WO2011002004A1 - ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法 - Google Patents

ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2011002004A1
WO2011002004A1 PCT/JP2010/061116 JP2010061116W WO2011002004A1 WO 2011002004 A1 WO2011002004 A1 WO 2011002004A1 JP 2010061116 W JP2010061116 W JP 2010061116W WO 2011002004 A1 WO2011002004 A1 WO 2011002004A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
lactic acid
acid resin
molecular weight
weight
Prior art date
Application number
PCT/JP2010/061116
Other languages
English (en)
French (fr)
Inventor
亮平 小川
真一 宇杉
水間 浩一
戸谷 由之
辻 雅司
長谷川 在
秀史 堀
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/380,025 priority Critical patent/US20120095169A1/en
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP10794172.6A priority patent/EP2450388B1/en
Priority to CN201080027648.8A priority patent/CN102459391B/zh
Priority to BRPI1016155A priority patent/BRPI1016155A2/pt
Priority to KR1020117031448A priority patent/KR101427459B1/ko
Priority to JP2011520944A priority patent/JP5438763B2/ja
Publication of WO2011002004A1 publication Critical patent/WO2011002004A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/428Lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention ⁇ 1 ⁇ relates to a polylactic acid resin, a method for producing the same, and a use thereof.
  • the present invention ⁇ 2 ⁇ relates to a polylactic acid resin composition with improved stereocomplex formation ability and a molded product comprising the composition. More specifically, the present invention relates to a molded product excellent in heat resistance and mechanical properties obtained by molding a specific polylactic acid resin blend.
  • the present invention ⁇ 3 ⁇ is a stereo complex having a high weight average molecular weight (Mw) and excellent in heat resistance, thermal stability and mechanical properties, which simultaneously satisfies a high degree of stereolation (S) and high thermal stability.
  • the present invention relates to a polylactic acid resin composition (Z) and a production method thereof excellent in productivity and operability.
  • biodegradable polymers that are degraded in the natural environment by the action of microorganisms existing in soil and water have attracted attention from the viewpoint of global environmental conservation, and various biodegradable polymers have been developed. Yes.
  • a biodegradable polymer that can be melt-molded for example, a fat comprising an aliphatic dicarboxylic acid component such as polyhydroxybutyrate, polycaprolactone, succinic acid or adipic acid, and a glycol component such as ethylene glycol or butanediol.
  • Family polyesters and polylactic acid resins are well known.
  • Polylactic acid one of the biodegradable polymers, is highly transparent, tough, and easily hydrolyzes in the presence of water, so when used as a general-purpose resin, it pollutes the environment after disposal. It is environmentally friendly because it is decomposed without being decomposed, and when it is placed in the living body as a medical material, it will be decomposed and absorbed in the living body without causing toxicity to the living body after achieving the purpose as a medical material. It's kind to you too.
  • polylactic acid belongs to a class having a high glass transition temperature and melting point among biodegradable polymers, but is not sufficient for use as a general-purpose resin. Therefore, the appearance of materials having both decomposability and heat resistance is eagerly desired.
  • a polylactic acid resin stereocomplex is known to exhibit a high melting point and high crystallinity, and to give a molded product useful as a fiber, film, or resin molded product.
  • Non-Patent Document 1 when heat resistance is improved by a polymer blend of poly (L-lactic acid) and poly (D-lactic acid), poly (L-lactic acid) and poly (D-lactic acid)
  • the blend ratio is limited to a narrow range of 60:40 to 40:60, preferably 50:50.
  • the melting point derived from the stereocomplex is expressed within the above range, the melting point derived from the poly (L-lactic acid) [or poly (D-lactic acid)] homopolymer does not disappear, and the heat resistance is substantially reduced. It is because it is not improved.
  • the amount of D-lactic acid used it is preferable to reduce the amount of D-lactic acid used.
  • poly The polymer blend method with a large amount of D-lactic acid is not always a good method.
  • Non-patent document 2 describes the block copolymer of poly (L-lactic acid) and poly (D-lactic acid). According to Non-Patent Document 2, poly (L-lactic acid) comprising L-lactic acid sequence and D-lactic acid sequence by living ring-opening polymerization of L-lactide and D-lactide using aluminum triisopropoxide as an initiator. And the synthesis of diblock copolymers of poly (D-lactic acid).
  • L-lactide is polymerized in a toluene solution at 90 ° C. in the presence of aluminum triisopropoxide, and after completion of the polymerization, D-lactide dissolved in toluene is added dropwise to continue the polymerization.
  • a block copolymer is synthesized.
  • the weight average molecular weight (Mw) of these block copolymers is about 16,000 to 24,000 in terms of GPC results, and the melting point by DSC is about 205 ° C.
  • Mw weight average molecular weight
  • Patent Document 4 and Patent Document 5 disclose a method for producing a high molecular weight block copolymer in which poly (L-lactic acid) and poly (D-lactic acid) are mixed and subjected to solid phase polymerization.
  • solid-state polymerization requires a long time, it is difficult to say that it is useful from the viewpoint of productivity.
  • Patent Document 6 a block copolymer consisting of a poly (L-lactic acid) segment and a poly (D-lactic acid) segment, both ends of which are diols derived from polylactic acid, is bonded with a polyfunctional compound to form a high molecular weight compound.
  • a method of molecular weighting is disclosed. In this method, an example using a diisocyanate is disclosed in the specification, and a bond formed from both terminal diols and a diisocyanate is a urethane bond having low thermal stability.
  • Patent Document 1 Patent Document 2, Non-Patent Document. Document 1 and Patent Document 3).
  • Non-Patent Document 1 discloses that the molecular weights of poly-L-lactic acid and poly-D-lactic acid are It is described that it is difficult to obtain stereocomplex polylactic acid from a combination of high molecular weight polylactic acid having a high molecular weight, particularly 100,000 or more.
  • Patent Document 7 a method for heat-treating a mixture of poly-L-lactic acid and poly-D-lactic acid under high temperature conditions of 260 ° C. to 300 ° C. has been proposed. Similarly, the molecular weight is lowered by the decomposition, and further problems such as mechanical properties and coloring may occur (Patent Document 7).
  • a low melting point crystal melting peak having a peak temperature of 190 ° C. or less corresponding to melting of a homophase crystal and a high melting point having a peak temperature of 190 ° C. or more corresponding to melting of a stereocomplex phase crystal.
  • Two peaks of the crystal melting peak are measured, and the fact that this low melting point crystal melting peak area is larger than the high melting point crystal melting peak area indicates that the degree of stereoization (S) is low.
  • the presence of homophase crystals can be a factor that hinders the inherent high heat resistance of the stereo complex.
  • the high degree of stereogenicity (S) not only causes high heat resistance of polylactic acid, but also has the advantage of improving transparency and surface gloss, which are the original advantages of polylactic acid. It has been known.
  • Patent Document 8 As a method for obtaining high molecular weight stereocomplex polylactic acid, a method of stereoblocking poly-L-lactic acid and poly-D-lactic acid each having a weight average molecular weight of about several tens of thousands by solid phase polymerization has been adopted.
  • Patent Document 8 the weight average molecular weight of the stereocomplex polylactic acid obtained from the examples is about several hundred thousand, and higher molecular weight is desired in view of mechanical properties. Further, Patent Document 8 does not show a specific description of the degree of stereoization (S).
  • stereocomplex polylactic acid having a weight average molecular weight of 219000 is obtained, but in this example, the obtained composition is further heated at 180 ° C. in a hot air circulating dryer for 1 hour. It is considered that the degree of stereoification (S) has been improved by this, but the molecular weight is expected to be reduced by this heat treatment.
  • Patent Document 10 Application of a crystallization nucleating agent (Patent Document 10) and application of a crystallization accelerator (Patent Document 11) have been proposed as methods for improving the degree of stereogenicity (S), that is, for increasing the formation of a stereocomplex crystal phase.
  • Application of these additives causes a decrease in weight average molecular weight at the time of melting, and further causes a decrease in transparency and surface gloss, which are inherent advantages of polylactic acid.
  • S degree of stereogenicity
  • Patent Document 12 phosphorus-based catalyst deactivator
  • Patent Document 13 application of an inorganic filler or an organic filler
  • Patent Document 14 application of a crystal nucleating agent such as talc
  • the mixing of these various additives may impair the mechanical properties and transparency and surface glossiness that are inherent advantages of polylactic acid.
  • the use of these additives becomes a factor of high cost, a stereocomplex polylactic acid having high thermal stability alone without using any additive is desired.
  • the present inventors reacted polylactic acid and polyisocyanate compound in the presence of an amidation catalyst, thereby having biodegradability such as a film having a practically sufficient high molecular weight and high crystallinity.
  • a polyester resin suitably used in the required field is disclosed (Patent Document 15).
  • JP-A-61-36321 JP 63-241024 JP 2000-17163 A Japanese Patent Laid-Open No. 2003-238672 JP 2006-28336 A JP 2002-356543 A JP 2007-191548 A JP 2009-40997 A JP 2008-248022 A Japanese Patent Laid-Open No. 2003-192848 JP 2007-191630 A JP 2009-249518 A JP 2006-265486 A Patent No. 3410075 International Publication WO2009 / 110472
  • the problem to be solved by the present invention ⁇ 1 ⁇ is to provide a polylactic acid resin (I) having a high molecular weight, high heat resistance, and having an amide bond in the molecular chain, its production method and its use. .
  • the problem to be solved by the present invention ⁇ 2 ⁇ is to provide a polylactic acid resin composition (C) having a high stereocomplex forming ability and a molded product having excellent heat resistance, mechanical properties, etc., comprising the composition (C). It is.
  • the problem to be solved by the present invention ⁇ 3 ⁇ is excellent in heat resistance, thermal stability and mechanical properties, which simultaneously satisfy high weight average molecular weight (Mw), high stereogenicity (S), and high thermal stability. It is to provide a stereocomplex polylactic acid resin composition (Z) and a production method thereof excellent in productivity and operability.
  • the inventors of the present invention obtained by passing through a specific reaction step, the polylactic acid resin (I) having an amide bond in the molecular chain has a high molecular weight and a high melting point, and is high It has been found that it has thermal stability, and has reached the present invention ⁇ 1 ⁇ . Furthermore, it has been found that a polylactic acid resin having a high molecular weight and excellent thermal stability can be produced at a low cost through a specific reaction step, and the present invention ⁇ 1 ⁇ has been reached.
  • the present invention ⁇ 1 ⁇ [1] Polyisocyanate compound and polyisocyanate compound containing at least poly (L-lactic acid) in which the terminal functional group is a carboxyl group exceeding 50% and poly (D-lactic acid) in which the terminal functional group is a carboxyl group exceeding 50% A polylactic acid resin (I) obtained by reacting and containing a structural unit represented by the following formula (1).
  • R is a polyisocyanate residue and has an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group having 3 to 20 carbon atoms including an alicyclic structure, or an aromatic ring. Represents 6 to 20 hydrocarbon groups.
  • the polylactic acid resin (I) according to [1] wherein the ratio of terminal functional groups of the poly (L-lactic acid) and poly (D-lactic acid) is a carboxyl group is 85% or more.
  • the polylactic acid system according to any one of [1] to [6], wherein the polylactic acid system is 000 and is 3 to 200 times the weight average molecular weight of the poly (L-lactic acid) and poly (D-lactic acid) Resin (I).
  • the polylactic acid resin (I) according to any one of [1] to [7], wherein the polyisocyanate compound is an aliphatic diisocyanate compound.
  • a polyisocyanate containing at least a poly (L-lactic acid) in which the ratio of terminal functional groups to carboxyl groups exceeds 50% and a poly (D-lactic acid) in which the ratio of terminal functional groups to carboxyl groups exceeds 50%, and polyisocyanate The method for producing a polylactic acid resin (I) according to any one of [1] to [8], which comprises a step of reacting with a compound. [10] The method for producing a polylactic acid resin (I) according to [9], wherein the polyisocyanate compound is an aliphatic diisocyanate compound.
  • the inventors of the present invention comprise a polylactic acid resin containing L-lactic acid as a main component and a polylactic acid resin containing D-lactic acid as a main component, and at least one of the polylactic acid resins contains a polyisocyanate compound.
  • a polylactic acid resin composition comprising a polylactic acid resin having an amide bond formed thereon, wherein the polylactic acid resin composition has a high stereocomplex forming ability, and the composition is used.
  • the present inventors have found that a stereocomplex can be formed and molded under relatively mild conditions, and a molded product having excellent heat resistance and mechanical properties can be obtained, and the present invention ⁇ 2 ⁇ has been completed.
  • the present invention ⁇ 2 ⁇ [15] It contains a polylactic acid resin (A-1) containing L-lactic acid as a main component and a polylactic acid resin (A-2) containing D-lactic acid as a main component, and at least one polylactic acid resin (A-1 or A- 2) Polyamide having an amide bond obtained by reacting a polyisocyanate compound with a lactic acid oligomer (a-1) containing L-lactic acid as a main component or a lactic acid oligomer (a-2) containing D-lactic acid as a main component.
  • a polylactic acid resin composition (C) which is a lactic acid resin (B). It is.
  • the polylactic acid resin (A-1) mainly containing L-lactic acid and the polylactic acid resin (A-2) mainly containing D-lactic acid have a weight average molecular weight of 70,000 to 500,000. This is a preferred embodiment in terms of moldability.
  • the weight average molecular weight of the lactic acid oligomer (a-1) or (a-2) is 5,000 to 100,000 or less, which is a preferable embodiment from the viewpoint of improving the melting point of the polylactic acid resin.
  • the polyisocyanate compound of [15] is an aliphatic diisocyanate.
  • the phosphorus stabilizer (D) is preferably contained in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the polylactic acid resin composition (C) in terms of improving the hue and viscosity stability during molding.
  • the phenol-based stabilizer (E) is contained in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the polylactic acid resin composition (C) from the viewpoint of improving the hue and viscosity stability at the time of molding.
  • the ratio of the melting peak of the polylactic acid resin at 195 ° C. or higher in the melting peak in the temperature rising process is preferably 70% or more from the viewpoint of improving heat resistance.
  • the present inventors have determined that the main repeating unit is L-lactic acid, the oligomer (x′1) in which the proportion of the carboxyl group in the terminal functional group exceeds 50%, and the main repeating unit is A mixture of polymer (Y1) that is D-lactic acid and has a molecular weight greater than (x′1), or the main repeating unit is D-lactic acid, and the proportion of carboxyl groups in the terminal functional group exceeds 50%.
  • the lactic acid resin composition (Z) has a high weight average molecular weight (Mw), further has a high degree of stereolation (S), and further suppresses a decrease in the weight average molecular weight (Mw) after heat load. I found out.
  • the present inventors have found that a stereocomplex polylactic acid that simultaneously satisfies a high molecular weight, a high degree of stereolation (S), and a high thermal stability can be produced under relatively low temperature and a short time, and completed the present invention ⁇ 3 ⁇ . did.
  • DSC differential scanning calorimetry
  • the degree of stereolation (S) in the first temperature raising process is 60% or more
  • the degree of stereolation (S) in the second temperature raising process is 88% or more
  • the weight average after the second temperature raising process Molecular weight (Mw) retention is 77% or more
  • a stereocomplex polylactic acid resin composition (Z) having a weight average molecular weight of 70,000 to 500,000 and satisfying the following requirements (i ′) to (iv ′).
  • DSC differential scanning calorimetry
  • (Ii ′) Stereoization degree (S) in the first temperature raising process is 60% or more
  • (iii ′) Stereolation degree (S) in the second temperature raising process is 95% or more
  • the main repeating unit is L-lactic acid, the oligomer (x′1) in which the proportion of carboxyl groups in the terminal functional group exceeds 50%, and the main repeating unit is D-lactic acid, which is more than (x′1) A mixture of polymers (Y1) with a large molecular weight, or
  • the main repeating unit is D-lactic acid and the proportion of the carboxyl group in the terminal functional group is more than 50% (y′1), and the main repeating unit is L-lactic acid, which is more than (y′1) A mixture of polymers (X1) having a large molecular weight;
  • the stereocomplex polylactic acid resin composition (Z) obtained by reacting a polyisocyanate compound
  • the main repeating unit is L-lactic acid, 30 to 300 parts by weight of the oligomer (x′1) in which the ratio of the carboxyl group in the terminal functional group exceeds 50%, the main repeating unit is D-lactic acid, and (x A mixture of 100 parts by weight of polymer (Y1) having a molecular weight greater than '1), or The main repeating unit is D-lactic acid, 30 to 300 parts by weight of the oligomer (y′1) in which the ratio of the carboxyl group in the terminal functional group exceeds 50%, the main repeating unit is L-lactic acid, (y A mixture of 100 parts by weight of polymer (X1) having a molecular weight greater than '1);
  • the manufacturing method of the stereocomplex polylactic acid resin composition characterized by including the process of making a polyisocyanate compound react.
  • the polylactic acid-based resin (I) of the present invention ⁇ 1 ⁇ has an amide bond in the molecular chain, has a practically sufficient high molecular weight, and has a high melting point and high thermal stability, a film or sheet It can be suitably used for applications requiring mechanical properties and heat resistance, such as molded bodies and fibers.
  • composition (C) of the present invention ⁇ 2 ⁇ has a high stereocomplex forming ability under relatively mild conditions.
  • a molded body using the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ is obtained by molding under relatively mild conditions, and has good heat resistance, mechanical properties, chemical resistance, and hydrolysis resistance. In addition, since the molding processing temperature can be lowered, the environmental load is reduced.
  • composition (Z) of the present invention ⁇ 3 ⁇ is a stereocomplex polylactic acid resin composition (Z) that simultaneously satisfies a high weight average molecular weight (Mw), a high stereogenicity (S), and a high thermal stability. Further, it can be produced at a relatively low temperature and in a short time, has good heat resistance and thermal stability, and can be obtained by a production method excellent in productivity and operability.
  • Polylactic acid resin (I) In the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ , the proportion of the terminal functional group that is a carboxyl group exceeds 50% poly (L-lactic acid) and the proportion that the terminal functional group is a carboxyl group exceeds 50% It is obtained by reacting a mixture containing at least poly (D-lactic acid) with a polyisocyanate compound, and includes a structural unit represented by the following formula (1).
  • R is a polyisocyanate residue, and is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group having 3 to 20 carbon atoms including an alicyclic structure, or 6 carbon atoms including an aromatic ring. Represents up to 20 hydrocarbon groups.
  • aliphatic hydrocarbon group having 1 to 20 carbon atoms include methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3- Dimethylpropylene, 1-methylbutylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, decylene, dodecylene, Examples include ethane-1,1-diyl, propane-2,2-diyl, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, octadecylene, and nonadecylene, and any —CH 2 — in the aliphatic hydrocarbon group is -O-, -
  • hydrocarbon group having 3 to 20 carbon atoms containing the alicyclic structure examples include cyclopropylene, 1,3-cyclobutylene, 1,3-cyclopentylene, 1,4-cyclohexylene, 1, 5-cyclooctylene, norbornylene, 1,3-cyclopentylene, 1,2-cyclohexylene, 1,4-dimethylenecyclohexane, 1,3-dimethylenecyclohexane, 1-methyl-2,4-cyclohexylene, 4,4'-methylene-biscyclohexylene, and 3-methylene-3,5,5-trimethyl-cyclohexylene.
  • hydrocarbon group having 6 to 20 carbon atoms including the aromatic ring examples include m-phenylene, p-phenylene, 4,4′-diphenylene, 1,4-naphthalene, 1,5-naphthalene, 4 4,4'-methylenediphenylene, 2,4-tolylene, 2,6-tolylene, m-xylylene, p-xylylene, m-tetramethylxylylene, 4,4'-oxydiphenylene and chlorodiphenylene. .
  • R is, among these functional groups, butylene, pentylene, hexylene, dodecylene, 3-methylene-3,5,5-trimethyl-cyclohexylene, 1,3-dimethylenecyclohexane, 4,4'-methylene-bis. Cyclohexylene is preferred, and hexylene is more preferred.
  • the structural unit represented by the above formula (1) is 1 to 200 units, preferably 1 to 100 units, more preferably 3 to 50 units, and still more preferably per molecule of the polylactic acid resin (I). Contains 5-30 units.
  • the unit represented by the general formula (1) can be formed by a reaction between a terminal carboxyl group of polylactic acid and an isocyanate group. By using an amidation catalyst described later, the carboxyl group is efficiently converted into an amide group. Can be converted to
  • the ratio of the carboxyl group at the terminal of polylactic acid can be calculated by measuring the carboxylic acid value of the polylactic acid resin and measuring NMR.
  • Poly (L-lactic acid) and poly (D-lactic acid) The ends of poly (L-lactic acid) and poly (D-lactic acid) used in the present invention ⁇ 1 ⁇ are carboxyl groups in a proportion exceeding 50%.
  • the terminal carboxyl group ratio is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the proportion of urethane bonds in the polylactic acid resin increases, and when the polylactic acid resin is melted, the molecular weight tends to decrease, and the melt viscosity decreases during molding. Occurs and makes stable processing difficult.
  • poly (L-lactic acid) and poly (D-lactic acid) refer to those in which 80 mol% or more of the structural units are L-form lactic acid or D-form lactic acid. Other component units may be included as long as they do not impair the purpose of the optical isomer or the present invention ⁇ 1 ⁇ .
  • L-lactic acid or D-lactic acid means one containing 80 mol% or more of L-form lactic acid or D-form lactic acid.
  • the L-form content or the D-form content is preferably higher, preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 98 mol% or more. When the L-form content rate or the D-form content rate is within the above range, the resulting polylactic acid resin exhibits high heat resistance.
  • Examples of other component units other than L-lactic acid or D-lactic acid include units derived from polycarboxylic acids, polyhydric alcohols, polyhydric amines, hydroxycarboxylic acids, lactones, and the like, including initiators in the production method described later. Units derived from various polyesters, various polyethers, various polyamides, various polycarbonates and the like composed of various constituent components can be used alone or in combination. Specifically, succinic acid, adipic acid, sebacic acid, fumaric acid can be used.
  • Polyvalent acids such as acid, phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid, maleic acid, tetrabromophthalic acid, tetrahydrophthalic acid Carboxylic acids or their derivatives, ethylene glycol, propylene Recall, Butanediol, Hexanediol, Octanediol, Neopentylglycol, Glycerin, Trimethylolpropane, Pentaerythritol, Dipentaerythritol, Tripentaerythritol, Sorbitol, Poly (vinyl alcohol), Poly (hydroxyethyl methacrylate), Poly (hydroxy Propyl methacrylate), aromatic polyhydric alcohols obtained by addition reaction of ethylene oxide with bisphenol, polyhydric
  • the weight ratio of poly (L-lactic acid) and poly (D-lactic acid) in the polylactic acid resin of the present invention ⁇ 1 ⁇ is preferably 10:90 to 90:10, more preferably 30:70 to 70:30. When the weight ratio is within this range, the melting point becomes high and the heat resistance tends to be excellent.
  • Method for preparing poly (L-lactic acid) and poly (D-lactic acid) having a carboxyl group ratio of terminal functional groups exceeding 50% The method for preparing poly (L-lactic acid) and poly (D-lactic acid) in the present invention ⁇ 1 ⁇ is not particularly limited as long as it does not impair the purpose of the present invention ⁇ 1 ⁇ .
  • a direct polycondensation method Specific examples of preparing poly (L-lactic acid) or poly (D-lactic acid) in which the terminal functional group is a carboxyl group exceeding 50% by a direct polycondensation method include L-lactic acid or D-lactic acid as a raw material.
  • a poly (L-lactic acid) or poly (D--) is obtained by heating in an inert gas atmosphere, causing a polycondensation reaction by lowering the pressure, and finally performing a polycondensation reaction under conditions of a predetermined temperature and pressure. There is a method for obtaining lactic acid.
  • Poly (D-lactic acid) having a carboxyl group ratio in the terminal functional group exceeding 50% can be prepared.
  • the polycarboxylic acid component is preferably a dicarboxylic acid, and examples of the dicarboxylic acid component include succinic acid, phthalic acid, maleic acid, tetrabromophthalic acid, tetrahydrophthalic acid, trimellitic acid, and dodecyl succinic acid.
  • An acid is more preferable from the viewpoint of cost.
  • the acid anhydride include succinic anhydride, phthalic anhydride, maleic anhydride, tetrabromophthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, dodecyl succinic anhydride, and succinic anhydride is particularly preferable.
  • the amount of the polycarboxylic acid or acid anhydride added in the latter stage of polymerization is preferably 0.1 to 10 with respect to 100 parts by weight of poly (L-lactic acid) or poly (D-lactic acid) before addition. Parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 0.5 to 5 parts by weight.
  • the polycarboxylic acid or acid anhydride is added during or later in the polymerization, it may be added according to the target molecular weight of poly (L-lactic acid) and poly (D-lactic acid) described later. Specifically, the amount is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of L-lactic acid or D-lactic acid to be used.
  • the polycarboxylic acid or acid anhydride when added during polymerization or in the initial stage, it may be added in accordance with the target molecular weight of poly (L-lactic acid) and poly (D-lactic acid) described later. Specifically, it is preferably 0.19 to 3.8 mol, more preferably 0.24 to 1.9 mol, still more preferably 0.38 to 1 with respect to 100 mol of L-lactic acid or D-lactic acid to be used. .9 moles.
  • the addition amount of the polycarboxylic acid or acid anhydride is in the above range, the molecular weight can be adjusted to a desired range without requiring a long time for polymerization.
  • the polycondensation reaction may be performed in the presence of a catalyst for the purpose of shortening the polycondensation time, increasing the reactivity of the polycarboxylic acid or acid anhydride, or shortening the reaction time.
  • the catalyst examples include metals of Groups 2, 12, 13, 14, and 15 of the periodic table, or oxides or salts thereof.
  • metals such as zinc powder, tin powder, aluminum or magnesium, metal oxides such as antimony oxide, zinc oxide, tin oxide, aluminum oxide, magnesium oxide or titanium oxide, stannous chloride, stannic chloride , Stannous bromide, stannic bromide, antimony fluoride, zinc chloride, magnesium chloride, aluminum chloride and other metal halides, carbonates such as magnesium carbonate and zinc carbonate, tin acetate, tin 2-ethylhexanoate Organic carboxylates such as tin lactate, zinc acetate or aluminum acetate, or organic sulfones such as tin trifluoromethanesulfonate, zinc trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, tin methanesulfonate or tin p-toluenesul
  • organometallic oxides of the above metals such as dibutyltin oxide, metal alkoxides of the above metals such as titanium isopropoxide, alkyl metals of the above metals such as diethyl zinc, ion exchange resins such as dowex or amberlite, or the like
  • a protonic acid such as sulfuric acid, methanesulfonic acid, or p-toluenesulfonic acid, and a tin or zinc metal or a metal compound thereof, which can obtain a high molecular weight polymer at a high polymerization rate, is preferable.
  • metal tin or a tin compound such as tin oxide or tin chloride from the viewpoint of hue and catalytic activity.
  • the addition amount of the catalyst is not particularly limited, but is preferably 0.001 to 2 parts by weight, more preferably 0.001 to 1 part by weight based on 100 parts by weight of L-lactic acid or D-lactic acid to be used. preferable. Further, the amount is preferably 0.01 to 2 mol, more preferably 0.1 to 1 mol, relative to 100 mol of L-lactic acid or D-lactic acid to be used.
  • a catalyst is not essential, but if the amount of catalyst is less than 0.001 part by weight, the catalyst effect of shortening the polymerization time may not be sufficiently exhibited.
  • a separate catalyst residue removal step may be required to suppress a decrease in molecular weight or thermal decomposition during polylactic acid resin molding due to the influence of the catalyst residue. .
  • Ring-opening polymerization method Specific examples of preparing poly (L-lactic acid) in which the terminal functional group is a carboxyl group exceeding 50% and poly (D-lactic acid) in which the terminal functional group is a carboxyl group exceeding 50% by a ring-opening polymerization method
  • L-lactide and D-lactide which are the above-mentioned lactic acid cyclic dimers, are opened using a compound containing two or more hydroxyl groups or amino groups in the molecule, an initiator such as hydroxycarboxylic acid and water. Examples include a method obtained by adding an acid anhydride after ring polymerization.
  • Examples of the compound containing two or more hydroxyl groups or amino groups in the molecule include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, and glycerin.
  • Trimethylolpropane pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, poly (vinyl alcohol), poly (hydroxyethyl methacrylate), poly (hydroxypropyl methacrylate) and other polyhydric alcohols, ethylenediamine, propanediamine, butanediamine , Pentanediamine, hexanediamine, heptanediamine, diethylenetriamine, melamine Such as polyvalent amine and the like.
  • the addition amount of the initiator is not particularly limited, but is preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of lactide (L-lactide or D-lactide) to be used, and 0.01 to 3 Part by weight is more preferred. In addition, 0.38 to 7.7 mol is preferable with respect to 100 mol of lactide (L-lactide or D-lactide) to be used, more preferably 0.48 to 3.84 mol, and 0.77 to 3.84 mol. Is more preferable.
  • the molecular weight can be in a desired range.
  • the acid anhydride examples include the same compounds as the specific examples of acid anhydrides that can be used in the direct polycondensation method, and succinic anhydride is preferable.
  • the addition amount of the acid anhydride is 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of poly (L-lactic acid) or poly (D-lactic acid) before addition. Part, more preferably 0.5 to 5 parts by weight.
  • the ring-opening polymerization may be performed in the presence of a catalyst for the purpose of shortening the polymerization time, increasing the reaction rate with the acid anhydride, or shortening the reaction time.
  • the catalyst examples include metals such as tin, zinc, lead, titanium, bismuth, zirconium, germanium, antimony, and aluminum, and derivatives thereof. Derivatives are preferably metal alkoxides, carboxylates, carbonates, oxides and halides. Specific examples include tin chloride, tin 2-ethylhexanoate, zinc chloride, zinc acetate, lead oxide, lead carbonate, titanium chloride, alkoxy titanium, germanium oxide, and zirconium oxide. Among these, tin compounds are preferable, and tin octylate is particularly preferable.
  • the amount of catalyst added is not particularly limited, but is preferably 0.001 to 2 parts by weight, more preferably 0.001 to 1 part by weight, per 100 parts by weight of L-lactide or D-lactide used.
  • the amount is preferably 0.01 to 2 mol, more preferably 0.1 to 1 mol, relative to 100 mol of L-lactide or D-lactide to be used.
  • a catalyst is not essential, but if the amount of catalyst is less than 0.001 part by weight, the catalyst effect of shortening the polymerization time may not be sufficiently exhibited.
  • a separate catalyst residue removal step may be required to suppress a decrease in molecular weight or thermal decomposition during polylactic acid resin molding due to the influence of the catalyst residue. . (Solid phase polymerization)
  • the direct polymerization method or the ring-opening polymerization method and the solid phase polymerization method are combined, for example, the methods described in JP-A No. 2000-302852 and JP-A No. 2001-122951 can be used.
  • the weight average molecular weights of the poly (L-lactic acid) and poly (D-lactic acid) are preferably 5,000 to 100,000, more preferably 10,000 to 80,000, respectively. More preferably, it is 000 to 50,000.
  • the weight average molecular weight of the poly (L-lactic acid) and poly (D-lactic acid) is within the above range, the polymerization time is short and the process time can be shortened.
  • the content of (heavy) metal derived from the catalyst in poly (L-lactic acid) and poly (D-lactic acid) is preferably 300 ppm or less, more preferably 100 ppm or less, and more preferably 30 ppm or less. More preferably.
  • the lower limit of the content is not particularly limited.
  • the Sn content is preferably 300 ppm or less, more preferably 100 ppm or less, and even more preferably 30 ppm or less.
  • the lower limit of the Sn content is not particularly limited.
  • a high molecular weight polylactic acid resin [1] is obtained, and its thermal stability tends to increase.
  • a known method can be used, for example, a treatment with hydrochloric acid / 2-propanol.
  • the measuring method of content of (heavy) metals, such as Sn is as follows.
  • [Copolymerization component] In the present invention ⁇ 1 ⁇ , at least the poly (L-lactic acid) in which the ratio of the terminal functional group is a carboxyl group exceeds 50% and the poly (D-lactic acid) in which the ratio of the terminal functional group is a carboxyl group exceeds 50%
  • the mixture may contain a copolymer component in addition to poly (L-lactic acid) and poly (D-lactic acid).
  • the copolymer component is not particularly limited as long as it does not impair the purpose of the present invention ⁇ 1 ⁇ , and can be used according to the purpose of improving physical properties.
  • polyhydroxycarboxylic acid other than polylactic acid, polyester, polyamide, polycarbonate and the like can be used.
  • the content of the copolymer component is not particularly limited as long as it does not impair the purpose of the present invention ⁇ 1 ⁇ .
  • a mixture of poly (D-lactic acid) in which the ratio of the terminal functional group is a carboxyl group exceeding 50% is 0 to 40 parts by weight, preferably 5 to 20 parts by weight, more preferably 5 to 10 parts by weight. It is preferable to use parts by weight.
  • polyhydroxycarboxylic acid examples include polyglycolic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (2-hydroxy-n-butyric acid), poly (2-hydroxy-3,3- Dimethylbutyric acid), poly (2-hydroxy-3-methylbutyric acid), poly (2-methyllactic acid), poly (2-hydroxycaproic acid), poly (2-hydroxy-3-methylbutyric acid), poly (2-cyclohexyl) -2-hydroxyacetic acid), poly (mandelic acid) or polycaprolactone, or a copolymer or mixture thereof.
  • Polyester is a polyester whose main component is represented by a repeating unit consisting of a glycol component and a dicarboxylic acid component, but it may be a copolymer of three or more components, including a copolymer other than a glycol component or a dicarboxylic acid component. May be.
  • glycol component examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neo
  • examples include pentyl glycol, glycerin, pentaerythritol, bisphenol A, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and these can be used alone or in combination.
  • Dicarboxylic acid components include succinic acid, oxalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis ( p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, dicarboxylic acids such as 5-tetrabutylphosphonium isophthalic acid, and dimethyl ester thereof. These can also be used alone or in combination of two or more.
  • hydroxycarboxylic acids such as glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, and hydroxybenzoic acid may be included.
  • polyesters include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene isophthalate, polybutylene isophthalate, polypropylene isophthalate, polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate, poly Butylene terephthalate, bisphenol A terephthalate, bisphenol A isophthalate, polycyclohexane dimethylene terephthalate, polycyclohexane dimethylene isophthalate, polyethylene sulfoisophthalate, polybutylene sulfoisophthalate, polypropylene sulfoisophthalate, polybutylene sebate, polypropylene sebate, Poly Tylene sebate, poly- ⁇ -caprolactone, polyethylene oxalate, polypropylene oxalate, polybutylene oxa
  • Polyamide is a polymer or copolymer mainly composed of amino acids, lactams or diamines and dicarboxylic acids.
  • amino acids include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and paraaminomethylbenzoic acid
  • lactam examples include ⁇ -caprolactam and ⁇ -laurolactam.
  • diamine examples include tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-trimethylhexamethylene diamine, 2,4,4-trimethylhexamethylene diamine, 5-methylnonamethylene diamine, 2,4-dimethyloctamethylenediamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, 3, 8-bis (aminomethyl) tricyclodecane, bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) ) Piperazine and Such as aminoethyl piperazine.
  • Dicarboxylic acids include succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid , 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid and diglycolic acid.
  • Homopolymers or copolymers derived from these raw materials can be used.
  • polyamides include polycaproamide, polyhexamethylene adipamide, polytetramethylene adipamide, polyhexamethylene sebamide, polyhexamethylene dodecane, polyundecanamide, polydodecanamide, polycaproamide / Polyhexamethylene terephthalamide copolymer, polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer, polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer, polyhexamethylene adipamide / polyhexamethylene isophthalamide / polycapro Amide copolymer, polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer, polyhexamethylene terephthalamide / polydodecanamide copolymer Polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer, polyhex
  • Polycarbonate is a resin having a carbonate bond, and is a polymer or copolymer obtained by reacting an aromatic hydroxy compound or a small amount of a polyhydroxy compound with a carbonate precursor.
  • Aromatic hydroxy compounds include 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane. 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) Propane, 2,2-bis (hydroxy-3-methylphenyl) propane, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, hydroquinone, resorcinol, 4,6-dimethyl-2,4,6 -Tri (4-hydroxyphenyl) heptene, 2,4,6-dimethyl-2,4,6-tri ( -Hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene, 1,
  • carbonate precursor carbonyl halide, carbonate ester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate and the like.
  • the terminal functional group of the copolymerization component is not particularly limited, but is preferably one converted to a carboxyl group.
  • the method for producing the polylactic acid-based resin (I) includes poly (L-lactic acid) in which the ratio of terminal functional groups is carboxyl groups and poly (L-lactic acid) in which the ratio of terminal functional groups is carboxyl groups exceeds 50%.
  • polylactic acid resin (I) can be obtained by decarboxylating the obtained reaction product.
  • the polyisocyanate compound is preferably a diisocyanate compound.
  • polylactic acid resin (I) of the present invention ⁇ 1 ⁇ is a combination of the following formulas (2) and (3) or any one selected from the group consisting of the following formulas (4) and (5).
  • a polylactic acid resin having a structural unit represented as a main component is preferable.
  • “having as a main component” means any one selected from the group consisting of the following formulas (2) and (3) or the following formulas (4) and (5) in 100% by weight of the polylactic acid resin (1). It means that 60% by weight or more, more preferably 90% by weight or more of a structural unit represented by a combination of these formulas is included.
  • R 1 represents a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an unsaturated hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group, respectively.
  • N represents an integer of 20 to 1500, preferably 25 to 1500, more preferably 30 to 1500.
  • the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 20 carbon atoms is a residue of the above-described dicarboxylic acid or acid anhydride, and examples thereof include ethylene.
  • the unsaturated hydrocarbon group having 2 to 20 carbon atoms is a residue of the above-described dicarboxylic acid or acid anhydride, and examples thereof include vinylene.
  • the aromatic hydrocarbon group is a residue of the above-described dicarboxylic acid or acid anhydride, and examples thereof include 1,2-phenylene.
  • the units derived from lactic acid in parentheses are units derived from lactic acid of other optical isomers, component units other than lactic acid, or an initiator. May be substituted.
  • R 1 has the same meaning as R 1 in formulas (2) and (3), respectively, and n and m are each independently the formulas (2) and (3). It is synonymous with n in the inside.
  • the unit derived from lactic acid in () is a unit in which less than 20 mol% is derived from other optical isomers of lactic acid, a component unit other than lactic acid, or an initiator. May be substituted.
  • the polylactic acid-based resin having as a main component a structural unit represented by any combination of formulas selected from the group consisting of the above formulas (2) and (3) or (4) and (5) is, for example, terminal functional A mixture containing at least poly (L-lactic acid) in which the proportion of carboxyl groups in the group exceeds 50% and poly (D-lactic acid) in which the proportion of carboxyl groups in the terminal functional group exceeds 50%, and a polyisocyanate compound It can be made to react and be manufactured by the method described above. In addition, it is preferable to use an amidation catalyst. By using an amidation catalyst described later, an amidation reaction can be performed under mild conditions and side reactions can be suppressed. This is a preferred embodiment because it can be produced with purity.
  • the weight average molecular weights of the poly (L-lactic acid) and the poly (D-lactic acid) are each preferably 5,000 to 100,000, more preferably 10,000 to 80,000. More preferably, it is 000 to 50,000. Such a weight average molecular weight is preferable from the viewpoint of process time, and the resulting polylactic acid resin has a high melting point, which is preferable from the viewpoint of heat resistance.
  • the mixture may contain the copolymer component.
  • the weight average molecular weight of the polylactic acid resin (I) in the present invention ⁇ 1 ⁇ is preferably 50,000 to 1,000,000, the lower limit is more preferably 70,000 or more, and 100,000 More preferably, it is the above.
  • the upper limit is more preferably 700,000 or less, and further preferably 500,000 or less. Specifically, it is preferably 100,000 to 1,000,000, more preferably 100,000 to 700,000, and still more preferably 100,000 to 500,000. It is preferable in terms of moldability and mechanical strength that the weight average molecular weight of the polylactic acid resin is within the above range.
  • the weight average molecular weight of the polylactic acid-based resin is preferably within the above-mentioned range and not less than 3 times and not more than 200 times the weight average molecular weight of the poly (L-lactic acid) and the poly (D-lactic acid). It is more preferably 4 times or more and 100 times or less, and particularly preferably 5 times or more and 50 times or less. Within such a range, the polylactic acid-based resin can have a higher molecular weight, which is preferable in terms of the physical properties of the resin such as mechanical properties.
  • R 3 has the same meaning as R in formula (1)
  • n has the same meaning as n in formulas (2) and (3).
  • R 3 has the same meaning as R in formula (1), n and m have the same meanings as n and m of formula (2) and (3).
  • reaction temperature in this step is preferably 40 to 230 ° C., more preferably 60 to 200 ° C., and particularly preferably 80 to 180 ° C.
  • reaction temperature in the said process exists in the said range, it is preferable at the point which reaction rate is quick and gelatinization does not occur easily.
  • reaction temperature in the said process exceeds the said upper limit, a crosslinking reaction may advance and gelatinization may occur easily, and when it is less than the said lower limit, reaction rate may become slow and time may be required for molecular weight increase.
  • reaction solvent examples of the solvent used in this step include aromatic hydrocarbons, halogenated hydrocarbons, and aromatic ethers.
  • Aromatic hydrocarbons include toluene, m-xylene, p-xylene, xylene (isomer mixture), ethylbenzene, mesitylene, tetralin, m-diisopropylbenzene, p-diisopropylbenzene and diisopropylbenzene (isomer mixture). It is done.
  • halogenated hydrocarbon examples include methylene chloride, chloroform, 1,2-dichloroethane and 1,2-dichlorobenzene.
  • aromatic ethers examples include diphenyl ether.
  • diphenyl ether examples include diphenyl ether.
  • tetralin, m-diisopropylbenzene, p-diisopropylbenzene, diisopropylbenzene (isomer mixture), 1,2-dichlorobenzene, and diphenyl ether are preferable from the viewpoints of solubility and versatility.
  • the polyisocyanate compound used in the step is a compound having two or more isocyanate groups, and is not particularly limited as long as the object of the present invention ⁇ 1 ⁇ is not impaired.
  • Examples of the polyisocyanate compound having 3 or more isocyanate groups include triisocyanates such as 1,6,11-undecane triisocyanate and polyisocyanate substituted compounds such as polyphenylmethane polyisocyanate.
  • the polyisocyanate compound is preferably a diisocyanate compound.
  • Diisocyanate compounds include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate, tetramethylene Diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [ 2,2,1] -heptane or bis (4-isocyanatocyclohexyl) methane and the like, and more preferred examples include 1,3-xylylene diisocyanate.
  • Tetramethylene diisocyanate pentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatomethyl) And bicyclo- [2,2,1] -heptane or bis (4-isocyanatocyclohexyl) methane.
  • tetramethylene diisocyanate pentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [2,2,1] -It is preferably one compound selected from the group consisting of heptane and bis (4-isocyanatocyclohexyl) methane, preferably an aliphatic diisocyanate compound, and particularly preferably hexamethylene diisocyanate. It is preferable that the polyisocyanate compound is the above compound in terms of the color tone of the polylactic acid resin (I) to be obtained.
  • the addition amount of the polyisocyanate compound is determined based on the number of moles calculated from the total number of terminal functional groups of the mixture containing at least the poly (L-lactic acid) and the poly (D-lactic acid).
  • the method for determining the number of terminal functional groups of poly (L-lactic acid) and poly (D-lactic acid) is calculated by NMR and carboxylic acid value. NMR and carboxylic acid values are measured by the methods described in the examples described later.
  • the amount of the polyisocyanate compound added is 0.8 to 2.0 times the mole of the terminal functional group in the mixture containing at least the poly (L-lactic acid) and the poly (D-lactic acid). Is more preferably 0.8 to 1.5 times mol, and particularly preferably 0.8 to 1.3 times mol.
  • “fold mole” is a unit of a value calculated by “number of isocyanate groups (mol) / number of terminal functional groups (mol)”.
  • the addition amount of the polyisocyanate compound is less than the lower limit, the addition effect of the polyisocyanate compound is small, and it may be difficult to obtain a high molecular weight polylactic acid resin (I).
  • the upper limit is exceeded, side reactions such as a crosslinking reaction may occur in the isocyanate, and a gel-like polylactic acid resin (I) may be generated.
  • the amidation catalyst is a catalyst that preferentially reacts the terminal carboxyl group portion of the poly (L-lactic acid) and poly (D-lactic acid) with the polyisocyanate compound to form an amide bond.
  • the amidation catalyst that can be used in the step preferably contains at least one metal selected from the group consisting of metals in Groups 1, 2 and 3 of the Periodic Table, and includes potassium, magnesium, calcium and ytterbium. More preferably, it contains at least one metal selected from the group, and particularly preferably contains magnesium or calcium. The inclusion of such a metal is preferable in terms of the catalytic effect and the color tone of the polylactic acid resin (I).
