WO2011077601A1 - 圧粉磁心及びその製造方法 - Google Patents

圧粉磁心及びその製造方法 Download PDF

Info

Publication number
WO2011077601A1
WO2011077601A1 PCT/JP2010/003076 JP2010003076W WO2011077601A1 WO 2011077601 A1 WO2011077601 A1 WO 2011077601A1 JP 2010003076 W JP2010003076 W JP 2010003076W WO 2011077601 A1 WO2011077601 A1 WO 2011077601A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
soft magnetic
inorganic insulating
magnetic powder
dust core
Prior art date
Application number
PCT/JP2010/003076
Other languages
English (en)
French (fr)
Inventor
大島泰雄
繁田進
赤岩功太
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to US13/132,892 priority Critical patent/US9396873B2/en
Priority to JP2010526873A priority patent/JP5501970B2/ja
Priority to CN201080001075.1A priority patent/CN102202818B/zh
Priority to EP10834069.6A priority patent/EP2492031B1/en
Publication of WO2011077601A1 publication Critical patent/WO2011077601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a dust core made of soft magnetic powder and a method for producing the same.
  • a choke coil is used as an electronic device for a control power source such as an OA device, a solar power generation system, an automobile, or an uninterruptible power supply, and a ferrite magnetic core or a dust core is used as its core.
  • a control power source such as an OA device, a solar power generation system, an automobile, or an uninterruptible power supply
  • a ferrite magnetic core or a dust core is used as its core.
  • the ferrite core has a defect that the saturation magnetic flux density is small.
  • a dust core produced by molding metal powder has a higher saturation magnetic flux density than soft magnetic ferrite, and thus has excellent DC superposition characteristics.
  • the powder magnetic core is required to have a magnetic characteristic capable of obtaining a large magnetic flux density with a small applied magnetic field and a magnetic characteristic that an energy loss due to a change in the magnetic flux density is small due to demands such as improvement of energy exchange efficiency and low heat generation.
  • iron loss There is an energy loss called iron loss (Pc) that occurs when a dust core is used in an alternating magnetic field.
  • This iron loss (Pc) is represented by the sum of hysteresis loss (Ph) and eddy current loss (Pe) as shown in [Formula 1]. As shown in [Equation 2], this hysteresis loss is proportional to the operating frequency, and the eddy current loss (Pe) is proportional to the square of the operating frequency.
  • pure iron having a small coercive force has been widely used as soft magnetic powder particles.
  • pure iron as the soft magnetic powder and reducing the mass loss ratio of impurities to the soft magnetic powder to 120 ppm or less (see, for example, Patent Document 1)
  • pure iron as the soft magnetic powder.
  • a method of reducing hysteresis loss by using the amount of manganese contained in the soft magnetic powder to 0.013 wt% or less is known (for example, see Patent Document 2).
  • a method for heat-treating soft magnetic powder before forming an insulating coating is known.
  • a method of reducing hysteresis loss by performing heat treatment on the soft magnetic powder before forming the insulating coating is also known.
  • domain wall movement is facilitated by removing strain existing in soft magnetic particles, removing defects such as crystal grain boundaries, and growing (expanding) crystal particles in soft magnetic powder particles, thereby reducing coercive force.
  • Patent Documents 1 and 2 it is necessary to perform heat treatment at a low temperature so that the insulating coating on the surface of the soft magnetic powder is not thermally decomposed in the annealing of the molded body after pressure molding, which effectively reduces hysteresis loss. There is a problem that cannot be reduced.
  • Patent Document 3 when the soft magnetic particles are pure iron, the soft magnetic particles are sintered and solidified. Therefore, the soft magnetic particles need to be mechanically pulverized. There is a problem that new distortion occurs. In the invention of Patent Document 4, it is necessary to separate the metal particles and the spacer particles after the heat treatment, which is not convenient. Further, since magnets are used for separation, there are problems such as magnetization of metal particles.
  • the present invention has been made in order to solve the above-described problems.
  • the object of the present invention is to uniformly disperse an inorganic insulating powder having a melting point of 1500 ° C. or more in a convenient manner, and to improve the soft magnetic powder. Hysteresis loss is effectively reduced without sintering and hardening during heat treatment. Furthermore, by uniformly dispersing the inorganic insulating powder, the gap provided between the magnetic powders becomes a dispersive gap, and a dust core capable of improving the DC superposition characteristics and a method for manufacturing the same are provided. .
  • the dust core of the present invention is a mixture of soft magnetic powder and inorganic insulating powder, heat-treated, and then bonded to the heat-treated soft magnetic powder and inorganic insulating powder.
  • Add the adhesive resin mix the lubricant resin to the mixture, press-mold the mixture to produce a molded body, anneal the molded body, and add the inorganic insulating powder.
  • Al 2 O 3 melting point 2046 degrees
  • MgO melting point 2800 degrees
  • a powder magnetic core using 5% of the soft magnetic alloy powder and a manufacturing method thereof are also an embodiment of the present invention.
  • the soft magnetic powder particles when the inorganic insulating fine powder having a melting point of 1500 ° C. or more is uniformly dispersed, the soft magnetic powder particles can be separated from each other during the heat treatment of the powder, and the soft magnetic powder particles are sintered. And can be prevented from solidifying.
  • the flowchart which shows the manufacturing method of the powder magnetic core of an Example The figure which showed the sum total of the half value width of each surface of (110), (200), (211) in the 1st characteristic comparison.
  • the figure which showed the direct current BH characteristic of the dust core in the 2nd characteristic comparison The figure which showed the relation between differential permeability and magnetic flux density from the direct current BH characteristic in the second characteristic comparison.
  • the figure which showed the direct current BH characteristic of the dust core in the 4th characteristic comparison The figure which showed the relation between differential permeability and magnetic flux density from direct current BH characteristic in the 4th characteristic comparison.
  • the figure which showed the relation of hysteresis loss to annealing temperature in the fifth characteristic comparison SEM photo substitute for drawing showing the state of inorganic insulating fine powder adhering to soft magnetic powder particles Drawing substitute SEM photograph which enlarged SEM photograph shown in FIG.
  • the method for manufacturing a dust core according to the present invention includes the following steps as shown in FIG. (1) A first mixing step (step 1) in which an inorganic insulating powder is mixed with a soft magnetic powder. (2) A heat treatment step (step 2) in which heat treatment is performed on the mixture that has undergone the first mixing step. (3) A binder addition step (step 3) in which a binder resin is added to the soft magnetic powder and the inorganic insulating powder that have undergone the heat treatment step. (4) A second mixing step (step 4) in which the lubricating resin is mixed with the soft magnetic powder to which the binder resin is added. (5) A molding step (step 5) in which the mixture that has undergone the second mixing step is pressure-molded to produce a molded body. (6) An annealing process (step 6) of annealing the molded body that has undergone the molding process.
  • each process is demonstrated concretely.
  • soft magnetic powder mainly composed of iron and inorganic insulating powder are mixed.
  • a soft magnetic powder having an average particle diameter of 5 to 30 ⁇ m and a silicon component of 0.0 to 6.5 wt% prepared by a gas atomizing method, a water gas atomizing method and a water atomizing method is used.
  • the average particle size is larger than the range of 5 to 30 ⁇ m, the eddy current loss (Pe) increases.
  • the average particle size is smaller than the range of 5 to 30 ⁇ m, the hysteresis loss (Ph) due to density reduction increases.
  • the silicon component of the soft magnetic powder is preferably 6.5 wt% or less with respect to the soft magnetic powder, and if it is more than this, the moldability is poor, and the density of the powder magnetic core is lowered and the magnetic properties are lowered. Will occur.
  • the shape of the soft magnetic powder is indefinite, and the surface of the powder becomes uneven. For this reason, it is difficult to uniformly form the inorganic insulating powder on the surface of the soft magnetic powder. Furthermore, stress concentrates on the convex part of the powder surface during molding, and dielectric breakdown is likely to occur. Therefore, for mixing the soft magnetic powder and the inorganic insulating powder, an apparatus that develops mechanochemical effects in the powder, such as a V-type mixer, a W-type mixer, or a pot mill, is used. In addition, mixing and surface modification may be performed simultaneously by using a mixer of a type that gives mechanical energy such as compressive force and shear force to the particles.
  • the direct current superposition characteristics depend on the aspect ratio of the powder, and this process can make the aspect ratio 1.0 to 1.5.
  • the mixed powder obtained by mixing the inorganic insulating powder with the soft magnetic powder is subjected to a uniform coating on the surface of the inorganic insulating powder and a flattening process to make the powder surface uneven.
