WO2011090175A1 - 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板 - Google Patents

粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2011090175A1
WO2011090175A1 PCT/JP2011/051132 JP2011051132W WO2011090175A1 WO 2011090175 A1 WO2011090175 A1 WO 2011090175A1 JP 2011051132 W JP2011051132 W JP 2011051132W WO 2011090175 A1 WO2011090175 A1 WO 2011090175A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
roughened
treatment
copper
roughening
Prior art date
Application number
PCT/JP2011/051132
Other languages
English (en)
French (fr)
Inventor
岳夫 宇野
哲 藤澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP11734781A priority Critical patent/EP2527499A1/en
Priority to US13/574,377 priority patent/US20120285734A1/en
Priority to KR1020127021811A priority patent/KR101830994B1/ko
Priority to CN201180014212.XA priority patent/CN102803576B/zh
Publication of WO2011090175A1 publication Critical patent/WO2011090175A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a copper foil and a manufacturing method thereof.
  • the present invention particularly relates to a roughened copper foil used for multilayer printed wiring boards, flexible printed wiring boards, and the like, and a method for producing the same. More specifically, the present invention relates to a roughened copper foil that has excellent circuit formability in a fine pattern and transmission characteristics in a high frequency region, and excellent adhesion to a resin substrate, and a method for producing the same. .
  • the printed wiring board is manufactured as follows. First, a thin copper foil for circuit formation is placed on the surface of an electrically insulating substrate made of epoxy resin or polyimide (hereinafter sometimes referred to as a resin base material), and then heated and pressed to form a copper clad laminate. Manufacturing. Next, through holes are formed in the copper-clad laminate and through-hole plating is sequentially performed. Then, a mask pattern is formed on the copper foil on the surface of the copper-clad laminate, and an etching process is performed. A wiring pattern having wiring width and spacing is formed, and finally, a solder resist is formed and other finishing processes are performed.
  • a process of forming a wiring pattern by a subtractive method on a copper-clad laminated board (hereinafter also simply referred to as a laminated board) in which copper foil is provided on both surfaces of a resin base material will be exemplified.
  • a photosensitive film (resist) is attached to one copper foil surface (front surface side) of the multilayer substrate.
  • the pattern of the exposure mask is transferred (projected) onto the photosensitive film by irradiation with exposure light.
  • the unexposed portion of the photosensitive film is removed by a development process to form a film resist pattern (etching resist).
  • etching resist a portion of the copper foil that is not covered (exposed) with the film resist pattern is removed by an etching process to form a wiring on the surface side.
  • a chemical used in the etching process for example, a solution obtained by adding hydrochloric acid to an aqueous solution of ferric chloride or cupric chloride is used.
  • the film resist pattern used in the etching process is removed from the circuit wiring using, for example, an alkaline aqueous solution.
  • a predetermined printed wiring is also applied to the copper foil on the other side (back side) in the same process as described above.
  • electroless Sn plating is applied to the end of the circuit wiring as necessary.
  • a chemical used in the electroless Sn plating step a solution obtained by adding hydrochloric acid to an aqueous solution of Sn ions is used.
  • a blind via hole for connecting the front surface side circuit wiring and the back surface side circuit wiring of the resin base material is formed.
  • a hole is made by a CO 2 laser in the resin base material exposed on the surface side.
  • a smear of the resin base material remains at the bottom of the hole (the roughened surface of the backside circuit wiring).
  • a desmear treatment for removing the soot is performed using an oxidizing agent such as a potassium permanganate solution.
  • a copper film (conductive layer) is formed by electroless copper plating in order to impart conductivity to the insulating portion on the side surface of the hole processed in the resin base material.
  • a soft etching process is performed in which the bottom of the hole (rear circuit wiring) is treated with a sulfuric acid-hydrogen peroxide-based soft etching solution to remove the metal plating and rust prevention plating of the copper foil.
  • electrolytic copper plating is applied on the conductive layer formed by electroless copper plating, and the side and bottom of the hole (back side circuit wiring) and the front side circuit wiring are conducted to complete a double-sided printed wiring board.
  • the step of forming the wiring on the copper foil on the back side can be performed after the blind via hole is formed.
  • copper foil used for printed wiring boards has a roughened surface with protrusions on the surface to be thermocompression bonded to the resin base material, and this roughened surface exhibits an anchoring effect on the resin base material.
  • the reliability of the printed wiring board is ensured by increasing the bonding strength with the foil (see, for example, Patent Document 1).
  • f is the frequency
  • is the permeability of the conductor
  • is the conductance of the conductor.
  • the resin base material tends to remain in the blind via hole and remains at the bottom of the blind via hole.
  • Insufficient removal of the insulating resin (smear) to be performed results in insufficient formation of a conductive layer of electroless copper plating, which may cause poor conduction of the upper and lower circuits in the blind via hole.
  • a copper foil with a smooth surface that is not roughened is used as a copper foil for fine pattern and high frequency printed wiring boards.
  • these smooth copper foils are excellent in fine pattern circuit formability and transmission characteristics in a high frequency range, it is difficult to sufficiently improve the adhesion between the copper foil and the resin base material.
  • chemical penetration may occur at the interface between the copper foil and the resin base material.
  • the adhesiveness is reduced due to the manufacturing process of the printed wiring board and the thermal load during product use.
  • the printed wiring board that supports fine patterns has a very small bonding area between the circuit wiring (copper foil) and the resin base material. There is a risk of circuit wiring peeling. Therefore, a copper foil having good adhesion to the resin base material is desired.
  • an object of the present invention is to provide a roughened copper foil that is excellent in fine pattern circuit formability and transmission characteristics in a high frequency region, and that is excellent in adhesion to a resin substrate.
  • this invention is providing the printed wiring board using the copper clad laminated board which affixed the roughening process copper foil to the resin base material, and the said copper clad laminated board.
  • the inventors have found that the amount and shape of the roughening treatment applied to the surface of the copper foil are in an appropriate range, so that the fine pattern circuit formability and transmission characteristics in the high frequency range are excellent, and the resin base material It was found that a roughening treatment with excellent adhesion can be provided.
  • the roughened copper foil according to the present invention has a roughening in which Rz increases by 0.05 to 0.3 ⁇ m with respect to the surface roughness Rz of the base copper foil on at least one side of the base copper foil (untreated copper foil) And a roughening treatment surface having a surface roughness Rz after the roughening treatment of 1.1 ⁇ m or less, the roughening treatment surface having a width of 0.3 to 0.8 ⁇ m and a height of
  • This is a copper foil formed of roughened particles having a convex shape with a sharp tip with an aspect ratio [height / width] of 1.2 to 3.5 with an aspect ratio of 0.4 to 1.8 ⁇ m.
  • a roughening in which Rz is increased by 0.05 to 0.3 ⁇ m with respect to the surface roughness Rz of the base copper foil is applied to a base copper foil that is not surface-treated.
  • the surface roughness Rz after the roughening treatment is 1.1 ⁇ m or less, and the width of the roughened particles having a convex shape with a sharp tip is 0.3 to 0.8 ⁇ m, high
  • a roughened surface having a thickness of 0.4 to 1.8 ⁇ m and an aspect ratio [height / width] of 1.2 to 3.5 is formed.
  • the present invention is a copper clad laminate obtained by laminating the roughened copper foil on a resin base material. Moreover, it is a printed wiring board using the said copper clad laminated board.
  • the roughened copper foil of the present invention is excellent in fine pattern circuit formability and transmission characteristics in a high frequency range, and has adhesion and chemical resistance with a resin substrate (chemicals at the interface between the copper foil and the resin substrate). It is a roughened copper foil excellent in preventing penetration. Furthermore, according to the copper-clad laminate using the roughened copper foil of the present invention, it is not only suitable for fine patterns and high-frequency substrates, but also has a good adhesion with a good adhesion between the resin base material and the copper foil. A wiring board can be provided.
  • FIG. 3 illustrates a process of an embodiment of the present invention. It is a figure which shows the expanded cross section of the roughening copper foil by embodiment of this invention. It is a figure which shows the cross section of the copper clad laminated base material of the Example of this invention.
  • step 1 after manufacturing a surface untreated copper foil (base material copper foil) (step 1), the surface of the copper foil is rough to improve adhesion to the resin substrate.
  • the surface treatment (step 4) is performed for the purpose of removing the roughened particles and preventing rusting as necessary.
  • a surface treatment a roughening treatment mainly made of copper or a copper alloy is performed (step 2), and a surface treatment with Ni, Zn, an alloy thereof, or Cr or the like is performed on the surface as necessary (step). 3, 4) Further, if necessary, a silane coupling treatment (step 5) for improving adhesion to the resin base material is performed.