  • Examples of the amidation catalyst containing a Group 1 metal in the periodic table include organic metal compounds such as organic acid salts, metal alkoxides or metal complexes (acetylacetonato, etc.) of lithium, sodium, potassium, rubidium or cesium; Inorganic metal compounds such as compounds, metal hydroxides, carbonates, phosphates, sulfates, nitrates, chlorides or fluorides, and as amidation catalysts containing Group 2 metals of the above periodic table, Organometallic compounds such as organic acid salts, metal alkoxides or metal complexes (such as acetylacetonate) of beryllium, magnesium, calcium, strontium or barium; metal oxides, metal hydroxides, carbonates, phosphates, sulfates Inorganic metal compounds such as nitrates, chlorides and fluorides.
  • organic metal compounds such as organic acid salts, metal alkoxides or metal complexes (acetylacetonato, etc.
  • organometallic compounds such as scandium, ytterbium, yttrium or other rare earth organic acid salts, metal alkoxides or metal complexes (acetylacetonate, etc.)
  • Inorganic metal compounds such as metal oxides, metal hydroxides, carbonates, phosphates, sulfates, nitrates, chlorides or fluorides; These may be used alone or in combination.
  • metal compound catalysts bis (acetylacetonato) magnesium, magnesium stearate, calcium stearate, magnesium chloride, ytterbium triflate, etc. are preferable, and magnesium compounds, particularly bis (acetylacetonato) magnesium, magnesium stearate. Is preferred. Two or more of these catalysts can be used in combination.
  • the amount of the amidation catalyst added is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 100 parts by weight of the mixture containing at least poly (L-lactic acid) and poly (D-lactic acid). To 1 part by weight, still more preferably 0.01 to 0.5 part by weight.
  • the mixture containing at least poly (L-lactic acid) and poly (D-lactic acid) in the present invention ⁇ 1 ⁇ has a ratio of terminal functional groups of carboxyl groups exceeding 50%. It may be a hydroxyl group. In that case, the hydroxy moiety reacts with the polyisocyanate compound to form a urethane bond.
  • the polyisocyanate compound is preferably a diisocyanate compound.
  • Catalysts for forming such urethane bonds include dibutyltin dilaurate, dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, Tributyltin acetate, triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, tin 2-ethylhexanoate, dibutyltitanium dichloride, tetrabutyltitanate, butoxytitanium trichloride, olein Lead such as lead acid, lead 2-ethylhexanoate,
  • the addition amount of the catalyst for forming the urethane bond is preferably 0.01 to 2 parts by weight, more preferably 100 parts by weight of a mixture containing at least poly (L-lactic acid) and poly (D-lactic acid). 0.01 to 1 part by weight, still more preferably 0.01 to 0.5 part by weight.
  • Tm value is a value obtained by the measurement method described in Examples described later.
  • the polylactic acid resin (I) may contain a stabilizer.
  • the stabilizer is preferably contained in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the polylactic acid resin (I).
  • the amount is more preferably 001 to 2.5 parts by weight, further preferably 0.001 to 1 part by weight, further preferably 0.005 to 1 part by weight, and 0.01 to 3 parts by weight. More preferred is 0.01 to 1 part by weight.
  • the stabilizer is preferably within the above range.
  • Stabilizers include phenolic compounds (hindered phenolic compounds), thioether compounds, vitamin compounds, triazole compounds, polyvalent amine compounds, hydrazine derivative compounds, phosphorus compounds, etc. May be used. Among them, it is preferable to include at least one phosphorus compound, and it is more preferable to use a phosphate compound or a phosphite compound.
  • Preferred examples are “ADEKA STAB” AX-71 (dioctadecyl phosphate), PEP-8 (distearyl pentaerythritol diphosphite), PEP-36 (cyclic neopentatetrayl bis (2,6-t-butyl-) manufactured by ADEKA.
  • the phosphorus-based stabilizer is considered to act as an amidation catalyst deactivator and / or a catalyst deactivator for the preparation of the poly (L-lactic acid) and poly (D-lactic acid) described later.
  • Use of a phosphorus stabilizer is effective as a catalyst removal method in the production of the polylactic acid resin (I) in ⁇ 1 ⁇ .
  • phenolic compounds hindered phenolic compounds
  • phenolic compounds include n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl-3- (3′-methyl-5′-t-butyl-4′-hydroxyphenyl) -propionate, n-tetradecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, 1,6-hexanediol-bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate], 1,4-butanediol-bis- [3- (3,5-di -T-butyl-4-hydroxyphenyl) -propionate], 2,2'-methylenebis- (4-methyl-t-butylphenol), triethylene glycol-bis- [3- (3-
  • triethylene glycol-bis- [3- (3-t-butyl-5-methyl- 4-hydroxyphenyl) -propionate], tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane 1,6-hexanediol-bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate], pentaerythrityl-tetrakis [3- (3,5-di-t-butyl -4-hydroxyphenyl) propionate], N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide).
  • phenolic compounds hindered phenolic compounds
  • ADEKA STAB AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, AO- from ADEKA 80, AO-330, “Irganox” 245, 259, 565, 1010, 1035, 1076, 1098, 1222, 1330, 1425, 1520, 3114, 5057 manufactured by Ciba Specialty Chemicals, “Sumilyzer” BHT-R manufactured by Sumitomo Chemical MDP-S, BBM-S, WX-R, NW, BP-76, BP-101, GA-80, GM, GS, “Sianox” CY-1790 manufactured by Cyanamid, and the like.
  • thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate) Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3- Stearylthiopropionate).
  • thioether compounds include ADEKA "ADK STAB” A0-23, AO-412S, AO-503A, Ciba Specialty Chemicals “Irganox” PS802, Sumitomo Chemical "Sumilyzer” TPL-R, TPM , TPS, TP-D, DSTP manufactured by API Corporation, DLTP, DLTOIB, DMTP, Cylin Kasei “Sinox” 412S, Cyamide “Syanox” 1212, and the like.
  • vitamin compounds include d- ⁇ -tocopherol acetate, d- ⁇ -tocopherol succinate, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- Natural products such as ⁇ -tocotrienol, d- ⁇ -tocofetrienol, d- ⁇ -tocofetrienol, d- ⁇ -tocofetrienol, dl- ⁇ -tocopherol, dl- ⁇ -tocopherol acetate, succinic acid Examples thereof include synthetic products such as dl- ⁇ -tocopherol calcium and dl- ⁇ -tocopherol nicotinate.
  • vitamin compounds include “Tocopherol” manufactured by Eisai and “Irganox” E201 manufactured by Ciba Specialty Chemicals.
  • triazole compounds include benzotriazole, 3- (N-salicyloyl) amino-1,2,4-triazole, and the like.
  • polyvalent amine compounds include 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] -2,4,8,10-tetraoxaspiro.
  • Undecane ethylenediamine-tetraacetic acid, alkali metal salt (Li, Na, K) of ethylenediamine-tetraacetic acid, N, N′-disalicylidene-ethylenediamine, N, N′-disalicylidene-1 , 2-propylenediamine, N, N ′′ -disalicylidene-N′-methyl-dipropylenetriamine, 3-salicyloylamino-1,2,4-triazole and the like.
  • hydrazine derivative compounds include decamethylene dicarboxyl acid-bis (N′-salicyloyl hydrazide), bis (2-phenoxypropionyl hydrazide) isophthalate, N-formyl-N′-salicyloyl hydrazine.
  • Examples of phosphorus compounds include phosphite compounds and phosphate compounds.
  • Specific examples of such phosphite compounds include tetrakis [2-t-butyl-4-thio (2′-methyl-4′-hydroxy-5′-t-butylphenyl) -5-methylphenyl] -1, 6-hexamethylene-bis (N-hydroxyethyl-N-methylsemicarbazide) -diphosphite, tetrakis [2-tert-butyl-4-thio (2′-methyl-4′-hydroxy-5′-tert-butylphenyl) -5-methylphenyl] -1,10-decamethylene-di-carboxylic acid-di-hydroxyethylcarbonylhydrazide-diphosphite, tetrakis [2-tert-butyl-4-thio (2'-methyl-4'-hydroxy-) 5'-tert-butylphenyl) -5-methylphenyl] -1
  • phosphite compounds include ADEKA “ADK STAB” IV C, PEP-4C, PEP-8, PEP-11C, PEP-24G, PEP-36, HP-10, 2112, 260, 522A, 329A, 1178, 1500, C, 135A, 3010, TPP, Ciba Specialty Chemical "Irgafos” 168, Sumitomo Chemical "Smilizer” P-16, Clariant “Sand Stub” PEPQ, GE “Weston” 618, 619G 624 and the like.
  • the phosphate compound examples include monostearyl acid phosphate, distearyl acid phosphate, methyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate, isodecyl acid phosphate, dioctadecyl phosphate, etc. Monostearyl acid phosphate and distearyl acid phosphate are preferred.
  • Specific product names of phosphate compounds include “Irganox” MD1024 from Ciba Specialty Chemicals, “Inhibitor” OABH from Eastman Kodak, “Adekastab” CDA-1, CDA-6, AX-71 from ADEKA, etc. Can be mentioned.
  • the polylactic acid resin (I) is an ordinary additive, for example, a filler (glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber, glass flake, as long as the object of the present invention ⁇ 1 ⁇ is not impaired.
  • the polylactic acid resin (I) can further contain at least one or more of other thermoplastic resins or thermosetting resins as long as the object of the present invention ⁇ 1 ⁇ is not impaired.
  • the thermoplastic resin include polyolefins such as polyethylene and polypropylene, acrylic resins, polyamides, polyphenylene sulfide resins, polyether ether ketone resins, polyesters, polysulfones, polyphenylene oxides, polyacetals, polyimides, polyetherimides, and the present invention ⁇ 1 ⁇
  • soft thermoplastic resin for example, ethylene / glycidyl methacrylate copolymer, polyester elastomer, polyamide elastomer, ethylene / propylene terpolymer, ethylene / butene-1 copolymer
  • thermosetting resins include phenolic resins, melamine resins, polyester resins, silicone resins, and epoxy resin
  • thermoplastic resin or thermosetting resin is not particularly limited as long as it does not impair the purpose of the present invention ⁇ 1 ⁇ , but polylactic acid resin (I) 100 weight
  • the amount is preferably 0 to 50 parts by weight per part.
  • the molding process method of the polylactic acid-based resin (I) is not particularly limited. Specifically, injection molding, extrusion molding, inflation molding, extrusion hollow molding, foam molding, calendar molding, blow molding, balloon molding, vacuum molding, Examples of the forming method include spinning. Among these, injection molding, foam molding, and spinning that make use of the characteristics of the polylactic acid resin (I) are preferably applied.
  • the polylactic acid-based resin (I) can be produced by, for example, a member of a writing instrument such as a ballpoint pen, a mechanical pencil, or a pencil, a member of a stationery, a golf tee, or a ball for fuming golf ball by an appropriate molding method.
  • Containers and trays for goods, trobaco used in the fresh fish market bottles for dairy products such as milk, yogurt and lactic acid bacteria beverages, bottles for soft drinks such as carbonated drinks and soft drinks, and alcoholic beverages such as beer and whiskey Bottles for drinks, bottles with or without pumps for shampoos and liquid soaps, toothpaste tubes, cosmetic containers, detergent containers, bleach containers, cold storage boxes, flower pots, casings for water purifier cartridges, artificial kidneys and artificial Casing for liver, syringe member, cushioning material for transporting home appliances such as TVs and stereos, cushioning material for transporting precision machines such as computers, printers and watches, glass and ceramics It can be used as a cushioning material for transporting ceramic products such as high heat resistance and gas barrier properties.
  • the heat container such as a microwave oven
  • the fiber can be suitably used to applications such as a film.
  • automotive material parts such as front doors and foil caps that require heat resistance and impact resistance
  • automotive interior parts such as car seats for automobiles
  • housing parts for products such as personal computers, headphone stereos, mobile phones, etc.
  • electric home appliance material parts and OA equipment material parts or electric / electronic material parts such as reflective material films / sheets and polarizing films / sheets.
  • At least one polylactic acid resin (A-1) or (A-2) is a lactic acid oligomer (a-1) containing L-lactic acid as a main component or a lactic acid oligomer containing a D-lactic acid as a main component (a- It is a polylactic acid resin (B) having an amide bond obtained by reacting 2) with a polyisocyanate.
  • the polylactic acid resin (A-1) contains L-lactic acid as a main component.
  • “having L-lactic acid as a main component” means that the constituent unit derived from L-lactic acid in the polymer is 60% by weight or more, preferably 80% by weight or more, more preferably 90% by weight. It means to contain more than%.
  • the weight average molecular weight of the polylactic acid resin (A-1) is preferably 50,000 to 1,000,000, and the lower limit is more preferably 70,000 or more, and 80,000 or more. More preferably.
  • the upper limit is more preferably 700,000 or less, still more preferably 500,000 or less, still more preferably 300,000 or less, and particularly preferably 200,000 or less. Specifically, it is preferably 70,000 to 500,000, more preferably 80,000 to 300,000, still more preferably 80,000 to 250,000. It is particularly preferably 80,000 to 200,000 in terms of moldability and mechanical strength.
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the polylactic acid resin (A-1) to be used is a polylactic acid resin having an L-lactic acid unit as a basic component represented by the following formula.
  • the polylactic acid resin (A-1) is a polylactic acid resin composed of 90 to 100 mol% of L-lactic acid units and 0 to 10 mol% of component units other than D-lactic acid units and / or lactic acid. preferable.
  • Component units other than lactic acid include monoalcohols and monoamines, component units derived from dicarboxylic acids having a functional group capable of forming two or more ester bonds, polyhydric alcohols, polyvalent amines, hydroxycarboxylic acids, lactones, and the like.
  • Component units derived from various polyesters, various polyethers, various polyamides, various polycarbonates and the like containing these various component units can be mentioned. Further, it may be a polylactic acid resin (Ba-1) having an amide bond obtained by reacting a lactic acid oligomer (a-1) containing L-lactic acid as a main component described later with a polyisocyanate.
  • Monoalcohol includes butanol, pentanol, lauryl alcohol, benzyl alcohol, phenethyl alcohol, and the like
  • monoamine includes butylamine, amylamine, benzylamine, phenethylamine, and the like.
  • dicarboxylic acid examples include succinic acid, phthalic acid, maleic acid, tetrabromophthalic acid, tetrahydrophthalic acid, and dodecyl succinic acid.
  • Polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, tri Examples include pentaerythritol, sorbitol, poly (vinyl alcohol), poly (hydroxyethyl methacrylate), poly (hydroxypropyl methacrylate), and the like.
  • polyvalent amine examples include ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, hexyleneamine, heptylenediamine, diethylenetriamine, melamine and the like.
  • hydroxycarboxylic acids glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid 2-hydroxycaproic acid, 2-cyclohexyl-2-hydroxyacetic acid, mandelic acid and the like.
  • lactone examples include glycolide, ⁇ -caprolactone glycolide, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ - or ⁇ -butyrolactone, pivalolactone, and ⁇ -valerolactone.
  • the polylactic acid resin (A-1) can be produced by any known polylactic acid resin polymerization method, for example, ring-opening polymerization of lactide, dehydration condensation of lactic acid, and a method combining these with solid phase polymerization. Moreover, it can manufacture with the manufacturing method of the polylactic acid resin (B) mentioned later.
  • a specific example of preparing the polylactic acid resin (A-1) by the direct polycondensation method is as follows.
  • the raw material L-lactic acid is heated in an inert gas atmosphere, the pressure is lowered, and a polycondensation reaction is performed.
  • the polycondensation reaction may be performed in the presence of a catalyst for the purpose of shortening the polycondensation time.
  • the catalyst include metals of Groups 2, 12, 13, 14, or 15 of the periodic table, or oxides or salts thereof.
  • metals such as zinc powder, tin powder, aluminum or magnesium, metal oxides such as antimony oxide, zinc oxide, tin oxide, aluminum oxide, magnesium oxide or titanium oxide, stannous chloride, stannic chloride , Stannous bromide, stannic bromide, antimony fluoride, zinc chloride, magnesium chloride or aluminum chloride, etc., carbonates such as magnesium carbonate or zinc carbonate, tin acetate, tin octoate, tin lactate , Organic carboxylates such as zinc acetate or aluminum acetate, or organic sulfonates such as tin trifluoromethanesulfonate, zinc trifluoromethanesulfonate, magnesium trifluoromethanesulfonate
  • organometallic oxides of the above metals such as dibutyltin oxide, metal alkoxides of the above metals such as titanium isopropoxide, alkyl metals of the above metals such as diethyl zinc, ion exchange resins such as dowex or amberlite, or the like
  • a protonic acid such as sulfuric acid, methanesulfonic acid, or p-toluenesulfonic acid, and a tin or zinc metal or a metal compound thereof, which can obtain a high molecular weight polymer at a high polymerization rate, is preferable.
  • metal tin or tin compounds such as tin oxide and tin chloride are particularly preferred from the viewpoint of hue and catalytic activity.
  • the addition amount of the catalyst is not particularly limited, but is preferably 0.001 to 2 parts by weight, more preferably 0.001 to 1 part by weight based on 100 parts by weight of L-lactic acid to be used.
  • a catalyst is not essential, but if the amount of catalyst is less than 0.001 part by weight, the catalyst effect of shortening the polymerization time may not be sufficiently exhibited.
  • a separate catalyst residue removal step may be required to suppress a decrease in molecular weight or thermal decomposition during polylactic acid resin molding due to the influence of the catalyst residue. .
  • Ring-opening polymerization method Specific examples of preparing the polylactic acid resin (A-1) by a ring-opening polymerization method include a compound containing at least one hydroxyl group or amino group in the molecule of L-lactide which is a lactic acid cyclic dimer, hydroxycarboxylic acid And a method of performing ring-opening polymerization using an initiator such as water.
  • Examples of the compound containing one hydroxyl group or amino group in the molecule include monoalcohols such as butanol, pentanol, lauryl alcohol, benzyl alcohol and phenethyl alcohol, and monoamines such as butylamine, amylamine, benzylamine and phenethylamine. .
  • Examples of the compound containing at least one hydroxyl group or amino group in the molecule include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, and glycerin.
  • Polymethyl alcohols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, poly (vinyl alcohol), poly (hydroxyethyl methacrylate), poly (hydroxypropyl methacrylate), ethylenediamine, propylenediamine, butylenediamine , Pentylenediamine, hexyleneamine, heptylenediamine, diethylenetriamine, Such as polyvalent amine such as Ramin and the like.
  • the amount of the initiator added is not particularly limited, but is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of L-lactide used.
  • the molecular weight can be in a desired range.
  • the ring-opening polymerization may be performed in the presence of a catalyst for the purpose of shortening the polymerization time.
  • the catalyst include metals such as tin, zinc, lead, titanium, bismuth, zirconium, germanium, antimony, and aluminum, and derivatives thereof. Derivatives are preferably metal alkoxides, carboxylates, carbonates, oxides and halides. Specific examples include tin chloride, tin octylate, zinc chloride, zinc acetate, lead oxide, lead carbonate, titanium chloride, alkoxytitanium, germanium oxide, and zirconium oxide. Among these, tin compounds are preferable, and tin 2-ethylhexanoate is more preferable.
  • the amount of the catalyst added is not particularly limited, but is preferably 0.001 to 2 parts by weight, more preferably 0.001 to 1 part by weight, based on 100 parts by weight of L-lactide used.
  • a catalyst is not essential, but if the amount of catalyst is less than 0.001 part by weight, the catalyst effect of shortening the polymerization time may not be sufficiently exhibited.
  • a separate catalyst residue removal step may be required to suppress a decrease in molecular weight or thermal decomposition during polylactic acid resin molding due to the influence of the catalyst residue. .
  • Solid phase polymerization As a method in which the direct polymerization method or the ring-opening polymerization method and the solid phase polymerization method are combined, for example, the methods described in JP-A No. 2000-302852 and JP-A No. 2001-122951 can be used.
  • the “main component” means that 60% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more of the structural unit specified in the polymer is contained.
  • the weight average molecular weight of the polylactic acid resin (A-2) is preferably 50,000 to 1,000,000, and the lower limit is more preferably 70,000 or more, and 80,000 or more. More preferably.
  • the upper limit is more preferably 700,000 or less, still more preferably 500,000 or less, still more preferably 300,000 or less, and particularly preferably 200,000 or less. Specifically, it is preferably 70,000 to 500,000, more preferably 80,000 to 300,000, still more preferably 80,000 to 250,000. It is particularly preferably 80,000 to 200,000 in terms of moldability and mechanical strength.
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the polylactic acid resin (A-2) having D-lactic acid as a main component is a polylactic acid resin having a D-lactic acid unit as a basic component represented by the following formula.
  • the polylactic acid resin (A-2) is a polylactic acid resin composed of 90 to 100 mol% of D-lactic acid units and 0 to 10 mol% of component units other than L-lactic acid units and / or lactic acid. preferable.
  • Examples of the component unit other than lactic acid include the same compounds as those exemplified as the compound for deriving the component unit other than lactic acid that may be contained in the polylactic acid resin (A-1).
  • the polylactic acid resin (A-2) can be produced by any known polylactic acid resin polymerization method. Specifically, the polylactic acid resin (A-2) is the same as that described above except that the raw material is changed from L-lactic acid to D-lactic acid. Examples thereof include the same method as the method for producing the polylactic acid resin (A-1).
  • the polylactic acid resin (B) is a polylactic acid resin having an amide bond obtained by reacting the lactic acid oligomer (a-1) or (a-2) described later with polyisocyanate. Having an amide bond is preferable from the viewpoint of heat resistance and improvement in crystallinity of the stereocomplex.
  • the weight average molecular weight of the polylactic acid resin (B) is preferably 50,000 to 1,000,000, and the lower limit is more preferably 70,000 or more, and further preferably 80,000 or more. .
  • the upper limit is more preferably 700,000 or less, still more preferably 500,000 or less, still more preferably 300,000 or less, and particularly preferably 200,000 or less. Specifically, it is preferably 70,000 to 500,000. More preferably, it is 80,000 to 300,000, still more preferably 80,000 to 250,000. 80,000 to 200,000 is particularly preferable from the viewpoint of handling during production and ability to form a stereo complex.
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the polylactic acid resin (B) preferably has a weight average molecular weight of 3 to 200 times the weight average molecular weight of the lactic acid oligomer (a-1) or (a-2) described later. It is more preferably 100 times or less, and further preferably 5 times or more and 50 times or less.
  • the lactic acid oligomer (a-1) contains L-lactic acid as a main component
  • the lactic acid oligomer (a-2) contains D-lactic acid as a main component.
  • the lactic acid oligomer (a-1) and the lactic acid oligomer (a-2) are preferably the following lactic acid oligomer (b-1) and lactic acid oligomer (b-2), respectively.
  • the lactic acid oligomer (b-1) is composed of 90 to 100 mol% of L-lactic acid units and 0 to 10 mol% of component units other than D-lactic acid units and / or lactic acid.
  • the lactic acid oligomer (b-2) is composed of 90 to 100 mol% of D-lactic acid units and 0 to 10 mol% of component units other than L-lactic acid units and / or lactic acid.
  • Examples of the component unit other than lactic acid include compounds similar to the compounds mentioned as the component unit other than lactic acid that may be contained in the poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ Is mentioned.
  • the weight average molecular weights of the lactic acid oligomers (a-1) and (a-2) are preferably 5,000 to 100,000, respectively. More preferably, it is 10,000 to 80,000, still more preferably 10,000 to 70,000, and 10,000 to 50,000.
  • the weight average molecular weight is a weight average molecular weight value in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the ratio of the terminal functional group being a carboxyl group is preferably more than 50%. More preferably, the ratio that the terminal functional group is a carboxyl group is 85% or more, more preferably the ratio that the terminal functional group is a carboxyl group is 90% or more, and the ratio that the terminal functional group is a carboxyl group is 95%. % Or more is particularly preferable.
  • the lactic acid oligomers (a-1) and (a-2) are also preferably poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ , respectively.
  • the resulting polylactic acid resin (B) Since the ratio of the carboxyl group in the terminal functional group is increased, the resulting polylactic acid resin (B) has more amide bonds, which is preferable in terms of heat resistance and crystallinity.
  • the polylactic acid resin (B) may contain a copolymer component other than the lactic acid oligomers (a-1) and (a-2) as long as the object of the present invention ⁇ 2 ⁇ is not impaired.
  • examples thereof include the same components as the copolymerization component that may be contained in the mixture containing at least D-lactic acid.
  • Lactic acid oligomers (a-1) and (a-2) can be produced by any known polylactic acid resin polymerization method, such as ring-opening polymerization of lactide, dehydration condensation of lactic acid, and solid phase polymerization with these. It can be manufactured by a method combining these. Specifically, lactic acid oligomers (a-1) and (a-2) are produced by the same production method as the production method of poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ . be able to.
  • ⁇ Method for producing polylactic acid resin (B)> The method for producing a polylactic acid resin (B) having an amide bond obtained by reacting the lactic acid oligomer (a-1) or (a-2) with a polyisocyanate is at least a lactic acid oligomer (a-1) or (a -2) and a polyisocyanate compound are reacted. In this reaction, an amide bond is formed by a carboxyl group as a terminal functional group reacting with polyisocyanate. In this reaction, it is preferable to carry out the reaction using an amidation catalyst. Although the following method is mentioned as a specific example of this process, As long as the objective of this invention ⁇ 2 ⁇ is not impaired, it is not limited to this at all.
  • polylactic acid resin (B) can be obtained by decarboxylating the obtained reaction product.
  • the polyisocyanate compound is preferably a diisocyanate compound.
  • the viscosity of the reactant rapidly increases as the molecular weight of the reactant increases. Therefore, in addition to the method of reacting while stirring with a solution as described above, the method of extruding the product by kneading and reacting without a solvent using an extruder, particularly a twin-screw kneading extruder, is produced without using a solvent. Post-treatment of the product is simple and effective.
  • polyisocyanate compound used in the step examples include the same compounds as those exemplified in the specific examples of the polyisocyanate compound used in the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ .
  • the polyisocyanate compound is preferably an aliphatic diisocyanate compound, and among these, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, More preferably, it is one compound selected from the group consisting of bis (isocyanatomethyl) bicyclo- [2,2,1] -heptane and bis (4-isocyanatocyclohexyl) methane, and is hexamethylene diisocyanate. Is more preferable. It is preferable that the polyisocyanate compound is an aliphatic diisocyanate in terms of the color tone of the resulting composition (C).
  • the amount of the polyisocyanate compound added is determined based on the number of moles of the terminal functional group of the lactic acid oligomer (a-1) or (a-2).
  • the number of moles of the terminal functional group of the lactic acid oligomer (a-1) or (a-2) is calculated by the method described in Examples described later based on the NMR data and the carboxylic acid value.
  • the amount of the polyisocyanate compound added is preferably 0.8 to 2.0 times the mole of the terminal functional group of the lactic acid oligomer (a-1) or (a-2). It is more preferably 8 to 1.5 times mol, and still more preferably 0.8 to 1.3 times mol.
  • “fold mole” is a unit of a value calculated by “isocyanate group (mol) / number of terminal functional groups (mol)”.
  • the addition amount of the polyisocyanate compound is less than the lower limit, the addition effect of the polyisocyanate compound is small, and it may be difficult to obtain a high molecular weight polylactic acid resin (B).
  • the isocyanate may cause a side reaction such as a crosslinking reaction, and a gel-like polylactic acid resin (B) may be generated.
  • the amidation catalyst that can be used in the step refers to a catalyst that forms an amide bond by reacting a terminal carboxyl group portion such as the lactic acid oligomer (a-1) or (a-2) with the polyisocyanate compound. .
  • the amidation catalyst preferably contains at least one metal selected from the group consisting of metals in Groups 1, 2 and 3 of the Periodic Table, and at least selected from the group of potassium, magnesium, calcium and ytterbium. More preferably, it contains one metal, and particularly preferably contains magnesium or calcium. When such a metal is contained, a catalyst having excellent reactivity can be obtained, and a composition (C) having a good color tone can be obtained, which is preferable.
  • the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇
  • the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇
  • examples thereof include the same catalysts as the amidation catalyst used in the above. These may be used alone or in combination of two or more. Among these, bis (acetylacetonato) magnesium, magnesium stearate, calcium stearate, magnesium chloride, ytterbium triflate, and the like are preferable, and magnesium compounds, particularly bis (acetylacetonato) magnesium and magnesium stearate are preferable. Two or more of these catalysts can be used in combination.
  • the amount of the amidation catalyst added is 0.01 to 2 parts by weight, preferably 0.01 to 1 part by weight, more preferably 0.1 parts by weight per 100 parts by weight of the lactic acid oligomer (a-1) or (a-2). 01 to 0.5 parts by weight.
  • the lactic acid oligomer (a-1) or (a-2) of the present invention ⁇ 2 ⁇ may contain a hydroxyl group. In that case, the hydroxy moiety reacts with the polyisocyanate compound to form a urethane bond.
  • Examples of the catalyst for forming such a urethane bond include the same catalysts as those that can be used in the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ .
  • the addition amount of the catalyst for forming the urethane bond is 0.01 to 2 parts by weight, preferably 0.01 to 1 part by weight per 100 parts by weight of the lactic acid oligomers (a-1) and (a-2).
  • the amount is preferably 0.01 to 0.5 parts by weight.
  • the mixing weight ratio of the polylactic acid resin (A-1) mainly composed of L-lactic acid and the polylactic acid resin (A-2) mainly composed of D-lactic acid is 90:10 to 10:90. It is preferably 70:30 to 30:70, more preferably 75:25 to 25:75, and particularly preferably 60:40 to 40:60.
  • the stereocomplex polylactic acid can be formed by melting the composition above its melting point and then cooling.
  • the polylactic acid resin composition (C) contains a polylactic acid resin (A-1) that is not a polylactic acid resin (B) and a polylactic acid resin (Ba-2). This is preferable from the viewpoint of cost.
  • the production method of the polylactic acid resin composition (C) is not particularly limited.
  • the polylactic acid resin (A-1) and the polylactic acid resin (A-2) are melt-kneaded using a mixing device. The method of doing is mentioned.
  • the order of charging each compound into the mixing apparatus is not limited. Accordingly, the two components may be charged simultaneously into the mixing apparatus, and the polylactic acid resin (A-1) and the polylactic acid resin (A-2) may be charged and mixed after premixing.
  • Each component may have any shape such as powder, granule, or pellet.
  • the mixing apparatus include a mill roll, a mixer, a single screw and a twin screw extruder, and the like.
  • the kneading temperature is preferably 160 ° C. or higher and 250 ° C. or lower, and more preferably 170 ° C. or higher and 230 ° C. or lower.
  • the polylactic acid resin composition (C) by mixing the polylactic acid resin (A-1) and the polylactic acid resin (A-2) in a solvent and then removing the solvent.
  • the solvent for example, a solvent in which all polymers such as chloroform are dissolved is used.
  • the temperature at the time of mixing is not particularly limited as long as all polymers are dissolved and the solvent does not volatilize.
  • the method for removing the solvent is not particularly limited, and for example, a method of volatilizing the solvent at room temperature, a method of volatilizing the solvent at a temperature equal to or higher than the boiling point of the solvent under reduced pressure, and the like can be used.
  • the ratio of the melting peak at 195 ° C. or higher is preferably 70% or higher. More preferably, it is 80% or more, further preferably 90% or more, and particularly preferably 95% or more. The greater the melting peak ratio at 195 ° C. or higher, the higher the hydrolysis resistance of the molded product.
  • the melting point of the polylactic acid resin composition (C) is preferably in the range of 190 to 250 ° C, more preferably in the range of 195 to 220 ° C.
  • the melting enthalpy is preferably 20 J / g or more, more preferably 30 J / g or more.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight value measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ may further contain a stabilizer, and the blending amount thereof is 0.001 to 5 weights per 100 parts by weight of the polylactic acid resin composition (C). Part, preferably 0.001 to 2.5 parts by weight, preferably 0.001 to 1 part by weight, more preferably 0.005 to 1 part by weight, The amount is more preferably 0.01 to 3 parts by weight, and particularly preferably 0.01 to 1 part by weight.
  • stabilizer examples include phosphorus stabilizers, phenol stabilizers, and other stabilizers.
  • the phosphorus stabilizer is a deactivator for the amidation catalyst in the production of the polylactic acid resin (B) and / or the polylactic acid resin (A-1), the polylactic acid resin (A-2), and a lactic acid oligomer ( It acts as a deactivator for the catalyst used in the preparation of a-1 and a-2) and is effective in improving the viscosity of the composition (C) in good hue and high temperature.
  • Examples of the phosphorus stabilizer include phosphite compounds and phosphate compounds, and the same compounds as the phosphorus compounds that the polylactic acid resin (I) in the present invention ⁇ 1 ⁇ may contain. Can be mentioned.
  • the phenolic stabilizer that can be used in the present invention ⁇ 2 ⁇ serves to prevent the molecular chain from being broken at high temperatures, and is effective in improving the hue of the composition (C) and the viscosity stability at high temperatures. is there.
  • phenol stabilizer examples include the same compounds as the phenol compound that may be contained in the polylactic acid resin (I) in the present invention ⁇ 1 ⁇ .
  • “Irganox” 245 triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) -propionate]
  • 1010 tetrakis [ Methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane.
  • the polylactic acid resin composition (C) preferably contains other stabilizers in addition to the above-mentioned phosphorus-based stabilizer and phenol-type stabilizer in order to obtain a better hue and stable fluidity.
  • other stabilizers include thioether compounds, vitamin compounds, triazole compounds, polyvalent amine compounds, hydrazine derivative compounds, and the like, and these may be used in combination.
  • thioether compounds examples include thioether compounds, vitamin compounds, triazole compounds, polyamine compounds, and hydrazine derivative compounds include thioether compounds, vitamin compounds, and triazole compounds that can be used in the present invention ⁇ 1 ⁇ . And compounds similar to the polyvalent amine compounds and hydrazine derivative compounds.
  • the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ includes crystal nucleating agent, inorganic filler, flame retardant, stabilizer (other than phosphorus stabilizer and phenol type stabilizer), elastic polymer, end-capping. Agents and other additives may be blended.
  • Crystal nucleating agent As the crystal nucleating agent, known compounds that are generally used as crystal nucleating agents for crystalline resins such as polylactic acid resins and aromatic polyesters can be used.
  • inorganic fine particles such as talc, silica, graphite, carbon powder, pyroferrite, gypsum, neutral clay, metal oxides such as magnesium oxide, aluminum oxide, titanium dioxide, sulfate, phosphate, phosphonate, Examples thereof include oxalate, oxalate, stearate, benzoate, salicylate, tartrate, sulfonate, montan wax salt, montan wax ester salt, terephthalate, benzoate, carboxylate and the like.
  • talc is particularly effective, and talc having an average particle size of 20 ⁇ m or less is preferably used, but it is more preferable to use one having an average particle size of 5 ⁇ m or less. .
  • the blending amount of these crystal nucleating agents cannot be defined uniformly because the amount of the crystal nucleating agent to express its effect varies depending on the type and shape of the crystal nucleating agent.
  • the amount is from 01 to 5 parts by weight, preferably from 0.05 to 3 parts by weight, more preferably from 0.1 to 2 parts by weight.
  • the amount of the crystal nucleating agent is too small, the effect as a crystal nucleating agent is not exhibited.
  • the amount is too large, the effect as a crystal nucleating agent is not increased, but rather the composition (C ) May give bad results in other mechanical properties.
  • inorganic fillers various inorganic fillers generally known such as glass fiber, carbon fiber, glass flake, wollastonite, kaolin clay, mica, talc and various whiskers (potassium titanate whisker, aluminum borate whisker, etc.) Materials can be mentioned.
  • the shape of the inorganic filler can be freely selected from fibrous, flaky, spherical and hollow shapes, and fibrous and flaky materials are suitable for improving the strength and impact resistance of the resin composition.
  • the inorganic filler is preferably an inorganic filler composed of a pulverized natural mineral, more preferably an inorganic filler composed of a pulverized silicate natural mineral. , Talc, and wollastonite are preferred.
  • these inorganic fillers are non-petroleum resource materials compared to petroleum resource materials such as carbon fiber, raw materials with a lower environmental load are used, and as a result, crystal nucleating agents and inorganic materials with a lower environmental load are used. There is an effect that the significance of using the filler is further enhanced. Further, the more preferable inorganic filler has an advantageous effect that the flame retardancy of the composition (C) is improved as compared with the case of using carbon fibers.
  • the average particle diameter of mica that can be used in the present invention ⁇ 2 ⁇ is a number average particle diameter that is calculated by a number average of a total of 1000 particles observed with a scanning electron microscope and extracted 1 ⁇ m or more.
  • the number average particle diameter is preferably 10 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, still more preferably 30 to 200 ⁇ m, and particularly preferably 35 to 80 ⁇ m.
  • the number average particle diameter is less than 10 ⁇ m, the impact strength of the molded product may be lowered. On the other hand, if it exceeds 500 ⁇ m, the impact strength of the molded product is improved, but the appearance tends to deteriorate.
  • the thickness of mica a thickness measured by electron microscope observation of 0.01 to 10 ⁇ m can be used, and preferably 0.1 to 5 ⁇ m. An aspect ratio of 5 to 200, preferably 10 to 100 can be used.
  • the mica is preferably mascobite mica, and its Mohs hardness is about 3. Muscovite mica can achieve higher rigidity and strength than other mica such as phlogopite, and more suitable electronic equipment exterior parts are provided.
  • mica having such an average particle diameter, thickness and aspect ratio
  • commercially available mica may be pulverized using the following pulverization method.
  • the mica pulverization method includes a dry pulverization method of pulverizing raw mica ore with a dry pulverizer, and coarsely pulverizing mica ore with a dry pulverizer, followed by wet pulverization in a slurry state by adding a grinding aid such as water.
  • a wet pulverization method in which main pulverization is performed by a machine, followed by dehydration and drying.
  • the mica of the present invention can be produced by any pulverization method, but the dry pulverization method is generally lower in cost.
  • the wet pulverization method is effective for pulverizing mica more thinly and finely, but is expensive.
  • the mica may be surface-treated with various surface treatment agents such as silane coupling agents, higher fatty acid esters, and waxes, and further granulated with sizing agents such as various resins, higher fatty acid esters, and waxes to form granules. It may be said.
  • various surface treatment agents such as silane coupling agents, higher fatty acid esters, and waxes
  • sizing agents such as various resins, higher fatty acid esters, and waxes to form granules. It may be said.
  • the talc that can be used is scaly particles having a layered structure, which is hydrous magnesium silicate in terms of chemical composition, and is generally represented by the chemical formula 4SiO 2 .3MgO.2H 2 O. 2 to 56 to 65% by weight, MgO to 28 to 35% by weight, and H 2 O to about 5% by weight.
  • Other minor components include Fe 2 O 3 (0.03 to 1.2% by weight), Al 2 O 3 (0.05 to 1.5% by weight), CaO (0.05 to 1.2% by weight), K 2 O (0.2 wt% or less), Na 2 O (0.2 wt% or less) and the like are included, the specific gravity is about 2.7, and the Mohs hardness is 1.
  • the average particle diameter of talc is preferably 0.5 to 30 ⁇ m.
  • the average particle size is the particle size at a 50% stacking rate determined from the particle size distribution measured by the Andreazen pipette method measured according to JIS M8016.
  • the particle diameter of talc is more preferably 2 to 30 ⁇ m, further preferably 5 to 20 ⁇ m, and particularly preferably 10 to 20 ⁇ m.
  • the average particle diameter of talc is in the above range, in addition to rigidity and low anisotropy, a good surface appearance and flame retardancy are imparted to the molded product.
  • talc having such an average particle diameter
  • commercially available talc may be pulverized as follows.
  • the manufacturing method when talc is crushed from raw stone there is no particular restriction on the manufacturing method when talc is crushed from raw stone, and the axial flow mill method, the annular mill method, the roll mill method, the ball mill method, the jet mill method, the container rotary compression shearing mill method, etc. are used. can do. Further, the talc after pulverization is preferably classified by various classifiers and having a uniform particle size distribution.
  • classifier impactor type inertial force classifier (variable impactor, etc.), Coanda effect type inertial force classifier (elbow jet, etc.), centrifugal field classifier (multistage cyclone, microplex, dispersion separator) , Accucut, Turbo Classifier, Turboplex, Micron Separator, and Super Separator).
  • talc is preferably in an aggregated state in view of its handleability and the like, and as such a production method, there are a method by deaeration compression, a method using a sizing agent, and a method of compression.
  • the degassing compression method is preferred because it is simple and unnecessary so that the sizing agent resin component is not mixed into the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ .
  • the wollastonite that can be used in the present invention ⁇ 2 ⁇ is substantially represented by the chemical formula CaSiO 3 , and usually SiO 2 is about 50 wt% or more, CaO is about 47 wt% or more, and other Fe 2 O 3 , Al 2 O 3 etc. are included.
  • Wollastonite is a white acicular powder obtained by crushing and classifying raw wollastonite, and has a Mohs hardness of about 4.5.
  • the average fiber diameter of wollastonite to be used is preferably 0.5 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m, still more preferably 1 to 5 ⁇ m. The average fiber diameter is observed by a scanning electron microscope, and is calculated by a number average of a total of 1000 samples having a diameter of 0.1 ⁇ m or more extracted.
  • the blending amount is preferably 0.3 to 200 parts by weight, preferably 1.0 to 200 parts by weight per 100 parts by weight of the polylactic acid resin composition (C). 100 parts by weight is more preferable, and 3 to 50 parts by weight is still more preferable.
  • the blending amount is smaller than 0.3 parts by weight, the reinforcing effect on the mechanical properties of the molded product of the present invention ⁇ 2 ⁇ is not sufficient, and when it exceeds 200 parts by weight, the molding process of the composition (C) is performed. Properties and hue of molded products may deteriorate.
  • a fold inhibitor for suppressing such folds can be included in the polylactic acid resin composition (C).
  • the folding inhibitor inhibits adhesion between the matrix resin and the inorganic filler, reduces stress acting on the inorganic filler during melt kneading, and suppresses the folding of the inorganic filler.
  • Examples of the effect of the folding inhibitor include (1) improvement of rigidity (increase in aspect ratio of inorganic filler), (2) improvement of toughness, and (3) improvement of conductivity (in the case of conductive inorganic filler). Can do.
  • the folding inhibitor is a compound having a structure having a low affinity with the resin and having a functional group capable of reacting with the surface of the inorganic filler. In this way, a compound in which the surface of the inorganic filler is directly coated with a compound having a low affinity with the resin can be obtained.
  • various lubricants can be representatively exemplified.
  • the lubricant include mineral oil, synthetic oil, higher fatty acid ester, higher fatty acid amide, polyorganosiloxane (silicone oil, silicone rubber, etc.), olefinic wax (paraffin wax, polyolefin wax, etc.), polyalkylene glycol, fluorinated fatty acid.
  • Fluorine oils such as esters, trifluorochloroethylene, and polyhexafluoropropylene glycol are listed.
  • a method of directly coating the surface of the inorganic filler with a compound having a low affinity with the resin (1) a method of immersing the inorganic filler directly in the compound or in a solution or emulsion of the compound, (2) A method of passing an inorganic filler in the vapor or powder of the compound, (3) a method of irradiating the inorganic powder with the powder of the compound at high speed, and (4) a mechano for rubbing the inorganic filler and the compound. Examples include chemical methods.
  • Examples of the compound having a structure having low affinity with the resin and having a functional group capable of reacting with the surface of the inorganic filler include the above-described lubricants modified with various functional groups.
  • Examples of such functional groups include a carboxyl group, a carboxylic acid anhydride group, an epoxy group, an oxazoline group, an isocyanate group, an ester group, an amino group, and an alkoxysilyl group.
  • One of the preferred folding inhibitors is an alkoxysilane compound in which an alkyl group having 5 or more carbon atoms is bonded to a silicon atom.
  • the number of carbon atoms of the alkyl group bonded to the silicon atom is preferably 5 to 60, more preferably 5 to 20, still more preferably 6 to 18, and particularly preferably 8 to 16.
  • the number of alkyl groups bonded to the silicon atom is preferably 1 or 2, and more preferably 1.
  • preferred examples of the alkoxy group include a methoxy group and an ethoxy group.
  • Such alkoxysilane compounds are preferred in that they have high reactivity with the inorganic filler surface and excellent coating efficiency. Therefore, it is suitable for a finer inorganic filler.
  • One suitable folding inhibitor is a polyolefin wax having at least one functional group selected from the group consisting of a carboxyl group and a carboxylic anhydride group.
  • the molecular weight is preferably 500 to 20,000, more preferably 1,000 to 15,000 in terms of weight average molecular weight.
