせて使用できる。これらの非プロトン性溶媒(括弧内の数字はドナー数)のうち、DMSO(29.8)、DMF(26.6)、DMAc(27.8)、NMP(27.3)などが汎用される。
 これらのうち、非プロトン性溶媒のうち、一塩基カルボン酸無水物のミクロフィブリル間への浸透性を高度に促進できる点から、アルキルスルホキシド類及び/又はアルキルアセトアミド類(特に、DMSOなどのジC1-2アルキルスルホキシド及び/又はDMAcなどのN,N-ジC1-2アルキルアセトアミド)が好ましく、セルロースの解繊効果を向上できる点から、DMSOが特に好ましく、変色を抑制できる点からDMAcが特に好ましい。
 溶媒は、他の溶媒として、ドナー数26未満の慣用の非プロトン性溶媒、例えば、アセトニトリル、ジオキサン、アセトン、ジメチルエーテル、テトラヒドロフランなどを含んでいてもよいが、ドナー数26以上の非プロトン性溶媒を主溶媒として含むのが好ましい。ドナー数26以上の非プロトン性溶媒の割合は、溶媒全体に対して50重量%以上であってもよく、好ましくは80重量%、さらに好ましくは90重量%以上であり、100重量%(ドナー数26以上の非プロトン性溶媒単独)であってもよい。ドナー数26未満の溶媒が多すぎると、セルロースミクロフィブリル間への反応性解繊液の浸透性が低下するため、セルロースの解繊効果が低下する虞がある。
 触媒と溶媒(特にアルキルスルホキシド類及び/又はアルキルアミド類などの非プロトン性溶媒)の重量比は、修飾反応速度及びセルロースミクロフィブリル間への反応性解繊液の浸透速度に影響する。両者の重量比は、触媒種に応じて選択してもよく、例えば、塩基触媒(アルカリ性触媒)、例えば、ピリジンなどの弱アルカリ性の触媒を単独で用いる場合は、弱アルカリ性の触媒と溶媒(特にアルキルスルホキシド類及び/又はアルキルアミド類)との重量比は、前者/後者=90/10~10/90程度の範囲から選択でき、例えば85/15~15/85、好ましくは80/20~20/80程度である。前記金属水酸化物又は金属塩などのより強いアルカリ性の触媒を含む場合は、触媒の割合は少量であってもよく、塩基触媒(特にピリジン類とアルカリ金属化合物との組み合わせ)と溶媒(特にアルキルスルホキシド類)との重量比は、前者/後者=30/70~0.05/99.95程度の範囲から選択でき、例えば20/80~0.1/99.9、好ましくは15/85~0.5/99.5程度である。一方、有機酸触媒の場合は、有機酸触媒と溶媒(特に非プロトン性溶媒)との重量比は、有機酸触媒/溶媒=50/50~0.5/99.5、好ましくは30/70~0.8/99.2程度である。さらに、有機酸触媒/溶媒=10/90~1/99程度であってもよい。溶媒の割合が多すぎると、セルロースの修飾率が低下し、セルロースを解繊する効率も低下する虞がある。
 さらに、一塩基カルボン酸無水物が無水酢酸を含み、触媒がピリジン類を含み、溶媒がジメチルスルホキシド(DMSO)などのアルキルスルホキシド類である場合、ピリジン類とアルキルスルホキシド類との重量比は、修飾セルロース微細繊維の着色や分解を抑制できる点から、ピリジン類/アルキルスルホキシド類=45/55~1/99、好ましくは40/60~3/97、さらに好ましくは30/70~5/95程度である。一塩基カルボン酸無水物と触媒と溶媒とがこれらの組み合わせである場合、着色や分解が発生し易くなるメカニズムは明確ではないが、これらの成分の共存下では酸化反応によりジメチルスルフィドが生成したり、セルロースが分解し易くなったりすることに関連すると推定できる。なお、ピリジン類の割合が少なくなると、解繊性及び修飾性が低下するため、前述のように、ピリジン類と前記金属化合物と組み合わせるのが好ましい。
 (他のエステル化剤)
 修飾解繊工程では、本発明の効果を損なわない範囲で、他のエステル化剤を用いてもよい。他のエステル化剤としては、一塩基カルボン酸[酢酸、プロピオン酸、(イソ)酪酸、吉草酸などの飽和脂肪族モノカルボン酸;(メタ)アクリル酸、オレイン酸などの不飽和脂肪族モノカルボン酸;シクロヘキサンカルボン酸、テトラヒドロ安息香酸などの脂環族モノカルボン酸;安息香酸、4-メチル安息香酸などの芳香族モノカルボン酸など]、二塩基カルボン酸又はその無水物[例えば、(無水)コハク酸、アジピン酸などの(無水)飽和脂肪族ジカルボン酸;(無水)マレイン酸、(無水)イタコン酸などの(無水)不飽和脂肪族ジカルボン酸無水物;(無水)1-シクロヘキセン-1,2-ジカルボン酸、(無水)ヘキサヒドロフタル酸、(無水)メチルテトラヒドロフタル酸などの(無水)脂環族ジカルボン酸;(無水)フタル酸、(無水)ナフタル酸などの(無水)芳香族ジカルボン酸など]、多塩基カルボン酸類(例えば、トリメリット酸、無水トリメリット酸、無水ピロメリット酸などの(無水)ポリカルボン酸など)などが挙げられる。これらのエステル化剤は、単独で又は二種以上組み合わせて使用できる。他のエステル化剤の割合は、一塩基カルボン酸無水物100重量部に対して50重量部以下であり、例えば0~35重量部、好ましくは0.01~20重量部、さらに好ましくは0.1~10重量部程度である。他のエステル化剤の割合が多すぎると、一塩基カルボン酸無水物による修飾率が低下したり、得られた修飾セルロース微細繊維の耐熱性や疎水性溶媒への分散性が低下する虞がある。
 (反応条件)
 本発明の製造方法では、前記触媒と前記一塩基カルボン酸無水物と前記溶媒とを含む反応性解繊液をセルロースに浸透させてセルロースを膨潤させて、セルロースをエステル化させて、セルロースミクロフィブリルの表面にある水酸基をエステル化修飾し、かつセルロースを解繊できればよく、このような化学解繊方法は、特に限定されないが、通常、前記反応性解繊液を調製し、調製した反応性解繊液にセルロースを添加して混合する方法を利用できる。
 反応性解繊液の調製方法は、予め前記触媒と前記一塩基カルボン酸無水物と前記溶媒とを攪拌などによって混合し、一塩基カルボン酸無水物を前記触媒及び前記溶媒中に均一に溶解させてもよい。