  • This method is performed by mechanically plastically deforming the surface. Examples include mechanical alloying, ball mills, and attritors.
  • the average particle size of the inorganic insulating powder mixed here is 7 to 500 nm. If the average particle size is less than 7 nm, granulation is difficult, and if it exceeds 500 nm, the surface of the soft magnetic powder cannot be uniformly covered, and the insulating properties cannot be maintained.
  • the addition amount is preferably 0.4 to 1.5 wt%. When the content is less than 0.4 wt%, the performance cannot be sufficiently exhibited. When the content exceeds 1.5 wt%, the density is remarkably lowered, and thus the magnetic properties are lowered. Examples of such an inorganic insulating material, MgO (mp 2800 °) a melting point of 1500 ° C. greater, Al 2 O 3 (melting point 2046 °), TiO 2 (melting point 1640 °), among the CaO powder (melting point 2572 °) It is desirable to use at least one of these.
  • the temperature after the first mixing step is 1000 ° C. or higher and the temperature at which the soft magnetic powder starts sintering.
  • Heat treatment is performed in the following non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be a reducing atmosphere such as a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere. That is, it is preferably not an oxidizing atmosphere.
  • the insulating layer serves to prevent fusion of the powders during the above-mentioned purpose and heat treatment.
  • the domain wall can be obtained by removing strain existing in the soft magnetic powder, removing defects such as crystal grain boundaries, and growing (enlarging) crystal grains in the soft magnetic powder particles. The movement becomes easy, the coercive force can be reduced, and the hysteresis loss can be reduced.
  • Binder addition step aims to disperse the inorganic insulating powder as uniformly as possible on the surface of the soft magnetic alloy powder.
  • a silane coupling material is used as the first additive material. This silane coupling material is added to increase the adhesion between the inorganic insulating powder and the soft magnetic powder, and the addition amount is optimally 0.1 to 0.5 wt%. If the amount is less than this, the adhesion amount effect is insufficient, and if it is more than this, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • a silicone resin is used as the second additive material.
  • This silicone resin functions as a binder for binding and granulating soft magnetic alloy powders to which inorganic insulating powder is adhered by the silane coupling material.
  • this silicone resin is added during molding in order to prevent the occurrence of vertical stripes on the core wall surface due to the contact between the mold and the powder, and the addition amount is optimally 0.5 to 2.0 wt%. If the amount is less than this, vertical streaks to the core wall surface occur during molding. If the amount is too large, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • Second mixing step In the second mixing step, the mixture that has undergone the binder addition step for the purpose of reducing the punching pressure of the upper punch during molding and preventing the occurrence of vertical streaks on the core wall surface due to contact between the mold and the powder.
  • Lubricating resin is mixed with
  • waxes such as stearic acid, stearate, stearic acid soap, ethylene bisstearamide can be used. By adding these, it is possible to improve the slippage between the granulated powders, so that the density during mixing can be improved and the molding density can be increased. Furthermore, it is possible to prevent the powder from being baked into the mold.
  • the amount of lubricating resin to be mixed is 0.2 to 0.8 wt% with respect to the soft magnetic powder. If it is less than this, a sufficient effect cannot be obtained, and the vertical punch is generated on the wall surface of the forming core, the punching pressure is high, and the upper punch cannot be removed in the worst case. If the amount is too large, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • the soft magnet to which the binder resin is added as described above is put into a mold and uniaxial molding is performed by a die floating method to form a molded body.
  • the pressure-dried binder resin acts as a binder during molding.
  • the pressure at the time of molding may be the same as that of the conventional invention, and in the present invention, about 1500 MPa is preferable.
  • the powder magnetic core is formed by performing an annealing process at a temperature exceeding 600 ° C. in N 2 gas or N 2 + H 2 gas non-oxidizing atmosphere. Produced. This is because if the annealing temperature is raised too much, the magnetic characteristics deteriorate due to the deterioration of the insulation performance, and in particular, the eddy current loss greatly increases, thereby suppressing the iron loss from increasing.
  • the binder resin is thermally decomposed when it reaches a certain temperature during the annealing process. Since the heat treatment of the dust core is performed in a nitrogen atmosphere, hysteresis loss due to oxidation or the like does not increase even when the heat treatment is performed at a high temperature.
  • Measurement item As measurement items, permeability, maximum magnetic flux density, and direct current superimposition are measured by the following method. The magnetic permeability was calculated from the inductance at 20 kHz and 0.5 V by applying a primary winding (20 turns) to the produced dust core and using an impedance analyzer (Agilent Technology: 4294A).
  • the core loss is obtained by applying a primary winding (20 turns) and a secondary winding (3 turns) to the dust core, and using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232) as a magnetic measurement instrument.
  • Example 1 an average particle size of 13 nm (specific surface area of 100 m 2 / g) was formed as an inorganic insulating powder on a Fe—Si alloy powder having an average particle size of 22 ⁇ m and a silicon component of 3.0 wt% prepared by gas atomization. 0.4 wt% of Al 2 O 3 Thereafter, heat treatment was performed on the samples of Examples 1 to 3 by holding them in a reducing atmosphere of hydrogen at 950 ° C. to 1150 ° C. in 25% (the remaining 75% is nitrogen) for 2 hours.
  • Table 1 shows the half width evaluation of the peaks of each of (110), (200), and (211) in XRD for Examples 1 to 3 and Comparative Example 1
  • FIG. FIG. 6 is a diagram showing the total half width of each surface of (110), (200), and (211) for Examples 1 to 3 and Comparative Example 1.
  • the surface of the soft magnetic powder can be modified by heat-treating the soft magnetic powder at 1000 ° C. or higher.
  • irregularities on the surface of the magnetic powder can be removed, and magnetic flux concentrates where the gap between the magnetic powders is small, preventing the magnetic flux density near the contact from increasing and hysteresis loss from increasing. Can do. That is, the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • heat treatment is performed at a temperature at which the soft magnetic powder sinters, the soft magnetic powder sinters and hardens, which makes it impossible to use as a powder magnetic core material. Therefore, it is necessary to perform the heat treatment at a temperature below the temperature at which the soft magnetic powder starts sintering.
  • the heat treatment temperature in the heat treatment step is set to 1000 ° C. or higher and below the temperature at which the soft magnetic powder starts to be sintered.
  • a sample used in this characteristic comparison was prepared by adding an inorganic insulating powder as described below to an Fe—Si alloy powder having an average particle diameter of 22 ⁇ m and a silicon component of 3.0 wt% prepared by a gas atomization method.
  • Comparative Example 2 of Item A no inorganic insulating powder is added.
  • Comparative Examples 3 and 4 of Item B 0.20 to 0.25 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as an inorganic insulating powder in an amount of 0.40 to 1.50 wt%.
  • Comparative Example 5 and Examples 11 to 13 of Item C 0.25 to 1.00 wt% of Al 2 O 3 with a thickness of 60 nm (specific surface area 25 m 2 / g) is added as the inorganic insulating powder.
  • Comparative Example 6 and Example 14 of Item D 0.20 to 0.70 wt% of MgO having a thickness of 230 nm (specific surface area of 160 m 2 / g) is added as the inorganic insulating powder.
  • Table 2 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 4 to 14 and Comparative Examples 2 to 6. It is the table
  • FIG. 3 is a graph showing the relationship of DC superposition characteristics with respect to the amount of fine powder added in Examples 4 to 14 and Comparative Examples 2 to 6.
  • 4 is a diagram showing the DC BH characteristics of Examples 4 and 7 and Comparative Example 2.
  • FIG. 5 shows the relationship between the differential permeability and the magnetic flux density from the DC BH characteristics of FIG. Is.
  • The% of the direct current BH characteristics in Table 2 is the ratio ( ⁇ (1T) / ⁇ (0T)) of the magnetic permeability ⁇ (0T) at the magnetic flux density 0T and the magnetic permeability ⁇ (1T) at the 1T.
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 2, in the soft magnetic powder produced by the gas atomization method with Si of 3.0 wt%, Comparative Examples 3 and 4 and Examples 4 to 10 in Item B, Comparative Example 5 and Example in Item C In Comparative Examples 6 and 14 of Items 11 to 13 and Item D, it is understood that the DC BH characteristics are improved by adding 0.4 wt% or more of fine powder in all items.
  • the higher the density the smaller the hysteresis loss.
  • the density is decreased but the hysteresis loss (Ph) is decreased.
  • the fine powder is unevenly distributed on the surface of the soft magnetic powder, the magnetic flux concentrates where the gap between the magnetic powders is small, increasing the magnetic flux density near the contact point and reducing hysteresis loss. It contributes to increase.