  • the amount of carboxyl group and carboxylic anhydride group is 0.05 to 10 meq / g per gram of lubricant having at least one functional group selected from the group consisting of carboxyl group and carboxylic anhydride group.
  • the range is preferably 0.1 to 6 meq / g, and more preferably 0.5 to 4 meq / g. It is preferable that the ratio of the functional group other than the carboxyl group and the carboxylic acid anhydride group in the folding inhibitor is approximately the same as the ratio of the carboxyl group and the carboxylic acid anhydride group.
  • the folding inhibitor include a copolymer of an ⁇ -olefin and maleic anhydride. Such a copolymer can be produced by melt polymerization or bulk polymerization in the presence of a radical catalyst according to a conventional method.
  • Preferred examples of the ⁇ -olefin include those having an average carbon number of 10 to 60. More preferred examples of the ⁇ -olefin include those having an average carbon number of 16 to 60, and more preferably 25 to 55.
  • the blending amount of the folding inhibitor is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, and more preferably 0.1 to 0.8 parts by weight per 100 parts by weight of the polylactic acid resin composition (C). Part by weight is more preferred.
  • a flame retardant can also be mix
  • Flame retardants include brominated epoxy resins, brominated polystyrenes, brominated polycarbonates, brominated polyacrylates, halogenated flame retardants such as chlorinated polyethylene, phosphate ester flame retardants such as monophosphate compounds and phosphate oligomer compounds, Organophosphorous flame retardants other than phosphate ester flame retardants such as phosphonate oligomer compounds, phosphonitrile oligomer compounds, phosphonic acid amide compounds, organic sulfonate alkali (earth) metal salts, borate metal salt flame retardants, and tin Examples include organic metal salt flame retardants such as acid metal salt flame retardants, and silicone flame retardants.
  • a flame retardant aid for example, sodium antimonate, antimony trioxide, etc.
  • an anti-drip agent polytetrafluoroethylene having fibril-forming ability, etc.
  • flame retardants mentioned above compounds that do not contain chlorine and bromine atoms reduce the generation of halides during incineration and thermal recycling. It is more suitable as a flame retardant in the molded product of the invention ⁇ 2 ⁇ .
  • a phosphate ester flame retardant is particularly preferable because a good hue of a molded product can be obtained and the molding processability of the composition (C) can be improved.
  • Specific examples of the phosphate ester flame retardant include one or more phosphate ester compounds represented by the following general formula.
  • X is hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) group derived are mentioned from sulfide, m is 0 to an integer of 5, or in the case of a mixture of m number of different phosphate esters is the average value of 0 to 5, R 11 , R 12 , R 13 and R 14 are each independently a group derived from phenol, cresol, xylenol, isopropylphenol, butylphenol or p-cumylphenol substituted or unsubstituted with one or more halogen atoms.
  • More preferable examples include groups in which X in the above formula is derived from hydroquinone, resorcinol, bisphenol A, and dihydroxydiphenyl, and m is an integer of 1 to 3, or a different number of phosphate esters.
  • R 11 , R 12 , R 13 , and R 14 each independently of one or more halogen atoms substituted or more preferably substituted phenol, cresol, A group derived from xylenol.
  • resorcinol bis (dixylyl phosphate) and bisphenol A bis (diphenyl phosphate) can be preferably used as triphenyl phosphate and phosphate oligomers because they are excellent in hydrolysis resistance of molded products. . More preferred are resorcinol bis (dixylyl phosphate) and bisphenol A bis (diphenyl phosphate) from the viewpoint of heat resistance and the like. This is because they have good heat resistance and are free from adverse effects such as thermal deterioration and volatilization.
  • a range of 0.05 to 50 parts by weight per 100 parts by weight of the polylactic acid resin composition (C) is preferable. If it is less than 0.05 part by weight, sufficient flame retardancy of the molded product will not be exhibited, and if it exceeds 50 parts by weight, the strength and heat resistance of the molded product may be impaired.
  • an elastic polymer can be used as an impact modifier.
  • the elastic polymer include a rubber component having a glass transition temperature of 10 ° C or lower, an aromatic And a graft copolymer obtained by copolymerizing one or more monomers selected from the group consisting of vinyl, vinyl cyanide, acrylic acid ester, methacrylic acid ester, and vinyl compounds copolymerizable therewith.
  • a more preferable elastic polymer is a core-shell type graft copolymer in which one or two or more shells of the above monomer are graft-copolymerized on the core of the rubber component.
  • block copolymers of such rubber components and the above monomers include thermoplastic elastomers such as styrene / ethylenepropylene / styrene elastomers (hydrogenated styrene / isoprene / styrene elastomers) and hydrogenated styrene / butadiene / styrene elastomers.
  • thermoplastic elastomers such as styrene / ethylenepropylene / styrene elastomers (hydrogenated styrene / isoprene / styrene elastomers) and hydrogenated styrene / butadiene / styrene elastomers.
  • various elastic polymers known as other thermoplastic elastomers such as polyurethane elastomers, polyester elastomers, polyether amide elastomers and the like
  • a core-shell type graft copolymer is more suitable as an impact modifier.
  • the core particle size is preferably 0.05 to 0.8 ⁇ m, more preferably 0.1 to 0.6 ⁇ m, and more preferably 0.1 to 0.5 ⁇ m in terms of weight average particle size. Is more preferable. If it is in the range of 0.05 to 0.8 ⁇ m, better impact resistance is achieved.
  • the elastic polymer preferably contains 40% or more of a rubber component, and more preferably contains 60% or more.
  • Rubber components include butadiene rubber, butadiene-acrylic composite rubber, acrylic rubber, acrylic-silicone composite rubber, isobutylene-silicone composite rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, nitrile rubber, ethylene- Acrylic rubber, silicone rubber, epichlorohydrin rubber, fluororubber, and those in which hydrogen is added to the unsaturated bond portion can be mentioned.
  • a rubber component containing no atoms is preferable in terms of environmental load.
  • the glass transition temperature of the rubber component is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 30 ° C. or lower, and the rubber component is particularly preferably butadiene rubber, butadiene-acrylic composite rubber, acrylic rubber, or acrylic-silicone composite rubber.
  • the composite rubber is a rubber obtained by copolymerizing two kinds of rubber components or a rubber polymerized so as to have an IPN structure entangled with each other so as not to be separated.
  • Examples of the aromatic vinyl in the vinyl compound copolymerized with the rubber component include styrene, ⁇ -methylstyrene, p-methylstyrene, alkoxystyrene, halogenated styrene and the like, and styrene is particularly preferable.
  • Examples of the acrylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, and the like.
  • Examples of the methacrylate ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate.
  • Cyclohexyl methacrylate, octyl methacrylate and the like, and methyl methacrylate is particularly preferable.
  • the elastic polymer containing a rubber component having a glass transition temperature of 10 ° C. or less may be produced by any polymerization method including bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. It can be a single-stage graft or a multi-stage graft. Moreover, the mixture with the copolymer of only the graft component byproduced in the case of manufacture may be sufficient. Furthermore, examples of the polymerization method include a general emulsion polymerization method, a soap-free polymerization method using an initiator such as potassium persulfate, a seed polymerization method, and a two-stage swelling polymerization method.
  • the aqueous phase and the monomer phase are individually maintained, both are accurately supplied to the continuous disperser, and the particle diameter is controlled by the rotation speed of the disperser, and the continuous production is performed.
  • a method may be used in which the monomer phase is supplied by passing it through a fine orifice having a diameter of several to several tens of ⁇ m or a porous filter in an aqueous liquid having dispersibility to control the particle size.
  • the reaction may be one stage or multistage for both the core and the shell.
  • rubber components mainly composed of butadiene rubber, acrylic rubber, or butadiene-acrylic composite rubber include Kane Ace B series (for example, B-56) of Kaneka Chemical Industry Co., Ltd. and Metabrene of Mitsubishi Rayon Co., Ltd. C series (for example, C-223A), W series (for example, W-450A), Kureha Chemical Industry's paraloid EXL series (for example, EXL-2602), HIA series (for example, HIA-15), BTA series (E.g. BTA-III), KCA series, Rohm and Haas Paraloid EXL series, KM series (e.g.
  • UCL modifier resin series UCL modifier resin series (UMG) ⁇ ABS's MG AXS resin series) and the like, acrylic as a rubber component - as consisting mainly of silicone composite rubber and the like Metablen S-2001 and SRK-200 of Mitsubishi Rayon.
  • the composition ratio of the impact modifier is preferably 0.2 to 50 parts by weight, more preferably 1 to 30 parts by weight, and still more preferably 1.5 to 20 parts by weight per 100 parts by weight of the polylactic acid resin composition (C).
  • Such a composition range can provide good impact resistance while suppressing a decrease in the rigidity of the molded product.
  • the end-capping agent reacts with part or all of the carboxyl group ends of the polylactic acid resin (A-1) and / or (A-2) in the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ .
  • condensation reaction type compounds such as aliphatic alcohols and amide compounds
  • addition reaction type compounds such as carbodiimide compounds, epoxy compounds, oxazoline compounds, oxazine compounds, and aziridine compounds. It is done.
  • Examples of the monocarbodiimide compound contained in the carbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, and di- ⁇ -naphthylcarbodiimide.
  • dicyclohexylcarbodiimide or diisopropylcarbodiimide is preferred from the viewpoint of easy industrial availability.
  • polycarbodiimide compound contained in the carbodiimide compound those produced by various methods can be used. Basically, conventional polycarbodiimide production methods (US Pat. No. 2,941,956, No. 47-33279, J.0rg.Chem.28, 2069-2075 (1963), Chemical Review 981, Vol.81 No.4, p619-621) can be used.
  • organic diisocyanate that is a synthetic raw material in the production of the polycarbodiimide compound
  • organic diisocyanate examples include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5-naphthalene diisocyanate.
  • the polycarbodiimide compound can also be controlled to an appropriate degree of polymerization using a compound that reacts with the terminal isocyanate of the polycarbodiimide compound, such as monoisocyanate.
  • Examples of the monoisocyanate for sealing the end of such a polycarbodiimide compound and controlling the degree of polymerization thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like. be able to.
  • epoxy compound examples include, for example, N-glycidylphthalimide, N-glycidyl-4-methylphthalimide, N-glycidyl-4,5-dimethylphthalimide, N-glycidyl-3-methylphthalimide, N-glycidyl-3,6 -Dimethylphthalimide, N-glycidyl-4-ethoxyphthalimide, N-glycidyl-4-chlorophthalimide, N-glycidyl-4,5-dichlorophthalimide, N-glycidyl-3,4,5,6-tetrabromophthalimide, N-glycidyl-4-n-butyl-5-bromophthalimide, N-glycidyl succinimide, N-glycidyl hexahydrophthalimide, N-glycidyl-1,2,3,6-tetrahydrophthalimide, N-glycidyl maleimide, N -Glycidyl- ⁇ ,
  • One or more compounds selected from these epoxy compounds may be arbitrarily selected to block the carboxyl terminal of the polylactic acid resin (A-1) and / or (A-2).
  • A-1 polylactic acid resin
  • A-2 polylactic acid resin
  • ethylene oxide, propylene oxide, phenyl glycidyl ether, orthophenyl phenyl glycidyl ether, pt-butylphenyl glycidyl ether, N-glycidyl phthalimide, hydroquinone diglycidyl ether, resorcin diglycidyl ether, 1,6-hexanediol diglycidyl Ether, hydrogenated bisphenol A-diglycidyl ether and the like are preferable.
  • oxazoline compounds include, for example, 2-methoxy-2-oxazoline, 2-ethoxy-2-oxazoline, 2-propoxy-2-oxazoline, 2-butoxy-2-oxazoline, 2-pentyloxy-2-oxazoline, 2-hexyloxy-2-oxazoline, 2-heptyloxy-2-oxazoline, 2-octyloxy-2-oxazoline, 2-nonyloxy-2-oxazoline, 2-decyloxy-2-oxazoline, 2-cyclopentyloxy-2- Oxazoline, 2-cyclohexyloxy-2-oxazoline, 2-allyloxy-2-oxazoline, 2-methallyloxy-2-oxazoline, 2-crotyloxy-2-oxazoline, 2-phenoxy-2-oxazoline, 2-cresyl-2 -Oxazoline, 2 o-ethylphenoxy-2-oxazoline, 2-o-propylphenoxy-2-oxazoline, 2-
  • a polyoxazoline compound containing the above-mentioned compound as a monomer unit such as a styrene-2-isopropenyl-2-oxazoline copolymer, and the like can be given.
  • One or two or more compounds may be arbitrarily selected from these oxazoline compounds to block the carboxyl terminal of the polylactic acid resin (A-1) and / or (A-2).
  • oxazine compounds include, for example, 2-methoxy-5,6-dihydro-4H-1,3-oxazine, 2-ethoxy-5,6-dihydro-4H-1,3-oxazine, 2-propoxy-5 , 6-dihydro-4H-1,3-oxazine, 2-butoxy-5,6-dihydro-4H-1,3-oxazine, 2-pentyloxy-5,6-dihydro-4H-1,3-oxazine, 2-hexyloxy-5,6-dihydro-4H-1,3-oxazine, 2-heptyloxy-5,6-dihydro-4H-1,3-oxazine, 2-octyloxy-5,6-dihydro-4H -1,3-oxazine, 2-nonyloxy-5,6-dihydro-4H-1,3-oxazine, 2-decyloxy-5,6-dihydro-4H
  • polyoxazine compound etc. which contain an above-described compound as a monomer unit are mentioned.
  • One or more compounds may be arbitrarily selected from these oxazine compounds to block the carboxyl terminal of the polylactic acid resin (A-1) and / or (A-2).
  • one or more compounds selected from the oxazoline compounds exemplified above and the above-mentioned oxazine compounds are arbitrarily selected and used in combination to produce polylactic acid resins (A-1) and / or (A-2).
  • the carboxyl terminal may be blocked, but 2,2'-m-phenylenebis (2-oxazoline) and 2,2'-p are preferred in terms of heat resistance and reactivity of the compound and affinity with aliphatic polyester.
  • -Phenylenebis (2-oxazoline) is preferred.
  • aziridine compound among the end-capping agents that can be used in the present invention ⁇ 2 ⁇ include, for example, an addition reaction product of a mono, bis or polyisocyanate compound and ethyleneimine.
  • terminal blocking agent that can be used in the present invention ⁇ 2 ⁇
  • two or more compounds among the above-mentioned compounds such as carbodiimide compounds, epoxy compounds, oxazoline compounds, oxazine compounds, aziridine compounds may be used in combination as a terminal blocking agent. You can also.
  • the method of blocking the carboxyl group terminal of the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ may be carried out by reacting a terminal blocker such as a condensation reaction type or an addition reaction type, and the polymerization system is put into the polymerization system at the time of polymer polymerization.
  • the end of the carboxyl group can be blocked by adding a suitable amount of a condensation-type end-capping agent such as an aliphatic alcohol or an amide compound and dehydrating and condensing by reducing the pressure. From the viewpoint of increasing the degree of polymerization of the polymer It is preferable to add a condensation reaction type end-capping agent at the end of the polymerization reaction.
  • Examples of the method of blocking the carboxyl group terminal by addition reaction include a method of reacting an appropriate amount of a terminal blocking agent such as a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, an aziridine compound in a molten state of a polylactic acid resin, It is possible to add and react with a terminal blocking agent after completion of the polymerization reaction of the polymer.
  • a terminal blocking agent such as a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, an aziridine compound in a molten state of a polylactic acid resin
  • the content of the terminal blocking agent is 0.01 to 5 parts by weight, preferably 0.05 to 4 parts by weight, more preferably 0.1 to 3 parts by weight per 100 parts by weight of the polylactic acid resin composition (C). Part.
  • thermoplastic resins for example, polycarbonate resins, polyalkylene terephthalate resins
  • other additives for example, ⁇ 2 ⁇ .
  • Polyarylate resin liquid crystalline polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polyurethane resin, silicone resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyolefin resin such as polyethylene and polypropylene, polystyrene resin, acrylonitrile / Styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), polystyrene resin, high impact polystyrene resin, syndiotactic polystyrene resin, poly Methacrylate resins, phenoxy or epoxy resins, etc.), UV absorbers (benzotriazole compounds, triazine compounds, benzophenone compounds, etc.), light stabilizers (HALS, etc.), mold release agents (saturated fatty acid esters, unsaturated fatty acid esters, polyolefins) Wax, fluor
  • the polylactic acid resin composition (C) is a suitable material to which a publicly known method can be applied as a resin and / or composition molding method, and the resulting molded product is not particularly limited. Extruded molded products such as monofilaments, multifilaments such as fibers and non-woven fabrics, injection molded products, blow molded products, laminates, foams, vacuum molded products, and the like.
  • an injection molding method As a molding method of the molded body obtained from the polylactic acid resin composition (C), an injection molding method, a blow molding method (injection stretch blow, extrusion stretch blow, direct blow), balloon method, inflation molding, co-extrusion method, calendar Method, hot pressing method, solvent casting method, (stretching) extrusion molding, extrusion lamination method with paper and aluminum, profile extrusion molding, thermoforming such as vacuum (pressure air) molding, melt spinning (monofilament, multifilament, spunbonding method) , Melt blown method, defibrating yarn method, etc.), foam molding method, compression molding method and the like.
  • a blow molding method injection stretch blow, extrusion stretch blow, direct blow
  • balloon method inflation molding, co-extrusion method, calendar Method, hot pressing method, solvent casting method, (stretching) extrusion molding, extrusion lamination method with paper and aluminum, profile extrusion molding
  • thermoforming such as vacuum (pressure air) molding, melt spinning (monofilament
  • the molded product obtained from the polylactic acid resin composition (C) includes, for example, a molded product obtained by a publicly known / public molding method, and there are no restrictions on the shape, size, thickness, design, and the like.
  • the molded product obtained from the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ should be suitably used for the same use as the molded product obtained from the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ . Can do.
  • oligomers (x′1) and (y′1) whose main repeating unit is L-lactic acid or D-lactic acid, and the proportion of carboxyl groups in the terminal functional group exceeds 50%>
  • the oligomers (x′1) and (y′1) are polylactic acids having L-lactic acid units or D-lactic acid units as basic components shown below,
  • oligomers (x′1) and (y′1) are preferably constituents shown below.
  • the oligomer (x′1) in which the main repeating unit is L-lactic acid and the ratio of the carboxyl group in the terminal functional group exceeds 50% is an L-lactic acid unit of 90 to 100 mol%, a D-lactic acid unit and / or lactic acid.
  • the oligomer (x′1) in which the main repeating unit is L-lactic acid and the ratio of the carboxyl group in the terminal functional group exceeds 50% includes 90 to 99 mol% of L-lactic acid units, D-lactic acid units and / or Alternatively, it is a polylactic acid composed of 1 to 10 mol% of copolymer component units other than lactic acid.
  • An oligomer (y′1) in which the main repeating unit is D-lactic acid and the ratio of the carboxyl group in the terminal functional group exceeds 50% is a D-lactic acid unit of 90 to 100 mol%, an L-lactic acid unit and / or lactic acid.
  • the oligomer (y′1) in which the main repeating unit is D-lactic acid and the proportion of the carboxyl group in the terminal functional group exceeds 50% includes 90 to 99 mol% of D-lactic acid units, L-lactic acid units and / or Alternatively, it is a polylactic acid unit composed of 1 to 10 mol% of copolymer component units other than lactic acid.
  • Examples of the oligomers (x′1) and (y′1) include the same compounds as the poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ . It can be produced in the same manner as ⁇ 1 ⁇ poly (L-lactic acid) and poly (D-lactic acid).
  • Copolymerization components other than lactic acid in the oligomers (x′1) and (y′1) may be included in the poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ .
  • Examples thereof include compounds similar to the compounds mentioned as component units other than lactic acid.
  • the weight average molecular weights (Mw) of the oligomers (x′1) and (y′1) are each preferably 5,000 to 100,000, more preferably 10,000 to 80,000, More preferably, 10,000 to 50,000 is preferable from the viewpoint of improving the melting point of the stereocomplex polylactic acid resin composition (Z). Further, 20,000 to 50,000 is particularly preferable in terms of productivity and operability in addition to improving the melting point of the stereocomplex polylactic acid resin composition (Z).
  • the weight average molecular weight (Mw) is a weight average molecular weight value in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the oligomer is an oligomer in which the ratio of the carboxyl group in the terminal functional group exceeds 50%, but preferably the ratio of the carboxyl group in the terminal functional group is 85% or more, and the ratio of the carboxyl group in the terminal functional group is More preferably, it is 90% or more, and the ratio of the carboxyl group in the terminal functional group is more preferably 95% or more.
  • the ratio of the carboxyl group in the terminal functional group exceeds 50%, but preferably the ratio of the carboxyl group in the terminal functional group is 85% or more, and the ratio of the carboxyl group in the terminal functional group is More preferably, it is 90% or more, and the ratio of the carboxyl group in the terminal functional group is more preferably 95% or more.
  • oligomers (x′1) and (y′1) whose main repeating unit is L-lactic acid or D-lactic acid, and the ratio of carboxyl groups in the terminal functional group exceeds 50%>
  • the oligomers (x′1) and (y′1) can be produced by any known polymerization method of polylactic acid resin. For example, ring-opening polymerization of lactide, dehydration condensation of lactic acid, and solid phase polymerization with these. It can be manufactured by a combined method or the like. Specifically, oligomers (x′1) and (y′1) are produced by a production method similar to the production method of poly (L-lactic acid) and poly (D-lactic acid) of the present invention ⁇ 1 ⁇ . Can do.
  • the polymers (X1) and (Y1) may have a molecular weight larger than that of the oligomers (y′1) and (x′1), respectively.
  • Examples of the polymers (X1) and (Y1) include the same compounds as the polylactic acid resins (A-1) and (A-2) of the present invention ⁇ 2 ⁇ , respectively. can do.
  • the weight average molecular weight (Mw) of the polymers (X1) and (Y1) is preferably 50,000 to 1,000,000, and the lower limit is more preferably 70,000 or more, and 80,000. More preferably, it is the above.
  • the upper limit is more preferably 700,000 or less, still more preferably 500,000 or less, still more preferably 300,000 or less, and particularly preferably 200,000 or less. More specifically, 50,000 to 700,000 and 70,000 to 500,000 are particularly preferable from the viewpoint of moldability and mechanical strength.
  • the weight average molecular weight (Mw) is a standard polystyrene equivalent weight average molecular weight (Mw) value measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ has a weight average molecular weight of 70,000 to 500,000, (i) a stereo crystallization ratio of 51% or more, and a holding temperature of 240 ° C.
  • DSC differential scanning calorimetry
  • the degree of stereoification in the first temperature rise process (S) is 60% or more
  • the weight average molecular weight (Mw) retention after the second temperature raising process is 77% or more.
  • DSC differential scanning calorimetry
  • the weight average molecular weight (Mw) before differential scanning calorimetry (DSC) measurement of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is preferably 200,000 or more, and 200,000 to 1,000. Is more preferable.
  • the stereo crystallization ratio (Cr%) of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is as follows from the diffraction profiles of the stereocomplex phase crystal and the homophase crystal in the wide-angle X-ray diffraction transmission measurement. Calculated by the formula.
  • ⁇ I SCi is the total integrated intensity (I SC1 + I SC2 + I SC3 ) of each diffraction peak derived from the stereocomplex crystal
  • the integrated intensity of each diffraction peak near 24.0 °.
  • I HM is the integrated intensity of a diffraction peak derived from a homocrystal.
  • the stereo crystallization ratio of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is preferably 51% or more, more preferably 80% or more from the viewpoint of heat resistance and thermal stability. .
  • the stereo crystallization ratio referred to here is the stereo crystallization ratio of the stereocomplex polylactic acid resin composition (Z) itself. For example, when considering a molded product by heat melting such as injection molding, stereo before molding is considered. It is a stereo crystallization ratio of a complex polylactic acid resin composition (Z).
  • stereocomplexity of stereocomplex polylactic acid resin composition (Z) (S) ⁇ 3 ⁇ is determined for each melting peak in differential scanning calorimetry (DSC) measurement when the temperature is raised at a rate of temperature rise of 10 ° C / min. It is calculated from the following equation using the amount of heat.
  • ⁇ Hms is the calorific value (J / g) of the melting peak of the stereocomplex phase crystal having a peak temperature of 190 ° C. or higher
  • ⁇ Hmh is the calorific value (J / g) of the melting peak of the homophase crystal having a peak temperature of 190 ° C. or lower.
  • the stereocomplexity (S) in the first heating step in the differential scanning calorimetry (DSC) measurement of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ at 240 ° C. and holding time of 1 minute or 5 minutes is 60% or more, and thereby, the degree of stereolation (S) in the second temperature raising process described later becomes 88% or more even at a relatively low heat load.
  • the degree of stereoification (S) in the first temperature rising process in the differential scanning calorimetry (DSC) measurement at 240 ° C. and holding time of 1 minute or 5 minutes is more preferably 90% or more, thereby further increasing the heat load. Even if it is reduced, the degree of stereoification (S) in the second temperature raising process can be made 100%, and further, this reduction in heat load is considered to be a factor for suppressing a decrease in molecular weight.
  • the stereocomplexity (S) in the second temperature raising step in the differential scanning calorimetry (DSC) measurement of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is 88% at 240 ° C. and holding time of 1 minute. From the viewpoints of heat resistance and thermal stability, 100% is preferable.
  • the stereocomplexity (S) in the second temperature raising process in the differential scanning calorimetry (DSC) measurement of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is 240 ° C. and holding time 5 minutes. It is 95% or more, and 100% or more is preferable from the viewpoint of heat resistance and thermal stability.
  • the stereogenicity (S) in the first temperature raising process referred to here is, for example, the thermophysical property of the stereocomplex polylactic acid resin composition (Z) before molding when considering a molded product by heating and melting such as injection molding. It becomes an indicator.
  • stereogenicity degree (S) in the second temperature raising process referred to here is, for example, an indicator of the thermophysical properties of the molded product of the stereocomplex polylactic acid resin composition (Z) after molding.
  • the degree of stereoification (S) in the first temperature raising process and the stereo crystallization ratio (Cr) described above have a corresponding relationship.
  • the specific measurement of differential scanning calorimetry (DSC) measurement in the present invention ⁇ 3 ⁇ is a temperature higher than the melting point (Tm) of the stereocomplex polylactic acid resin composition (Z) at a rate of temperature increase of 10 ° C./min, here Then, the temperature is raised to 240 ° C. (first temperature raising process), then kept at 240 ° C. for 1 minute or 5 minutes, then rapidly cooled to 0 ° C. and kept for 5 minutes. Subsequently, the temperature is raised again from 0 ° C. to 240 ° C. (second temperature raising process) at a temperature raising rate of 10 ° C./min, and then rapidly cooled to 25 ° C.
  • Tm melting point
  • Z stereocomplex polylactic acid resin composition
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ after the second temperature raising step in the differential scanning calorimetry (DSC) measurement in the differential scanning calorimetry (DSC) measurement at 240 ° C. and holding time of 1 minute.
  • the weight average molecular weight retention is 77% or more, and the differential scanning calorimetry (DSC) measurement in the differential scanning calorimetry (DSC) measurement at 240 ° C. and the retention time of 5 minutes of the stereocomplex polylactic acid resin composition (Z) is as follows.
  • the weight average molecular weight retention after the second temperature raising process is preferably 70% or more, and more preferably 77% or more. Each of these weight average molecular weight retentions is more preferably 80% or more, still more preferably 85% or more, particularly preferably 90% or more from the viewpoint of mechanical properties, and particularly preferably from the viewpoint of durability.
  • the weight average molecular weight (Mw) retention rate referred to here is after the weight average molecular weight Mw DSC measurement after the second temperature raising process in the differential scanning calorimetry (DSC) measurement at 240 ° C. and the retention time of 1 minute or 5 minutes. Is a value obtained by dividing the weight average molecular weight Mw DSC before measurement by the unmeasured (the following formula).
  • Mw retention rate (%) (after Mw DSC measurement / Mw DSC unmeasured) ⁇ 100 here, Mw DSC unmeasured is the weight average molecular weight of the stereocomplex polylactic acid resin composition (Z) unmeasured by DSC, After Mw DSC measurement, it is the weight average molecular weight of the stereocomplex polylactic acid resin composition (Z) after DSC measurement.
  • the weight average molecular weight (Mw) retention rate mentioned here is, for example, a molded product produced from the stereocomplex polylactic acid resin composition (Z) by heat melting such as injection molding at a thermal history of 240 ° C., 1 minute or 5 minutes. Is considered to be approximately equal to the weight average molecular weight (Mw) retention after being again exposed to 240 ° C.
  • the weight average molecular weight (Mw) of the oligomer at the time of production is preferably equal to or less than the weight average molecular weight (Mw) of the polymer, from the viewpoint of easy formation of the stereocomplex polylactic acid resin composition (Z). 2 or less, more preferably 1/5 or less, still more preferably 1/10 or less, and even more preferably 1/20 or less A.
  • the main repeating unit is L-lactic acid, and the proportion of carboxyl groups in the terminal functional groups exceeds 50% of the oligomer (x′1) 30 to A mixture of 300 parts by weight with 100 parts by weight of the polymer (Y1) having a molecular weight larger than that of the oligomer (x′1), the main repeating unit being D-lactic acid, or the main repeating unit being D-lactic acid 30 to 300 parts by weight of the oligomer (y′1) having a carboxyl group ratio exceeding 50% in the terminal functional group, and the main repeating unit is L-lactic acid, which is larger than the oligomer (y′1).
  • the stereocomplex polylactic acid resin composition (Z) can also be produced by this production method.
  • the reaction temperature in the reaction step is not a problem as long as the stereocomplex polylactic acid resin composition is melted.
  • the reaction temperature is preferably equal to or lower than the boiling point of the solvent used.
  • the concentration of the solvent is preferably 20% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more from the viewpoint of compatibility between the oligomer and the polymer.
  • reaction time is preferably 120 minutes or less, more preferably 60 minutes or less, and even more preferably 40 minutes or less.
  • the main repeating unit is D-lactic acid
  • the main repeating unit is L.
  • -A lactic acid and a product obtained by reacting a mixture of a polymer (X1) having a molecular weight larger than (y'1) and a polyisocyanate compound is a stereocomplex poly at the same time as a high molecular weight.
  • the lactic acid resin composition (Z) can be formed, and the high molecular weight stereocomplex polylactic acid resin composition (Z) is preferable in terms of forming ability and cost.
  • the carboxyl group which is the terminal functional group of the oligomer (x′1) or (y′1) reacts with the polyisocyanate compound to form an amide bond, thereby producing a polylactic acid resin and the polymer (Y1) or (X1 ) And a high molecular weight stereocomplex polylactic acid resin composition (Z).
  • the above reaction is preferably performed using an amidation catalyst.
  • an amidation catalyst a specific example of the manufacturing method of a stereocomplex polylactic acid resin composition (Z), As long as the objective of this invention ⁇ 3 ⁇ is not impaired, it is not limited to this at all.
  • a catalyst and a solvent are added to a mixture of the oligomer (x′1) and the polymer (Y1) or the mixture of the oligomer (y′1) and the polymer (X1), and the mixture is brought to a predetermined temperature under normal pressure. Raise the temperature.
  • a predetermined amount of polyisocyanate compound is added and reacted at a predetermined temperature.
  • the stereocomplex polylactic acid resin composition (Z) is obtained by removing the solvent from the obtained reaction product.
  • the method for removing the solvent is not particularly limited, for example, a method of volatilizing the solvent at room temperature, a method of volatilizing the solvent by flowing an inert gas at room temperature, room temperature under reduced pressure, or polylactic acid. Examples include a method of volatilizing the solvent at a temperature not higher than the glass transition temperature or higher than the boiling point of the solvent.
  • the mixing weight ratio of the oligomer to the polymer is 30 to 300 parts by weight of the oligomer with respect to 100 parts by weight of the polymer. More preferred are parts by weight.
  • the degree of stereoification (S) in the first temperature rise process in differential scanning calorimetry (DSC) measurement which will be described later, becomes 60% or more, and thus the degree of stereoification (S) in the second temperature rise process even at a relatively low heat load. ) Is 88% or more.
  • the amount of the oligomer is more preferably 60 to 140 parts by weight with respect to 100 parts by weight of the polymer.
  • polyisocyanate compound used in the step examples include the same compounds as the polyisocyanate compound used in the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ .
  • tetramethylene diisocyanate pentamethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, 1,3- (bisisocyanatomethyl) cyclohexane, bis (isocyanatomethyl) bicyclo- [2,2,1] -It is preferably one compound selected from the group consisting of heptane and bis (4-isocyanatocyclohexyl) methane, preferably an aliphatic diisocyanate compound, more preferably hexamethylene diisocyanate. It is preferable in terms of color tone that the polyisocyanate compound is an aliphatic diisocyanate.
  • the addition amount of the polyisocyanate compound is determined based on the number of moles of the terminal functional group of the oligomer (x′1) or (y′1). The number of moles of the terminal functional group of the oligomer is calculated from the NMR data and the carboxylic acid value by the method described in the examples described later.
  • the amount of the polyisocyanate compound added is preferably 0.8 to 2.0 times mol, more preferably 0.8 to 1.5 times mol, based on the number of moles of the terminal function of the oligomer.
  • the molar ratio is more preferably 0.8 to 1.30 times.
  • “fold mole” is a unit of a value calculated by “number of isocyanate groups (mol) / number of terminal functional groups (mol)”.
  • the addition amount of the polyisocyanate compound is less than the lower limit, the addition effect of the polyisocyanate compound is small, and it may be difficult to obtain a high molecular weight stereocomplex polylactic acid resin composition (Z).
  • the above upper limit is exceeded, side reactions such as a crosslinking reaction may be caused, and a gel-like stereocomplex polylactic acid resin composition (Z) may be generated.
  • solvent examples of the solvent that can be used for the production of the stereocomplex polylactic acid resin composition (Z) include the same solvents as those that can be used in the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ . Can be mentioned. Among these, tetralin, m-diisopropylbenzene, p-diisopropylbenzene, diisopropylbenzene (isomer mixture), o-dichlorobenzene, and diphenyl ether are preferable from the viewpoints of solubility and versatility. These may be used alone or in combination.
  • amidation catalyst that can be used in the present invention ⁇ 3 ⁇ refers to a catalyst that preferentially reacts a terminal carboxyl group portion such as the lactic acid oligomer with the polyisocyanate compound to form an amide bond.
  • the amidation catalyst preferably contains at least one metal selected from the group consisting of metals in Groups 1, 2 and 3 of the periodic table, and at least selected from the group consisting of potassium, magnesium, calcium and ytterbium. More preferably, it contains one metal, and particularly preferably contains magnesium or calcium. The inclusion of such a metal is preferable in that a catalyst having excellent reactivity can be obtained, and a stereocomplex polylactic acid resin composition (Z) having a good color tone can be obtained.
  • the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇
  • examples thereof include the same catalysts as the amidation catalyst used in the above.
  • bis (acetylacetonato) magnesium, magnesium stearate, calcium stearate, magnesium chloride, ytterbium triflate, and the like are preferable, and magnesium compounds, particularly bis (acetylacetonato) magnesium and magnesium stearate are preferable. Two or more of these catalysts can be used in combination.
  • the amount of the amidation catalyst added is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight per 100 parts by weight of the oligomer (x′1) or (y′1). More preferably, it is 0.01 to 0.5 part by weight.
  • the oligomers (x′1) and (y′1) of the present invention ⁇ 3 ⁇ may contain a hydroxyl group. In that case, the hydroxy moiety reacts with the polyisocyanate compound to form a urethane bond.
  • Examples of the catalyst for forming such a urethane bond include the same catalysts as those that can be used in the method for producing the polylactic acid resin (I) of the present invention ⁇ 1 ⁇ .
  • the addition amount of the catalyst for forming the urethane bond is 0.01 to 2 parts by weight per 100 parts by weight of the polylactic acid resin formed from the oligomer (x′1) or (y′1) and the polyisocyanate compound.
  • the amount is preferably 0.01 to 1 part by weight, more preferably 0.01 to 0.5 part by weight.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ has a high degree of stereolation (S) and a high thermal stability even by itself, but by adding various components shown below, Further, it is possible to impart high stereo crystallinity, excellent thermal stability, and other performances. Further, it is used in an addition amount that does not impair the purpose of the present invention ⁇ 3 ⁇ . Although the specific example of various components is shown below, unless the objective of this invention ⁇ 3 ⁇ is impaired, it is not limited to these at all.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ may further contain a stabilizer, and 0.001 to 5 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z). It is preferably 0.001 to 2.5 parts by weight, preferably 0.001 to 1 part by weight, more preferably 0.005 to 1 part by weight, and The amount is more preferably 01 to 3 parts by weight, and particularly preferably 0.01 to 1 part by weight.
  • stabilizer examples include phosphorus stabilizers, phenol stabilizers, and other stabilizers.
  • the phosphorus stabilizer is a deactivator and / or oligomer (x′1), (y′1) and polymer (X1) of the amidation catalyst in the production of the stereocomplex polylactic acid resin composition (Z), It is considered to act as a catalyst deactivator for the preparation of (Y1), and is effective as a catalyst deactivator in the production of the stereocomplex polylactic acid resin composition (Z) in the present invention ⁇ 3 ⁇ .
  • phosphorus stabilizers examples include phosphite compounds and phosphate compounds, and specific compounds listed as phosphorus compounds that may be contained in the polylactic acid resin (I) in the present invention ⁇ 1 ⁇ . And the like. Among these, those in which at least one PO bond is bonded to an aromatic group are more preferable.
  • Specific examples include tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2, 4-di-t-butylphenyl) 4,4'-biphenylenephosphonite, bis (2,4-di-t-butylphenyl) pentaerythritol di-phosphite, bis (2,6-di-t- Butyl-4-methylphenyl) pentaerythritol-di-phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, 4,4′-butylidene-bis (3-methyl-6) -T-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2-methyl-4-ditridecylphosphite-5-t-butyl-phenyl) Tans, tris (mixe
  • phosphite compounds include “ADEKA STAB” C, PEP-4C, PEP-8, PEP-11C, PEP-24G, PEP-36, HP-10, 2112 and 260 manufactured by ADEKA Corporation. 522A, 329A, 1178, 1500, C, 135A, 3010, TPP, “Irgafoss” 168, manufactured by Ciba Specialty Chemicals, “Sumilyzer” P-16, manufactured by Sumitomo Chemical Co., Ltd., “Sand Stub,” manufactured by Clariant, Inc. “PEPQ, GE“ Weston ”618, 619G, 624 and the like.
  • more preferable examples are “ADEKA STAB” AX-71 (dioctadecyl phosphate), PEP-8 (distearyl pentaerythritol diphosphite), PEP-36 (cyclic neopentatetrayl bis (2,6- t-butyl-4-methylphenyl) phosphite).
  • Said phosphorus stabilizer can be used individually by 1 type or in combination of 2 or more types.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ can be blended with a phenol-based stabilizer.
  • the phenol-based stabilizer is considered to play a role of preventing the molecular chain from being broken at a high temperature, and is effective for good hue and viscosity stability at a high temperature.
  • phenol stabilizer examples include the same compounds as the phenol compound that may be contained in the polylactic acid resin (I) in the present invention ⁇ 1 ⁇ .
  • phenolic compounds include “ADEKA STAB” AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, AO-80, AO-330, manufactured by ADEKA ( "Irganox” 245, 259, 565, 1010, 1035, 1076, 1098, 1222, 1330, 1425, 1520, 3114, 5057 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Irganox 245 (triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) -propionate]) manufactured by Ciba Specialty Chemicals Co., Ltd. 1010 (tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane).
  • the above phenolic stabilizers can be used singly or in combination of two or more.
  • a stabilizer In the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ , in addition to the above-mentioned phosphorus-based stabilizer and phenol-type stabilizer, a stabilizer is used in order to obtain a better hue and stable fluidity. It is preferable to contain.
  • examples of other stabilizers include thioether compounds, vitamin compounds, triazole compounds, polyvalent amine compounds, hydrazine derivative compounds, and the like, and these may be used in combination.
  • thioether compounds examples include thioether compounds, vitamin compounds, triazole compounds, polyamine compounds, and hydrazine derivative compounds include thioether compounds, vitamin compounds, and triazole compounds that can be used in the present invention ⁇ 1 ⁇ . And compounds similar to the polyvalent amine compounds and hydrazine derivative compounds.
  • a crystal nucleating agent can be blended with the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ .
  • the crystal nucleating agent polylactic acid and known compounds generally used as crystal nucleating agents for crystalline resins such as aromatic polyester can be used, and the polylactic acid resin composition (2) of the present invention ⁇ 2 ⁇ Examples thereof include the same compounds as the crystal nucleating agent that C) may contain.
  • talc is particularly effective, and talc having an average particle size of 20 ⁇ m or less is preferably used, but it is more preferable to use one having an average particle size of 5 ⁇ m or less. .
  • the compounding amount of these crystal nucleating agents cannot be uniformly defined because the amount of their effects varies depending on the type and shape of the crystal nucleating agent, but per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z),
  • the amount is 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight.
  • the amount of the crystal nucleating agent is too small, the effect as a crystal nucleating agent is not exhibited.
  • the amount is too large, the effect as a crystal nucleating agent is not increased, but rather in mechanical properties and the like. May give bad results.
  • An inorganic filler can be blended in the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ .
  • an inorganic filler is further blended into the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ , a molded product excellent in mechanical properties, dimensional properties and the like can be obtained.
  • Examples of the inorganic filler include the same compounds as the inorganic filler that may be contained in the polylactic acid resin composition (C) in the present invention ⁇ 2 ⁇ .
  • the shape of the inorganic filler can be freely selected from fibrous, flaky, spherical and hollow shapes, and fibrous and flaky materials are suitable for improving the strength and impact resistance of the resin composition.
  • an inorganic filler made of pulverized natural mineral more preferably an inorganic filler made of pulverized silicate natural mineral, and in terms of its shape, mica, talc, And wollastonite are preferred.
  • the inorganic filler mica, talc and wollastonite which can be used in the present invention ⁇ 3 ⁇ may be contained in the polylactic acid resin composition (C) in the present invention ⁇ 2 ⁇ .
  • the same thing as knight is preferable.
  • Some of these inorganic fillers also function as a crystal nucleating agent.
  • the amount of the inorganic filler is preferably 0.3 to 200 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z). 0 to 100 parts by weight is more preferable, and 3 to 50 parts by weight is most preferable. When the blending amount is less than 0.3 parts by weight, the reinforcing effect on the mechanical properties of the molded product of the present invention ⁇ 3 ⁇ is not sufficient, and when it exceeds 200 parts by weight, molding processability and hue deteriorate. Sometimes.
  • the stereocomplex polylactic acid resin composition (Z) can be blended with a fold inhibitor for suppressing such folds.
  • the folding inhibitor inhibits adhesion between the matrix resin and the inorganic filler, reduces stress acting on the inorganic filler during melt kneading, and suppresses the folding of the inorganic filler.
  • Examples of the effect of the folding inhibitor include (1) improvement of rigidity (increase in aspect ratio of inorganic filler), (2) improvement of toughness, and (3) improvement of conductivity (in the case of conductive inorganic filler). Can do.
  • the folding inhibitor is a compound having a structure having a low affinity with the resin and having a functional group capable of reacting with the surface of the inorganic filler. In this way, a compound in which the surface of the inorganic filler is directly coated with a compound having a low affinity with the resin can be obtained.
  • a compound having a low affinity with the resin, a compound having a structure with a low affinity with the resin and having a functional group capable of reacting with the surface of the inorganic filler, and a suitable folding inhibitor include the present invention ⁇ 2 ⁇ .
  • the compound similar to the compound used is mentioned.
  • the blending amount of the above-mentioned folding inhibitor is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ .
  • 0.1 to 0.8 part by weight is more preferable.
  • a flame retardant can also be blended with the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ .
  • Examples of the flame retardant include the same compounds as those used in the present invention ⁇ 2 ⁇ , and preferred flame retardants are also the same as described above.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention When these flame retardants are added to the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ , 0.05 to 50 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z). A range is preferred. If it is less than 0.05 part by weight, sufficient flame retardancy will not be exhibited, and if it exceeds 50 parts by weight, the strength and heat resistance of the molded product may be impaired.
  • an impact modifier can be used, and the impact modifier can include an elastic polymer.
  • the elastic polymer include And the same compounds as the elastic polymer used in the present invention ⁇ 2 ⁇ .
  • the composition ratio of the impact modifier is preferably 0.2 to 50 parts by weight, preferably 1 to 30 parts by weight, and more preferably 1.5 to 20 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z). .
  • Such a composition range can give a good impact resistance to the composition while suppressing a decrease in rigidity.