 得られた反応性解繊液は、セルロースに対する浸透性が高いため、セルロースを反応性解繊液に添加して混合することにより、反応性解繊液は、ミクロフィブリル間に浸入して、ミクロフィブリルの表面に存在する水酸基を修飾することにより、セルロースの修飾と解繊とを同時に行うことができる。
 詳しくは、化学解繊方法は、反応性解繊液にセルロースを混合して1時間以上放置してエステル化する方法であってもよく、混合後、さらに溶液中でセルロースが均一な状態を維持できる程度の攪拌(物理的にセルロースを解繊又は破砕しない程度の攪拌)を行ってもよい。すなわち、反応は、反応性解繊液にセルロースを混合して放置するだけでも進行するが、浸透又は均一性を促進するために、攪拌手段を用いて攪拌を行ってもよい。この攪拌は、物理的にセルロースを粉砕又は解繊させる強力な攪拌ではなく、通常、化学反応で汎用されているマグネティックスターラ又は攪拌翼(例えば10~15000rpm、好ましくは50~10000rpm程度の攪拌)による攪拌であればよい。また、攪拌は、連続的に攪拌してもよいいし、断続的に攪拌してもよい。
 本発明では、化学解繊における反応温度は、加熱する必要はなく、室温で反応させればよく、1時間以上反応させることにより、剪断力の働きによる機械的解繊手段を用いることなく、セルロースを化学的に解繊できる。そのため、本発明では、余分なエネルギーを使用することなくセルロースを解繊できる。なお、反応を促進するために、加熱してもよく、加熱温度は、例えば90℃以下(例えば40~90℃程度)、好ましくは80℃以下、さらに好ましくは70℃以下程度である。
 反応時間は、一塩基カルボン酸無水物及び触媒の種類や、前記溶媒のドナー数によって選択でき、例えば0.5~50時間、好ましくは1~36時間、さらに好ましくは1.5~24時間程度である。例えば、無水酢酸などの極性の高い低級カルボン酸無水物とドナー数の高いジメチルスルホキシド(DMSO)などの非プロトン性極性溶媒とを用いる場合、数時間(例えば1~6時間)程度の時間であってもよく、好ましくは1.5~5時間程度である。さらに、前述のように、処理温度(反応温度)を高めて、反応時間を短くしてもよい。反応時間が短すぎると、反応性解繊液がミクロフィブリル間まで浸透するのが不十分となり、反応が不十分となり、解繊度合いも低下する虞がある。一方、反応時間は長すぎるとセルロース微細繊維の収率が低下する虞がある。
 反応は、不活性ガス(窒素、アルゴンなどの希ガスなど)雰囲気下又は減圧下で行ってもよいが、通常、密閉反応容器内で行う場合が多い。このような反応条件であれば、エステル化反応により発生した水を系外に排出したり、空気中の水分が系内に吸入されないため、好ましい。
 化学解繊して得られた修飾セルロース微細繊維は、慣用の方法(例えば、遠心分離、濾過、濃縮、沈殿など)により分離精製してもよい。例えば、失活させたエステル化剤、触媒及び溶媒を溶解可能な溶媒(アセトンなど)を反応混合物に添加し、前記遠心分離、濾過、沈殿などの分離法(慣用の方法)で分離精製(洗浄)してもよい。なお、分離操作は複数回(例えば、2~5回程度)行うことができる。反応終了後、水又はメタノールなどの失活剤を添加して、一塩基カルボン酸無水物(エステル化剤)を失活させてもよい。
 さらに、トルエンスルホン酸や金属水酸化物などの強酸触媒又は強アルカリ触媒を用いた場合、解繊後中和してから洗浄することが好ましい。
 (修飾セルロース微細繊維)
 得られた修飾セルロース微細繊維は、ナノサイズに解繊されており、平均繊維径は、例えば5~800nm、好ましくは10~600nm、さらに好ましくは12~500nm(特に15~300nm)程度であってもよい。特に、ピリジン類と金属化合物とを組み合わせた触媒を用いて、さらに極細の繊維も調製でき、修飾セルロース微細繊維の平均繊維径は、例えば5~50nm、好ましくは10~40nm、さらに好ましくは12~30nm(特に15~25nm)程度であってもよい。繊維径が大きすぎると、補強材としての効果が低下する虞があり、小さすぎると、微細繊維の取り扱い性や耐熱性も低下する虞がある。
 得られた修飾セルロース微細繊維は、化学解繊されているため、従来の機械解繊法で得られた微細繊維よりも長い繊維長を有しており、平均繊維長は1μm以上であってもよく、例えば1~200μm程度の範囲から選択でき、例えば1~100μm(例えば1~80μm)、好ましくは2~60μm、さらに好ましくは3~50μm程度であってもよい。繊維長が短すぎると、補強効果や成膜機能が低下する虞がある。また、長すぎると、繊維が絡み易くなるため溶媒や樹脂への分散性が低下する虞がある。
 修飾セルロース微細繊維の平均繊維径に対する平均繊維長の割合(アスペクト比)は用途に応じて対応でき、例えば30以上であってもよく、例えば40~1000、好ましくは50~500、さらに好ましくは60~200(特に80~150)程度であってもよい。
 なお、本発明では、修飾セルロース微細繊維の平均繊維径、平均繊維長及びアスペクト比は、走査型電子顕微鏡写真の画像からランダムに50個の繊維を選択し、加算平均して算出してもよい。
 また、修飾セルロース微細繊維は各繊維又は全ての繊維がむら無くエステル化修飾されているため、有機溶媒や樹脂などの有機媒体によく分散できる。修飾セルロース微細繊維の特性(例えば、低線膨張特性、強度、耐熱性など)を樹脂に有効に発現させるためには、結晶性の高い修飾セルロース微細繊維が好ましい。本発明の修飾セルロース微細繊維は、化学解繊され、原料セルロースの結晶性を維持できるため、修飾セルロース微細繊維の結晶化度は前記セルロースの数値をそのまま参照できる。修飾セルロース微細の結晶化度は50%以上(特に65%以上)であってもよく、例えば50~98%、好ましくは65~95%、さらに好ましくは70~92%(特に75~90%)程度であってもよい。結晶化度が小さすぎると、線膨張特性や強度などの特性を低下させる虞がある。なお、結晶化度は、後述の実施例に記載の方法で測定できる。