  • the fine powder is uniformly dispersed to make the gap between the magnetic powders uniform, and the hysteresis loss due to the concentration of magnetic flux in the gap between the magnetic powders is reduced.
  • a hysteresis loss (Ph) can be reduced. Further, by uniformly dispersing the inorganic insulating powder, the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • the amount of the inorganic insulating material added to the soft magnetic powder of the Fe—Si alloy powder having the silicon component of 3.0 wt% is 0.4 to 1.5 wt% with respect to the soft magnetic powder. Is good. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 1.5 wt%, it becomes a factor of direct current BH characteristics due to density reduction. Accordingly, it is possible to provide a powder magnetic core capable of effectively reducing hysteresis loss without sintering and hardening during heat treatment even with a soft magnetic powder having a silicon component of 3.0 wt%, and a manufacturing method thereof. it can.
  • the sample used in this characteristic comparison was prepared by adding an inorganic insulating powder to a Fe-Si alloy powder having an average particle size of 22 ⁇ m and having an average particle diameter of 22 ⁇ m and having an average particle diameter of 22 ⁇ m as described below. And was mixed for 30 minutes.
  • Comparative Example 7 of Item E no inorganic insulating powder is added.
  • Comparative Examples 8 and 9 of Item F 0.15 to 0.25 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • 0.42 to 1.00 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • Table 3 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 15 to 18 and Comparative Examples 7 to 9. It is the table
  • FIG. 6 is a graph showing the relationship of DC superposition characteristics with respect to the amount of fine powder added in Examples 15 to 18 and Comparative Examples 8 and 9.
  • The% of DC BH characteristics in Table 3 is the ratio ( ⁇ (1T) / ⁇ (0T)) of magnetic permeability ⁇ (0T) at magnetic flux density 0T and magnetic permeability ⁇ (1T) at 1T.
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 3 and FIG. 6, in the soft magnetic powders produced by the gas atomization method with Si of 6.5 wt%, the fine powders of 0. 9 and Comparative Examples 8 and 9 and Examples 15 to 18 were reduced to 0. It can be seen that the DC BH characteristics are improved by adding 4 wt% or more.
  • the higher the density the smaller the hysteresis loss.
  • the density is decreased but the hysteresis loss (Ph) is decreased.
  • the fine powder is unevenly distributed on the surface of the soft magnetic powder, the magnetic flux concentrates where the gap between the magnetic powders is small, increasing the magnetic flux density near the contact point and reducing hysteresis loss. It contributes to increase.
  • the fine powder is uniformly dispersed to make the gap between the magnetic powders uniform, and the hysteresis loss due to the concentration of magnetic flux in the gap between the magnetic powders is reduced.
  • a hysteresis loss (Ph) can be reduced. Further, by uniformly dispersing the inorganic insulating powder, the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • the amount of the inorganic insulating material added to the soft magnetic powder of the Fe—Si alloy powder having a silicon component of 6.5 wt% is 0.4 to 1.5 wt% with respect to the soft magnetic powder. Is good. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 1.5 wt%, it becomes a factor of direct current BH characteristics due to density reduction. As a result, it is possible to provide a dust core capable of effectively reducing hysteresis loss without sintering and hardening even during soft magnetic powder having a silicon component of 6.5 wt%, and a method for manufacturing the same. it can.
  • Example 19 of Item G 13 nm of Al 2 O 3 (specific surface area 100 m 2 / g) was added as an inorganic insulating material to pure iron having a particle size of 75 ⁇ m or less prepared by a water atomization method, and a V-type mixer was used. And mix for 30 minutes.
  • Example 20 of Item H pure iron with a particle size of 75 ⁇ m or less produced by the water atomization method is flattened, and pure iron with a circularity of 0.85 is mixed with 13 nm (ratio of Al 2 O 3 as an inorganic insulating substance).
  • Example 21 of Item I 13 nm of Al 2 O 3 (specific surface area of 100 m 2 / g) was added as an inorganic insulating material to Fe—Si alloy powder having a particle size of 63 ⁇ m or less and having a particle size of 63 ⁇ m or less prepared by water atomization. And mix for 30 minutes using a V-type mixer.
  • Table 4 is a table showing the relationship between the types and addition amounts of the soft magnetic powder and the inorganic insulating powder, the first heat treatment temperature, the magnetic permeability, and the iron loss (core loss) per unit volume for Examples 19 to 21.
  • FIG. 7 is a diagram showing the DC BH characteristics of Examples 19 to 21, and FIG. 8 shows the relationship between the differential permeability and the magnetic flux density based on the DC BH characteristics of FIG.
  • The% of the direct current BH characteristic in Table 4 is the ratio of the magnetic permeability ⁇ (0T) at a magnetic flux density of 0T to the magnetic permeability ⁇ (1T) at 1T ( ⁇ (1T) / ⁇ (0T)).
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 4, also in Examples 19 and 20 in which the Si component is 0 and Example 21 in which the Si component is 1.0 wt%, the gas atomization method with Si of 3.0 to 6.5 wt% is used. It can be seen that the direct current BH characteristics are improved by adding the inorganic insulating powder in the same manner as the produced soft magnetic powder. Further, comparing Examples 20 and 21 of FIG. 8, it can be seen that those subjected to the flattening process are excellent in DC superposition characteristics.
  • the example 20 in which the flattening process is performed on the soft magnetic powder is superior to the example 19 in which the flattening process is not performed on the soft magnetic powder.
  • the dust core has a characteristic that the DC superposition characteristic is excellent when the density is high, and the DC superposition characteristic is improved by increasing the density of the dust core.
  • the soft magnetic alloy powder not only can a low loss powder magnetic core be provided by using a soft magnetic powder of an Fe—Si alloy powder having a silicon component of 0 to 6.5 wt%, but also a high density A dust core excellent in direct current superimposition characteristics can be provided. Further, by performing the flattening process together, it is possible to provide a powder magnetic core with higher density and excellent DC superposition characteristics.
  • Example (J) As shown in FIG. 10, the insulating coating (L) is partially broken at the time of molding and easily broken in the annealing process. Therefore, when annealing is performed at a high temperature, the eddy current loss greatly increases. Further, even when the binder (K) is mixed, eddy current loss increases at 550 ° C. or higher. In contrast, in Example (J) using fine powder, eddy current loss can be suppressed even if annealing is performed at 725 ° C. Similarly, with respect to the iron loss shown in FIG. 9 and the hysteresis loss shown in FIG. 11, the characteristics of Example (J) are excellent.
  • FIG. 12 is a photograph after mixing 0.5 wt% of an insulating fine powder (alumina powder) having an average particle size of 13 nm and a specific surface area of 100 m 2 / g into a pure iron water atomized powder, The part is the insulating fine powder.
  • FIG. 13 is an enlarged photograph, and the white spot-like portions are insulating fine powder.
  • FIG. 14 is a view showing a state where the soft magnetic powder and the inorganic insulating powder shown in FIG. 12 are granulated by a binder process, and a plurality of soft magnetic powders shown in FIG. 12 are bound.
  • the shapes of the individual soft magnetic powders can be clearly distinguished, and it can be seen that the whole is not covered with the binder.
  • individual soft magnetic powders are bound in a dotted, linear, or narrow area by a binder at the contact portion, and are shown in FIG. 12 and FIG. It can be seen that there are exposed portions of the insulating fine powder.
  • FIG. 15 and Table 6 below show the results of elemental analysis of each part of the granulated body shown in FIG. That is, elemental analysis is performed at an SEM acceleration voltage of 10 kV (resolution of point analysis: 0.3 ⁇ m (with respect to Fe)), and powders A and B in FIG. In the existing state).
  • SEM acceleration voltage 10 kV (resolution of point analysis: 0.3 ⁇ m (with respect to Fe)
  • the raw material is Fe powder
  • the amount of alumina added is 0.5% by mass with respect to the Fe powder
  • the primary particle diameter of alumina is 13 nm
  • the amount of binder added is 2.0% by mass with respect to the Fe powder
  • the binder is a silicone resin. is there.
  • the surface of the powders A and B is exposed at the location of Analysis 1 which is the binding point of the powders A and B, while Si as a binder component is present. Si, which is a component of the binder, is not observed at the locations of Analysis 2 and Analysis 3. Moreover, it is important that aluminum, which is a constituent element of alumina, which is an insulating fine powder, is present in the portions of Analysis 2 and Analysis 3 where the surfaces of the powders A and B are exposed than in the binding portion of Analysis 1. A large amount was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 軟磁性粉末の熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる直流BH特性に優れた圧粉磁心及びその製造方法を提供する。第1混合工程では、鉄を主とする軟磁性粉末と軟磁性粉末に対して0.4wt%~1.5wt%の無機絶縁粉末とを混合機を使用して混合する。第1の混合工程を経た混合物を1000℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化性雰囲気中で熱処理を行う。バインダー添加工程では、0.1~0.5wt%のシランカップリング材を添加する。シランカップリング材により無機絶縁粉末を付着させた軟磁性合金粉末に、0.5~2.0wt%のシリコーンレジンなどのバインダー添加し、軟磁性合金粉末同士を結着して造粒する。その後、潤滑性樹脂を混合し、加圧成形することにより、成形体を形成する。焼鈍工程では、前記成形体に対して、非酸化雰囲気中にて焼鈍処理を行う。