  • the end-capping agent is one that reacts with a part or all of the carboxyl groups at the end of the resin in the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ to clog, for example, an aliphatic alcohol
  • Examples include condensation reaction type compounds such as amide compounds, addition reaction type compounds such as carbodiimide compounds, epoxy compounds, oxazoline compounds, oxazine compounds, and aziridine compounds, and the end-capping agent used in the present invention ⁇ 2 ⁇ Similar compounds can be used.
  • terminal blocking agent that can be used in the present invention ⁇ 3 ⁇
  • two or more compounds among the above-mentioned compounds such as carbodiimide compounds, epoxy compounds, oxazoline compounds, oxazine compounds, and aziridines are used together as terminal blocking agents. You can also.
  • the carboxyl group at the resin terminal in the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ is used.
  • the same method as the method of blocking is mentioned.
  • the content of the terminal blocking agent is 0.01 to 5 parts by weight, preferably 0.05 to 4 parts by weight, more preferably 0.1 to 4 parts by weight per 100 parts by weight of the stereocomplex polylactic acid resin composition (Z). 3 parts by weight.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ contains the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ within a range that does not impair the effects of the present invention ⁇ 3 ⁇ . You may mix
  • These various additives can be used in known blending amounts when blended with a thermoplastic resin such as polylactic acid.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is a suitable material to which a publicly known method can be applied as a molding method for the resin and / or composition, and the molded product obtained is particularly limited.
  • examples include extrusion molded products such as films and sheets, multifilaments such as monofilaments, fibers and nonwoven fabrics, injection molded products, blow molded products, laminates, foams, and vacuum molded products.
  • a molding method of a molded body obtained from the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ a molding method of a molded body obtained from the polylactic acid resin composition (C) of the present invention ⁇ 2 ⁇ is used.
  • the injection method, extrusion molding, and melt spinning taking advantage of the characteristics of the stereocomplex polylactic acid resin composition (Z) in the present invention ⁇ 3 ⁇ are particularly preferable.
  • the molded product obtained from the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ includes, for example, a molded product obtained by a known / public molding method, and its shape, size, thickness, design, etc. There are no restrictions on.
  • the molded product obtained from the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ is suitably used for the same applications as the molded product obtained from the polylactic acid-based resin (I) of the present invention ⁇ 1 ⁇ . can do.
  • Example 1 Hereinafter, the present invention ⁇ 1 ⁇ will be described more specifically based on the first embodiment. However, the present invention ⁇ 1 ⁇ is not limited to the first embodiment.
  • the melting point (Tm) and crystal melting enthalpy ( ⁇ Hm) of the peak top in the melting peak at the first (1st) and second (2nd) temperature increase were measured, and [[(( ⁇ Hm) / ( ⁇ H 0 )] ⁇ 100 was determined as the crystallinity.
  • ⁇ H 0 represents a perfect ideal crystal melting enthalpy, and a value of 142 J / g of stereocomplex polylactic acid was used.
  • 39 ppm: Derived from the carbon at the ⁇ -position of the hexamethylene unit adjacent to the amide bond
  • 69 ppm: Derived from the methine carbon of the polylactic acid main chain From the ratio of the above two integral values, the content of amide bonds in the polylactic acid resin is determined, and from the number average molecular weight of the raw polylactic acid used, per molecule of polylactic acid resin The number of amide bond units was calculated.
  • ⁇ Sn measurement method> After wet digestion of the sample with sulfuric acid and hydrogen peroxide, 1 ml of the resulting decomposition product was made up to a constant volume and diluted 40-fold with hydrochloric acid to obtain an ICP emission spectrometer (ICPS-8100, manufactured by SHIMADZU). ) To measure the content of heavy metals such as Sn. The detection limit of the content of heavy metals such as Sn by the measurement method is less than 4 ppm.
  • PLLA (1) white poly (L-lactic acid) [PLLA (1)] was obtained.
  • Mw weight average molecular weight
  • the terminal carboxylic acid ratio was determined to be 95% by the above measuring method.
  • the carboxylic acid value of the PLLA (1) was determined by the above measurement method, it was 3.652 ⁇ 10 ⁇ 4 (mol / g).
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 5200.
  • the Sn content was measured and found to be 5 ppm or less.
  • the terminal carboxylic acid ratio was determined by the above measurement method and found to be 98%. Moreover, when the carboxylic acid value of the PLLA (4) was determined by the above measurement method, it was 7.248 ⁇ 10 ⁇ 4 (mol / g). The number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 2,700. With respect to the PLLA (4), the Sn content was measured and found to be 5 ppm or less.
  • the carboxylic acid value of the PLLA (5) was determined by the above measurement method, it was 1.830 ⁇ 10 ⁇ 4 (mol / g).
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 5460.
  • the Sn content was measured and found to be 5 ppm or less.
  • the carboxylic acid value was calculated
  • the weight average molecular weight (Mw) was measured by the measurement method, and found to be 50,000.
  • the ratio of terminal carboxylic acids determined by the above measurement method was 99.9%. Moreover, it was 1.22 * 10 ⁇ -4 > (mol / g) when carboxylic acid value was calculated
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 16,400.
  • Example 1-1 A 100 ml round bottom flask was charged with 7.5 g of PLLA (1) synthesized in Production Example 1-1, 7.5 g of PDLA (1) synthesized in Production Example 1-7 and 12 mg (0.02 mmol) of magnesium stearate. did. After the atmosphere in the flask was replaced with nitrogen, 15 g of tetralin was inserted, and the temperature was raised to 210 ° C. under normal pressure and nitrogen atmosphere. Next, 0.486 g of hexamethylene diisocyanate (2.89 mmol, 1.05 equivalent of isocyanate group based on the number of terminal functional groups of PLLA (1) and PDLA (1)) was added to the flask and reacted at 200 ° C.
  • Example 1-2 A white powder resin (polylactic acid resin) was obtained in the same manner as in Example 1-1 except that PLLA (1) was changed to PLLA (2) and PDLA (1) was changed to PDLA (2).
  • the weight average molecular weight of the resin was measured and found to be 210,000.
  • the amide bond content was 19 units on average per molecule of polylactic acid resin.
  • the melting peak was 1 type for both 1st and 2nd.
  • Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-3 A white powder resin (polylactic acid) was prepared in the same manner as in Example 1 except that 10.5 g of PLLA (1) synthesized in Production Example 1-1 and 4.5 g of PDLA (1) synthesized in Production Example 1-7 were used. 15 g of a resin was obtained. The weight average molecular weight of the resin was measured and found to be 180,000. According to 13 C-NMR measurement of the obtained polylactic acid resin, the content of amide bonds was 16 units on average per molecule of polylactic acid resin. Further, the melting peak was 1 type for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-4 A 100 ml round bottom flask was charged with 7.5 g of PLLA (3) synthesized in Production Example 1-3, 7.5 g of PDLA (3) synthesized in Production Example 1-9 and 12 mg (0.02 mmol) of magnesium stearate. did. After the atmosphere in the flask was replaced with nitrogen, 15 g of tetralin was inserted, and the temperature was raised to 210 ° C. under normal pressure and nitrogen atmosphere. Next, 0.309 g (1.84 mmol, 1.05 equivalents relative to the number of terminal functional groups) of hexamethylene diisocyanate was added to the flask and reacted at 200 ° C. for 1 hour.
  • Example 1-5 A 100 ml round bottom flask was charged with 7.5 g of PLLA (4) synthesized in Production Example 1-4, 7.5 g of PDLA (4) synthesized in Production Example 1-10 and 12 mg (0.02 mmol) of magnesium stearate. did. After the atmosphere in the flask was replaced with nitrogen, 15 g of tetralin was inserted, and the temperature was raised to 210 ° C. under normal pressure and nitrogen atmosphere. Next, 0.982 g of hexamethylene diisocyanate (5.84 mmol, 1.05 equivalents relative to the terminal functional group) was added to the flask and reacted at 200 ° C. for 1 hour.
  • hexamethylene diisocyanate 5.84 mmol, 1.05 equivalents relative to the terminal functional group
  • Example 1-6 A white powdery resin (polylactic acid resin) was obtained in the same manner as in Example 1-1 except that tetralin was changed to orthodichlorobenzene. The weight average molecular weight of the resin was measured and found to be 200,000. According to 13 C-NMR measurement of the obtained polylactic acid-based resin, the content of amide bond was 18 units on average per molecule of polylactic acid-based resin. Further, the melting peak measured was one for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-7 A white powdery resin (polylactic acid resin) was obtained in the same manner as in Example 1-2 except that tetralin was changed to orthodichlorobenzene. The weight average molecular weight of the resin was measured and found to be 240000. According to 13 C-NMR measurement of the obtained polylactic acid resin, the amide bond content was 22 units on average per molecule of polylactic acid resin. Further, the melting peak measured was one for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-8 A white powdery resin (polylactic acid resin) was obtained in the same manner as in Example 1-1 except that tetralin was changed to diisopropylbenzene. The weight average molecular weight of the resin was measured and found to be 130,000. According to 13 C-NMR measurement of the polylactic acid resin, the content of amide bonds was 11 units on average per molecule of the polylactic acid resin. Further, the melting peak was 1 type for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-9 Hexamethylene diisocyanate 0.486 g (2.89 mmol, 1.05 equivalents relative to the number of terminal functional groups) was added to 0.561 g (2.89 mmol, terminal functional group number 1.05 equivalents relative to the number of terminal functional groups). 15 g of a white powdery resin (polylactic acid resin) was obtained in the same manner as in Example 1-1 except that the equivalent weight was changed. The weight average molecular weight of the resin was measured and found to be 140000. Further, the melting peak was 1 type for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-10 Implemented except that 0.486 g of hexamethylene diisocyanate (2.89 mmol, 1.05 equivalent to the number of terminal functional groups) was changed to 0.544 g of xylylene diisocyanate (2.89 mmol, 1.05 equivalent to the number of terminal functional groups).
  • 15 g of a white powder resin was obtained.
  • the weight average molecular weight of the resin was measured and found to be 180,000. Further, the melting peak was 1 type for both 1st and 2nd.
  • Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-11 A white powder resin (polylactic acid resin) was obtained in the same manner as in Example 1-1 except that PLLA (1) was changed to PLLA (7) and PDLA (1) was changed to PDLA (7).
  • the weight average molecular weight of the resin was measured and found to be 130,000.
  • the content of the amide bond was confirmed by 13 C-NMR measurement of the obtained polylactic acid resin. Further, the melting peak was 1 type for both 1st and 2nd.
  • Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • Example 1-12 In a 100 ml round bottom flask, 5.0 g of PLLA (8) synthesized in Production Example 1-15, 5.0 g of PDLA (8) synthesized in Production Example 1-16, 8 mg (0.013 mmol) of magnesium stearate, PEP -36 was charged at 50 mg and Irganox 1010 at 50 mg. After the atmosphere in the flask was replaced with nitrogen, 40 g of orthodichlorobenzene was inserted, and the temperature was raised to 180 ° C. under a normal pressure and nitrogen atmosphere.
  • Example 1-1 A white powder resin was obtained in the same manner as in Example 1-1 except that PLLA (1) was changed to PLLA (5) and PDLA (1) was changed to PDLA (5).
  • the weight average molecular weight of the resin was measured and found to be 90000. According to 13 C-NMR measurement of the obtained resin, the content of amide bond was 7 units on average per resin molecule. Further, the melting peak was 1 type for both 1st and 2nd. Table 2 shows the results of measurement of crystallinity, Tm, and molecular weight retention of the resin.
  • the polylactic acid-based resin (I) in the present invention ⁇ 1 ⁇ has a high molecular weight, a high melting point, and a small decrease in molecular weight even at a high temperature, it is a machine such as a film, a sheet, a molded body, and a fiber It can be suitably used for applications that require characteristics and heat resistance.
  • Example 2 Hereinafter, the present invention ⁇ 2 ⁇ will be described in detail by Example 2. However, the present invention ⁇ 2 ⁇ is not limited to these.
  • a polylactic acid resin unit was produced by the method shown in the following production example. Each value in Example 2 was determined by the following method.
  • 39 ppm: Derived from carbon at the ⁇ -position of the hexamethylene unit adjacent to the amide bond Using DSC, measurement was performed at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere, and the ratio (%) of the melting peak at 195 ° C. or higher and the melting peak area of 195 ° C. or higher (high temperature) and 140 to 180 ° C. (low temperature) ) Calculated from the melting peak area by the following formula.
  • R 195 or more (%) A 195 or more / (A 195 or more + A 140 to 180 ) ⁇ 100
  • R 195 or higher Ratio of melting peak of 195 ° C.
  • a 195 or higher melting peak area A of 195 ° C. or higher
  • a 140 to 180 melting peak area of 140 to 180 ° C.
  • ⁇ Measurement method of hydrolysis resistance The molecular weight (molecular weight before treatment) of the sheet obtained in the following example and the sheet obtained in the following example were treated for 100 hours in a constant temperature and humidity chamber at 65 ° C. ⁇ 95% relative humidity. The subsequent molecular weight (molecular weight after treatment) was measured using gel permeation chromatography, and the molecular weight retention rate (hydrolysis resistance) was evaluated by the following formula.
  • Molecular weight retention (%) molecular weight after treatment / molecular weight before treatment ⁇ 100 (Production Example 2-1: Production of lactic acid oligomer (a-1))
  • a Dean-Stark trap is equipped with 500 g of Purac 90% L-lactic acid (lactic acid with 99.5 mol% L form) and 1.18 g of tin (II) chloride dihydrate (manufactured by Wako Pure Chemical Industries).
  • a round bottom flask was charged. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 130 ° C. with an oil bath heated to 150 ° C. under normal pressure and nitrogen atmosphere. The inside of the flask was gradually depressurized and held at 50 mmHg for 2 hours.
  • the weight average molecular weight (Mw), the terminal carboxylic acid ratio, the carboxylic acid value, and the melting point (Tm) were measured and found to be 20000, 95%, 3.652 ⁇ 10 ⁇ 4 (mol / g) and 161 ° C.
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 5200.
  • Lactic acid was the same as in Production Example 2-1, except that 90% L-lactic acid was changed to 90% D-lactic acid (hydrolyzed D-lactide manufactured by Purac, lactic acid having a D-form of 99.5 mol% or more).
  • the oligomer (a-2) was obtained.
  • the weight average molecular weight (Mw), the terminal carboxylic acid ratio, the carboxylic acid value, and the melting point (Tm) were measured and found to be 20,000, 95%, 3.668 ⁇ 10 ⁇ 4 (mol / g) and 160 ° C.
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 5180.
  • Production Example 2-4 Production of polylactic acid resin (Ba-2)
  • a polylactic acid resin (similar to Production Example 2-3) except that 150 g of the lactic acid oligomer (a-1) synthesized in Production Example 2-1 was changed to 150 g of the lactic acid oligomer (a-2) synthesized in Production Example 2-2. Ba-2) was obtained.
  • the weight average molecular weight (Mw) of the resin was measured and found to be 140,000.
  • the content of the amide bond was confirmed by 13 C-NMR measurement of the obtained polylactic acid resin.
  • the weight average molecular weight (Mw), the terminal carboxylic acid ratio, the carboxylic acid value, and the melting point (Tm) were measured and found to be 30000, 95%, 2.432 ⁇ 10 ⁇ 4 (mol), respectively. / G) and 164 ° C.
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 7,800.
  • Lactic acid was the same as in Production Example 2-7 except that 90% L-lactic acid was changed to 90% D-lactic acid (hydrolyzed D-lactide manufactured by Purac, lactic acid having a D-form of 99.5 mol% or more).
  • the oligomer (a-2 ′) was obtained.
  • the weight average molecular weight (Mw), the terminal carboxylic acid ratio, the carboxylic acid value, and the melting point (Tm) were measured and found to be 30000, 95%, 2.428 ⁇ 10 ⁇ 4 ( mol / g) and 162 ° C.
  • the number average molecular weight Mn calculated from the carboxylic acid value and the terminal carboxylic acid ratio was 7,820.
  • Example 2-1 Production of polylactic acid resin composition 1
  • 100 parts by weight of the polylactic acid resin (Ba-1) obtained in Production Example 2-3 and 100 parts by weight of the polylactic acid resin (Ba-2) obtained in Production Example 2-4 were mixed with a diameter of 30 mm ⁇ .
  • a vent type twin screw extruder [TEX30XSST manufactured by Nippon Steel Works, Ltd.] pelletized by melt extrusion at a cylinder temperature of 230 ° C., a screw rotation speed of 150 rpm, a discharge rate of 10 kg / h, and a vent pressure reduction degree of 3 kPa.
  • a resin composition 1 was obtained.
  • the obtained polylactic acid resin composition 1 was dried at 90 ° C.
  • the melting point was 202 ° C.
  • Example 2-2 Production of polylactic acid resin composition 2
  • 100 parts by weight of the poly L-lactic acid obtained in Production Example 2-5 and 100 parts by weight of the polylactic acid resin (Ba-2) obtained in Production Example 2-4 were used in a vent type twin screw extruder having a diameter of 30 mm ⁇ .
  • Tex30XSST manufactured by Nippon Steel Co., Ltd. melt extruded at a cylinder temperature of 230 ° C., a screw rotation speed of 150 rpm, a discharge rate of 10 kg / h, and a vent pressure reduction degree of 3 kPa to be pelletized to obtain a polylactic acid resin composition 2 It was.
  • the obtained polylactic acid resin composition 2 was dried at 90 ° C.
  • the melting point was 204 ° C.
  • Example 2-3 Production of polylactic acid resin composition 3
  • 100 parts by weight of the polylactic acid resin (Ba-1) obtained in Production Example 2-3 and 100 parts by weight of the poly-D-lactic acid obtained in Production Example 2-6 were bent type twin screw extruders having a diameter of 30 mm ⁇ .
  • [Tex30XSST manufactured by Nippon Steel, Ltd.] melt-extruded and pelletized at a cylinder temperature of 230 ° C., a screw speed of 150 rpm, a discharge rate of 10 kg / h, and a vent vacuum of 3 kPa to obtain a polylactic acid resin composition 3 It was.
  • the obtained polylactic acid resin composition 3 was dried at 90 ° C. for 5 hours, preheated at 230 ° C. for 5 minutes, then hot-pressed at 10 MPa for 5 minutes, and rapidly cooled to obtain a sheet having a thickness of 0.2 mm. It was. Each characteristic was measured using these sheets. The measurement results are shown in Table 3.
  • the melting point was 204 ° C.
  • Example 2-4 Production of polylactic acid resin composition 4
  • 140 parts by weight of the polylactic acid resin (Ba-1) obtained in Production Example 2-3 and 60 parts by weight of the polylactic acid resin (Ba-2) obtained in Production Example 2-4 were mixed with a diameter of 30 mm ⁇ .
  • a vent type twin screw extruder [TEX30XSST manufactured by Nippon Steel Works, Ltd.] pelletized by melt extrusion at a cylinder temperature of 230 ° C., a screw rotation speed of 150 rpm, a discharge rate of 10 kg / h, and a vent pressure reduction degree of 3 kPa.
  • a resin composition 4 was obtained.
  • the obtained polylactic acid resin composition 4 was dried at 90 ° C.
  • the melting point was 204 ° C.
  • Example 2-5 Production of polylactic acid resin composition 5
  • 60 parts by weight of the polylactic acid resin (Ba-1) obtained in Production Example 2-3 and 140 parts by weight of the polylactic acid resin (Ba-2) obtained in Production Example 2-4 were mixed with a diameter of 30 mm ⁇ .
  • Supplied to vent type twin screw extruder [TEX30XSST manufactured by Nippon Steel Works, Ltd.] melt extruded at a cylinder temperature of 230 ° C., a screw rotation speed of 150 rpm, a discharge rate of 10 kg / h, and a vent pressure reduction degree of 3 kPa to be pelletized, and polylactic acid A resin composition 5 was obtained.
  • the obtained polylactic acid resin composition 5 was dried at 90 ° C.
  • the melting point was 204 ° C.
  • Example 2-6 Production of polylactic acid resin composition 6
  • 100 parts by weight of the polylactic acid resin (Ba-1) obtained in Production Example 2-3 and 100 parts by weight of the polylactic acid resin (Ba-2 ′) obtained in Production Example 2-10 were 30 mm in diameter.
  • the obtained polylactic acid resin composition 6 was dried at 90 ° C. for 5 hours, preheated at 230 ° C. for 5 minutes, then hot-pressed at 10 MPa for 5 minutes, and rapidly cooled to obtain a sheet having a thickness of 0.2 mm. It was. Each characteristic was measured using these sheets. The measurement results are shown in Table 3.
  • the melting point was 205 ° C.
  • Example 2-7 Production of polylactic acid resin composition 7
  • 100 parts by weight of the polylactic acid resin (Ba-1 ′) obtained in Production Example 2-9 and 100 parts by weight of the polylactic acid resin (Ba-2) obtained in Production Example 2-4 were 30 mm in diameter.
  • a lactic acid resin composition 7 was obtained.
  • the obtained polylactic acid resin composition 7 was dried at 90 ° C.
  • the melting point was 205 ° C.
  • Example 2-8 Production of polylactic acid resin composition 8
  • a polylactic acid resin composition 8 was obtained.
  • the obtained polylactic acid resin composition 8 was dried at 90 ° C. for 5 hours, preheated at 230 ° C. for 5 minutes, then hot-pressed at 10 MPa for 5 minutes, and rapidly cooled to obtain a sheet having a thickness of 0.2 mm. It was. Each characteristic was measured using these sheets. The measurement results are shown in Table 3.
  • the melting point was 207 ° C.
  • Example 3 As is apparent from the results in Table 3, at least one of the polylactic acid resins (A-1) mainly composed of L-lactic acid and polylactic acid resin (A-2) mainly composed of D-lactic acid.
  • Polylactic acid resin composition (C) in which amide bonds are formed by using polyisocyanate on lactic acid oligomer, has a high stereocomplex forming ability, and molded products obtained using this composition are put to practical use. It can be seen that, while having the same mechanical properties as poly L-lactic acid, it has excellent heat resistance and hydrolysis resistance, and the properties are greatly improved.
  • Example 3 Hereinafter, the present invention ⁇ 3 ⁇ will be described in detail by Example 3. However, the present invention ⁇ 3 ⁇ is not limited to these. Each value in Example 3 was determined by the following method.
  • a 13 C-NMR (equipment: ECA500 manufactured by JEOL Ltd., internal standard chloroform-d: ⁇ 77 ppm) of a polylactic acid resin obtained by reacting a lactic acid oligomer with hexamethylene diisocyanate was measured. The presence or absence of an amide bond in the complex polylactic acid resin composition (Z) was determined.
  • 39 ppm: Derived from ⁇ -position carbon of hexamethylene unit adjacent to amide bond ⁇ Stereo crystallization ratio (Cr)> The diffraction profile was measured by wide-angle X-ray diffraction transmission method measurement (apparatus: RINT 2500 manufactured by Rigaku, attached apparatus: rotating sample stage, X-ray source: CuK ⁇ , output: 50 kV, 300 mA, detector: scintillation counter). The stereo crystallization ratio (Cr) was calculated from the following equation from the diffraction profiles of the stereocomplex phase crystal and the homophase crystal.
  • I HM Integrated intensity of diffraction peaks derived from homocrystals.
  • Tm melting point
  • DSC apparatus RDC220 manufactured by SII
  • a sample of 5 to 6 mg was weighed, weighed into a nitrogen-sealed pan, and loaded into a DSC measuring unit previously set at 25 ° C. and nitrogen-sealed.
  • the temperature was raised to 240 ° C. at a temperature raising rate of 10 ° C./min (first temperature raising process), and then kept at 240 ° C. for 1 minute or 5 minutes, and then 0 ° C. at a temperature lowering rate of 99.90 ° C./min.
  • the temperature was lowered to 5 minutes and maintained.
  • the temperature was raised again from 0 ° C. to 240 ° C. at a rate of 10 ° C./min (second temperature raising process), and then the temperature was lowered to 25 ° C. at a rate of 99.90 ° C./min to complete the measurement. .
  • Mw retention rate (%) (after Mw DSC measurement / Mw DSC unmeasured) ⁇ 100 here, Mw DSC unmeasured: Weight average molecular weight of stereocomplex polylactic acid resin composition (Z) without DSC measurement After Mw DSC measurement: Weight average molecular weight of stereocomplex polylactic acid resin composition (Z) after DSC measurement.
  • the oligomer unit was produced by the method shown in the following production example.
  • the oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio, carboxylic acid value, and melting point (Tm), which were 10000, 95%, 3.652 ⁇ 10 ⁇ 4 (mol / g), and 163 ° C., respectively. Met.
  • ⁇ Production Example 3-7 Production of D-lactic acid oligomer> 90% L-lactic acid in Production Example 3-1 was converted to 90% D-lactic acid (hydrolyzed D-lactide produced by Purac, lactic acid having a D-form of 99.5 mol% or more) at a reaction solution temperature of 150 ° C.
  • the D-lactic acid oligomer (y′1) was obtained in the same manner as in Production Example 3-1, except that the retention time was changed to 3.5 hours and the amount of succinic anhydride added was changed to 6.2 g.
  • the oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio, and melting point (Tm) and found to be 10500, 95% and 161 ° C., respectively.
  • ⁇ Production Example 3-8 Production of D-lactic acid oligomer> The same procedures as in Production Example 3-7 were carried out except that the retention time at the reaction solution temperature of 150 ° C. in Production Example 3-7 was changed to 4.5 hours and the addition amount of succinic anhydride was changed to 4.3 g. A lactic acid oligomer (y′1) was obtained. The oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio, and melting point (Tm), and were 20000, 95%, and 161 ° C., respectively.
  • Mw weight average molecular weight
  • Tm melting point
  • D-lactic acid oligomer was prepared in the same manner as in Production Example 3-7 except that the retention time at the reaction solution temperature of 150 ° C. in Production Example 3-7 was changed to 9 hours and the addition amount of succinic anhydride was changed to 2.7 g. (Y′1) was obtained.
  • the oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio, and melting point (Tm), which were 39000, 95% and 161 ° C., respectively.
  • ⁇ Production Example 3-10 Production of D-lactic acid oligomer> A D-lactic acid oligomer (y′1) was obtained in the same manner as in Production Example 3-7 except that the amount of succinic anhydride added was changed to 4.1 g in Production Example 3-7. The oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio and melting point (Tm), and were 20000, 90% and 161 ° C., respectively.
  • Mw weight average molecular weight
  • Tm melting point
  • ⁇ Production Example 3-11 Production of D-lactic acid oligomer> A D-lactic acid oligomer was obtained in the same manner as in Production Example 3-8 except that the reaction with succinic anhydride was not carried out in Production Example 3-7. The oligomer was measured for weight average molecular weight (Mw), terminal carboxylic acid ratio and melting point (Tm), and were 20000, 50% and 161 ° C., respectively.
  • Mw weight average molecular weight
  • Tm melting point
  • ⁇ Production Example 3-12 Production of D-lactic acid oligomer> A D-lactic acid oligomer was obtained in the same manner as in Production Example 3-6 except that L-lactide was changed to D-lactide (manufactured by Purac). It was 20000 when the upper weight average molecular weight (Mw) was measured about this oligomer. Further, when the carboxylic acid value was determined, it was not detected.
  • L-lactide was changed to D-lactide (manufactured by Purac). It was 20000 when the upper weight average molecular weight (Mw) was measured about this oligomer. Further, when the carboxylic acid value was determined, it was not detected.
  • the stereocomplex polylactic acid resin composition (Z) was produced by the method shown in the following examples.
  • Example 3-1 Production of stereocomplex polylactic acid resin composition (Z)> 30 g of L-lactic acid oligomer (x′1) synthesized in Production Example 3-1, 100 g of D-lactic acid polymer (manufactured by Purac, PDLA High IV, Lot No. 0701001661, weight average molecular weight (Mw) 229000) and magnesium stearate A round bottom flask was charged with 30 ppm in terms of magnesium based on the weight of the L-lactic acid oligomer.
  • o-dichlorobenzene was inserted in the same amount as the total weight of the L-lactic acid oligomer (x′1) and the D-lactic acid polymer, and the temperature was raised to 190 ° C. under normal pressure and nitrogen atmosphere. Then, the L-lactic acid oligomer and the D-lactic acid polymer were dissolved. Next, 1.1 times mole of hexamethylene diisocyanate (hereinafter referred to as HDI) was supplied into the flask with respect to the number of terminal functional groups of the L-lactic acid oligomer, and reacted at 190 ° C. for 40 minutes.
  • HDI hexamethylene diisocyanate
  • Example 3-1 Production of stereocomplex polylactic acid resin composition (Z)>
  • the compounding amounts of the L-lactic acid oligomer synthesized in Production Example 3-1 were 50 g (Example 3-2), 60 g (Example 3-3), and 80 g (Example 3-4), respectively. ), 95 g (Example 3-5), 120 g (Example 3-6), 140 g (Example 3-7), 200 g (Example 3-8), and 300 g (Example 3-9)
  • the same operations as in Example 3-1 were performed to obtain a stereocomplex polylactic acid resin composition (Z).
  • the content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-10 to 3-18 Production of stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Examples 3-1 to 3-9 except that the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to the L-lactic acid oligomer synthesized in Production Example 3-2. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-19 to 3-27 Production of stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Examples 3-1 to 3-9 except that the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to the L-lactic acid oligomer synthesized in Production Example 3-3. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-28 to 3-36 Production of stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Examples 3-1 to 3-9 except that the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to the L-lactic acid oligomer synthesized in Production Example 3-4. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-37 to 3-45 Production of stereocomplex polylactic acid resin composition (Z)> A stereocomplex polylactic acid resin composition (Z) was obtained in the same manner as in Examples 3-10 to 3-18 except that hexamethylene diisocyanate was changed to 1,3- (bisisocyanatomethyl) cyclohexane. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-46 to 3-54 Production of stereocomplex polylactic acid resin composition (Z)>
  • the L-lactic acid oligomer synthesized in Production Example 3-1 was added to the D-lactic acid oligomer synthesized in Production Example 3-7, and the D-lactic acid polymer (manufactured by Purac, PDLA High IV, Lot No. 0701001661, weight average molecular weight (Mw)). 229000) was changed to an L-lactic acid polymer (manufactured by Mitsui Chemicals, LACEEA, H400, Lot No. 060313, weight average molecular weight (Mw) 223000), and the reaction at 190 ° C. for 40 minutes was changed to 190 ° C. for 30 minutes.
  • the same operation as in Examples 3-1 to 3-9 was performed to obtain a stereocomplex polylactic acid resin composition (Z).
  • the content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-55 to 3-63 Production of stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Examples 3-46 to 3-54 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-8. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-64 to 3-72 Production of stereocomplex polylactic acid resin composition (Z)>
  • the stereocomplex polylactic acid was prepared in the same manner as in Examples 3-46 to 3-54 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-9.
  • a resin composition (Z) was obtained.
  • the content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-73 to 3-81 Production of stereocomplex polylactic acid resin composition (Z)>
  • the stereocomplex polylactic acid was prepared in the same manner as in Examples 3-46 to 3-54 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-10.
  • a resin composition (Z) was obtained.
  • the content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Examples 3-82 to 3-90 Production of stereocomplex polylactic acid resin composition (Z)> A stereocomplex polylactic acid resin composition (Z) was obtained in the same manner as in Examples 3-55 to 3-63 except that hexamethylene diisocyanate was changed to 1,3- (bisisocyanatomethyl) cyclohexane. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • ⁇ Comparative Examples 3-1 and 3-2 Production of stereocomplex polylactic acid resin composition (Z)> The same procedure as in Example 3-1 was performed, except that the amount of the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to 25 g (Comparative Example 3-1) and 400 g (Comparative Example 3-2), respectively. A stereocomplex polylactic acid resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Comparative Examples 3-1 and 3-2 except that the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to the L-lactic acid oligomer synthesized in Production Example 3-2. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Comparative Examples 3-1 and 3-2 except that the L-lactic acid oligomer synthesized in Production Example 3-1 was changed to the L-lactic acid oligomer synthesized in Production Example 3-4. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • ⁇ Comparative Example 3-9 Production of stereocomplex polylactic acid resin composition (Z)> A stereocomplex polylactic acid resin was prepared in the same manner as in Example 3-1, except that the L-lactic acid oligomer synthesized in Production Example 3-1 was replaced with 95 g of the L-lactic acid oligomer synthesized in Production Example 3-5. A composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • ⁇ Comparative Example 3-10 Production of Stereocomplex Polylactic Acid Resin Composition (Z)> A stereocomplex polylactic acid resin was prepared in the same manner as in Example 3-1, except that the L-lactic acid oligomer synthesized in Production Example 3-1 was replaced with 95 g of the L-lactic acid oligomer synthesized in Production Example 3-6. A composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • ⁇ Comparative Examples 3-11 to 3-12 Production of stereocomplex polylactic acid resin composition (Z)> The L-lactic acid oligomer synthesized in Production Example 3-1 was added to the D-lactic acid oligomer synthesized in Production Example 3-7. 229000) was changed to L-lactic acid polymer (manufactured by Mitsui Chemicals, LACEEA, H400, Lot No. 060313, weight average molecular weight (Mw) 223000). A stereocomplex polylactic acid resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Comparative Examples 3-11 to 3-12 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-9. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • Stereocomplex polylactic acid resin composition (Z)> Stereocomplex polylactic acid was prepared in the same manner as in Comparative Examples 3-11 to 3-12 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-10. A resin composition (Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • ⁇ Comparative Example 3-20 Production of Stereocomplex Polylactic Acid Resin Composition (Z)> A stereocomplex polylactic acid resin composition was prepared in the same manner as in Example 3-50 except that the D-lactic acid oligomer synthesized in Production Example 3-7 was changed to the D-lactic acid oligomer synthesized in Production Example 3-12. Z) was obtained. The content of amide bond was confirmed by 13 C-NMR measurement of each resin composition.
  • the stereocomplex polylactic acid resin composition (Z) of the present invention ⁇ 3 ⁇ simultaneously satisfies a high degree of stereolation (S) and a high thermal stability (Mw retention).
  • the stereocomplex polylactic acid resin composition (Z) in the present invention ⁇ 3 ⁇ has an oligomer (x′1) while maintaining the molecular weight distribution of the (X1) or (Y1) polymer. ) Or (y′1) forms an amide bond with the polyisocyanate compound to increase the molecular weight, thereby forming a polylactic acid resin substantially equivalent to the weight-average molecular weight of the polymer, so that the molecular weight is almost equivalent to the polymer.
  • the stereocomplex polylactic acid resin composition (Z) having the above is formed and can be produced at a relatively low temperature in a short time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 高分子量で高耐熱性を有し、アミド結合を分子鎖に有するポリ乳酸系樹脂、その製造方法およびその用途を提供することを目的とする。 末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物とポリイソシアネート化合物を反応させることにより得られ、下記式(1)で表される構成単位を含むポリ乳酸系樹脂(I)。 (式(1)において、Rはポリイソシアネート残基であって、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭素数3~20の炭化水素基または芳香環を含む炭素数6~20の炭化水素基を表す。)

Description

ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法
 本発明{1}は、ポリ乳酸系樹脂、その製造方法およびその用途に関する。
 本発明{2}は、ステレオコンプレックスの形成能を改良したポリ乳酸樹脂組成物および該組成物からなる成型品に関する。さらに詳しくは、特定のポリ乳酸樹脂ブレンドを成型することにより得られた、耐熱性、機械特性に優れた成型品に関する。
 本発明{3}は、高い重量平均分子量(Mw)を有し、且つ高いステレオ化度(S)と高い熱安定性を同時に満足する、耐熱性、熱安定性、機械特性に優れたステレオコンプレックスポリ乳酸樹脂組成物(Z)、および生産性、操作性に優れたその製造方法に関する。
  近年、環境保護に対する関心が高まってきており、グリーン購入法による環境にやさしい材料の購入推進や、容器包装リサイクル法や家電リサイクル法によるプラスチック材料、電化製品のリサイクル推進等はその現われである。このような一連の流れの中で、環境負荷の低い生分解性ポリマーに対する期待は日増しに高まっている。
 また、近年では、地球環境保全の見地から、土中や水中に存在する微生物の作用により自然環境下で分解される生分解性ポリマーが注目されており、様々な生分解性ポリマーが開発されている。これらのうち溶融成型が可能な生分解性ポリマーとして、例えばポリヒドロキシブチレートやポリカプロラクトン、コハク酸やアジピン酸などの脂肪族ジカルボン酸成分と、エチレングリコールやブタンジオールなどのグリコール成分とからなる脂肪族ポリエステルおよびポリ乳酸樹脂などがよく知られている。
  生分解性ポリマーの一つであるポリ乳酸は、透明性が高く、強靱で、水の存在下では容易に加水分解する特性を有するので、汎用樹脂として使用する場合には、廃棄後に環境を汚染することなく分解するので環境にやさしく、また医療用材料として生体内に留置された場合には、医療用材料としての目的達成後に生体に毒性を及ぼすことなく生体内で分解・吸収されるので生体にもやさしい。しかし、耐熱性という観点からすると、ポリ乳酸は生分解性ポリマーの中でもガラス転移温度や融点は高い部類に属するが、汎用樹脂として使用するには十分であるとは言い難い。それ故、分解性と耐熱性を併せ持つ材料の出現が熱望されている。
  従来、ポリ(L-乳酸)とポリ(D-乳酸)をポリマーブレンドすると「ステレオコンプレックス」とよばれる会合体を形成することが知られている。このステレオコンプレックスの融点は約230℃であり、ポリ乳酸ホモポリマーに比べ融点が約50℃上昇する(特許文献1、特許文献2、非特許文献1および特許文献3)。ポリ乳酸樹脂ステレオコンプレックスは、高融点および高結晶性を示し、繊維やフィルム、樹脂成型品として有用な成型品を与えることが知られている。
 しかし、非特許文献1によれば、ポリ(L-乳酸)とポリ(D-乳酸)のポリマーブレンドにより耐熱性を向上させようとすると、ポリ(L-乳酸)とポリ(D-乳酸)のブレンド比が60:40~40:60、好ましくは50:50と言った狭い範囲に限定される。
 これは上記範囲内でないとステレオコンプレックスに由来する融点が発現してもポリ(L-乳酸)[又はポリ(D-乳酸)]ホモポリマーに由来する融点が消失せず、実質的に耐熱性が改善されないためである。工業的スケールで生産されていないD-乳酸の原料入手性を考慮すると、D-乳酸の使用量を減らせることが好ましいが、繊維や容器といった汎用用途へ好適に利用するためには、ポリ(D-乳酸)の使用量が多いポリマーブレンド法は必ずしも良い方法とはいえない。加えて、高分子量のポリ(L-乳酸)とポリ(D-乳酸)をポリマーブレンドすると、ブレンド比が50:50であってもポリ乳酸ホモポリマーの融点が消失しない。従って、ブレンド系では耐熱性が改善され、かつ、十分な機械強度を持つ材料は得られにくい。また、ポリ(L-乳酸)とポリ(D-乳酸)のブロック共重合体については、非特許文献2にその記載がある。非特許文献2によると、アルミニウムトリイソプロポキシドを開始剤として、L-ラクチドとD-ラクチドをリビング開環重合することにより、L-乳酸シーケンスとD-乳酸シーケンスからなるポリ(L-乳酸)およびポリ(D-乳酸)のジブロック共重合体が合成されることが開示されている。
 具体的には、アルミニウムトリイソプロポキシドの存在下、90℃、トルエン溶液中でL-ラクチドを重合し、重合終了後、トルエンに溶解させたD-ラクチドを滴下して更に重合を継続することによりブロック共重合体が合成されている。ブロック共重合体の組成は反応条件やモノマー/開始剤比によって変化し、L-乳酸/D-乳酸=83/17~33/67(重量%)の組成を有するブロック共重合体が合成され、これらのブロック共重合体の重量平均分子量(Mw)はGPCの結果から換算すると約16,000~24,000であり、DSCによる融点は約205℃を示すことが記載されている。しかし前述の通り、これらの共重合体はMwが低すぎるため、耐熱性が改善されていても、機械強度が低くなり繊維や容器といった汎用用途へ利用することはできない。
 上述した問題点を解決するため、ポリ(L-乳酸)セグメントとポリ(D-乳酸)セグメントとからなる高分子量ポリ乳酸ブロック共重合体がいくつか開示されている。例えば、特許文献4および特許文献5には、ポリ(L-乳酸)とポリ(D-乳酸)とを混合し、固相重合する高分子量ブロック共重合体の製造方法が開示されている。しかしながら固相重合には長時間を要するため、生産性の観点から有用であるとは言い難い。また、特許文献6には、両末端がポリ乳酸由来のジオールであるポリ(L-乳酸)セグメントとポリ(D-乳酸)セグメントとからなるブロック共重合体を、多官能性化合物で結合し高分子量化する方法が開示されている。この方法は、明細書中ではジイソシアネートを用いた例が開示されており、両末端ジオールとジイソシアネートから形成する結合は熱安定性の低いウレタン結合である。
 また、ポリ乳酸樹脂ステレオコンプレックスを得るにためは、溶液状態または溶融状態でポリ-L-乳酸とポリ-D-乳酸を混合して作製する必要がある(特許文献1、特許文献2、非特許文献1および特許文献3)。
 成型品としての実用的な強度を達成するためには高分子量のポリ乳酸を用いることが好ましいが、非特許文献1には、ポリ-L-乳酸およびポリ-D-乳酸のそれぞれの分子量が、高分子量、特に10万以上の高分子量ポリ乳酸の組み合わせからは、ステレオコンプレックスポリ乳酸が得られにくいと記載されている。
 高分子量ポリ乳酸の組み合わせからステレオコンプレックスの比率の高い、いわゆる後述するステレオ化度(S)の高いステレオコンプレックスポリ乳酸を得るためには、溶液状態で混合する場合、混合溶液を溶液状態で長期間にわたって保持する必要があり、また溶融状態で混合する場合、長時間の混練を行う必要がある。しかし、これらの操作に伴い分子量が低下してしまい、原料となるポリ-L-乳酸やポリ-D-乳酸の分子量を維持できないという問題が起こる。
 さらには、ポリ-L-乳酸とポリ-D-乳酸の混合物を260℃~300℃の高温条件下で熱処理を行う方法も提案されているが、高いエネルギーが必要であることやポリ乳酸の熱分解により同様に分子量の低下が起こり、さらには機械特性の低下や着色等の問題が起こりうる(特許文献7)。
 このように、分子量とステレオ化度(S)とはトレードオフの関係にあり、高分子量であり且つ高いステレオ化度(S)を同時に満足するステレオコンプレックスポリ乳酸が、耐熱性、熱安定性、機械特性の点から特に望まれている。
 ここで、示差走査熱量(DSC)測定において、ホモ相結晶の融解に対応するピーク温度190℃以下の低融点結晶融解ピークと、ステレオコンプレックス相結晶の融解に対応するピーク温度190℃以上の高融点結晶融解ピークの2本のピークが測定されるが、この低融点結晶融解ピーク面積が高融点結晶融解ピーク面積に比べて大きくなることは、ステレオ化度(S)が低いということを示し、このホモ相結晶が存在するとステレオコンプレックス本来の高耐熱性を阻害する要因となりうる。一方、ステレオ化度(S)が高いということはポリ乳酸の高耐熱性の要因となることはもちろん、ポリ乳酸本来の長所である透明性や表面光沢性の向上にもつながるという利点があることが知られている。
 高分子量のステレオコンプレックスポリ乳酸を得る方法としては、重量平均分子量がそれぞれ数万程度のポリ-L-乳酸とポリ-D-乳酸とを固相重合によりステレオブロック化するという方法がとられているが(特許文献8)、実施例から得られたステレオコンプレックスポリ乳酸の重量平均分子量は10数万程度であり、機械特性を考える上ではさらなる高分子量化が望まれる。また、特許文献8においてはステレオ化度(S)の具体的な記載は見られない。
 一方、高分子量で且つ高ステレオ化度(S)を有するステレオコンプレックスポリ乳酸を得る方法としては、ホモポリ-L-乳酸(PLLA)とジブロックコポリマー(PLLA-block-PDLA)との混合物、或いはホモポリ-D-乳酸(PDLA)とジブロックコポリマー(PLLA-block-PDLA)との混合物から得るという方法(特許文献9)が提案されている。
 特許文献9の実施例中では重量平均分子量が219000のステレオコンプレックスポリ乳酸が得られてはいるが、該実施例では、得られた組成物をさらに180℃で熱風循環型乾燥機中で1時間静置しており、これによりステレオ化度(S)は向上していると考えられるが、一方、この熱処理により分子量は低下していると予想される。
 ステレオ化度(S)の向上、すなわちステレオコンプレックス結晶相の生成を高める方法として、結晶化核剤の適用(特許文献10)、結晶化促進剤の適用(特許文献11)が提案されているが、これら添加剤の適用により、溶融時における重量平均分子量の低下が起こり、さらにはポリ乳酸本来の長所である透明性や表面光沢性の低下などの要因となる。また、これら添加剤の使用はコスト高の要因となることから、添加剤を使用しない単独でのステレオ化度(S)の高いステレオコンプレックスポリ乳酸が望まれる。
 ステレオコンプレックスポリ乳酸の利用形態としては、加熱溶融による成型加工品が考えられる。この工程により成型加工後のステレオ化度(S)が上昇することが考えられるが、一方で、加熱溶融による分子量の低下や機械特性の低下が懸念される。
 そこで、熱安定性の向上としてリン系の触媒失活剤の適用(特許文献12)、無機フィラーや有機フィラーの適用(特許文献13)、タルクなどの結晶核剤の適用(特許文献14)などの方法が知られているが、ポリ乳酸にとっては異物となるこれら各種添加剤の混入は、機械物性の低下やポリ乳酸本来の長所である透明性や表面光沢性が損なわれる場合がある。また、これら添加剤の使用はコスト高の要因となることから、添加剤を使用しない単独での高い熱安定性を有するステレコンプレックスポリ乳酸が望まれる。
 また、本発明者らは、ポリ乳酸とポリイソシアネート化合物とをアミド化触媒の存在下で反応させることにより、実用上充分な高分子量を持ち、かつ結晶化度が高い、フィルムなど生分解性を要求される分野で好適に用いられるポリエステル系樹脂を開示している(特許文献15)。
特開昭61-36321号公報 特開昭63-241024号公報 特開平2000-17163号公報 特開2003-238672号公報 特開2006-28336号公報 特開2002-356543号公報 特開2007-191548号公報 特開2009-40997号公報 特開2008-248022号公報 特開2003-192884号公報 特開2007-191630号公報 特開2009-249518号公報 特開2006-265486号公報 特許第3410075号 国際公開WO2009/110472号
Macromolecules 1991, 24, 5651. Makromol.Chem.1990, 191, 481.
