WO2017138574A1 - 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法 - Google Patents

変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法 Download PDF

Info

Publication number
WO2017138574A1
WO2017138574A1 PCT/JP2017/004618 JP2017004618W WO2017138574A1 WO 2017138574 A1 WO2017138574 A1 WO 2017138574A1 JP 2017004618 W JP2017004618 W JP 2017004618W WO 2017138574 A1 WO2017138574 A1 WO 2017138574A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
group
water
organic solvent
carboxymethylated cellulose
Prior art date
Application number
PCT/JP2017/004618
Other languages
English (en)
French (fr)
Inventor
晋一 小野木
武史 中山
知章 吉村
Original Assignee
日本製紙株式会社
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社, 星光Pmc株式会社 filed Critical 日本製紙株式会社
Priority to JP2017566982A priority Critical patent/JP6814753B2/ja
Priority to EP17750295.2A priority patent/EP3415537A4/en
Priority to US16/076,081 priority patent/US20190127557A1/en
Priority to CN201780010431.8A priority patent/CN108602896A/zh
Publication of WO2017138574A1 publication Critical patent/WO2017138574A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/56Non-aqueous solutions or dispersions

Definitions

  • the present invention relates to a modified carboxymethylated cellulose nanofiber dispersion and a method for producing the same.
  • cellulose nanofibers obtained by defibrating pulp obtained from wood, herbs, etc. are extremely thin fibers with a thickness of several nanometers to several tens of nanometers, and are relatively lightweight yet have high elastic modulus, high strength, heat Since it has many excellent features such as being difficult to expand and having high transparency, it is expected to be used in many applications such as structural materials and optical materials.
  • Cellulose nanofibers can be produced by defibrating anion-modified cellulose fibers (anion-modified microfibrillated plant fibers) or by oxidizing cellulose fibers using N-oxyl compounds and alkali metal halides as catalysts.
  • anion-modified cellulose fibers anion-modified microfibrillated plant fibers
  • oxidizing cellulose fibers using N-oxyl compounds and alkali metal halides as catalysts.
  • cellulose nanofibers obtained in this way are extremely hydrophilic, have poor dispersion stability in organic solvents and resins with different polarities, and are intended to be applied to optical materials and transparent materials that require particularly high transparency. In such a case, when the cellulose nanofiber is contained, the transparency of the obtained composite material is lowered. Furthermore, colorless cellulose nanofibers are required for some applications, but these cellulose nanofibers have low heat resistance, and are colored during the production of organic solvent dispersions and composite materials with plastic materials. It is difficult to apply.
  • an object of the present invention is to provide a cellulose nanofiber dispersion that is excellent in dispersibility in an organic solvent or a resin, is transparent, and is less colored.
  • a dispersion in which modified carboxymethylated cellulose nanofibers are dispersed in a dispersion medium contains an organic solvent
  • denatured carboxymethylated cellulose nanofiber contains the glucose unit represented by Formula (1) mentioned later.
  • the organic solvent is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, acetone, methyl ethyl ketone, 1,
  • a water-soluble organic solvent selected from the group consisting of 4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, and combinations thereof , [1] or [2].
  • the method for producing a dispersion liquid according to [1], comprising: [9] (3C) a carboxymethylated cellulose, a mixed solvent of water and a water-soluble organic solvent, and an organic alkali selected from amines, organic onium salts with hydroxide ions as counter ions, and combinations thereof A step of preparing a dispersion, and (3D) a step of modifying the carboxymethyl group while performing a defibrating treatment on the dispersion, or (3E) a dispersion containing the modified carboxymethylated cellulose by modifying the carboxymethyl group A step of defibrating the dispersion after preparing the liquid,
  • the method for producing a dispersion liquid according to [1], comprising: [10] (4C) preparing a dispersion containing an organic alkali selected from carboxymethylated cellulose, water, an organic onium salt having an amine,
  • the method for producing a dispersion liquid according to [1], comprising: [11] The production method according to any one of [7] to [10], wherein the organic alkali is a quaternary ammonium salt having a hydroxide ion as a counter ion. [12] The production method according to any one of [7] to [10], wherein the organic alkali is a primary, secondary, or tertiary amine compound.
  • a cellulose nanofiber dispersion that is excellent in dispersibility in an organic solvent or resin, is transparent, and has little coloration.
  • includes values at both ends thereof. That is, “A to B” includes A and B.
  • Modified carboxymethylated cellulose nanofiber dispersion is a nanofiber in which the carboxyl group of carboxymethylated cellulose nanofiber is modified. Specifically, the modified C-merized CNF is represented by the formula (1).
  • X 1 is independently H or —CH 2 COOH.
  • X 2 is independently H, —CH 2 COOH, or a group represented by any one of formulas (2) to (4), and at least one X 2 is any one of formulas (2) to (4) It is group represented by these.
  • R is independently H, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and at least one R Is the alkyl group, aryl group, or aralkyl group (hereinafter also referred to as “alkyl group or the like”). That is, the cellulose nanofiber of the present invention has R which is a hydrophobic group. Independent means that a plurality of R may be different. The same applies to other groups. By this R, the cellulose nanofiber of this invention shows the outstanding dispersibility, when it uses the liquid mixture of water and a water-soluble organic solvent as a dispersion liquid.
  • the number of carbon atoms in the case where R is an alkyl group is preferably 1 to 6, and more preferably 2 to 5.
  • preferred alkyl groups include methyl, ethyl, propyl, butyl, propyl, hexyl and the like. These groups may be chained, branched or cyclic.
  • R is an aryl group
  • the carbon number is preferably 6-15.
  • preferable aryl groups include a phenyl group, a naphthyl group, an alkylphenyl group having the alkyl group as a substituent, and an alkylnaphthyl group.
  • R is an aralkyl group
  • the carbon number is preferably 7 to 10.
  • An example of a preferred aralkyl group is a benzyl group.
  • the group represented by the formula (2) is obtained by reacting a carboxymethyl group with an amine.
  • Y in formula (3) is N or P, and R is defined in the same manner as in formula (2). From the viewpoint of enhancing hydrophobicity, it is preferable that two or more of R are the alkyl group, aryl group, or aralkyl group, and three or more are more preferably the alkyl group, aryl group, or aralkyl group. preferable. From the viewpoint of availability, R is preferably the alkyl group, and Y is preferably N. As will be described later, the group represented by the formula (3) is obtained by reacting a carboxymethyl group with an ammonium salt or a phosphonium salt.
  • R ′ is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • the group represented by the formula (4) is obtained by reacting a carboxymethyl group with a sulfonium salt.
  • a value representing the number of substituents on the glucose ring as an average number per glucose unit is referred to as the degree of substitution.
  • the degree of substitution when X 1 and X 2 are not H affects the dispersibility of cellulose nanofibers. Therefore, the degree of X substitution is preferably 0.02 to 0.50.
  • the degree of X substitution can be adjusted by the ratio between the number of H in X 1 and X 2 in the unit represented by the formula (1) and the number of other groups.
  • the degree of X substitution can be determined by a conventional method after treating the modified C-modified CNF with an acid to convert the groups of the formulas (2) to (4) into —CH 2 COOH groups.
  • X 1 and X 2 are a group represented by any one of formulas (2) to (4) Is preferred.
  • the dispersion medium contains an organic solvent.
  • the organic solvent is not limited, but is preferably water-soluble as described later.
  • the dispersion medium may contain water.
  • the amount of water in this case is preferably 50% by weight or less, more preferably 30% by weight or less, still more preferably 10% by weight or less, and particularly preferably 1% by weight or less in the dispersion medium of the present invention.
  • the amount of the organic solvent is adjusted so that the amount of water is preferably 0.001% by weight, more preferably 0.01% by weight or more.
  • the dispersion medium preferably contains water and a water-soluble organic solvent.
  • the dispersion medium can also contain a water-insoluble organic solvent.
  • the dispersion medium is preferably a mixed solvent of water and a water-soluble organic solvent.
  • the water-soluble organic solvent is an organic solvent that is arbitrarily mixed with water.
  • Examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, acetone, methyl ethyl ketone, 1,4- Examples include dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, and combinations thereof.
  • the ratio of water and organic solvent can be adjusted by diluting by mixing appropriately or by concentrating by a known method such as filtration or distillation.
  • the dispersion of the present invention may be heated and distilled to reduce the water content.
  • a water-soluble organic solvent from the viewpoint that water can be removed preferentially, a solvent having a boiling point exceeding 100 ° C. at normal pressure is preferable.
  • the boiling point of the water-soluble organic solvent is preferably 250 ° C. or lower at normal pressure.
  • solvents examples include 2-butanol, 2-methyl-1-propanol, 1,4-dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl
  • solvents include 2-butanol, 2-methyl-1-propanol, 1,4-dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl
  • examples thereof include sulfoxide.
  • the number average fiber diameter of the modified CMized CNF is preferably 1 nm to 200 nm, more preferably 2 nm to 50 nm.
  • the fiber diameter of the cellulose nanofiber can be measured by observing with a microscope such as a scanning electron microscope (SEM) or an atomic force microscope (AFM).
  • the concentration of the modified CM CNF in the dispersion is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight.
  • the dispersion of the present invention can be produced by the following method.
  • [Third production method] (3C) a step of preparing a dispersion containing carboxymethylated cellulose, a mixed solvent of water and a water-soluble organic solvent, and the organic alkali; and (3D) a carboxymethyl group while performing a fibrillation treatment on the dispersion.