Description

圧粉磁心及びその製造方法
 本発明は、軟磁性粉末からなる圧粉磁心及びその製造方法に関する。
 OA機器、太陽光発電システム、自動車、無停電電源などの制御用電源には電子機器としてチョークコイルが用いられており、そのコアとして、フェライト磁心や圧粉磁心が使用されている。これらの中で、フェライト磁心は飽和磁束密度が小さいと言う欠点を有している。これに対して、金属粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳特性に優れている。
 圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁界で、大きな磁束密度を得ることが出来る磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。エネルギー損失には、圧粉磁心を交流磁場で使用した場合に生じる鉄損(Pc)と呼ばれるものがある。この鉄損(Pc)は、[式1]に示すように、ヒステリシス損失(Ph)、渦電流損失(Pe)の和で表される。このヒステリシス損失は[式2]に示すように、動作周波数に比例し、渦電流損失(Pe)は動作周波数の2乗に比例する。そのため、ヒステリシス損失(Ph)は低周波領域で支配的になり、渦電流損失(Pe)は高周波領域で支配的になる。圧粉磁心は、この鉄損(Pc)の発生を小さくする磁気特性が求められている。
   [式1]Pc=Ph+Pe・・・(1)
   [式2]Ph=Kh×f Pe=Ke×f・・・(2)
       Kh:ヒステリシス損係数 Ke=渦電流損係数 f=周波数
 圧粉磁心のヒステリシス損失(Ph)を低減するためには、磁壁の移動を容易にすればよく、そのためには軟磁性粉末粒子の保磁力を低下させればよい。なお、この保磁力を低減することで、初透磁率の向上とヒステリシス損失の低減が図れる。渦電流損失は[式3]で示されるように、コアの比抵抗に反比例する。
   [式3]Ke=k1Bm/ρ・・・(3)
       k1:係数、Bm:磁束密度、t:粒子径(板材の場合厚さ)、ρ:比抵抗
 そこで、軟磁性粉末粒子として、保磁力の小さい純鉄が従来から広く用いられている。例えば、軟磁性粉末として純鉄を用いて、軟磁性粉末に対する不純物の質量割合を120ppm以下にすることでヒステリシス損失を低減する方法や(例えば、特許文献1参照)、軟磁性粉末として純鉄を用いて、軟磁性粉末に含まれるマンガンの量を0.013wt%以下にすることでヒステリシス損失を低減する方法が知られている(例えば、特許文献2参照)。その他に絶縁被膜を形成する前の軟磁性粉末を加熱処理する方法が知られている。
 また、絶縁被膜を形成する前の軟磁性粉末に対して、加熱処理を行うことによりヒステリシス損失を低減する方法も知られている。この方法によれば、軟磁性粒子中に存在する歪みの除去、結晶粒界などの欠陥の除去、軟磁性粉末粒子中の結晶粒子の成長(拡大)によって、磁壁移動が容易となり、保磁力を低下することができる。例えば、鉄を主成分として、Siが2~5wt%含有、平均粒子経が30~70μmで、平均アスペクト比が1~3である軟磁性粉末に対して、不活性雰囲気中で800℃以上の加熱処理を行うことで、粉末粒子中の結晶粒子を大きくして、保磁力を小さくし、ヒステリシス損失を低減する方法(例えば、特許文献3参照)や、金属粒子とスペーサー粒子とを混合して、金属粒子同士を互いに分離することで、金属粒子が焼結して固まることを防止する方法(例えば、特許文献4参照)が知られている。
特開2005-15914号公報 特開2007-59656号公報 特開2004-288983号公報 特開2005-336513号公報
 しかしながら、特許文献1,2の発明では、加圧成形後の成形体の焼鈍において、軟磁性粉末の表面の絶縁被膜が熱分解しない程度の低い温度で熱処理する必要があり、ヒステリシス損失を効果的に低減することが出来ない問題がある。
 また、特許文献3の発明では、軟磁性粒子が純鉄の場合には、焼結して固まってしまうため、軟磁性粒子を機械的に粉砕する必要があり、その際に軟磁性粒子の内部に新たな歪みが発生するという問題点がある。特許文献4の発明では、熱処理後に金属粒子とスペーサー粒子を分離する必要があり利便性に欠ける。また、分離の際に、磁石を使用するため金属粒子の磁化などの問題点がある。
 本発明は、上述した課題を解決するためになされたものであり、その目的は、融点が1500℃以上の無機絶縁粉末を均一に分散させることで、利便性の良い方法で、軟磁性粉末の熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減する。さらに、無機絶縁粉末を均一に分散させることで、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることのできる圧粉磁心及びその製造方法を提供することである。
 前記の目的を達成するために、本発明の圧粉磁心は、軟磁性粉末と無機絶縁粉末を混合し、その混合物に対して熱処理を施し、熱処理を施した軟磁性粉末と無機絶縁粉末に結着性樹脂を添加し、その混合物に対して、潤滑性樹脂を混合し、その混合物を、加圧成形処理して成形体を作製し、その成形体を焼鈍処理し、前記無機絶縁粉末の添加量が0.4wt%以上且つ1.5wt%以下であり、第1の熱処理温度が1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製されたことを特徴とする。
 なお、無機絶縁粉末として、平均粒子径が7~500nmのAl(融点2046度)、MgO(融点2800度)を使用したり、平均粒子径が5~30μm且つ珪素成分が0~6.5%の前記軟磁性合金粉末を使用したりする圧粉磁心及びその製造方法も本発明の一形態である。
 本発明によれば、融点が1500℃以上の無機絶縁微粉末を均一に分散すると、粉末の熱処理の際に、軟磁性粉末粒子同士を互いに分離することが出来て、軟磁性粉末粒子が焼結して固まることを抑止することが出来る。
実施例の圧粉磁心の製造方法を示すフローチャート 第1の特性比較において、(110)、(200)、(211)の各面の半価幅の合計を示した図 第2の特性比較において、微粉末の添加量に対する直流重畳特性の関係を示す図 第2の特性比較において、圧粉磁心の直流BH特性を示した図 第2の特性比較において、直流BH特性から、微分透磁率と磁束密度の関係を示した図 第3の特性比較において、微粉末の添加量に対する直流重畳特性の関係を示す図 第4の特性比較において、圧粉磁心の直流BH特性を示した図 第4の特性比較において、直流BH特性から、微分透磁率と磁束密度の関係を示した図 第5の特性比較において、焼鈍温度に対する鉄損の関係を示す図 第5の特性比較において、焼鈍温度に対する渦電流損の関係を示した図 第5の特性比較において、焼鈍温度に対するヒステリシス損失の関係を示した図 軟磁性粉末粒子に無機絶縁微粉末が付着した状態を示す図面代用SEM写真 図12に示すSEM写真を拡大した図面代用SEM写真 無機絶縁微粉末が付着した軟磁性粉末粒子を造粒した状態の図面代用SEM写真 無機絶縁微粉末が付着した軟磁性粉末粒子を造粒した状態における各部の構成を示す図面代用SEM写真分析結果を示すグラフ。
[1.製造工程]
 本発明の圧粉磁心の製造方法は、図1に示すような次のような各工程を有する。
(1)軟磁性粉末に無機絶縁粉末を混合する第1混合工程(ステップ1)。
(2)第1混合工程を経た混合物に対して熱処理を施す熱処理工程(ステップ2)。
(3)熱処理工程を経た軟磁性粉末と無機絶縁粉末とに結着性樹脂を添加するバインダー添加工程(ステップ3)。
(4)結着性樹脂を添加した軟磁性粉末に対して、潤滑性樹脂を混合する第2混合工程(ステップ4)。
(5)第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程(ステップ5)。
(6)成形工程を経た成形体を焼鈍処理する焼鈍工程(ステップ6)。
 以下、各工程を具体的に説明する。
(1)第1混合工程
 第1混合工程では、鉄を主とする軟磁性粉末と無機絶縁粉末とを混合する。
[軟磁性粉末について]
 軟磁性粉末は、ガスアトマイズ法、水ガスアトマイズ法及び水アトマイズ法で作製した平均粒径が5~30μmで、珪素成分が0.0~6.5wt%の軟磁性粉末を使用する。平均粒径が、5~30μmの範囲より大きいと渦電流損失(Pe)が増大し、一方、平均粒径が5~30μmの範囲より小さいと、密度低下によるヒステリシス損失(Ph)が増加する。また、軟磁性粉末の珪素成分は、前記軟磁性粉末に対して6.5wt%以下が良く、これより多いと成形性が悪く、圧粉磁心の密度が低下して磁気特性が低下するという問題が発生する。
 軟磁性合金粉末を水アトマイズ法で製造した場合には、軟磁性粉末の形状は不定形であり、粉末の表面が凹凸になる。このため、軟磁性粉末の表面に無機絶縁粉末を均一に形成することが難しい。さらに、成形時に粉末表面の凸部に応力が集中し絶縁破壊しやすい。そこで、軟磁性粉末と無機絶縁粉末との混合には、V型混合機、W型混合機、ポットミルなどのメカノケミカル効果を粉末に発現する装置を用いる。その他にも、圧縮力、せん断力の機械的エネルギーを粒子に与えるタイプの混合機を使用し、混合と表面改質を同時に行っても良い。
 さらに、直流重畳特性は粉末のアスペクト比に依存しており、この処理によりアスペクト比を1.0~1.5にすることが可能となる。このような目的のため、軟磁性粉末に無機絶縁粉末を混合した混合粉に対して、該無機絶縁粉末の表面への均一被覆と粉末表面の凹凸を均一にするための平坦化処理を行なう。この方法は、表面を機械的に塑性変形させて行なう。その一例としてはメカニカルアロイング、ボールミル、アトライター等がある。
[無機絶縁粉末について]
 ここで混合する無機絶縁粉末の平均粒径は、7~500nmとする。平均粒径が7nm未満であると、造粒が困難であり、500nm超であると、軟磁性粉末の表面を均一に覆うことができず、絶縁性を保持することができない。また、添加量としては、0.4~1.5wt%が好適である。0.4wt%未満であると、性能が充分に発揮できず、1.5wt%を超えると、密度が著しく低下するために、磁気特性を低下させる。このような無機絶縁物質としては、融点が1500℃超であるMgO(融点2800度)、Al(融点2046度)、TiO(融点1640度)、CaO粉末(融点2572度)のうちの少なくとも1種類以上を使用することが望ましい。
(2)熱処理工程
 熱処理工程では、ヒステリシス損失を低減する目的と成形後の焼鈍温度を高くする目的で、前記第1混合工程を経た混合物を1000℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化性雰囲気中で熱処理を行う。非酸化性雰囲気は、水素雰囲気等の還元雰囲気でも、不活性雰囲気でも、真空雰囲気でもよい。つまり、酸化雰囲気でないことが好ましい。
 このとき、第1の混合工程で軟磁性合金粉末の表面を均一に覆う無機絶縁粉末は、絶縁層は上記目的と熱処理時における粉末同士の融着防止となる。また、1000℃以上の温度で熱処理を行うことで、軟磁性粉末内に存在する歪みの除去、結晶粒界などの欠陥の除去、軟磁性粉末粒子中の結晶粒子の成長(拡大)によって、磁壁移動が容易となり、保磁力を小さくし、ヒステリシス損失を低減することができる。一方、軟磁性粉末が焼結してしまう温度で熱処理を行うと、軟磁性粉末が焼結し固まってしまい、圧粉磁心の材料として使用できなくなるという問題点がある。そのため、軟磁性粉末が焼結を開始する温度以下の温度で熱処理を行う必要がある。
(3)バインダー添加工程