  • the roughening treatment that improves the adhesion between the copper foil and the resin base material improves the adhesion as the roughened particles become rougher, that is, as the surface irregularities become rougher. Transmission characteristics in the band and desmearability at the time of blind via hole drilling tend to deteriorate.
  • the surface of the base material copper foil (untreated copper foil) is first subjected to a roughening treatment for increasing the surface roughness Rz of the base material copper foil by 0.05 to 0.30 ⁇ m. Apply with alloy (step 2). At this time, the surface roughness Rz after the roughening treatment is 1.1 ⁇ m or less.
  • the roughening treatment performed with the copper or copper alloy is preferably performed in a range where the surface roughness Ra is increased by 0.02 to 0.05 ⁇ m, and Ra after the roughening treatment is preferably 0.35 ⁇ m or less.
  • the increase amount of the surface roughness Rz after the roughening treatment is a treatment in which the lower limit value is less than 0.05 ⁇ m, the adhesion with the resin base material is slightly lowered, and the increase amount of Rz exceeds the upper limit value of 0.30 ⁇ m. As a result, the surface becomes rough, and the circuit formability and transmission characteristics described later deteriorate.
  • the surface roughness Rz after the roughening treatment less than 1.1 ⁇ m, it is excellent in circuit formability in fine patterns and transmission characteristics in the high frequency band without impairing adhesion to the resin base material.
  • the roughened copper foil can be obtained.
  • the surface roughness Ra and Rz are values measured in accordance with JIS-B-0601.
  • the roughened surface of the copper foil has a convex size that forms the roughened surface, as shown in an enlarged schematic cross section in FIG.
  • the tip has a point of 0.4 to 1.8 ⁇ m.
  • the width w in the convex size is the length of the root portion of the foil surface
  • the height h is the length from the foil surface to the top.
  • the aspect ratio [height / width] of the convex shape on the roughened surface is set to 1.2 to 3.5.
  • the aspect ratio [height / width] is 1.2 to 3.5 is that if it is less than 1.2, the adhesiveness with the insulating resin is not sufficient, and if the aspect ratio is greater than 3.5, the rough projection This is because there is a high possibility that the portion is missing from the copper foil.
  • FIG. 2 it is preferable to perform a roughening treatment in which the three-dimensional surface area of the protrusion by the laser microscope is three times or more than the two-dimensional surface area when the protrusion is viewed from A. .
  • the reason for applying a roughening treatment that increases the three-dimensional surface area by a laser microscope to three times or more with respect to the two-dimensional surface area is that the contact force with the resin base material decreases when the surface roughness is less than three times.
  • Software for the etching process in the circuit wiring formation process (FIG. 1, step 8), the plating process in the electroless Sn plating process on the edge of the circuit wiring (FIG.
  • step 3 the software for the blind via hole drilling process
  • a chemical used for each process it is impossible to prevent a chemical used for each process from permeating into the interface between the copper foil and the resin base material (deteriorating chemical resistance).
  • a soft etching liquid has few areas which contact the surface of roughening particle
  • the surface area is increased, the adhesion due to the anchor effect is increased, and the heat resistant adhesion is improved.
  • the effect of reducing the resin residue on the roughened portion at the time of desmear treatment on the bottom of the via and providing good soft etching property by increasing the surface area is exhibited.
  • the amount of roughening (weight of roughened particles adhering to the roughening treatment) applied to the base copper foil is 3.56 to 8.91 g (converted to thickness) per 1 m 2. : 0.4 to 1.0 ⁇ m).
  • the reason why the roughening amount is 3.56 to 8.91 g per 1 m 2 is that the base material copper foil (untreated copper foil) has an Rz of 0.05 to 0.30 ⁇ m, or an Ra of 0.02 to 0.8. This is because the optimum range for attaching roughened particles increasing by 05 ⁇ m is obtained.
  • the roughened surface provided on the surface of the base copper foil is at least one selected from the group consisting of Cu, an alloy of Cu and Mo, and Cu and Ni, Co, Fe, Cr, V, and W. It is made of a copper alloy containing seed elements.
  • the roughened surface (projection) of a desired form can be obtained with Cu particles or alloy particles of Cu and Mo
  • Cu particles or alloy particles of Cu and Mo can be obtained from the group of Ni, Co, Fe, Cr, V and W.
  • At least one element selected from the group of Mo, Ni, Co, Fe, Cr, V and W contained in the roughened particles occupies 0.01 ppm to 20% with respect to the amount of Cu present. This is because when the abundance is 0.01 ppm or less, a desirable effect cannot be expected, and when the alloy composition exceeds 20%, it becomes difficult to dissolve when etching a circuit pattern. Furthermore, in order to obtain uniform protrusions, it is desirable to optimize the composition, current density, solution temperature, and treatment time of various treatment solutions.
  • One kind of metal plating layer may be provided (FIG. 1, step 2).
  • the amount of deposited metal of Ni, Ni alloy, Zn, Zn alloy is 0.05 mg / dm 2 to 10 mg / dm 2 . It is desirable to form a rust prevention layer made of Cr plating or a chromate film on the metal plating layer.
  • a silane coupling treatment may be performed on the rust preventive layer (FIG. 1, step 5).
  • the Zn content (wt%) represented by the following formula 1 is 6% to 30%, and the Zn content is 0.1%. It is desirable to adhere to 08 mg / dm 2 or more.
  • Zn content (wt%) Zn adhesion amount / (Ni adhesion amount + Zn adhesion amount) ⁇ 100 (1)
  • the amount of Zn deposited is specified to improve the heat resistance and chemical resistance between the copper foil and the resin base material.
  • the Zn content (wt%) in the Ni—Zn alloy is less than 6%, the heat resistance Is not improved, and if it exceeds 30%, the chemical resistance deteriorates, which is not preferable.
  • the amount of adhesion of Ni is specified because it has an influence on the improvement of heat resistance and soft etching properties. If the amount of adhesion of Ni is less than 0.45 mg / dm 2 , the improvement in heat resistance cannot be expected so much, and 3 mg / dm 3 This is because if it exceeds 2 , there is a concern that the soft etching property may be adversely affected.
  • a silane coupling treatment may be performed on the rust preventive layer as needed in order to improve the adhesion between the roughened copper foil and the resin substrate (FIG. 1, step 4).
  • the silane coupling agent can be appropriately selected from epoxy, amino, methacrylic, vinyl, mercapto and the like depending on the target resin substrate. It is preferable to select an epoxy, amino, or vinyl coupling agent that is particularly compatible with the resin base material used for the high-frequency compatible substrate, and particularly excellent compatibility with the polyimide used for the flexible printed wiring board. It is preferable to select an amino coupling agent.
  • polymer resins having various components can be used as the resin substrate.
  • a phenolic resin or an epoxy resin is mainly used for a rigid wiring board or a printed wiring board for IC.
  • polyimide or polyamideimide is mainly used for the flexible substrate.
  • a heat-resistant resin having a high glass transition point (Tg) is used as a material with good dimensional stability, a material with less warping and twisting, a material with less heat shrinkage, and the like.
  • heat resistant resin examples include a heat resistant epoxy resin, BT (bismaleimide triazine) resin, polyimide, polyamide imide, polyether imide, polyether ether ketone, polyphenylene ether, polyphenylene oxide, and cyanate ester resin.
  • BT bismaleimide triazine
  • a heat press method, a continuous roll laminate method, a continuous belt press method, etc. can be used as a method of laminating these resin base materials and roughened copper foil, and adhesives etc. It is possible to perform thermocompression bonding without going through. Further, as another method, there is a method in which a resin-containing material that has been melted or dissolved in a solvent and has fluidity is applied to the surface of the roughened copper foil, and then the resin is cured by heat treatment.
  • the roughened surface of the copper foil is previously coated with an adhesive resin such as epoxy resin or polyimide, and the resin-coated copper foil in which the adhesive resin is semi-cured (B stage) is used as a copper foil for circuit formation. It is also used to manufacture a multilayer printed wiring board or a flexible printed wiring board by thermocompression bonding the resin side for adhesion to a resin substrate.
  • the adhesion between the copper foil and the resin base material can be increased even with a fine roughening treatment, so that it is possible to produce a copper-clad laminate with good adhesion by combining with the present invention, which is more effective. Is.
  • the material of the resin substrate plays an important role in the characteristic impedance, signal propagation speed, etc., so the dielectric constant and dielectric loss are suitable as a resin substrate suitable for printed circuit boards for high-frequency circuits.
  • a substrate having excellent properties such as the above is required.
  • Various materials have been proposed to satisfy these requirements. For example, for high-speed transmission of electric signals, liquid crystal polymers, polyfluorinated ethylenes, isocyanate compounds are used as resin substrates with low dielectric constant and low dielectric loss. , Polyetherimide, polyetheretherketone, polyphenylene ether and the like.
  • the copper-clad laminate using the roughened copper foil according to the embodiment of the present invention has excellent adhesion between the copper foil and the resin base material, and can easily form a blind via hole with a laser such as a CO 2 gas laser. Therefore, even after processing such as etching, drilling, desmear, soft etching, copper plating, etc. in the drilling process of blind via holes, there is no problem in peeling off the copper foil and the resin base material. Is possible.
  • a blind via hole is a via that is open only on one side of a printed wiring board, and is described in “Printed Circuit Terminology” edited by the Japan Printed Circuit Industry Association.