  • a production method comprising a step of modifying, or (3E) a step of modifying a carboxymethyl group to prepare a dispersion containing the modified carboxymethylated cellulose and then subjecting the dispersion to a fibrillation treatment.
  • Step 1A a dispersion liquid in which carboxymethylated cellulose nanofibers are dispersed in a mixed solvent of water and a water-soluble organic solvent is prepared.
  • the dispersion is obtained by subjecting an aqueous dispersion in which carboxymethylated cellulose is dispersed in water to a fibrillation treatment to obtain an aqueous dispersion of carboxymethylated cellulose nanofibers, and mixing the aqueous dispersion with a water-soluble organic solvent.
  • Method ii Alternatively, the dispersion can be prepared by subjecting a dispersion in which carboxymethylated cellulose is dispersed in the mixed solvent to a defibrating treatment.
  • Method i An aqueous dispersion in which carboxymethylated cellulose is dispersed in water (hereinafter also referred to as “an aqueous dispersion before defibration”) is subjected to a defibrating treatment to obtain an aqueous dispersion of carboxymethylated cellulose nanofibers. .
  • a method for producing carboxymethylated cellulose will be described later.
  • Defibration can be performed, for example, by mixing or stirring, emulsifying, or dispersing apparatus such as a high-speed shear mixer or a high-pressure homogenizer alone or in combination of two or more.
  • the size of the pulp (fiber length and fiber diameter) is reduced, and at the same time, the fibers are loosened to form cellulose nanofibers.
  • an ultra-high pressure homogenizer that enables a pressure of 100 MPa or more, preferably 120 MPa or more, more preferably 140 MPa or more is used, the dispersion of cellulose nanofibers proceeds efficiently and has a low viscosity when used as an aqueous dispersion. It is preferable because cellulose nanofibers can be produced efficiently.
  • the concentration of carboxymethylated cellulose in the pre-defibration aqueous dispersion is preferably 0.1 to 10% by weight.
  • the pH of the pre-defibration aqueous dispersion is, for example, 4 or less.
  • a water-soluble organic solvent is added to the aqueous dispersion after defibration.
  • the amount depends on the type, but is preferably 0.1 to 1000% by weight based on the whole cellulose nanofiber dispersion.
  • the upper limit value can be 1000% by weight or less.
  • the upper limit value is preferably about 500% by weight or less.
  • the amount of the water-soluble organic solvent is less than 0.1% by weight, the effect of increasing the affinity between the dispersion of the present invention and other materials such as a polymer may not be sufficient.
  • the amount of the water-soluble organic solvent to be added is 10% by weight or more, preferably 30% by weight or more, the effect of increasing the affinity with other materials is sufficient, and the drying efficiency described later is sufficiently improved.
  • the dispersion thus obtained is also referred to as “dispersion after defibration”.
  • Method ii Decarboxylation treatment is applied to a dispersion in which carboxymethylated cellulose is dispersed in a mixed solvent of water and a water-soluble organic solvent, and carboxymethylated cellulose nanofiber dispersion (dispersion after defibration) Get.
  • the amount of the water-soluble organic solvent such as the defibrating method is as described in the method i.
  • Cellulose raw materials are materials in various forms mainly composed of cellulose. Examples include pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, refined linter, pulp from herbs such as jute, manila hemp, kenaf, etc.), cellulose produced by microorganisms such as acetic acid bacteria, etc. Natural cellulose, regenerated cellulose spun after dissolving cellulose in some solvent such as copper ammonia solution, morpholine derivative, etc., and mechanical, such as hydrolysis, alkaline hydrolysis, enzymatic degradation, explosion treatment, vibration ball mill, etc. Examples thereof include fine cellulose obtained by depolymerizing cellulose by treatment.
  • the cellulose raw material is used as a bottoming raw material, a solvent and a mercerizing agent are mixed, and the reaction temperature is 0 to 70 ° C., preferably 10 to 60 ° C., and the reaction time is 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • mercerization processing is performed.
  • the solvent 3 to 20 times by weight of water or lower alcohol, specifically water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2 -Methyl-2-propanol or a combination thereof can be used.
  • the mixing ratio is 60 to 95% by weight.
  • the mercerizing agent 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide can be used per anhydroglucose residue of the bottoming material.
  • a carboxymethylating agent is added in an amount of 0.05 to 10.0 times mol per glucose residue, a reaction temperature of 30 to 90 ° C., preferably 40 to 80 ° C., and a reaction time of 30 minutes to 10 hours, preferably 1 hour.
  • the etherification reaction is performed for ⁇ 4 hours to obtain carboxymethylated cellulose.
  • the degree of carboxymethyl substitution per glucose unit is preferably 0.01 to 0.50. If the substituent is smaller than 0.01, nano-defibration may not be sufficiently achieved. On the other hand, if the carboxymethyl substituent per glucose unit is greater than 0.50, it may swell or dissolve, and may not be a nanofiber.
  • the degree of carboxymethyl substitution can be measured by the following method.
  • the carboxymethylated cellulose thus obtained can be recovered from the reaction solution by filtration.
  • the carboxymethyl group of the carboxymethylated cellulose after the reaction forms a salt (—CH 2 COOM, M is a metal ion) with a metal ion derived from an inorganic alkali for pH adjustment as a counter ion.
  • M is a metal ion
  • As a method of recovery 1) a method in which the carboxymethyl group is filtered off while forming a salt, and 2) an acid is added to the reaction solution to adjust the pH to 3 or less to convert the carboxymethyl group to the acid form (—CH 2 COOH). And 3) a method of adding an organic solvent to agglomerate and then filtering.
  • the method 2) is preferred. Furthermore, the method 2) is preferable from the viewpoints of handleability, yield, and waste liquid treatment.
  • the carboxymethyl group into an acid form, the efficiency of washing with water, the amount of contained metal ions can be reduced, and the number of washings can be reduced.
  • the metal ion content contained in carboxymethylated cellulose can be analyzed by various methods. For example, it can be easily analyzed by elemental analysis such as EPMA method or X-ray fluorescence analysis using an electron beam microanalyzer.
  • elemental analysis such as EPMA method or X-ray fluorescence analysis using an electron beam microanalyzer.
  • the metal ion content is 5% by weight or more
  • the metal ion content is 5% by weight. It becomes as follows.
  • the recovered carboxymethylated cellulose can be purified by repeated washing to remove residues such as catalyst, salt and ions.
  • the washing liquid is preferably water. Further, after washing with hydrochloric acid or the like under an acidic condition of pH 3 or less, more preferably pH 2.6 or less, washing with water causes detection of metal ions in the above-mentioned analytical method. It can be as follows. Alternatively, washing under acidic conditions may be performed a plurality of times in order to further reduce the amount of remaining metal ions. If salt or the like remains in cellulose, it becomes difficult to defibrate in the defibration process described later, and therefore, it is preferable to perform washing with water a plurality of times.
  • Step 1B An organic alkali is added to the dispersion liquid after defibration prepared in Step 1A to modify the carboxymethyl group.
  • the organic alkali is selected from amines, organic onium salts with hydroxide ions as counter ions, and combinations thereof. Examples of amines include primary to tertiary amines. As the amine, an amine having the following structure is preferable.
  • R ′ is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms
  • NHR ′ 2 is independently an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms
  • NR ′ 3 R ′ is independently an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms
  • a group represented by the above formula (2) can be introduced into carboxymethylated cellulose.
  • a group represented by the above formula (3) (wherein one R is H and three R are R ') can be introduced into carboxymethylated cellulose.
  • organic onium salts having hydroxide ions as counter ions include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, benzyltrimethylammonium hydroxide, and 2-hydroxyethyltrimethylammonium hydroxide.
  • PR ′ 4 OH such as ammonium hydroxide salt, tetraethylphosphonium hydroxide represented by NR ′ 4 OH (R ′ is defined as described above, preferably independently an alkyl group having 1 to 10 carbon atoms)
  • phosphonium hydroxide salt represented by SR ' 3 OH such as trimethylsulfonium hydroxide (where R' is defined as described above).
  • the reaction can be carried out by stirring the defibrated dispersion containing organic alkali at room temperature.
  • a known apparatus may be used for stirring, and an apparatus used for the above-described defibration may be used.
  • nano-dispersion proceeds even during this stirring, it can be expected that nano-dispersion is promoted and the viscosity of the dispersion decreases as R ′ in the organic alkali increases.
  • the amount of organic alkali can be equimolar or more with respect to the amount of carboxymethyl group.
  • carboxymethylcellulose can be sufficiently modified (hydrophobized) because the dispersion is less colored.
  • the modified CMized CNF dispersion prepared in this way contains an organic alkali-derived amine compound or organic onium ion.
  • the modified C-modified CNF can be obtained by isolating, washing, drying, filtering and the like by a known method.
  • the mixed solvent is preferably used as the cleaning liquid. Moreover, it can be set as the dispersion liquid which does not contain water or contains arbitrary amounts of water by removing water. At this time, if a solvent having a boiling point of more than 100 ° C.
  • Step 2A can be carried out in the same manner as Step 1A, except that the water-soluble organic solvent is not used.
  • Step 2B can be carried out in the same manner as Step 2A, except that the water-soluble organic solvent is added to the dispersion obtained in Step 2A.
  • the amount of the water-soluble organic solvent and the like are as described in the first production method.
  • Step 3C a dispersion (pre-defibration dispersion) containing carboxymethylated cellulose, a mixed solvent of water and a water-soluble organic solvent, and the organic alkali is prepared.