 バインダー添加工程では、前記無機絶縁粉末を軟磁性合金粉末の表面にできるだけ均一に分散させることを目的とする。この場合、本実施例では、2種類の材料を添加する。第1の添加材料として、シランカップリング材を使用する。このシランカップリング材は無機絶縁粉末と軟磁性粉末の密着力を高めるために添加し、添加量は、0.1~0.5wt%が最適である。これより量が少ないと密着量効果が不十分であり、多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。第2の添加材料としてはシリコーンレジンを使用する。このシリコーンレジンは、前記シランカップリング材により無機絶縁粉末が付着された軟磁性合金粉末同士を結着して造粒するためのバインダーとして機能する。同時に、このシリコーンレジンは、成形時、金型と粉末の接触によるコア壁面の縦筋の発生を防止するために添加し、添加量は0.5~2.0wt%が最適である。これより量が少ないと成形時コア壁面への縦筋が発生する。多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。
(4)第2混合工程
 第2混合工程では、成形時の上パンチの抜き圧低減、金型と粉末の接触によるコア壁面の縦筋の発生を防止する目的で、前記バインダー添加工程を経た混合物に潤滑性樹脂を混合する。ここで混合する潤滑剤としては、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドなどのワックスが使用できる。これらを添加することにより、造粒粉同士の滑りを良くすることができるので、混合時の密度を向上することができ成形密度を高くすることができる。さらに、粉末が金型へ焼き付くことも防止することが可能である。混合する潤滑樹脂の量は、前記軟磁性粉末に対して0.2~0.8wt%とする。これよりも少なければ、十分な効果を得ることができず、形時コア壁面への縦筋の発生、抜き圧が高く最悪の場合、上パンチが抜けなくなる。多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。
(5)成形工程
 成形工程では、前記のようにして結着性樹脂を添加した軟磁性を金型に投入しダイ・フローティング法による1軸成形を行なうことにより、成形体を形成する。この時、加圧乾燥された結着性樹脂は、成形時のバインダーとして作用する。成形時の圧力は従来の発明と同様で良く、本発明においては1500MPa程度が好ましい。
(6)焼鈍工程
 焼鈍工程では、前記成形体に対して、Nガス中やN+Hガス非酸化性雰囲気中にて、600℃を超える温度で焼鈍処理を行うことで圧粉磁心が作製される。焼鈍温度を上げ過ぎると絶縁性能の劣化から磁気特性が劣化するため、特に渦電流損失が大きく増加してしまうことにより、鉄損が増加するのを抑制するためである。
 このとき結着性樹脂は、焼鈍処理中に一定温度に達すると熱分解する。圧粉磁心の熱処理が窒素雰囲気中で行われるため高温で熱処理を行っても酸化などによるヒステリシス損失が増加しない。
[2.測定項目]
 測定項目として、透磁率と最大磁束密度と直流重畳性を次のような手法により測定する。透磁率は、作製された圧粉磁心に1次巻線(20ターン)を施し、インピーダンスアナライザー(アジレントテクノロジー:4294A)を使用することで、20kHz、0.5Vにおけるインダクタンスから算出した。
 コアロスは、圧粉磁心に1次巻線(20ターン)及び2次巻線(3ターン)を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8232)を用いて、周波数10kHz、最大磁束密度Bm=0.1Tの条件下で鉄損(コアロス)を測定した。この算出は、下記[式4]により、鉄損の周波数を次の式で最小2乗法により、ヒステリシス損失係数、渦電流系数を算出することで行った。
[式4]
Pc=Kh×f+Ke×f
Ph=Kh×f
Pe=Ke×f
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
 本発明の実施例1~21を、表1~4を参照して、以下に説明する。
[3-1.第1の特性比較(熱処理工程の熱処理の温度の比較)]
 第1の特性比較では、熱処理工程の熱処理による軟磁性粉末の表面の改質の比較を行った。表1では、実施例1~3及び比較例1として熱処理工程において粉末に加える温度の比較を行った。表1は、軟磁性粉末に加えた温度と軟磁性粉末をX線回折法(以下、XRDとする)における評価を示した表である。
 実施例1~3及び比較例1では、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に、無機絶縁粉末として、平均粒径13nm(比表面積100m2/g)のAlを0.4wt%添加する。
 その後、実施例1~3の試料に対して、950℃~1150℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持し熱処理を行った。
 表1は、実施例1~3と比較例1について、XRDにて(110)、(200)、(211)の各面のピークについて半価幅の評価を行ったものであり、図2は、実施例1~3と比較例1について、(110)、(200)、(211)の各面の半価幅の合計を示した図である。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2から判るように、熱処理工程において熱処理を施さない比較例1では、XRDにおける(110)、(200)、(211)面のピークについて、半価幅が大きくなっていることが判る。半価幅は、粉末の歪みが大きいほど大きくなり、歪みが小さいと小さくなるので、比較例1では、粉末に大きな歪みが存在している。一方、熱処理工程において熱処理を施した実施例1~3では比較例1と比較して、XRDにおける(110)、(200)、(211)面のピークについての半価幅が小さくなる。すなわち、熱処理工程において熱処理を施すことによって、粉末の歪みが除去されるためである。また、表中には示していないが熱処理工程を1000℃以上で行った場合でも同様の効果を得ることができる。
 すなわち、軟磁性粉末に対して1000℃以上で熱処理を行うことで、軟磁性粉末の表面を改質することができることがわかる。これにより、磁性粉末の表面の凹凸を除去することができ、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失が大きくなることを防止することができる。すなわち、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることができる。一方、軟磁性粉末が焼結してしまう温度で熱処理を行うと、軟磁性粉末が焼結し固まってしまい、圧粉磁心の材料として使用できなくなるという問題点がある。そのため、軟磁性粉末が焼結を開始する温度以下の温度で熱処理を行う必要がある。
 以上より、熱処理工程の熱処理の温度としては、1000℃以上且つ軟磁性粉末が焼結開始する温度以下とする。これにより、軟磁性粉末の熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することがことができる圧粉磁心とその製造方法を提供することができる。
[3-2.第2の特性比較(無機絶縁物質の添加量の比較)]
 第2の特性比較では、珪素成分3.0wt%のFe-Si合金粉末に添加する無機絶縁物質の添加量の比較を行った。表2は、比較例2~6及び実施例4~14として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)及び60nm,(比表面積25m/g),MgOが230nm(比表面積160m/g)である。
 本特性比較で使用する試料は、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に対して、下記のように無機絶縁粉末を添加して作製した。
 項目Aの比較例2では、無機絶縁粉末を添加しない。
 項目Bの比較例3、4では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.20~0.25wt%添加する。
 また、実施例4~10では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.40~1.50wt%添加する。
 項目Cの比較例5及び実施例11~13では、無機絶縁粉末として、60nm(比表面積25m/g)のAlを0.25~1.00wt%添加する。
 項目Dの比較例6及び実施例14では、無機絶縁粉末として、230nm(比表面積160m/g)のMgOを0.20~0.70wt%添加する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N+H)にて、625℃で30分間焼鈍処理を行った。
 表2は、実施例4~14と比較例2~6について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図3は、実施例4~14と比較例2~6について、微粉末の添加量に対する直流重畳特性の関係を示す図である。また、図4は、実施例4,7と比較例2との直流BH特性を示した図であり、図5は、図4の直流BH特性から、微分透磁率と磁束密度の関係を示したものである。
Figure JPOXMLDOC01-appb-T000002
[直流BH特性について]
 表2の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表2から判るように、Siが3.0wt%のガスアトマイズ法で作製した軟磁性粉末では、項目Bの比較例3,4と実施例4~10、項目Cの比較例5と実施例11~13、項目Dの比較例6と実施例14では、すべての項目において、微粉末を0.4wt%以上添加することにより直流BH特性が良くなることが判る。
 一方、表2の各項目における密度及び透磁率からは、微粉末を添加しない項目Aと微粉末を添加する項目B~Dとを比較すると、微粉末を添加することにより密度が低下するため透磁率が低下し、直流BH特性に悪影響を及ぼす。特に、微粉末を1.5wt%より多く添加すると、密度が大きく低下し、直流BH特性が低下する。
[ヒステリシス損失について]
 表2のヒステリシス損失(Ph)では、無機絶縁体としてAlを添加した実施例4~14及び比較3~6の場合、無機絶縁粉末を添加していない比較例1よりも、10kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。
 一般的には、高密度ほど、ヒステリシス損失が小さくなるが、実施例4~14では密度は低下しているがヒステリシス損失(Ph)が低下している。その理由としては、軟磁性粉末の表面に微粉末が不均一に分散していると、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失を増加させる一因となる。本実施例では、微粉末を均一に分散させることで、磁性粉末同士のギャップを均一にし、磁性粉末同士のギャップに磁束が集中することによるヒステリシス損失を低減させる。これにより、密度が低下しても、ヒステリシス損失(Ph)が低下させることができる。さらに、無機絶縁粉末を均一に分散させることで、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることができる。
 以上より、珪素成分3.0wt%のFe-Si合金粉末の軟磁性の粉末に添加する無機絶縁物質の添加量としては、軟磁性粉末に対して、0.4~1.5wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、1.5wt%より多くなると密度低下による直流BH特性の要因となる。これにより、珪素成分が3.0wt%の軟磁性粉末でも熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる圧粉磁心と、その製造方法を提供することができる。