 修飾セルロース微細繊維の平均置換度は、微細繊維の直径とエステル化剤の種類によるが、1.5以下(例えば0.02~1.2)であり、例えば0.05~1.0(例えば0.1~1.0)、好ましくは0.15~0.95、さらに好ましくは0.25~0.8(特に0.3~0.8)程度である。平均置換度が大きすぎると、微細繊維の結晶化度又は収率が低下する虞がある。平均置換度(DS:degree of substitution)は、セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数であり、Biomacromolecules 2007, 8, 1973-1978やWO2012/124652A1又はWO2014/142166A1などを参照できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、用いた原料の詳細は以下の通りであり、得られた修飾セルロース微細繊維及び延伸フィルムの特性及び評価は以下のようにして測定した。
 (用いた原料、触媒及び溶媒)
 セルロースパルプ:市販木材パルプ(Georgia Pacific社製、商品名:フラッフパルプARC48000GP、含水率9重量%)をサンプル瓶に入れるサイズ(1~3cm角程度)まで切断したパルプ
 他の原料、触媒及び溶媒:ナカライテスク(株)製の試薬。
 (セルロースの飽和吸収率)
 セルロースの反応性解繊液に対しての飽和吸収率Rは以下の手順で評価した。即ち、一定量のセルロースパルプW(例えば0.1g)を反応性解繊液W(例えば15g)に加え、室温で10時間静置した後、上部透明な上澄みを除いて秤量(W)し、下記式で飽和吸収率Rを算出した。
   R=(W―W)/W×100%。
 (解繊度合)
 得られた修飾セルロース微細繊維を光学顕微鏡(ニコン(株)製「OPTIPHOT-POL」)でセルロースの解繊度合を観察し、以下の基準で評価した。
  ◎:解繊が進行し、1μm以上の繊維径を有する繊維が殆ど存在しない
  ○:殆ど解繊されているが、1μm以上の繊維径を有する繊維が少し存在する
  △:完全に解繊されていないが、一部の繊維が解繊されたり、大きく膨張している
  ×:原料セルロースの繊維がそのまま残存している。
 (修飾セルロース微細繊維の表面修飾率又は平均置換度)
 修飾セルロース微細繊維の表面修飾率は、平均置換度で示し、下記の滴定法によって測定できる。なお、平均置換度とは、セルロースの繰り返し単位1個当たりの修飾された水酸基の数(置換基の数)の平均値である。
 即ち、アセトンで洗浄して乾燥した表面修飾セルロース微細繊維(固形分0.05g)にメタノール6ml、蒸留水2mlを添加し、60~70℃で30分攪拌した後、0.05N水酸化ナトリウム水溶液10mlを添加し、60~70℃で15分攪拌しさらに室温で一日攪拌した。得られた混合液に対して、フェノールフタレインを用いて0.02N塩酸水溶液で滴定し、下記式より化学修飾率を計算した。
 ここで、滴定に要した0.02N塩酸水溶液の量Z(ml)から、化学修飾により導入された置換基のモル数Qは、下記式で求められる。
  Q(mol)=0.05(N)×10(ml)/1000-0.02(N)×Z(ml)/1000
 この置換基のモル数Qと、平均置換度Dとの関係は、以下の式で算出される[セルロース=(C10)n=(162.14)n,繰り返し単位1個当たりの水酸基数=3,OHの分子量=17]。
  D=162.14×Q/[サンプル量-(T-17)×Q]
(式中、Tはエステル化置換基の前駆体である一塩基カルボン酸無水物の分子量である)。
 さらに一部のサンプルをフーリエ変換赤外分光光度計(FT-IR)で分析したところ、何れのサンプルも1730cm-1でのエステル結合の吸収バンドが検出された。なお、測定は、NICOLET社製「NICOLET MAGNA-IR760 Spectrometer」を用い、反射モードで分析した。
 (修飾セルロース微細繊維の形状観察)
 修飾セルロース微細繊維の形状はFE-SEM(日本電子(株)製「JSM-6700F」、測定条件:20mA、60秒)を用いて観察した。なお、平均繊維径及び平均繊維長は、SEM写真の画像からランダムに50個の繊維を選択し、加算平均して算出した。
 (結晶化度)
 得られた修飾セルロース微細繊維の結晶化度は、参考文献:Textile Res. J. 29:786-794(1959)に基づき、XRD分析法(Segal法)により測定し、下記式により算出した。
   結晶化度(%)=[(I200-IAM)/I200]×100%
[式中、I200はX線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、IAMはアモルファス部(002面と110面間の最低部、回折角2θ=18.5°)の回折強度である]。
 (溶剤分散性)
 アセトンで洗浄した修飾セルロース微細繊維を0.05g、MEK(メチルエチルケトン)10gを20mlのサンプル瓶に入れ、スターラーでよく攪拌し、さらに室温で60分間静置した後、微細繊維の沈降状態を観察し、修飾セルロース微細繊維のMEK中の分散性を以下の基準で評価した。
  ○:沈殿せず懸濁層の上に透明な液層が観察されない
  △:沈殿しなかったが懸濁層の上に透明な液層が観察された
  ×:微細繊維が完全に沈殿した。
 (修飾セルローブ微細繊維の着色性)
 修飾セルロース微細繊維の着色性は目視で観察し、以下の基準で評価した。
  ◎:全く着色無し
  ○:目視で分からない程度の着色
  △:薄黄色に着色
  ×:茶色に着色。
 実施例1
 ピリジン3gとDMSO 7gと無水プロピオン酸1.3gとを20mlのサンプル瓶に入れ、スターラーで混合液が均一に混ざるまで攪拌した。次に、セルロースパルプ0.3gを加え、さらに24時間攪拌した後、アセトンと水の混合溶液で洗浄することによりピリジン、DMSO、残留無水プロピオン酸を除いた。固形分を回収し、得られた修飾セルロース微細繊維について、平均置換度を測定し、修飾官能基をFT-IR分析で確認し、走査型電子顕微鏡(SEM)で形状を観察し、XRD分析法で結晶化度を測定し、解繊度合及び溶剤分散性を評価した。FT-IR分析の結果を図1に示し、SEM写真を図2に示す。SEM観察の結果、繊維の平均繊維径は30nmであり、平均繊維長は9.5μmであった。なお、解繊液におけるパルプの飽和吸収率は32倍であった。