  • the processing conditions such as laser irradiation energy can be appropriately optimized depending on the thickness of the resin base material and the type of resin, and the method for forming holes in the copper-clad laminate and the desmear inside and at the bottom of the holes Optimized conditions can be selected for the treatment method, soft etching treatment method, which is the pretreatment of electroless copper plating on the side and bottom of the hole after desmearing, and it is possible to form the optimum hole at the desired location Become.
  • Foil making process (Step 1) A base material copper foil (untreated copper foil) was produced under the following plating bath and electrolytic plating conditions. (Plating bath and plating conditions) Copper sulfate: 50-80g / L as copper concentration Sulfuric acid concentration: 30-70 g / L Chlorine concentration: 0.01-30ppm Liquid temperature: 35-45 ° C Current density: 20-50A / dm2
  • Step 2 The roughening treatment on the surface of the base material copper foil was performed by the procedure of roughening plating treatment 1 and then roughening plating treatment 2 under different conditions.
  • Step 3 Metal plating layer forming process
  • Ni plating Step 3a
  • Nickel sulfate hexahydrate 240 g / L
  • Nickel chloride hexahydrate 45 g / L
  • Boric acid 30 g / L
  • Sodium hypophosphite 5 g / L
  • Liquid temperature 50 ° C
  • Current density 0.5 A / dm 2
  • Nickel sulfate nickel concentration of 0.1 g / L to 200 g / L, preferably 20 g / L to 60 g / L, Zinc sulfate: 0.01 g / L to 100 g / L as zinc concentration, preferably 0.05 g / L to 50 g / L, Ammonium sulfate: 0.1 g / L to 100 g / L, preferably 0.5 g / L to 40 g / L Liquid temperature: 20-60 ° C pH: 2-7 Current density: 0.3 to 10 A / dm 2
  • Step 4 Rust prevention treatment (Step 4) After the metal plating layer treatment, Cr plating was performed using the following plating bath and plating conditions. (Cr plating) Chromic anhydride: 0.1 g / L to 100 g / L Liquid temperature: 20-50 ° C Current density: 0.1 to 20 A / dm 2
  • Silane treatment (step 5) After the rust-proof plating treatment, silane coupling treatment was performed with the following treatment liquid and treatment conditions.
  • Silane type ⁇ -aminopropyltrimethoxysilane Silane concentration: 0.1 g / L to 10 g / L Liquid temperature: 20-50 ° C
  • test pieces Sizes suitable for various evaluations shown in Table 1, using a surface-roughened copper foil obtained by performing surface treatments in steps 2 to 5 on the untreated copper foil produced under the electrolytic plating conditions in step 1 above. It was processed into a shape and used as a test piece. The characteristic values of each test piece are shown in Table 1.
  • the three-dimensional surface area was measured with a laser microscope (VK8500 manufactured by Keyence Corporation), and the area of the measurement field viewed from the upper part A of FIG.
  • the value of “ ⁇ two-dimensional surface area” was defined as the surface area ratio.
  • Initial adhesion As shown in FIG. 3, the adhesion strength was measured after the test piece was bonded to the resin substrate.
  • a commercially available polyimide resin (Upilex 25VT manufactured by Ube Industries, Ltd.) was used as the resin base material.
  • Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • After etching the resin substrate and the test piece after bonding into 1 mm wide circuit wiring fix the resin side to the stainless steel plate with double-sided tape
  • the circuit wiring was obtained by peeling in the 90 degree direction at a speed of 50 mm / min.
  • the initial adhesion is determined to be 0.8 kN / m or more, and the determination criteria are shown in Table 1.
  • Heat resistance Measurement of adhesion strength after heat treatment
  • Chemical resistance Measurement of adhesion strength after acid treatment
  • attachment with the resin base material, the adhesive strength after being immersed in the hydrochloric acid solution of the ratio of water: hydrochloric acid 1: 1 at normal temperature for 1 hour was measured. The chemical resistance is 0.8 kN / m or more as acceptable, and the determination criteria are shown in Table 1.
  • Circuit formability (measurement of remaining copper at the end of circuit wiring) The test piece after bonding to the resin base material was etched into a 1 mm wide circuit wiring, and the width of the remaining copper at the end of the wiring circuit (interface between the copper foil and the resin base material) was measured. The circuit formability is less than 3.0 ⁇ m, and the determination criteria are shown in Table 1. (9) Transmission characteristics (measurement of transmission loss at high frequency) After the surface-treated test piece was bonded to the resin base material, a sample for measuring transmission characteristics was prepared and the transmission loss in the high frequency band was measured. A commercially available polyphenylene ether resin (Megtron 6 manufactured by Panasonic Electric Works Co., Ltd.) was used as the resin base material.
  • a known stripline resonator method (microstrip structure: dielectric thickness: 50 ⁇ m, conductor length: 1.0 mm, conductor thickness: 12 ⁇ m, conductor circuit width: 120 ⁇ m, suitable for measurement in the range of 1 to 25 GHz,
  • the transmission loss (dB / 100 mm) at a frequency of 5 GHz was measured using a method of measuring the S21 parameter with a characteristic impedance of 50 ⁇ and no coverlay film.
  • the transmission characteristics are acceptable when the transmission loss is less than 25 dB / 100 mm.
  • Example 1 roughening treatment only
  • the surface of the base material copper foil (untreated copper foil) is subjected to a roughening treatment so as to have the increased roughening amount shown in Table 1, and as shown in FIG.
  • Table 1 shows the aspect ratio and the surface area ratio.
  • the metal plating layer, the rust prevention plating layer, and the silane treatment layer were not formed.
  • Table 1 shows the results of evaluation of initial adhesion, heat resistance, chemical resistance, circuit formability, transmission characteristics, and soft etching properties using this roughened copper foil.
  • Examples 2 to 6, 11 The surface of the base material copper foil (untreated copper foil) is subjected to a roughening treatment so as to have an increased roughening amount as shown in Table 1 to form a metal plating layer, a rust-proof plating layer, and a silane treatment layer. As shown, a roughened surface consisting of convex particles with sharp tips was used. Table 1 shows the aspect ratio and the surface area ratio. On this surface, a Ni metal plating layer, a Zn metal plating layer, and a Cr anticorrosion plating layer having an adhesion amount shown in Table 1 were sequentially formed, and finally a silane treatment layer was formed. Table 1 shows the results of evaluation of initial adhesion, heat resistance, chemical resistance, circuit formability, transmission characteristics, and soft etching properties using this roughened copper foil.
  • Example 7 to 10 The surface of the base material copper foil (untreated copper foil) was subjected to a roughening treatment so as to have the increased roughening amount shown in Table 1.
  • Table 1 shows the aspect ratio and the surface area ratio.
  • a metal plating layer made of Ni—Zn and a rust-proof plating layer of Cr shown in Table 1 were sequentially formed, and finally a silane treatment layer was formed.
  • Table 1 shows the results of the same evaluation as in Example 1 using this roughened copper foil.
  • the judgment criteria shown in Table 1 are ⁇ : good, :: within the criteria, and x: outside the criteria in each evaluation.
  • Judgment criteria for each evaluation item are as follows.
  • Initial adhesion (kN / m) ⁇ : 1.0 or more, ⁇ : 0.8 or more, less than 1.0, x: less than 0.8
  • Heat resistance [Adhesive residual rate after heat resistance test (%)] ⁇ : 90 or more, ⁇ : 72 or more and less than 90, x: less than 72
  • Chemical resistance [Adhesion after chemical resistance test (kN / m)] ⁇ : 1.0 or more, ⁇ : 0.8 or more and less than 1.0, x: less than 0.8 circuit formation [measurement of residual copper at end of circuit wiring ( ⁇ m)]
  • Example 1 has a roughened foil roughness, an increased roughening amount, an aspect ratio, and a surface area ratio within the range, and is excellent in circuit formability, transmission characteristics, and soft etching properties.
  • the metal plating layer, the rust prevention plating layer, and the silane treatment layer are not applied, the initial adhesion, heat resistance, and chemical resistance are slightly lower than those of Examples 2 to 4 and the like. (Comprehensive evaluation ⁇ )
  • Example 5 a metal plating layer, a rust preventive plating layer, and a silane treatment layer were formed, but the increased roughening amount and aspect ratio were within the range, but the circuit forming property, transmission property, and soft etching property were slightly higher because they were larger. Low. (Comprehensive evaluation ⁇ )
  • Example 6 a metal plating layer, a rust prevention plating layer, and a silane treatment layer were formed. However, the aspect ratio and the surface area ratio were within the standard, but the soft etching property was slightly low due to the small size. (Comprehensive evaluation ⁇ )
  • Example 10 a metal plating layer, a rust preventive plating layer, and a silane treatment layer were formed, but the soft etching property was slightly low due to a slightly larger amount of Ni adhesion. (Comprehensive evaluation ⁇ )
  • Example 11 the roughening increase amount, the roughening width, and the roughening height are within the standard. However, since the value is small, initial adhesion, heat resistance, chemical resistance, and soft etching property are slightly low.
  • the roughened copper foil according to the embodiment of the present invention satisfies the initial adhesion to the resin base material, heat resistance, chemical resistance, circuit formation, transmission characteristics, and soft etching properties, and is industrial It is an excellent roughened copper foil.
  • the excellent roughened copper foil having excellent adhesion to the resin base material and chemical resistance and soft etching properties are industrially satisfied. Can be manufactured.
  • the adhesive strength between the resin base material and the copper foil is strong, the circuit has a chemical resistance, and satisfies the soft etching property. Such an excellent effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

ファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性や耐薬品性に優れる粗化処理銅箔を提供する。母材銅箔(未処理銅箔)の少なくとも片面に、前記母材銅箔の表面粗さRzに対してRzが0.05~0.3μm増加する粗化処理が施されて、粗化処理後の表面粗さRzが1.1μm以下である粗化処理面を有する粗化処理銅箔であって、前記粗化処理面は幅が0.3~0.8μm、高さが0.4~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状の粗化粒子で形成されている表面粗化処理銅箔である。

Description

粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
 本発明は、銅箔とその製造方法に関する。
 本発明は、特に、多層プリント配線板やフレキシブルプリント配線板等に用いる粗化処理銅箔とその製造方法に関する。
 さらに特定的には、本発明は、ファインパターンでの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる粗化処理銅箔と、その製造方法に関するものである。
 近年では電子機器の小型化・薄型化が進行している。特に携帯電話に代表される携帯機器に用いられる各種電子部品は高度に集積化され、小型でかつ高密度のプリント配線板を内蔵するICやLSIなどを使用している。これに対応して、これらに使用される高密度実装用の多層プリント配線板やフレキシブルプリント配線板等(以下、単に、プリント配線板ということがある)における回路配線パターンにも高密度化が要求され、回路配線の幅と間隔が微細な回路配線パターン、いわゆるファインパターンのプリント配線板が要求されている。例えば、フレキシブルプリント配線板においては回路配線の幅と間隔とがそれぞれ50μm前後のものが要求されている。また、小型ICに使用されるプリント配線板においては回路配線の幅と間隔とがそれぞれ30μm前後という微細な回路配線を有するプリント配線板が要求されている。
 プリント配線板は次のようにして製造されている。
 まず、エポキシ樹脂やポリイミドなどから成る電気絶縁性の基板(以下、樹脂基材ということがある)の表面に、回路形成用の薄い銅箔を置いたのち、加熱・加圧して銅張積層板を製造する。
 ついで、その銅張積層板に、スルーホールの穿設、スルーホールめっきを順次行った後に、該銅張積層板の表面にある銅箔にマスクパターンを形成してエッチング処理を行い、所望する回路配線の幅と間隔を備えた配線パターンを形成し、最後に、ソルダーレジストの形成やその他の仕上げ処理を行う。
 上記のプリント配線板の製造工程について、樹脂基材の両面に銅箔が設けられた銅張積層基板(以下、単に積層基板ともいう)にサブトラクティブ法により配線パターンを形成する工程を例示する。
 まず、積層基板の一方の銅箔表面(表面側)に、感光性フィルム(レジスト)を貼り付ける。感光性フィルム面に露光マスクを装着した露光装置を用い、露光光の照射によって露光マスクのパターンを感光性フィルム上に転写(投影)する。感光性フィルムのうち露光されていない部分を現像プロセスにて除去しフィルムレジストパターン(エッチングレジスト)を形成する。
 次いで、フィルムレジストパターンで覆われていない(露出している)部分の銅箔をエッチング工程にて除去して、表面側の配線を形成する。エッチング工程で使用する薬品としては、例えば塩化第二鉄または塩化第二銅の水溶液に塩酸を加えたものが用いられる。その後、エッチング工程で使用済みのフィルムレジストパターンを、例えばアルカリ水溶液を用いて回路配線上から除去する。
 上記と同様の工程でもう一方の面(裏面側)の銅箔にも所定のプリント配線を施す。
 なお、電子部品やプリント配線板とのはんだ接続を容易とするために、回路配線の端部には必要に応じて無電解Snめっきが施される。無電解Snめっき工程で使用する薬品としては、Snイオンの水溶液に塩酸を加えたものが用いられる。
 上述した工程により樹脂基材の表裏面に回路配線を形成した後、樹脂基材の表面側回路配線と裏面側回路配線とを導通するためのブラインドビアホールを穿設する。
 ブラインドビアホールの穿設は、表面側に露出した樹脂基材にCOレーザーで穴をあける。このレーザーでの穴あけ工程では穴の底部(裏面側回路配線の粗化処理面)に樹脂基材(絶縁樹脂)の滓(スミア)が残る。この滓を除去するために過マンガン酸カリウム溶液等の酸化性の薬剤を用いて滓を除去するデスミア処理を行う。
 次に、樹脂基材に加工された穴の側面の絶縁部に導電性を付与するために、無電解銅めっきにより銅皮膜(導通層)を形成する。このための前処理として、穴の底部(裏面側回路配線)を硫酸-過酸化水素系のソフトエッチング液にて処理するソフトエッチング処理を施し、銅箔の金属めっきや防錆めっきを除去する。
 最後に、無電解銅めっきにより形成された導通層の上に電気銅めっきを施して、穴の側面および底部(裏面側回路配線)と表面側回路配線とを導通させ、両面プリント配線基板を完成させる。
 なお、裏面側の銅箔に配線を形成する工程はブラインドビアホールを穿設した後に行うことも可能である。
特開平05-029740号公報 再表2004-005588号公報 特開2005-344174号公報 特開2006-175634号公報
 従来、プリント配線板に用いる銅箔は、樹脂基材に熱圧着する側の表面を突起のある粗化面とし、この粗化面で樹脂基材に対するアンカー効果を発揮させ、樹脂基材と銅箔との接合強度を高めてプリント配線板としての信頼性を確保している(たとえば、特許文献1参照)。
 しかしながら、高密度の微細配線を有するプリント配線板用の銅箔として従来通りの粗化処理を施した銅箔を用いると、樹脂基材との密着強度を確保するために施した粗化処理の突起部が樹脂基材に深く喰い込む。この喰い込んだ突起部を完全にエッチング除去するには長時間のエッチング処理を必要とする。
 喰い込んだ突起部を完全に除去しないと、その部分が回路配線端部(銅箔と樹脂基材との境界部)において回路配線とつながったままの状態(残銅)となり、回路配線間での絶縁不良や回路配線端部の直線性低下による導通のバラツキを引き起こすこととなり、ファインパターンでの回路形成の信頼性に影響を及ぼす可能性があった。
 また、電子機器の情報処理速度アップや高周波無線通信への対応のため、電子部品には電気信号の高速伝送が求められており、高周波対応基板の適用も進行している。高周波対応基板では電気信号の高速伝送のために伝送損失の低減を図る必要があり、樹脂基材の低誘電率化に加えて、導体である銅箔を用いた回路配線の伝送損失を低減することが要求されている。
 数GHzを超える高周波帯域においては、表皮効果により回路配線を流れる電流が銅箔表面に集中する。表皮効果による貫通深さδは、δ=(2/(2πf・μ・σ))1/2
で規定される。
 ただし、fは周波数、μは導体の透磁性、σは導体のコンダクタンスを示す。
 高周波対応基板用の銅箔として従来の粗化処理を施した凹凸の多い銅箔を用いた場合には、凹凸による抵抗が大きい表面領域にのみ電流が集中し、伝送損失が大きくなり、伝送特性が悪化する不具合があった。
 更にまた、ブラインドビアホールの穿設工程において、従来の粗化処理を施した銅箔を用いた場合にはブラインドビアホール内に樹脂基材(絶縁樹脂)が残留しやすく、ブラインドビアホールの穴底部に残存する絶縁樹脂(スミア)の除去が不十分となるために、無電解銅めっきの導通層の形成が不十分となり、ブラインドビアホールにおける上下回路の導通不良の原因となることがある。
 これらの不具合を解消するため、ファインパターン対応や高周波対応のプリント配線板等に用いる銅箔として、粗化処理を施さずに表面が平滑な銅箔を樹脂基材に張り付けて使用する方法がこれまで検討されてきた。(たとえば特許文献2、3、4参照)
 しかしながら、これらの平滑な銅箔はファインパターンの回路形成性や高周波域における伝送特性には優れるものの、銅箔と樹脂基材との密着性を十分に高めることが困難である。また、表面が平滑な銅箔を用いる、回路配線のエッチング工程あるいは回路配線の端部へのSnめっき工程において、銅箔と樹脂基材との界面で薬品の染み込みが発生することがある。さらに、表面が平滑な銅箔を用いると、プリント配線板の製造工程および製品使用中の熱負荷により密着性が低下する。特に、ファインパターン対応のプリント配線板では回路配線(銅箔)と樹脂基材との接合面積が極めて小さく構成されるため、薬品の染み込みや熱負荷後の密着性低下が発生すると樹脂基材から回路配線が剥離する危険性がある。よって、樹脂基材との密着性が良好な銅箔が望まれている。
 以上述べたように、樹脂基材の密着性、耐熱性、耐薬品性、回路形成性や高周波における伝送特性およびソフトエッチング性を満足する銅箔が望まれている。
 したがって、本発明の目的は、ファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる粗化処理銅箔を提供する。
 また本発明は、粗化処理銅箔を樹脂基材に張り付けた銅張積層板および前記銅張積層板を用いたプリント配線板を提供することにある。
 発明者等は鋭意検討した結果、銅箔の表面に施す粗化処理の量と形状を適切な範囲とすることによりファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性に優れる粗化処理を提供可能であることを見出した。
 本発明の粗化処理銅箔は、母材銅箔(未処理銅箔)の少なくとも片面に、前記母材銅箔の表面粗さRzに対してRzが0.05~0.3μm増加する粗化処理が施されて、粗化処理後の表面粗さRzが1.1μm以下である粗化処理面を有し、前記粗化処理面は幅が0.3~0.8μm、高さが0.4~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状の粗化粒子で形成されている銅箔である。
 本発明の粗化処理銅箔の製造方法は、表面処理されていない母材銅箔に、前記母材銅箔の表面粗さRzに対してRzが0.05~0.3μm増加する粗化処理を行い、粗化処理後の表面粗さRzが1.1μm以下の粗化処理面を有し、先端が尖った凸部形状の粗化粒子の幅が0.3~0.8μm、高さが0.4~1.8μm、アスペクト比[高さ/幅]が1.2~3.5の粗化処理面を形成する。
 本発明は、前記粗化処理銅箔を樹脂基材に積層してなる銅張積層板である。
 また、前記銅張積層板を用いたプリント配線板である。
 本発明の粗化処理銅箔はファインパターンの回路形成性や高周波域における伝送特性に優れ、かつ樹脂基材との密着性や耐薬品性(銅箔と樹脂基材との界面での薬品の染み込みを阻止)に優れる粗化処理銅箔である。
 更に、本発明の粗化処理銅箔を用いた銅張積層板によれば、ファインパターンや高周波基板に適するだけでなく、樹脂基材と銅箔との密着性が良好で信頼性の高いプリント配線板を提供することができる。
本発明の実施形態のプロセスを図解する図である。 本発明の実施の形態による粗化銅箔の拡大断面を示す図である。 本発明の実施例の銅張積層基材の断面を示す図である。
 図1に工程を示したように、表面未処理銅箔(母材銅箔)を製造したのち(ステップ1)、その銅箔の表面には樹脂基材との密着性を改善するための粗化処理(ステップ2,3)と、必要によりその上に粗化処理粒子の脱落や防錆を目的とした表面処理(ステップ4)がなされる。
 本発明の実施の形態では表面処理として、主として銅又は銅合金からなる粗化処理を施し(ステップ2)、その上に必要によりNi、Znおよびこれらの合金等やCrによる表面処理を施し(ステップ3,4)、さらに必要に応じて樹脂基材との密着性向上のためのシランカップリング処理(ステップ5)が施される。
 銅箔と樹脂基材との密着性を向上させる粗化処理は、粗化粒子を粗くするほど、すなわち表面の凹凸を粗くするほど密着性は向上するが、ファインパターンでの回路形成性や高周波帯域における伝送特性、ブラインドビアホール穿設時のデスミア性は悪くなる傾向にある。
 本発明の実施の形態では、母材銅箔(未処理銅箔)の表面に、先ず、母材銅箔の表面粗さRzが0.05~0.30μm増加する粗化処理を銅又は銅合金で施す(ステップ2)。このとき、粗化処理後の表面粗さRzは1.1μm以下とする。