[3-3.第3の特性比較(無機絶縁物質の添加量の比較)]
 第3の特性比較では、軟磁性の粉末として、珪素成分6.5wt%のFe-Si合金粉末に添加する無機絶縁物質の添加量の比較を行った。表3は、比較例7~9及び実施例15~18として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)である。
 本特性比較で使用する試料は、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に対して、下記のように無機絶縁粉末を添加し、V型混合機を使用し30分混合することにより作製した。
 項目Eの比較例7では、無機絶縁粉末を添加しない。
 項目Fの比較例8,9では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.15~0.25wt%添加する。
 また、実施例15~18では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.40~1.00wt%添加する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N90%+H10%)にて、625℃で30分間焼鈍処理を行った。
 表3は、実施例15~18と比較例7~9について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図6は、実施例15~18と比較例8,9について、微粉末の添加量に対する直流重畳特性の関係を示す図である。
Figure JPOXMLDOC01-appb-T000003
[直流BH特性について]
 表3の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表3及び図6から判るように、Siが6.5wt%のガスアトマイズ法で作製した軟磁性粉末では、項目Fの比較例8,9と実施例15~18では、微粉末を0.4wt%以上の添加することにより直流BH特性が良くなることが判る。
 一方、表3及び図6の各項目における密度及び透磁率からは、微粉末を添加しない項目Eと微粉末を添加する項目Fとを比較すると、微粉末を添加することにより密度が低下するため透磁率が低下し、直流BH特性に悪影響を及ぼす。特に、微粉末を1.5wt%より多く添加すると、密度が大きく低下し、直流BH特性が低下する。
[ヒステリシス損失について]
 表3のヒステリシス損失(Ph)では、無機絶縁体としてAlを添加した実施例15~18及び比較例8,9の場合、無機絶縁粉末を添加していない比較例7よりも、10kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。
 一般的には、高密度ほど、ヒステリシス損失が小さくなるが、実施例15~18では密度は低下しているがヒステリシス損失(Ph)が低下している。その理由としては、軟磁性粉末の表面に微粉末が不均一に分散していると、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失を増加させる一因となる。本実施例では、微粉末を均一に分散させることで、磁性粉末同士のギャップを均一にし、磁性粉末同士のギャップに磁束が集中することによるヒステリシス損失を低減させる。これにより、密度が低下しても、ヒステリシス損失(Ph)が低下させることができる。さらに、無機絶縁粉末を均一に分散させることで、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることができる。
 以上より、珪素成分6.5wt%のFe-Si合金粉末の軟磁性の粉末に添加する無機絶縁物質の添加量としては、軟磁性粉末に対して、0.4~1.5wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、1.5wt%より多くなると密度低下による直流BH特性の要因となる。これにより、珪素成分が6.5wt%の軟磁性粉末でも熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる圧粉磁心と、その製造方法を提供することができる。
[3-4.第4の特性比較(軟磁性合金粉末の種類の比較)]
 第3の特性比較では、無機絶縁粉末を添加する軟磁性粉末の種類の比較を行った。本特性比較で使用する軟磁性粉末は、水アトマイズ法で作製した粒度75μm以下の純鉄、水アトマイズ法で作製した粒度75μm以下の純鉄を平坦化処理し、円形度を0.85とした純鉄及び、水アトマイズ法で作製した粒度63μm以下の珪素成分1wt%のFe-Si合金粉末である。
 本特性比較で使用する試料は、下記のように作製した。
 項目Gの実施例19では、水アトマイズ法で作製した粒度75μm以下の純鉄に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 項目Hの実施例20では、水アトマイズ法で作製した粒度75μm以下の純鉄を平坦化処理し、円形度を0.85とした純鉄に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 項目Iの実施例21では、水アトマイズ法で作製した粒度63μm以下の珪素成分1wt%のFe-Si合金粉末に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素雰囲気中(N90%+H10%)にて、625℃で30分間焼鈍処理を行った。
 表4は、実施例19~21について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図7は、実施例19~21の直流BH特性を示した図であり、図8は、図7の直流BH特性から、微分透磁率と磁束密度の関係を示したものである。
Figure JPOXMLDOC01-appb-T000004
[直流BH特性について]
 表4の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表4から判るように、Si成分が0である実施例19,20及びSi成分が1.0wt%である実施例21においても、Siが3.0~6.5wt%のガスアトマイズ法で作製した軟磁性粉末と同様に、無機絶縁粉末を添加することにより、直流BH特性が良くなることが判る。また、図8の実施例20,21とを比較すると、平坦化処理を行ったものは、直流重畳特性が優れることがわかる。
 また、図7,8からは、軟磁性粉末に対して平坦化処理を行わない実施例19に対して、平坦化処理を行った実施例20の方が、印加磁界における比透磁率が優れることが判る。これは、軟磁性粉末に対して平坦化処理を行うことで、表面の凹凸を除去し粉末の形状を球に近くすることができる。このため、低い圧力でも密度が高い圧粉磁心を製作することができる。圧粉磁心は、密度が高くなると直流重畳特性が優れるという特性があり、圧粉磁心の密度が高くなることにより直流重畳特性が向上していることがわかる。
 以上より、軟磁性合金粉末としては、珪素成分が0~6.5wt%のFe-Si合金粉末の軟磁性の粉末を利用することにより低損失な圧粉磁心を提供できるだけでなく、高密度で直流重畳特性に優れた圧粉磁心を提供することができる。また、平坦化処理をあわせて行うことで、さらに高密度で直流重畳特性に優れた圧粉磁心を提供することができる。
[3-5.第5の特性比較(焼鈍温度の比較)]
 下記J~Lの造粒粉末を1500MPaの圧力で加圧成形し、外形16mm、内径8mm、高さが5mmのリング状をなす圧粉磁心を作製し、これらの圧粉磁心をN2ガス90%+水素ガス10%の非酸化雰囲気にて、400~750℃で30分間の間、熱処理(焼鈍)をおこなった。その結果は、表5に示すとおりである。
[造粒粉末J]
 75μm以下の純鉄の水アトマイズ粉末に、絶縁粉末として、平均粒経が13nm、比表面積が100m2/gのアルミナ粉末0.75wt%を使用し、V型混合機で30分混合した後、水素25%+窒素75%の水素雰囲気中で1100℃、2時間保持する熱処理を行った。
 これらの試料に対して、バインダーとして、シランカップリング剤を0.5質量%、シリコーンレジンを1.5wt%の順に混合し、150℃、2時間の加熱乾燥後、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
[造粒粉末K]
 75μm以下の純鉄の水粉にリン酸塩被膜処理を施した後、シランカップリング剤を0.5質量%、バインダーとして、シリコーンレジンを1.5wt%の順に混合し、150℃で2時間の加熱乾燥後、潤滑剤としてステアリン酸亜鉛を0.4wt%添加し、混合した。
[造粒粉末L]
 75μm以下の純鉄の水粉にリン酸塩被膜処理を施した後、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
Figure JPOXMLDOC01-appb-T000005
 図10に示すように、絶縁被膜(L)は、成形時に部分的に破れて、焼鈍工程で破壊され易くなる、そのため、高温で焼鈍しをすると渦電流損失が大きく増加する。またバインダー(K)を混合しても550℃以上で渦電流損失が増加する。これに対して、微粉末を使用した実施例(J)においては、725℃で焼鈍しても渦電流損失が抑えられる。同様に、図9に示す鉄損、並びに図11のヒステリシス損失についても、実施例(J)の特性が優れている。
[3-6.軟磁性粉末と無機絶縁粉末の状態]
 前記のような実施例に示された軟磁性粉末と無機絶縁粉末によって形成された造粒体の構成を、SEM写真及び元素分析結果により示す。すなわち、図12は、純鉄の水アトマイズ粉末に、平均粒径13nm、比表面積100m2/gの絶縁微粉末(アルミナ粉末)を0.5wt%混合した後の写真であって、白い点状の部分が絶縁微粉末である。図13は、その拡大写真で、同様に白い点状の部分が絶縁微粉末である。
 図14は、図12に示す軟磁性粉末と無機絶縁粉末をバインダー工程により造粒した状態を示す図であって、図12に示す軟磁性粉末が複数個結着している状態である。この図14から分かるように、個々の軟磁性粉末の形状がはっきりと区別でき、バインダーで全体が被覆されていないことが分かる。この図14から、本実施例の造粒体は、個々の軟磁性粉末がその接触部分でバインダーによって点状、線状或いは狭い面積において結着されており、図12や図13で示された絶縁微粉末が露出した部分が存在することが認められる。
 図15及び下記の表6は、図15に示す造粒体の各部について、その元素分析を行った結果を示すものである。すなわち、元素分析は、SEM加速電圧10kV(点分析の分解能…0.3μm(Feに対して)で実施し、図15の粉末A,Bがバインダーで結合している状態(すなわち、接点にバインダー存在する状態)で、次の3箇所で行った。
(1) 分析1…バインダーの上
(2) 分析2…バインダーがない場所1(アルミナ粉末の上)
(3) 分析3…バインダーがない場所2
 なお、原料はFe粉末、アルミナ添加量はFe粉末に対して0.5質量%、アルミナの1次粒子径13nm、バインダー添加量はFe粉末に対して2.0質量%、バインダーはシリコーン樹脂である。
Figure JPOXMLDOC01-appb-T000006
 表6の分析結果から分かるように、粉末A,Bの結着点である分析1の箇所には、バインダーの成分であるSiが存在するのに対して、粉末A,Bの表面が露出している分析2、分析3の箇所には、バインダーの成分であるSiが認められない。また、重要なことは、粉末A,Bの表面が露出している分析2、分析3の箇所には、絶縁微粉末であるアルミナの構成元素であるアルミニウムが、分析1の結着部分よりも多量に存在することが確認された。