 実施例2
 ピリジン3gとDMAc7gと無水酢酸1gとを20mlのサンプル瓶に入れ、実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維を実施例1と同様に評価した。FT-IR分析の結果を図3に示し、SEM写真を図4に示す。SEM観察の結果、繊維の平均繊維径は93nmであり、平均繊維長は12.3μmであった。なお、解繊液におけるパルプの飽和吸収率は28倍であった。
 実施例3
 ピリジンの添加量を7gに変更し、DMAc7gの代わりにDMSO 3gをサンプル瓶に入れる以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維を実施例1と同様に評価した。FT-IR分析の結果を図5に示し、SEM写真を図6に示す。SEM観察の結果、繊維の平均繊維径は110nmであり、平均繊維長は13.6μmであった。なお、解繊液におけるパルプの飽和吸収率は20倍であった。
 実施例4
 ピリジン4.5gとDMSO 4.5gと無水酪酸1gとをサンプル瓶に入れ、実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維を実施例1と同様に評価した。FT-IR分析の結果を図7に示し、SEM写真を図8に示す。SEM観察の結果、繊維の平均繊維径は136nmであり、平均繊維長は15.8μmであった。なお、解繊液におけるパルプの飽和吸収率は29倍であった。
 実施例5
 ピリジン5gとDMSO 5gと無水酢酸0.2gと無水酪酸0.8gとをサンプル瓶に入れ、実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例6
 ピリジン3gの代わりにトルエンスルホン酸1gをサンプル瓶に入れ、DMAc7gの代わりにDMSO 9gをサンプル瓶に入れ、セルロースパルプ添加後の攪拌時間を5時間に変更する以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例7
 無水酢酸1gの代わりに無水安息香酸2gをサンプル瓶に入れる以外は実施例3と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例8
 DMAcの代わりにDMFをサンプル瓶に入れる以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例9
 DMAcの代わりにNMPをサンプル瓶に入れる以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例10
 ピリジン0.5gと酢酸ナトリウム0.05gとDMSO 9gと無水酢酸1gとを20mlのサンプル瓶に入れ、セルロースパルプ添加後の攪拌時間を2時間に変更する以外は実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維を実施例1と同様に評価した。FT-IR分析の結果を図9に示し、SEM写真を図10に示す。SEM観察の結果、繊維の平均繊維径は15nmであり、平均繊維長は6.1μmであった。なお、解繊液におけるパルプの飽和吸収率は33倍であった。
 実施例11
 ピリジン1gと炭酸水素ナトリウム0.15gとDMSO 9gと無水プロピオン酸1.2gとを20mlのサンプル瓶に入れ、セルロースパルプ添加後の攪拌時間を2時間に変更する以外は実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析を除いて実施例1と同様に評価した。SEM写真を図11に示す。SEM観察の結果、繊維の平均繊維径は15nmであり、平均繊維長は6.9μmであった。なお、解繊液におけるパルプの飽和吸収率は29倍であった。
 実施例12
 ピリジン1gと炭酸ナトリウム0.1gとDMSO 9gと無水酪酸1.2gとを20mlのサンプル瓶に入れ、セルロースパルプ添加後の攪拌時間を2時間に変更する以外は実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析を除いて実施例1と同様に評価した。SEM写真を図12に示す。SEM観察の結果、繊維の平均繊維径は22nmであり、平均繊維長は6.5μmであった。なお、解繊液におけるパルプの飽和吸収率は28倍であった。
 実施例13
 水酸化ナトリウム水溶液(水酸化ナトリウム/水=1/1(重量比))0.1gとDMSO 9gと無水酢酸0.5gと無水酪酸0.9gとを20mlのサンプル瓶に入れ、スターラーで混合液が均一に混ざるまで攪拌した。次に、セルロースパルプ0.3gを加え、さらに2時間攪拌した後、水酸化ナトリウムと等当量の塩酸を加え、水酸化ナトリウムを中和した後、アセトンと水の混合溶液で洗浄することにより塩化ナトリウム、DMSO、残留無水酢酸、残留無水酪酸を除いた。得られた修飾セルロース微細繊維をFT-IR分析を除いて実施例1と同様に評価した。SEM写真を図13に示す。SEM観察の結果、繊維の平均繊維径は10nmであり、平均繊維長は5.3μmであった。なお、解繊液におけるパルプの飽和吸収率は35倍であった。
 比較例1
 ピリジンを添加せず、DMAcの添加量を10gに変更する以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 比較例2
 ピリジンを添加せず、DMAcをDMSO 10gに変更する以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 比較例3
 ピリジンを添加せず、DMSOの添加量を10gに変更し、無水プロピオン酸を塩化ラウリル2gに変更する以外は実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 比較例4