  • a dispersion pre-defibration dispersion
  • carboxymethylated cellulose a mixed solvent of water and a water-soluble organic solvent
  • organic alkali a dispersion containing carboxymethylated cellulose, a mixed solvent of water and a water-soluble organic solvent, and the organic alkali.
  • Each component and blending amount are as described in the first production method.
  • Step 3D the carboxymethyl group is modified while subjecting the dispersion before defibrating to defibrating treatment.
  • Step 3E In this step, after the carboxymethyl group is modified to prepare a dispersion containing the modified carboxymethylated cellulose, the dispersion is defibrated.
  • the defibrating method and the structure of the modified group in the third manufacturing method are as described in the first manufacturing method.
  • Step 4C a dispersion containing carboxymethylated cellulose, water, and the organic alkali is prepared.
  • the amount of organic alkali and the like are as described in the first production method.
  • Step 4D the carboxymethyl group is modified while performing a defibrating treatment on the dispersion.
  • Step 4E In this step, after the carboxymethyl group is modified to prepare a dispersion containing the carboxymethylated cellulose, the dispersion is defibrated.
  • the method of defibration and the structure of the modified group in the fourth method are as described in the first production method.
  • the post-treatment of the modified CM CNF dispersion obtained by the second to fourth production methods is also as described in the first production method.
  • the dispersion of the present invention has excellent transparency.
  • the transparency is preferably 85% or more when measured using a dispersion having a solid concentration of 1.0% by weight.
  • the transparency of the dispersion of the present invention is 85% or more, sufficient transparency can be exhibited even in kneading with a resin that requires high transparency.
  • the transparency of the dispersion of the present invention is more preferably 90% or more at a solid content concentration of 1.0% by weight.
  • a water-soluble organic solvent When a water-soluble organic solvent is added to a carboxymethylated cellulose nanofiber dispersion having a metal ion derived from an inorganic alkali (for example, Na + derived from sodium hydroxide) as a counter ion, the dispersed cellulose fibers are aggregated and aggregated cloudy. Non-uniformity occurs.
  • a water-soluble organic solvent may be further added to the dispersion of the present invention.
  • the dispersion to which the organic solvent is further added is suitable for compounding with other materials such as a polymer. The addition amount is appropriately determined in consideration of the solid content and viscosity of the cellulose nanofiber dispersion.
  • the dispersion of the present invention may further contain a compound having a functional group as an additive.
  • the functional group include a silanol group, an amino group, an epoxy group, a hydroxyl group, a carbodiimide group, an isocyanate group, an alkoxy group, and an oxazoline group.
  • These additives can react with a hydroxyl group, a carboxyl group, or the like in the modified CM CNF to improve water resistance, moisture resistance, and the like.
  • Examples of the compound having a silanol group include silane coupling agents, alkoxysilanes, and hydrolysates thereof.
  • a silane coupling agent is a silane compound having two or more hydrolyzable groups bonded to a silicon atom. The hydrolyzable group becomes a hydroxyl group by hydrolysis to generate a silanol group (Si—OH).
  • Examples of the hydrolyzable group include an alkoxy group, an acetoxy group, and a chlorine atom, but an alkoxy group is preferable.
  • the preferred silane coupling agent is alkoxysilane
  • the alkyl group in the alkoxy group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably a methyl group or an ethyl group, and still more preferably an ethyl group.
  • the silane coupling agent preferably further has a functional group.
  • a functional group present in the modified C-modified CNF or a functional group (carboxyl group, hydroxyl group, etc.) present on the surface of another material used when complexing with the dispersion liquid of the present invention?
  • Interacting functional groups are preferred. Examples of such functional groups include, but are not limited to, amino groups, epoxy groups, methacryloxy groups, acryloxy groups, vinyl ureido groups, mercapto groups, chlorine atoms, and isocyanate groups. Among these, an amino group, an epoxy group, a methacryloxy group, and an acryloxy group are preferable, and an amino group is more preferable.
  • additives are preferably mixed uniformly in the dispersion of the present invention. Since the dispersion liquid of the present invention is excellent in affinity with a hydrophilic organic solvent such as alcohol and does not contain metal ions such as sodium, the additive can be mixed and reacted uniformly.
  • a composite material can be prepared by mixing the modified CMized CNF of the present invention or a dispersion containing the same with other materials such as a resin.
  • the resin include epoxy resin, polyester resin, acrylic resin, urethane resin, polyolefin resin, polyimide resin, and polyamide resin. Since the modified CCM CNF of the present invention can be uniformly finely dispersed in the resin, a transparent composite material can be obtained. Further, the composite material has high mechanical strength, low linear expansion coefficient, and high elastic modulus.
  • the composite material includes a method of mixing a resin solution obtained by dissolving the dispersion and the resin in an organic solvent, a method of mixing the dispersion, the resin, and a resin, and an emulsion of the dispersion and the resin. It can be prepared by a method of mixing.
  • the dispersion of the present invention can be mixed without causing re-aggregation or precipitation even when mixed with the emulsion.
  • the composite material may contain an additive, if necessary, in addition to the modified CM CNF of the present invention and the resin.
  • Additives include the above-mentioned functional compounds (silane coupling agents, etc.), fillers, leveling agents, antifoaming agents, inorganic particles, organic particles, lubricants, antistatic agents, ultraviolet absorbers, pigments, dyes , Light stabilizers, antioxidants, plasticizers, flame retardants, dispersants, foaming agents.
  • the composite material is useful as a transparent substrate, paint, ink, film substrate, molded body, container, casing, and electronic member. Among them, the composite material containing the modified CCM CNF of the present invention is particularly useful as a transparent substrate because it is excellent in transparency.
  • the hydrochloric acid was added to the carboxymethylcellulose for dehydration to adjust the solid content concentration at pH 2.4 to 10% by weight.
  • sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.
  • a liquid feed pump was added so that sodium hypochlorite was added at a rate of 0.23 mmol / min per gram of pulp.
  • the addition was continued until the total amount of sodium hypochlorite added was 22.5 mmol.
  • the pH in the system was lowered, but a 3N sodium hydroxide aqueous solution was successively added to adjust the pH to 10.
  • reaction time was taken as the reaction time.
  • the reaction solution was neutralized with hydrochloric acid until neutral, and then the reaction solution was filtered with a glass filter and washed thoroughly with water to obtain oxidized cellulose.
  • the hydrochloric acid was added to the oxidized cellulose for dehydration, and the solid content concentration at pH 2.4 was adjusted to 10% by weight.
  • the carboxyl group content of the obtained oxidized cellulose was 1.60 mmol / g.
  • Example 1 [Defibration] An aqueous dispersion of carboxymethylated cellulose having a solid content concentration of 10% by weight was diluted to prepare a 3.0% by weight aqueous dispersion (an aqueous dispersion before defibration), and an ultra-high pressure homogenizer (20 ° C., 140 MPa). Then, carboxymethylated cellulose nanofiber aqueous dispersion was obtained.
  • a dispersion containing a water-soluble organic solvent was prepared by adding N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to the dispersion to a solid content concentration of 2.0% by weight.
  • NMP N-methyl-2-pyrrolidone
  • Tetrabutylammonium hydroxide having the same molar amount as the degree of carboxymethyl substitution of cellulose nanofibers was added to the dispersion in the form of an aqueous solution and stirred.
  • Example 2 [Solvent addition] Water and NMP were added to the aqueous carboxymethylated cellulose dispersion (solid dispersion before defibration) having a solid content concentration of 10% by weight obtained in Example 1 to prepare a dispersion containing an aqueous organic solvent. The resulting dispersion had a solid content concentration of 1.7% by weight, and the ratio of water to NMP was 50:50.
  • Tetrabutylammonium hydroxide having the same molar amount as the degree of carboxymethyl substitution of carboxymethylcellulose was added to the dispersion in the form of an aqueous solution and stirred.
  • the dispersion was treated 5 times with an ultra-high pressure homogenizer (20 ° C., 140 MPa) to obtain a modified carboxymethylated cellulose nanofiber (modified C-modified CNF) dispersion.
  • Example 1 A modified oxidized cellulose nanofiber dispersion was prepared in the same manner as in Example 1 except that oxidized cellulose was used instead of carboxymethylated cellulose. The resulting modified oxidized cellulose nanofiber dispersion had a transparency of 95%, but was colored.
  • Example 2 A modified oxidized cellulose nanofiber dispersion was prepared in the same manner as in Example 2 except that oxidized cellulose was used instead of carboxymethylated cellulose. The transparency of the obtained modified oxidized cellulose nanofiber dispersion was 94%, but coloring was observed.
  • the modified CM CNFs obtained in Examples 1 and 2 were dispersed in a dispersion medium containing an organic solvent to give a colorless dispersion having a transparency of 90% or more.
  • the modified oxidized cellulose nanofiber dispersions of Comparative Examples 1 and 2 were colored by heating during dehydration. Further, in Comparative Example 3 in which the organic alkali modification was not performed, when the ratio of the organic solvent in the dispersion medium was increased, the dispersibility was lost and precipitation occurred.
  • the modified CM CNFs obtained in Examples 1 and 2 were dispersed in a dispersion medium containing an organic solvent to give a colorless dispersion having a transparency of 90% or more.
  • the modified oxidized cellulose nanofiber dispersions of Comparative Examples 1 and 2 were colored by heating during dehydration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