Claims (10)

  1.  軟磁性粉末と無機絶縁粉末を混合し、その混合物に対して熱処理を施し、
     熱処理を施した軟磁性粉末と無機絶縁粉末に結着性樹脂を添加し、その混合物に対して、潤滑性樹脂を混合し、
     その混合物を、加圧成形処理して成形体を作製し、その成形体を焼鈍処理してなる圧粉磁心において、
     前記無機絶縁粉末の添加量が0.4wt%以上且つ、1.5wt%以下であり、
     前記熱処理温度が1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製されたことを特徴とする圧粉磁心。
  2.  前記軟磁性粉末の平均粒子径が30~5μm且つ、珪素成分が0~6.5wt%であることを特徴とする請求項1に記載の圧粉磁心。
  3.  前記無機絶縁粉末は、平均粒子径が7~500nm、且つ、融点が1500℃以上のAlまたはMgO粉末であることを特徴とする請求項1または請求項2に記載の圧粉磁心。
  4.  前記軟磁性粉末が水アトマイズ法、ガスアトマイズ法または水ガスアトマイズ法で作製されたことを特徴とする請求項1または請求項2に記載の圧粉磁心。
  5.  前記軟磁性粉末が、水アトマイズ法で作製した粉末を平坦化処理したものであることを特徴とする請求項4に記載の圧粉磁心。
  6.  軟磁性粉末と無機絶縁粉末を混合する第1混合工程と、
     その混合物に対して熱処理を施す熱処理工程と、
     熱処理を施した軟磁性粉末と無機絶縁粉末に結着性樹脂を添加するバインダー添加工程と、
     その混合物に対して、潤滑性樹脂を混合する第2混合工程と、
     その混合物を、加圧成形処理して成形体を作製する成形工程と、
     その成形体を焼鈍処理する焼鈍工程とを備える圧粉磁心の製造方法において、
     前記無機絶縁粉末の添加量が0.4wt%以上且つ1.5wt%以下であり、
     前記熱処理工程において熱処理温度が1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことを特徴とする圧粉磁心の製造方法。
  7.  前記軟磁性粉末の平均粒子径が30~5μm且つ、珪素成分が0~6.5wt%であることを特徴とする請求項6に記載の圧粉磁心の製造方法。
  8.  前記無機絶縁粉末は、平均粒子径が7~500nm、且つ、融点が1500℃以上のAlまたはMgO粉末であることを特徴とする請求項6または請求項7に記載の圧粉磁心の製造方法。
  9.  前記軟磁性粉末が水アトマイズ法、ガスアトマイズ法または水ガスアトマイズ法で作製されたことを特徴とする請求項6または請求項7に記載の圧粉磁心の製造方法。
  10.  前記軟磁性粉末が、水アトマイズ法で作製した粉末を平坦化処理したものであることを特徴とする請求項9に記載の圧粉磁心の製造方法。
PCT/JP2010/003076 2009-12-25 2010-04-28 圧粉磁心及びその製造方法 WO2011077601A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/132,892 US9396873B2 (en) 2009-12-25 2010-04-28 Dust core and method for manufacturing the same
JP2010526873A JP5501970B2 (ja) 2009-12-25 2010-04-28 圧粉磁心及びその製造方法
CN201080001075.1A CN102202818B (zh) 2009-12-25 2010-04-28 压粉磁芯及其制造方法
EP10834069.6A EP2492031B1 (en) 2009-12-25 2010-04-28 Dust core and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009296414 2009-12-25
JP2009-296414 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077601A1 true WO2011077601A1 (ja) 2011-06-30

Family

ID=44195156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003076 WO2011077601A1 (ja) 2009-12-25 2010-04-28 圧粉磁心及びその製造方法

Country Status (6)