 なお、上記銅又は銅合金で施す粗化処理では、表面粗さRaを0.02~0.05μm増加する範囲で行い、粗化処理後のRaを0.35μm以下とすることが好ましい。
 粗化処理後の表面粗さRzの増加量が下限値0.05μmに満たない処理であると、樹脂基材との密着性がやや低くなり、Rzの増加量が上限値0.30μmを超えると表面が粗くなり、後述する回路形成性や伝送特性が低下する。
 また、粗化処理後の表面粗さRzを1.1μmよりも粗くしないことで、樹脂基材との密着性を損なうことなく、ファインパターンでの回路形成性や高周波帯域での伝送特性に優れた粗化処理銅箔とすることができる。
 なお、表面粗さRa、RzはJIS-B-0601の規定に準じて測定される値である。
 本発明の実施の形態では銅箔の粗化面は、粗化を形成する凸状の大きさが、図2に概略断面を拡大して示すように、幅w0.3~0.8μm、高さh0.4~1.8μmの先端が尖っている形状とする。このような形状とすることで絶縁樹脂と張付ける際に樹脂基材に粗化処理した凹凸が食い込み易く(アンカー効果)、良好な密着性を得ることができる。なお、凸状の大きさにおける幅wは箔表面の付け根部分の長さであり、高さhは箔表面から頂きまでの長さである。
 また、本発明の実施の形態では、粗化処理面における凸部形状のアスペクト比[高さ/幅]を1.2~3.5とする。アスペクト比[高さ/幅]を1.2~3.5とする理由は1.2未満では絶縁樹脂との密着性が十分でなく、アスペクト比が3.5より大きいと、粗化した凸部分が銅箔より欠落する可能性が高くなり好ましくないからである。
 また本発明の実施の形態では、図2において、Aから突起を見たときの二次元表面積に対してレーザーマイクロスコープによる突起の三次元表面積が3倍以上となる粗化処理を施すことが好ましい。二次元表面積に対してレーザーマイクロスコープによる三次元表面積が3倍以上となる粗化処理を施す理由は、3倍未満では樹脂基材との接触面積が少なくなることにより密着力の低下が起こるためであり、回路配線形成工程(図1、ステップ8)のエッチング処理や、回路配線の端部への無電解Snめっき工程のめっき処理や(図1、ステップ3)、ブラインドビアホール穿設工程のソフトエッチング処理等において、各処理に使用する薬品が銅箔と樹脂基材との界面に染み込むのを阻止できない(耐薬品性を損う)ためである。また、ソフトエッチング液が粗化粒子や母材銅箔の表面と接触する面積が少なく、ソフトエッチング処理におけるエッチング速度が遅くなってしまうためである。
 本発明の実施の形態では、粗化粒子の形状およびその表面粗さ、表面積を適切に制御することにより、表面積の増加やアンカー効果による密着性の増加、耐熱密着性の改善につながり、またレーザー加工によりブラインドビアホールを形成後、ビア底部へのデスミア処理時の粗化部への樹脂残りを低減させ、かつ表面積増加により良好なソフトエッチング性をもたらす効果が発現する。
 本発明の実施の形態において、母材銅箔に粗化処理を施す粗化量(粗化処理で付着する粗化粒子の重量)は、1mあたり3.56~8.91g(厚さ換算:0.4~1.0μm)であることが好ましい。粗化量を1mあたり3.56~8.91gとするのは、母材銅箔(未処理銅箔)に、Rzが0.05~0.30μm、又はRaが0.02~0.05μm増加する粗化粒子を付着させるのに最適な範囲となるからである。ここで、母材銅箔は、表面粗さがRa:0.30μm以下、Rz:0.8μm以下のものを用いることが好ましい。
 本発明の実施の形態において、母材銅箔の表面に設ける粗化処理面は、CuまたはCuとMoの合金やCuとNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含む銅合金で形成する。
 Cu粒子又はCuとMoの合金粒子で所望形態の粗化処理面(突起物)は得られるが、Cu粒子又はCuとMoの合金粒子にNi、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含む2種類以上の合金粗化粒子で形成することで突起物は更に均一性のある突起物となる。
 前記粗化粒子に含まれるMo、Ni、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素は、Cuの存在量に対し0.01ppm~20%を占めることが好ましい。存在量が0.01ppm以下では望ましい効果が期待できず、20%を越える合金組成では、回路パターンをエッチングする際に、溶解しにくくなるためである。更に、均一な突起物を得るためには各種処理液の組成、電流密度、液温、処理時間を最適にすることが望ましい。
 また、粗化粒子の表面に、樹脂基材との密着性・耐熱性・耐薬品性・粉落ち性等を向上させることを目的にNi、Ni合金、Zn、Zn合金の群から選ばれる少なくとも1種の金属めっき層を設けると良い(図1、ステップ2)。
 これらの目的を果たすためには、Ni、Ni合金、Zn、Zn合金の付着金属量は0.05mg/dm~10mg/dmであることが望ましい。
 上記金属めっき層の上に、Crめっきやクロメート被膜からなる防錆層を形成することが望ましい。
 更に、防錆層の上にシランカップリング処理を施すと良い(図1、ステップ5)。
 本発明の実施の形態において、金属めっき層としてNi-Zn合金めっき処理を施す場合に、下記の式1で示すZn含有率(wt%)が6%~30%で、かつ、Znを0.08mg/dm以上付着させることが望ましい。
 Zn含有率(wt%)=Zn付着量/(Ni付着量+Zn付着量)×100…(1)
 Znの付着量を規定するのは銅箔と樹脂基材との耐熱性と耐薬品性を改善するためであり、Ni-Zn合金中のZn含有率(wt%)が6%未満では耐熱性が改善されず、30%より多いと耐薬品性が悪くなり好ましくないためである。
 また、Znについては0.08mg/dm以上付着させることが望ましい。Znを0.08mg/dm以上付着させる理由は耐熱性を改善するためで、0.08mg/dm未満では耐熱性の効果が期待できないためである。
 また、Niについては0.45~3mg/dm付着させることが好ましい。Niの付着量を規定するのは耐熱性の改善とソフトエッチング性に影響があるためであり、Ni付着量が0.45mg/dm未満では耐熱性の改善がそれほど期待できず、3mg/dmより多いとソフトエッチング性に悪影響を及ぼすことが懸念されるためである。
 前記防錆層の上に、必要に応じて前記粗化処理銅箔と樹脂基材との密着性を向上させるためにシランカップリング処理を施してもよい(図1、ステップ4)。
 シランカップリング剤は対象となる樹脂基材によりエポキシ系、アミノ系、メタクリル系、ビニル系、メルカプト系等から適宜選択することができる。
 高周波対応基板に用いられる樹脂基材には、特に相性の優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することが好ましく、フレキシブルプリント配線板に用いられるポリイミドには、特に相性の優れるアミノ系のカップリング剤を選択することが好ましい。
 銅張積層板の製造(図1、ステップ7)
 樹脂基材としては、種々の成分の高分子樹脂を用いることができる。
 リジッド配線板やIC用のプリント配線板には主にフェノール樹脂やエポキシ樹脂を用いる。
 フレキシブル基板にはポリイミドやポリアミドイミドを主に用いる。
 ファインパターン(高密度)配線板や高周波基板用においては寸法安定性のよい材料、反りねじれの少ない材料、熱収縮の少ない材料などとしてガラス転移点(Tg)の高い耐熱樹脂を用いる。
 耐熱樹脂としては、例えば耐熱エポキシ樹脂、BT(ビスマレイミド トリアジン)レジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフェニレンオキサイド、シアネートエステル系樹脂などがあげられる。
 銅張積層板を製造するため、これらの樹脂基材と粗化処理銅箔を張り合わせる方法としては、熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができ、接着剤等を介さずに熱圧着することができる。
 また、別の方法としては、溶融状態や溶剤に溶解して流動性を有する状態とした樹脂含有物を粗化処理銅箔の表面に塗布した後に、熱処理により樹脂を硬化させる方法もある。
 最近では、銅箔の粗化面を予めエポキシ樹脂やポリイミドのような接着用樹脂で被覆し、該接着用樹脂を半硬化状態(Bステージ)とした樹脂付き銅箔を回路形成用の銅箔として用い、その接着用樹脂側を樹脂基材に熱圧着して多層プリント配線板やフレキシブルプリント配線板を製造することも行われている。この方法では微細な粗化処理でも銅箔と樹脂基材との密着力を高めることができるため、本発明と組み合わせることにより密着性の良好な銅張積層板を製造することができ、より効果的である。
 電気信号の伝送速度が速くなると、樹脂基材の材質が特性インピーダンスや信号伝搬速度等に重要に関与してくるため、高周波回路用プリント配線板に適した樹脂基材として誘電率や誘電体損失等の特性に優れた基材が要求される。これらを満足させるために種々な材料が提案されており、例えば電気信号の高速伝送のためには、誘電率が小さく、誘電体損失も小さい樹脂基材として、液晶ポリマー、ポリフッ化エチレン、イソシアネート化合物、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル等を挙げることができる。
 本発明の実施の形態の粗化処理銅箔を用いた銅張積層板は、銅箔と樹脂基材との密着性が優れ、またCOガスレーザー等のレーザーで容易にブラインドビアホールの形成加工ができることから、ブラインドビアホールの穿設工程においてエッチング、穴空け、デスミア、ソフトエッチング、銅めっき等の加工をおこなった後でも、銅箔と樹脂基材との剥がれ等に問題はなく使用することが可能である。
 ブラインドビアホールとは、プリント配線板の片側のみが開口しているビアであり、社団法人日本プリント回路工業会編「プリント回路用語」等に記載されている。
 上述したように本発明の実施の形態の銅張積層板によれば、COガスレーザー等のレーザーによるブラインドビアホールの穿設工程、穴空け、デスミア、ソフトエッチング、銅めっき等の加工を容易に行える。従って、レーザーの照射エネルギー等の加工条件については樹脂基材の厚みや樹脂の種類により適宜、最適化した条件を選択でき、また銅張積層板への穴形成方法および穴の内部および底部のデスミア処理方法、デスミア後の穴の側面や底部への無電解銅めっきの前処理であるソフトエッチング処理方法についても最適化した条件を選択でき、所望する箇所に最適なホールを形成することが可能となる。
 以下に、本発明の実施の形態に基づく実施例について更に詳しく説明するが、本発明はこれらに限定されるものではない。
 本発明の実施の形態の銅箔の表面処理工程を、図1のプロセス処理図を参照して、製箔工程から順に説明する。
(1)製箔工程(ステップ1)
下記のめっき浴及び電解めっき条件で母材銅箔(未処理銅箔)を製造した。
(めっき浴及びめっき条件)
硫酸銅:銅濃度として50~80g/L
硫酸濃度:30~70g/L
塩素濃度:0.01~30ppm
液温:35~45℃
電流密度:20~50A/dm2
(2)粗化処理工程(ステップ2)
 母材銅箔の表面への粗化処理は、条件が異なる、粗化めっき処理1、次いで粗化めっき処理2の手順で行った。
(粗化めっき処理1:ステップ2a)
  硫酸銅:銅濃度として5~10g/L
  硫酸濃度:30~120g/L
  モリブデン酸アンモニウム:Mo金属として0.1~5.0g/L
  液温:20~60℃
  電流密度:10~60A/dm
(粗化めっき処理2:ステップ2b)
  硫酸銅:銅濃度として20~70g/L
  硫酸濃度:30~120g/L
  液温:20~65℃
  電流密度:5~65A/dm
(3)金属めっき層形成処理(ステップ3)
 下記のめっき浴及びめっき条件で金属めっき層を施した。なお、Niめっきを施した場合にはその上にZnめっきを施し、Ni-Znめっきを施した場合にはZnめっきは施さなかった。
(Niめっき:ステップ3a)
  硫酸ニッケル6水和物:240g/L
  塩化ニッケル6水和物:45g/L
  ホウ酸:30g/L
  次亜リン酸ナトリウム:5g/L
  液温:50℃
  電流密度:0.5A/dm
(Znめっき:ステップ3b)
  硫酸亜鉛7水和物:24g/L
  水酸化ナトリウム:85g/L
  液温:25℃
  電流密度:0.4A/dm
(Ni-Zn合金めっき:ステップ3c)
  硫酸ニッケル:ニッケル濃度として0.1g/L~200g/L、好ましくは20g/L~60g/L、
  硫酸亜鉛:亜鉛濃度として0.01g/L~100g/L、好ましくは0.05g/L~50g/L、
  硫酸アンモニウム:0.1g/L~100g/L、好ましくは0.5g/L~40g/L
  液温:20~60℃
  pH:2~7
  電流密度:0.3~10A/dm
(4)防錆処理(ステップ4)
 金属めっき層処理後に、下記のめっき浴及びめっき条件でCrめっきを施した。
(Crめっき)
  無水クロム酸:0.1g/L~100g/L
  液温:20~50℃
  電流密度:0.1~20A/dm
(5)シラン処理(ステップ5)
 防錆めっき処理後に、下記の処理液および処理条件でシランカップリング処理を施した。
  シラン種:γ-アミノプロピルトリメトキシシラン
  シラン濃度:0.1g/L~10g/L
  液温:20~50℃
試験片の作成
 上記ステップ1による電解めっき条件により製箔した未処理銅箔にステップ2~5による表面処理を施した表面粗化処理銅箔を試験片とし、表1に示す各種評価に適するサイズや形態に加工し試験片とした。各試験片の特性値については、表1に示す。
試験片の特性評価
(1)金属付着量の測定
 蛍光X線分析装置((株)リガク製ZSXPrimus、分析径:35φ)にて分析した。
(2)表面粗さの測定
 接触式表面粗さ測定機((株)小坂研究所製SE1700)にて測定した。
(3)アスペクト比の算出
 FIBにより断面出し加工した粗化粒子の断面を走査型電子顕微鏡(SEM)観察して幅および高さを測定し、「高さ÷幅」の数値をアスペクト比とした。
 なお、図2に示すように、幅は箔表面の付け根部分の長さを、高さは箔表面の付け根部分から頂きまでの長さの測定値である。
(4)表面積の算出
 レーザーマイクロスコープ((株)キーエンス製VK8500)にて三次元表面積を測定し、図2の上部Aから見た測定視野の面積を二次元表面積として「表面積比=三次元表面積÷二次元表面積」の数値を表面積比とした。
(5)初期密着性(初期の密着強度の測定)
 図3に示すように、試験片を樹脂基材と接着後に密着強度を測定した。樹脂基材としては市販のポリイミド系樹脂(宇部興産(株)製ユーピレックス25VT)を使用した。
 密着強度は、テンシロンテスター(東洋精機製作所社製)を使用して、樹脂基材と接着後の試験片を1mm幅の回路配線にエッチング加工した後に、樹脂側を両面テープによりステンレス板に固定し、回路配線を90度方向に50mm/分の速度で剥離して求めた。初期密着性は0.8kN/m以上を合格とし、その判定基準は表1に示す。
(6)耐熱性(熱処理後の密着強度の測定)
 樹脂基材と接着後の試験片について、150℃で168時間加熱処理した後の密着強度を測定した。
 耐熱性は初期ピール強度の90%以上を合格とし、その判定基準は表1に示す。
(7)耐薬品性(酸処理後の密着強度の測定)
 樹脂基材と接着後の試験片について、水:塩酸=1:1の比率の塩酸溶液に常温で1時間浸漬した後の密着強度を測定した。
 耐薬品性は0.8kN/m以上を合格とし、その判定基準は表1に示す。
(8)回路形成性(回路配線端部の残銅の測定)
 樹脂基材と接着後の試験片を、1mm幅の回路配線にエッチング加工し、配線回路の端部(銅箔と樹脂基材の界面)における残銅の幅を測定した。
 回路形成性は3.0μm未満を合格とし、その判定基準は表1に示す。
(9)伝送特性(高周波での伝送損失の測定)
 表面処理した試験片を樹脂基材と接着後に、伝送特性測定用のサンプルを作成し高周波帯域における伝送損失を測定した。樹脂基材としては市販のポリフェニレンエーテル系樹脂(パナソニック電工(株)製メグトロン6)を使用した。
 伝送測定の評価には、1~25GHz域の測定に適する公知のストリップライン共振器法(マイクロストリップ構造:誘電体厚さ50μm、導体長さ1.0mm、導体厚さ12μm、導体回路幅120μm、特性インピーダンス50Ωでカバーレイフィルムなしの状態でS21パラメーターを測定する方法)を用いて、周波数5GHzにおける伝送損失(dB/100mm)を測定した。
 伝送特性は伝送損失25dB/100mm未満を合格とし、その判定基準は表1に示す。
(10)ソフトエッチング性(粗化処理面のエッチング量の測定)
 試験片に対して、粗化処理を施していない面にマスキング処理を施してから重量を測定した後に、ソフトエッチング液(三菱瓦斯化学(株)製CPE-920)に25℃で120秒浸漬した後に再度試験片の重量を測定した。ソフトエッチング前後の重量変化からエッチングされた重量を算出し、エッチングにより溶解除去された厚さに換算した。
 ソフトエッチング性は1.0μm以上エッチングされた場合を合格とし、その判定基準は表1に示す。
[実施例1:粗化処理のみ]
 母材銅箔(未処理銅箔)の表面に表1に示す増加粗化量になるように粗化処理を施し、図2に図示のごとく、先端が尖った凸状の粒子からなる粗化表面とした。このときのアスペクト比、表面積比を表1に示す。ただし、金属めっき層、防錆めっき層、シラン処理層は形成しなかった。
 この粗化処理銅箔を用いて、初期密着性、耐熱性、耐薬品性、回路形成性、伝送特性、ソフトエッチング性の評価を行った結果を表1に示す。
[実施例2~6、11]
 母材銅箔(未処理銅箔)の表面に表1に示す増加粗化量になるように粗化処理を施し、金属めっき層、防錆めっき層、シラン処理層を形成し、図2に示すように、先端が尖った凸状の粒子からなる粗化表面とした。このときのアスペクト比、表面積比を表1に示す。この表面に表1に示す付着量のNiの金属めっき層、Znの金属めっき層、Crの防錆めっき層を順次形成し、最後にシラン処理層を形成した。
 この粗化処理銅箔を用いて、初期密着性、耐熱性、耐薬品性、回路形成性、伝送特性、ソフトエッチング性の評価を行った結果を表1に示す。
[実施例7~10]
 母材銅箔(未処理銅箔)の表面に表1に示す増加粗化量になるように粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。この表面に表1に示す付着量のNi-Znからなる金属めっき層、Crの防錆めっき層を順次形成し、最後にシラン処理層を形成した。
 この粗化処理銅箔を用いて、実施例1と同様の評価を行った結果を表1に示す。
[比較例1]
 母材銅箔(未処理銅箔)の表面に、粗化処理と金属めっき層を施さずにCrの防錆めっき層、シラン処理層を順次形成した。
 この表面処理銅箔を用いて、実施例1と同様の評価を行った結果を表1に示す。
[比較例2]
 母材銅箔(未処理銅箔)の表面に、粗化処理を施さずに表1に示す付着量のNiの金属めっき層、Znの金属めっき層、Crの防錆めっき層を順次形成し、最後シラン処理層を形成した。
 この粗化処理銅箔を用いて、実施例1と同様の評価を行った結果を表1に示す。
[比較例3~5]
 母材銅箔(未処理銅箔)の表面に表1に示す増加粗化量になるように粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。この表面に表1に示す付着量のNiの金属めっき層、Znの金属めっき層、Crの防錆めっき層を順次形成し、最後にシラン処理層を形成した。
 この粗化処理銅箔を用いて、実施例1と同様の評価を行った結果を表1に示す。
[比較例6]
 母材銅箔(未処理銅箔)の表面に、粗化処理を施さずに表1に示す付着量のNi-Znからなる金属めっき層、Crの防錆めっき層を順次形成し、最後シラン処理層を形成した。
 この粗化処理銅箔を用いて、実施例1と同様の評価を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す判断基準は各評価において、◎:良好、○:基準内、×:基準外である。
 各評価項目における判断基準は以下のとおりである。
初期密着性(kN/m)
  ◎:1.0以上、○:0.8以上、1.0未満、×:0.8未満
耐熱性[耐熱性試験後の密着性残存率(%)]
  ◎:90以上、○:72以上90未満、×:72未満
耐薬品性[耐薬品試験後密着性(kN/m)]
  ◎:1.0以上、○:0.8以上1.0未満、×:0.8未満
回路形成性[回路配線端部の残銅の測定(μm)]
  ◎:1.0未満、○:1.0以上3.0未満、×:3.0以上
伝送特性[周波数5GHzでの伝送損失(dB/100mm)]
  ◎:15未満、○:15以上25未満、×:25以上
ソフトエッチング性[ソフトエッチング液への溶解量(μm)]
  ◎:1.4以上、○:1.0以上1.4未満、×:1.0未満
 表1に示すように実施例1は粗化箔粗さ、増加粗化量、アスペクト比、表面積比が範囲内であり、回路形性、伝送特性、ソフトエッチング性に優れる。しかし、金属めっき層、防錆めっき層、シラン処理層を施していないため、実施例2~4等と比較すると、初期密着性、耐熱性、耐薬品性がやや低い。(総合評価○)
 実施例2~実施例4は金属めっき層、防錆めっき層、シラン処理層を施したため、粗化箔粗さ、増加粗化量、アスペクト比、表面積比が範囲内であり、各評価項目が良好な範囲であった。(総合評価◎)
 実施例5は金属めっき層、防錆めっき層、シラン処理層を形成したが、増加粗化量、アスペクト比が範囲内であるが大きめのため、回路形成性、伝送特性、ソフトエッチング性がやや低い。(総合評価○)
 実施例6は金属めっき層、防錆めっき層、シラン処理層を形成したが、アスペクト比、表面積比が基準内であるが小さめのため、ソフトエッチング性がやや低い。(総合評価○)
 実施例7~実施例9は金属めっき層、防錆めっき層、シラン処理層を形成したが、粗化箔粗さ、増加粗化量、アスペクト比、表面積比が範囲内であり、合金組成が適正範囲内に施されているため、各評価項目が良好な範囲であった。(総合評価◎)
 実施例10は金属めっき層、防錆めっき層、シラン処理層を形成したが、Ni付着量がやや多めのため、ソフトエッチング性がやや低い。(総合評価○)
 実施例11は、粗化増加量、粗化幅、粗化高さが基準内である。しかし値が小さめのため、初期密着性、耐熱性、耐薬品性、ソフトエッチング性がやや低い。
 比較例1は粗化処理及び金属めっきを行っていないため、ソフトエッチング性は良好であるが、初期密着性、耐熱性、耐薬品性は基準外であった。(総合評価×)
 比較例2は表面処理は行っているが粗化処理を行っていないため、ソフトエッチング性が基準外であった。(総合評価×)
 比較例3は粗化箔粗さ、増加粗化量、粗化高さ、アスペクト比が基準以上であるため、回路形成性、伝送特性、ソフトエッチング性が基準外であった。(総合評価×)
 比較例4は増加粗化量、粗化幅、粗化高さが基準以上であり、伝送特性、ソフトエッチング性が基準外であった。(総合評価×)
 比較例5は増加粗化量が少なく、粗化幅、粗化高さ、アスペクト比も小さいため、初期密着性、耐熱性、耐薬品性、ソフトエッチング性が基準外であった。(総合評価×)
 比較例6は粗化処理を行っていないため、ソフトエッチング性が基準外であった。(総合評価×)
 上述したように、本発明の実施の形態の粗化処理銅箔は樹脂基材との初期密着性、耐熱性、耐薬品性、回路形成性、伝送特性、ソフトエッチング性を満足し、工業的に優れた粗化処理銅箔である。
 また、本発明の実施の形態の銅箔の粗化処理方法によれば、樹脂基材との密着性に優れ、耐薬品性、ソフトエッチング性を工業的に満足する優れた粗化処理銅箔を製造することができる。
 更に本発明の実施の形態の銅張積層板、プリント配線板によれば、樹脂基材と銅箔との接着強度が強く、回路形成にあたっては耐薬品性を有し、ソフトエッチング性を満足するといった優れた効果を有するものである。

Claims (13)

  1.  母材銅箔(未処理銅箔)の少なくとも一方の面に、前記母材銅箔の表面粗さRzに対してRzが0.05~0.3μm増加する粗化処理が施されて、粗化処理後の表面粗さRzが1.1μm以下である粗化処理面を有し、
     前記粗化処理面は幅が0.3~0.8μm、高さが0.4~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状の粗化粒子で形成されている、
     粗化処理銅箔。
  2.  前記粗化処理面の二次元表面積に対する三次元表面積の比が、3倍以上である
     請求項1に記載の粗化処理銅箔。
  3.  前記粗化処理面に、Ni、Ni合金、Zn、Zn合金のいずれかの金属めっき層が施されている
     請求項1又は2に記載の粗化処理銅箔。
  4.  前記金属めっき層の表面に、Crめっき、Cr合金めっき、クロメート処理のいずれかの防錆処理が施された
     請求項3に記載の粗化処理銅箔。
  5.  前記防錆処理が施された表面に、シランカップリング処理が施された
     請求項4に記載の粗化処理銅箔。
  6.  表面処理されていない母材銅箔に、銅または銅合金を用いて前記母材銅箔の表面粗さRzに対してRzが0.05~0.3μm増加する粗化処理を行い、
     粗化処理後の表面粗さRzが1.1μm以下の粗化処理面を有し、
     先端が尖った凸部形状の粗化粒子の幅が0.3~0.8μm、高さが0.4~1.8μm、アスペクト比[高さ/幅]が1.2~3.5の粗化処理面を形成する、
     粗化処理銅箔の製造方法。
  7.  粗化処理の粗化量(粗化処理で付着する重量)が、1mあたり3.56~8.91g(厚さ換算:0.4~1.0μm)である
     請求項6に記載の粗化処理銅箔の製造方法。
  8.  前記銅合金は、CuとMoの合金、または、CuとNi、Co、Fe、Cr、VおよびWの群から選ばれる少なくとも1種の元素を含む、
     請求項6または7に記載の製造方法。
  9.  前記粗化処理面に、Ni、Ni合金、Z、Zn合金の群から選ばれる少なくとも1種の金属めっき層を形成する、
     請求項6~8のいずれかに記載の製造方法。
  10.  前記金属めっき層に、Crめっき、Cr合金めっき、クロメート処理のいずれかによる防錆処理を行う、
     請求項9に記載の製造方法。
  11.  前記金属めっき層に、シランカップリング層を形成する、
     請求項10に記載の製造方法。
  12.  樹脂基材の片面又は両面に請求項1~5のいずれかに記載の粗化処理銅箔、又は請求項6~11のいずれかに記載の製造方法で製造した粗化処理銅箔を張り合わせてなる銅張積層板。
  13.  請求項12に記載の銅張積層板を用いたプリント配線板。
PCT/JP2011/051132 2010-01-22 2011-01-21 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板 WO2011090175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11734781A EP2527499A1 (en) 2010-01-22 2011-01-21 Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
US13/574,377 US20120285734A1 (en) 2010-01-22 2011-01-21 Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board
KR1020127021811A KR101830994B1 (ko) 2010-01-22 2011-01-21 조화처리된 동박, 그 제조방법, 동박 적층판 및 인쇄회로기판
CN201180014212.XA CN102803576B (zh) 2010-01-22 2011-01-21 粗化处理铜箔及其制造方法、覆铜层压板及印刷电路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-012086 2010-01-22
JP2010012086 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090175A1 true WO2011090175A1 (ja) 2011-07-28

Family

ID=44306975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051132 WO2011090175A1 (ja) 2010-01-22 2011-01-21 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板

Country Status (7)

Country Link
US (1) US20120285734A1 (ja)
EP (1) EP2527499A1 (ja)
JP (1) JP5242710B2 (ja)
KR (1) KR101830994B1 (ja)
CN (1) CN102803576B (ja)
TW (1) TWI544115B (ja)
WO (1) WO2011090175A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079415A1 (en) * 2012-03-29 2015-03-19 Jx Nippon Mining & Metals Corporation Surface-Treated Copper Foil
JP5972486B1 (ja) * 2014-09-05 2016-08-17 古河電気工業株式会社 銅箔、銅張積層板、および基板
WO2017099094A1 (ja) * 2015-12-09 2017-06-15 古河電気工業株式会社 プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板
WO2017138338A1 (ja) * 2016-02-10 2017-08-17 古河電気工業株式会社 表面処理銅箔及びこれを用いて製造される銅張積層板

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162860A (ja) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The 表面粗化銅箔とその製造方法及び銅張積層板
KR20160119875A (ko) * 2011-09-30 2016-10-14 제이엑스금속주식회사 수지와의 밀착성이 우수한 동박 및 그 제조 방법 그리고 그 전해 동박을 사용한 프린트 배선판 또는 전지용 부극재
JP5497808B2 (ja) * 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた銅張積層板
CN102595796B (zh) * 2012-03-09 2014-10-29 昆山亿富达电子有限公司 一种卷曲柔性线路板的装置及其生产工艺
KR101658722B1 (ko) * 2012-03-29 2016-09-21 제이엑스금속주식회사 표면 처리 동박
JP5475897B1 (ja) * 2012-05-11 2014-04-16 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5362924B1 (ja) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板
JP5362898B1 (ja) * 2012-11-09 2013-12-11 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板、プリント配線板並びに銅張積層板
JP6090693B2 (ja) * 2012-12-28 2017-03-08 福田金属箔粉工業株式会社 表面処理銅箔及び当該表面処理銅箔を用いたプリント配線板
CN103972513B (zh) * 2013-02-06 2016-08-17 永箔科技股份有限公司 多孔性集流体金属材料连续加工法
JP2015001016A (ja) * 2013-06-17 2015-01-05 古河電気工業株式会社 銅箔、銅張積層板及びプリント配線板
JP5710737B1 (ja) * 2013-11-29 2015-04-30 Jx日鉱日石金属株式会社 表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器
CN104735929B (zh) * 2013-12-24 2017-12-29 深南电路有限公司 电路板加工方法和设备
WO2016038923A1 (ja) * 2014-09-09 2016-03-17 古河電気工業株式会社 プリント配線板用銅箔及び銅張積層板
JP2016121394A (ja) * 2014-12-23 2016-07-07 エル エス エムトロン リミテッドLS Mtron Ltd. 電解銅箔、これを含むfccl及びccl
MY183238A (en) * 2015-03-24 2021-02-18 Mitsui Mining & Smelting Co Ltd Ultra-thin copper foil with carrier, manufacturing method therefor, copper-clad laminate, and printed wiring board
CN107429417B (zh) * 2015-03-31 2019-11-22 三井金属矿业株式会社 粗糙化处理铜箔、带载体铜箔、覆铜层叠板及印刷电路板
JP6782561B2 (ja) 2015-07-16 2020-11-11 Jx金属株式会社 キャリア付銅箔、積層体、積層体の製造方法、プリント配線板の製造方法及び電子機器の製造方法
JP6058182B1 (ja) 2015-07-27 2017-01-11 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP6083619B2 (ja) * 2015-07-29 2017-02-22 福田金属箔粉工業株式会社 低誘電性樹脂基材用処理銅箔及び該処理銅箔を用いた銅張積層板並びにプリント配線板
JP6339636B2 (ja) 2015-08-06 2018-06-06 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP6190500B2 (ja) 2015-08-06 2017-08-30 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP6200042B2 (ja) * 2015-08-06 2017-09-20 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
KR101954556B1 (ko) 2015-08-12 2019-03-05 후루카와 덴키 고교 가부시키가이샤 고주파 회로용 동박, 동박 적층판, 프린트 배선 기판
KR20170037750A (ko) * 2015-09-25 2017-04-05 일진머티리얼즈 주식회사 표면처리동박 및 그의 제조방법
JP6854114B2 (ja) 2016-01-04 2021-04-07 Jx金属株式会社 表面処理銅箔
US10383222B2 (en) 2016-01-04 2019-08-13 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
KR101816983B1 (ko) * 2016-01-11 2018-01-09 주식회사 케이씨씨 세라믹 회로기판 및 이의 제조방법
MY190857A (en) * 2016-01-15 2022-05-12 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate board,method for producing printed wiring board,method for producing electronic apparatus,method for producing transmission channel, and method for producing antenna
JP2017193778A (ja) * 2016-04-15 2017-10-26 Jx金属株式会社 銅箔、高周波回路用銅箔、キャリア付銅箔、高周波回路用キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
CN109496172A (zh) * 2016-07-27 2019-03-19 古河电气工业株式会社 激光处理方法、接合方法、铜部件、多层印刷布线基板的制造方法及多层印刷布线基板
JP7492807B2 (ja) * 2016-12-06 2024-05-30 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
KR102335444B1 (ko) 2017-03-30 2021-12-03 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박, 그리고 이를 이용한 동 클래드 적층판 및 프린트 배선판
CN110382745B (zh) * 2017-05-19 2021-06-25 三井金属矿业株式会社 粗糙化处理铜箔、带载体铜箔、覆铜层叠板及印刷电路板
CN107245735A (zh) * 2017-05-26 2017-10-13 东强(连州)铜箔有限公司 一种高耐药性和耐热性合金铜箔的镀液和制备方法
WO2019021895A1 (ja) * 2017-07-24 2019-01-31 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
KR102636971B1 (ko) * 2017-11-10 2024-02-16 나믹스 가부시끼가이샤 복합 구리박
TWI652163B (zh) * 2017-11-15 2019-03-01 財團法人工業技術研究院 高頻電路用銅箔及其製造方法
JP6623320B2 (ja) * 2017-12-05 2019-12-18 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板
TWI646227B (zh) * 2017-12-08 2019-01-01 南亞塑膠工業股份有限公司 應用於信號傳輸的銅箔以及線路板組件的製造方法
WO2019208368A1 (ja) * 2018-04-25 2019-10-31 古河電気工業株式会社 表面処理銅箔、銅張積層板、及びプリント配線板
CN109137013A (zh) * 2018-07-13 2019-01-04 铜陵市华创新材料有限公司 一种电解铜箔表面电沉积zn-ni-p-la合金工艺
JP6895936B2 (ja) * 2018-09-28 2021-06-30 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板及び回路基板
JP7352939B2 (ja) * 2019-05-09 2023-09-29 ナミックス株式会社 複合銅部材
CN110029373A (zh) * 2019-05-24 2019-07-19 山东金宝电子股份有限公司 一种消除电解铜箔异常粗化结晶的复合添加剂
CN111690326A (zh) * 2020-05-12 2020-09-22 深圳市信维通信股份有限公司 液晶聚合物薄膜或液晶聚合物覆铜板的制备方法
CN112708909A (zh) * 2020-12-18 2021-04-27 江西省江铜耶兹铜箔有限公司 一种复合电镀液及高频pcb用低轮廓电解铜箔的制备方法
KR102454686B1 (ko) * 2020-12-30 2022-10-13 에스케이씨 주식회사 표면 처리 동박 및 이를 포함하는 회로 기판
KR20230161954A (ko) 2021-03-29 2023-11-28 미쓰이금속광업주식회사 조화 처리 구리박, 동장 적층판 및 프린트 배선판
CN117044412A (zh) 2021-03-29 2023-11-10 三井金属矿业株式会社 粗糙化处理铜箔、覆铜层叠板和印刷电路板
CN117321253A (zh) * 2021-05-20 2023-12-29 三井金属矿业株式会社 粗糙化处理铜箔、带载体的铜箔、覆铜层叠板及印刷电路板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529740A (ja) 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk プリント配線板用電解銅箔
JP2004005588A (ja) 2002-04-16 2004-01-08 Siemens Medical Solution Health Services Corp 患者のヘルスケアに関連する財務データおよび請求書データを処理するシステムならびに患者ヘルスケアに関連する財務データを処理する方法
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006175634A (ja) 2004-12-21 2006-07-06 Nippon Steel Chem Co Ltd 金属−ポリイミド基板
JP2006210689A (ja) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd 高周波プリント配線板用銅箔及びその製造方法
JP2007238968A (ja) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The 銅箔、銅箔の製造方法および前記銅箔を用いた積層回路基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW317575B (ja) * 1994-01-21 1997-10-11 Olin Corp
US6346335B1 (en) * 2000-03-10 2002-02-12 Olin Corporation Copper foil composite including a release layer
KR101318871B1 (ko) * 2008-07-22 2013-10-17 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박 및 동장 적층판

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529740A (ja) 1991-07-18 1993-02-05 Furukawa Saakitsuto Foil Kk プリント配線板用電解銅箔
JP2004005588A (ja) 2002-04-16 2004-01-08 Siemens Medical Solution Health Services Corp 患者のヘルスケアに関連する財務データおよび請求書データを処理するシステムならびに患者ヘルスケアに関連する財務データを処理する方法
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006175634A (ja) 2004-12-21 2006-07-06 Nippon Steel Chem Co Ltd 金属−ポリイミド基板
JP2006210689A (ja) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd 高周波プリント配線板用銅箔及びその製造方法
JP2007238968A (ja) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The 銅箔、銅箔の製造方法および前記銅箔を用いた積層回路基板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079415A1 (en) * 2012-03-29 2015-03-19 Jx Nippon Mining & Metals Corporation Surface-Treated Copper Foil
US10070521B2 (en) * 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
JP5972486B1 (ja) * 2014-09-05 2016-08-17 古河電気工業株式会社 銅箔、銅張積層板、および基板
WO2017099094A1 (ja) * 2015-12-09 2017-06-15 古河電気工業株式会社 プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板
JP2017106068A (ja) * 2015-12-09 2017-06-15 古河電気工業株式会社 プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板
WO2017138338A1 (ja) * 2016-02-10 2017-08-17 古河電気工業株式会社 表面処理銅箔及びこれを用いて製造される銅張積層板
JP6248231B1 (ja) * 2016-02-10 2017-12-13 古河電気工業株式会社 表面処理銅箔及びこれを用いて製造される銅張積層板

Also Published As

Publication number Publication date
KR20120123451A (ko) 2012-11-08
EP2527499A1 (en) 2012-11-28
JP2011168887A (ja) 2011-09-01
CN102803576B (zh) 2015-11-25
CN102803576A (zh) 2012-11-28
TWI544115B (zh) 2016-08-01
KR101830994B1 (ko) 2018-02-21
US20120285734A1 (en) 2012-11-15
JP5242710B2 (ja) 2013-07-24
TW201139756A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2011090175A1 (ja) 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
JP4927963B2 (ja) 表面処理銅箔、その製造方法及び銅張積層基板
TWI699459B (zh) 表面處理銅箔及使用其之積層板、附載體銅箔、印刷配線板、電子機器、以及印刷配線板之製造方法
JP5932705B2 (ja) 印刷回路用銅箔
JP5764700B2 (ja) 高周波基板用銅張り積層板及び表面処理銅箔
KR102274906B1 (ko) 구리박 및 이것을 갖는 동장 적층판
US20050123782A1 (en) Copper foil with low profile bond enhancement
JP6261037B2 (ja) 高周波回路用銅箔、銅張積層板及びプリント配線板
KR20060052031A (ko) 표면 처리 동박 및 회로 기판
WO2013187420A1 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
WO2013168646A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2013155415A (ja) 高周波伝送用表面処理銅箔、高周波伝送用積層板及び高周波伝送用プリント配線板
JP2005161840A (ja) キャリア付き極薄銅箔、およびプリント配線板
JP4978456B2 (ja) 印刷回路用銅箔
JP5248684B2 (ja) 電子回路及びその形成方法並びに電子回路形成用銅張積層板
JP2013119240A (ja) 高周波基板用銅張り積層板及びそれに用いる表面処理銅箔
WO2022215330A1 (ja) 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
JP2007046095A (ja) 銅箔およびその表面処理方法
JP2015001016A (ja) 銅箔、銅張積層板及びプリント配線板
JP6845382B1 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
JP5794806B2 (ja) 表面処理銅箔、および、該表面処理銅箔を用いた銅張積層基板、並びにプリント配線基板
JP4532322B2 (ja) ビルトアップ基板内層用銅箔
TWI805902B (zh) 表面處理銅箔、覆銅積層板及印刷線路板
JP2011210993A (ja) エッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
KR20230072143A (ko) 코어리스 기판 지지체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014212.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574377

Country of ref document: US

Ref document number: 2011734781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021811

Country of ref document: KR

Kind code of ref document: A