 ピリジンの添加量を10gに変更し、DMSOを添加せず、無水プロピオン酸を塩化ラウリル1gに変更する以外は実施例1と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 比較例5
 ピリジンの添加量を5gに変更し、DMAcを1,4-ジオキサン5gに変更する以外は実施例2と同様にして修飾セルロース微細繊維を得た。得られた修飾セルロース微細繊維をFT-IR分析及びSEM観察を除いて実施例1と同様に評価した。
 実施例及び比較例で得られた修飾セルロース微細繊維の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例で得られた修飾セルロース微細繊維は、解繊が進んでいるのに対して、比較例で得られた修飾セルロース微細繊維は、解繊が殆ど進んでいなかった。
 本発明の修飾セルロース微細繊維は、各種複合材料、コーティング剤に利用でき、シートやフィルムに成形して利用することもできる。

Claims (13)

  1.  塩基触媒又は有機酸触媒を含む触媒と一塩基カルボン酸無水物とドナー数26以上の非プロトン性溶媒とを含む反応性解繊液をセルロースに浸透させて、セルロースをエステル化して化学解繊する修飾セルロース微細繊維の製造方法。
  2.  一塩基カルボン酸無水物が、脂肪族モノカルボン酸無水物、脂環族モノカルボン酸無水物及び芳香族モノカルボン酸無水物からなる群より選択された少なくとも1種である請求項1記載の製造方法。
  3.  ドナー数26以上の非プロトン性溶媒が、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド及びN-メチル-2-ピロリドンからなる群より選択された少なくとも1種である請求項1又は2記載の製造方法。
  4.  触媒が、アルカリ金属化合物、アルカリ土類金属化合物、アミン類及び第4級アンモニウム塩から選択された少なくとも1種の塩基触媒である請求項1~3のいずれかに記載の製造方法。
  5.  触媒がピリジン類を含む請求項4記載の製造方法。
  6.  一塩基カルボン酸無水物の割合が、反応性解繊液全体に対して3~50重量%である請求項1~5のいずれかに記載の製造方法。
  7.  触媒が塩基触媒であり、塩基触媒の割合が、反応性解繊液全体に対して0.05~90重量%である請求項1~6のいずれかに記載の製造方法。
  8.  触媒が、ピリジン類と、アルカリ金属化合物及び/又はアルカリ土類金属化合物との組み合わせであり、かつ触媒の割合が、反応性解繊液全体に対して0.05~20重量%である請求項1~7のいずれかに記載の製造方法。
  9.  一塩基カルボン酸無水物がC1-6アルカン-モノカルボン酸無水物である請求項1~8のいずれかに記載の製造方法。
  10.  反応性解繊液に対するセルロースの飽和吸収率が10~100倍である請求項1~9のいずれかに記載の製造方法。
  11.  セルロースと反応性解繊液との重量割合が、前者/後者=1/99~30/70である請求項1~10のいずれかに記載の製造方法。
  12.  一塩基カルボン酸無水物で修飾され、疎水性溶媒に分散でき、結晶化度が70%以上であり、平均繊維径が10~800nmであり、かつ平均繊維長が1~200μmである修飾セルロース微細繊維。
  13.  平均置換度が0.05~1.0である請求項12記載の修飾セルロース微細繊維。
PCT/JP2016/081969 2015-10-27 2016-10-27 修飾セルロース微細繊維及びその製造方法 WO2017073700A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3003100A CA3003100A1 (en) 2015-10-27 2016-10-27 Modified cellulose fine fibers and method for producing same
JP2017547871A JP6454427B2 (ja) 2015-10-27 2016-10-27 修飾セルロース微細繊維及びその製造方法
EP16859929.8A EP3369748B1 (en) 2015-10-27 2016-10-27 Modified cellulose fine fibers and method for producing same
US15/769,836 US20180312609A1 (en) 2015-10-27 2016-10-27 Modified cellulose fine fibers and method for producing the same
DK16859929.8T DK3369748T3 (da) 2015-10-27 2016-10-27 Modificerede fine cellulosefibre og fremgangsmåde til fremstilling deraf
CN201680059688.8A CN108350089A (zh) 2015-10-27 2016-10-27 修饰纤维素微细纤维及其制造方法
HK18115874.9A HK1256791A1 (zh) 2015-10-27 2018-12-11 修飾纖維素微細纖維及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211193 2015-10-27
JP2015211193 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073700A1 true WO2017073700A1 (ja) 2017-05-04

Family

ID=58631757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081969 WO2017073700A1 (ja) 2015-10-27 2016-10-27 修飾セルロース微細繊維及びその製造方法

Country Status (8)

Country Link
US (1) US20180312609A1 (ja)
EP (1) EP3369748B1 (ja)
JP (1) JP6454427B2 (ja)
CN (1) CN108350089A (ja)
CA (1) CA3003100A1 (ja)
DK (1) DK3369748T3 (ja)
HK (1) HK1256791A1 (ja)
WO (1) WO2017073700A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131721A1 (ja) 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
WO2019230970A1 (ja) 2018-06-01 2019-12-05 旭化成株式会社 化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
KR20200045315A (ko) * 2018-10-22 2020-05-04 주식회사 엘지화학 셀룰로오스계 나노 섬유의 제조방법
JP2020180400A (ja) * 2019-04-25 2020-11-05 旭化成株式会社 セルロース繊維組成物、及びその製造方法
JP2020196783A (ja) * 2019-05-31 2020-12-10 旭化成株式会社 化学修飾されたセルロース微細繊維、及び化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
JP2021031653A (ja) * 2019-08-29 2021-03-01 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018074599A2 (pt) * 2016-06-03 2019-03-19 Kri, Inc. método para produzir fibra fina de celulose
EP3845590A1 (en) * 2018-08-30 2021-07-07 Oji Holdings Corporation Fibrous cellulose-containing composition, liquid composition, and molded body
JP6537125B1 (ja) * 2018-10-04 2019-07-03 サイデン化学株式会社 セルロースナノファイバーの製造方法及びセルロースナノファイバーの製造装置
WO2020082294A1 (zh) * 2018-10-25 2020-04-30 深圳大学 纤维素酯及其制备方法和应用
CN109485735A (zh) * 2018-10-25 2019-03-19 深圳大学 纤维素酯及其制备方法和应用
CN109503724A (zh) * 2018-11-05 2019-03-22 大连理工大学 有机酸催化一锅法制备乙酰化的纤维素纳米晶
WO2021040006A1 (ja) * 2019-08-30 2021-03-04 日本製紙株式会社 ゴム組成物及びその製造方法
CN113668084B (zh) * 2021-08-12 2022-07-05 武汉大学 纤维素纳米纤维及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236669A (en) * 1963-04-19 1966-02-22 Du Pont Cellulose solutions in dimethyl sulfoxide and nitrogen dioxide
JPS56141301A (en) * 1980-03-19 1981-11-05 Snia Viscosa Acetyl derivative of cellulose and its manufacture
JPS5817101A (ja) * 1981-07-24 1983-02-01 Daicel Chem Ind Ltd 新規なセルロ−ス・カルボン酸エステルの製造方法
JPS58176201A (ja) * 1982-04-12 1983-10-15 Daicel Chem Ind Ltd セルロ−ス・カルボン酸エステルの新規な製造方法
JPS59130312A (ja) * 1982-12-15 1984-07-26 アクゾ・エヌ・ヴエ− 酢酸セルロ−ス、プロピオン酸セルロ−スおよび酪酸セルロ−スから成る水に不溶の繊維およびその製法
JPH0770201A (ja) * 1993-09-01 1995-03-14 Asahi Chem Ind Co Ltd 耐溶剤性の優れたセルロースエステルおよびその製造法
JP2003064184A (ja) * 2001-08-24 2003-03-05 Toray Ind Inc セルロース溶液及び熱可塑性セルロースエステルの製造方法
JP2010180339A (ja) * 2009-02-06 2010-08-19 Sanyo Chem Ind Ltd シアノ基含有糖類及びその製造方法
JP2010235758A (ja) * 2009-03-31 2010-10-21 Daicel Chem Ind Ltd ポジィテイブcプレートのセルロースアシレートカルバモイルフィルム及びその原料
WO2015025761A1 (ja) * 2013-08-23 2015-02-26 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225101A (ja) * 1982-06-22 1983-12-27 Daicel Chem Ind Ltd セルロ−スエステル誘導体及びその製造方法
US8641960B1 (en) * 2009-09-29 2014-02-04 The United States Of America, As Represented By The Secretary Of Agriculture Solution blow spinning
CN103132169B (zh) * 2011-11-30 2015-09-16 中国科学院理化技术研究所 一种能稳定分散的纤维素纳米纤维的制备方法
WO2013133093A1 (ja) * 2012-03-09 2013-09-12 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
CN104479147A (zh) * 2014-11-19 2015-04-01 河南中烟工业有限责任公司 一种纤维素混合酯颗粒的制备方法
US9720167B2 (en) * 2015-02-20 2017-08-01 Elwha Llc Biodegradable optical fibers and methods of use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236669A (en) * 1963-04-19 1966-02-22 Du Pont Cellulose solutions in dimethyl sulfoxide and nitrogen dioxide
JPS56141301A (en) * 1980-03-19 1981-11-05 Snia Viscosa Acetyl derivative of cellulose and its manufacture
JPS5817101A (ja) * 1981-07-24 1983-02-01 Daicel Chem Ind Ltd 新規なセルロ−ス・カルボン酸エステルの製造方法
JPS58176201A (ja) * 1982-04-12 1983-10-15 Daicel Chem Ind Ltd セルロ−ス・カルボン酸エステルの新規な製造方法
JPS59130312A (ja) * 1982-12-15 1984-07-26 アクゾ・エヌ・ヴエ− 酢酸セルロ−ス、プロピオン酸セルロ−スおよび酪酸セルロ−スから成る水に不溶の繊維およびその製法
JPH0770201A (ja) * 1993-09-01 1995-03-14 Asahi Chem Ind Co Ltd 耐溶剤性の優れたセルロースエステルおよびその製造法
JP2003064184A (ja) * 2001-08-24 2003-03-05 Toray Ind Inc セルロース溶液及び熱可塑性セルロースエステルの製造方法
JP2010180339A (ja) * 2009-02-06 2010-08-19 Sanyo Chem Ind Ltd シアノ基含有糖類及びその製造方法
JP2010235758A (ja) * 2009-03-31 2010-10-21 Daicel Chem Ind Ltd ポジィテイブcプレートのセルロースアシレートカルバモイルフィルム及びその原料
WO2015025761A1 (ja) * 2013-08-23 2015-02-26 日本電気株式会社 セルロース誘導体の製造方法およびセルロース誘導体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CASARANO ROMEU ET AL.: "A convenient solvent system for cellulose dissolution and derivatization: Mechanistic aspects of the acylation of the biopolymer in tetraallylammonium fluoride/dimethyl sulfoxide", CARBOHYDRATE POLYMERS, vol. 86, no. 3, 2011, pages 1395 - 1402, XP 055379543 *
CASARANO ROMEU ET AL.: "Successful Application of an Ionic Liquid Carrying the Fluoride Counter-ion in Biomacromolecular Chemistry: Microwave-Assisted Acylation of Cellulose in the Presence of 1-Allyl-3-methylimidazolium Fluoride/DMSO Mixtures", MACROMOLECULAR BIOSCIENCE, vol. 13, no. 2, 2013, pages 191 - 202, XP055540180 *
SAMARANAYAKE GAMINI ET AL.: "Cellulose derivatives with low DS. I. A novel acylation system", CARBOHYDRATE POLYMERS, vol. 22, no. 1, 1993, pages 1 - 7, XP 024147480 *
SHIN'ICHI ISHIGURO ET AL.: "Nonaqueous Solution Coordination Chemistry Studied by Titration Calorimetry", CALORIMETRY AND THERMAL ANALYSIS, vol. 28, no. 3, 2001, pages 135 - 143, XP 055377545 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131721A1 (ja) 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
US11535682B2 (en) 2017-01-16 2022-12-27 Yokogawa Electric Corporation Sulfate ester modified cellulose nanofibers and method for producing cellulose nanofibers
WO2019230970A1 (ja) 2018-06-01 2019-12-05 旭化成株式会社 化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
KR20200045315A (ko) * 2018-10-22 2020-05-04 주식회사 엘지화학 셀룰로오스계 나노 섬유의 제조방법
KR102539702B1 (ko) * 2018-10-22 2023-06-01 주식회사 엘지화학 셀룰로오스계 나노 섬유의 제조방법
JP2020180400A (ja) * 2019-04-25 2020-11-05 旭化成株式会社 セルロース繊維組成物、及びその製造方法
JP7263099B2 (ja) 2019-04-25 2023-04-24 旭化成株式会社 セルロース繊維組成物、及びその製造方法
JP2020196783A (ja) * 2019-05-31 2020-12-10 旭化成株式会社 化学修飾されたセルロース微細繊維、及び化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
JP2021031653A (ja) * 2019-08-29 2021-03-01 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法
JP7350570B2 (ja) 2019-08-29 2023-09-26 大阪瓦斯株式会社 修飾セルロースナノファイバーおよびその製造方法

Also Published As

Publication number Publication date
EP3369748B1 (en) 2020-07-29
DK3369748T3 (da) 2020-08-24
CN108350089A (zh) 2018-07-31
EP3369748A1 (en) 2018-09-05
JP6454427B2 (ja) 2019-01-16
HK1256791A1 (zh) 2019-10-04
US20180312609A1 (en) 2018-11-01
CA3003100A1 (en) 2017-05-04
JPWO2017073700A1 (ja) 2018-05-24
EP3369748A4 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6454427B2 (ja) 修飾セルロース微細繊維及びその製造方法
JP6349340B2 (ja) 修飾セルロース微細繊維及びその製造方法
JP6349341B2 (ja) 修飾セルロース微細繊維及びその製造方法
CN110770257B (zh) 化学修饰纤维素纤维及其制造方法
JP6905039B2 (ja) セルロース微細繊維およびその製造方法
Ng et al. A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches
JP7036565B2 (ja) 化学修飾セルロース繊維の製造方法
JP6872396B2 (ja) セルロースナノファイバーの分散液およびその製造方法
WO2016186055A1 (ja) アニオン変性セルロースナノファイバー分散液および組成物
JP6895180B2 (ja) シュウ酸二水和物を用いたナノセルロース及びその中間体の製造
JP6737864B2 (ja) 化学修飾セルロース繊維およびその製造方法
CN112675679A (zh) 除臭剂
Zergane et al. Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates
Campos et al. Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization
Mtibe et al. Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly (furfuryl) alcohol
WO2013061639A1 (ja) 多糖類ナノファイバー分散液の製造方法、および、該製造方法で得られた多糖類ナノファイバー分散液
Ismail et al. Influence of sulphuric acid concentration on the physico-chemical properties of microfibrillated cellulose from oil palm empty fruit bunch fibre
JP6674020B2 (ja) セルロース微細繊維の製造方法
JP7350570B2 (ja) 修飾セルロースナノファイバーおよびその製造方法
JP2019173243A (ja) 修飾キチン系ナノファイバーおよびその製造方法
JP7389660B2 (ja) セルロース微細繊維及びその製造方法
Lal et al. Cellulose nanofiber, Lignin, and Hemicellulose as value-added products from recycled Old Corrugated Box (OCB)
WO2013058244A1 (ja) 化学修飾セルロース不織布の製造方法および化学修飾セルロース不織布、並びに、これを用いたセルロース繊維樹脂複合材料およびその製造方法
KR102676897B1 (ko) 옥살산 이수화물을 이용한 나노셀룰로오스 및 그의 중간체의 제조
Nuruddin et al. Effect of chemical treatments on morphology, crystalline and thermal properties of kenaf fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15769836

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3003100

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859929

Country of ref document: EP