Country Link
US (1) US9396873B2 (ja)
EP (1) EP2492031B1 (ja)
JP (1) JP5501970B2 (ja)
KR (1) KR101152042B1 (ja)
CN (2) CN102202818B (ja)
WO (1) WO2011077601A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003286A (ja) * 2012-05-25 2014-01-09 Ntn Corp 圧粉磁心、圧粉磁心の製造方法、及び、圧粉磁心の渦電流損失の推定方法
JP2014216495A (ja) * 2013-04-25 2014-11-17 Tdk株式会社 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
WO2015064694A1 (ja) * 2013-11-01 2015-05-07 戸田工業株式会社 軟磁性フェライト樹脂組成物、軟磁性フェライト樹脂組成物成型体及び非接触給電システム用電力伝送デバイス
JP2015095570A (ja) * 2013-11-12 2015-05-18 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法
JP2017011271A (ja) * 2015-06-17 2017-01-12 株式会社タムラ製作所 軟磁性材料、軟磁性材料を用いた圧粉磁心、圧粉磁心を用いたリアクトル、及び圧粉磁心の製造方法
JP2017224795A (ja) * 2016-06-17 2017-12-21 株式会社タムラ製作所 圧粉磁心、軟磁性材料、圧粉磁心の製造方法
JP2018073996A (ja) * 2016-10-28 2018-05-10 株式会社タムラ製作所 軟磁性材料、軟磁性材料を用いた圧粉磁心、及び圧粉磁心の製造方法
JP2019192868A (ja) * 2018-04-27 2019-10-31 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、圧粉磁心、磁性素子、電子機器および移動体
JP2019195068A (ja) * 2019-05-31 2019-11-07 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法
JP2020155668A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297746B1 (ko) * 2013-06-03 2021-09-06 가부시키가이샤 다무라 세이사쿠쇼 연자성 분말, 코어, 저소음 리액터 및 코어의 제조 방법
CN104425093B (zh) * 2013-08-20 2017-05-03 东睦新材料集团股份有限公司 一种铁基软磁复合材料及其制备方法
KR101686989B1 (ko) 2014-08-07 2016-12-19 주식회사 모다이노칩 파워 인덕터
KR101662206B1 (ko) * 2014-08-07 2016-10-06 주식회사 모다이노칩 파워 인덕터
WO2017193384A1 (zh) * 2016-05-13 2017-11-16 深圳顺络电子股份有限公司 复合软磁材料及其制备方法
TWI630627B (zh) * 2016-12-30 2018-07-21 財團法人工業技術研究院 磁性材料及包含其之磁性元件
JP7124342B2 (ja) 2018-02-28 2022-08-24 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、絶縁物被覆軟磁性粉末の製造方法、圧粉磁心、磁性素子、電子機器および移動体
CN110871269B (zh) * 2018-08-31 2022-11-08 大同特殊钢株式会社 合金粉末组合物
JP7400218B2 (ja) * 2018-08-31 2023-12-19 大同特殊鋼株式会社 合金粉末組成物
CN111161935B (zh) * 2018-11-07 2022-03-04 山东精创磁电产业技术研究院有限公司 高强度高磁导率高饱和磁通密度软磁复合材料的烧结方法
KR102375078B1 (ko) * 2019-03-22 2022-03-15 니뽄 도쿠슈 도교 가부시키가이샤 압분 자심
JP7377076B2 (ja) * 2019-11-19 2023-11-09 株式会社タムラ製作所 圧粉磁心の製造方法
JP7447640B2 (ja) * 2020-04-02 2024-03-12 セイコーエプソン株式会社 圧粉磁心の製造方法および圧粉磁心
CN113948264A (zh) * 2021-11-18 2022-01-18 横店集团东磁股份有限公司 一种铁镍磁粉芯及其制备方法
CN114242440A (zh) * 2021-12-31 2022-03-25 浙江先丰电子科技有限公司 一种加工效率高的贴片式电感磁芯加工方法和设备
CN117393301A (zh) * 2023-11-13 2024-01-12 中南大学 一种FeSiAlNi软磁复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224007A (ja) * 2002-01-30 2003-08-08 Citizen Watch Co Ltd 異方性希土類磁石粉末とその製造方法
JP2004288983A (ja) 2003-03-24 2004-10-14 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
JP2005015914A (ja) 2003-06-03 2005-01-20 Sumitomo Electric Ind Ltd 複合磁性材料およびその製造方法
JP2005264192A (ja) * 2004-03-16 2005-09-29 Toda Kogyo Corp 軟磁性材料及びその製造法、該軟磁性材料を含む圧粉磁心
JP2005286145A (ja) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性粉末および圧粉磁心
JP2005336513A (ja) 2004-05-24 2005-12-08 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、圧粉磁心の製造方法、および圧粉磁心
JP2007059656A (ja) 2005-08-25 2007-03-08 Sumitomo Electric Ind Ltd 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428183B (en) 1997-04-18 2001-04-01 Matsushita Electric Ind Co Ltd Magnetic core and method of manufacturing the same
US6284060B1 (en) 1997-04-18 2001-09-04 Matsushita Electric Industrial Co., Ltd. Magnetic core and method of manufacturing the same
JP2000277314A (ja) * 1999-03-23 2000-10-06 Tdk Corp 圧粉磁心およびその製造方法
JP2002015912A (ja) * 2000-06-30 2002-01-18 Tdk Corp 圧粉磁芯用粉末及び圧粉磁芯
EP1475808B1 (en) * 2002-01-17 2006-08-30 Nec Tokin Corporation Powder magnetic core and high frequency reactor using the same
JP2003239050A (ja) * 2002-02-20 2003-08-27 Mitsubishi Materials Corp 電気抵抗の高いFe−Cr系軟磁性焼結合金
WO2005015581A1 (ja) * 2003-08-06 2005-02-17 Nippon Kagaku Yakin Co., Ltd. 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法
CN100442402C (zh) * 2005-11-16 2008-12-10 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
JP2008016670A (ja) * 2006-07-06 2008-01-24 Hitachi Ltd 磁性粉、圧粉磁心の製造方法、及び圧粉磁心
CA2667843C (en) * 2007-01-30 2012-04-10 Jfe Steel Corporation High compressibility iron powder, and iron powder for dust core and dust core using the same
CN101055783A (zh) * 2007-03-06 2007-10-17 北京科技大学 提高金属软磁材料机械性能的方法
JP4721456B2 (ja) * 2007-03-19 2011-07-13 日立粉末冶金株式会社 圧粉磁心の製造方法
JP2009302165A (ja) 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
KR101527268B1 (ko) * 2009-12-25 2015-06-08 가부시키가이샤 다무라 세이사쿠쇼 리액터 및 그의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224007A (ja) * 2002-01-30 2003-08-08 Citizen Watch Co Ltd 異方性希土類磁石粉末とその製造方法
JP2004288983A (ja) 2003-03-24 2004-10-14 Toyota Central Res & Dev Lab Inc 圧粉磁心およびその製造方法
JP2005015914A (ja) 2003-06-03 2005-01-20 Sumitomo Electric Ind Ltd 複合磁性材料およびその製造方法
JP2005264192A (ja) * 2004-03-16 2005-09-29 Toda Kogyo Corp 軟磁性材料及びその製造法、該軟磁性材料を含む圧粉磁心
JP2005286145A (ja) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性粉末および圧粉磁心
JP2005336513A (ja) 2004-05-24 2005-12-08 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、圧粉磁心の製造方法、および圧粉磁心
JP2007059656A (ja) 2005-08-25 2007-03-08 Sumitomo Electric Ind Ltd 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492031A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003286A (ja) * 2012-05-25 2014-01-09 Ntn Corp 圧粉磁心、圧粉磁心の製造方法、及び、圧粉磁心の渦電流損失の推定方法
JP2014216495A (ja) * 2013-04-25 2014-11-17 Tdk株式会社 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
JPWO2015064694A1 (ja) * 2013-11-01 2017-03-09 戸田工業株式会社 軟磁性フェライト樹脂組成物、軟磁性フェライト樹脂組成物成型体及び非接触給電システム用電力伝送デバイス
WO2015064694A1 (ja) * 2013-11-01 2015-05-07 戸田工業株式会社 軟磁性フェライト樹脂組成物、軟磁性フェライト樹脂組成物成型体及び非接触給電システム用電力伝送デバイス
JP2015095570A (ja) * 2013-11-12 2015-05-18 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法
JP2019179919A (ja) * 2015-06-17 2019-10-17 株式会社タムラ製作所 圧粉磁心の製造方法
JP2019004169A (ja) * 2015-06-17 2019-01-10 株式会社タムラ製作所 軟磁性材料、軟磁性材料を用いた圧粉磁心、圧粉磁心を用いたリアクトル
JP2017011271A (ja) * 2015-06-17 2017-01-12 株式会社タムラ製作所 軟磁性材料、軟磁性材料を用いた圧粉磁心、圧粉磁心を用いたリアクトル、及び圧粉磁心の製造方法
JP2017224795A (ja) * 2016-06-17 2017-12-21 株式会社タムラ製作所 圧粉磁心、軟磁性材料、圧粉磁心の製造方法
JP2018073996A (ja) * 2016-10-28 2018-05-10 株式会社タムラ製作所 軟磁性材料、軟磁性材料を用いた圧粉磁心、及び圧粉磁心の製造方法
JP2019192868A (ja) * 2018-04-27 2019-10-31 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、圧粉磁心、磁性素子、電子機器および移動体
JP2020155668A (ja) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 圧粉磁心
JP7269045B2 (ja) 2019-03-22 2023-05-08 日本特殊陶業株式会社 圧粉磁心
JP2019195068A (ja) * 2019-05-31 2019-11-07 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法

Also Published As

Publication number Publication date
JPWO2011077601A1 (ja) 2013-05-02
CN105355356B (zh) 2019-07-09
US9396873B2 (en) 2016-07-19
KR101152042B1 (ko) 2012-06-08
KR20110079789A (ko) 2011-07-08
EP2492031B1 (en) 2017-10-18
JP5501970B2 (ja) 2014-05-28
EP2492031A1 (en) 2012-08-29
EP2492031A4 (en) 2014-01-22
US20120001719A1 (en) 2012-01-05
CN102202818B (zh) 2015-11-25
CN102202818A (zh) 2011-09-28
CN105355356A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5501970B2 (ja) 圧粉磁心及びその製造方法
JP5739348B2 (ja) リアクトル及びその製造方法
JP6277426B2 (ja) 複合磁性体およびその製造方法
WO2012131872A1 (ja) 複合軟磁性粉末及びその製造方法、並びにそれを用いた圧粉磁心
WO2010082486A1 (ja) 複合磁性材料の製造方法とそれを用いた圧粉磁芯及びその製造方法
JP2007012994A (ja) 絶縁軟磁性金属粉末成形体の製造方法
JP2007019134A (ja) 複合磁性材料の製造方法
JP4995222B2 (ja) 圧粉磁心及びその製造方法
JP4908546B2 (ja) 圧粉磁心及びその製造方法
JP2008277775A (ja) 圧粉磁心およびその製造方法
JP2009185312A (ja) 複合軟磁性材料、それを用いた圧粉磁心、およびそれらの製造方法
JP2013098384A (ja) 圧粉磁心
JP2008172257A (ja) 絶縁軟磁性金属粉末成形体の製造方法
JP2011243830A (ja) 圧粉磁芯及びその製造方法
JP5232708B2 (ja) 圧粉磁心及びその製造方法
JP5150535B2 (ja) 圧粉磁心及びその製造方法
CA2891206A1 (en) Iron powder for dust cores
JP2009147252A (ja) 複合磁性材料およびその製造方法
JP2012222062A (ja) 複合磁性材料
JP5232717B2 (ja) 圧粉磁心及びその製造方法
JP2008297622A (ja) 軟磁性材料、圧粉磁心、軟磁性材料の製造方法および圧粉磁心の製造方法
WO2019044132A1 (ja) Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001075.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010526873

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107017671

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010834069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834069

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132892

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE