WO2022215330A1 - 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板 - Google Patents

表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板 Download PDF

Info

Publication number
WO2022215330A1
WO2022215330A1 PCT/JP2022/003721 JP2022003721W WO2022215330A1 WO 2022215330 A1 WO2022215330 A1 WO 2022215330A1 JP 2022003721 W JP2022003721 W JP 2022003721W WO 2022215330 A1 WO2022215330 A1 WO 2022215330A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treated
layer
surface area
treated copper
Prior art date
Application number
PCT/JP2022/003721
Other languages
English (en)
French (fr)
Inventor
健 岡本
健太 宮本
Original Assignee
福田金属箔粉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福田金属箔粉工業株式会社 filed Critical 福田金属箔粉工業株式会社
Priority to CN202280015287.8A priority Critical patent/CN116917552A/zh
Priority to KR1020237023514A priority patent/KR20230109786A/ko
Publication of WO2022215330A1 publication Critical patent/WO2022215330A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a surface-treated copper foil that can be suitably used for printed wiring boards for high frequency signal transmission.
  • the treated surface of the surface-treated copper foil has a three-dimensional shape consisting of a plurality of continuous fine copper particles, and has a high surface area ratio per 1 m 2 of two-dimensional area and is excellent in anchoring effect. It exhibits high adhesion even to low-dielectric resin substrates, and since it has a heat-resistant layer containing dissimilar metals, nickel and phosphorus, the copper particles are less likely to be oxidized even when exposed to high temperatures for a long period of time.
  • the present invention relates to a surface-treated copper foil capable of producing a multilayer printed wiring board having excellent interlayer adhesion since substrates can be adhered to each other.
  • the transmission characteristics of the signal transmitted through the circuit can be represented by S parameters.
  • S21 the degree of signal loss between terminals caused by attenuation
  • the insertion loss (S21) is represented by the following [Equation 1], where P in is the input power, P out is the output power, and the unit is dB (decibel).
  • the insertion loss must be suppressed to -3.0 dB or more, that is, the signal loss must be suppressed to 50% or less.
  • the signal loss increases as the frequency increases, so the absolute value of the insertion loss increases.
  • Low dielectric resin substrates include polyphenylene ether resins, liquid crystal polymer resins, and fluorine resins.
  • Low-dielectric resin substrates often use resins that have a molecular structure that is less polar and less prone to oriented polarization. , it becomes difficult to obtain chemical adhesion.
  • the conductor resistance of the copper foil it is possible to reduce the surface roughness of the untreated copper foil, which is the base material of the surface-treated copper foil, or to increase the physical adhesion (anchor effect) with the insulating resin base material. ) can be reduced by reducing the amount of roughening treatment, and furthermore, the amount of metal treatment can be reduced to improve heat resistance.
  • the depth of the transmitted signal becomes shallower, making it easier for the signal to be transmitted near the surface. It is intended to suppress the transmission distance from becoming long.
  • the copper foil of the copper-clad laminate is completely removed by etching, resulting in the exposed surface of the insulating resin substrate. , the shape of the treated surface of the copper foil is reversed and duplicated, and the convex shape on the copper foil side becomes concave on the insulating resin substrate side. Since the resin permeates into the recesses on the base material side and bonds the insulating resin substrates together to form a multi-layer structure, if the amount of roughening treatment is reduced, the unevenness is reduced, and the recesses through which the resin permeates are reduced. This is because the anchor effect is weakened.
  • a surface-treated copper foil that can be suitably used for printed wiring boards for high-frequency signal transmission can suppress insertion loss during high-frequency signal transmission, and has sufficient adhesion and heat resistance to various low-dielectric resin substrates.
  • a surface-treated copper foil that can be used to produce a multilayer printed wiring board that is resistant to peeling and, when multilayered, has excellent interlaminar adhesion.
  • Patent Document 1 transmission loss (insertion loss) when transmitting high frequency signals is suppressed, and adhesion and durability of the interface between the insulating resin base material and the copper foil are excellent under high temperature and severe conditions.
  • a surface treated copper foil is disclosed.
  • the surface-treated copper foil disclosed in Patent Document 1 has a roughened particle height of 0.05 ⁇ m or more and less than 0.5 ⁇ m, and the surface area ratio of the roughened surface (ratio of three-dimensional area to two-dimensional area) is 1.2 or more, and the amount of nickel element contained in the metal treatment layer is 0.1 mg/dm 2 or more and less than 0.3 mg/dm 2 , thereby suppressing transmission loss and peeling after long-term heating. This is intended to keep the rate of strength deterioration low.
  • Patent Document 1 cannot ensure sufficient adhesion and heat resistance to the insulating resin substrate when the surface area ratio is close to the lower limit. There is a possibility that the adhesion between layers cannot be ensured when the layers are multi-layered.
  • the nickel content of the metal treatment layer is small, even if the surface area ratio is increased, the adhesion and heat resistance are weak in the temperature range exceeding 150 ° C., and the interface between the insulating resin base material and the copper foil swells. There are problems such as the occurrence of
  • the surface area ratio of the non-roughened surface is regarded as 1, and the surface area ratio of the roughened surface is calculated by subtracting the surface area ratio of 1 from the surface area ratio of the surface-treated copper foil. Therefore, the surface area ratio (surface area ratio in the present invention) of the roughened surface and the non-roughened surface, that is, the surface-treated copper foil of both surfaces combined is 2.2 or more.
  • Patent Document 2 discloses a surface-treated copper foil that can ensure sufficient adhesive strength with a low-dielectric base material and can minimize transmission loss.
  • the surface-treated copper foil disclosed in Patent Document 2 forms a roughening treatment layer made of hump-shaped copper grains with a particle size of 0.5 ⁇ m to 3.0 ⁇ m on the surface of the untreated copper foil, and on the roughening treatment layer Precipitate ultrafine copper grains with a grain size of 0.1 ⁇ m to 1.0 ⁇ m on the surface, provide a rust prevention treatment layer made of zinc-nickel on the surface, and set the total amount of zinc-nickel adhesion to 20-60 mg / m 2 , By setting the surface roughness to Rz 1.0 ⁇ m to 6.5 ⁇ m, the adhesion to the low-dielectric substrate is intended to be enhanced.
  • the inventors of the present invention made it a technical task to solve the above-mentioned problems, and as a result of repeated trial and error trial production and experiments, the roughening treatment layer and the above-mentioned A surface-treated copper foil comprising a heat-resistant layer on a roughening-treated layer, wherein the roughening-treated layer is a finely roughened layer made of copper particles having a primary particle diameter of 10 nm or more and 110 nm or less.
  • the heat-resistant layer contains nickel and phosphorus, and the treated surface of the surface-treated copper foil has a surface area ratio of 5.0 per square meter of two -dimensional area calculated from the specific surface area measured by the krypton gas adsorption BET method.
  • the surface-treated copper foil is excellent in anchoring effect, so that it exhibits high adhesion to the insulating resin substrate and low dielectric constant.
  • the present inventors have achieved the above-mentioned technical problems by obtaining the remarkable knowledge that a surface-treated copper foil that can be used for the surface treatment can be obtained.
  • the present invention is a surface-treated copper foil comprising a roughening treatment layer on at least one surface of an untreated copper foil and a heat-resistant treatment layer on the roughening treatment layer, wherein the roughening treatment layer has a primary particle diameter of is a finely roughened layer made of copper particles of 10 nm or more and 110 nm or less, the heat-resistant layer contains nickel and phosphorus, and the treated surface of the surface-treated copper foil is krypton gas adsorption BET method.
  • the surface-treated copper foil has a surface area ratio of 5.1 or more per 1 m 2 of two-dimensional area calculated from the measured specific surface area, and a nickel adhesion amount of 2 mg or more per 1 m 2 of surface area.
  • the present invention is the surface-treated copper foil, wherein the amount of nickel attached is 60 mg or less per square meter of surface area.
  • the present invention is the surface-treated copper foil, wherein the adhesion amount of phosphorus is 0.1 mg or more per 1 m 2 of surface area.
  • the present invention is the surface-treated copper foil, wherein the arithmetic mean height Sa of the treated surface is 0.02 ⁇ m or more and 0.35 ⁇ m or less.
  • the present invention also provides the surface-treated copper foil comprising a chromate-treated layer and/or a silane coupling agent-treated layer on the heat-resistant layer.
  • the present invention is a copper-clad laminate obtained by laminating the surface-treated copper foil to an insulating resin substrate.
  • the present invention is also the copper-clad laminate, wherein the insulating resin base material is a low-dielectric resin base material.
  • the present invention also provides a printed wiring board or a multilayer printed wiring board formed using the copper-clad laminate.
  • the roughening treatment layer is composed of fine copper particles with a primary particle diameter of 10 nm to 110 nm
  • the two-dimensional surface area calculated from the specific surface area measured by the krypton gas adsorption BET method
  • the surface-treated copper foil achieves a high surface area ratio of 5.1 or more per 1 m 2 of area.
  • the treated surface and the insulating resin base material are adhered together and subjected to heat and pressure molding, the treated surface and the surface of the insulating resin base material are brought into close contact three-dimensionally over a wide area, resulting in an excellent anchoring effect. Therefore, the surface-treated copper foil has excellent adhesion to the insulating resin substrate.
  • the surface-treated copper foil of the present invention is a surface-treated copper foil that has excellent adhesion even to low-polarity, low-dielectric resin substrates because it exhibits an excellent anchoring effect.
  • the shape of the treated surface is a three-dimensional shape composed of a plurality of continuous fine copper particles, it is replicated on the surface of the insulating resin substrate after removing the copper foil by etching. Since the shape also becomes a three-dimensional surface shape equivalent to the surface shape of the surface-treated copper foil, when a new insulating resin base material is laminated on the surface of the insulating resin base material after removing the copper foil, it is fine and The resin permeates into the recessed portions with a high surface area ratio, and the surface-treated copper foil exhibits an excellent anchoring effect because it adheres over a wider area. .
  • the roughened layer consists of fine copper particles with a primary particle diameter of 10 nm to 110 nm, the insertion loss due to the skin effect is suppressed even when high-frequency signals are transmitted. It is a surface-treated copper foil that can produce a printed wiring board that can achieve a certain level of transmission characteristics.
  • the heat-resistant layer in the present invention contains dissimilar metals of nickel and phosphorus, and the amount of nickel adhered is 2 mg or more per 1 m 2 of surface area, so the surface of the roughened particles is protected by nickel and phosphorus. Therefore, even if exposed to a high temperature of about 150 to 280 ° C. for 1 hour or more, the fine copper particles are difficult to oxidize, and the occurrence of swelling at the interface between the insulating resin base material and the copper foil can be suppressed. High heat resistance can be achieved.
  • a chromate treatment layer and/or a silane coupling agent treatment layer on the heat-resistant treatment layer, even if exposed to a high temperature of about 300 ° C. for one hour or more, the interface between the insulating resin base material and the copper foil Since the occurrence of blistering can be suppressed, even higher heat resistance can be achieved.
  • the surface-treated copper foil can be easily removed by soft etching.
  • the surface-treated copper foil can be easily removed by soft etching.
  • the surface-treated copper foil can produce a printed wiring board with excellent transmission characteristics. become.
  • the surface-treated copper foil of the present invention can be suitably used for producing printed wiring boards and multilayer printed wiring boards for high-frequency signal transmission.
  • FIG. 1 is a schematic diagram of the surface-treated copper foil in this invention. 200,000 and 100,000 times scanning electron micrographs of the surface-treated copper foil of Example 1 (surface area ratio 8.8). 200,000 times and 100,000 times scanning electron micrographs of the surface-treated copper foil of Example 8 (surface area ratio: 5.5). 200,000 and 100,000 times scanning electron micrographs of the surface-treated copper foil of Comparative Example 12 (surface area ratio 5.0). 200,000 and 100,000 times scanning electron micrographs of the surface-treated copper foil of Comparative Example 11 (surface area ratio 4.2). 1 is a schematic diagram of copper particles forming a finely roughened layer in the present invention. FIG.
  • untreated copper foil The copper foil used in the present invention (hereinafter referred to as "untreated copper foil") is not particularly limited, and may be rolled copper foil, electrolytic copper foil, etc. can be used.
  • the one side to be surface-treated is not particularly limited, and not only can the rolled copper foil be on either side, but also the electrodeposited copper foil can be either the deposition side or the drum side.
  • the thickness of the untreated copper foil is not particularly limited as long as it can be used for printed wiring boards after surface treatment, but it is preferably 6 ⁇ m to 300 ⁇ m, more preferably 12 ⁇ m to 35 ⁇ m.
  • Both surfaces of the untreated copper foil are measured using a confocal microscope (laser microscope) conforming to ISO 25178-607, and the arithmetic mean height Sa is 0.6 ⁇ m or less when measured according to JIS B 0681-3. It is preferably 0.3 ⁇ m or less, more preferably 0.3 ⁇ m or less.
  • the surface area ratio of the untreated copper foil per 1 m 2 of two-dimensional area calculated from the specific surface area measured by the krypton gas adsorption BET method is preferably 2-4.
  • the present invention is a surface-treated copper foil comprising a finely roughened layer of fine copper particles on an untreated copper foil.
  • the particle diameter of the primary particles of the copper particles constituting the finely roughened layer is preferably 10 nm to 110 nm, more preferably 20 nm to 100 nm.
  • the insulating resin substrate and the copper foil will separate when the copper clad laminate laminated with the insulating resin substrate is exposed to a high temperature of about 150 to 300 ° C. for 1 hour or more. There is a risk that sufficient heat resistance may not be obtained due to swelling at the interface, and after forming a printed wiring board using a copper clad laminate, when an insulating resin base material is further laminated to form a multilayer This is because there is a possibility that sufficient interlayer adhesion may not be obtained.
  • the surface roughness may increase and the insertion loss may increase.
  • the particle diameter is observed with a field emission scanning electron microscope at a tilt angle of 0° and a magnification of 100,000 to 200,000 times, and the longest diameter of the primary particles is measured as shown in FIG.
  • the present invention is a surface-treated copper foil having a heat-resistant layer on a finely roughened layer.
  • the amount of nickel attached to the heat-resistant layer is preferably 2 mg or more, more preferably 3 mg or more per square meter of surface area.
  • the amount of nickel adhered is less than 2 mg, when a copper-clad laminate is formed by bonding it to an insulating resin base material, if it is exposed to a high temperature of about 150 to 300° C. for 1 hour or more, the insulating resin base material and the copper foil will be separated. This is because there is a risk that swelling will occur at the interface between and sufficient heat resistance will not be obtained.
  • the amount of nickel deposited per 1 m 2 of surface area can be obtained by the following [Equation 2].
  • the adhesion amount of phosphorus on the heat-resistant layer is preferably 0.1 mg or more per square meter of surface area.
  • the amount of phosphorus deposited is less than 0.1 mg, even if the amount of nickel deposited is 60 mg or less, the etching time becomes long when soft etching is performed, and etching defects may occur, resulting in poor adhesion of the copper plating.
  • the adhesion amount of phosphorus per 1 m 2 of surface area can be obtained by the following [Equation 3].
  • the surface area ratio per 1 m 2 of two-dimensional area calculated from the specific surface area measured by the krypton gas adsorption BET method of the treated surface provided with the finely roughened layer and the heat-resistant treated layer in the present invention is 5.1 or more. It is preferably 5.5 or more, more preferably 5.5 or more.
  • the surface area ratio is less than 5.1, when the copper-clad laminate laminated with the insulating resin base material is exposed to a high temperature of about 150 to 300° C. for 1 hour or more, the interface between the insulating resin base material and the copper foil This is because there is a risk that swelling will occur and sufficient heat resistance will not be obtained, and that sufficient interlayer adhesion will not be obtained when multilayered.
  • the surface area ratio of the treated surface can be calculated by multiplying the krypton gas adsorption BET specific surface area measurement value by the sample mass and dividing by the sample area.
  • the arithmetic mean height Sa of the treated surface provided with the finely roughened layer and the heat-resistant layer of the surface-treated copper foil of the present invention is preferably 0.02 ⁇ m to 0.35 ⁇ m, more preferably 0.02 ⁇ m to 0.15 ⁇ m. is.
  • the fine roughening treatment layer is an electrolytic solution prepared by adding an aqueous solution of untreated copper foil with 10 to 70 g/L of copper sulfate pentahydrate and 50 to 150 g/L of a diethylenetriamine compound to pH 3 to 6 with sulfuric acid or sodium hydroxide. can be formed by electrolysis while being immersed in
  • An insoluble electrode such as platinum group oxide-coated titanium is immersed in the electrolytic solution as an anode, and an untreated copper foil is immersed as a cathode on the opposite side at a certain interval, and the current density is 1.0 to 9.0 A / dm. 2.
  • the electrolysis conditions are an amount of electricity of 40 to 90 C/dm 2 and a liquid temperature of 25 to 50°C.
  • the diethylenetriamine compound added to the electrolytic solution is not particularly limited, but pentasodium diethylenetriaminepentaacetate is exemplified.
  • the heat-resistant layer can be formed by electrolysis while immersing the copper foil, which has a finely roughened layer formed on the untreated copper foil, in an electrolytic solution.
  • the electrolyte for forming the heat-resistant layer is an aqueous solution containing 10 to 70 g/L of a nickel-containing compound, 2 to 40 g/L of acetate, and 0.1 to 10.0 g/L of hypophosphite, pH 4.0 to Those prepared to 5.5 are preferred.
  • Electrolysis is performed by immersing an insoluble electrode such as platinum-group oxide-coated titanium in an electrolytic solution as an anode, and immersing a copper foil having a finely roughened layer formed on the opposite side at a certain interval as a cathode. Electrolytic conditions of 0.5 to 3.5 A/dm 2 , an amount of electricity of 2.5 to 22 C/dm 2 and a liquid temperature of 25 to 50° C. are preferable.
  • the nickel-containing compound contained in the electrolytic solution is not particularly limited, but examples include nickel sulfate hexahydrate, nickel chloride hexahydrate, and nickel acetate tetrahydrate.
  • the acetate contained in the electrolyte is not particularly limited, but sodium acetate trihydrate is exemplified.
  • hypophosphite contained in the electrolyte is not particularly limited, but examples include disodium hydrogen phosphite, sodium hypophosphite monohydrate, and nickel hydrogen phosphite.
  • a chromate-treated layer and/or a silane coupling agent-treated layer can be provided on the heat-resistant layer.
  • the chromate-treated layer can be formed by electrolysis while immersing the copper foil with the heat-resistant layer in an electrolytic solution.
  • the electrolytic solution for forming the chromate treatment layer is an aqueous solution containing 10 to 60 g/L of a chromic acid-containing compound, or an aqueous solution containing 10 to 60 g/L of a chromic acid-containing compound and 0.2 to 4.0 g/L of zinc ions mixed with sulfuric acid. Alternatively, it is preferably adjusted to pH 2 to 12 with sodium hydroxide.
  • Electrolysis is carried out by immersing an insoluble electrode such as platinum group oxide-coated titanium in an electrolytic solution as an anode, and immersing a copper foil with a heat-resistant layer formed on the opposite side at a certain interval as a cathode, and adjusting the current density. Electrolytic conditions of 1.0 to 5.0 A/dm 2 , an amount of electricity of 2 to 6 C/dm 2 and a liquid temperature of 25 to 50° C. are preferable.
  • the chromic acid-containing compound is not particularly limited, but sodium dichromate dihydrate is exemplified.
  • zinc oxide is exemplified.
  • a silane coupling agent-treated layer may be provided on the chromate-treated layer or on the heat-resistant layer.
  • the silane coupling agent used in the silane coupling agent layer is not particularly limited, and is a silane coupling agent containing a vinyl group, an epoxy group, a styryl group, a methacrylic group, an acrylic group, an amino group, a ureido group and a mercapto group.
  • silane coupling agents containing amino groups, epoxy groups, or vinyl groups are very effective in moisture absorption resistance and rust prevention, and can be used more preferably.
  • the silane coupling agent may be used alone or in combination of two or more.
  • composition and conditions of the aqueous solution for forming the silane coupling agent-treated layer include ⁇ -aminopropyltriethoxysilane of 1 to 5 mL/L, liquid temperature of 25 to 35°C, and immersion time of 15 seconds.
  • the insulating resin substrate to which the surface-treated copper foil is laminated in the present invention is not particularly limited, but epoxy resin, polyimide resin, and low dielectric resin substrates such as polyphenylene ether resin, liquid crystal polymer resin, fluororesin, and bismaleimide are used. Examples include triazine resins and cycloolefin polymer resins.
  • the rolled copper foil was immersed in an alkaline degreasing solution to remove the rolling oil, and then subjected to each surface treatment. Further, the electrolytic copper foil was immersed in dilute sulfuric acid to remove the oxide film, and then subjected to surface treatment.
  • Example 1 is an example in which a chromate-treated layer and a silane coupling agent-treated layer are provided in this order on a heat-resistant layer
  • Example 1a is an example in which neither a chromate-treated layer nor a silane coupling agent-treated layer is provided
  • Example 1b An example in which only the chromate-treated layer is provided is referred to as Example 1b
  • Example 1c An example in which only the silane coupling agent-treated layer is provided.
  • an electrolytic solution As an electrolytic solution, an aqueous solution containing 35 g/L of copper sulfate pentahydrate and 100 g/L of pentasodium diethylenetriaminepentaacetate at a pH of 4.8 and a liquid temperature of 32°C was used. An electrode is immersed as an anode, and an untreated copper foil is immersed as a cathode on the opposite side with a certain interval, and electrolysis is performed at a current density of 5.0 A/dm 2 and an amount of electricity of 60 C/dm 2 to electrolyze the untreated copper foil. A fine roughening treatment layer was provided thereon.
  • An insoluble electrode of platinum group oxide-coated titanium was immersed in the electrolytic solution as an anode, and a copper foil provided with the fine roughening treatment layer was immersed as a cathode on the opposite side at a certain interval, and the current density was 2.5 A. /dm 2 and an electric quantity of 5 C/dm 2 to form a heat-resistant layer on the finely roughened layer.
  • ⁇ Formation of chromate treatment layer> As an electrolytic solution, an aqueous solution containing 12.5 g/L of sodium dichromate dihydrate and 2.5 g/L of zinc ions at a pH of 12 and a liquid temperature of 25° C. was used. An insoluble electrode is immersed as an anode, and a copper foil provided with the heat-resistant layer is immersed as a cathode on the opposite side at a certain interval, and electrolysis is performed at a current density of 4.3 A/dm 2 and an electric quantity of 6 C/dm 2 . Then, a chromate-treated layer was provided on the heat-resistant layer.
  • the copper foil provided with the heat-resistant layer or the copper foil provided with the chromate-treated layer is immersed in an aqueous solution containing 5 mL/L of ⁇ -aminopropyltriethoxysilane at a liquid temperature of 25 ° C. for 10 seconds, dried and heat-resistant.
  • a surface-treated copper foil was produced by forming a silane coupling agent-treated layer on the layer or on the chromate-treated layer.
  • Example 2 The heat-resistant layer was formed under the same conditions as in Example 1, except that the amount of electricity was set to 10 C/dm 2 for electrolysis.
  • Example 3 is an example in which a chromate-treated layer and a silane coupling agent-treated layer are provided in this order on a heat-resistant layer
  • Example 3a is an example in which neither a chromate-treated layer nor a silane coupling agent-treated layer is provided
  • Example 3b An example in which only the chromate-treated layer is provided is referred to as Example 3b
  • Example 3c An example in which only the silane coupling agent-treated layer is provided.
  • the heat-resistant layer was formed under the same conditions as in Example 1 and Examples 1a to 1c, except that the amount of electricity was set to 3 C/dm 2 for electrolysis.
  • Example 4 When forming the finely roughened layer, the electrolysis conditions were a current density of 7.0 A/dm 2 and an amount of electricity of 80 C/dm 2 , and when forming the heat-resistant layer, the electrolysis conditions were an amount of electricity of 3 C/dm 2 . It was produced under the same conditions as in Example 1, except for the above.
  • Example 5 When forming the heat-resistant layer, the electrolysis conditions were an amount of electricity of 10 C/dm 2 , and when forming the chromate-treated layer, the electrolytic solution contained 20 g/L of sodium dichromate dihydrate, pH 4.5. It was produced under the same conditions as in Example 1, except that an aqueous solution at a temperature of 25° C. was used and the electrolysis conditions were a current density of 2.2 A/dm 2 and an amount of electricity of 3 C/dm 2 .
  • Example 7 The heat-resistant layer was formed under the same conditions as in Example 1, except that the amount of electricity was set to 20 C/dm 2 for electrolysis.
  • the electrolysis conditions are a current density of 4.0 A/dm 2 and the amount of electricity is 50 C/dm 2 ; when the heat-resistant layer is formed, the electrolysis condition is an amount of electricity of 10 C/dm 2 ;
  • the electrolysis condition is an amount of electricity of 10 C/dm 2 ;
  • an aqueous solution containing 20 g/L of sodium dichromate dihydrate at a pH of 4.5 and a liquid temperature of 25° C. was used as the electrolytic solution, and the electrolysis conditions were a current density of 2.2 A/dm 2 , It was produced under the same conditions as in Example 1, except that the amount of electricity was 3 C/dm 2 .
  • the electrolytic solution was pH 4.0 containing 30 g/L of nickel sulfate hexahydrate, 0.4 g/L of sodium hypophosphite monohydrate, and 10 g/L of sodium acetate trihydrate. 5.
  • an aqueous solution having a liquid temperature of 32° C. was used and the electrolysis conditions were set to an amount of electricity of 10 C/dm 2 .
  • the electrolytic solution was pH 4.0 containing 30 g/L of nickel sulfate hexahydrate, 2.0 g/L of sodium hypophosphite monohydrate, and 10 g/L of sodium acetate trihydrate. 5. Prepared under the same conditions as in Example 1, except that an aqueous solution having a liquid temperature of 32° C. was used and the electrolysis conditions were set to an amount of electricity of 10 C/dm 2 .
  • Example 11 When forming the chromate treatment layer, an aqueous solution containing 20 g/L of sodium dichromate dihydrate at a pH of 4.5 and a liquid temperature of 25° C. was used as the electrolytic solution, and the electrolysis conditions were a current density of 2.2 A/dm 2 , It was produced under the same conditions as in Example 1, except that the amount of electricity was 3 C/dm 2 .
  • Example 12 When forming the heat-resistant layer, the electrolysis conditions were 15 C/dm 2 of electricity. It was produced under the same conditions as in Example 1, except that an aqueous solution at a temperature of 25° C. was used and the electrolysis conditions were a current density of 2.2 A/dm 2 and an amount of electricity of 3 C/dm 2 .
  • Example 1 It was produced under the same conditions as in Example 1, except that the fine roughening treatment layer was not provided.
  • Example 2 Fabrication was performed under the same conditions as in Example 1, except that the fine roughening treatment layer was not provided and the electrolysis condition was set to 3 C/dm 2 of electricity when the heat-resistant treatment layer was formed.
  • Example 3 Fabrication was performed under the same conditions as in Example 1, except that the fine roughening treatment layer was not provided and the electrolysis condition was set to 10 C/dm 2 of electricity when the heat-resistant treatment layer was formed.
  • the electrolysis condition is set to an electric quantity of 10 C/dm 2 , and when forming a chromate layer, 20 g of sodium dichromate dihydrate is added to the electrolytic solution. /L containing pH 4.5, liquid temperature 25 ° C., the electrolysis conditions were current density 2.2 A / dm 2 , the amount of electricity 3 C / dm 2 , under the same conditions as in Example 1 made.
  • Example 6 Fabrication was performed under the same conditions as in Example 1, except that the fine roughening treatment layer was not provided and the electrolysis conditions were set to 20 C/dm 2 of electricity when forming the heat-resistant treatment layer.
  • Example 7 Fabrication was carried out under the same conditions as in Example 1, except that the fine roughening treatment layer was not provided and the electrolysis condition was set to 6 C/dm 2 of electricity when forming the heat-resistant treatment layer.
  • an aqueous solution containing 200 g/L of copper sulfate pentahydrate and 100 g/L of sulfuric acid was used as an electrolytic solution at a liquid temperature of 40°C, and an insoluble electrode made of platinum group oxide-coated titanium was immersed in the electrolytic solution as an anode,
  • a copper foil provided with a dendritic particle layer on the opposite side at a certain interval is immersed as a cathode, and the dendritic particle layer is electrolyzed at a current density of 5.0 A/dm 2 and an amount of electricity of 440 C/dm 2 . It was fabricated under the same conditions as in Example 1, except that a roughening treatment layer was provided by plating copper thereon.
  • an aqueous solution containing 200 g/L of copper sulfate pentahydrate and 100 g/L of sulfuric acid was used as an electrolytic solution at a liquid temperature of 40°C, and an insoluble electrode made of platinum group oxide-coated titanium was immersed in the electrolytic solution as an anode,
  • a copper foil provided with a dendritic particle layer on the opposite side at a certain interval is immersed as a cathode, and the dendritic particle layer is electrolyzed at a current density of 10.0 A/dm 2 and an amount of electricity of 250 C/dm 2 . It was produced under the same conditions as in Example 1, except that a roughening treatment layer was provided by copper plating thereon.
  • Example 13 The heat-resistant layer was formed under the same conditions as in Example 1, except that the electrolysis conditions were a current density of 0.5 A/dm 2 and an amount of electricity of 1.0 C/dm 2 .
  • the electrolyte for forming the heat-resistant layer contains 39 g/L of cobalt sulfate heptahydrate, 24 g/L of sodium molybdate dihydrate, 45 g/L of trisodium citrate dihydrate, and 40 g/L of sodium sulfate.
  • an aqueous solution with a pH of 5.6 and a liquid temperature of 30°C an insoluble electrode made of platinum group oxide-coated titanium was immersed in the electrolytic solution as an anode, and a finely roughened copper foil was placed on the opposite side with a certain interval as a cathode. It was prepared under the same conditions as in Example 1 except that a heat-resistant layer was formed on the copper foil by electrolysis at a current density of 7.0 A/dm 2 and an amount of electricity of 14 C/dm 2 .
  • the electrolysis conditions were 24 C/dm 2 of electricity. It was produced under the same conditions as in Example 1, except that an aqueous solution at a temperature of 25° C. was used and the electrolysis conditions were a current density of 2.2 A/dm 2 and an amount of electricity of 3 C/dm 2 .
  • the electrolysis conditions were 27 C/dm 2 of electricity. It was produced under the same conditions as in Example 1, except that an aqueous solution at a temperature of 25° C. was used and the electrolysis conditions were a current density of 2.2 A/dm 2 and an amount of electricity of 3 C/dm 2 .
  • Untreated copper foil or surface-treated copper foil was evaluated by the following method.
  • a measurement sample was cut so that the sample area was 0.0150 m 2 or 0.0168 m 2 , and the mass of each sample was used as the sample amount.
  • the copper-clad laminate was evaluated by the following method.
  • each double-sided copper-clad laminate was cut into 5 cm x 5 cm pieces, and 5 test pieces were used. Each temperature was held for 1 hour.
  • test piece after the heat resistance test at each temperature was visually observed, and the number of test pieces in which peeling occurred at the interface between the resin substrate and the copper foil was counted and evaluated as follows. ⁇ : 0 test pieces peeled at a temperature of 280 ° C. or lower ⁇ : 1 to 5 test pieces peeled at a temperature of 280 ° C. or lower
  • the examples and comparative examples provided with a chromate-treated layer and a silane coupling agent-treated layer were held at a temperature of 290°C for 1 hour, and the number of peeled test pieces was counted.
  • the copper foil portion of the single-sided copper-clad laminate is entirely etched with a copper chloride etchant, washed with water, and dried.
  • a vacuum press machine KVHC-II manufactured by Kitagawa Seiki Co., Ltd.
  • heat and pressure molding was performed under the above conditions to prepare a pseudo-multilayer board.
  • Each pseudo-multilayer board was cut into 5 pieces of 5 cm x 5 cm to make a test piece. held for seconds.
  • a single-ended microstrip circuit was formed on the obtained double-sided copper clad laminate to obtain a test piece.
  • the test piece had a circuit length of 100 mm and a circuit width of 190 ⁇ m so that the characteristic impedance was 50 ⁇ .
  • test piece was measured for S parameter (S21) at a frequency of 20 GHz using a network analyzer (manufactured by Keysight Technologies/E5071C) and evaluated as follows. ⁇ : -3 dB/100 mm or more ⁇ : Less than -3 dB/100 mm
  • Soft etching properties were evaluated as a removability evaluation of a copper foil surface including a finely roughened layer by simulating the surface treatment of the copper foil surface in the process of forming blind vias in a printed wiring board.
  • the surface-treated copper foils of Examples 9 to 12 and Comparative Examples 15 to 17 were cut into 5 cm x 5 cm pieces, which were heated at 300°C for 100 seconds in an air atmosphere to obtain test pieces.
  • an aqueous solution containing 200 mL of sulfuric acid and 25 mL/L of hydrogen peroxide and having a liquid temperature of 40° C. is used as the soft etching solution.
  • the time (seconds) until the substrate (untreated copper foil) became visible was measured and evaluated as follows. ⁇ : Less than 30 seconds ⁇ : 30 seconds or more and less than 60 seconds ⁇ : 60 seconds or more and less than 120 seconds ⁇ : 120 seconds or more
  • the insertion loss of the surface-treated copper foil in the present invention is -3 dB / 100 mm or more even at a high frequency of 20 GHz, which is about the same as the non-roughened foil (Comparative Examples 1 to 7).
  • the copper-clad laminate using the surface-treated copper foil of the present invention has a surface with high heat resistance that does not cause peeling at the interface between the insulating resin substrate and the copper foil even when heated at a temperature of 280 ° C. for 1 hour. It was proved to be a treated copper foil.
  • the surface-treated copper foil of the present invention had a soft etching time of less than 60 seconds and exhibited excellent soft etching properties.
  • the roughened layer has a three-dimensional shape consisting of a plurality of continuous fine copper particles, and has a high surface area ratio per 1 m 2 of two-dimensional area and is excellent in anchoring effect. Therefore, it exhibits high adhesion even to low-polarity, low-dielectric resin substrates, and since it has a heat-resistant layer containing different metals, nickel and phosphorus, it has insulating properties even when exposed to high temperatures for a long time.
  • the surface-treated copper foil is less likely to blister at the interface between the resin base material and the copper foil and is less likely to be peeled off.
  • the present invention is a surface-treated copper foil that can suppress insertion loss to the same extent as a non-roughened copper foil, so that it has excellent transmission characteristics, and moreover, it is possible to adhere insulating resin substrates to each other. Therefore, a multilayer printed wiring board having excellent interlayer adhesion can be produced by making the copper foil multilayer, so that the surface-treated copper foil can be suitably used for printed wiring boards for high-frequency signal transmission. Therefore, the present invention is an invention with high industrial applicability.

Abstract

【課題】 処理面が連なった複数の微細な銅粒子からなる立体的な形状をしており、2次元面積1mあたりの表面積比が高くてアンカー効果に優れるので、低誘電性樹脂基材に対しても高い密着性を示し、高温に長時間晒されたとしても絶縁性樹脂基材と銅箔とが剥離し難く、また、無粗化処理銅箔と同程度の優れた伝送特性を備え、しかも、層間密着性に優れた多層プリント配線板を作製することもできる高周波信号伝送用プリント配線板に好適に使用できる表面処理銅箔を提供する。 【解決手段】 未処理銅箔の少なくとも一方の面に、一次粒子の粒子径が10nm~110nm以下の銅粒子からなる微細粗化処理層とニッケルとリンとを含有する耐熱処理層を備え、クリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの処理面の表面積比が5.1以上であり、前記ニッケルの付着量が表面積1mあたり2mg以上である表面処理銅箔。

Description

表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
 本発明は、高周波信号伝送用プリント配線板に好適に使用できる表面処理銅箔に関する。詳しくは、該表面処理銅箔の処理面は、連なった複数の微細な銅粒子からなる立体的な形状をしており、2次元面積1mあたりの表面積比が高くてアンカー効果に優れるので、低誘電性樹脂基材に対しても高い密着性を示し、また、ニッケルとリンの異種金属を含有する耐熱処理層を備えるため高温に長時間晒されたとしても銅粒子が酸化され難いので、絶縁性樹脂基材と銅箔との界面に膨れが生じ難くて剥離し難い表面処理銅箔であって、無粗化処理銅箔と同程度の優れた伝送特性を備え、しかも、絶縁性樹脂基材同士を密着させることができるので、層間密着性に優れる多層プリント配線板を作製することもできる表面処理銅箔に関する。
 従来、各種通信装置やコンピュータ、携帯電話には、エポキシ樹脂やポリイミド樹脂等の絶縁性樹脂基材上に導電性を有する銅配線パターンを形成したプリント配線板が用いられていた。
 近年、第5世代移動通信システム(5G)を活用したサービスや、先進運転支援システム(ADAS)を搭載した自動車の普及等に向け、3GHzを超える高い周波数、さらには、ミリ波と呼ばれる30GHz以上の非常に高い周波数の電波を使用した様々な装置が開発されており、それに伴って高周波信号伝送に対応したプリント配線板や高速・大容量伝送にも対応した多層プリント配線板の要請が高まっている。
 プリント配線板は、高周波信号を伝送すると信号の周波数が大きくなるにしたがって減衰量が大きくなるため伝送特性が低下する。
 プリント配線板を2つの端子を持つマイクロストリップライン構造の回路であると仮定すると、該回路を伝送する信号の伝送特性はSパラメータで表すことができ、端子1から入力された信号が端子2に出力されたとき、減衰により発生した端子間における信号損失の度合いは、挿入損失(S21)と呼ばれる。
 挿入損失(S21)は入力電力をPin、出力電力をPout、単位をdB(デシベル)として、次の[数1]で表される。
Figure JPOXMLDOC01-appb-M000001
 例えば、[数1]より、入力電力Pin100に対し、出力電力Poutが80、即ち、20%の信号損失であった場合、挿入損失(S21)は-1.0dBになり、また、Pin100に対しPoutが50、即ち、50%の信号損失であった場合、挿入損失(S21)は-3.0dBになり、信号損失が大きい程、挿入損失の絶対値が大きくなる。
 一般的に信号を伝送するには、挿入損失を-3.0dB以上、即ち、信号損失を50%以下に抑えなければならない。
 しかし、前述の通り、周波数が高くなるにつれて信号損失は大きくなるので、挿入損失の絶対値が大きくなる。
 これは、プリント配線板を構成する絶縁性樹脂基材の誘電体損失及び銅箔の導体損失が周波数に依存することによると考えられる。
 したがって、近年の信号の高周波数化に対応するために、挿入損失をより小さく抑えることが可能な低誘電性樹脂基材の開発の要請や低導体抵抗を示す銅箔の開発の要請が高まっている。
 低誘電性樹脂基材としては、ポリフェニレンエーテル樹脂や液晶ポリマー樹脂、フッ素樹脂等が挙げられる。
 しかし、これらの低誘電性樹脂基材はいずれも誘電特性に優れるが、銅箔との密着性を確保し難いという問題がある。
 低誘電性樹脂基材は、極性が小さくて、配向分極が生じ難い分子構造を持つ樹脂が多く用いられているため、絶縁性樹脂基材と銅箔との界面の分子間力が弱くなって、化学的な密着力が得られ難くなるためである。
 また、銅箔の導体抵抗を小さくする方法としては、表面処理銅箔の母材である未処理銅箔の表面粗さを小さくしたり、絶縁性樹脂基材との物理的密着力(アンカー効果)を高めるための粗化処理量を少なくしたり、さらには、耐熱性を高めるための金属処理量を減らしたりする方法がある。
 これらの方法はいずれも、周波数が高くなるにつれて伝送する信号の深さが浅くなって表面近傍を伝送し易くなる、いわゆる「表皮効果」により、信号が銅箔表面の凹凸に沿って流れることによる伝送距離が長くなることを抑制することを目的とするものである。
 しかし、表面の凹凸を減少させるために粗化処理量を減少させると、絶縁性樹脂基材に対するアンカー効果が弱くなり、絶縁性樹脂基材と銅箔との界面の物理的な密着力が低下するという問題がある。
 また、粗化処理量が少ない表面処理銅箔を使用した銅張積層板で多層プリント配線板を作製すると層間密着性が低下するという問題がある。
 これは、絶縁性樹脂基材と表面処理銅箔とを張り合わせて銅張積層板を作製した後、銅張積層板の銅箔をエッチングして完全に除去すると、露出した絶縁性樹脂基材表面には銅箔の処理面の形状が反転して複製され、銅箔側では凸形状であった部分が絶縁性樹脂基材側では凹形状になるが、多層プリント配線板は、この絶縁性樹脂基材側の凹形状に樹脂が浸透して絶縁性樹脂基材同士を接着させて多層化するため、粗化処理量が減少すると凹凸が減少し、樹脂が浸透する凹形状が減少するので、アンカー効果が弱まるからである。
 また、金属処理量を少なくすると、高温度や高湿度雰囲気に晒されると銅箔の酸化が進行し易くなり、絶縁性樹脂基材と銅箔との界面に膨れが生じて剥離し易くなるという問題がある。
 極性の小さな低誘電性樹脂基材を用いることで、密着性の低下や剥離は、より顕著になる。
 そこで、高周波信号伝送用プリント配線板に好適に使用できる表面処理銅箔であって、高周波信号伝送時の挿入損失を抑制できると共に、各種低誘電性樹脂基材に対して十分な密着性及び耐熱性を備えて剥離し難く、しかも、多層化すれば層間密着性にも優れる多層プリント配線板を作製できる表面処理銅箔の開発が望まれている。
特開2017-106068 WO2003/102277
 特許文献1には、高周波信号を伝送した際の伝送損失(挿入損失)を抑え、且つ、高温下や過酷条件下における絶縁性樹脂基材と銅箔との界面の密着性や耐久性に優れる表面処理銅箔が開示されている。
 特許文献1に開示されている表面処理銅箔は、粗化粒子高さを0.05μm以上、0.5μm未満に抑え、粗化処理面の表面積比(二次元面積に対する三次元面積の比)を1.2以上とし、さらに金属処理層に含有されるニッケル元素量を0.1mg/dm以上、0.3mg/dm未満にすることで、伝送損失を低く抑え、長期加熱後のピール強度劣化率を低く抑えようとするものである。
 しかし、特許文献1に開示される表面処理銅箔は、表面積比が下限に近い場合には絶縁性樹脂基材に対して十分な密着性や耐熱性を確保できず、また、プリント配線板を多層化したときの層間密着性が確保できない虞がある。
 また、金属処理層のニッケル含有量が少ないため、仮に、表面積比を高くしたとしても150℃を超える温度領域では密着性や耐熱性が弱く、絶縁性樹脂基材と銅箔との界面で膨れが発生する等の問題がある。
 なお、特許文献1に開示される方法では、非粗化処理面の表面積比を1とみなし、表面処理銅箔の表面積比から該表面積比1を差し引くことで粗化処理面の表面積比を算出しているので、粗化処理面と非粗化処理面、即ち、両面合わせた表面処理銅箔としての表面積比(本発明における表面積比)に換算すると2.2以上ということになる。
 特許文献2には、低誘電性基材との接着強度を十分に確保でき、伝送損失を極力抑制できる表面処理銅箔が開示されている。
 特許文献2に開示されている表面処理銅箔は、未処理銅箔表面に粒径0.5μm~3.0μmのコブ状銅粒からなる粗化処理層を形成し、前記粗化処理層上に粒径0.1μm~1.0μmの極微細銅粒を析出させ、その表面に亜鉛-ニッケルからなる防錆処理層を設けると共に、亜鉛-ニッケル総付着量を20~60mg/mにし、表面粗さをRz1.0μm~6.5μmとすることで、低誘電性基材に対する密着性を高めようとするものである。
 しかし、この方法では、耐熱性、例えば、半田浸漬後の密着性やプリント配線板を多層化したときの層間密着性は確保できるものの、コブ状銅粒の存在や極微細銅粒の影響により、伝送損失(挿入損失)が大きくなるという問題がある。
 本発明者らは、前記諸問題点を解決することを技術的課題とし、試行錯誤的な数多くの試作・実験を重ねた結果、未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に耐熱処理層を備える表面処理銅箔であって、前記粗化処理層は一次粒子の粒子径が10nm以上、かつ、110nm以下の銅粒子からなる微細粗化処理層であり、前記耐熱処理層はニッケルとリンとを含有し、前記表面処理銅箔の処理面は、クリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの表面積比が5.1以上であり、前記ニッケルの付着量が表面積1mあたり2mg以上である表面処理銅箔であれば、アンカー効果に優れるので、絶縁性樹脂基材に対して高い密着性を示すと共に、低誘電性樹脂基材に対しても高い密着性を示し、また、高温に長時間晒されたとしても、絶縁性樹脂基材と銅箔との界面に膨れが生じ難くて剥離し難い表面処理銅箔であって、無粗化処理銅箔と同程度の優れた伝送特性を備え、しかも、絶縁性樹脂基材同士を密着させることができるので、層間密着性に優れた多層プリント配線板を作製することもできる表面処理銅箔になるという刮目すべき知見を得て、前記技術的課題を達成したものである。
 前記技術的課題は次のとおり、本発明によって解決できる。
 本発明は、未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に耐熱処理層を備える表面処理銅箔であって、前記粗化処理層は一次粒子の粒子径が10nm以上、かつ、110nm以下の銅粒子からなる微細粗化処理層であり、前記耐熱処理層はニッケルとリンとを含有し、前記表面処理銅箔の処理面は、クリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの表面積比が5.1以上であり、前記ニッケルの付着量が表面積1mあたり2mg以上である表面処理銅箔である。
 また本発明は、前記ニッケルの付着量が表面積1mあたり60mg以下である前記表面処理銅箔である。
 また本発明は、前記リンの付着量が表面積1mあたり0.1mg以上である前記表面処理銅箔である。
 また本発明は、前記処理面の算術平均高さSaが0.02μm以上、かつ、0.35μm以下である前記表面処理銅箔である。
 また本発明は、前記耐熱処理層上にクロメート処理層及び/又はシランカップリング剤処理層を備えた前記表面処理銅箔である。
 本発明は、前記表面処理銅箔を絶縁性樹脂基材に張り合わせてなる銅張積層板である。
 また本発明は、前記絶縁性樹脂基材が低誘電性樹脂基材である前記銅張積層板である。
 また本発明は、前記銅張積層板を用いて形成されたプリント配線板又は多層プリント配線板である。
 本発明は、粗化処理層が、一次粒子の粒子径が10nm~110nmという微細な銅粒子で構成されているにも関わらず、クリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの表面積比が5.1以上という高い表面積比を実現した表面処理銅箔である。
 微細な粒子で構成されていながら、高い表面積比を実現しているので、処理面の形状は[図2]及び[図3]に示す通り、連なった複数の微細な銅粒子からなる立体的な形状になる。
 したがって、処理面と絶縁性樹脂基材とを張り合わせて加熱・加圧成形すれば、処理面と絶縁性樹脂基材表面とが立体的に、且つ、広い面積で密着するため、優れたアンカー効果を奏するから、絶縁性樹脂基材との密着性に優れる表面処理銅箔である。
 本発明における表面処理銅箔は、優れたアンカー効果を発揮するため、極性の低い低誘電性樹脂基材に対しても密着性に優れる表面処理銅箔である。
 また、本発明のように、処理面の形状が、連なった複数の微細な銅粒子からなる立体的な形状であると、銅箔をエッチング除去した後の絶縁性樹脂基材表面に複製される形状も当該表面処理銅箔の表面形状と同等の立体的な表面形状になるため、銅箔除去後の絶縁性樹脂基材表面に新たな絶縁性樹脂基材を積層すると、微細で、且つ、表面積比の高い凹形状部に樹脂が浸透することになり、より広い面積で接着するので優れたアンカー効果を発揮するため、層間密着性に優れる多層プリント配線板を作製できる表面処理銅箔である。
 また、粗化処理層が、一次粒子の粒子径が10nm~110nmという微細な銅粒子からなるため、高周波信号を伝送しても表皮効果による挿入損失が抑制され、無粗化処理銅箔と同程度の伝送特性を実現できるプリント配線板を作製できる表面処理銅箔である。
 また、本発明における耐熱処理層は、ニッケルとリンの異種金属を含有し、かつ、ニッケルの付着量が表面積1mあたり2mg以上なので、粗化粒子の表面がニッケルとリンで保護されていることにより、150~280℃程度の高温に1時間以上晒されても微細な銅粒子が酸化され難く、絶縁性樹脂基材と銅箔との界面での膨れの発生を抑制することができるため、高い耐熱性を実現することができる。
 また、耐熱処理層上にクロメート処理層及び/又はシランカップリング剤処理層を備えることで300℃程度の高温に1時間以上晒されても、絶縁性樹脂基材と銅箔との界面での膨れの発生を抑制することができるため、さらに高い耐熱性を実現することができる。
 また、ニッケルの付着量が前記表面積1mあたり60mg以下であると、ソフトエッチングにより銅箔を除去し易い表面処理銅箔になる。
 また、リンの付着量が前記表面積1mあたり、0.1mg以上であるとソフトエッチングにより銅箔を除去し易い表面処理銅箔になる。
 また、処理面の算術平均高さSaが0.02μm~0.35μmであれば、さらに、表皮効果による挿入損失が抑制されるので、伝送特性に優れたプリント配線板を作製できる表面処理銅箔になる。
 したがって、本発明における表面処理銅箔は、高周波信号伝送用のプリント配線板や多層プリント配線板の作製に好適に使用することができる。
本発明における表面処理銅箔の模式図である。 実施例1(表面積比8.8)の表面処理銅箔の200,000倍と100,000倍の走査電子顕微鏡写真である。 実施例8(表面積比5.5)の表面処理銅箔の200,000倍と100,000倍の走査電子顕微鏡写真である。 比較例12(表面積比5.0)の表面処理銅箔の200,000倍と100,000倍の走査電子顕微鏡写真である。 比較例11(表面積比4.2)の表面処理銅箔の200,000倍と100,000倍の走査電子顕微鏡写真である。 本発明における微細粗化処理層を形成する銅粒子の模式図である。
<未処理銅箔>
 本発明に使用する銅箔(以下「未処理銅箔」という)は特に限定されるものではなく、圧延銅箔や電解銅箔等、表裏の区別のない銅箔、表裏の区別のある銅箔のいずれも使用することができる。
 表面処理を施す一方の面は特に限定されるものではなく、圧延銅箔はいずれの面でも良いことはもちろんのこと、電解銅箔においても析出面又はドラム面のいずれの面でも良い。
 圧延銅箔を用いる際は、炭化水素系有機溶剤、或いは、アルカリ脱脂液に浸漬し、圧延油を除去してから表面処理を行うことが好ましい。
 電解銅箔を用いる際は、希硫酸に浸漬し、酸化被膜を除去してから表面処理を行うことが好ましい。
 未処理銅箔の厚さは、表面処理後にプリント配線板に使用できる厚さであれば特に限定されるものではないが、6μm~300μmが好ましく、より好ましくは12μm~35μmである。
 未処理銅箔はいずれの面もISO 25178-607に準拠した共焦点顕微鏡(レーザー顕微鏡)を用い、JIS B 0681-3に準拠して測定した時の算術平均高さSaは0.6μm以下であることが好ましく、より好ましくは0.3μm以下である。
 算術平均高さSaが0.6μmを超えると挿入損失が増加する虞があるからである。
 また、クリプトンガス吸着BET法により測定した比表面積から算出した2次元面積1mあたりの未処理銅箔の表面積比は2~4であることが好ましい。
<微細粗化処理層>
 本発明は、未処理銅箔上に微細な銅粒子からなる微細粗化処理層を備える表面処理銅箔である。
 微細粗化処理層を構成する銅粒子の一次粒子の粒子径は10nm~110nmが好ましく、より好ましくは20nm~100nmである。
 一次粒子の粒子径が10nmに満たない粒子が多いと、絶縁性樹脂基材と張り合わせた銅張積層板を150~300℃程度の高温に1時間以上晒すと絶縁性樹脂基材と銅箔との界面で膨れが発生し十分な耐熱性が得られない虞があり、また、銅張積層板を用いてプリント配線板を形成後、さらに絶縁性樹脂基材を積層して多層化したときに十分な層間密着性が得られない虞があるからである。
 また、粒子径が110nmを超える粒子が多いと表面粗さが増加して、挿入損失が大きくなる虞があるからである。
 粒子径は、電界放出型走査電子顕微鏡で傾斜角度0°、倍率100,000~200,000倍で観察し、図6に示す通り、一次粒子の最も長い径を計測する。
<耐熱処理層>
 本発明は、微細粗化処理層上に耐熱処理層を備える表面処理銅箔である。
 耐熱処理層のニッケルの付着量は、表面積1mあたり2mg以上が好ましく、より好ましくは3mg以上である。
 ニッケルの付着量が2mg未満であると、絶縁性樹脂基材と張り合わせて銅張積層板にしたとき、150~300℃程度の高温に1時間以上晒すと、絶縁性樹脂基材と銅箔との界面で膨れが発生し十分な耐熱性が得られない虞があるからである。
 なお、プリント配線板にブラインドビアを形成する工程において、当該プリント配線板に穴をあけ、デスミアを行った後、その内壁や銅箔面に銅めっきを行う際、密着性を高める下地処理として銅箔面には脱脂、酸洗又はソフトエッチングを行うが、ニッケルの付着量が表面積1mあたり60mgを超えると、微細粗化処理層を含む銅箔表面をソフトエッチングしたときに、エッチング時間が長くなり、エッチング不良が生じて銅めっきの密着不良が生じる虞がある。
 表面積1mあたりのニッケルの付着量は次の[数2]で求めることができる。
Figure JPOXMLDOC01-appb-M000002
 耐熱処理層のリンの付着量は表面積1mあたり0.1mg以上が好ましい。
 リンの付着量が0.1mg未満であると、ニッケル付着量が60mg以下であったとしても、ソフトエッチングしたときに、エッチング時間が長くなり、エッチング不良が生じて銅めっきの密着不良が生じる虞がある。
 表面積1mあたりのリンの付着量は次の[数3]で求めることができる。
Figure JPOXMLDOC01-appb-M000003
 本発明における微細粗化処理層及び耐熱処理層を備えた処理面のクリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの表面積比は5.1以上であることが好ましく、さらに好ましくは5.5以上である。
 表面積比が5.1未満であると、絶縁性樹脂基材と張り合わせた銅張積層板を150~300℃程度の高温に1時間以上晒すと、絶縁性樹脂基材と銅箔との界面で膨れが発生し十分な耐熱性が得られず、また、多層化した時に十分な層間密着性が得られない虞があるからである。
<表面積比の算出>
 処理面の表面積比は、クリプトンガス吸着BET比表面積測定値に試料質量を乗じて試料面積で除して算出することができる。
 本発明における表面処理銅箔の微細粗化処理層及び耐熱処理層を備えた処理面の算術平均高さSaは0.02μm~0.35μmが好ましく、さらに好ましくは、0.02μm~0.15μmである。
 算術平均高さSaが0.02μm未満であると、アンカー効果が弱くなる虞があり、また、0.35μmを超えると挿入損失が増加する虞があるからである。
 微細粗化処理層は、未処理銅箔を硫酸銅五水和物10~70g/Lにジエチレントリアミン化合物50~150g/Lを添加した水溶液を硫酸又は水酸化ナトリウムでpH3~6に調製した電解液に浸漬させながら電解して形成することができる。
 電解液に白金族酸化物被覆チタン等の不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に未処理銅箔を陰極として浸漬し、電流密度1.0~9.0A/dm、電気量40~90C/dm、液温25~50℃の電解条件で行えばよい。
 電解液に添加するジエチレントリアミン化合物は特に限定されないが、ジエチレントリアミン五酢酸五ナトリウムを例示する。
 耐熱処理層は、未処理銅箔上に微細粗化処理層を形成した銅箔を電解液に浸漬させながら電解して形成することができる。
 耐熱処理層を形成する電解液は、ニッケル含有化合物10~70g/L、酢酸塩2~40g/L及び次亜リン酸塩0.1~10.0g/Lを含有する水溶液をpH4.0~5.5に調製したものが好ましい。
 電解は、電解液に白金族酸化物被覆チタン等の不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に微細粗化処理層を形成した銅箔を陰極として浸漬し、電流密度0.5~3.5A/dm、電気量2.5~22C/dm、液温25~50℃の電解条件で行うことが好ましい。
 電解液が含有するニッケル含有化合物は特に限定されないが、硫酸ニッケル六水和物、塩化ニッケル六水和物、酢酸ニッケル四水和物を例示する。
 電解液が含有する酢酸塩は特に限定されないが、酢酸ナトリウム三水和物を例示する。
 電解液が含有する次亜リン酸塩は特に限定されないが、亜リン酸水素二ナトリウム、次亜リン酸ナトリウム一水和物、亜リン酸水素ニッケルを例示する。
<クロメート処理層及びシランカップリング剤処理層>
 本発明における表面処理銅箔は、耐熱処理層上にクロメート処理層及び/又はシランカップリング剤処理層を設けることができる。
 耐熱処理層上にクロメート処理層及び/又はシランカップリング剤処理層を設けることでさらに耐熱性に優れた表面処理銅箔になる。
 クロメート処理層は、耐熱処理層を形成した銅箔を電解液に浸漬させながら電解して形成することができる。
 クロメート処理層を形成する電解液は、クロム酸含有化合物10~60g/L水溶液、又は、クロム酸含有化合物10~60g/Lと亜鉛イオン0.2~4.0g/Lを含有する水溶液を硫酸又は水酸化ナトリウムによってpH2~12に調製したものが好ましい。
 電解は、電解液の中に白金族酸化物被覆チタン等の不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に耐熱処理層を形成した銅箔を陰極として浸漬し、電流密度1.0~5.0A/dm、電気量2~6C/dm、液温25~50℃の電解条件で行うことが好ましい。
 クロム酸含有化合物は特に限定されないが、二クロム酸ナトリウム二水和物を例示する。
 亜鉛イオン源は特に限定されないが、酸化亜鉛を例示する。
 本発明においては、クロメート処理層上、若しくは、耐熱処理層上にシランカップリング剤処理層を設けてもよい。
 シランカップリング剤層に用いるシランカップリング剤は特に限定されるものではなく、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基およびメルカプト基を含有するシランカップリング剤を使用することができるが、アミノ基、エポキシ基又はビニル基含有のシランカップリング剤は耐吸湿性と防錆性の効果が非常に高く、より好適に用いることができる。
 シランカップリング剤は1種でも、2種以上を組み合わせて使用しても良い。
 液温20~50℃に調製したシランカップリング剤水溶液にクロメート処理層、若しくは、耐熱処理層を形成した銅箔を浸漬した後、又は、スプレー等の方法で散布した後、水洗することで形成することができる。
 シランカップリング剤処理層を形成する水溶液の組成および条件として、γ-アミノプロピルトリエトキシシラン1~5mL/L、液温25~35℃、浸漬時間15秒を例示する。
<絶縁性樹脂基材>
 本発明における表面処理銅箔を張り合わせる絶縁性樹脂基材は特に限定されないが、エポキシ樹脂やポリイミド樹脂、また、低誘電性樹脂基材として、ポリフェニレンエーテル樹脂、液晶ポリマー樹脂、フッ素樹脂、ビスマレイミドトリアジン樹脂、シクロオレフィンポリマー樹脂を例示する。
 本発明の実施例を以下に示すが、本発明はこれに限定されない。
<未処理銅箔>
 実施例および比較例の未処理銅箔として、公称厚さ12~35μmの電解銅箔又は圧延銅箔を用いた。
 圧延銅箔は、アルカリ脱脂液に浸漬して圧延油を除去した後に各表面処理を行った。
 また、電解銅箔は、希硫酸に浸漬し、酸化被膜を除去してから表面処理を行った。
(実施例1及び実施例1a~実施例1c)
 耐熱処理層上にクロメート処理層とシランカップリング剤処理層とをこの順で設けた例を実施例1、クロメート処理層とシランカップリング剤処理層をいずれも設けなかった例を実施例1a、クロメート処理層のみを設けた例を実施例1b、シランカップリング剤処理層のみを設けた例を実施例1cとする。
<微細粗化処理層の形成>
 電解液として、硫酸銅五水和物35g/L、ジエチレントリアミン五酢酸五ナトリウム100g/Lを含有するpH4.8、液温32℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に未処理銅箔を陰極として浸漬し、電流密度5.0A/dm、電気量60C/dmで電解して未処理銅箔上に微細粗化処理層を設けた。
<耐熱処理層の形成>
 電解液として、硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物2.3g/L、酢酸ナトリウム三水和物10g/Lを含有するpH4.5、液温32℃の水溶液を用いた。
 電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に前記微細粗化処理層を設けた銅箔を陰極として浸漬し、電流密度2.5A/dm、電気量5C/dmで電解して微細粗化処理層上に耐熱処理層を設けた。
<クロメート処理層の形成>
 電解液として、二クロム酸ナトリウム二水和物12.5g/L、亜鉛イオン2.5g/Lを含有するpH12、液温25℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に前記耐熱処理層を設けた銅箔を陰極として浸漬し、電流密度4.3A/dm、電気量6C/dmで電解して耐熱処理層上にクロメート処理層を設けた。
<シランカップリング剤処理層の形成>
 液温25℃のγ-アミノプロピルトリエトキシシラン5mL/Lを含有する水溶液に前記耐熱処理層を設けた銅箔又は前記クロメート処理層を設けた銅箔を10秒間浸漬し、乾燥させて耐熱処理層上又はクロメート処理層上にシランカップリング剤処理層を形成して表面処理銅箔を作製した。
(実施例2)
 耐熱処理層を形成する際、電解条件を電気量10C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例3及び実施例3a~実施例3c)
 耐熱処理層上にクロメート処理層とシランカップリング剤処理層とをこの順で設けた例を実施例3、クロメート処理層とシランカップリング剤処理層をいずれも設けなかった例を実施例3a、クロメート処理層のみを設けた例を実施例3b、シランカップリング剤処理層のみを設けた例を実施例3cとする。
 耐熱処理層を形成する際、電解条件を電気量3C/dmとしたこと以外は、実施例1及び実施例1a~実施例1cと同一の条件で作製した。
(実施例4)
 微細粗化処理層を形成する際、電解条件を電流密度7.0A/dm、電気量80C/dmとし、また耐熱処理層を形成する際、電解条件を電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例5及び実施例6)
 耐熱処理層を形成する際、電解条件を電気量10C/dmとし、またクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例7)
 耐熱処理層を形成する際、電解条件を電気量20C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例8)
 微細粗化処理層を形成する際、電解条件を電流密度4.0A/dm、電気量50C/dmとし、耐熱処理層を形成する際、電解条件を電気量10C/dmとし、またクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例9)
 耐熱処理層を形成する際、電解液として、硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物0.4g/L、酢酸ナトリウム三水和物10g/Lを含むpH4.5、液温32℃の水溶液を用い、電解条件を電気量10C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例10)
 耐熱処理層を形成する際、電解液として、硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物2.0g/L、酢酸ナトリウム三水和物10g/Lを含むpH4.5、液温32℃の水溶液を用い、電解条件を電気量10C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例11)
 クロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(実施例12)
 耐熱処理層を形成する際、電解条件を電気量15C/dmとし、またクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例1)
 微細粗化処理層を設けなかったこと以外は、実施例1と同一の条件で作製した。
(比較例2)
 微細粗化処理層を設けず、また耐熱処理層を形成する際、電解条件を電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例3)
 微細粗化処理層を設けず、また耐熱処理層を形成する際、電解条件を電気量10C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例4及び比較例5)
 微細粗化処理層を設けず、また耐熱処理層を形成する際、電解条件を電気量10C/dmとし、さらにクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例6)
 微細粗化処理層を設けず、また耐熱処理層を形成する際、電解条件を電気量20C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例7)
 微細粗化処理層を設けず、また耐熱処理層を形成する際、電解条件を電気量6C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例8)
 特許文献1の実施例に記載された電解液(硫酸銅五水和物98g/L、硫酸180g/L、モリブデンイオン60mg/L、液温25℃)、及び、電解条件(電流密度25.0A/dm、電気量38C/dm)で粗化処理層を形成し、また、耐熱処理層を形成する際、電解液として、硫酸ニッケル六水和物30g/L、次亜リン酸ナトリウム一水和物2g/L、酢酸ナトリウム三水和物10g/Lを含有するpH4.5、液温32℃の水溶液を用い、電流条件を電流密度0.5A/dm、電気量2C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例9)
 粗化処理層を形成する際、はじめに電解液として、硫酸銅五水和物57g/L、硫酸110g/L、タングステンイオン15mg/L、塩化物イオン30mg/Lを含む液温40℃の水溶液を用い、前記電解液の中に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に未処理銅箔を陰極として浸漬し、電流密度50.0A/dm、電気量125C/dmで電解して未処理銅箔上に樹枝状粒子層を形成した。
 つづいて、電解液として硫酸銅五水和物200g/L、硫酸100g/Lからなる液温40℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に樹枝状粒子層を設けた銅箔を陰極として浸漬し、電流密度5.0A/dm、電気量440C/dmで電解することで前記樹枝状粒子層上に銅めっきして粗化処理層を設けたこと以外は、実施例1と同一の条件で作製した。
(比較例10)
 粗化処理層を形成する際、はじめに電解液として硫酸銅五水和物47g/L、硫酸95g/L、タングステンイオン15mg/L、チタンイオン500mg/Lを含む液温35℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に未処理銅箔を陰極として浸漬し、電流密度30.0A/dm、電気量95C/dmで電解して未処理銅箔上に樹枝状粒子層を形成した。
 つづいて、電解液として硫酸銅五水和物200g/L、硫酸100g/Lからなる液温40℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に樹枝状粒子層を設けた銅箔を陰極として浸漬し、電流密度10.0A/dm、電気量250C/dmで電解することで前記樹枝状粒子層上に銅めっきして粗化処理層を設けたこと以外は、実施例1と同一の条件で作製した。
(比較例11)
 微細粗化処理層を形成する際、電解条件を電流密度1.3A/dm、電気量15C/dmとし、また耐熱処理層を形成する際、電解条件を電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例12)
 微細粗化処理層を形成する際、電解条件を電流密度2.5A/dm、電気量30C/dmとし、また耐熱処理層を形成する際、電解条件を電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例13)
 耐熱処理層を形成する際、電解条件を電流密度0.5A/dm、電気量1.0C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例14)
 耐熱処理層を形成する電解液として、硫酸コバルト七水和物39g/L、モリブデン酸ナトリウム二水和物24g/L、クエン酸三ナトリウム二水和物45g/L、硫酸ナトリウム40g/Lを含むpH5.6、液温30℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に微細粗化処理銅箔を陰極として浸漬し、電流密度7.0A/dm、電気量14C/dmで電解して当該銅箔上に耐熱処理層を設けたこと以外は、実施例1と同一の条件で作製した。
(比較例15)
 耐熱処理層を形成する電解液として、硫酸ニッケル六水和物30g/L、酢酸ナトリウム三水和物10g/Lを含むpH4.5、液温32℃の水溶液を用い、前記電解液に白金族酸化物被覆チタンの不溶性電極を陽極として浸漬し、また、一定の間隔をあけて向かい側に微細粗化処理銅箔を陰極として浸漬し、電気量10C/dmで電解して当該銅箔上に耐熱処理層を設けたこと以外は、実施例1と同一の条件で作製した。
(比較例16)
 耐熱処理層を形成する際、電解条件を電気量24C/dmとし、またクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
(比較例17)
 耐熱処理層を形成する際、電解条件を電気量27C/dmとし、またクロメート処理層を形成する際、電解液に二クロム酸ナトリウム二水和物20g/Lを含有するpH4.5、液温25℃の水溶液を用い、電解条件を電流密度2.2A/dm、電気量3C/dmとしたこと以外は、実施例1と同一の条件で作製した。
 実施例及び比較例の各表面処理銅箔を[表1]及び[表2]に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<銅張積層板の作製>
 実施例および比較例の各表面処理銅箔の処理面を被接着面として、1枚~6枚積層したポリフェニレンエーテル樹脂含有基材(パナソニック株式会社製/MEGTRON7/公称厚さ0.06mm)の片面又は両面に合わせ、真空熱プレス機(北川精機株式会社製/KVHC-II)を使用し、大気雰囲気下、温度200℃、面圧4MPaで80分間加熱・加圧成形を行い、銅箔積層板を得た。
 未処理銅箔または表面処理銅箔の評価は、次の方法により行った。
<表面粗さの測定>
 ISO25178-607に準拠した共焦点顕微鏡であるレーザー顕微鏡(オリンパス株式会社製/LEXT OLS5000)を用い、JIS B 0681-3に準拠して、評価領域を125μm×125μm、Sフィルタを0.5μm、Lフィルタを50μm、F演算を多次曲面(3次)としたときの算術平均高さSaを測定した。
<粒子径の測定>
 実施例および比較例の微細粗化処理層を設けた面について、電界放出型走査電子顕微鏡(日本電子株式会社製/JSM-7800F)を使用し、傾斜角度0°において倍率100,000~200,000倍で観察された一次粒子20点の最も長い径を計測して行った(図6)。
<BET比表面積の測定>
 実施例及び比較例の各表面処理銅箔の比表面積は、ガス吸着量測定装置(マイクロトラック・ベル株式会社製/BELSORP-MaxII)を使用し、室温で5時間減圧脱気後に液体窒素温度(77K)におけるクリプトンガス吸着等温線を測定し、BET多点法により求めた。
 測定試料は試料面積が0.0150m、又は、0.0168mとなるように切り出し、それぞれの試料質量を試料量とした。
<表面積比の算出>
 前記BET比表面積の値に試料量を乗じ、それを試料面積で除することで算出した。
<表面積1mあたりのニッケル付着量の算出>
 実施例および比較例の各表面処理銅箔の耐熱処理層が設けられた面について、蛍光X線分析装置(株式会社リガク製/ZSX Primus IV)により蛍光X線強度を測定し、その強度からファンダメンタル・パラメータ法により二次元面積1mあたりのニッケル付着量を算出し、それぞれ得られた付着量、および表面積比、二次元面積(=1m)の値を[数4]に当てはめることで算出した。
Figure JPOXMLDOC01-appb-M000006
<表面積1mあたりのリン付着量の算出>
 実施例及び比較例の各表面処理銅箔の耐熱処理層が設けられた面について、蛍光X線分析装置(株式会社リガク製/ZSX Primus IV)により蛍光X線強度を測定し、ファンダメンタル・パラメータ法により二次元面積1mあたりのリン付着量を算出し、それぞれ得られた付着量、および表面積比、二次元面積(=1m)の値を[数5]に当てはめることで算出した。
Figure JPOXMLDOC01-appb-M000007
 銅張積層板の評価は、次の方法により行った。
<耐熱性試験>
 6枚積層したポリフェニレンエーテル樹脂含有基材(パナソニック株式会社製/MEGTRON7/公称厚さ0.06mm)の両面に実施例及び比較例の各表面処理銅箔の処理面を被接着面として合わせ、真空熱プレス機(北川精機株式会社製/KVHC-II)を使用し、大気雰囲気下、温度200℃、面圧4MPaで80分間加熱・加圧成形を行い、両面銅張積層板を得た。
 JIS C6481に準拠し、各両面銅張積層板を5cm×5cmの大きさに切り分けたもの5枚を試験片とし、空気循環機能付きの恒温槽中で大気雰囲気下、温度260℃、280℃の各温度で1時間保持した。
 各温度での耐熱性試験後の各試験片について、目視で観察し、樹脂基材と銅箔との界面で剥離が生じた試験片の数を計測し、次の通り評価した。
〇:温度280℃以下において剥離した試験片の個数が0枚
×:温度280℃以下において剥離した試験片の個数が1~5枚
 クロメート処理層及びシランカップリング剤処理層を設けた実施例及び比較例については290℃の温度で1時間保持し、剥離した試験片の数を計測した。
<層間密着性試験>
 実施例および比較例の各表面処理銅箔の処理面を被接着面として、まず、ポリフェニレンエーテル樹脂含有基材(パナソニック株式会社製/MEGTRON7/公称厚さ0.06mm)1枚の片面に合わせ、真空熱プレス機(北川精機株式会社製/KVHC-II)を使用し、大気雰囲気下、温度200℃、面圧4MPaで80分間加熱・加圧成形を行い、片面銅張積層板を得た。
 次に、その片面銅張積層板の銅箔部分を塩化銅エッチング液により全面エッチングし、水洗、乾燥させ、さらに、その銅箔がエッチングされた面に前記ポリフェニレンエーテル樹脂含有基材1枚を合わせ、真空プレス機(北川精機株式会社製/KVHC-II)を使用し、前記条件で加熱・加圧成形を行い、疑似多層板を作製した。
 各疑似多層板を5cm×5cmの大きさに5枚切り分けたものを試験片とし、前処理として純水中で煮沸処理を6時間行った後に、288℃のはんだ浴に垂直に浸漬させ、30秒間保持した。
 層間密着性試験後の各試験片について、目視で観察し、絶縁性樹脂基材と絶縁性樹脂基材との界面で剥離が生じた試験片の数を計測し、以下の通り評価した。
〇:0枚
×:1~5枚
<伝送特性>
 実施例および比較例の各表面処理銅箔の処理面を被接着面として、ポリフェニレンエーテル樹脂含有基材(パナソニック株式会社製/MEGTRON7/公称厚さ0.06mm)1枚の両面に合わせ、真空熱プレス機(北川精機株式会社製/KVHC-II)を使用し、大気雰囲気下、温度200℃、面圧4MPaで80分間加熱・加圧成形を行い、両面銅張積層板を得た。
 得られた両面銅箔積層板にエッチング装置(株式会社二宮システム製/SPE-40)を用いて、シングルエンドのマイクロストリップ回路を形成し、試験片とした。
 なお、当該試験片は回路長を100mmとし、特性インピーダンスが50Ωとなるよう回路幅を190μmとした。
 当該試験片は、ネットワークアナライザ(キーサイトテクノロジー製/E5071C)を使用して周波数20GHzにおけるSパラメータ(S21)を測定し、次の通り評価した。
〇:-3dB/100mm以上
×:-3dB/100mm未満
<総合評価>
 耐熱性試験および層間密着性試験、伝送特性の各評価を総合して、以下の通り評価した。
〇:上記試験のいずれの評価も〇であった場合
×:上記試験のうち、評価×が1つ以上あった場合
 プリント配線板のビア形成を模擬した評価は、次の通り行った。
<ソフトエッチング性>
 プリント配線板にブラインドビアを形成する工程における銅箔面の下地処理を模擬し、微細粗化処理層を含む銅箔表面の除去性評価としてソフトエッチング性を評価することとした。
 実施例9~12及び比較例15~17の各表面処理銅箔について、5cm×5cmの大きさに切り出し、それらを大気雰囲気下、温度300℃で100秒間加熱したものを試験片とした。
 ソフトエッチング液には硫酸200mL、過酸化水素25mL/Lを含む液温40℃の水溶液を用い、各試験片を前記ソフトエッチング液に浸漬し、微細粗化処理層が溶解し、処理銅箔の素地(未処理銅箔)が目視できるまでの時間(秒)を計測し、次の通り評価した。
◎:30秒未満
〇:30秒以上60秒未満
△:60秒以上120秒未満
×:120秒以上
 実施例及び比較例の各表面処理銅箔の耐熱性、層間密着性及び伝送特性の結果を[表3]~[表6]に示す。
 実施例及び比較例の各表面処理銅箔のソフトエッチング性の結果を[表7]に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 実施例1~8より、本発明における表面処理銅箔の挿入損失は、周波数20GHzの高周波においても-3dB/100mm以上と、無粗化処理箔(比較例1~7)と同程度であり、且つ、本発明における表面処理銅箔を使用した銅張積層板は、温度280℃で1時間加熱しても絶縁性樹脂基材と銅箔との界面で剥離が生じない高い耐熱性を備える表面処理銅箔であることが証明された。
 また、本発明における表面処理銅箔を使用した銅張積層板を銅エッチングした面に新たな絶縁性樹脂基材を積層しても、層間密着性に優れることが証明された。
 また、実施例9~12より、本発明における表面処理銅箔は、ソフトエッチング時間が60秒未満であり、優れたソフトエッチング性を示すことが確認された。
 本発明における表面処理銅箔は、粗化処理層が、連なった複数の微細な銅粒子からなる立体的な形状をしており、2次元面積1mあたりの表面積比が高くてアンカー効果に優れるので、極性の小さい低誘電性樹脂基材に対しても高い密着性を示し、また、ニッケルとリンの異種金属を含有する耐熱処理層を備えるので、高温に長時間晒されたとしても絶縁性樹脂基材と銅箔との界面に膨れが生じ難くて剥離し難い表面処理銅箔である。
 また、本発明は、無粗化処理銅箔と同程度に挿入損失を抑制することができるため伝送特性に優れた表面処理銅箔であって、しかも絶縁性樹脂基材同士を密着させることができるので、多層化すれば、層間密着性に優れた多層プリント配線板を作製できるから、高周波信号伝送用のプリント配線板に好適に使用できる表面処理銅箔である。
 したがって、本発明は産業上の利用可能性の高い発明である。

Claims (8)

  1. 未処理銅箔の少なくとも一方の面に粗化処理層と前記粗化処理層上に耐熱処理層を備える表面処理銅箔であって、前記粗化処理層は一次粒子の粒子径が10nm以上、かつ、110nm以下の銅粒子からなる微細粗化処理層であり、前記耐熱処理層はニッケルとリンとを含有し、前記表面処理銅箔の処理面は、クリプトンガス吸着BET法により測定した比表面積から算出される2次元面積1mあたりの表面積比が5.1以上であり、前記ニッケルの付着量が表面積1mあたり2mg以上である表面処理銅箔。
  2. 前記ニッケルの付着量が表面積1mあたり60mg以下である、請求項1記載の表面処理銅箔。
  3. 前記リンの付着量が表面積1mあたり0.1mg以上である請求項1又は2記載の表面処理銅箔。
  4. 前記処理面の算術平均高さSaが0.02μm以上、かつ、0.35μm以下である請求項1乃至3いずれか記載の表面処理銅箔。
  5. 前記耐熱処理層上にクロメート処理層及び/又はシランカップリング剤処理層を備えた請求項1乃至4いずれか記載の表面処理銅箔。
  6. 請求項1乃至5いずれか記載の表面処理銅箔を絶縁性樹脂基材に張り合わせてなる銅張積層板。
  7. 前記絶縁性樹脂基材が低誘電性樹脂基材である請求項6記載の銅張積層板。
  8. 請求項6又は7記載の銅張積層板を用いて形成されたプリント配線板又は多層プリント配線板。
PCT/JP2022/003721 2021-04-09 2022-02-01 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板 WO2022215330A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280015287.8A CN116917552A (zh) 2021-04-09 2022-02-01 表面处理铜箔及使用该表面处理铜箔的覆铜层压板以及印刷线路板
KR1020237023514A KR20230109786A (ko) 2021-04-09 2022-02-01 표면 처리 동박 및 그 표면 처리 동박을 사용한 구리피복 적층판 그리고 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066587A JP7273883B2 (ja) 2021-04-09 2021-04-09 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
JP2021-066587 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215330A1 true WO2022215330A1 (ja) 2022-10-13

Family

ID=83546261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003721 WO2022215330A1 (ja) 2021-04-09 2022-02-01 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板

Country Status (5)

Country Link
JP (1) JP7273883B2 (ja)
KR (1) KR20230109786A (ja)
CN (1) CN116917552A (ja)
TW (1) TWI819511B (ja)
WO (1) WO2022215330A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116923975B (zh) * 2023-09-14 2023-11-24 遂宁利和科技有限公司 一种覆铜板生产用输送上料装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042779A (ja) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、基材、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
JP2015061756A (ja) * 2013-08-21 2015-04-02 Jx日鉱日石金属株式会社 キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015061935A (ja) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2016146477A (ja) * 2015-01-29 2016-08-12 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、基材、樹脂基材、積層体、プリント配線板、電子機器の製造方法及びプリント配線板の製造方法
WO2017138338A1 (ja) * 2016-02-10 2017-08-17 古河電気工業株式会社 表面処理銅箔及びこれを用いて製造される銅張積層板
JP2017172048A (ja) * 2013-07-23 2017-09-28 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、基材の製造方法、プリント配線板の製造方法、プリント回路板の製造方法、銅張積層板の製造方法
WO2020031721A1 (ja) * 2018-08-10 2020-02-13 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602896B1 (ko) 2002-06-04 2006-07-19 미쓰이 긴조꾸 고교 가부시키가이샤 저유전성 기재용 표면처리 동박과 그것을 사용한 동클래드적층판 및 프린트 배선판
JP5129642B2 (ja) 2007-04-19 2013-01-30 三井金属鉱業株式会社 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板
MY168616A (en) * 2013-07-23 2018-11-14 Jx Nippon Mining & Metals Corp Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
KR101909352B1 (ko) * 2013-07-24 2018-10-17 제이엑스금속주식회사 표면 처리 동박, 캐리어가 부착된 동박, 기재, 수지 기재, 프린트 배선판, 구리 피복 적층판 및 프린트 배선판의 제조 방법
JP6182584B2 (ja) 2015-12-09 2017-08-16 古河電気工業株式会社 プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172048A (ja) * 2013-07-23 2017-09-28 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、基材の製造方法、プリント配線板の製造方法、プリント回路板の製造方法、銅張積層板の製造方法
JP2015042779A (ja) * 2013-07-24 2015-03-05 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、基材、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
JP2015061935A (ja) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015061756A (ja) * 2013-08-21 2015-04-02 Jx日鉱日石金属株式会社 キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2016146477A (ja) * 2015-01-29 2016-08-12 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、基材、樹脂基材、積層体、プリント配線板、電子機器の製造方法及びプリント配線板の製造方法
WO2017138338A1 (ja) * 2016-02-10 2017-08-17 古河電気工業株式会社 表面処理銅箔及びこれを用いて製造される銅張積層板
WO2020031721A1 (ja) * 2018-08-10 2020-02-13 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Also Published As

Publication number Publication date
TWI819511B (zh) 2023-10-21
CN116917552A (zh) 2023-10-20
JP7273883B2 (ja) 2023-05-15
JP2022161636A (ja) 2022-10-21
TW202239591A (zh) 2022-10-16
KR20230109786A (ko) 2023-07-20

Similar Documents

Publication Publication Date Title
KR101830994B1 (ko) 조화처리된 동박, 그 제조방법, 동박 적층판 및 인쇄회로기판
TWI479958B (zh) Copper foil for printed wiring board and manufacturing method thereof
US9028972B2 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board
CN1657279B (zh) 表面处理铜箔和电路基板
TWI452953B (zh) Copper cladding for printed circuit boards and copper clad laminates for printed circuit boards
TWI704048B (zh) 表面處理銅箔及使用其製成的覆銅積層板
JP4986060B2 (ja) プリント配線板用銅箔
KR101998923B1 (ko) 저유전성 수지 기재용 처리 동박 및 그 처리 동박을 사용한 구리 피복 적층판 그리고 프린트 배선판
TWI735651B (zh) 銅箔以及具有該銅箔的覆銅層積板
JP6182584B2 (ja) プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板
KR20060052031A (ko) 표면 처리 동박 및 회로 기판
JP2008285751A (ja) 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板
JP6722452B2 (ja) 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板
JP2007042696A (ja) 積層回路基板
WO2022215330A1 (ja) 表面処理銅箔及び該表面処理銅箔を用いた銅張積層板並びにプリント配線板
JP4593331B2 (ja) 積層回路基板とその製造方法
JP2016141823A (ja) 表面処理銅箔及び積層板
CN111757607B (zh) 表面处理铜箔、覆铜层叠板及印制布线板
JP5443157B2 (ja) 高周波用銅箔及びそれを用いた銅張積層板とその製造方法
JPWO2020162068A1 (ja) 表面処理銅箔、並びに、それを用いた銅張積層板、樹脂付銅箔および回路基板
TW201942422A (zh) 表面處理銅箔、覆銅層積板、及印刷配線板的製造方法
JP6827083B2 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
WO2022209990A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237023514

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276590

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015287.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784315

Country of ref document: EP

Kind code of ref document: A1