有機溶媒や樹脂中での分散安定性に優れ、かつ透明で着色の少ない分散液を与えるセルロースナノファイバーを提供する。 変性カルボキシメチル化セルロースナノファイバーが分散媒に分散している分散液であって、前記分散媒が有機溶媒を含み、前記変性カルボキシメチル化セルロースナノファイバーが、式(1)で表されるグルコース単位を含む、 (式(1) (Xは独立に、Hまたは-CHCOOHで表される基であり、 Xは独立に、H、-CHCOOH、あるいは式(2)~(4)のいずれかで表される基であるが、少なくとも1つのXは式(2)~(4)のいずれかで表される基である) (式(2)~(4)) (式(2)において、Rは独立に、H、炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基であり、少なくとも1つのRは当該アルキル基、アリール基、またはアラルキル基であり、 式(3)において、Yは、N、またはPであり、Rは式(2)と同様に定義され、 式(4)において、R'は炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基である)前記分散液。

Description

変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
 本発明は変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法に関する。
 省資源、省エネルギー、二酸化炭素排出量削減、生分解性等の観点から、近年、植物由来の素材やエネルギーが注目を浴びており、植物や微生物が産出するセルロースの有効利用が進みつつある。中でも、木や草本等から得られるパルプを解繊して得られるセルロースナノファイバーは太さ数nm~数十nmの極めて細い繊維であり、比較的軽量でありながら高弾性率、高強度、熱膨張しにくい、透明性が高い、といった多くの優れた特長を有していることから、構造材料、光学材料等、多くの用途への利用が期待されている。
 セルロースナノファイバーの製造方法として、アニオン変性されたセルロース繊維を解繊する方法(アニオン変性ミクロフィブリル化植物繊維)や、セルロース繊維をN-オキシル化合物とハロゲン化アルカリ金属塩を触媒として酸化し、これを解繊する方法が報告されている(特許文献1、非特許文献1)。
国際公開第2011/115154号
Biomacromolecules、7巻、6号、1687-1691頁、2006年
 一方、このようにして得られるセルロースナノファイバーは極めて親水性が高く、極性の異なる有機溶媒や樹脂中での分散安定性に乏しく、特に高い透明性が求められる光学材料や透明材料へ応用しようとした場合、セルロースナノファイバーを含有させると得られる複合材料の透明性が低くなる。さらに、用途によっては無色なセルロースナノファイバーが求められているが、これらのセルロースナノファイバーは耐熱性が低く、有機溶媒分散液の製造時や、プラスチック材料との複合材料製造時に着色してしまうため、適用し難い。
 かかる事情を鑑み、本発明は、有機溶媒や樹脂中での分散性に優れ、かつ透明で着色の少ないセルロースナノファイバー分散液を提供することを課題とする。
[1]変性カルボキシメチル化セルロースナノファイバーが分散媒に分散している分散液であって、
 前記分散媒が有機溶媒を含み、
 前記変性カルボキシメチル化セルロースナノファイバーが、後述する式(1)で表されるグルコース単位を含む、前記分散液。
[2]前記有機溶媒の沸点が常圧で50~250℃である、[1]に記載の分散液。
[3]前記有機溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、およびこれらの組合せからなる群から選択される水溶性有機溶媒である、[1]または[2]に記載の分散液。
[4]前記XおよびXが-CHCOOH、あるいは式(2)~(4)のいずれかで表される場合に、前記グルコース単位当たりの当該基の数で定義されるX置換度が0.02~0.50である、[1]~[3]のいずれかに記載の分散液。
[5]前記変性カルボキシメチル化セルロースナノファイバーの数平均繊維径が、2~50nmである、[1]~[4]のいずれかに記載の分散液。
[6]前記分散媒が水溶性有機溶媒および水を含む、[1]~[5]のいずれかに記載の分散液。
[7](1A)カルボキシメチル化セルロースナノファイバーが、水と水溶性有機溶媒との混合溶媒に分散している分散液を調製する工程、ならびに
 (1B)当該分散液にアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを添加してカルボキシメチル基を変性する工程、を含む、[1]に記載の分散液の製造方法。
[8](2A)カルボキシメチル化セルロースナノファイバーが、水に分散している分散液を調製する工程、ならびに
 (2B)当該分散液に、アミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリならびに水溶性有機溶媒を添加して、カルボキシメチル基を変性する工程、
を含む、[1]に記載の分散液の製造方法。
[9](3C)カルボキシメチル化セルロース、水と水溶性有機溶媒との混合溶媒、ならびにアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを含む分散液を調製する工程、ならびに
 (3D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(3E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、
を含む、[1]に記載の分散液の製造方法。
[10](4C)カルボキシメチル化セルロース、水、ならびにアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを含む分散液を調製する工程、
 (4D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(4E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、ならびに
 (4F)前工程で得た分散液に水溶性有機溶媒を添加する工程、
を含む、[1]に記載の分散液の製造方法。
[11]前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム塩である、[7]~[10]のいずれかに記載の製造方法。
[12]前記有機アルカリが、1級、2級、または3級アミン化合物である、[7]~[10]のいずれかに記載の製造方法。
 本発明により、有機溶媒や樹脂中での分散性に優れ、かつ透明で着色の少ないセルロースナノファイバー分散液を提供できる。
 以下、本発明に係るセルロースナノファイバー分散液について説明する。本発明において「~」はその両端の値を含む。すなわち「A~B」はAおよびBを含む。
 1.変性カルボキシメチル化セルロースナノファイバー分散液
 変性カルボキシメチル化セルロースナノファイバー(以下「変性CM化CNF」ともいう)とはカルボキシメチル化セルロースナノファイバーのカルボキシル基が変性されているナノファイバーである。具体的に、変性CM化CNFは式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 式(1)において、Xは独立にHまたは-CHCOOHである。Xは独立にH、-CHCOOH、あるいは式(2)~(4)のいずれかで表される基であって、少なくとも1つのXは式(2)~(4)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000004
 式(2)において、Rは独立に、H、炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基であり、少なくとも1つのRは当該アルキル基、アリール基、またはアラルキル基(以下「アルキル基等」ともいう)である。すなわち、本発明のセルロースナノファイバーは疎水性基であるRを有する。独立にとは、複数のRが異なっていてもよいことを意味する。他の基に関しても同様である。このRにより、本発明のセルロースナノファイバーは、水と水溶性有機溶媒との混合液を分散媒とする分散液としたときに優れた分散性を示す。この観点および材料の入手容易性から、Rがアルキル基である場合における炭素数は1~6が好ましく2~5がより好ましい。好ましいアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、プロピル基、ヘキシル基等が挙げられる。これらの基は鎖状、分岐状、または環状であってよい。Rがアリール基である場合における炭素数は6~15が好ましい。好ましいアリール基の例としては、フェニル基、ナフチル基、前記アルキル基を置換基として有するアルキルフェニル基、アルキルナフチル基が挙げられる。Rがアラルキル基である場合における炭素数は7~10が好ましい。好ましいアラルキル基の例としてはベンジル基が挙げられる。後述するように式(2)で表される基は、カルボキシメチル基とアミンを反応させることによって得られる。
 式(3)におけるYはNまたはPであり、Rは式(2)と同様に定義される。疎水性を高める観点から、Rのうち、2つ以上が前記アルキル基、アリール基、またはアラルキル基であることが好ましく、3つ以上が前記アルキル基、アリール基、またはアラルキル基であることがより好ましい。入手容易性等の観点から、Rは前記アルキル基が好ましく、YはNが好ましい。後述するように式(3)で表される基は、カルボキシメチル基とアンモニウム塩またはホスホニウム塩を反応させることによって得られる。
 式(4)において、R’は炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基である。後述するように式(4)で表される基は、カルボキシメチル基とスルホニウム塩を反応させることによって得られる。
 グルコース環上の置換基の数をグルコース単位当たりの平均個数として表した値を置換度という。本発明において、XおよびXがHでない場合の置換度(以下便宜上「X置換度」ともいう)はセルロースナノファイバーの分散性に影響を与える。よってX置換度は0.02~0.50であることが好ましい。X置換度は、前記式(1)で表される単位中のXおよびXにおけるHの数とそれ以外の基の数との比率により調整できる。X置換度は、変性CM化CNFを酸で処理して式(2)~(4)の基を-CHCOOH基に変換した後、定法によって求めることができる。
 所望の疎水性を得るためには、XおよびXの合計(「X基」ともいう)のうち80%以上が式(2)~(4)のいずれかで表される基であることが好ましい。
 分散媒は有機溶媒を含む。有機溶媒は限定されないが、後述するように水溶性であることが好ましい。分散媒は水を含んでいてもよい。この場合の水の量は、本発明の分散媒中50重量%以下が好ましく、30重量%以下がより好ましく、10重量%以下がよりさらに好ましく、1重量%以下が特に好ましい。このように水の量が少ないと、樹脂等の他の材料との複合化がしやすいという利点がある。一方、水の量が好ましくは0.001重量%、より好ましくは0.01重量%以上となるように、前記有機溶媒の量は調整される。
 分散媒は水と水溶性有機溶媒を含むことが好ましい。この場合、水溶性有機溶媒が両親媒性であるので、分散媒は非水溶性有機溶媒を含むこともできる。一態様において分散媒は水と水溶性有機溶媒との混合溶媒であることが好ましい。水溶性有機溶媒とは水と任意に混合する有機溶媒である。当該有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、およびこれらの組合せが挙げられる。水と有機溶媒の比率は適宜混合することにより希釈したり、あるいは濾過、蒸留等公知の手法により濃縮することで調整できる。特に濃縮については溶媒の回収、再利用や工業設備の簡素さから蒸留が好ましく、本発明の分散液は特に水分量を低減するために加熱蒸留されることがある。その際、優先的に水を除去できるという観点から水溶性有機溶媒としては、常圧で沸点が100℃を超える溶媒が好ましい。しかしながら水溶性有機溶媒の沸点が高すぎると当該溶媒の除去が困難となることがあるため、水溶性有機溶媒の沸点は常圧で250℃以下が好ましい。このような溶媒の例としては、2-ブタノール、2-メチル-1-プロパノール、1,4-ジオキサン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。
 変性CM化CNFの数平均繊維径は1nm~200nmが好ましく、2nm~50nmがより好ましい。セルロースナノファイバーの繊維径は、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等の顕微鏡で観察して測定できる。
 分散液中の変性CM化CNFの濃度は0.1~20重量%が好ましく、0.5~10重量%がより好ましい。
 2.分散液の製造方法
 本発明の分散液は以下の方法で製造することができる。
 [第1の製造方法]
 (1A)カルボキシメチル化セルロースナノファイバーが、水と水溶性有機溶媒との混合溶媒に分散している分散液を調製する工程、ならびに
 (1B)当該分散液にアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこの組合せから選択される有機アルカリを添加してカルボキシメチル基を変性する工程、を含む製造方法。
 [第2の製造方法]
 (2A)カルボキシメチル化セルロースナノファイバーが、水に分散している分散液を調製する工程、ならびに
 (2B)当該分散液に、前記有機アルカリおよび水溶性有機溶媒を添加して、カルボキシメチル基を変性する工程、を含む製造方法。
 [第3の製造方法]
 (3C)カルボキシメチル化セルロース、水と水溶性有機溶媒との混合溶媒、および前記有機アルカリを含む分散液を調製する工程、ならびに
 (3D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(3E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、を含む製造方法。
 [第4の製造方法]
 (4C)カルボキシメチル化セルロース、水、および前記有機アルカリを含む分散液を調製する工程、
 (4D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(4E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、ならびに
 (4F)前工程で得た分散液に水溶性有機溶媒を添加する工程、を含む製造方法。
 各方法について詳述する。
 2-1.第1の製造方法
 (1)工程1A
 本工程では、カルボキシメチル化セルロースナノファイバーが、水と水溶性有機溶媒との混合溶媒に分散している分散液を調製する。当該分散液はカルボキシメチル化セルロースを水に分散させた水分散液に解繊処理を施して、カルボキシメチル化セルロースナノファイバー水分散液を得て、当該水分散液と水溶性有機溶媒を混合することで調製できる(iの方法)。あるいは、当該分散液は、カルボキシメチル化セルロースを前記混合溶媒に分散させた分散液に解繊処理を施して調製することもできる(iiの方法)。
 1)iの方法
 カルボキシメチル化セルロースを水に分散させた水分散液(以下「解繊前水分散液」ともいう)に解繊処理を施して、カルボキシメチル化セルロースナノファイバー水分散液を得る。カルボキシメチル化セルロースの製造方法は後述する。解繊は、例えば、高速せん断ミキサーや高圧ホモジナイザーなどの混合または撹拌、乳化または分散装置を必要に応じて単独もしくは2種類以上を組合せて行うことができる。この際、パルプの大きさ(繊維長および繊維径)が小さくなると同時に繊維がほぐれてセルロースナノファイバーを形成する。特に、100MPa以上、好ましくは120MPa以上、さらに好ましくは140MPa以上の圧力を可能とする超高圧ホモジナイザーを用いると、セルロースナノファイバーの分散が効率よく進行し、水分散液としたときに低い粘度を有するセルロースナノファイバーを効率よく製造することができるので好ましい。
 解繊前水分散液におけるカルボキシメチル化セルロースの濃度は0.1~10重量%が好ましい。解繊前水分散液のpHは例えば4以下となる。
 次いで、解繊後水分散液に水溶性有機溶媒を添加する。その量は種類にもよるが、セルロースナノファイバー分散液全体に対して、0.1~1000重量%が好ましい。ただし、水溶性有機溶媒のうち、アルコール類やアセトンなどの水との親和性が比較的大きい水溶性有機溶媒については、上限値を1000重量%以下とできる。一方、メチルエチルケトンなどの水との親和性が比較的小さい水溶性有機溶媒については、上限値をおおよそ500重量%以下とすることが好ましい。水溶性有機溶媒の量が0.1重量%より少ないと、本発明の分散液とポリマー等の他の材料との親和性を高める効果が十分でない場合がある。一方、加える水溶性有機溶媒の量が10重量%以上、好ましくは30重量%以上であると、他の材料との親和性を高める効果が十分となり、かつ後述する乾燥効率が十分に向上する。このようにして得た分散液を「解繊後分散液」ともいう。
 2)iiの方法
 カルボキシメチル化セルロースを、水と水溶性有機溶媒との混合溶媒に分散させた分散液に解繊処理を施して、カルボキシメチル化セルロースナノファイバー分散液(解繊後分散液)を得る。解繊の方法等、水溶性有機溶媒の量はiの方法で述べたとおりである。
 3)カルボキシメチル化セルロースの調製方法
 セルロース原料とはセルロースを主体とした様々な形態の材料である。その例としては、パルプ(晒または未晒木材パルプ、晒または未晒非木材パルプ、精製リンター、ジュート、マニラ麻、ケナフ等の草本由来のパルプなど)、酢酸菌等の微生物によって生産されるセルロース等の天然セルロース、セルロースを銅アンモニア溶液、モルホリン誘導体等の何らかの溶媒に溶解した後に紡糸された再生セルロース、および上記セルロース原料に加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル等の機械的処理等をすることによってセルロースを解重合した微細セルロースなどが挙げられる。
 まず、前記セルロース原料を発底原料とし、溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間にて、マーセル化処理を行う。溶媒としては、3~20重量倍の水または低級アルコール、具体的には水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、またはこれらの組み合わせを使用できる。低級アルコールを混合する場合、その混合割合は60~95重量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用できる。
 次いで、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行い、カルボキシメチル化セルロースを得る。この際、グルコース単位当たりのカルボキシメチル置換度が0.01~0.50であることが好ましい。前記置換基が0.01より小さいと、十分にナノ解繊することができない場合がある。一方、グルコース単位当たりのカルボキシメチル置換基が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとならない場合がある。
 カルボキシメチル置換度は、以下の方法により測定できる。
 試料約2.0gを精秤して、300mL共栓三角フラスコに入れる。硝酸メタノール(無水メタノール1Lに特級濃硝酸100mLを加えた液)100mLを加え、3時間振盪して、カルボキシメチル化セルロースナトリウム(Na-CMC)をカルボキシメチル化セルロース(H-CMC)にする。その絶乾H-CMC1.5~2.0gを精秤し、300mL共栓三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤させ、0.1NのNaOH100mLを加えて室温で3時間振盪する。指示薬としてフェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。次式を用いてカルボキシメチル置換度を求める。
 カルボキシルメチル置換度=[{100×F’-(0.1NのHSO(ml))×F}/(H-CMCの絶乾質量(g))]×0.1
=0.162A/(1-0.058A)
 A:1gのH-CMCを中和するのに必要な1NのNaOHの量(ml)
 F:0.1NのHSOのファクター
 F’:0.1NのNaOHのファクター
 このようにして得たカルボキシメチル化セルロースを、ろ過により反応液中から回収することができる。反応後のカルボキシメチル化セルロースのカルボキシメチル基はpH調整用の無機アルカリに由来する金属イオンを対イオンとした塩(-CHCOOM、Mは金属イオン)を形成している。回収の方法としては、1)カルボキシメチル基が塩を形成したまま濾別する方法、2)反応液に酸を添加しpH3以下に調整してカルボキシメチル基を酸型(-CHCOOH)としてから濾別する方法、3)有機溶媒を添加し凝集させた後に濾別する方法がある。しかし、酸型に変換することでカルボキシメチル化セルロース中の対イオン(金属イオン)の大部分を除くことができるので、2)の方法が好ましい。さらに、2)の方法はハンドリング性や収率、廃液処理の点からも好適である。カルボキシメチル基を酸型にすることで、水による洗浄の効率化、含有金属イオン量の低減、洗浄回数の低減ができる。
 カルボキシメチル化セルロース中に含まれる金属イオン含有量は、様々な方法で分析できるが、例えば、電子線マイクロアナライザーを用いたEPMA法、蛍光X線分析法の元素分析によって簡易的に分析できる。塩型のまま濾別する方法により回収した場合、金属イオンの含有率は5重量%以上であるのに対し、酸型としてから濾別する方法により回収した場合、金属イオン含有量は5重量%以下となる。
 回収したカルボキシメチル化セルロースは、洗浄を繰り返すことにより精製でき、触媒や塩、イオンなどの残渣を取り除くことができる。洗浄液としては水が好ましく、さらに塩酸などを用いpH3以下、より好ましくはpH2.6以下の酸性条件下で洗浄を行った後、水による洗浄を行うと、金属イオンを上記分析方法における検出限界量以下とすることができる。または、残存する金属イオン量をより低減させるため、酸性条件下での洗浄を複数回行ってもよい。セルロース中に塩等が残留していると、後述の解繊工程にて解繊しにくくなるため、水洗浄は複数回洗浄を行うことが好ましい。
 (2)工程1B
 工程1Aで調製した解繊後分散液に有機アルカリを添加してカルボキシメチル基を変性する。有機アルカリは、アミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される。アミンとしては1級~3級アミンを例示できる。アミンとしては以下の構造を有するアミンが好ましい。
  NHR’(R’は炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基)
  NHR’(R’は独立に炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基)
  NR’(R’は独立に炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基)
 1級または2級アミンを用いると、カルボキシメチル化セルロースに前記式(2)で表す基を導入できる。また、3級アミンを用いると、カルボキシメチル化セルロースに前記式(3)で表す基(ただし1つのRがHで3つのRがR’である)を導入できる。
 水酸化物イオンを対イオンとする有機オニウム塩としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラn-ブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化2-ヒドロキシエチルトリメチルアンモニウム等のNR’OH(R’前述のとおり定義され、好ましくは独立に炭素数が1~10のアルキル基である)で表される水酸化アンモニウム塩、水酸化テトラエチルホスホニウムなどのPR’OH(R’は前述のとおり定義される)で表される水酸化ホスホニウム塩、水酸化トリメチルスルホニウムなどのSR’OH(R’は前述のとおり定義される)で表される水酸化スルホニウム塩を例示できる。
 水酸化アンモニウム塩または水酸化ホスホニウム塩を用いるとカルボキシメチル化セルロースに前記式(3)で表す基(ただしすべてのRはR’である)が導入できる。水酸化スルホニウム塩を用いると、カルボキシメチル化セルロースに前記式(4)で表す基が導入できる。
 反応は、有機アルカリを含む解繊後分散液を室温で撹拌することで実施できる。撹拌には公知の装置を用いてもよく、前述の解繊に使用する装置を用いてもよい。この撹拌時にもナノ分散化が進行するが、有機アルカリにおけるR’が嵩高いほどナノ分散化が促進されかつ分散液の粘度が低下する効果が期待できる。
 有機アルカリの量は、カルボキシメチル基量に対し等モル量またはそれ以上とすることができる。カルボキシル化(酸化)セルロースと異なり、カルボキシメチルセルロースは分散液の着色が少ないため、十分に変性(疎水化)することができる。
 解繊前分散液のpHは通常は4以下であることから、有機アルカリを用いることで中和反応が進行し、カルボキシメチル基に疎水基を導入できる。有機アルカリを用いることで本発明の分散液に金属イオンが混入することが回避できる。金属イオンを含まない分散液は、電子用途に好適である。
 有機アルカリを用いると、無機アルカリを用いた場合よりも低エネルギー、短時間で分散処理を行うことができる。また最終的に得られる変性CM化CNF分散液の透明性を向上させることができる。この理由は、有機アルカリで変性されたセルロースナノファイバーと水溶性有機溶媒を含む分散媒との親和性が向上することに加えて、無機アルカリで変性された基に比べて有機アルカリで変性された基が大きいため分散媒中でセルロース繊維同士をより引き離す効果が大きくなるためと考えられる。
 (3)後処理等
 このようにして調製した変性CM化CNF分散液には有機アルカリ由来のアミン化合物または有機オニウムイオンが含まれている。当該分散液を公知の手法により単離、洗浄、乾燥、濾別などすることで、変性CM化CNFを得ることができる。洗浄液としては前記混合溶媒を用いることが好ましい。また水を除去することにより、水を含まないか任意の量の水を含む分散液とすることができる。この際、水溶性有機溶媒として常圧で沸点が100℃を超える溶媒を用いると、乾燥時に水分を優先的に除去でき、分散媒が高濃度の有機溶媒を含む変性CM化CNF分散液や、分散媒が水を含まない変性CM化CNF分散液が得られる。
 2-2.第2の製造方法
 工程2Aは、前記水溶性有機溶媒を用いない以外は工程1Aと同様にして実施できる。
 工程2Bは、工程2Aで得た分散液に前記水溶性有機溶媒を添加する以外は工程2Aと同様にして実施できる。前記水溶性有機溶媒の量等については第1の製造方法で説明したとおりである。
 2-3.第3の方法
 (1)工程3C
 本工程では、カルボキシメチル化セルロース、水と水溶性有機溶媒との混合溶媒、および前記有機アルカリを含む分散液(解繊前分散液)を調製する。各成分および配合量については第1の製造方法で述べたとおりである。
 (2)工程3D
 本工程では、前記解繊前分散液に解繊処理を施しながらカルボキシメチル基を変性する。
 (3)工程3E
 本工程では、カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する。
 第3の製造方法における解繊の方法および変性された基の構造等に関しては第1の製造方法で述べたとおりである。
 2-4.第4の方法
 (1)工程4C
 本工程では、カルボキシメチル化セルロース、水、および前記有機アルカリを含む分散液を調製する。有機アルカリの量等については第1の製造方法で述べたとおりである。
 (2)工程4D
 本工程では、前記分散液に解繊処理を施しながらカルボキシメチル基を変性する。
 (3)工程4E
 本工程では、カルボキシメチル基を変性して当該カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する。
 (4)工程4F
 本工程では前工程で得た分散液に水溶性有機溶媒を添加する。
 第4の方法における解繊の方法等および変性された基の構造等に関しては第1の製造方法で述べたとおりである。
 第2~第4の製造方法で得た変性CM化CNF分散液の後処理についても第1の製造方法で述べたとおりである。
 3.特性および用途
 本発明の分散液は優れた透明性を有する。透明度は、固形分濃度1.0重量%の分散液を用いて測定した場合に85%以上であることが好ましい。本発明の分散液の透明度が85%以上である場合、高透明性が要求される樹脂との混練においても十分な透明性を発揮できる。特に、本発明の分散液の透明度は、固形分濃度1.0重量%において90%以上であることがより好ましい。透明度は、上記で得られたセルロースナノファイバー分散液を超音波装置にて脱泡した後、紫外可視分光光度計(UV-1800、島津製作所製)の660nmの波長にて測定し、以下の式から求めることができる。
 セルロースナノファイバー分散液の透明度(%)=セルロースナノファイバー分散液の測定値/水系媒体のみを測定した時の測定値×100
 無機アルカリ由来の金属イオン(例えば水酸化ナトリウム由来のNa)をカウンターイオンとして有するカルボキシメチル化セルロースナノファイバー分散液に水溶性有機溶媒を加えると、分散させたセルロース繊維が凝集し、凝集白濁、不均一化が生じる。しかし、本発明で得た分散液は無機アルカリ由来の金属イオンを含まないので、このような不具合が生じない。よって、本発明の分散液にさらに水溶性有機溶媒を加えてもよい。当該有機溶媒をさらに添加した分散液は、ポリマー等の他の材料との複合化に適している。その添加量は、セルロースナノファイバー分散液の固形分や粘度などを考慮して適宜決定される。
 本発明の分散液は、さらに添加剤として官能基を有する化合物を含んでいてもよい。当該官能基としては、シラノール基、アミノ基、エポキシ基、水酸基、カルボジイミド基、イソシアネート基、アルコキシ基、オキサゾリン基が挙げられる。これらの添加剤は、変性CM化CNF中の水酸基、カルボキシル基等と反応して、耐水性や耐湿性等を向上しうる。
 シラノール基を有する化合物としては、シランカップリング剤、アルコキシシラン、それらの加水分解物等が挙げられる。シランカップリング剤は、ケイ素原子に結合した加水分解性基を2個以上有するシラン化合物である。加水分解性基は、加水分解により水酸基となりシラノール基(Si-OH)を生成する。加水分解性基としては、アルコキシ基、アセトキシ基、塩素原子等が挙げられるがアルコキシ基が好ましい。すなわち、好ましいシランカップリング剤はアルコキシシランであり、当該アルコキシ基におけるアルキル基は、好ましくは炭素数1~5のアルキル基、より好ましくはメチル基またはエチル基、さらに好ましくはエチル基である。
 シランカップリング剤中の加水分解性基の数が2または3個である場合、シランカップリング剤は、さらに官能基を有することが好ましい。当該官能基としては、変性CM化CNFに存在する官能基や、本発明の分散液と複合化する際に用いる他の材料の表面に存在する官能基(カルボキシル基、水酸基等)と反応するか相互作用する官能基が好ましい。このような官能基としては、限定されないが、アミノ基、エポキシ基、メタクリロキシ基、アクリロキシ基、ビニル基ウレイド基、メルカプト基、塩素原子、イソシアネート基等が挙げられる。これらの中でも、アミノ基、エポキシ基、メタクリロキシ基、アクリロキシ基が好ましく、アミノ基がより好ましい。
 これらの添加剤は本発明の分散液に均一に混合されることが好ましい。本発明の分散液は、アルコール等の親水性有機溶媒との親和性に優れかつナトリウムなどの金属イオンを含まないため、前記添加物を均一に混合して反応させることができる。
 本発明の変性CM化CNFまたはこれを含む分散液を樹脂などの他の材料と混合することにより複合材料を調製できる。前記樹脂としては、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂等が挙げられる。本発明の変性CM化CNFは、前記樹脂中に均一に微分散できるので、透明な複合材料を得ることができる。さらに当該複合材料は、高機械的強度、低線膨張率、高弾性率を有する。前記複合材料は、前記分散液と前記樹脂を有機溶媒に溶解して得た樹脂溶液を混合する方法、前記分散液と前記樹脂と樹脂を混合する方法、前記分散液と前記樹脂のエマルジョンとを混合する方法等により調製できる。本発明の分散液は前記エマルジョンと混合しても再凝集や沈殿を引き起こすことなく混合が可能である。
 当該複合材料は、本発明の変性CM化CNFと前記樹脂の他に、必要に応じて、添加剤を含んでいてもよい。添加剤としては、前述の官能性化合物(シランカップリング剤等)、充填剤、レベリング剤、消泡剤、無機系粒子、有機系粒子、潤滑剤、帯電防止剤、紫外線吸収剤、顔料、染料、光安定剤、酸化防止剤、可塑剤、難燃剤、分散剤、発泡剤、が挙げられる。当該複合材料は、透明基材、塗料、インキ、フィルム基材、成形体、容器、筐体、電子部材として有用である。その中でも、本発明の変性CM化CNFを含む複合材料は透明性に優れることから、透明基材として特に有用である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は下記実施例に限定されない。
 [カルボキシメチルセルロースの調製]
 パルプを混ぜることができる撹拌機に、パルプ(NBKP、日本製紙株式会社製)を乾燥重量で200g、水酸化ナトリウムを乾燥重量で440g加え、パルプ固形濃度が15重量%になるように水を加えた。その後、30℃で30分撹拌した後に70℃まで昇温し、モノクロロ酢酸ナトリウムを585g(有効成分換算)添加した。1時間反応させた後に、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.24のカルボキシメチルセルロースを得た。
 前記カルボキシメチルセルロースに塩酸を加えて脱水し、pH2.4の固形分濃度10重量%に調整した。
 [酸化セルロースの調製]
 針葉樹由来の漂白済み未叩解パルプ(日本製紙株式会社製)5g(絶乾)を、TEMPO(東京化成社製)78mg(0.5mmol)と臭化ナトリウム(和光純薬社製)756mg(7.35mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。ここに次亜塩素酸ナトリウム(和光純薬社製)2.3mmolを水溶液の形態で加え、次いで、次亜塩素酸ナトリウムをパルプ1g当たり0.23mmol/分の添加速度となるように送液ポンプを用いて徐々に添加し、パルプの酸化を行った。次亜塩素酸ナトリウムの全添加量が22.5mmolとなるまで添加を継続した。反応中は系内のpHは低下するが、3N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。水酸化ナトリウム水溶液を添加し始めてから(すなわち、酸化反応が開始されてpHの低下が見られた時点から)、添加を終了するまで(すなわち、酸化反応が終了してpHの低下が見られなくなった時点まで)の時間を反応時間とした。この反応液を塩酸にて中性になるまで中和した後、反応後の液をガラスフィルターでろ過し、十分に水洗することで酸化セルロースを得た。
 前記酸化セルロースに塩酸を加えて脱水し、pH2.4の固形分濃度10重量%に調整した。
 [酸化セルロースのカルボキシル基量の測定]
 酸化セルロースのカルボキシル基量を次の方法で測定した。
 酸化セルロースの0.5重量%スラリーを60mL調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した。
カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース重量〔g〕。
 この測定の結果、得られた酸化セルロースのカルボキシル基量は1.60mmol/gであった。
 <実施例1>
 [解繊]
 前記固形分濃度10重量%のカルボキシメチル化セルロースの水分散液を希釈して3.0重量%の水分散液(解繊前水分散液)を調製し、超高圧ホモジナイザー(20℃、140MPa)で5回処理して、カルボキシメチル化セルロースナノファイバー水分散液を得た。
 [溶媒添加]
 前記分散液にN-メチル-2-ピロリドン(以下、NMPと記載)を固形分濃度2.0重量%となるように加えて水溶性有機溶媒を含む分散液を調製した。
 [有機アルカリ変性]
 当該分散液に、セルロースナノファイバーのカルボキシメチル置換度と同モル量の水酸化テトラブチルアンモニウムを水溶液の形態で加えて撹拌した。
 [分散]
 前記分散液を超高圧ホモジナイザー(20℃、140MPa)で2回処理して、変性カルボキシメチル化セルロースナノファイバー(変性CM化CNF)分散液を得た。
 [脱水]
 前記変性CM化CNF分散液に、固形分の重量に対して30倍量のNMPを添加した後、含水率が5.0重量%以下になるまで105℃で乾燥した。得られた変性CM化CNF分散液は、固形分2.1%の分散液(分散媒中におけるNMP:水(重量比)=94.9:5.1)であり、その透明度は94%であり、無色であった。
 <実施例2>
 [溶媒添加]
 実施例1で得た固形分濃度10重量%のカルボキシメチル化セルロース水分散液(解繊前水分散液)に水およびNMPを加えて水性有機溶媒を含む分散液を調製した。得られた分散液の固形分濃度は1.7重量%、水とNMPの比率は50:50であった。
 [有機アルカリ変性]
 前記分散液にカルボキシメチルセルロースのカルボキシメチル置換度と同モル量の水酸化テトラブチルアンモニウムを水溶液の形態で加えて撹拌した。
 [解繊]
 前記分散液を超高圧ホモジナイザー(20℃、140MPa)で5回処理して、変性カルボキシメチル化セルロースナノファイバー(変性CM化CNF)分散液を得た。
 [脱水]
 前記変性CM化CNF分散液に、固形分の重量に対して30倍量のNMPを添加した後、含水率が5.0重量%以下になるまで攪拌しながら減圧下60℃で乾燥した。得られた変性CM化CNF分散液は、固形分1.7%の分散液(分散媒中におけるNMP:水(重量比)=99.8:0.2)であり、その透明度は94%であり、無色であった。
 <比較例1>
 カルボキシメチル化セルロースの代わりに酸化セルロースを用いた以外は実施例1と同様にして、変性酸化セルロースナノファイバー分散液を調製した。得られた変性酸化セルロースナノファイバー分散液の透明度は95%であったが着色が見られた。
 <比較例2>
 カルボキシメチル化セルロースの代わりに酸化セルロースを用いた以外は実施例2と同様にして、変性酸化セルロースナノファイバー分散液を調製した。得られた変性酸化セルロースナノファイバー分散液の透明度は94%であったが、着色が見られた。
 <比較例3>
 有機アルカリ変性を行わない以外は実施例2と同様に解繊工程まで実施したところ、セルロース繊維が凝集し、解繊装置において閉塞が発生してしまい、解繊することができなかった。
 実施例1、2で得た変性CM化CNFは有機溶媒を含む分散媒に分散し、透明度90%以上で無色の分散液を与えた。一方、比較例1、2の変性酸化セルロースナノファイバー分散液は脱水時の加熱により着色が見られた。また、有機アルカリ変性を実施しなかった比較例3においては、分散媒中の有機溶媒の比率が高くなると分散性が失われ、沈殿を生じた。
 実施例1、2で得た変性CM化CNFは有機溶媒を含む分散媒に分散し、透明度90%以上で無色の分散液を与えた。一方、比較例1、2の変性酸化セルロースナノファイバー分散液は脱水時の加熱により着色が見られた。

Claims (12)

  1.  変性カルボキシメチル化セルロースナノファイバーが分散媒に分散している分散液であって、
     前記分散媒が有機溶媒を含み、
     前記変性カルボキシメチル化セルロースナノファイバーが、式(1)で表されるグルコース単位を含む、
    Figure JPOXMLDOC01-appb-C000001
    (Xは独立に、Hまたは-CHCOOHで表される基であり、
     Xは独立に、H、-CHCOOH、あるいは式(2)~(4)のいずれかで表される基であるが、少なくとも1つのXは式(2)~(4)のいずれかで表される基である)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、Rは独立に、H、炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基であり、少なくとも1つのRは当該アルキル基、アリール基、またはアラルキル基であり、
     式(3)において、Yは、N、またはPであり、Rは式(2)と同様に定義され、
     式(4)において、R’は炭素数が1~10のアルキル基、炭素数が6~20のアリール基、または炭素数が7~20のアラルキル基である)
     前記分散液。
  2.  前記有機溶媒の沸点が常圧で50~250℃である、請求項1に記載の分散液。
  3.  前記有機溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、およびこれらの組合せからなる群から選択される水溶性有機溶媒である、請求項1または2に記載の分散液。
  4.  前記XおよびXが-CHCOOH、あるいは式(2)~(4)のいずれかで表される場合に、前記グルコース単位当たりの当該基の数で定義されるX置換度が0.02~0.50である、請求項1~3のいずれかに記載の分散液。
  5.  前記変性カルボキシメチル化セルロースナノファイバーの数平均繊維径が、2~50nmである、請求項1~4のいずれかに記載の分散液。
  6.  前記分散媒が水溶性有機溶媒および水を含む、請求項1~5のいずれかに記載の分散液。
  7.  (1A)カルボキシメチル化セルロースナノファイバーが、水と水溶性有機溶媒との混合溶媒に分散している分散液を調製する工程、ならびに
     (1B)当該分散液にアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを添加してカルボキシメチル基を変性する工程、を含む、請求項1に記載の分散液の製造方法。
  8.  (2A)カルボキシメチル化セルロースナノファイバーが、水に分散している分散液を調製する工程、ならびに
     (2B)当該分散液に、アミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリならびに水溶性有機溶媒を添加して、カルボキシメチル基を変性する工程、
    を含む、請求項1に記載の分散液の製造方法。
  9.  (3C)カルボキシメチル化セルロース、水と水溶性有機溶媒との混合溶媒、ならびにアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを含む分散液を調製する工程、ならびに
     (3D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(3E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、
    を含む、請求項1に記載の分散液の製造方法。
  10.  (4C)カルボキシメチル化セルロース、水、ならびにアミン、水酸化物イオンを対イオンとする有機オニウム塩、およびこれらの組合せから選択される有機アルカリを含む分散液を調製する工程、
     (4D)前記分散液に解繊処理を行いながらカルボキシメチル基を変性する工程、あるいは、(4E)カルボキシメチル基を変性して当該変性カルボキシメチル化セルロースを含む分散液を調製した後に当該分散液を解繊処理する工程、ならびに
     (4F)前工程で得た分散液に水溶性有機溶媒を添加する工程、
    を含む、請求項1に記載の分散液の製造方法。
  11.  前記有機アルカリが、水酸化物イオンを対イオンとする4級アンモニウム塩である、請求項7~10のいずれかに記載の製造方法。
  12.  前記有機アルカリが、1級、2級、または3級アミン化合物である、請求項7~10のいずれかに記載の製造方法。
PCT/JP2017/004618 2016-02-08 2017-02-08 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法 WO2017138574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017566982A JP6814753B2 (ja) 2016-02-08 2017-02-08 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
EP17750295.2A EP3415537A4 (en) 2016-02-08 2017-02-08 MODIFIED CARBOXYMETHYLATED CELLULOSENANOFIBER DISPERSION AND METHOD FOR THE PRODUCTION THEREOF
US16/076,081 US20190127557A1 (en) 2016-02-08 2017-02-08 Modified carboxymethylated cellulose nanofiber dispersion and method for manufacturing same
CN201780010431.8A CN108602896A (zh) 2016-02-08 2017-02-08 改性羧甲基化纤维素纳米纤维分散液及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021533 2016-02-08
JP2016021533 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138574A1 true WO2017138574A1 (ja) 2017-08-17

Family

ID=59563799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004618 WO2017138574A1 (ja) 2016-02-08 2017-02-08 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法

Country Status (5)

Country Link
US (1) US20190127557A1 (ja)
EP (1) EP3415537A4 (ja)
JP (1) JP6814753B2 (ja)
CN (1) CN108602896A (ja)
WO (1) WO2017138574A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150614A1 (ja) * 2018-02-01 2019-08-08 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
WO2019151040A1 (ja) * 2018-02-01 2019-08-08 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
JP2019143045A (ja) * 2018-02-21 2019-08-29 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP2019163390A (ja) * 2018-03-20 2019-09-26 日本製紙株式会社 カルボキシアルキル化セルロース及びカルボキシアルキル化セルロースナノファイバーの製造方法
JP2019206606A (ja) * 2018-05-28 2019-12-05 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP2019206607A (ja) * 2018-05-28 2019-12-05 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーの疎水物およびその製造方法
JP2020007457A (ja) * 2018-07-09 2020-01-16 日本製紙株式会社 セルロースナノファイバーおよびセルロースナノファイバーを含有するゴム組成物の製造方法
WO2020045533A1 (ja) * 2018-08-30 2020-03-05 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JP2020033466A (ja) * 2018-08-30 2020-03-05 日本製紙株式会社 樹脂組成物、水性樹脂組成物、塗料、および金属
WO2020050153A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050155A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050152A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050154A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020145104A1 (ja) * 2019-01-11 2020-07-16 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
JP2021011519A (ja) * 2019-07-04 2021-02-04 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110835377B (zh) * 2019-11-05 2021-06-04 浙江科技学院 一种疏水改性纳米纤维素及其制备方法和应用
CN115916845A (zh) * 2020-07-09 2023-04-04 东亚合成株式会社 纳米纤维素和其分散液
CN112095358B (zh) * 2020-09-25 2023-01-31 江西省钒电新能源有限公司 一种纤维素剥离及其功能化的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014295A1 (en) * 1997-09-15 1999-03-25 The Procter & Gamble Company Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith
JP2011127067A (ja) * 2009-12-21 2011-06-30 Teijin Ltd 微細修飾セルロースの製造方法
US20140154502A1 (en) * 2012-11-30 2014-06-05 Xerox Corporation Surface layer
JP2014109033A (ja) * 2012-11-30 2014-06-12 Xerox Corp 変性多糖類組成物を含む相変化インク
JP2015101694A (ja) * 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116901A (ja) * 1984-07-03 1986-01-24 Daicel Chem Ind Ltd カルボキシメチルセルロ−スの第四アンモニウム塩及びその製造法
CN101213228B (zh) * 2005-07-01 2012-10-03 晓温-威廉姆斯公司 包含羟基改性的聚氨酯分散粘合剂的多层涂层系统
JP5952522B2 (ja) * 2008-03-31 2016-07-13 旭化成株式会社 セルロース誘導体微粒子、その分散液、その分散体及び診断薬
JP5330882B2 (ja) * 2009-03-30 2013-10-30 日本製紙株式会社 セルロースゲル分散液の製造方法
CN102791789B (zh) * 2010-03-09 2015-10-21 凸版印刷株式会社 微细纤维素纤维分散液及其制造方法、纤维素膜以及层叠体
JP6199858B2 (ja) * 2012-03-14 2017-09-20 日本製紙株式会社 アニオン変性セルロースナノファイバー分散液の製造方法
US9447197B2 (en) * 2012-06-28 2016-09-20 Covidien Lp Dissolution of oxidized cellulose and particle preparation by dispersion and neutralization
DE102012024727A1 (de) * 2012-12-18 2014-06-18 Friedrich-Schiller-Universität Jena Cellulose- und Celluloseether-Lösungen und deren Verwendung
JP5823599B2 (ja) * 2013-12-26 2015-11-25 花王株式会社 微細セルロース繊維複合体
CN104877033B (zh) * 2015-06-03 2018-07-06 西南大学 一种羧甲基改性纳米纤维素的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014295A1 (en) * 1997-09-15 1999-03-25 The Procter & Gamble Company Laundry detergent compositions with cellulosic based polymers to provide appearance and integrity benefits to fabrics laundered therewith
JP2011127067A (ja) * 2009-12-21 2011-06-30 Teijin Ltd 微細修飾セルロースの製造方法
US20140154502A1 (en) * 2012-11-30 2014-06-05 Xerox Corporation Surface layer
JP2014109033A (ja) * 2012-11-30 2014-06-12 Xerox Corp 変性多糖類組成物を含む相変化インク
JP2015101694A (ja) * 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3415537A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905650B2 (en) 2018-02-01 2024-02-20 Hokuetsu Corporation Water repellent oil repellent agent and method for producing same, and water repellent oil repellent product and method for producing same
WO2019151040A1 (ja) * 2018-02-01 2019-08-08 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
WO2019150614A1 (ja) * 2018-02-01 2019-08-08 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
JPWO2019151040A1 (ja) * 2018-02-01 2020-11-26 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
JP7240315B2 (ja) 2018-02-01 2023-03-15 北越コーポレーション株式会社 撥水撥油剤及びその製造方法、並びに撥水撥油性製品及びその製造方法
JP2019143045A (ja) * 2018-02-21 2019-08-29 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP7103803B2 (ja) 2018-02-21 2022-07-20 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP2019163390A (ja) * 2018-03-20 2019-09-26 日本製紙株式会社 カルボキシアルキル化セルロース及びカルボキシアルキル化セルロースナノファイバーの製造方法
JP7122841B2 (ja) 2018-03-20 2022-08-22 日本製紙株式会社 カルボキシアルキル化セルロース及びカルボキシアルキル化セルロースナノファイバーの製造方法
JP2019206606A (ja) * 2018-05-28 2019-12-05 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP7180118B2 (ja) 2018-05-28 2022-11-30 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーの疎水物およびその製造方法
JP2019206607A (ja) * 2018-05-28 2019-12-05 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーの疎水物およびその製造方法
JP7103850B2 (ja) 2018-05-28 2022-07-20 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
JP2020007457A (ja) * 2018-07-09 2020-01-16 日本製紙株式会社 セルロースナノファイバーおよびセルロースナノファイバーを含有するゴム組成物の製造方法
JP7351305B2 (ja) 2018-08-30 2023-09-27 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JP7319031B2 (ja) 2018-08-30 2023-08-01 日本製紙株式会社 樹脂組成物、水性樹脂組成物、塗料、および金属
JP2020033466A (ja) * 2018-08-30 2020-03-05 日本製紙株式会社 樹脂組成物、水性樹脂組成物、塗料、および金属
WO2020045533A1 (ja) * 2018-08-30 2020-03-05 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JPWO2020045533A1 (ja) * 2018-08-30 2021-08-12 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JPWO2020050152A1 (ja) * 2018-09-03 2021-09-02 リンテック株式会社 組成物
JPWO2020050153A1 (ja) * 2018-09-03 2021-08-26 リンテック株式会社 組成物
JPWO2020050154A1 (ja) * 2018-09-03 2021-08-26 リンテック株式会社 組成物
JPWO2020050155A1 (ja) * 2018-09-03 2021-08-26 リンテック株式会社 組成物
WO2020050154A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050152A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050155A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
WO2020050153A1 (ja) * 2018-09-03 2020-03-12 リンテック株式会社 組成物
JP2020111665A (ja) * 2019-01-11 2020-07-27 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
WO2020145104A1 (ja) * 2019-01-11 2020-07-16 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
JP7199230B2 (ja) 2019-01-11 2023-01-05 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー分散体の製造方法および疎水化アニオン変性セルロースの乾燥固形物
JP2021011519A (ja) * 2019-07-04 2021-02-04 日本製紙株式会社 疎水化アニオン変性セルロースナノファイバー及びその製造方法

Also Published As

Publication number Publication date
JP6814753B2 (ja) 2021-01-20
EP3415537A4 (en) 2019-10-16
US20190127557A1 (en) 2019-05-02
JPWO2017138574A1 (ja) 2019-02-21
EP3415537A1 (en) 2018-12-19
CN108602896A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6814753B2 (ja) 変性カルボキシメチル化セルロースナノファイバー分散液およびその製造方法
JP6462051B2 (ja) 化学修飾セルロース繊維およびその製造方法
JP6402442B2 (ja) セルロースナノファイバー分散体の製造方法および当該製造方法を用いた膜
JP6862173B2 (ja) エステル化セルロースナノファイバー分散液の製造方法
JP5397910B2 (ja) セルロースナノファイバー分散液の製造方法
FI127918B (en) Process for dewatering water-soluble polymers
JP6361123B2 (ja) 水系接着剤組成物
JP2008308802A (ja) セルロースナノファイバーの製造方法
JP5381338B2 (ja) セルロースナノファイバーの製造方法
CN108602895B (zh) 阴离子改性纤维素纳米纤维分散液及其制造方法
WO2019073810A1 (ja) 化学修飾セルロース繊維の製造方法
JP2010077248A (ja) 微細修飾セルロース含有芳香族ポリアミドコンポジット
JP2017193814A (ja) セルロースナノファイバーの分散液およびその製造方法
JP2015196693A (ja) 微細セルロース繊維分散液、及びその製造方法、セルロース積層体
CN112675679A (zh) 除臭剂
JP2019031696A (ja) 化学修飾セルロース繊維およびその製造方法
JP2015218299A (ja) セルロースナノファイバーの製造方法、セルロースナノファイバー、およびその分散液
JP2014511907A (ja) マイクロおよびナノ結晶セルロースの製造方法
JP6048365B2 (ja) ゴム改質材、ゴム改質材分散液、及びゴム組成物
JP2016069536A (ja) セルロースナノファイバーの製造方法
JP6888274B2 (ja) 成形用組成物および成形体
JP2018188673A (ja) セルロースナノファイバー分散体を用いた膜および分散体の製造方法
CN116368158A (zh) 一种制备纳米纤维素的高效绿色方法、新的改性纳米纤维素及其应用
JP2020172461A (ja) 粉末状液体
JP7239294B2 (ja) アニオン変性セルロースナノファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017566982

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750295

Country of ref document: EP

Effective date: 20180910