 本願発明者により上記特許文献6の実施例を追試した結果、ステレオコンプレックスの融点以上である高い成形温度領域ではウレタン結合の分解と思われる熱分解が生じ、結果として分子量が低下するという問題が判明した。
 本発明{1}が解決しようとする課題は、高分子量で高耐熱性を有し、アミド結合を分子鎖に有するポリ乳酸系樹脂(I)、その製造方法およびその用途を提供することである。
 本発明{2}が解決しようとする課題は、ステレオコンプレックス形成能が高いポリ乳酸樹脂組成物(C)および該組成物(C)からなる耐熱性、機械特性等に優れる成形品を提供することである。
 本発明{3}が解決しようとする課題は、高い重量平均分子量(Mw)、高いステレオ化度(S)、高い熱安定性を同時に満足する、耐熱性、熱安定性、機械特性に優れたステレオコンプレックスポリ乳酸樹脂組成物(Z)ならびに、生産性、操作性に優れたその製造方法を提供することである。
 本発明者らは、鋭意検討した結果、特定の反応工程を経ることにより得られ、アミド結合を分子鎖に有するポリ乳酸系樹脂(I)が、高分子量および高融点を有しており、高い熱安定性を有していることを見出し、本発明{1}に到達した。更には、特定の反応工程を経ることにより、高分子量で熱安定性に優れたポリ乳酸系樹脂を安価に製造できることを見出し、本発明{1}に到達した。
 すなわち、本発明{1}は、
〔1〕
 末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物とポリイソシアネート化合物を反応させることにより得られ、下記式(1)で表される構成単位を含むポリ乳酸系樹脂(I)。
Figure JPOXMLDOC01-appb-C000002
(式(1)において、Rはポリイソシアネート残基であって、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭素数3~20の炭化水素基または芳香環を含む炭素数6~20の炭化水素基を表す。)
〔2〕
 前記ポリ(L-乳酸)とポリ(D-乳酸)の末端官能基がカルボキシル基である割合が90%以上であることを特徴とする〔1〕に記載のポリ乳酸系樹脂(I)。
〔2’〕
 前記ポリ(L-乳酸)とポリ(D-乳酸)の末端官能基がカルボキシル基である割合が85%以上であることを特徴とする〔1〕に記載のポリ乳酸系樹脂(I)。
〔3〕
 重量平均分子量が50,000~1,000,000であることを特徴とする〔1〕または〔2〕に記載のポリ乳酸系樹脂(I)。
〔4〕
 示差走査熱量測定により昇温速度10℃/minで昇温したときの融点(Tm)(融解ピークのピークトップ)が180℃≦Tm≦230℃であることを特徴とする〔1〕~〔3〕に記載のポリ乳酸系樹脂(I)。
 〔5〕
 ポリ乳酸系樹脂(1)100重量部に対し安定剤を0.001~5重量部含有することを特徴とする〔1〕~〔4〕に記載のポリ乳酸系樹脂(I)。
〔6〕
 重量平均分子量がMXの前記ポリ乳酸系樹脂を240℃で10分間保持した後の重量平均分子量MYが MY ≧ 0.8 × MX であることを特徴とする〔1〕~〔5〕に記載のポリ乳酸系樹脂(I)。
〔7〕
 前記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量がそれぞれ5,000~100,000であり、得られるポリ乳酸系樹脂の重量平均分子量が、100,000~1,000,000であり、かつ前記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量の3倍以上200倍以下であることを特徴とする〔1〕~〔6〕に記載のポリ乳酸系樹脂(I)。
〔8〕
 前記ポリイソシアネート化合物が、脂肪族ジイソシアネート化合物であることを特徴とする〔1〕~〔7〕に記載のポリ乳酸系樹脂(I)。
 〔9〕
 末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物と、ポリイソシアネート化合物とを反応させる工程を含む〔1〕~〔8〕に記載のポリ乳酸系樹脂(I)の製造方法。
〔10〕
 前記ポリイソシアネート化合物が、脂肪族ジイソシアネート化合物であることを特徴とする〔9〕に記載のポリ乳酸系樹脂(I)の製造方法。
〔11〕
 アミド化触媒の存在下で前記混合物とポリイソシアネート化合物を反応させる工程を含むことを特徴とする〔9〕または〔10〕に記載のポリ乳酸系樹脂(I)の製造方法。
〔12〕
 前記アミド化触媒が、周期律表第1族、2族および3族に属する金属からなる群より選ばれる少なくとも1種の金属を含むことを特徴とする〔11〕に記載のポリ乳酸系樹脂(I)の製造方法。
〔13〕
 前記アミド化触媒が、マグネシウムまたはカルシウムを含むことを特徴とする〔11〕に記載のポリ乳酸系樹脂(I)の製造方法。
〔14〕
 〔1〕~〔8〕に記載のポリ乳酸系樹脂(I)を含有することを特徴とする成型体。
を提供するものである。
 また、本発明者らは、鋭意検討した結果、L-乳酸を主成分とするポリ乳酸樹脂とD-乳酸を主成分とするポリ乳酸樹脂からなり、少なくとも一方のポリ乳酸樹脂がポリイソシアネート化合物を用いてアミド結合を形成させたポリ乳酸樹脂であることを特徴とするポリ乳酸樹脂組成物であって、該ポリ乳酸樹脂組成物が高いステレオコンプレックス形成能を有し、該組成物を用いることにより、比較的マイルドな条件でステレオコンプレックスの形成および成型が可能になり、耐熱性、機械特性に優れた成型品が得られることを見出し、本発明{2}を完成した。
 すなわち、本発明{2}は、
 〔15〕
 L-乳酸を主成分とするポリ乳酸樹脂(A-1)とD-乳酸を主成分とするポリ乳酸樹脂(A-2)を含有し、少なくとも一方のポリ乳酸樹脂(A-1またはA-2)がL-乳酸を主成分とする乳酸オリゴマー(a-1)またはD-乳酸を主成分とする乳酸オリゴマー(a-2)にポリイソシアネート化合物を反応させて得られたアミド結合を有するポリ乳酸樹脂(B)であることを特徴とするポリ乳酸樹脂組成物(C)。
である。
 〔16〕
 前記L-乳酸を主成分とするポリ乳酸樹脂(A-1)およびD-乳酸を主成分とするポリ乳酸樹脂(A-2)の重量平均分子量が70,000~500,000であることは成形性の点で好ましい態様である。
 〔17〕
 前記乳酸オリゴマー(a-1)または(a-2)の重量平均分子量が5,000~100,000以下であることはポリ乳酸樹脂の融点向上の点で好ましい態様である。
 〔18〕
 〔15〕のポリイソシアネート化合物が脂肪族ジイソシアネートであることは色調の点で好ましい態様である。
 〔19〕
 リン系安定剤(D)を、ポリ乳酸樹脂組成物(C)100重量部あたり0.001~5重量部含有することは色相および成型時の粘度安定性向上の点で好ましい態様である。
 〔20〕
 フェノール系安定剤(E)を、ポリ乳酸樹脂組成物(C)100重量部あたり0.001~5重量部含有することは色相および成型時の粘度安定性向上の点で好ましい態様である。
 〔21〕
 示差走査熱量計(DSC)測定において、昇温過程における融解ピークのうち、195℃以上のポリ乳酸樹脂の融解ピークの割合が70%以上であることは耐熱性向上の点で好ましい。
そして、さらに、
 〔22〕
 〔15〕~〔21〕に記載のポリ乳酸樹脂組成物(C)から得られる成型体。
である。
 また、本発明者らは、鋭意検討した結果、主な繰り返し単位がL-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x'1)と、主な繰り返し単位がD-乳酸であり、(x'1)よりも大きい分子量を持つポリマー(Y1)の混合物、或いは、主な繰り返し単位がD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y'1)と、主な繰り返し単位がL-乳酸であり、(y'1)よりも大きい分子量を持つポリマー(X1)の混合物と、ポリイソシアネート化合物を反応させて得られるステレオコンプレックスポリ乳酸樹脂組成物(Z)が、高い重量平均分子量(Mw)を有し、さらにステレオ化度(S)が高く、さらに熱負荷後の重量平均分子量(Mw)低下が抑制できることを見出した。さらに、比較的低温並びに短時間の条件下で高い分子量、高いステレオ化度(S)、高い熱安定性を同時に満足するステレオコンプレックスポリ乳酸が製造されることを見出し、本発明{3}を完成した。
 前述したようにステレオコンプレックスポリ乳酸の利用形態としては、加熱溶融による成型品が考えられる。この工程により成型加工後のステレオ化度(S)が上昇することが考えられ、従来この熱負荷後のステレオ化度(S)についての議論がなされている。一方、本発明者が知る限り、熱負荷前のステレオ化度(S)についての議論はあまり行われていないのが現状である。熱負荷前の状態でステレオ化度(S)が高い場合、あまり高い熱負荷をかけなくても容易にステレオ化度(S)がさらに上昇し(S=100%)、しいては分子量の低下を抑制することができるのではないかと本発明者らは推測した。
 すなわち、本発明{3}は、
〔23〕
 重量平均分子量が70,000~500,000であり、下記要件(i)~(iv)を満たすステレオコンプレックスポリ乳酸樹脂組成物(Z)。
(i)ステレオ結晶化比率が51%以上
保持温度240℃、保持時間1分における示差走査熱量(DSC)測定において、
(ii)第一昇温過程におけるステレオ化度(S)が60%以上
(iii)第二昇温過程におけるステレオ化度(S)が88%以上
(iv)第二昇温過程後の重量平均分子量(Mw)保持率が77%以上
〔24〕
 重量平均分子量が70,000~500,000であり、下記要件(i')~(iv')を満たすステレオコンプレックスポリ乳酸樹脂組成物(Z)。
(i')ステレオ結晶化比率が51%以上
保持温度240℃、保持時間5分における示差走査熱量(DSC)測定において、
(ii')第一昇温過程におけるステレオ化度(S)が60%以上
(iii')第二昇温過程におけるステレオ化度(S)が95%以上
(iv')第二昇温過程後の重量平均分子量(Mw)保持率が70%以上
 〔25〕
 主な繰り返し単位がL-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x'1)と、主な繰り返し単位がD-乳酸であり、(x'1)よりも大きい分子量を持つポリマー(Y1)の混合物、或いは、
主な繰り返し単位がD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y'1)と、主な繰り返し単位がL-乳酸であり、(y'1)よりも大きい分子量を持つポリマー(X1)の混合物と、
ポリイソシアネート化合物を反応させることにより得られる前記ステレオコンプレックスポリ乳酸樹脂組成物(Z)。
 〔26〕
 主な繰り返し単位がL-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x'1)30~300重量部と、主な繰り返し単位がD-乳酸であり、(x'1)よりも大きい分子量を持つポリマー(Y1)100重量部の混合物、或いは、
主な繰り返し単位がD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y'1)30~300重量部と、主な繰り返し単位がL-乳酸であり、(y'1)よりも大きい分子量を持つポリマー(X1)100重量部の混合物と、
ポリイソシアネート化合物を反応させる工程を含むことを特徴とするステレオコンプレックスポリ乳酸樹脂組成物の製造方法。
 〔27〕
 前記ステレオコンプレックスポリ乳酸樹脂組成物(Z)を含有する成型体。
である。
 本発明{1}のポリ乳酸系樹脂(I)は、アミド結合を分子鎖中に有し、実用上充分な高分子量を有し、かつ高融点および高い熱安定性を有するので、フィルム、シート、成型体、繊維などの機械特性、耐熱性を必要とする用途に好適に用いることができる。
 本発明{2}の組成物(C)は、比較的マイルドな条件で高いステレオコンプレックス形成能を有する。本発明{2}のポリ乳酸樹脂組成物(C)を用いた成型体は比較的マイルドな条件で成型して得られ、良好な耐熱性、機械特性、耐薬品性、および耐加水分解性を有し、加えて成型加工温度を低くできるため、環境負荷が低減される。
 本発明{3}の組成物(Z)は、高い重量平均分子量(Mw)、高いステレオ化度(S)、高い熱安定性を同時に満足するステレオコンプレックスポリ乳酸樹脂組成物(Z)であり、さらに比較的低温並びに短時間での製造が可能であり、良好な耐熱性、熱安定性、を有し、生産性、操作性に優れた製造方法で得られる。
実施例3-14のステレオコンプレックスポリ乳酸樹脂組成物の製造中のGPCクロマトグラムの経時変化 実施例3-59のステレオコンプレックスポリ乳酸樹脂組成物の製造中のGPCクロマトグラムの経時変化
 ≪ポリ乳酸系樹脂(I)≫
 本発明{1}のポリ乳酸系樹脂(I)は、末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物と、ポリイソシアネート化合物を反応させることにより得られ、下記式(1)で表される構成単位を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000003
 式(1)において、Rはポリイソシアネート残基であって、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭素数3~20の炭化水素基または芳香環を含む炭素数6~20の炭化水素基を表す。
 前記炭素数1~20の脂肪族炭化水素基の具体例としては、メチレン、エチレン、プロピレン、メチルエチレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,2-ジメチルプロピレン、1,3-ジメチルプロピレン、1-メチルブチレン、2-メチルブチレン、3-メチルブチレン、4-メチルブチレン、2,4-ジメチルブチレン、1,3-ジメチルブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン、デシレン、ドデシレン、エタン-1,1-ジイル、プロパン-2,2-ジイル、トリデシレン、テトラデシレン、ペンタデシレン、ヘキサデシレン、ヘプタデシレン、オクタデシレンおよびノナデシレン等が挙げられるが、かかる脂肪族炭化水素基中の任意の-CH2-は-O-、-CO-、-COO-または-SiH2-で置換されていてもよい。
 また、前記脂環構造を含む炭素数3~20の炭化水素基の具体例としては、シクロプロピレン、1,3-シクロブチレン、1,3-シクロペンチレン、1,4-シクロヘキシレン、1,5-シクロオクチレン、ノルボニレン、1,3-シクロペンチレン、1,2-シクロヘキシレン、1,4-ジメチレンシクロヘキサン、1,3-ジメチレンシクロヘキサン、1-メチル-2,4-シクロヘキシレン、4,4′-メチレン-ビスシクロヘキシレン、および3-メチレン-3,5,5-トリメチル-シクロヘキシレンが挙げられる。
 また、前記芳香環を含む炭素数6~20の炭化水素基の具体例としては、m-フェニレン、p-フェニレン、4,4′-ジフェニレン、1,4-ナフタレンおよび1,5-ナフタレン、4,4′-メチレンジフェニレン、2,4-トリレン、2,6-トリレン、m-キシリレン、p-キシリレン、m-テトラメチルキシリレン、4,4′-オキシジフェニレンおよびクロロジフェニレンが挙げられる。
 前記Rとしては、これらの官能基の中でもブチレン、ペンチレン、ヘキシレン、ドデシレン、3-メチレン-3,5,5-トリメチル-シクロヘキシレン、1,3-ジメチレンシクロヘキサン、4,4′-メチレン-ビスシクロヘキシレンが好ましく、ヘキシレンがより好ましい。
 また、上記式(1)で表される構成単位は、上記ポリ乳酸系樹脂(I)1分子あたりに、1~200ユニット、好ましくは1~100ユニット、より好ましくは3~50ユニット、更に好ましくは5~30ユニット含んでいる。
 一般式(1)で表されるユニットは、ポリ乳酸の末端カルボキシル基とイソシアネート基との反応により形成することができ、後述するアミド化触媒を使用することにより、カルボキシル基を効率的にアミド基に変換することが可能である。
 ポリ乳酸末端のカルボキシル基の割合はポリ乳酸系樹脂のカルボン酸価測定およびNMRを測定することにより算出することができる。
 [ポリ(L-乳酸)およびポリ(D-乳酸)]
  本発明{1}で使用するポリ(L-乳酸)およびポリ(D-乳酸)の末端は、50%を超える割合でカルボキシル基になっている。末端のカルボキシル基率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。末端のカルボキシル基率が50%以下であると、ポリ乳酸系樹脂中のウレタン結合の割合が増え、ポリ乳酸系樹脂を溶融させた場合に分子量低下が起こりやすく、成形時の溶融粘度低下などが起こり安定した加工成形が困難になる。
  本発明{1}においてポリ(L-乳酸)およびポリ(D-乳酸)とは、構成単位の80モル%以上がL体乳酸またはD体乳酸であるものをいい、20モル%未満で他の光学異性体または本発明{1}の目的を損なわないものであれば、他の成分単位を含んでいてもよい。
本発明{1}においてL-乳酸またはD-乳酸とは、L体乳酸またはD体乳酸を80モル%以上含有するものをいう。L体含有率またはD体含有率は高い方が好ましく、好ましくは90モル%以上、より好ましくは95モル%以上、特に好ましくは98モル%以上である。L体含有率またはD体含有率が前記範囲内であると、得られるポリ乳酸系樹脂は高い耐熱性を発現する。
  L-乳酸またはD-乳酸以外の他の成分単位としては、後述する製法にある開始剤を含め、多価カルボン酸、多価アルコール、多価アミン、ヒドロキシカルボン酸、ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリアミド、各種ポリカーボネート等由来の単位を単独、もしくは混合して使用することができ、具体的には、コハク酸、アジピン酸、セバシン酸、フマル酸、フタル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸、マレイン酸、テトラブロムフタル酸、テトラヒドロフタル酸などの多価カルボン酸類またはそれらの誘導体、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、ポリ(ビニルアルコール)、ポリ(ヒドロキシエチルメタクリレート)、ポリ(ヒドロキシプロピルメタクリレート)、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの多価アルコール類またはそれらの誘導体、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン、ヘキシレンジアミン、ヘプチレンジアミン、ジエチレントリアミン、メラミンなどの多価アミン類またはそれらの誘導体、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロシキ-3,3-ジメチル酪酸、2-ヒドロシキ-3-メチル酪酸、2-メチル乳酸、2-ヒドロキシカプロン酸、2-シクロヘキシル-2-ヒドロキシ酢酸、マンデル酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸類、グリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンなどのラクトン類などが挙げられる。
  [重量比]
  本発明{1}のポリ乳酸系樹脂のポリ(L-乳酸)とポリ(D-乳酸)の重量比は10:90~90:10が好ましく、30:70~70:30がより好ましい。重量比がこの範囲であると、融点が高くなり耐熱性に優れる傾向にある。
 [末端官能基のカルボキシル基率が50%を超えるポリ(L-乳酸)およびポリ(D-乳酸)の調製方法]
 本発明{1}におけるポリ(L-乳酸)およびポリ(D-乳酸)の調製方法は、本発明{1}の目的を損なわないものであれば特に限定されないが、例えば、乳酸を直接脱水縮合する直接重縮合法、ラクチドを開環重合する開環重合法、およびこれらと固相重合を組み合わせた方法を挙げることができる。
 (直接重縮合法)
 末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)またはポリ(D-乳酸)を直接重縮合法により調製する具体例としては、原料のL-乳酸またはD-乳酸を不活性ガス雰囲気中において加熱し、圧力を降下させて重縮合反応させ、最終的に所定の温度および圧力の条件下で重縮合反応を行うことにより、ポリ(L-乳酸)またはポリ(D-乳酸)を得る方法がある。このとき、原料である乳酸とともにポリカルボン酸または酸無水物等を重合初期、途中または後期のいずれかに添加することにより末端官能基におけるカルボキシル基の割合が50%を超えるポリ(L-乳酸)および末端官能基におけるカルボキシル基の割合が50%を超えるポリ(D-乳酸)を調製することができる。
 該ポリカルボン酸成分としてはジカルボン酸が好ましく、該ジカルボン酸成分としては、コハク酸、フタル酸、マレイン酸、テトラブロムフタル酸、テトラヒドロフタル酸、トリメリット酸またはドデシルコハク酸などが挙げられ、コハク酸がコスト面からより好ましい。該酸無水物としては無水コハク酸、無水フタル酸、無水マレイン酸、テトラブロム無水フタル酸、テトラヒドロ無水フタル酸、無水トリメリット酸、ドデシル無水コハク酸などが挙げられ、無水コハク酸が特に好ましい。
 該ポリカルボン酸または酸無水物を重合後期に添加する場合の添加量は、添加前のポリ(L-乳酸)またはポリ(D-乳酸)100重量部に対して、好ましくは0.1~10重量部であり、さらに好ましくは0.5~8重量部であり、特に好ましくは0.5~5重量部である。該ポリカルボン酸または酸無水物を重合途中または後期に添加する場合、後述するポリ(L-乳酸)およびポリ(D-乳酸)の目的の分子量にあわせて添加すればよい。具体的には、使用するL-乳酸またはD-乳酸100重量部に対して0.001~5重量部が好ましく、0.01~3重量部がより好ましい。また、該ポリカルボン酸または酸無水物を重合途中または初期に添加する場合、後述するポリ(L-乳酸)およびポリ(D-乳酸)の目的の分子量にあわせて添加すればよい。具体的には、使用するL-乳酸またはD-乳酸100モルに対して好ましくは0.19~3.8モル、より好ましくは0.24~1.9モル、さらに好ましくは0.38~1.9モルである。

 該ポリカルボン酸または酸無水物の添加量が前記範囲にあると、重合に長時間を要すことなく分子量を所望の範囲にすることができる。
 また、該重縮合反応は重縮合時間を短縮する目的や、上記ポリカルボン酸または酸無水物の反応性を高めたり反応時間を短縮する目的で、触媒存在下に行ってもよい。
 該触媒としては、周期律表第2族、12族、13族、14族、15族の金属、またはその酸化物もしくはその塩等が挙げられる。具体的には、亜鉛末、錫末、アルミニウムもしくはマグネシウム等の金属、酸化アンチモン、酸化亜鉛、酸化錫、酸化アルミニウム、酸化マグネシウムもしくは酸化チタン等の金属酸化物、塩化第一錫、塩化第二錫、臭化第一錫、臭化第二錫、フッ化アンチモン、塩化亜鉛、塩化マグネシウムもしくは塩化アルミニウム等の金属ハロゲン化物、炭酸マグネシウムもしくは炭酸亜鉛等の炭酸塩、酢酸錫、2-エチルヘキサン酸錫、乳酸錫、酢酸亜鉛もしくは酢酸アルミニウム等の有機カルボン酸塩、またはトリフルオロメタンスルホン酸錫、トリフルオロメタンスルホン酸亜鉛、トリフルオロメタンスルホン酸マグネシウム、メタンスルホン酸錫もしくはp-トルエンスルホン酸錫等の有機スルホン酸塩等が挙げられる。その他、ジブチルチンオキサイド等の上記金属の有機金属酸化物、チタニウムイソプロポキサイド等の上記金属の金属アルコキサイド、ジエチル亜鉛等の上記金属のアルキル金属、ダウエックスもしくはアンバーライト等のイオン交換樹脂等、または、硫酸、メタンスルホン酸もしくはp-トルエンスルホン酸等のプロトン酸などが挙げられ、重合速度が速く高分子量のポリマーが得られる錫もしくは亜鉛の金属またはその金属化合物が好ましい。さらには、金属錫または酸化錫や塩化錫等の錫化合物を用いることが、色相、触媒活性の点から特に好ましい。触媒の添加量は、特に限定されるものではないが、使用するL-乳酸またはD-乳酸100重量部に対して0.001~2重量部が好ましく、とくに0.001~1重量部がより好ましい。また、使用するL-乳酸またはD-乳酸100モルに対して0.01~2モルが好ましく、0.1~1モルがより好ましい。
 本願{1}において触媒は必須ではないが、触媒量が0.001重量部未満では重合時間の短縮という触媒の効果が十分に現れない場合がある。また、2重量部を越えて触媒を配合した場合、触媒残渣の影響によるポリ乳酸系樹脂成形加工時の分子量低下や熱分解等を抑えるために、別途触媒残渣除去工程が必要になる場合がある。
 (開環重合法)
 末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を開環重合法により調製する具体例としては、上述した乳酸環状二量体であるL-ラクチドおよびD-ラクチドを、水酸基またはアミノ基を分子内に2個以上含有する化合物、ヒドロキシカルボン酸および水等の開始剤を用いて開環重合した後、酸無水物を添加することにより得る方法が挙げられる。該水酸基またはアミノ基を分子内に2個以上含有する化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、ポリ(ビニルアルコール)、ポリ(ヒドロキシエチルメタクリレート)、ポリ(ヒドロキシプロピルメタクリレート)などの多価アルコール、エチレンジアミン、プロパンジアミン、ブタンジアミン、ペンタンジアミン、ヘキサンジアミン、ヘプタンジアミン、ジエチレントリアミン、メラミンなどの多価アミンなどが挙げられる。上記開始剤の添加量は、特に限定されるものではないが、使用するラクチド(L-ラクチドまたはD-ラクチド)100重量部に対して0.001~5重量部が好ましく、0.01~3重量部がより好ましい。また、使用するラクチド(L-ラクチドまたはD-ラクチド)100モルに対して0.38~7.7モルが好ましく、0.48~3.84モルがより好ましく、0.77~3.84モルが更に好ましい。
 重合開始剤量が前記範囲にあると、分子量を所望の範囲にすることができる。
 酸無水物としては直接重縮合法で用いることができる酸無水物の具体例と同様の化合物が挙げられ、無水コハク酸が好ましい。該酸無水物の添加量は、添加前のポリ(L-乳酸)またはポリ(D-乳酸)100重量部に対して、0.1~10重量部であり、好ましくは0.5~8重量部であり、さらに好ましくは0.5~5重量部である。
 また、該開環重合は、重合時間を短縮する目的や、上記酸無水物との反応率を高めたり反応時間を短縮する目的で、触媒存在下に行ってもよい。
 該触媒としては、例えば、錫、亜鉛、鉛、チタン、ビスマス、ジルコニウム、ゲルマニウム、アンチモン、アルミニウムなどの金属及びその誘導体が挙げられる。誘導体としては、金属アルコキシド、カルボン酸塩、炭酸塩、酸化物、ハロゲン化物が好ましい。具体的には、塩化錫、2-エチルヘキサン酸錫、塩化亜鉛、酢酸亜鉛、酸化鉛、炭酸鉛、塩化チタン、アルコキシチタン、酸化ゲルマニウム、酸化ジルコニウムなどが挙げられる。これらの中でも、錫化合物が好ましく、特にオクチル酸錫がより好ましい。触媒の添加量は、特に限定されるものではないが、使用するL-ラクチドまたはD-ラクチド100重量部あたり0.001~2重量部が好ましく、とくに0.001~1重量部がより好ましい。また、使用するL-ラクチドまたはD-ラクチド100モルに対して0.01~2モルが好ましく、0.1~1モルがより好ましい。
 本願{1}において触媒は必須ではないが、触媒量が0.001重量部未満では重合時間の短縮という触媒の効果が十分に現れない場合がある。また、2重量部を越えて触媒を配合した場合、触媒残渣の影響によるポリ乳酸系樹脂成形加工時の分子量低下や熱分解等を抑えるために、別途触媒残渣除去工程が必要になる場合がある。
(固相重合)
前記直接重合法または開環重合法と固相重合法とを組み合わせた方法としては、例えば特開2000-302852号や、特開2001-122954号等に記載されている方法を用いることができる。
 [ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量<Mw>]
 前記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量は、それぞれ5,000~100,000であることが好ましく、10,000~80,000であることがより好ましく、10,000~50,000であることがさらに好ましい。上記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量が前記範囲内であると重合時間が短く、工程時間の短縮が可能である点で好ましい。
 なお、本発明{1}において、重量平均分子量(以下「Mw」とも記す)は、後述する実施例に記載した測定方法で求める。
 [ポリ(L-乳酸)およびポリ(D-乳酸)の触媒残渣量]
 ポリ(L-乳酸)およびポリ(D-乳酸)中の触媒に由来する(重)金属の含有量は、それぞれ300ppm以下であることが好ましく、100ppm以下であることがより好ましく、30ppm以下であることがさらに好ましい。当該含有量の下限値は特に限定されない。前記ポリ(L-乳酸)およびポリ(D-乳酸)中の触媒に由来する(重)金属の含有量がそれぞれ前記範囲内であると、高分子量のポリ乳酸系樹脂[1]が得られ、その熱安定性が高くなる傾向にある。
 (重)金属の中でもSnの含有量が300ppm以下であることが好ましく、100ppm以下であることがより好ましく、30ppm以下であることがさらに好ましい。当該Sn含有量の下限値は特に限定されない。特にSnの含有量を前記範囲に制御することにより高分子量のポリ乳酸系樹脂[1]が得られ、その熱安定性が高くなる傾向がある。ポリ(L-乳酸)およびポリ(D-乳酸)に含有されるSnの除去方法としては、公知の方法を用いることができ、例えば、塩酸/2-プロパノールにより処理する方法が挙げられる。なお、Sn等の(重)金属の含有量の測定方法は以下のとおりである。
 試料を硫酸および過酸化水素により湿式分解後、得られた分解物を1ml定容し、塩酸で40倍に希釈したものを検液として、ICP発光分光分析装置(SHIMADZU社製、ICPS-8100型)によりSn等の重金属の含有量を測定する。該測定方法によるSn等の重金属の含有量の検出限界は、4ppm未満である。
 [共重合成分]
本発明{1}における末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含んだ混合物には、ポリ(L-乳酸)およびポリ(D-乳酸)以外に共重合成分を含んでいてもよい。
 前記共重合成分としては、本発明{1}の目的を損なわないものであれば特に限定されるものではなく、物性改良の目的等に応じて用いることができる。例えばポリ乳酸以外のポリヒドロキシカルボン酸、ポリエステル、ポリアミド、ポリカーボネート等を用いることができる。
 前記共重合成分の含有量は、本発明{1}の目的を損なわないものであれば特に限定されるものでは無く、末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)の混合物100重量部に対し、0~40重量部、好ましくは5~20重量部、より好ましくは5~10重量部を用いることが好ましい。
 ポリヒドロキシカルボン酸の具体例としてはポリグリコール酸、ポリ(3-ヒドロキシ酪酸)、ポリ(4-ヒドロキシ酪酸)、ポリ(2-ヒドロキシ-n-酪酸)、ポリ(2-ヒドロキシ-3,3-ジメチル酪酸)、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-メチル乳酸)、ポリ(2-ヒドロキシカプロン酸)、ポリ(2-ヒドロキシ-3-メチル酪酸)、ポリ(2-シクロヘキシル-2-ヒドロキシ酢酸)、ポリ(マンデル酸)もしくはポリカプロラクトン、またはこれらの共重合体もしくは混合物などが挙げられる。
 ポリエステルとは、主たる成分がグリコール成分とジカルボン酸成分からなる繰り返しユニットに代表されるポリエステルであるが、3成分以上の共重合体でもよく、グリコール成分やジカルボン酸成分以外の共重合物が含まれても良い。上記グリコール成分としては、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどが挙げられ、これらは1種または2種以上用いることができる。
 ジカルボン酸成分としては、コハク酸、シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸、およびこれらのジメチルエステル体などが挙げられ、これらも1種または2種以上用いることができる。
 また、その他共重合成分としてグリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸を含んでも良い。
 代表的なポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンイソフタレート、ポリプロピレンイソフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンテレフタレート、ビスフェノールAテレフタレート、ビスフェノールAイソフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリシクロヘキサンジメチレンイソフタレート、ポリエチレンスルホイソフタレート、ポリブチレンスルホイソフタレート、ポリプロピレンスルホイソフタレート、ポリブチレンセバテート、ポリプロピレンセバテート、ポリエチレンセバテート、ポリ-ε-カプロラクトン、ポリエチレンオキサレート、ポリプロピレンオキサレート、ポリブチレンオキサレート、ポリネオペンチルグリコールオキサレート、ポリエチレンサクシネート、ポリプロピレンサクシネート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリプロピレンアジペート、ポリエチレンアジペートなどが挙げられる。
 ポリアミドとはアミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる成分とする重合体または共重合体である。アミノ酸としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸およびパラアミノメチル安息香酸などが挙げられ、ラクタムとしてはε-カプロラクタムおよびω-ラウロラクタムなどが挙げられる。
 ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,8-ビス(アミノメチル)トリシクロデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジンおよびアミノエチルピペラジンなどが挙げられる。
 ジカルボン酸としてはコハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸およびジグリコール酸などが挙げられる。
 これらの原料から誘導されるホモポリマーまたはコポリマーを用いることができる。
 ポリアミドの具体例としては、ポリカプロアミド、ポリヘキサメチレンアジパミド、ポリテトラメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカミド、ポリウンデカンアミド、ポリドデカンアミド、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー、ポリキシリレンアジパミド、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマーが挙げられる。
 ポリカーボネートとはカーボネート結合を有する樹脂であって、芳香族ヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物をカーボネート前駆体と反応させることによって得られる重合体または共重合体である。
 芳香族ヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホン、ハイドロキノン、レゾルシノール、4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプテン、2,4,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリ(4-ヒドロキシフェニル)ヘプテン、1,3,5-トリ(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリ(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシアリール)オキシインドール、5-クロル-3,3-ビス(4-ヒドロキシアリール)オキシインドール、5,7-ジクロル-3,3-ビス(4-ヒドロキシアリール)オキシインドール、5-ブロム-3,3-ビス(4-ヒドロキシアリール)オキシインドールなどが挙げられ、これらは1種または2種以上を併用してもよい。
 カーボネート前駆体としては、カルボニルハライド、カーボネートエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートなどが挙げられる。
 上記共重合成分の末端官能基は特に限定はされないが、カルボキシル基に変換されたものであることが好ましい。
 [ポリ乳酸系樹脂(I)の製造方法]
 前記ポリ乳酸系樹脂(I)の製造方法は、末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含んだ前記混合物と、ポリイソシアネート化合物とを反応させる工程を含む。また、この反応ではアミド化触媒を用いることが好ましい。該工程の具体例として以下の方法が挙げられるが、本発明{1}の目的を損なわない限り、何らこれに限定されない。
 まず、前記ポリ(L-乳酸)およびポリ(D-乳酸)を含む混合物と溶媒とを混合し、常圧、窒素雰囲気下で、該混合物を所定の温度まで昇温する。次に、該混合物に必要に応じて触媒を加えた後、さらにポリイソシアネート化合物を加え、所定の温度で反応させる。最後に、得られた反応生成物を脱炭酸することによりポリ乳酸系樹脂(I)を得ることができる。前記ポリイソシアネート化合物は、ジイソシアネート化合物であることが好ましい。
 また、本発明{1}のポリ乳酸系樹脂(I)は、下記式(2)および(3)、または下記式(4)および(5)からなる群より選ばれるいずれかの式の組み合わせで表わされる構成単位を主成分として有するポリ乳酸系樹脂が好ましい。
 ここで「主成分として有する」とはポリ乳酸系樹脂(1)100重量%中に、下記式(2)および(3)、または下記式(4)および(5)からなる群より選ばれるいずれかの式の組み合わせで表される構成単位を60重量%以上、より好ましくは90重量%以上含むことを意味する。
Figure JPOXMLDOC01-appb-C000004
 式(2)および(3)中、R1はそれぞれ、置換または無置換の炭素数1~20の脂肪族炭化水素基、炭素数2~20の不飽和炭化水素基または芳香族炭化水素基を表し、nはそれぞれ20~1500、好ましくは25~1500、より好ましくは30~1500の整数を表す。前記置換または無置換の炭素数1~20の脂肪族炭化水素基は、上述したジカルボン酸または酸無水物の残基であり、エチレン等が挙げられる。前記炭素数2~20の不飽和炭化水素基は、上述したジカルボン酸または酸無水物の残基であり、ビニレン等が挙げられる。前記芳香族炭化水素基は、上述したジカルボン酸または酸無水物の残基であり、1,2-フェニレン等が挙げられる。
 なお、前記式(2)および(3)中の( )内の乳酸由来のユニットは、その20モル%未満が他の光学異性体の乳酸、乳酸以外の成分単位または開始剤に由来するユニットで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(4)および(5)中、R1は、それぞれ前記式(2)および(3)中のR1と同義であり、nおよびmは、それぞれ独立に前記式(2)および(3)中のnと同義である。
 なお、前記式(4)および(5)中の( )内の乳酸由来のユニットは、その20モル%未満が他の光学異性体の乳酸、乳酸以外の成分単位または開始剤に由来するユニットで置換されていてもよい。
 上記式(2)および(3)、または(4)および(5)からなる群より選ばれるいずれかの式の組み合わせで表される構成単位を主成分として有するポリ乳酸系樹脂は、例えば末端官能基におけるカルボキシル基の割合が50%を超えるポリ(L-乳酸)および末端官能基におけるカルボキシル基の割合が50%を超えるポリ(D-乳酸)とを少なくとも含んだ混合物と、ポリイソシアネート化合物とを反応させて、前記記載の方法で製造することができる。また、アミド化触媒を用いることが好ましく、後記のアミド化触媒を使用することにより、マイルドな条件でアミド化反応を行うことができ副反応を抑制できるので、目的とするポリ乳酸系樹脂を高純度で製造することが可能となり好ましい態様である。
 上記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量は、それぞれ5,000~100,000であることが好ましく、10,000~80,000であることがより好ましく、10,000~50,000であることがさらに好ましい。このような重量平均分子量であると工程時間の点から好ましく、また得られるポリ乳酸系樹脂の融点が高くなり、耐熱性の点から好ましい。
また、該混合物には上記共重合成分を含んでいてもよい。
 本発明{1}におけるポリ乳酸系樹脂(I)の重量平均分子量は、50,000~1,000,000であることが好ましく、下限は70,000以上であることがより好ましく、100,000以上であることがさらに好ましい。上限は700,000以下であることがより好ましく、500,000以下であることがさらに好ましい。具体的には、100,000~1,000,000であることが好ましく、100,000~700,000であることがより好ましく、100,000~500,000であることがさらに好ましい。上記ポリ乳酸系樹脂の重量平均分子量が前記範囲内であると成型性および機械強度の点で好ましい。また、上記ポリ乳酸系樹脂の重量平均分子量は、前記範囲内であり、かつ上記ポリ(L-乳酸)およびポリ(D-乳酸)の重量平均分子量の3倍以上200倍以下であることが好ましく、4倍以上100倍以下であることがより好ましく、5倍以上50倍以下であることが特に好ましい。このような範囲であると、ポリ乳酸系樹脂をより高分子量化できるため、機械的物性等樹脂の物性の点で好ましい。
 上記式(2)および(3)の組み合わせで表される構成単位を主成分として有するポリ乳酸系樹脂を得る方法の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000006
式中、Rは式(1)のRと同義であり、nは式(2)および(3)のnと同義である。
 上記式(3)および(4)で表される構成単位を主成分として有するポリエステル樹脂を得る方法の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000007
式中、Rは式(1)のRと同義であり、nおよびmは式(2)および(3)のnおよびmと同義である。
 [反応温度]
 当該工程における反応温度は40~230℃であることが好ましく、60~200℃であることがさらに好ましく、80~180℃であることが特に好ましい。当該工程における反応温度が前記範囲にあると、反応速度が速く、ゲル化が起こりにくい点で好ましい。また、当該工程における反応温度が、前記上限を超えると架橋反応が進行しゲル化が起こりやすくなる場合があり、前記下限未満であると反応速度が遅くなり分子量増大に時間を要することがある。
 [反応溶媒]
 当該工程に用いられる溶媒としては、芳香族系炭化水素、ハロゲン系炭化水素および芳香族エーテルなどが挙げられる。
 芳香族系炭化水素としてはトルエン、m-キシレン、p-キシレン、キシレン(異性体混合物)、エチルベンゼン、メシチレン、テトラリン、m-ジイソプロピルベンゼン、p-ジイソプロピルベンゼンおよびジイソプロピルベンゼン(異性体混合物)などが挙げられる。
 ハロゲン系炭化水素としては、塩化メチレン、クロロホルム、1,2-ジクロロエタンおよび1,2-ジクロロベンゼンなどが挙げられる。
 芳香族系エーテルとしては、ジフェニルエーテルなどが挙げられる。これらの中でも、溶解度と汎用性の観点からテトラリン、m-ジイソプロピルベンゼン、p-ジイソプロピルベンゼン、ジイソプロピルベンゼン(異性体混合物)、1,2-ジクロロベンゼン、ジフェニルエーテルが好ましい。
 これらを単独で用いても複数を組み合わせて用いても良い。
 [無溶媒反応]
 当該工程では、反応物の分子量の増加とともに粘度が急激に上昇する。そのため、前述のように溶液で攪拌しながら反応させる方法のほかに、押出機、特に二軸混練押出機を用い、無溶媒で混練、反応させて生成物を押し出す方法も、溶媒が不要で生成物の後処理が簡便になり効果的である。
 [ポリイソシアネート化合物]
 当該工程に用いるポリイソシアネート化合物は、イソシアネート基を2個以上有している化合物であり、本発明{1}の目的を阻害しなければ特に限定されない。イソシアネート基を3個以上有するポリイソシアネート化合物としては、1,6,11-ウンデカントリイソシアネートなどのトリイソシアネート類やポリフェニルメタンポリイソシアネート等の多イソシアネート置換化合物類が挙げられる。前記ポリイソシアネート化合物は、ジイソシアネート化合物であることが好ましい。
 ジイソシアネート化合物としては、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合体、ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンまたはビス(4-イソシアナトシクロヘキシル)メタンなどが挙げられ、より好適な例として、1,3-キシリレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンまたはビス(4-イソシアナトシクロヘキシル)メタンなどが挙げられる。
 これらの中でも、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることが好ましく、また、脂肪族ジイソシアネート化合物であることが好ましく、ヘキサメチレンジイソシアネートであることが特に好ましい。上記ポリイソシアネート化合物が、前記化合物であると、得られるポリ乳酸系樹脂(I)の色調の点で好ましい。
 [ポリイソシアネートの添加量]
 上記ポリイソシアネート化合物の添加量は、上記ポリ(L-乳酸)およびポリ(D-乳酸)を少なくとも含んだ混合物の全末端官能基数から算出したモル数に基づいて決定する。ポリ(L-乳酸)およびポリ(D-乳酸)の末端官能基数を求める方法は、NMRおよびカルボン酸価により算出する。NMRおよびカルボン酸価は後述する実施例に記載した方法で測定する。
 上記ポリイソシアネート化合物の添加量は、上記ポリ(L-乳酸)およびポリ(D-乳酸)を少なくとも含んだ混合物の末端官能基のモル数に対して0.8~2.0倍モルであることが好ましく、0.8~1.5倍モルであることがさらに好ましく、0.8~1.3倍モルであることが特に好ましい。ここで「倍モル」とは、「イソシアネート基数(モル)/末端官能基数(モル)」により算出される値の単位である。
 上記ポリイソシアネート化合物の添加量が前記下限値未満であると、ポリイソシアネート化合物の添加効果が小さく、高分子量のポリ乳酸系樹脂(I)を得ることが困難となる場合がある。
一方、前記上限値を超えると、イソシアネートが架橋反応などの副反応を引き起こし、ゲル状のポリ乳酸系樹脂(I)が生成することがある。
 [アミド化触媒]
 本発明{1}においてアミド化触媒とは、上記ポリ(L-乳酸)およびポリ(D-乳酸)の末端カルボキシル基部分を優先的に上記ポリイソシアネート化合物と反応させて、アミド結合を形成させる触媒をいう。
 前記工程に用いられ得るアミド化触媒は、周期律表第1族、2族および3族における金属からなる群より選ばれる少なくとも1種の金属を含むことが好ましく、カリウム、マグネシウム、カルシウムおよびイッテルビウムの群より選ばれる少なくとも1種の金属を含むことがより好ましく、マグネシウムまたはカルシウムを含むことが特に好ましい。このような金属を含んでいると触媒効果とポリ乳酸系樹脂(I)の色調の点で好ましい。
 上記周期律表第1族金属を含むアミド化触媒としては、リチウム、ナトリウム、カリウム、ルビジウムもしくはセシウムの、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナトなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられ、また上記周期律表第2族金属を含むアミド化触媒としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムもしくはバリウムの、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナートなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられる。さらには、上記周期律表第3族金属を含むアミド化触媒としては、スカンジウム、イッテルビウム、イットリウムもしくは他の希土類の、有機酸塩、金属アルコキシドもしくは金属錯体(アセチルアセトナートなど)等の有機金属化合物;金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩、塩化物もしくはフッ化物などの無機金属化合物が挙げられる。これらは単独で使用しても、また併用してもよい。これらの金属化合物触媒の中でも、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、塩化マグネシウム、イッテルビウムトリフラートなどが好ましく、さらにはマグネシウム化合物、特に、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウムが好ましい。これらの触媒は2種以上併用することもできる。
 [アミド化触媒の添加量]
 上記アミド化触媒の添加量は、ポリ(L-乳酸)およびポリ(D-乳酸)を少なくとも含んだ混合物100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.01~1重量部、更により好ましくは0.01~0.5重量部である。
 本発明{1}における上記ポリ(L-乳酸)およびポリ(D-乳酸)を少なくとも含んだ混合物は末端官能基がカルボキシル基である割合が50%を超えているが、残りの末端官能基はヒドロキシル基である場合がある。その場合、該ヒドロキシ部分は上記ポリイソシアネート化合物と反応し、ウレタン結合を形成する。前記ポリイソシアネート化合物は、ジイソシアネート化合物であることが好ましい。
 このようなウレタン結合を形成させる触媒としては、ジブチル錫ジラウリレート、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2-エチルヘキサン酸錫、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライドなどのチタン系、オレイン酸鉛、2-エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などの鉛系、2-エチルヘキサン酸鉄、鉄アセチルアセトネートなどの鉄系、安息香酸コバルト、2-エチルヘキサン酸コバルトなどのコバルト系、ナフテン酸亜鉛、2-エチルヘキサン酸亜鉛などの亜鉛系、ナフテン酸ジルコニウム、トリエチルアミン、トリエチレンジアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリン、ジアザビシクロウンデセン(DBU)などが挙げられる。このウレタン結合を形成させる触媒の添加量は、ポリ(L-乳酸)およびポリ(D-乳酸)を少なくとも含んだ混合物100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.01~1重量部、更により好ましくは0.01~0.5重量部である。
 [ポリ乳酸系樹脂(I)の融点<Tm>]
 本発明{1}におけるポリ乳酸系樹脂(I)は、示差走査熱量測定により昇温速度10℃/minで昇温したときの融解ピークのピークトップの融点(以下「Tm」とも記す)が180℃≦Tm≦230℃であることが好ましく、190℃≦Tm≦230℃であることがより好ましく、200℃≦Tm≦230℃であることがさらに好ましい。上記ポリ乳酸系樹脂(I)のTmが前記範囲内であると、耐熱性の点で好ましい。
 上記Tmの値は、後述する実施例に記載した測定方法で求めた場合の値である。
 [安定剤]
 ポリ乳酸系樹脂(I)には安定剤を含有させて用いてもよく、ポリ乳酸系樹脂(I)100重量部に対し安定剤を0.001~5重量部含有することが好ましく、0.001~2.5重量部であることが更に好ましく、0.001~1重量部であることが更に好ましく、0.005~1重量部であることが更に好ましく、0.01~3重量部であることが更に好ましく、0.01~1重量部であることが更に好ましい。コスト、樹脂の外観といった観点から安定剤が上記範囲内であることが好ましい。
 安定剤としては、フェノール系化合物(ヒンダードフェノール系化合物)、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物などが挙げられ、これらを組み合わせて用いてもよい。中でもリン系化合物を少なくとも1種含むことが好ましく、ホスフェート系化合物、ホスファイト系化合物であることがさらに好ましい。好ましい例はADEKA製"アデカスタブ"AX-71(ジオクタデシルホスフェート)、PEP-8(ジステアリルペンタエリスリトールジホスファイト)、PEP-36(サイクリックネオペンタテトライルビス(2,6―t-ブチル-4-メチルフェニル)ホスファイト)である。リン系安定剤は、後述するアミド化触媒の失活剤および/または、前記ポリ(L-乳酸)およびポリ(D-乳酸)の調製に用いる触媒の失活剤として作用すると考えられ、本発明{1}におけるポリ乳酸系樹脂(I)の製造における触媒除去方法としてリン系安定剤の使用は有効である。
 フェノール系化合物(ヒンダードフェノール系化合物)の具体例としては、n-オクタデシル-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)-プロピオネート、n-オクタデシル-3-(3'-メチル-5'-t-ブチル-4'-ヒドロキシフェニル)-プロピオネート、n-テトラデシル-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)-プロピオネート、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、1,4-ブタンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、2,2'-メチレンビス-(4-メチル-t-ブチルフェノール)、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、N,N'-ビス-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N'-テトラメチレン-ビス-3-(3'-メチル-5'-t-ブチル-4'-ヒドロキシフェノール)プロピオニルジアミン、N,N'-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオニル]ヒドラジン、N-サリチロイル-N'-サリチリデンヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N,N'-ビス[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド等を挙げることができる。好ましくは、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイドである。
 フェノール系化合物(ヒンダードフェノール系化合物)の具体的な商品名としては、ADEKA製"アデカスタブ"AO-20,AO-30,AO-40,AO-50,AO-60,AO-70,AO-80,AO-330、チバスペシャリティケミカル製"イルガノックス"245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057、住友化学工業製"スミライザー"BHT-R、MDP-S、BBM-S、WX-R、NW、BP-76、BP-101、GA-80、GM、GS、サイアナミド製"サイアノックス"CY-1790などが挙げられる。
 チオエーテル系化合物の具体例としては、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-オクタデシルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ステアリルチオプロピオネート)などが挙げられる。
 チオエーテル系化合物の具体的な商品名としては、ADEKA製"アデカスタブ"A0-23、AO-412S、AO-503A、チバスペシャリティケミカル製"イルガノックス"PS802、住友化学製"スミライザー"TPL-R、TPM、TPS、TP-D、エーピーアイコーポレーション製DSTP、DLTP、DLTOIB、DMTP、シプロ化成製"シーノックス"412S、サイアミド製"サイアノックス"1212などが挙げられる。
 ビタミン系化合物の具体例としては、酢酸d-α-トコフェロール、コハク酸d-α-トコフェロール、d-α-トコフェロール、d-β-トコフェロール、d-γ-トコフェロール、d-δ-トコフェロール、d-α-トコトリエノール、d-β-トコフェトリエノール、d-γ-トコフェトリエノール、d-δ-トコフェトリエノールなどの天然品、dl-α-トコフェロール、酢酸dl-α-トコフェロール、コハク酸dl-α-トコフェロールカルシウム、ニコチン酸dl-α-トコフェロールなどの合成品が挙げられる。
 ビタミン系化合物の具体的な商品名としては、エイザイ製"トコフェロール"、チバスペシャリティケミカル製"イルガノックス"E201などが挙げられる。
 トリアゾール系化合物の具体例としては、ベンゾトリアゾール、3-(N-サリシロイル)アミノ-1,2,4-トリアゾールなどが挙げられる。
 多価アミン系化合物の具体例としては、3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、エチレンジアミン-テトラアセチックアシッド、エチレンジアミン-テトラアセチックアシッドのアルカリ金属塩(Li,Na,K)塩、N,N'-ジサリシリデン-エチレンジアミン、N,N'-ジサリシリデン-1,2-プロピレンジアミン、N,N''-ジサリシリデン-N'-メチル-ジプロピレントリアミン、3-サリシロイルアミノ-1,2,4-トリアゾールなどが挙げられる。
 ヒドラジン誘導体系化合物の具体例としては、デカメチレンジカルボキシリックアシッド-ビス(N'-サリシロイルヒドラジド)、イソフタル酸ビス(2-フェノキシプロピオニルヒドラジド)、N-ホルミル-N'-サリシロイルヒドラジン、2,2-オキザミドビス-[エチル-3-(3,5-ジ-t-ブチル-4-ハイドロオキシフェニル)プロピオネート]、オギザリル-ビス-ベンジリデン-ヒドラジド、ニッケル-ビス(1-フェニル-3-メチル-4-デカノイル-5-ピラゾレート)、2-エトキシ-2'-エチルオキサニリド、5-t-ブチル-2-エトキシ-2'-エチルオキサニリド、N,N-ジエチル-N',N'-ジフェニルオキサミド、N,N'-ジエチル-N,N'-ジフェニルオキサミド、オキサリックアシッド-ビス(ベンジリデンヒドラジド)、チオジプロピオニックアシッド-ビス(ベンジリデンヒドラジド)、ビス(サリシロイルヒドラジン)、N-サリシリデン-N'-サリシロイルヒドラゾン、N,N'-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、N,N'-ビス[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]オキサミドなどが挙げられる。
 リン系化合物としては、例えば、ホスファイト系化合物、ホスフェート系化合物が挙げられる。かかるホスファイト系化合物の具体例としては、テトラキス[2-t-ブチル-4-チオ(2'-メチル-4'-ヒドロキシ-5'-t-ブチルフェニル)-5-メチルフェニル]-1,6-ヘキサメチレン-ビス(N-ヒドロキシエチル-N-メチルセミカルバジド)-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2'-メチル-4'-ヒドロキシ-5'-t-ブチルフェニル)-5-メチルフェニル]-1,10-デカメチレン-ジ-カルボキシリックアシッド-ジ-ヒドロキシエチルカルボニルヒドラジド-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2'-メチル-4'-ヒドロキシ-5'-t-ブチルフェニル)-5-メチルフェニル]-1,10-デカメチレン-ジ-カルボキシリックアシッド-ジ-サリシロイルヒドラジド-ジホスファイト、テトラキス[2-t-ブチル-4-チオ(2'-メチル-4'-ヒドロキシ-5'-t-ブチルフェニル)-5-メチルフェニル]-ジ(ヒドロキシエチルカルボニル)ヒドラジド-ジホスァイト、テトラキス[2-t-ブチル-4-チオ(2'-メチル-4'-ヒドロキシ-5'-t-ブチルフェニル)-5-メチルフェニル]-N,N'-ビス(ヒドロキシエチル)オキサミド-ジホスファイト、ジステアリルペンタエリスリトールジホスファイト、サイクリックネオペンタテトライルビス(2,6-t-ブチル-4-メチルフェニル)ホスファイトなどが挙げられるが、少なくとも1つのP-O結合が芳香族基に結合しているものがより好ましく、具体例としては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4'-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4'-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4'-イソプロピリデンビス(フェニル-ジアルキルホスファイト)などが挙げられ、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4'-ビフェニレンホスホナイトなどを好ましく使用できる。
 ホスファイト系化合物の具体的な商品名としては、ADEKA製"アデカスタブ"  C、PEP-4C、PEP-8、PEP-11C、PEP-24G、PEP-36、HP-10、2112、260、522A、329A、1178、1500、C、135A、3010、TPP、チバスペシャリティケミカル製"イルガフォス"168、住友化学製"スミライザー"P-16、クラリアント製"サンドスタブ"PEPQ、GE製"ウエストン"618、619G、624などが挙げられる。
 ホスフェート系化合物の具体例としては、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェート、メチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチルアシッドホスフェート、オクチルアシッドホスフェート、イソデシルアシッドホスフェート、ジオクタデシルホスフェートなどが挙げられ、中でも、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフェートが好ましい。ホスフェート系化合物の具体的な商品名としては、チバスペシャリティケミカル製"イルガノックス"MD1024、イーストマン・コダック製"インヒビター"OABH、ADEKA製"アデカスタブ"CDA-1、CDA-6、AX-71などを挙げることができる。
 [ポリ乳酸系樹脂(I)の分子量低下]
 本発明{1}におけるポリ乳酸系樹脂(I)は、重量平均分子量がMXのポリ乳酸系樹脂を240℃で10分間保持した後の重量平均分子量MYが、MY≧0.8× MX を満たすことが好ましく、MY≧0.9× MXを満たすことがより好ましい。ポリ乳酸系樹脂(I)のMXおよびMYの関係が上記範囲内であると、成形時の溶融粘度低下などが起こりにくい安定した加工成形が可能である。
 [添加剤]
 また、ポリ乳酸系樹脂(I)は本発明{1}の目的を損なわない範囲で通常の添加剤、例えば、充填剤(ガラス繊維、炭素繊維、金属繊維、天然繊維、有機繊維、ガラスフレーク、ガラスビーズ、セラミックスファイバー、セラミックビーズ、アスベスト、ワラステナイト、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、モンモリロナイト、合成マイカ、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイトまたは白土など)、紫外線吸収剤(レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、熱安定剤(ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、滑剤、離形剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(ニグロシンなど)および顔料(硫化カドミウム、フタロシアニンなど)を含む着色剤、着色防止剤(亜リン酸塩、次亜リン酸塩など)、難燃剤(赤燐、燐酸エステル、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩など)、導電剤あるいは着色剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、結晶核剤(タルクなどの無機系核剤、エチレンビスラウリン酸アミド、エチレンビス-12-ジヒドロキシステアリン酸アミドおよびトリメシン酸トリシクロヘキシルアミドなどの有機アミド系化合物、銅フタロシアニンおよびピグメントイエロー110などの顔料系核剤、有機カルボン酸金属塩、フェニルホスホン酸亜鉛など)、帯電防止剤などの1種または2種以上を添加することができる。
 [ブレンド]
 また、ポリ乳酸系樹脂(I)は、本発明{1}の目的を損なわない範囲で他の熱可塑性樹脂または熱硬化性樹脂などの少なくとも1種以上をさらに含有することができる。上記熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、アクリル樹脂、ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド、本発明{1}のポリ乳酸系樹脂(I)以外のポリ乳酸系樹脂、軟質熱可塑性樹脂(例えば、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体など)などが挙げられる。熱硬化性樹脂の例としては、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂が挙げられる。
 上記の他の熱可塑性樹脂または熱硬化性樹脂などの含有量は、本発明{1}の目的を損なわない範囲であれば特に限定されるものでは無いが、ポリ乳酸系樹脂(I)100重量部に対し0~50重量部であることが好ましい。
 [ポリ乳酸系樹脂(I)の成形加工法と用途]
 ポリ乳酸系樹脂(I)の成形加工法は特に制限されず、具体的には、射出成形、押出成形、インフレーション成形、押出中空成形、発泡成形、カレンダー成形、ブロー成形、バルーン成形、真空成形、紡糸等の成型加工法が挙げられる。この中でもポリ乳酸系樹脂(I)の特徴を生かした射出成形、発泡成形、紡糸が好ましく適用される。また、該ポリ乳酸系樹脂(I)は、適当な成形加工法により、例えば、ボールペン・シャープペン・鉛筆等の筆記用具の部材、ステーショナリーの部材、ゴルフ用ティー、始球式用発煙ゴルフボール用部材、経口医薬品用カプセル、肛門・膣用座薬用担体、皮膚・粘膜用張付剤用担体、農薬用カプセル、肥料用カプセル、種苗用カプセル、コンポスト、釣り糸用糸巻き、釣り用浮き、漁業用擬餌、ルアー、漁業用ブイ、狩猟用デコイ、狩猟用散弾カプセル、食器等のキャンプ用品、釘、杭、結束材、ぬかるみ・雪道用滑り止め材、ブロック、弁当箱、食器、弁当や惣菜の容器、箸、割り箸、フォーク、スプーン、串、つまようじ、カップラーメンのカップ、飲料の自動販売機で使用されるようなカップ、鮮魚、精肉、青果、豆腐、惣菜等の食料品用の容器やトレイ、鮮魚市場で使用されるようなトロバコ、牛乳・ヨーグルト・乳酸菌飲料等の乳製品用のボトル、炭酸飲料・清涼飲料等のソフトドリンク用のボトル、ビール・ウイスキー等の酒類ドリンク用のボトル、シャンプーや液状石鹸用のポンプ付き、又は、ポンプなしのボトル、歯磨き粉用チューブ、化粧品容器、洗剤容器、漂白剤容器、保冷箱、植木鉢、浄水器カートリッジのケーシング、人工腎臓や人工肝臓等のケーシング、注射筒の部材、テレビやステレオ等の家庭電化製品の輸送時に使用するための緩衝材、コンピューター・プリンター・時計等の精密機械の輸送時に使用するための緩衝材、ガラス・陶磁器等の窯業製品の輸送時に使用するための緩衝材等に使用することができるが、高い耐熱性やガスバリア性を生かした、電子レンジ等の耐熱用容器、繊維、フィルム等の用途へ好適に利用することができる。また、耐熱性、耐衝撃性が必要とされるフロントドア、ホイルキャップなどの自動車材料部品、自動車用カーシートなどの自動車用内装品、パソコン、ヘッドホンステレオ、携帯電話などの製品の筐体部品などの家電材料部品およびOA機器材料部品または反射材料フィルム・シート、偏光フィルム・シートなどの電気・電子材料部品に好適に使用することができる。

 ≪ポリ乳酸樹脂組成物(C)≫
 本発明{2}におけるポリ乳酸樹脂組成物(C)は、L-乳酸を主成分とするポリ乳酸樹脂(A-1)とD-乳酸を主成分とするポリ乳酸樹脂(A-2)を含有し、少なくとも一方のポリ乳酸樹脂(A-1)または(A-2)がL-乳酸を主成分とする乳酸オリゴマー(a-1)またはD-乳酸を主成分とする乳酸オリゴマー(a-2)にポリイソシアネートを反応させて得られたアミド結合を有するポリ乳酸樹脂(B)であることを特徴とする。
 <L-乳酸を主成分とするポリ乳酸樹脂(A-1)>
 ポリ乳酸樹脂(A-1)は、L-乳酸を主成分とする。
 本発明{2}において、「L-乳酸を主成分とする」とは、ポリマー中にL-乳酸から誘導される構成単位を60重量%以上、好ましくは80%重量以上、より好ましくは90重量%以上含むことを意味する。
 ポリ乳酸樹脂(A-1)の重量平均分子量は、好ましくは50,000~1,000,000であることが好ましく、下限は70,000以上であることがより好ましく、80,000以上であることがさらに好ましい。上限は700,000以下であることがより好ましく、500,000以下であることが更に好ましく、300,000以下であることが更により好ましく、200,000以下であることが特に好ましい。具体的に好ましくは70,000~500,000であり、より好ましくは80,000~300,000、更に好ましくは80,000~250,000である。成型性及び機械強度の点から80,000~200,000であことが特に好ましい。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 するポリ乳酸樹脂(A-1)は、下記式に示す、L-乳酸単位を基本成分とするポリ乳酸樹脂である。
Figure JPOXMLDOC01-appb-C000008
(ここでnは1から2000までの自然数を表す。)
 ポリ乳酸樹脂(A-1)は、L-乳酸単位90~100モル%と、D-乳酸単位および/または乳酸以外の成分単位0~10モル%とにより構成されるポリ乳酸樹脂であることが好ましい。
 前記乳酸以外の成分単位としては、モノアルコールやモノアミン、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、多価アミン、ヒドロキシカルボン酸、ラクトン等に由来する成分単位およびこれら種々の成分単位を含む各種ポリエステル、各種ポリエーテル、各種ポリアミド、各種ポリカーボネート等に由来するの成分単位を挙げることができる。さらには、後述するL-乳酸を主成分とする乳酸オリゴマー(a-1)を、ポリイソシアネートと反応させて得られるアミド結合を有するポリ乳酸樹脂(B-a-1)であってもよい。
 モノアルコールとしては、ブタノール、ペンタノール、ラウリルアルコール、ベンジルアルコール、フェネチルアルコールなどが挙げられ、モノアミンとしてはブチルアミン、アミルアミン、ベンジルアミン、フェネチルアミンなどが挙げられる。
 ジカルボン酸としては、コハク酸、フタル酸、マレイン酸、テトラブロムフタル酸、テトラヒドロフタル酸、またはドデシルコハク酸などが挙げられる。多価アルコールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、ポリ(ビニルアルコール)、ポリ(ヒドロキシエチルメタクリレート)、ポリ(ヒドロキシプロピルメタクリレート)など等が挙げられる。多価アミンとして、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン、ヘキチレンアミン、ヘプチレンジアミン、ジエチレントリアミン、メラミンなど等があげられる。ヒドロキシカルボン酸として、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-メチル乳酸、2-ヒドロキシカプロン酸、2-シクロヘキシル-2-ヒドロキシ酢酸、マンデル酸等が挙げられる。ラクトンとしては、グリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンが挙げられる。
 <ポリ乳酸樹脂(A-1)の製造方法>
 ポリ乳酸樹脂(A-1)は、既知の任意のポリ乳酸樹脂の重合方法、例えばラクチドの開環重合、乳酸の脱水縮合、およびこれらと固相重合を組み合わせた方法により製造することができる。また、後述するポリ乳酸樹脂(B)の製造方法により製造することができる。
 (直接重縮合法)
 ポリ乳酸樹脂(A-1)を直接重縮合法により調製する具体例としては、原料のL-乳酸を不活性ガス雰囲気中において加熱し、圧力を降下させて重縮合反応させ、最終的に所定の温度および圧力の条件下で重縮合反応を行うことにより、ポリ乳酸樹脂(A-1)を得る方法がある。
 また、該重縮合反応は重縮合時間を短縮する目的で、触媒存在下に行ってもよい。該触媒としては、周期律表第2族、12族、13族、14族もしくは15族の金属、またはその酸化物もしくはその塩等があげられる。具体的には、亜鉛末、錫末、アルミニウムもしくはマグネシウム等の金属、酸化アンチモン、酸化亜鉛、酸化錫、酸化アルミニウム、酸化マグネシウムもしくは酸化チタン等の金属酸化物、塩化第一錫、塩化第二錫、臭化第一錫、臭化第二錫、フッ化アンチモン、塩化亜鉛、塩化マグネシウムもしくは塩化アルミニウム等の金属ハロゲン化物、炭酸マグネシウムもしくは炭酸亜鉛等の炭酸塩、酢酸錫、オクタン酸錫、乳酸錫、酢酸亜鉛もしくは酢酸アルミニウム等の有機カルボン酸塩、またはトリフルオロメタンスルホン酸錫、トリフルオロメタンスルホン酸亜鉛、トリフルオロメタンスルホン酸マグネシウム、メタンスルホン酸錫もしくはp-トルエンスルホン酸錫等の有機スルホン酸塩等があげられる。その他、ジブチルチンオキサイド等の上記金属の有機金属酸化物、チタニウムイソプロポキサイド等の上記金属の金属アルコキサイド、ジエチル亜鉛等の上記金属のアルキル金属、ダウエックスもしくはアンバーライト等のイオン交換樹脂等、または、硫酸、メタンスルホン酸もしくはp-トルエンスルホン酸等のプロトン酸などが挙げられ、重合速度が速く高分子量のポリマーが得られる錫もしくは亜鉛の金属またはその金属化合物が好ましい。さらには、金属錫または酸化錫や塩化錫等の錫化合物が色相、触媒活性の点から特に好ましい。触媒の添加量は、特に限定されるものではないが、使用するL-乳酸100重量部に対して0.001~2重量部が好ましく、とくに0.001~1重量部がより好ましい。
 本願{2}において触媒は必須ではないが、触媒量が0.001重量部未満では重合時間の短縮という触媒の効果が十分に現れない場合がある。また、2重量部を越えて触媒を配合した場合、触媒残渣の影響によるポリ乳酸系樹脂成形加工時の分子量低下や熱分解等を抑えるために、別途触媒残渣除去工程が必要になる場合がある。
 (開環重合法)
 ポリ乳酸樹脂(A-1)を開環重合法により調製する具体例としては、乳酸環状二量体であるL-ラクチドを水酸基またはアミノ基を分子内に1個以上含有する化合物、ヒドロキシカルボン酸および水等の開始剤を用いて開環重合を行う方法が挙げられる。
 該水酸基またはアミノ基を分子内に1個含有する化合物としては、ブタノール、ペンタノール、ラウリルアルコール、ベンジルアルコール、フェネチルアルコールなどのモノアルコール、ブチルアミン、アミルアミン、ベンジルアミン、フェネチルアミンなどのモノアミン等が挙げられる。
 該水酸基またはアミノ基を分子内に1個以上含有する化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、ポリ(ビニルアルコール)、ポリ(ヒドロキシエチルメタクリレート)、ポリ(ヒドロキシプロピルメタクリレート)などの多価アルコール、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン、ヘキチレンアミン、ヘプチレンジアミン、ジエチレントリアミン、メラミンなどの多価アミンなどが挙げられる。
 上記開始剤の添加量は、特に限定されるものではないが、使用するL-ラクチド100重量部に対して0.001~5重量部が好ましく、0.01~3重量部がより好ましい。
 重合開始剤量が前記範囲にあると、分子量を所望の範囲にすることができる。
 また、該開環重合は重合時間を短縮する目的で、触媒存在下に行ってもよい。触媒としては、例えば、錫、亜鉛、鉛、チタン、ビスマス、ジルコニウム、ゲルマニウム、アンチモン、アルミニウムなどの金属及びその誘導体が挙げられる。誘導体としては、金属アルコキシド、カルボン酸塩、炭酸塩、酸化物、ハロゲン化物が好ましい。具体的には、塩化錫、オクチル酸錫、塩化亜鉛、酢酸亜鉛、酸化鉛、炭酸鉛、塩化チタン、アルコキシチタン、酸化ゲルマニウム、酸化ジルコニウムなどが挙げられる。これらの中でも、錫化合物が好ましく、特に2-エチルヘキサン酸錫がより好ましい。触媒の添加量は、特に限定されるものではないが、使用するL-ラクチド100重量部に対して0.001~2重量部が好ましく、とくに0.001~1重量部がより好ましい。
 本願{2}において触媒は必須ではないが、触媒量が0.001重量部未満では重合時間の短縮という触媒の効果が十分に現れない場合がある。また、2重量部を越えて触媒を配合した場合、触媒残渣の影響によるポリ乳酸系樹脂成形加工時の分子量低下や熱分解等を抑えるために、別途触媒残渣除去工程が必要になる場合がある。
 (固相重合)
前記直接重合法または開環重合法と固相重合法とを組み合わせた方法としては、例えば特開2000-302852号や、特開2001-122954号等に記載されている方法を用いることができる。
 <D-乳酸を主成分とするポリ乳酸樹脂(A-2)>
 ここで「主成分」とはポリマー中に指定される構成単位を60重量%以上、好ましくは80%重量以上、より好ましくは90重量%以上含むことを意味する。
 ポリ乳酸樹脂(A-2)の重量平均分子量は、好ましくは50,000~1,000,000であることが好ましく、下限は70,000以上であることがより好ましく、80,000以上であることがさらに好ましい。上限は700,000以下であることがより好ましく、500,000以下であることが更に好ましく、300,000以下であることが更により好ましく、200,000以下であることが特に好ましい。具体的に好ましくは70,000~500,000であり、より好ましくは80,000~300,000、更に好ましくは80,000~250,000である。成型性及び機械強度の点から80,000~200,000であことが特に好ましい。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 D-乳酸を主成分とするポリ乳酸樹脂(A-2)は、下記式に示す、D-乳酸単位を基本成分とするポリ乳酸樹脂である。
Figure JPOXMLDOC01-appb-C000009
(ここでnは1から2000までの自然数を表す。)
 ポリ乳酸樹脂(A-2)は、D-乳酸単位90~100モル%と、L-乳酸単位および/または乳酸以外の成分単位0~10モル%とにより構成されるポリ乳酸樹脂であることが好ましい。
 前記乳酸以外の成分単位は、ポリ乳酸樹脂(A-1)中に含まれてもよい乳酸以外の成分単位を誘導する化合物として挙げた化合物と同様の化合物等が挙げられる。
 ポリ乳酸樹脂(A-2)の製造方法としては、既知の任意のポリ乳酸樹脂の重合方法により製造することができ、具体的には、原料をL-乳酸からD-乳酸に代える以外は前記ポリ乳酸樹脂(A-1)の製造方法と同様の方法等を挙げることができる。
 〈ポリ乳酸樹脂(B)〉
 ポリ乳酸樹脂(B)は、後述する乳酸オリゴマー(a-1)または(a-2)を、ポリイソシアネートと反応させて得られるアミド結合を有するポリ乳酸樹脂である。アミド結合を有することは耐熱性及びステレオコンプレックスの結晶性向上の観点から好ましい。
 ポリ乳酸樹脂(B)の重量平均分子量は、50,000~1,000,000であることが好ましく、下限は70,000以上であることがより好ましく、80,000以上であることがさらに好ましい。上限は700,000以下であることがより好ましく、500,000以下であることが更に好ましく、300,000以下であることが更により好ましく、200,000以下であることが特に好ましい。具体的に好ましくは70,000~500,000である。より好ましくは80,000~300,000、さらに好ましくは80,000~250,000である。80,000~200,000が製造時のハンドリングやステレオコンプレックス形成能の観点から特に好ましい。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 また、上記ポリ乳酸樹脂(B)の重量平均分子量は、後述する乳酸オリゴマー(a-1)または(a-2)の重量平均分子量の3倍以上200倍以下であることが望ましく、4倍以上100倍以下であることがより好ましく、5倍以上50倍以下であることがさらに好ましい。
 〈乳酸オリゴマー(a-1)および(a-2)〉
 乳酸オリゴマー(a-1)は、L-乳酸を主成分とし、乳酸オリゴマー(a-2)は、D-乳酸を主成分とする。
 乳酸オリゴマー(a-1)および乳酸オリゴマー(a-2)はそれぞれ、下記の乳酸オリゴマー(b-1)および乳酸オリゴマー(b-2)であることが好ましい。
 乳酸オリゴマー(b-1)は、L-乳酸単位90~100モル%と、D-乳酸単位および/または乳酸以外の成分単位0~10モル%とにより構成される。
 乳酸オリゴマー(b-2)は、D-乳酸単位90~100モル%と、L-乳酸単位および/または乳酸以外の成分単位0~10モル%とにより構成される。
 該乳酸以外の成分単位としては、前期本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)中に含まれてもよい乳酸以外の成分単位として挙げた化合物と同様の化合物等が挙げられる。
 乳酸オリゴマー(a-1)および(a-2)の重量平均分子量は、それぞれ好ましくは5,000~100,000である。より好ましくは10,000~80,000、更に好ましくは10,000~70,000、10,000~50,000が特に好ましい。重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 また、乳酸オリゴマー(a-1)および(a-2)は末端官能基がカルボキシル基である割合が50%を超えることが好ましい。より好ましくは、末端官能基がカルボキシル基である割合が85%以上であり、更に好ましくは末端官能基がカルボキシル基である割合が90%以上であり、末端官能基がカルボキシル基である割合が95%以上であることが特に好ましい。乳酸オリゴマー(a-1)および(a-2)はそれぞれ、前記本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)であることも好ましい。
 末端官能基におけるカルボキシル基の割合が高くなることで、得られるポリ乳酸樹脂(B)はアミド結合をより多く有するため、耐熱性及び結晶性の観点で好ましい。
 ポリ乳酸樹脂(B)には、乳酸オリゴマー(a-1)および(a-2)以外の共重合成分を本発明{2}の目的を損なわない範囲で含んでいてもよい。
 共重合成分としては、前記本発明{1}における末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含んだ混合物が含んでもよい共重合成分と同様の成分等を挙げることができる。
 <乳酸オリゴマー(a-1)および(a-2)の製造方法>
 乳酸オリゴマー(a-1)および(a-2)は、既知の任意のポリ乳酸樹脂の重合方法により製造することができ、例えばラクチドの開環重合、乳酸の脱水縮合、およびこれらと固相重合を組み合わせた方法などにより製造することができる。具体的には、前記本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)の製造方法と同様の製造方法で乳酸オリゴマー(a-1)および(a-2)を製造することができる。
 〈ポリ乳酸樹脂(B)の製造方法〉
 前記乳酸オリゴマー(a-1)または(a-2)と、ポリイソシアネートを反応させて得られるアミド結合を有するポリ乳酸樹脂(B)の製造方法は、少なくとも乳酸オリゴマー(a-1)または(a-2)と、ポリイソシアネート化合物とを反応させる工程を含む。本反応においては、末端官能基であるカルボキシル基がポリイソシアネートと反応することでアミド結合を形成する。また、この反応においてアミド化触媒を用いて反応を行うことが好ましい。該工程の具体例として以下の方法が挙げられるが、本発明{2}の目的を損なわない限り、何らこれに限定されない。
 まず、前記乳酸オリゴマー(a-1)または(a-2)と溶媒とを混合し、常圧、窒素雰囲気下で、該混合物を所定の温度まで昇温する。次に、該混合物に必要に応じて触媒を加えた後、さらにポリイソシアネート化合物を加え、所定の温度で反応させる。最後に、得られた反応生成物を脱炭酸することによりポリ乳酸樹脂(B)を得ることができる。前記ポリイソシアネート化合物は、ジイソシアネート化合物であることが好ましい。
 またこの工程において、反応物の分子量の増加とともに反応物の粘度が急激に上昇する。そのため、前述のように溶液で攪拌しながら反応させる方法のほかに、押出機、特に二軸混練押出機を用い、無溶媒で混練、反応させて生成物を押し出す方法も、溶媒が不要で生成物の後処理が簡便になり効果的である。
 <ポリイソシアネート化合物>
 当該工程に用いるポリイソシアネート化合物としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられるポリイソシアネート化合物の具体例で挙げた化合物と同様の化合物などが挙げられる。
 ポリイソシアネート化合物は、脂肪族ジイソシアネート化合物であることが好ましく、これらの中でも、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることがより好ましく、ヘキサメチレンジイソシアネートであることがさらに好ましい。上記ポリイソシアネート化合物が、脂肪族ジイソシアネートであると、得られる組成物(C)の色調の点で好ましい。
 (ポリイソシアネートの添加量)
 上記ポリイソシアネート化合物の添加量は、上記乳酸オリゴマー(a-1)または(a-2)の末端官能基のモル数に基づいて決定する。乳酸オリゴマー(a-1)または(a-2)の末端官能基のモル数は、NMRデータおよびカルボン酸価により後述する実施例に記載した方法で算出する。
 上記ポリイソシアネート化合物の添加量は、上記乳酸オリゴマー(a-1)または(a-2)の末端官能基のモル数に対して0.8~2.0倍モルであることが好ましく、0.8~1.5倍モルであることがより好ましく、0.8~1.3倍モルであることが更に好ましい。ここで「倍モル」とは、「イソシアネート基(モル)/末端官能基数(モル)」により算出される値の単位である。
 上記ポリイソシアネート化合物の添加量が前記下限値未満であると、ポリイソシアネート化合物の添加効果が小さく、高分子量のポリ乳酸樹脂(B)を得ることが困難となる場合がある。一方、前記上限値を超えると、イソシアネートが架橋反応などの副反応を引き起こし、ゲル状のポリ乳酸樹脂(B)が生成することがある。
 <アミド化触媒>
 前記工程で用いられ得るアミド化触媒とは、上記乳酸オリゴマー(a-1)または(a-2)等の末端カルボキシル基部分を上記ポリイソシアネート化合物と反応させて、アミド結合を形成させる触媒をいう。
 アミド化触媒としては、周期律表第1族、2族および3族における金属からなる群より選ばれる少なくとも1種の金属を含むことが好ましく、カリウム、マグネシウム、カルシウムおよびイッテルビウムの群より選ばれる少なくとも1種の金属を含むことがより好ましく、マグネシウムまたはカルシウムを含むことが特に好ましい。このような金属を含んでいると反応性に優れる触媒を得ることができ、色調の良い組成物(C)を得ることができるため好ましい。
 周期律表第1族、2族および3族における金属からなる群より選ばれる少なくとも1種の金属を含むアミド化触媒としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられるアミド化触媒と同様の触媒などが挙げられる。これらは1種単独で使用しても、また2種以上を併用してもよい。これらの中でも、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、塩化マグネシウム、イッテルビウムトリフラートなどが好ましく、さらにはマグネシウム化合物、特に、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウムが好ましい。これらの触媒は2種以上併用することもできる。
 上記アミド化触媒の添加量は、乳酸オリゴマー(a-1)または(a-2)100重量部あたり、0.01~2重量部、好ましくは0.01~1重量部、より好ましくは0.01~0.5重量部である。
 本発明{2}の上記乳酸オリゴマー(a-1)または(a-2)はヒドロキシル基を含む場合がある。その場合、該ヒドロキシ部分は上記ポリイソシアネート化合物と反応し、ウレタン結合を形成する。
 このようなウレタン結合を形成させる触媒としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられ得る触媒と同様の触媒などが挙げられる。このウレタン結合を形成させる触媒の添加量は、上記乳酸オリゴマー(a-1)および(a-2)100重量部あたり、0.01~2重量部、好ましくは0.01~1重量部、より好ましくは0.01~0.5重量部である。
 〈ポリ乳酸樹脂組成物(C)〉
 L-乳酸を主成分とするポリ乳酸樹脂(A-1)とD-乳酸を主成分とするポリ乳酸樹脂(A-2)の混合重量比は、90:10~10:90であることが好ましく、70:30~30:70であることがより好ましく、75:25~25:75であることが更に好ましく、60:40~40:60であることが特に好ましい。
 上記組成物をその融点以上に溶融し、次いで冷却することでステレオコンプレックスポリ乳酸を形成することができる。
 ポリ乳酸樹脂組成物(C)は、ポリ乳酸樹脂(B)ではないポリ乳酸樹脂(A-1)とポリ乳酸樹脂(B-a-2)を含有することがステレオコンプレックスポリ乳酸の形成能およびコストの点などから好ましい。
 ポリ乳酸樹脂組成物(C)の製造方法としては、特に限定されるものではないが、例えばポリ乳酸樹脂(A-1)およびポリ乳酸樹脂(A-2)を、混合装置を用いて溶融混練する方法が挙げられる。その際に、混合装置への各化合物の投入順序などは問わない。従って、2成分を同時に混合装置に投入してもよく、ポリ乳酸樹脂(A-1)とポリ乳酸樹脂(A-2)とを、予備混合した後に投入および混合してもよい。各成分は、粉末状、顆粒状またはペレット状などのいずれの形状であってもよい。混合装置は、例えばミルロール、ミキサー、単軸および二軸押出機などが挙げられる。混練する際の温度は、160℃以上、250℃以下が好ましく、170℃以上、230℃以下がより好ましい。
 また、ポリ乳酸樹脂(A-1)およびポリ乳酸樹脂(A-2)を溶媒中で混合した後、溶媒を除去してポリ乳酸樹脂組成物(C)を得る方法がある。該溶媒としては、たとえばクロロホルムなどの全てのポリマーが溶解する溶媒を用いる。混合する際の温度は、全てのポリマーが溶解し、かつ溶媒が揮発しない温度範囲であれば特に限定されるものでない。溶媒を除去する方法としては、特に限定されるものではなく、たとえば室温で溶媒を揮発させる方法、減圧下で溶媒の沸点以上の温度で溶媒を揮発させる方法などを用いることができる。
 ポリ乳酸樹脂組成物(C)は、示差走査熱量計(DSC)測定の昇温過程におけるポリ乳酸樹脂に由来する融解ピークにおいて、195℃以上の融解ピークの割合が70%以上であることが好ましく、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上である。195℃以上の融解ピークの割合が大きいほど、成型品の耐加水分解性が高くなる。
 ポリ乳酸樹脂組成物(C)の融点は、190~250℃の範囲が好ましく、より好ましくは195~220℃の範囲である。融解エンタルピーは、20J/g以上が好ましく、より好ましくは30J/g以上である。
 前記乳酸オリゴマー(a-1)または(a-2)の重量平均分子量が、5,000~100,000の範囲にあることで、融点がこの範囲内にあるポリ乳酸樹脂組成物(C)を得ることができ、該オリゴマーの重量平均分子量は、より好ましくは10,000~70,000の範囲であり、10,000~50,000の範囲が更に好ましい。
 重量平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 <安定剤>
 本発明{2}のポリ乳酸樹脂組成物(C)は、更に安定剤を含有してもよく、その配合量は、ポリ乳酸樹脂組成物(C)100重量部あたり、0.001~5重量部であることが好ましく、0.001~2.5重量部であることが好ましく、0.001~1重量部であることが好ましく、0.005~1重量部であることがより好ましく、0.01~3重量部であることが更に好ましく、0.01~1重量部であることが特に好ましい。
 安定剤としては、リン系安定剤、フェノール系安定剤およびその他の安定剤等が挙げられる。
 [リン系安定剤]
 前記リン系安定剤は、前記ポリ乳酸樹脂(B)製造時のアミド化触媒の失活剤および/または、前記ポリ乳酸樹脂(A-1)やポリ乳酸樹脂(A-2)および乳酸オリゴマー(a-1およびa-2)の調製に用いる触媒の失活剤として作用し、組成物(C)の良好な色相かつ高温時の粘度安定性向上に有効である。
 リン系安定剤としては、例えば、ホスファイト系化合物、ホスフェート系化合物が挙げられ、前記本発明{1}におけるポリ乳酸系樹脂(I)が含有してもよいリン系化合物と同様の化合物等を挙げることができる。
 [フェノール系安定剤]
 本発明{2}において用いられ得るフェノール系安定剤は、高温時に分子鎖が切断されるのを防ぐ役割を果たし、組成物(C)の良好な色相かつ高温時の粘度安定性向上に有効である。
 フェノール系安定剤の具体例としては、前記本発明{1}におけるポリ乳酸系樹脂(I)が含有してもよいフェノール系化合物と同様の化合物等を挙げることができる。
 好ましくは、(株)チバスペシャリティケミカル製”イルガノックス”245(トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート])、1010(テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン)である。
 [その他の安定剤]
 ポリ乳酸樹脂組成物(C)には、前述のリン系安定剤およびフェノール型安定剤以外にも、さらに良好な色相かつ安定した流動性を得るため、その他の安定剤を含有することが好ましい。その他の安定剤としては、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物などが挙げられ、これらを併用して用いてもよい。
 チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物およびヒドラジン誘導体系化合物の具体例としては、前記本発明{1}で用いることができるチオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物およびヒドラジン誘導体系化合物と同様の化合物などが挙げられる。
 <その他の成分>
 本発明{2}のポリ乳酸樹脂組成物(C)には、結晶核剤、無機充填材、難燃剤、安定剤(リン系安定剤およびフェノール型安定剤以外)、弾性重合体、末端封止剤およびその他の添加剤を配合してもよい。
 ・結晶核剤
結晶核剤としてはポリ乳酸樹脂、並びに芳香族ポリエステルなどの結晶性樹脂に対して結晶核剤として一般に用いられている公知の化合物を用いることができる。
 例えば、タルク、シリカ、グラファイト、炭素粉、ピロフェライト、石膏、中性粘土等の無機質微粒子や、酸化マグネシウム、酸化アルミニウム、二酸化チタン等の金属酸化物、硫酸塩、リン酸塩、ホスホン酸塩、硅酸塩、蓚酸塩、ステアリン酸塩、安息香酸塩、サリチル酸塩、酒石酸塩、スルホン酸塩、モンタンワックス塩、モンタンワックスエステル塩、テレフタル酸塩、安息香酸塩、カルボン酸塩等が挙げられる。
 これらの結晶核剤として用いられる化合物の中で特に効果の大きいものは、タルクであり、平均粒径が20μm以下のタルクが好ましく用いられるが、平均粒径が5μm以下のものを用いると更に好ましい。
 これら結晶核剤の配合量は、結晶核剤の種類や形状によってその効果を発現させる量は異なるため一律に規定することはできないが、ポリ乳酸樹脂組成物(C)100重量部あたり、0.01~5重量部であり、好ましくは0.05~3重量部、より好ましくは0.1~2重量部である。結晶核剤の添加量が少なすぎる場合には結晶核剤としての効果が発現されず、逆に多過ぎても結晶核剤としての効果が増大されることがないばかりか、むしろ組成物(C)の機械特性その他において悪い結果を与える場合がある。
 本発明{2}で用いられる結晶核剤の配合方法に特に制約はないが、必要により配合される他成分が存在する場合にはそれらを組成物(C)に混合する際に共に添加する方法が、ステレオコンプレックス形成に与える悪影響が小さいため好ましい。
 ・無機充填材
本発明{2}のポリ乳酸樹脂組成物(C)に無機充填材を更に配合すると、機械特性、寸法特性などに優れた成型品を得ることができる。
 無機充填材としては、ガラス繊維、炭素繊維、ガラスフレーク、ワラストナイト、カオリンクレー、マイカ、タルクおよび各種ウイスカー類(チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカーなど)といった一般に知られている各種無機充填材を挙げることができる。無機充填材の形状は繊維状、フレーク状、球状、中空状を自由に選択でき、樹脂組成物の強度や耐衝撃性の向上のためには繊維状、フレーク状のものが好適である。
 無機充填材は、好適には天然鉱物の粉砕物からなる無機充填材であり、より好適には珪酸塩の天然鉱物の粉砕物からなる無機充填材であり、さらにその形状の点からは、マイカ、タルク、およびワラストナイトが好ましい。
 これらの無機充填材は、炭素繊維のような石油資源材料に比較して脱石油資源材料であることから、環境負荷のより低い原料を用いることとなり、結果として環境負荷の小さい結晶核剤及び無機充填材を使用する意義がより高められるという効果を奏する。さらに、前記のより好適な無機充填材は、炭素繊維を用いる場合に比較して良好な組成物(C)の難燃性が発現するとの有利な効果を奏する。
 本発明{2}で使用できるマイカの平均粒子径は走査型電子顕微鏡により観察し、1μm以上のものを抽出した合計1000個の数平均にて算出される数平均粒子径である。その数平均粒子径は10~500μmであることが好ましく、より好ましくは30~400μm、さらに好ましくは30~200μm、特に好ましくは35~80μmである。数平均粒子径が10μm未満となると成型品の衝撃強度が低下する場合がある。また500μmを超えると、成型品の衝撃強度は向上するが外観が悪化しやすい。
 マイカの厚みとしては、電子顕微鏡観察により実測した厚みが0.01~10μmのものを使用でき、好ましくは0.1~5μmである。アスペクト比としては5~200、好ましくは10~100のものを使用できる。また、該マイカはマスコバイトマイカが好ましく、そのモース硬度は約3である。マスコバイトマイカはフロゴパイトなど他のマイカに比較してより高剛性および高強度を達成でき、より好適な電子機器外装部品が提供される。
 このような平均粒子径、厚みおよびアスペクト比等を有するマイカを得るために、市販のマイカを以下の粉砕法を用いて、粉砕してもよい。
 マイカの粉砕法としては、マイカ原石を乾式粉砕機にて粉砕する乾式粉砕法と、マイカ原石を乾式粉砕機にて粗粉砕した後、水などの粉砕助剤を加えてスラリー状態にて湿式粉砕機で本粉砕し、その後脱水、乾燥を行う湿式粉砕法がある。本発明のマイカはいずれの粉砕法において製造されたものも使用できるが、乾式粉砕法の方が低コストで一般的である。一方湿式粉砕法は、マイカをより薄く細かく粉砕するのに有効であるがコストがかかる。前記マイカは、シランカップリング剤、高級脂肪酸エステル、およびワックスなどの各種表面処理剤で表面処理されていてもよく、さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。
 また、使用できるタルクとは、層状構造を持った鱗片状の粒子であり、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO2・3MgO・2H2Oで表され、通常SiO2を56~65重量%、MgOを28~35重量%、H2O約5重量%程度から構成されている。その他の少量成分としてFe23(0.03~1.2重量%)、Al23(0.05~1.5重量%)、CaO(0.05~1.2重量%)、K2O(0.2重量%以下)、Na2O(0.2重量%以下)などが含まれており、比重は約2.7、モース硬度は1である。
 タルクの平均粒子径は0.5~30μmが好ましい。該平均粒子径はJIS M8016に従って測定したアンドレアゼンピペット法により測定した粒度分布から求めた積重率50%時の粒子径である。タルクの粒子径は2~30μmがより好ましく、5~20μmがさらに好ましく、10~20μmが特に好ましい。タルクの平均粒子径が前記範囲にあると成型品に剛性および低異方性に加えて、良好な表面外観および難燃性を付与する。
 このような平均粒子径等を有するタルクを得るために、市販のタルクを以下のように粉砕してもよい。
 またタルクを原石から粉砕する際の製法に関しては特に制限はなく、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ジェットミル法、および容器回転式圧縮剪断型ミル法等を利用することができる。さらに粉砕後のタルクは、各種の分級機によって分級処理され、粒子径の分布が揃ったものが好適である。分級機としては特に制限はなく、インパクタ型慣性力分級機(バリアブルインパクターなど)、コアンダ効果利用型慣性力分級機(エルボージェットなど)、遠心場分級機(多段サイクロン、ミクロプレックス、ディスパージョンセパレーター、アキュカット、ターボクラシファイア、ターボプレックス、ミクロンセパレーター、およびスーパーセパレーターなど)などを挙げることができる。
 さらにタルクは、その取り扱い性等の点で凝集状態であるものが好ましく、かかる製法としては脱気圧縮による方法、集束剤を使用し圧縮する方法等がある。特に脱気圧縮による方法が簡便かつ不要の集束剤樹脂成分を本発明{2}のポリ乳酸樹脂組成物(C)に混入させない点で好ましい。
 また、本発明{2}で使用できるワラストナイトは、実質的に化学式CaSiO3で表され、通常SiO2を約50重量%以上、CaOを約47重量%以上、その他Fe23、Al23等を含んでいる。ワラストナイトは、ワラストナイト原石を粉砕、分級した白色針状粉末で、モース硬度は約4.5である。使用するワラストナイトの平均繊維径は0.5~20μmが好ましく、0.5~10μmがより好ましく、1~5μmが更に好ましい。該平均繊維径は走査型電子顕微鏡により観察し、0.1μm以上のものを抽出した合計1000個の数平均にて算出されるものである。
 これら無機充填材には、結晶核剤としても働くものもあるが、その配合量は、ポリ乳酸樹脂組成物(C)100重量部あたり、0.3~200重量部が好ましく、1.0~100重量部がより好ましく、3~50重量部が更に好ましい。かかる配合量が0.3重量部より小さい場合には、本発明{2}の成型品の機械特性に対する補強効果が十分でなく、また200重量部を超えると、組成物(C)の成型加工性や成型品の色相が悪化することがある。
 なお、ポリ乳酸樹脂組成物(C)において、繊維状無機充填材やフレーク状無機充填材を用いる場合、それらの折れを抑制するための折れ抑制剤を含むことができる。折れ抑制剤はマトリックス樹脂と無機充填材との間の密着性を阻害し、溶融混練時に無機充填材に作用する応力を低減して無機充填材の折れを抑制する。折れ抑制剤の効果としては(1)剛性向上(無機充填材のアスペクト比が大きくなる)、(2)靭性向上、(3)導電性の向上(導電性無機充填材の場合)などを挙げることができる。折れ抑制剤は具体的には、樹脂と親和性の低い構造を有し、かつ無機充填材の表面と反応可能な官能基を有する化合物である。このようにして、樹脂と親和性の低い化合物を無機充填材の表面に直接被覆した化合物を得ることができる。
 樹脂と親和性の低い化合物としては各種の滑剤を代表的に挙げることができる。滑剤としては例えば、鉱物油、合成油、高級脂肪酸エステル、高級脂肪酸アミド、ポリオルガノシロキサン(シリコーンオイル、シリコーンゴムなど)、オレフィン系ワックス(パラフィンワックス、ポリオレフィンワックスなど)、ポリアルキレングリコール、フッ素化脂肪酸エステル、トリフルオロクロロエチレン、ポリヘキサフルオロプロピレングリコールなどのフッ素オイルなどが挙げられる。
 樹脂と親和性の低い化合物を無機充填材の表面に直接被覆する方法としては、(1)無機充填材を該化合物に直接、または該化合物の溶液や乳化液をに浸漬する方法、(2)該化合物の蒸気中または粉体中に無機充填材を通過させる方法、(3)該化合物の粉体などを無機充填材に高速で照射する方法、(4)無機充填材と該化合物を擦り付けるメカノケミカル的方法などを挙げることができる。
 樹脂と親和性の低い構造を有し、かつ無機充填材の表面と反応可能な官能基を有する化合物としては、各種の官能基で修飾された前記の滑剤を挙げることができる。かかる官能基としては例えばカルボキシル基、カルボン酸無水物基、エポキシ基、オキサゾリン基、イソシアネート基、エステル基、アミノ基、アルコキシシリル基などを挙げることができる。
 好適な折れ抑制剤の1つは、炭素数5以上のアルキル基が珪素原子に結合したアルコキシシラン化合物である。かかる珪素原子に結合したアルキル基の炭素数は好ましくは5~60、より好ましくは5~20、さらに好ましくは6~18、特に好ましくは8~16である。珪素原子に結合するアルキル基の数は1または2が好適であり、1がより好ましい。またアルコキシ基としてはメトキシ基およびエトキシ基が好適に例示される。かかるアルコキシシラン化合物は、無機充填材表面に対する反応性が高く被覆効率に優れる点で好ましい。したがってより微細な無機充填材において好適である。
 好適な折れ抑制剤の1つは、カルボキシル基、およびカルボン酸無水物基からなる群より選択された少なくとも1種の官能基を有するポリオレフィンワックスである。分子量は重量平均分子量で500~20,000が好ましく、より好ましくは1,000~15,000である。かかるポリオレフィンワックスにおいて、カルボキシル基およびカルボン酸無水物基の量は、カルボキシル基およびカルボン酸無水物基からなる群より選択される少なくとも1種の官能基を有する滑剤1g当り0.05~10meq/gの範囲が好ましく、より好ましくは0.1~6meq/gであり、さらに好ましくは0.5~4meq/gである。折れ抑制剤中、カルボキシル基およびカルボン酸無水物基以外の官能基の割合も前記のカルボキシル基およびカルボン酸無水物基の割合と同程度であることが好ましい。
 折れ抑制剤としてより好ましくは、α-オレフィンと無水マレイン酸との共重合体を挙げることができる。かかる共重合体は、常法に従いラジカル触媒の存在下に、溶融重合あるいはバルク重合法で製造することができる。ここでα-オレフィンとしてはその炭素数が平均値として10~60のものを好ましく挙げることができる。α-オレフィンとしてより好ましくはその炭素数が平均値として16~60、さらに好ましくは25~55のものを挙げることができる。
 前記折れ抑制剤の配合量はポリ乳酸樹脂組成物(C)100重量部あたり0.01~2重量部が好ましく、0.05~1.5重量部がより好ましく、0.1~0.8重量部がさらに好ましい。
 ・難燃剤
 ポリ乳酸樹脂組成物(C)には、難燃剤を配合することもできる。難燃剤としては、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート、臭素化ポリアクリレート、および塩素化ポリエチレンなどのハロゲン系難燃剤、モノホスフェート化合物およびホスフェートオリゴマー化合物などのリン酸エステル系難燃剤、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物などのリン酸エステル系難燃剤以外の有機リン系難燃剤、有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤などの有機金属塩系難燃剤、並びにシリコーン系難燃剤等が挙げられる。また別途、難燃助剤(例えば、アンチモン酸ナトリウム、三酸化アンチモン等)や滴下防止剤(フィブリル形成能を有するポリテトラフルオロエチレン等)等を配合し、難燃剤と併用してもよい。
 上述の難燃剤の中でも、塩素原子および臭素原子を含有しない化合物は、焼却廃棄やサーマルリサイクルを行う際にハロゲン化物の生成が低減されることから、環境負荷の低減をも1つの特徴とする本発明{2}の成型品における難燃剤としてより好適である。
 さらにリン酸エステル系難燃剤は、成型品の良好な色相が得られ、組成物(C)の成型加工性を高める効果を有することから特に好ましい。リン酸エステル系難燃剤の具体例としては、特に下記一般式で表される1種または2種以上のリン酸エステル化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 (但し上記式中のXは、ハイドロキノン、レゾルシノール、ビス(4-ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)サルファイドから誘導される基が挙げられ、mは0~5の整数であり、またはm数の異なるリン酸エステルの混合物の場合は0~5の平均値であり、R11、R12、R13、およびR14はそれぞれ独立して1個以上のハロゲン原子を置換したもしくは置換していないフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、p-クミルフェノールから誘導される基である。)
 さらに好ましいものとしては、上記式中のXが、ハイドロキノン、レゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルから誘導される基が挙げられ、mは1~3の整数であり、またはm数の異なるリン酸エステルのブレンドの場合はその平均値であり、R11、R12、R13、およびR14はそれぞれ独立して1個以上のハロゲン原子を置換したもしくはより好適には置換していないフェノール、クレゾール、キシレノールから誘導される基である。
 かかる有機リン酸エステル系難燃剤の中でも、トリフェニルホスフェート、ホスフェートオリゴマーとしてはレゾルシノールビス(ジキシリルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)が成型品の耐加水分解性などにも優れるため好ましく使用できる。より好ましいのは、耐熱性などの点からレゾルシノールビス(ジキシリルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)である。これらは耐熱性も良好であるためそれらが熱劣化したり揮発するなどの弊害がないためである。
 ポリ乳酸樹脂組成物(C)において、これら難燃剤を配合する場合には、ポリ乳酸樹脂組成物(C)100重量部あたり0.05~50重量部の範囲が好ましい。0.05重量部未満では成型品の十分な難燃性が発現せず、50重量部を超えると成型品の強度や耐熱性などを損なう場合がある。
 ・衝撃改良剤
 ポリ乳酸樹脂組成物(C)には、衝撃改良剤として弾性重合体を使用することができ、弾性重合体の例としては、ガラス転移温度が10℃以下のゴム成分に、芳香族ビニル、シアン化ビニル、アクリル酸エステル、メタクリル酸エステル、およびこれらと共重合可能なビニル化合物から選択されたモノマーの1種または2種以上が共重合されたグラフト共重合体を挙げることができる。より好適な弾性重合体は、ゴム成分のコアに前記モノマーの1種または2種以上のシェルがグラフト共重合されたコア-シェル型のグラフト共重合体である。
 またかかるゴム成分と上記モノマーのブロック共重合体も挙げられる。かかるブロック共重合体としては具体的にはスチレン・エチレンプロピレン・スチレンエラストマー(水添スチレン・イソプレン・スチレンエラストマー)、および水添スチレン・ブタジエン・スチレンエラストマーなどの熱可塑性エラストマーを挙げることができる。さらに他の熱可塑性エラストマーして知られている各種の弾性重合体、例えばポリウレタンエラストマー、ポリエステルエラストマー、ポリエーテルアミドエラストマー等を使用することも可能である。
 衝撃改良剤としてより好適なのはコア-シェル型のグラフト共重合体である。コア-シェル型のグラフト共重合体において、そのコアの粒径は重量平均粒子径において0.05~0.8μmが好ましく、0.1~0.6μmがより好ましく、0.1~0.5μmがさらに好ましい。0.05~0.8μmの範囲であればより良好な耐衝撃性が達成される。
 弾性重合体は、ゴム成分を40%以上含有するものが好ましく、60%以上含有するものがより好ましい。
 ゴム成分としては、ブタジエンゴム、ブタジエン-アクリル複合ゴム、アクリルゴム、アクリル-シリコーン複合ゴム、イソブチレン-シリコーン複合ゴム、イソプレンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、エチレン-プロピレンゴム、ニトリルゴム、エチレン-アクリルゴム、シリコーンゴム、エピクロロヒドリンゴム、フッ素ゴムおよびこれらの不飽和結合部分に水素が添加されたものを挙げることができるが、成型品の燃焼時の有害物質の発生懸念という点から、ハロゲン原子を含まないゴム成分が環境負荷の面において好ましい。
 ゴム成分のガラス転移温度は好ましくは-10℃以下、より好ましくは-30℃以下であり、ゴム成分としては特にブタジエンゴム、ブタジエン-アクリル複合ゴム、アクリルゴム、アクリル-シリコーン複合ゴムが好ましい。複合ゴムとは、2種のゴム成分を共重合したゴムまたは分離できないよう相互に絡み合ったIPN構造をとるように重合したゴムをいう。
 ゴム成分に共重合するビニル化合物における芳香族ビニルとしては、スチレン、α-メチルスチレン、p-メチルスチレン、アルコキシスチレン、ハロゲン化スチレン等を挙げることができ、特にスチレンが好ましい。またアクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル等を挙げることができ、メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等を挙げることができ、メタクリル酸メチルが特に好ましい。これらの中でも特にメタクリル酸メチルなどのメタクリル酸エステルを必須成分として含有することが好ましい。より具体的には、メタクリル酸エステルはグラフト成分100重量%中(コア-シェル型重合体の場合にはシェル100重量%中)、好ましくは10重量%以上、より好ましくは15重量%以上含有される。
 ガラス転移温度が10℃以下のゴム成分を含有する弾性重合体は、塊状重合、溶液重合、懸濁重合、乳化重合のいずれの重合法で製造したものであってもよく、共重合の方式は一段グラフトであっても多段グラフトであっても差し支えない。また製造の際に副生するグラフト成分のみのコポリマーとの混合物であってもよい。さらに重合法としては一般的な乳化重合法の他、過硫酸カリウム等の開始剤を使用するソープフリー重合法、シード重合法、二段階膨潤重合法等を挙げることができる。また懸濁重合法において、水相とモノマー相とを個別に保持して両者を正確に連続式の分散機に供給し、粒子径を分散機の回転数で制御する方法、および連続式の製造方法において分散能を有する水性液体中にモノマー相を数~数十μm径の細径オリフィスまたは多孔質フィルターを通すことにより供給し粒径を制御する方法などを行ってもよい。コア-シェル型のグラフト重合体の場合、その反応はコアおよびシェル共に、1段であっても多段であってもよい。
 かかる弾性重合体は市販されており容易に入手することが可能である。例えばゴム成分として、ブタジエンゴム、アクリルゴムまたはブタジエン-アクリル複合ゴムを主体とするものとしては、鐘淵化学工業(株)のカネエースBシリーズ(例えばB-56など)、三菱レイヨン(株)のメタブレンCシリーズ(例えばC-223Aなど)、Wシリーズ(例えばW-450Aなど)、呉羽化学工業(株)のパラロイドEXLシリーズ(例えばEXL-2602など)、HIAシリーズ(例えばHIA-15など)、BTAシリーズ(例えばBTA-IIIなど)、KCAシリーズ、ローム・アンド・ハース社のパラロイドEXLシリーズ、KMシリーズ(例えばKM-336P、KM-357Pなど)、並びに宇部サイコン(株)のUCLモディファイヤーレジンシリーズ(ユーエムジー・エービーエス(株)のUMG AXSレジンシリーズ)などが挙げられ、ゴム成分としてアクリル-シリコーン複合ゴムを主体とするものとしては三菱レイヨン(株)のメタブレンS-2001およびSRK-200などが挙げられる。
 衝撃改良剤の組成割合は、ポリ乳酸樹脂組成物(C)100重量部あたり0.2~50重量部が好ましく、1~30重量部がより好ましく、1.5~20重量部が更に好ましい。かかる組成範囲は、成型品の剛性の低下を抑制しつつ良好な耐衝撃性を与えることができる。
 ・末端封止剤
 本発明{2}のポリ乳酸樹脂組成物(C)において、末端封鎖剤を更に配合すると、耐加水分解性が更に高められた成型品を得ることができる。
 末端封鎖剤とは、本発明{2}のポリ乳酸樹脂組成物(C)中のポリ乳酸樹脂(A-1)および/または(A-2)のカルボキシル基末端の一部または全部と反応して封鎖する働きを示すものであり、例えば、脂肪族アルコールやアミド化合物などの縮合反応型化合物や、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの付加反応型の化合物などが挙げられる。
 上記カルボジイミド化合物に含まれるモノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易であるという面から、ジシクロヘキシルカルボジイミド或いはジイソプロピルカルボジイミドが好適である。
 また、上記カルボジイミド化合物に含まれるポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができるが、基本的には従来のポリカルボジイミドの製造方法(米国特許第2941956号明細書、特公昭47-33279号公報、J.0rg.Chem.28, 2069-2075(1963)、Chemical Review l981,Vol.81 No.4、p619-621)により製造したものを用いることができる。
 上記ポリカルボジイミド化合物の製造における合成原料である有機ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5-ナフタレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等を例示することができる。
 また、上記ポリカルボジイミド化合物は、モノイソシアネート等の、ポリカルボジイミド化合物の末端イソシアネートと反応する化合物を用いて、適当な重合度に制御することもできる。
 このようなポリカルボジイミド化合物の末端を封止してその重合度を制御するためのモノイソシアネートとしては、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等を例示することができる。
 エポキシ化合物の例としては、例えば、N-グリシジルフタルイミド、N-グリシジル-4-メチルフタルイミド、N-グリシジル-4,5-ジメチルフタルイミド、N-グリシジル-3-メチルフタルイミド、N-グリシジル-3,6-ジメチルフタルイミド、N-グリシジル-4-エトキシフタルイミド、N-グリシジル-4-クロルフタルイミド、N-グリシジル-4,5-ジクロルフタルイミド、N-グリシジル-3,4,5,6-テトラブロムフタルイミド、N-グリシジル-4-n-ブチル-5-ブロムフタルイミド、N-グリシジルサクシンイミド、N-グリシジルヘキサヒドロフタルイミド、N-グリシジル-1,2,3,6-テトラヒドロフタルイミド、N-グリシジルマレインイミド、N-グリシジル-α,β-ジメチルサクシンイミド、N-グリシジル-α-エチルサクシンイミド、N-グリシジル-α-プロピルサクシンイミド、N-グリシジルベンズアミド、N-グリシジル-p-メチルベンズアミド、N-グリシジルナフトアミド、N-グリシジルステラミド、N-メチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-エチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-フェニル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-ナフチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-トリル-3-メチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、オルソフェニルフェニルグリシジルエーテル、2-メチルオクチルグリシジルエーテル、フェニルグリシジルエーテル、3-(2-キセニルオキシ)-1,2-エポキシプロパン、アリルグリシジルエーテル、ブチルグリシジルエーテル、ラウリルグリシジルエーテル、ベンジルグリシジルエーテル、シクロヘキシルグリシジルエーテル、α-クレシルグリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、メタクリル酸グリシジルエーテル、エチレンオキサイド、プロピレンオキサイド、スチレンオキサイド、オクチレンオキサイド、ヒドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールA-ジグリシジルエーテルなどが挙げられ、さらには、テレフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、フタル酸ジメチルジグリシジルエステル、フェニレンジグリシジルエーテル、エチレンジグリシジルエーテル、トリメチレンジグリシジルエーテル、テトラメチレンジグリシジルエーテル、ヘキサメチレンジグリシジルエーテルなどが挙げられる。これらのエポキシ化合物の中から1種または2種以上の化合物を任意に選択してポリ乳酸樹脂(A-1)および/または(A-2)のカルボキシル末端を封鎖すればよいが、反応性の点でエチレンオキサイド、プロピレンオキサイド、フェニルグリシジルエーテル、オルソフェニルフェニルグリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、N-グリシジルフタルイミド、ヒドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールA-ジグリシジルエーテルなどが好ましい。
 オキサゾリン化合物の例としては、例えば、2-メトキシ-2-オキサゾリン、2-エトキシ-2-オキサゾリン、2-プロポキシ-2-オキサゾリン、2-ブトキシ-2-オキサゾリン、2-ペンチルオキシ-2-オキサゾリン、2-ヘキシルオキシ-2-オキサゾリン、2-ヘプチルオキシ-2-オキサゾリン、2-オクチルオキシ-2-オキサゾリン、2-ノニルオキシ-2-オキサゾリン、2-デシルオキシ-2-オキサゾリン、2-シクロペンチルオキシ-2-オキサゾリン、2-シクロヘキシルオキシ-2-オキサゾリン、2-アリルオキシ-2-オキサゾリン、2-メタアリルオキシ-2-オキサゾリン、2-クロチルオキシ-2-オキサゾリン、2-フェノキシ-2-オキサゾリン、2-クレジル-2-オキサゾリン、2-o-エチルフェノキシ-2-オキサゾリン、2-o-プロピルフェノキシ-2-オキサゾリン、2-o-フェニルフェノキシ-2-オキサゾリン、2-m-エチルフェノキシ-2-オキサゾリン、2-m-プロピルフェノキシ-2-オキサゾリン、2-p-フェニルフェノキシ-2-オキサゾリン、2-メチル-2-オキサゾリン、2-エチル-2-オキサゾリン、2-プロピル-2-オキサゾリン、2-ブチル-2-オキサゾリン、2-ペンチル-2-オキサゾリン、2-ヘキシル-2-オキサゾリン、2-ヘプチル-2-オキサゾリン、2-オクチル-2-オキサゾリン、2-ノニル-2-オキサゾリン、2-デシル-2-オキサゾリン、2-シクロペンチル-2-オキサゾリン、2-シクロヘキシル-2-オキサゾリン、2-アリル-2-オキサゾリン、2-メタアリル-2-オキサゾリン、2-クロチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2-o-エチルフェニル-2-オキサゾリン、2-o-プロピルフェニル-2-オキサゾリン、2-o-フェニルフェニル-2-オキサゾリン、2-m-エチルフェニル-2-オキサゾリン、2-m-プロピルフェニル-2-オキサゾリン、2-p-フェニルフェニル-2-オキサゾリンなどが挙げられ、さらには、2,2′-ビス(2-オキサゾリン)、2,2′-ビス(4-メチル-2-オキサゾリン)、2,2′-ビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-ビス(4-エチル-2-オキサゾリン)、2,2′-ビス(4,4′-ジエチル-2-オキサゾリン)、2,2′-ビス(4-プロピル-2-オキサゾリン)、2,2′-ビス(4-ブチル-2-オキサゾリン)、2,2′-ビス(4-ヘキシル-2-オキサゾリン)、2,2′-ビス(4-フェニル-2-オキサゾリン)、2,2′-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2′-ビス(4-ベンジル-2-オキサゾリン)、2,2′-p-フェニレンビス(2-オキサゾリン)、2,2′-m-フェニレンビス(2-オキサゾリン)、2,2′-o-フェニレンビス(2-オキサゾリン)、2,2′-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2′-p-フェニレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2′-m-フェニレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-エチレンビス(2-オキサゾリン)、2,2′-テトラメチレンビス(2-オキサゾリン)、2,2′-ヘキサメチレンビス(2-オキサゾリン)、2,2′-オクタメチレンビス(2-オキサゾリン)、2,2′-デカメチレンビス(2-オキサゾリン)、2,2′-エチレンビス(4-メチル-2-オキサゾリン)、2,2′-テトラメチレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-9,9′-ジフェノキシエタンビス(2-オキサゾリン)、2,2′-シクロヘキシレンビス(2-オキサゾリン)、2,2′-ジフェニレンビス(2-オキサゾリン)などが挙げられる。さらには、上記した化合物をモノマー単位として含むポリオキサゾリン化合物など、例えばスチレン・2-イソプロペニル-2-オキサゾリン共重合体などが挙げられる。これらのオキサゾリン化合物の中から1種または2種以上の化合物を任意に選択してポリ乳酸樹脂(A-1)および/または(A-2)のカルボキシル末端を封鎖すればよい。
 オキサジン化合物の例としては、例えば、2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-エトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-プロポキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ブトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ペンチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ヘキシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ヘプチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-オクチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ノニルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-デシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-シクロペンチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-シクロヘキシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-アリルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-メタアリルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-クロチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジンなどが挙げられ、さらには、2,2′-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-メチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-エチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-プロピレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ブチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ヘキサメチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-p-フェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-m-フェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ナフチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-P,P′-ジフェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)などが挙げられる。さらには、上記した化合物をモノマー単位として含むポリオキサジン化合物などが挙げられる。
これらのオキサジン化合物の中から1種または2種以上の化合物を任意に選択してポリ乳酸樹脂(A-1)および/または(A-2)のカルボキシル末端を封鎖すればよい。
 更には、既に例示したオキサゾリン化合物および上述のオキサジン化合物などの中から1種または2種以上の化合物を任意に選択し併用してポリ乳酸樹脂(A-1)および/または(A-2)のカルボキシル末端を封鎖してもよいが、該化合物の耐熱性および反応性や脂肪族ポリエステルとの親和性の点で2,2′-m-フェニレンビス(2-オキサゾリン)や2,2′-p-フェニレンビス(2-オキサゾリン)が好ましい。
 本発明{2}に用いることのできる末端封鎖剤のうちアジリジン化合物の例としては、例えば、モノ,ビスあるいはポリイソシアネート化合物とエチレンイミンとの付加反応物などが挙げられる。
 また、本発明{2}に用いることのできる末端封鎖剤として上述したカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの化合物うち、2種以上の化合物を末端封鎖剤として併用することもできる。
 本発明{2}のポリ乳酸樹脂組成物(C)のカルボキシル基末端を封鎖する方法は、縮合反応型あるいは付加反応型などの末端封鎖剤を反応させればよく、ポリマー重合時に重合系内に脂肪族アルコールやアミド化合物などの縮合反応型の末端封鎖剤を適量添加して減圧化で脱水縮合反応させるなどしてカルボキシル基末端を封鎖することができるが、ポリマーの高重合度化の観点から、重合反応終了時に縮合反応型の末端封鎖剤を添加することが好ましい。
 付加反応によりカルボキシル基末端を封鎖する方法としては、ポリ乳酸樹脂の溶融状態でカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの末端封鎖剤を適量反応させる方法を挙げることができ、ポリマーの重合反応終了後に末端封鎖剤を添加・反応させることが可能である。
 この末端封鎖剤の含有量はポリ乳酸樹脂組成物(C)100重量部あたり、0.01~5重量部であり、好ましくは0.05~4重量部、より好ましくは0.1~3重量部である。
 ・その他の添加剤
 ポリ乳酸樹脂組成物(C)には、本発明{2}の効果を損なわない範囲で、その他の添加剤として、他の熱可塑性樹脂(例えば、ポリカーボネート樹脂、ポリアルキレンテレフタレート樹脂、ポリアリレート樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレンおよびポリプロピレンなどのポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリスチレン樹脂、高衝撃ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリメタクリレート樹脂、並びにフェノキシまたはエポキシ樹脂など)、紫外線吸収剤(ベンゾトリアゾール化合物、トリアジン化合物、ベンゾフェノン化合物など)、光安定剤(HALSなど)、離型剤(飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス、フッ素化合物、パラフィンワックス、蜜蝋など)、流動改質剤(ポリカプロラクトンなど)、着色剤(カーボンブラック、二酸チタン、各種の有機染料、メタリック顔料など)、光拡散剤(アクリル架橋粒子、シリコーン架橋粒子など)、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、赤外線吸収剤、並びにフォトクロミック剤紫外線吸収剤などを配合してもよい。これら各種の添加剤は、ポリ乳酸樹脂等の熱可塑性樹脂に配合する際の周知の配合量で利用することができる。

 <成型品およびその製造について>
 ポリ乳酸樹脂組成物(C)は、樹脂および/または組成物の成型法として、公知公用の方法を適用できる好適な材料であり、得られる成型品は、特に制限はないが、例えばフィルム・シート等の押出成型品、モノフィラメント、繊維や不織布等のマルチフィラメント、射出成型品、ブロー成型品、積層体、発泡体、真空成型品などの熱成形体が挙げられる。
 ポリ乳酸樹脂組成物(C)から得られる成型体の成型方法としては、射出成型法、ブロー成型法(射出延伸ブロー、押出し延伸ブロー、ダイレクトブロー)、バルーン法、インフレーション成型、共押出法、カレンダー法、ホットプレス法、溶媒キャスティング法、(延伸)押出し成型,紙やアルミとの押出しラミネーション法、異形押出し成型、真空(圧空)成型などの熱成型、溶融紡糸(モノフィラメント、マルチフィラメント、スパンボンド法、メルトブローン法、解繊糸法など)、発泡成形法、圧縮成形法等が挙げられる。
 特に、ポリ乳酸樹脂組成物(C)の特徴を生かした射出成型、押出し成型、溶融紡糸がより好ましい。
ポリ乳酸樹脂組成物(C)から得られる成形品は、例えば、公知・公用の成型法で得られる成形品を包含し、その形状、大きさ、厚み、意匠等に関しては何ら制限はない。
 <用途の具体例>
 本発明{2}のポリ乳酸樹脂組成物(C)から得られる成型品は、前記本発明{1}のポリ乳酸系樹脂(I)から得られる成型品と同様の用途に好適に使用することができる。
 〈主な繰り返し単位がL-乳酸或いはD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x'1)および(y'1)〉
 オリゴマー(x'1)および(y'1)は、下記に示す、L-乳酸単位、或はD-乳酸単位をそれぞれ基本成分とするポリ乳酸であり、
Figure JPOXMLDOC01-appb-C000011
 (ここでnは1から2000までの自然数をさす。)
 該オリゴマー(x'1)および(y'1)は、下記に示す構成成分であることが好ましい。
  主な繰り返し単位がL-乳酸であり末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x’1)は、L-乳酸単位90~100モル%と、D-乳酸単位および/または乳酸以外の共重合成分単位0~10モル%とにより構成されるポリ乳酸単位である。
  または、主な繰り返し単位がL-乳酸であり末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x’1)は、L―乳酸単位90~99モル%と、D-乳酸単位および/または乳酸以外の共重合成分単位1~10モル%とにより構成されるポリ乳酸である。
 主な繰り返し単位がD-乳酸であり末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y’1)は、D-乳酸単位90~100モル%と、L-乳酸単位および/または乳酸以外の共重合成分単位0~10モル%とにより構成されるポリ乳酸単位である。
 または、主な繰り返し単位がD-乳酸であり末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y’1)は、D―乳酸単位90~99モル%と、L-乳酸単位および/または乳酸以外の共重合成分単位1~10モル%とにより構成されるポリ乳酸単位である。
 また、オリゴマー(x'1)および(y'1)は、前記本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)と同様の化合物等を挙げることができ、前記本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)と同様の方法で製造することができる。
 オリゴマー(x'1)および(y'1)中の乳酸以外の共重合成分としては、前期本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)中に含まれてもよい乳酸以外の成分単位として挙げた化合物と同様の化合物等が挙げられる。
  該オリゴマー(x'1)および(y'1)の重量平均分子量(Mw)は、それぞれ5,000~100,000であることが好ましく、10,000~80,000であることがより好ましく、更に好ましくは10,000~50,000がステレオコンプレックスポリ乳酸樹脂樹脂組成物(Z)の融点向上の点で好ましい。さらには、20,000~50,000がステレオコンプレックスポリ乳酸樹脂樹脂組成物(Z)の融点向上に加え、生産性、操作性において特に好ましい。重量平均分子量(Mw)は溶離液としてクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量値である。
 また、該オリゴマーは末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマーであるが、好ましくは、末端官能基におけるカルボキシル基の割合が85%以上であり、末端官能基におけるカルボキシル基の割合が90%以上であることがより好ましく、末端官能基におけるカルボキシル基の割合が95%以上であることがさらに好ましい。カルボキシル基の割合が高くなることで、後述する製造方法においてアミド結合がより多く形成され耐熱性及び結晶性の観点で好ましい。
 <主な繰り返し単位がL-乳酸或いはD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x’1)および(y’1)の製造方法>
 オリゴマー(x’1)および(y’1)は、既知の任意のポリ乳酸樹脂の重合方法により製造することができ、例えばラクチドの開環重合、乳酸の脱水縮合、およびこれらと固相重合を組み合わせた方法などにより製造することができる。具体的には、前記本発明{1}のポリ(L-乳酸)およびポリ(D-乳酸)の製造方法と同様の製造方法でオリゴマー(x’1)および(y’1)を製造することができる。
 〈ポリマー(X1)および(Y1)〉
 ポリマー(X1)および(Y1)は、それぞれ、前記オリゴマー(y'1)および(x'1)よりも大きい分子量を有すればよい。
 このポリマー(X1)および(Y1)としては、それぞれ、前記本発明{2}のポリ乳酸樹脂(A-1)および(A-2)と同様の化合物を挙げることができ、同様の方法で製造することができる。
 <ポリマー(X1)および(Y1)の重量平均分子量(Mw)>
 ポリマー(X1)および(Y1)の重量平均分子量(Mw)は、好ましくは50,000~1,000,000であることが好ましく、下限は70,000以上であることがより好ましく、80,000以上であることがさらに好ましい。上限は700,000以下であることがより好ましく、500,000以下であることが更に好ましく、300,000以下であることが更により好ましく、200,000以下であることが特に好ましい。具体的により好ましくは50,000~700,000、70,000~500,000が成型性及び機械強度の点から特に好ましい。重量平均分子量(Mw)は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量(Mw)値である。
 〈ステレオコンプレックスポリ乳酸樹脂組成物(Z)〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)は、重量平均分子量が70,000~500,000であり、(i)ステレオ結晶化比率が51%以上であり、保持温度240℃、保持時間1分における示差走査熱量(DSC)測定においては、(ii)第一昇温過程におけるステレオ化度(S)60%以上、(iii)第二昇温過程におけるステレオ化度(S)88%以上、(iv)第二昇温過程後の重量平均分子量(Mw)保持率77%以上を満たす。
 また、重量平均分子量が70,000~500,000であり、(i)ステレオ結晶化比率が51%以上であり、保持温度240℃、保持時間5分における示差走査熱量(DSC)測定においては、(ii')第一昇温過程におけるステレオ化度(S)60%以上、(iii')第二昇温過程におけるステレオ化度(S)95%以上、(iv')第二昇温過程後の重量平均分子量(Mw)保持率70%以上を満たす。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の示差走査熱量(DSC)測定前の重量平均分子量(Mw)は200,000以上であることが好ましく、200,000~1,000,000であることがより好ましい。
 〈ステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ結晶化比率〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ結晶化比率(Cr%)は、広角X線回折透過法測定におけるステレオコンプレックス相結晶とホモ相結晶との回折プロファイルから以下の式で算出される。
  Cr[%]={ΣISCi/(ΣISCi+IHM)}×100
ここで、
 ΣISCiは、ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和(ISC1+ISC2+ISC3)であり、ISC1、ISC2、ISC3はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度である。
 IHMは、ホモ結晶に由来する回折ピークの積分強度である。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ結晶化比率は、好ましくは51%以上、より好ましくは80%以上であることが、耐熱性、熱安定性の点から好ましい。ここで言うステレオ結晶化比率とは、ステレオコンプレックスポリ乳酸樹脂組成物(Z)そのもののステレオ結晶化比率であり、例えば射出成形などの加熱溶融による成型品を考える場合であれば、成型前のステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ結晶化比率である。
 〈ステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ化度(S)〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)のステレオ化度(S)は、昇温速度10℃/minで昇温したときの示差走査熱量(DSC)測定における各融解ピークの熱量を用いて以下の式から算出する。
 ステレオ化度(S)[%]={ΔHms/(ΔHmh+ΔHms)}×100
ここで、
 ΔHmsは、ピーク温度190℃以上のステレオコンプレックス相結晶の融解ピークの熱量(J/g)であり、
 ΔHmhは、ピーク温度190℃以下のホモ相結晶の融解ピークの熱量(J/g)である。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の240℃、保持時間1分或いは5分における上記示差走査熱量(DSC)測定における第一昇温過程におけるステレオ化度(S)は60%以上であり、これにより比較的低熱負荷でも後述する第二昇温過程でのステレオ化度(S)が88%以上となる。240℃、保持時間1分或いは5分における上記示差走査熱量(DSC)測定における第一昇温過程におけるステレオ化度(S)は、さらに好ましくは90%以上であり、これにより、熱負荷をさらに低減させても第二昇温過程でのステレオ化度(S)を100%とすることができ、さらにこの熱負荷の低減がしいては分子量低下を抑制する要因となると考えられる。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の上記示差走査熱量(DSC)測定における第二昇温過程におけるステレオ化度(S)は240℃、保持時間1分において、88%以上であり、100%であることが耐熱性、熱安定性の点から好ましい。また、本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の上記示差走査熱量(DSC)測定における第二昇温過程におけるステレオ化度(S)は240℃、保持時間5分において、95%以上であり、100%以上であることが耐熱性、熱安定性の点から好ましい。
 ところで、ここで言う第一昇温過程におけるステレオ化度(S)は、例えば射出成形などの加熱溶融による成型品を考える場合、成型前のステレオコンプレックスポリ乳酸樹脂組成物(Z)の熱物性の指標となる。
 また、ここで言う第二昇温過程におけるステレオ化度(S)は、例えば、成型後のステレオコンプレックスポリ乳酸樹脂組成物(Z)成型品の熱物性の指標となる。
 ここで言う第一昇温過程におけるステレオ化度(S)と、前述したステレオ結晶化比率(Cr)は対応関係にある。
 本発明{3}における示差走査熱量(DSC)測定の具体的な測定は、10℃/minの昇温速度で、ステレオコンプレックスポリ乳酸樹脂組成物(Z)の融点(Tm)以上の温度、ここでは240℃まで昇温し(第一昇温過程)、引き続き240度で1分或いは5分保持した後、0℃まで急冷し5分保持する。その後続いて、再び10℃/minの昇温速度で0℃から240℃まで昇温(第二昇温過程)した後、25℃まで急冷しすることにより行う。
 〈ステレオコンプレックスポリ乳酸樹脂組成物(Z)の重量平均分子量(Mw)保持率〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の240℃、保持時間1分における上記示差走査熱量(DSC)測定における上記示差走査熱量(DSC)測定における第二昇温過程後の重量平均分子量保持率は、77%以上であり、ステレオコンプレックスポリ乳酸樹脂組成物(Z)の240℃、保持時間5分における上記示差走査熱量(DSC)測定における上記示差走査熱量(DSC)測定における第二昇温過程後の重量平均分子量保持率は、70%以上であることが好ましく、77%以上が好ましい。これらの重量平均分子量保持率は、それぞれ80%以上がより好ましく、85%以上が更により好ましく、90%以上あることが機械物性の点から特に好ましく、また耐久性といった観点からも特に好ましい。ここで言う重量平均分子量(Mw)保持率とは、240℃、保持時間が1分或いは5分での上記示差走査熱量(DSC)測定における第二昇温過程後の重量平均分子量MwDSC測定後を、測定前の重量平均分子量MwDSC未測定で除した値である(以下の式)。
  Mw保持率(%)=(MwDSC測定後/MwDSC未測定)×100
ここで、
 MwDSC未測定は、DSC未測定のステレオコンプレックスポリ乳酸樹脂組成物(Z)の重量平均分子量であり、
 MwDSC測定後は、DSC測定後のステレオコンプレックスポリ乳酸樹脂組成物(Z)の重量平均分子量である。
 すなわち、ここで言う重量平均分子量(Mw)保持率は、例えば240℃、1分或いは5分の熱履歴で射出成形などの加熱溶融によりステレオコンプレックスポリ乳酸樹脂組成物(Z)から製造した成型品が、再度240℃の条件下にさらされた後の重量平均分子量(Mw)の保持率とほぼ等しいことになると考えられる。
 〈オリゴマー(x'1)および(y'1)の重量平均分子量(Mw)とポリマー(X1)および(Y1)の重量平均分子量(Mw)との関係〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)において、該オリゴマーの重量平均分子量(Mw)と該ポリマーの重量平均分子量(Mw)との関係は、該オリゴマーの末端官能基であるカルボキシル基がポリイソシアネート化合物とアミド結合を形成することで、該ポリマーと同等の重量平均分子量(Mw)を有するポリ乳酸系樹脂となり、高分子量のステレオコンプレックスポリ乳酸樹脂組成物(Z)を形成することから、製造時における該オリゴマーの重量平均分子量(Mw)は該ポリマーの重量平均分子量(Mw)以下、ステレオコンプレックスポリ乳酸樹脂組成物(Z)の形成し易さの点から、好ましくは1/2以下、より好ましくは1/5以下、更に好ましくは1/10以下、更により好ましくは1/20以下である。
 <ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造方法>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物の製造方法は、主な繰り返し単位がL-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(x'1)30~300重量部と、主な繰り返し単位がD-乳酸であり、前記オリゴマー(x'1)よりも大きい分子量を持つポリマー(Y1)100重量部との混合物、或いは、主な繰り返し単位がD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y'1)30~300重量部と、主な繰り返し単位がL-乳酸であり、前記オリゴマー(y'1)よりも大きい分子量を持つポリマー(X1)100重量部との混合物と、ポリイソシアネート化合物を反応させる工程を含む。
 この製造方法により、ステレオコンプレックスポリ乳酸樹脂組成物(Z)も製造することができる。
 前記反応工程における反応温度は、ステレオコンプレックスポリ乳酸樹脂組成物が溶融する温度であれば問題ないが、溶媒を用いて反応させる場合は用いる溶媒の沸点以下が好ましい。溶媒を用いる場合の溶媒の濃度としては、オリゴマーとポリマーの相溶性の点から、20重量%以上が好ましく、40重量%以上がより好ましく、50重量%以上が更に好ましい。
 また、反応時間は、120分以下が好ましく、60分以下がより好ましく、40分以下がさらに好ましい。
 ステレオコンプレックスポリ乳酸樹脂組成物(Z)は、主な繰り返し単位がD-乳酸であり、末端官能基におけるカルボキシル基の割合が50%を超えるオリゴマー(y'1)と、主な繰り返し単位がL-乳酸であり、(y'1)よりも大きい分子量を持つポリマー(X1)との混合物と、ポリイソシアネート化合物とを反応させて得られたものであることが、高分子量化と同時にステレオコンプレックスポリ乳酸樹脂組成物(Z)を形成できること、高分子量のステレオコンプレックスポリ乳酸樹脂組成物(Z)の形成能およびコストの点などから好ましい。
 オリゴマー(x'1)または(y'1)の末端官能基であるカルボキシル基がポリイソシアネート化合物と反応することでアミド結合が形成され、ポリ乳酸系樹脂を生成するとともにポリマー(Y1)または(X1)と高分子量のステレオコンプレックスポリ乳酸樹脂組成物(Z)を形成する。
 上記反応は、好ましくはアミド化触媒を用いて行われる。ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造方法の具体例として以下の方法が挙げられるが、本発明{3}の目的を損なわない限り、何らこれに限定されない。
 まず、オリゴマー(x'1)とポリマー(Y1)との混合物、またはオリゴマー(y'1)とポリマー(X1)との混合物に、触媒、溶媒を加え、常圧下で該混合物を所定の温度まで昇温する。次に、所定量のポリイソシアネート化合物を加え、所定の温度で反応させる。最後に、得られた反応生成物から溶媒を除去することでステレオコンプレックスポリ乳酸樹脂組成物(Z)を得る。溶媒を除去する方法としては、特に限定されるものではなく、たとえば室温で溶媒を揮発させる方法、室温下、不活性ガスを流通させて溶媒を揮発させる方法、減圧下で室温、或いはポリ乳酸のガラス転移温度以下、或いは溶媒の沸点以上の温度で溶媒を揮発させる方法などが挙げられる。
 〈オリゴマーとポリマーの混合重量比〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造において、オリゴマーとポリマーの混合重量比は、ポリマー100重量部に対して、オリゴマーが30~300重量部であり、30~200重量部であることがより好ましい。これにより、後述する示差走査熱量(DSC)測定における第一昇温過程におけるステレオ化度(S)は60%以上になり、これにより比較的低熱負荷でも第二昇温過程におけるステレオ化度(S)は88%以上となる。さらには、ポリマー100重量部に対して、オリゴマーが60~140重量部であることがより一層好ましい。これにより、後述する示差走査熱量(DSC)測定における第一昇温過程におけるステレオ化度(S)は90%以上となり、これによりさらに低熱負荷でも第二昇温過程におけるステレオ化度(S)は100%となる。
 <ポリイソシアネート化合物>
 当該工程に用いるポリイソシアネート化合物としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられるポリイソシアネート化合物と同様の化合物などが挙げられる。
 これらの中でも、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、1,3-(ビスイソシアナトメチル)シクロヘキサン、ビス(イソシアナトメチル)ビシクロ-[2,2,1]-ヘプタンおよびビス(4-イソシアナトシクロヘキシル)メタンからなる群より選ばれる1種の化合物であることが好ましく、また、脂肪族ジイソシアネート化合物であることが好ましく、ヘキサメチレンジイソシアネートであることがより好ましい。上記ポリイソシアネート化合物が、脂肪族ジイソシアネートであると、色調の点で好ましい。
 (ポリイソシアネート化合物の添加量)
 上記ポリイソシアネート化合物の添加量は、オリゴマー(x'1)または(y'1)の末端官能基のモル数に基づいて決定する。該オリゴマーの末端官能基のモル数は、NMRデータおよびカルボン酸価から後述する実施例に記載した方法で算出する。

 上記ポリイソシアネート化合物の添加量は、該オリゴマーの末端官能のモル数に対して0.8~2.0倍モルであることが好ましく、0.8~1.5倍モルであることがより好ましく、0.8~1.30倍モルであることがさらに好ましい。ここで「倍モル」とは、「イソシアネート基数(モル)/末端官能基数(モル)」により算出される値の単位である。
 上記ポリイソシアネート化合物の添加量が上記下限値未満であると、ポリイソシアネート化合物の添加効果が小さく、高分子量のステレオコンプレックスポリ乳酸樹脂組成物(Z)を得ることが困難となる場合がある。一方、上記上限値を超えると、架橋反応などの副反応を引き起こし、ゲル状のステレオコンプレックスポリ乳酸樹脂組成物(Z)が生成することがある。
 (溶媒)
 ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造に用いることができる溶媒としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いることができる溶媒と同様の溶媒などが挙げられる。これらの中でも、溶解度と汎用性の観点からテトラリン、m-ジイソプロピルベンゼン、p-ジイソプロピルベンゼン、ジイソプロピルベンゼン(異性体混合物)、o-ジクロロベンゼン、ジフェニルエーテルが好ましい。また、これらを単独で用いても複数を組み合わせて用いても良い。
 <アミド化触媒>
 本発明{3}で用いられ得るアミド化触媒とは、上記乳酸オリゴマー等の末端カルボキシル基部分を優先的に上記ポリイソシアネート化合物と反応させて、アミド結合を形成させる触媒をいう。
 アミド化触媒は、周期律表第1族、2族および3族における金属からなる群より選ばれる少なくとも1種の金属を含むことが好ましく、カリウム、マグネシウム、カルシウムおよびイッテルビウムからなる群より選ばれる少なくとも1種の金属を含むことがより好ましく、マグネシウムまたはカルシウムを含むことが特に好ましい。このような金属を含んでいると反応性に優れる触媒を得ることができ、色調の良いステレオコンプレックスポリ乳酸樹脂組成物(Z)を得ることができる点で好ましい。
 周期律表第1族、2族および3族における金属からなる群より選ばれる少なくとも1種の金属を含むアミド化触媒としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられるアミド化触媒と同様の触媒などが挙げられる。これらの中でも、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、塩化マグネシウム、イッテルビウムトリフラートなどが好ましく、さらにはマグネシウム化合物、特に、ビス(アセチルアセトナト)マグネシウム、ステアリン酸マグネシウムが好ましい。これらの触媒は2種以上併用することもできる。
 上記アミド化触媒の添加量は、前記オリゴマー(x'1)または(y'1)100重量部あたり、0.01~2重量部が好ましく、より好ましくは0.01~1重量部であり、さらに好ましくは0.01~0.5重量部である。
 本発明{3}の上記オリゴマー(x'1)および(y'1)はヒドロキシル基を含む場合がある。その場合、該ヒドロキシ部分は上記ポリイソシアネート化合物と反応し、ウレタン結合を形成する。
 このようなウレタン結合を形成させる触媒としては、前記本発明{1}のポリ乳酸系樹脂(I)の製造方法で用いられ得る触媒と同様の触媒などが挙げられる。このウレタン結合を形成させる触媒の添加量は、上記オリゴマー(x'1)または(y'1)とポリイソシアネート化合物から形成されるポリ乳酸系樹脂100重量部あたり、0.01~2重量部が好ましく、より好ましくは0.01~1重量部であり、更に好ましくは0.01~0.5重量部である。
 〈その他の成分について〉
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)は、単独でも高いステレオ化度(S)と高い熱安定性を有しているが、以下に示す各種成分を添加することにより、さらに高いステレオ結晶性や、優れた熱安定性、その他の性能を付与することが可能である。また、本発明{3}の目的を損なわない添加量で使用される。各種成分の具体例を以下に示すが、本発明{3}の目的を損なわない限り、何らこれらに限定されない。
 <安定剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)は、更に安定剤を含有してもよく、ステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.001~5重量部であることが好ましく、0.001~2.5重量部であることが好ましく、0.001~1重量部であることが好ましく、0.005~1重量部であることがより好ましく、0.01~3重量部であることが更に好ましく、0.01~1重量部であることが特に好ましい。
 安定剤としては、リン系安定剤、フェノール系安定剤およびその他の安定剤等が挙げられる。
 [リン系安定剤]
  該リン系安定剤は、上記ステレオコンプレックスポリ乳酸樹脂組成物(Z)製造時のアミド化触媒の失活剤および/または、オリゴマー(x'1)、(y'1)およびポリマー(X1)、(Y1)の調製に用いる触媒の失活剤として作用すると考えられ、本発明{3}におけるステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造における触媒失活剤として有効である。
 リン系安定剤としては、例えば、ホスファイト系化合物、ホスフェート系化合物が挙げられ、前記本発明{1}におけるポリ乳酸系樹脂(I)が含有してもよいリン系化合物として挙げた具体的化合物と同様の化合物等を挙げることができる。 これらの中でも、少なくとも1つのP-O結合が芳香族基に結合しているものがより好ましく、具体例としては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスド-モノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)などが挙げられ、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスホナイトなどが好ましく使用できる。
 ホスファイト系化合物の具体的な商品名としては、(株)ADEKA製“アデカスタブ” C、PEP-4C、PEP-8、PEP-11C、PEP-24G、PEP-36、HP-10、2112、260、522A、329A、1178、1500、C、135A、3010、TPP、(株)チバスペシャリティケミカル製“イルガフォス”168、(株)住友化学製“スミライザー”P-16、(株)クラリアント製“サンドスタブ”PEPQ、GE製“ウエストン”618、619G、624などが挙げられる。
 中でも、さらに好ましい例は、ADEKA製“アデカスタブ”AX-71(ジオクタデシルホスフェート)、PEP-8(ジステアリルペンタエリスリトールジホスファイト)、PEP-36(サイクリックネオペンタテトライルビス(2,6―t-ブチル-4-メチルフェニル)ホスファイト)である。上記のリン系安定剤は、1種単独でまたは2種以上を組み合わせて使用することができる。
 [フェノール系安定剤]
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、フェノール系安定剤を配合することもできる。フェノール系安定剤は、高温時に分子鎖が切断されるのを防ぐ役割を果たすと考えられ、良好な色相かつ高温時の粘度安定性に有効である。
 フェノール系安定剤の具体例としては、前記本発明{1}におけるポリ乳酸系樹脂(I)が含有してもよいフェノール系化合物と同様の化合物等を挙げることができる。好ましくは、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート]、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイドである。
 フェノール系化合物の具体的な商品名としては、ADEKA製“アデカスタブ”AO-20,AO-30,AO-40,AO-50,AO-60,AO-70,AO-80,AO-330、(株)チバスペシャリティケミカル製“イルガノックス”245,259,565,1010,1035,1076,1098,1222,1330,1425,1520,3114,5057、(株)住友化学製“スミライザー”BHT-R、MDP-S、BBM-S、WX-R、NW、BP-76、BP-101、GA-80、GM、GS、(株)サイアナミド製“サイアノックス”CY-1790などが挙げられる。
 中でも、さらに好ましい例は、(株)チバスペシャリティケミカル製“イルガノックス”245(トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)-プロピオネート])、1010(テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン)である。
 上記のフェノール系安定剤は、1種単独でまたは2種以上を組み合わせて使用することができる。
 [その他の安定剤]
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)においては、前述のリン系安定剤およびフェノール型安定剤以外にも、さらに良好な色相かつ安定した流動性を得るため、安定剤を含有することが好ましい。その他の安定剤としては、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物などが挙げられ、これらを組み合わせて用いてもよい。
 チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物およびヒドラジン誘導体系化合物の具体例としては、前記本発明{1}で用いることができるチオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物およびヒドラジン誘導体系化合物と同様の化合物などが挙げられる。
 <結晶核剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、結晶核剤を配合することもできる。結晶核剤はポリ乳酸、並びに芳香族ポリエステルなどの結晶性樹脂に対して結晶核剤として一般に用いられている公知の化合物を用いることができ、前記本発明{2}におけるポリ乳酸樹脂組成物(C)が含有してもよい結晶核剤と同様の化合物等を挙げることができる。
  これらの結晶核剤として用いられる化合物の中で特に効果の大きいものは、タルクであり、平均粒径が20μm以下のタルクが好ましく用いられるが、平均粒径が5μm以下のものを用いると更に好ましい。
 これら結晶核剤の配合量は、結晶核剤の種類や形状によってその効果を発現させる量は異なるため一律に規定することはできないが、ステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.01~5重量部であり、好ましくは0.05~3重量部、より好ましくは0.1~2重量部である。結晶核剤の添加量が少なすぎる場合には結晶核剤としての効果が発現されず、逆に多過ぎても結晶核剤としての効果が増大されることがないばかりか、むしろ機械特性その他において悪い結果を与える場合がある。
 本発明{3}において用いられる結晶核剤の配合方法に特に制約はないが、必要により配合される他成分が存在する場合にはそれらと共にステレオコンプレックスポリ乳酸樹脂組成物(Z)に添加する方法が、ステレオコンプレックス形成に与える悪影響が小さいため好ましい。
 <無機充填材>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、無機充填材を配合することもできる。本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)に、無機充填材を更に配合すると、機械特性、寸法特性などに優れた成型品を得ることができる。
 無機充填材としては、前記本発明{2}におけるポリ乳酸樹脂組成物(C)が含有してもよい無機充填材と同様の化合物等を挙げることができる。無機充填材の形状は繊維状、フレーク状、球状、中空状を自由に選択でき、樹脂組成物の強度や耐衝撃性の向上のためには繊維状、フレーク状のものが好適である。
 中でも、好適には天然鉱物の粉砕物からなる無機充填材であり、より好適には珪酸塩の天然鉱物の粉砕物からなる無機充填材であり、さらにその形状の点からは、マイカ、タルク、およびワラストナイトが好ましい。
 無機充填材として、本発明{3}で使用できるマイカ、タルクおよびワラストナイトとしては、前記本発明{2}におけるポリ乳酸樹脂組成物(C)が含有してもよいマイカ、タルクおよびワラストナイトと同様のものが好ましい。 これら無機充填材には、結晶核剤としても働くものもあるが、その配合量は、ステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.3~200重量部が好ましく、1.0~100重量部がより好ましく、3~50重量部が最も好ましい。かかる配合量が0.3重量部より少ない場合には、本発明{3}の成型品の機械特性に対する補強効果が十分でなく、また200重量部を超えると、成型加工性や色相が悪化することがある。
 なお、ステレオコンプレックスポリ乳酸樹脂組成物(Z)には、繊維状無機充填材やフレーク状無機充填材を用いる場合、それらの折れを抑制するための折れ抑制剤を配合することができる。折れ抑制剤はマトリックス樹脂と無機充填材との間の密着性を阻害し、溶融混練時に無機充填材に作用する応力を低減して無機充填材の折れを抑制する。折れ抑制剤の効果としては(1)剛性向上(無機充填材のアスペクト比が大きくなる)、(2)靭性向上、(3)導電性の向上(導電性無機充填材の場合)などを挙げることができる。折れ抑制剤は具体的には、樹脂と親和性の低い構造を有し、かつ無機充填材の表面と反応可能な官能基を有する化合物である。このようにして、樹脂と親和性の低い化合物を無機充填材の表面に直接被覆した化合物を得ることができる。
 樹脂と親和性の低い化合物、樹脂と親和性の低い構造を有し、かつ無機充填材の表面と反応可能な官能基を有する化合物、および好適な折れ抑制剤としては前記本発明{2}で用いられる化合物と同様の化合物などが挙げられる。
 樹脂と親和性の低い化合物を無機充填材の表面に直接被覆する方法としては、前記本発明{2}で記載した方法と同様の方法などを挙げることができる。
 上記折れ抑制剤の配合量は本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.01~2重量部が好ましく、0.05~1.5重量部がより好ましく、0.1~0.8重量部がさらに好ましい。
 <難燃剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、難燃剤を配合することもできる。難燃剤としては、前記本発明{2}で用いられる化合物と同様の化合物などが挙げられ、好ましい難燃剤も前記と同様である。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)にこれら難燃剤を配合する場合には、ステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.05~50重量部の範囲が好ましい。0.05重量部未満では十分な難燃性が発現せず、50重量部を超えると成型品の強度や耐熱性などを損なう場合がある。
 <衝撃改良剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、衝撃改良剤を使用することができ、衝撃改良材としては弾性重合体を挙げることができ、弾性重合体の例としては、前記本発明{2}で用いられる弾性重合体と同様の化合物などが挙げられる。
 衝撃改良剤の組成割合は、ステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり0.2~50重量部が好ましく、1~30重量部が好ましく、1.5~20重量部がより好ましい。かかる組成範囲は、剛性の低下を抑制しつつ組成物に良好な耐衝撃性を与えることができる。
 <末端封止剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)に末端封鎖剤を更に配合すると、耐加水分解性が更に高められた成型品を得ることができる。
 末端封鎖剤とは、本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)中の樹脂末端のカルボキシル基の一部または全部と反応して封鎖するものであり、例えば、脂肪族アルコールやアミド化合物などの縮合反応型化合物や、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの付加反応型の化合物などが挙げられ、前記本発明{2}で用いられる末端封止剤と同様の化合物などを用いることができる。
 また、本発明{3}に用いることのできる末端封鎖剤として上述したカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物などの化合物うち、2種以上の化合物を末端封鎖剤として併用することもできる。
  本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)のカルボキシル基末端を封鎖する方法としては、前記本発明{2}のポリ乳酸樹脂組成物(C)中の樹脂末端のカルボキシル基を封鎖する方法と同様の方法などが挙げられる。
 この末端封鎖剤の含有量はステレオコンプレックスポリ乳酸樹脂組成物(Z)100重量部あたり、0.01~5重量部であり、好ましくは0.05~4重量部、より好ましくは0.1~3重量部である。
 <その他の添加剤>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)には、本発明{3}の効果を損なわない範囲で、前記本発明{2}のポリ乳酸樹脂組成物(C)が含有してもよいその他の添加剤などを配合してもよい。これら各種の添加剤は、ポリ乳酸等の熱可塑性樹脂に配合する際の周知の配合量で利用することができる。
 <成型品およびその製造について>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)は、樹脂および/または組成物の成型法として公知公用の方法が適用できる好適な材料であり、得られる成型品としては、特に制限はないが、例えばフィルム・シート等の押出成型品、モノフィラメント、繊維や不織布等のマルチフィラメント、射出成型品、ブロー成型品、積層体、発泡体、真空成型品などの熱成形体が挙げられる。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)から得られる成型体の成型方法としては、前記本発明{2}におけるポリ乳酸樹脂組成物(C)から得られる成型体の成型方法と同様の方法等が挙げられるが、特に、本発明{3}におけるステレオコンプレックスポリ乳酸樹脂組成物(Z)の特徴を生かした射出成型、押出し成型、溶融紡糸が好ましい。
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)から得られる成型品は、例えば、公知・公用の成型法で得られる成型品を包含し、その形状、大きさ、厚み、意匠等に関しては何ら制限はない。
 <用途の具体例>
 本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)から得られる成型品は、前記本発明{1}のポリ乳酸系樹脂(I)から得られる成型品と同様の用途に好適に使用することができる。
  実施例1
 以下、実施例1に基づいて本発明{1}をより具体的に説明するが、本発明{1}はこれら実施例1に何ら限定されるものではない。
 本実施例1における各測定方法を以下に示す。
 <重量平均分子量(Mw)>
 ゲルパーミエーションクロマトグラフィー(GPC、Waters社製、検出器RI:Waters社製2414、カラム:SHODEX社製LF-G、LF-804)(カラム温度40℃、流速1mL/min、クロロホルム溶媒)により、ポリスチレン標準サンプルを基準として重量平均分子量を算出した。
 <融点(Tm)、結晶化度>
 DSC(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め30℃に設定されたDSC測定部に装入した後、10℃/minの昇温速度で240℃まで昇温した。その後、10℃まで急冷した。さらに、10℃/minの昇温速度で240℃まで昇温した。1回目(1st)、2回目(2nd)の昇温時の融解ピークにおけるピークトップの融点(Tm)および結晶融解エンタルピー(ΔHm)を測定し、[[(ΔHm)/(ΔH0)]×100]を求め、結晶化度とした。ここでΔH0は完全理想結晶融解エンタルピーを表し、ステレオコンプレックスポリ乳酸の数値142J/gを使用した。
 <分子量保持率>
 ポリ乳酸系樹脂5mgを10mLの1%ヘキサフルオロイソプロパノールを含有したクロロホルムに溶解し、シャーレ上にキャストし、溶媒を50℃にて減圧留去してキャストフィルムを作成した。得られたキャストフィルムの一部を切り出しGPC測定によりMwを測定し、この値をMXとした。また、得られたキャストフィルムを190℃または240℃の温度に加熱したイナートオーブン中で10分間保持した後、上述したGPC測定法によりMwを測定し、この値をMYとした。分子量保持率を以下の式により算出した。
分子量保持率 = MY/MX × 100
 <カルボン酸価>
 測定対象ポリマー0.5gに対してクロロホルム/メタノール=7/3の混合溶媒を20mL加え、完全にポリマーを溶解させた。その後、指示薬としてブロムチモールブルー/フェノールレッド混合のエタノール溶液を2滴加えると、黄色を呈した。0.1Nエタノール性水酸化カリウム溶液で滴定を行い、色が黄色から薄紫色に変化した点を終点とし、ポリマーのカルボン酸価を求めた。
 <末端カルボン酸率および末端官能基数>
 ポリ乳酸と無水コハク酸とを反応させて得られた試料および乳酸と無水コハク酸とから得られたポリ乳酸試料の1H-NMR(装置:日本電子製ECA500、内部標準テトラメチルシラン:δ=0ppm)を測定した。このスペクトルにおいて、
 δ=2.61~2.72ppm(マルチプレット):
  ポリ乳酸末端に反応したコハク酸ユニットおよびポリ乳酸中のコハク酸のメチレン鎖水素由来(4H)
 δ=4.36ppm J=6.92(カルテット):
  ポリ乳酸鎖末端ヒドロキシル基のα位のメチン水素由来(1H)
 以上2種の積分値より、
末端カルボン酸数 [= ポリ乳酸カルボキシル基数(=未反応のポリ乳酸末端ヒドロキシル基数)+コハク酸化された末端カルボキシル基数}および末端ヒドロキシル基数(未反応のポリ乳酸末端ヒドロキシル基数)とから、末端カルボン酸率を計算した。また上述したカルボン酸価の値と末端カルボン酸率とから末端官能基数を算出した。
 末端カルボン酸率(%)=末端カルボン酸数/(末端カルボン酸数+末端ヒドロキシル基数)×100
 末端官能基数 (mol/g) = カルボン酸価/(末端カルボン酸率/100)
 <ポリ乳酸系樹脂のアミド結合の同定>
 ポリ乳酸とヘキサメチレンジイソシアネートとを反応させて得られたポリ乳酸系樹脂の13C-NMR(装置:日本電子製ECA500、内部標準クロロホルム-d:δ=77ppm)を測定した。このスペクトルにおいて、
 δ=39ppm:
    アミド結合に隣接したヘキサメチレンユニットのα位の炭素由来
 δ=69ppm:
    ポリ乳酸主鎖のメチン炭素由来
 以上2種の積分値の比率より、ポリ乳酸系樹脂におけるアミド結合の含有量を決定し、用いた原料ポリ乳酸の数平均分子量とからポリ乳酸系樹脂1分子あたりのアミド結合ユニット数を算出した。
 <Snの測定方法>
 試料を硫酸および過酸化水素により湿式分解後、得られた分解物を1ml定容し、塩酸で40倍に希釈したものを検液として、ICP発光分光分析装置(SHIMADZU社製、ICPS-8100型)によりSn等の重金属の含有量を測定した。該測定方法によるSn等の重金属の含有量の検出限界は、4ppm未満である。
 [製造例1-1]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)とをディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.818×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸6.55g(0.065mol)を加え、オイルバス温度150℃にて2時間攪拌し、前記ポリ(L-乳酸)の末端ヒドロキシル基をカルボキシル基に変換した。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(1)]を340g得た。該PLLA(1)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PLLA(1)について、上記測定方法により末端カルボン酸率を求めたところ95%であった。また、該PLLA(1)について、上記測定方法によりカルボン酸価を求めたところ、3.652×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5200であった。該PLLA(1)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-2]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)とをディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.820×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸7.15g(0.072mol)を加え、オイルバス温度150℃にて2時間攪拌し、前記ポリ(L-乳酸)の末端ヒドロキシル基をカルボキシル基に変換した。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(2)]を342g得た。該PLLA(2)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PLLA(2)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PLLA(2)について、上記測定方法によりカルボン酸価を求めたところ、3.638×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5390であった。該PLLA(2)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-3]
  Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)とをディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で30時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、32000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.138×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸4.47g(0.045mol)を加え、オイルバス温度150℃にて2時間攪拌し、前記ポリ(L-乳酸)の末端ヒドロキシル基をカルボキシル基に変換した。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(3)]を344g得た。該PLLA(3)について、上記測定方法により重量平均分子量(Mw)を測定したところ、32000であった。該PLLA(3)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PLLA(3)について、上記測定方法によりカルボン酸価を求めたところ、2.276×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは8610であった。該PLLA(3)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-4]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)と無水コハク酸12.51g(0.13mol)をディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で30時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、10000であった。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(4)]を302g得た。該PLLA(4)について、上記測定方法により重量平均分子量(Mw)を測定したところ、10000であった。該PLLA(4)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PLLA(4)について、上記測定方法によりカルボン酸価を求めたところ、7.248×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは2700であった。該PLLA(4)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-5]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)とをディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なポリ(L-乳酸)が得られた。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(5)]を310g得た。該PLLA(5)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PLLA(5)について、上記測定方法により末端カルボン酸率を求めたところ50%であった。また、該PLLA(5)について、上記測定方法によりカルボン酸価を求めたところ、1.830×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5460であった。該PLLA(5)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-6]
 Purac社のL-ラクチド500g(3.47mol)とエチレングリコール(和光純薬社製)1.50g(0.023mol)とを1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温し、均一に溶解させた。次にオイルバス温度を170℃まで昇温し、該フラスコ内を150℃まで昇温し、2-エチルヘキサン酸スズ2.0g加えた後、2時間重合反応を行った。その後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの10倍量)中で攪拌しながら沈殿させ、モノマーを完全に除去してポリ(L-乳酸)を得た。得られたポリマーを35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(6)]を483g得た。該PLLA(6)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、検出されなかった。そこでNMRから計算したところ、数平均分子量Mnは9800であった。該PLLA(6)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-7]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.9モル%以上の乳酸)に変更した以外、製造例1-1と同様にポリ(D-乳酸)[PDLA(1)]を得た。該PDLA(1)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PDLA(1)について、上記測定方法により末端カルボン酸率を求めたところ95%であった。また、該PDLA(1)について、上記測定方法によりカルボン酸価を求めたところ、3.668×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5180であった。該PDLA(1)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-8]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.9モル%以上の乳酸)に変更した以外、製造例1-2と同様にポリ(D-乳酸)[PDLA(2)]を得た。該PDLA(2)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PDLA(2)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PDLA(2)について、上記測定方法によりカルボン酸価を求めたところ、3.644×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5380であった。該PDLA(2)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-9]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.9モル%以上の乳酸)に変更した以外、製造例1-3と同様にポリ(D-乳酸)[PDLA(3)]を得た。該PDLA(3)について、上記測定方法により重量平均分子量(Mw)を測定したところ、32000であった。該PDLA(3)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PDLA(3)について、上記測定方法によりカルボン酸価を求めたところ、2.296×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは8530であった。該PDLA(3)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-10]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.9モル%以上の乳酸)に変更した以外、製造例1-4と同様にポリ(D-乳酸)[PDLA(4)]を得た。該PDLA(4)について、上記測定方法により重量平均分子量(Mw)を測定したところ、10000であった。該PDLA(4)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、該PDLA(4)について、上記測定方法によりカルボン酸価を求めたところ、7.296×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは2690であった。該PDLA(4)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-11]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.9モル%以上の乳酸)に変更した以外、製造例1-5と同様にポリ(D-乳酸)[PDLA(5)]を得た。該PDLA(5)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PDLA(5)について、上記測定方法により末端カルボン酸率を求めたところ50%であった。また、該PDLA(5)について、上記測定方法によりカルボン酸価を求めたところ、1.865×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5360であった。該PDLA(5)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-12]
 L-ラクチドをD-ラクチド(Purac社製)に変更した以外、製造例1-6と同様にポリ(D-乳酸)[PDLA(6)]を得た。該ポリ(D-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、検出されなかった。そこでNMRから計算したところ、数平均分子量Mnは9900であった。該PLLA(6)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-13]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)と試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)とをディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.818×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸5.90g(0.059mol)を加え、オイルバス温度150℃にて2時間攪拌し、前記ポリ(L-乳酸)の末端ヒドロキシル基をカルボキシル基に変換した。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のポリ(L-乳酸)[PLLA(7)]を340g得た。該PLLA(7)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PLLA(7)について、上記測定方法により末端カルボン酸率を求めたところ85%であった。また、該PLLA(7)について、上記測定方法によりカルボン酸価を求めたところ、3.208×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5300であった。該PLLA(7)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-14]
90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.5モル%以上の乳酸)に変更した以外、製造例1-13と同様にポリ(D-乳酸)[PDLA(7)]を得た。該PDLA(7)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。該PDLA(7)について、上記測定方法により末端カルボン酸率を求めたところ85%であった。また、該PDLA(7)について、上記測定方法によりカルボン酸価を求めたところ、3.234×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5300であった。該PDLA(7)について、Sn含有量を測定したところ5ppm以下であった。
 [製造例1-15]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)200g(2.0mol)、コハク酸(純正化学社製)0.78g(0.007mol)およびメタンスルホン酸(和光純薬社製)0.86g(0.009mol)とをディーンスタークトラップが備え付けられた500mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、140℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを16g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で12時間保持した。その後、該フラスコ内を常圧に放圧し、キシレン100mLを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾後、50℃の真空乾燥機で12時間加熱乾燥した。さらに常圧で窒素流通しながら140℃で乾燥を継続し、白色のポリ(L-乳酸)[PLLA(8)]を135g得た。該PLLA(8)について、上記測定方法により重量平均分子量(Mw)を測定したところ、50000であった。該PLLA(8)について、上記測定方法により末端カルボン酸率を求めたところ99.9%であった。また、上記測定方法によりカルボン酸価を求めたところ、1.22×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは16400であった。
 [製造例1-16]
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.5モル%以上の乳酸)に変更した以外、製造例1-15と同様にポリ(D-乳酸)[PDLA(8)]を得た。該PDLA(8)について、上記測定方法により重量平均分子量(Mw)を測定したところ、50000であった。該PDLA(8)について、上記測定方法により末端カルボン酸率を求めたところ99.9%であった。また、該PDLA(8)について、上記測定方法によりカルボン酸価を求めたところ、1.22×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは16500であった。
製造例1-1~1-16により得られたポリ乳酸の結果について表1に示した。
Figure JPOXMLDOC01-appb-T000012
 [実施例1-1]
 製造例1-1で合成したPLLA(1)7.5g、製造例1-7で合成したPDLA(1)7.5gおよびステアリン酸マグネシウム12mg(0.02mmol)を100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン15gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.486g(2.89mmol、PLLA(1)およびPDLA(1)の末端官能基数に対しイソシアネート基が1.05当量)を加え、200℃で1時間反応させた。PEP-36(ADEKA製)75mgおよびイルガノックス1010(チバスペシャリティケミカル製)75mgを加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂(ポリ乳酸系樹脂)が15g得られた。該樹脂について、重量平均分子量を測定したところ、150000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均13ユニットであった。融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-2]
 PLLA(1)をPLLA(2)に、PDLA(1)をPDLA(2)に変更した以外は実施例1-1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が得られた。該樹脂について、重量平均分子量を測定したところ、210000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均19ユニットであった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-3]
 製造例1-1で合成したPLLA(1)10.5gおよび製造例1-7で合成したPDLA(1)4.5gを用いた以外は実施例1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が15g得られた。該樹脂について、重量平均分子量を測定したところ、180000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均16ユニットであった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-4]
 製造例1-3で合成したPLLA(3)7.5g、製造例1-9で合成したPDLA(3)7.5gおよびステアリン酸マグネシウム12mg(0.02mmol)を100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン15gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.309g(1.84mmol、末端官能基数に対し1.05当量)を加え、200℃で1時間反応させた。PEP-36を75mg、イルガノックス1010を75mg加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂(ポリ乳酸系樹脂)が15g得られた。該樹脂について、重量平均分子量を測定したところ、160000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均8ユニットであった。融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-5]
 製造例1-4で合成したPLLA(4)7.5g、製造例1-10で合成したPDLA(4)7.5gおよびステアリン酸マグネシウム12mg(0.02mmol)を100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン15gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.982g(5.84mmol、末端官能基に対し1.05当量)を加え、200℃で1時間反応させた。PEP-36を75mg、イルガノックス1010を75mg加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂(ポリ乳酸系樹脂)が15g得られた。該樹脂について、重量平均分子量を測定したところ、140000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均26ユニットであった。融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-6]
 テトラリンを、オルトジクロロベンゼンに変更した以外は実施例1-1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が得られた。該樹脂について、重量平均分子量を測定したところ、200000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均18ユニットであった。また、測定した融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-7]
 テトラリンを、オルトジクロロベンゼンに変更した以外は実施例1-2と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が得られた。該樹脂について、重量平均分子量を測定したところ、240000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均22ユニットであった。また、測定した融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-8]
 テトラリンを、ジイソプロピルベンゼンに変更した以外は実施例1-1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が得られた。該樹脂について、重量平均分子量を測定したところ、130000であった。ポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量はポリ乳酸系樹脂1分子あたり平均11ユニットであった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-9]
 ヘキサメチレンジイソシアネート0.486g(2.89mmol、末端官能基数に対し1.05当量)を、1,3-(ビスイソシアナトメチル)シクロヘキサン0.561g(2.89mmol、末端官能基数に対し1.05当量)に変更した以外は実施例1-1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が15g得られた。該樹脂について、重量平均分子量を測定したところ、140000であった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-10]
 ヘキサメチレンジイソシアネート0.486g(2.89mmol、末端官能基数に対し1.05当量)を、キシリレンジイソシアネート0.544g(2.89mmol、末端官能基数に対し1.05当量)に変更した以外は実施例1-1と同様にして白色粉末の樹脂が15g得られた。該樹脂について、重量平均分子量を測定したところ、180000であった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-11]
 PLLA(1)をPLLA(7)に、PDLA(1)をPDLA(7)に変更した以外は実施例1-1と同様にして白色粉末の樹脂(ポリ乳酸系樹脂)が得られた。該樹脂について、重量平均分子量を測定したところ、130000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有量を確認した。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [実施例1-12]
 100mlの丸底フラスコに、製造例1-15で合成したPLLA(8)5.0g、製造例1-16で合成したPDLA(8)5.0g、ステアリン酸マグネシウム8mg(0.013mmol)、PEP-36を50mg、およびイルガノックス1010を50mg装入した。該フラスコ内を窒素置換後、オルトジクロロベンゼン40gを挿入し、常圧、窒素雰囲気下で、180℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.103g(0.61mmol、末端官能基数に対し1.01当量)を加え、180℃で1.5時間反応させた。オルトジクロロベンゼン20gおよびキシレン40gを順次加えた後溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂(ポリ乳酸系樹脂)が10g得られた。該樹脂について、重量平均分子量を測定したところ、280000であった。得られたポリ乳酸系樹脂の13C-NMR測定により、アミド結合の含有を確認した。融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [比較例1-1]
 PLLA(1)をPLLA(5)に、PDLA(1)をPDLA(5)に変更した以外は実施例1-1と同様にして白色粉末の樹脂が得られた。該樹脂について、重量平均分子量を測定したところ、90000であった。得られた樹脂の13C-NMR測定により、アミド結合の含有量は樹脂1分子あたり平均7ユニットであった。また、融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
 [比較例1-2]
 製造例6で合成したPLLA(6)7.5g、製造例1-12で合成したPDLA(6)7.5gおよびステアリン酸マグネシウム12mg(0.02mmol)を100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン15gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.269g(1.60mmol、末端官能基数に対し1.05当量)を加え、160℃で1時間反応させた。PEP-36を75mg、イルガノックス1010を75mg加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂が15g得られた。該樹脂について、重量平均分子量を測定したところ、110000であった。得られた樹脂の13C-NMR測定により、アミド結合の含有量は樹脂1分子あたり平均0ユニットであった。融解ピークは1st、2ndともに1種であった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
  [参考例1-1]
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500g(5.0mol)および試薬の塩化スズ(II)二水和物(和光純薬社製)1.18g(0.005mol)をディーンスタークトラップが備え付けられた1000mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なポリ(L-乳酸)が得られた。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.820×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸6.55g(0.065mol)を加え、オイルバス温度150℃にて2時間攪拌し、前記ポリ(L-乳酸)の末端ヒドロキシル基をカルボキシル基に変換した。その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノール1.0Lにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、ポリ(L-乳酸)を300g得た。該ポリ(L-乳酸)について、上記測定方法により重量平均分子量(Mw)を測定したところ、20000であった。ポリ(L-乳酸)について、上記測定方法により末端カルボン酸率を求めたところ98%であった。また、ポリ(L-乳酸)について、上記測定方法によりカルボン酸価を求めたところ、3.920×10-4(mol/g)であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5000であった。ポリ(L-乳酸)について、Sn含有量を測定したところ5ppm以下であった。
 さらに該ポリ(L-乳酸)15.0g、ステアリン酸マグネシウム12mg(0.02mmol)とを100mlの丸底フラスコに装入した。該フラスコ内を窒素置換後、キシレン15gを挿入し、常圧、窒素雰囲気下で、160℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート0.486g(2.89mmol、末端官能基数に対しイソシアネート基が1.05当量)を加え、140℃で1時間反応させた。PEP-36を75mgおよびイルガノックス1010を75mg加えた後、キシレン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末の樹脂が15g得られた。該樹脂について、重量平均分子量を測定したところ、230000であった。得られた樹脂の13C-NMR測定により、アミド結合の含有量は樹脂1分子あたり平均21ユニットであった。該樹脂の結晶化度、Tm、分子量保持率を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
表2より、本発明{1}におけるポリ乳酸系樹脂(I)は高分子量で、高い融点を有しており、高温においても分子量低下が少ないため、フィルム、シート、成型体、繊維などの機械特性、耐熱性を必要とする用途に好適に用いることができる。

 実施例2
 以下、実施例2により本発明{2}を詳述する。ただし、本発明{2}はこれらに限定されるものではない。
 下記の製造例に示す方法により、ポリ乳酸樹脂単位の製造を行った。また実施例2中における各値は下記の方法で求めた。
 <重量平均分子量(Mw)>
 ゲルパーミエーションクロマトグラフィー(GPC、Waters社製、検出器RI:Waters社製2414、カラム:SHODEX社製LF-G、LF-804)(カラム温度40℃、流速1mL/min、クロロホルム溶媒)により、ポリスチレン標準サンプルを基準として重量平均分子量を算出した。
 <融点(Tm)>
 DSC(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め25℃に設定されたDSC測定部に装入した後、10℃/minの昇温速度で250℃まで昇温した。
 <カルボン酸価>
 測定対象ポリマー0.5gに対してクロロホルム/メタノール=7/3の混合溶媒を20mL加え、完全にポリマーを溶解させた。その後、指示薬としてブロムチモールブルー/フェノールレッド混合のエタノール溶液を2滴加えると、黄色を呈した。0.1Nエタノール性水酸化カリウム溶液で滴定を行い、色が黄色から薄紫色に変化した点を終点とし、ポリマーのカルボン酸価を求めた。
 <末端カルボン酸率および末端官能基数>
 ポリ乳酸樹脂と無水コハク酸とを反応させて得られたポリ乳酸樹脂試料の1H-NMR(装置:日本電子製ECA500、内部標準テトラメチルシラン:δ=0ppm)を測定し、以下の2種のスペクトルを観測した。
 δ=2.61~2.72ppm(マルチプレット):
  ポリ乳酸樹脂末端に反応したコハク酸ユニットおよびポリ乳脂樹脂中のコハク酸のメチレン鎖水素由来(4H)
 δ=4.36ppm、 J=6.92(カルテット):
  ポリ乳酸樹脂末端ヒドロキシル基のα位のメチン水素由来(1H)
 以上2種の積分値より、
末端カルボン酸数 [= ポリ乳酸樹脂カルボキシル基数(=未反応のポリ乳酸樹脂末端ヒドロキシル基数)+コハク酸化された末端カルボキシル基数}および末端ヒドロキシル基数(未反応のポリ乳酸樹脂末端ヒドロキシル基数)を算出し、これらの値から、末端カルボン酸率を計算した。
また上述したカルボン酸価の値と末端カルボン酸率とから末端官能基数を算出した。
 末端カルボン酸率(%)=末端カルボン酸数/(末端カルボン酸数+末端ヒドロキシル基数)×100
 末端官能基数 (mol/g) = カルボン酸価/(末端カルボン酸率/100)
 <ポリ乳酸系樹脂のアミド結合の同定>
 ポリ乳酸樹脂とヘキサメチレンジイソシアネートとを反応させて得られたポリ乳酸系樹脂の13C-NMR(装置:日本電子製ECA500、内部標準クロロホルム-d:δ=77ppm)を測定した。以下のスペクトルから、ポリ乳酸系樹脂におけるアミド結合の有無を決定した。
 δ=39ppm:
    アミド結合に隣接したヘキサメチレンユニットのα位の炭素由来
 <195℃以上の融解ピークの割合の測定方法>
 DSCを用いて、窒素雰囲気下、昇温速度10℃/分で測定し、195℃以上の融解ピークの割合(%)を、195℃以上(高温)の融解ピーク面積と140~180℃(低温)融解ピーク面積から以下の式により算出した。
195以上(%)=A195以上/(A195以上+A140~180)×100
195以上:195℃以上の融解ピークの割合
195以上:195℃以上の融解ピーク面積
140~180:140~180℃の融解ピーク面積
 <引張強度、引張弾性率の測定方法>
 JIS-K7161に準拠して測定した。
 <耐加水分解性の測定方法>
 下記実施例で得られたシートの分子量(処理前の分子量)と、下記実施例で得られたシートを、恒温恒湿槽にて、65℃×95%相対湿度の条件にて100時間処理した後の分子量(処理後の分子量)を、ゲルパーミエーションクロマトグラフィーを用いて測定し、以下の式により分子量保持率(耐加水分解性)を評価した。
 分子量保持率(%)=処理後の分子量/処理前の分子量×100
 (製造例2-1:乳酸オリゴマー(a-1)の製造)
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500gおよび試薬の塩化スズ(II)二水和物(和光純薬社製)1.18gをディーンスタークトラップが備え付けられた丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で20時間保持し、透明なL-乳酸オリゴマーが得られた。該L-乳酸オリゴマーについて、重量平均分子量(Mw)およびカルボン酸価を測定したところ、20000および1.818×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸6.55gを加え、オイルバス温度150℃にて2時間攪拌し、その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノールにて2回洗浄し、ろ過した後、ろ別した固体をさらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色の乳酸オリゴマー(a-1)を340重量部得た。乳酸オリゴマー(a-1)について、重量平均分子量(Mw)、末端カルボン酸率、カルボン酸価および融点(Tm)を測定したところ、それぞれ20000、95%、3.652×10-4(mol/g)および161℃であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5200であった。
 (製造例2-2:乳酸オリゴマー(a-2)の製造)
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.5モル%以上の乳酸)に変更した以外、製造例2-1と同様に乳酸オリゴマー(a-2)を得た。乳酸オリゴマー(a-2)について、重量平均分子量(Mw)、末端カルボン酸率、カルボン酸価および融点(Tm)を測定したところ、それぞれ20000、95%、3.668×10-4(mol/g)および160℃であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは5180であった。
 (製造例2-3:ポリ乳酸樹脂(B-a-1)の製造)
 製造例2-1で合成した乳酸オリゴマー(a-1)150gおよびステアリン酸マグネシウム0.12gを丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン150gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート4.86g(末端官能基数に対しイソシアネート基が1.05当量)を加え、200℃で1時間反応させた。PEP-36(ADEKA製)0.750gおよびイルガノックス1010(チバスペシャリティケミカル製)0.750gを加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末のポリ乳酸樹脂(B-a-1)が150g得られた。該樹脂について、重量平均分子量を測定したところ、150000であった。得られたポリ乳酸樹脂の13C-NMR測定により、アミド結合の含有を確認した。
 (製造例2-4:ポリ乳酸樹脂(B-a-2)の製造)
 製造例2-1で合成した乳酸オリゴマー(a-1)150gを製造例2-2で合成した乳酸オリゴマー(a-2)150gに変更した以外、製造例2-3と同様にポリ乳酸樹脂(B-a-2)を得た。該樹脂について、重量平均分子量(Mw)を測定したところ、140000であった。得られたポリ乳酸樹脂の13C-NMR測定により、アミド結合の含有を確認した。
 (製造例2-5:ポリL-乳酸(A-1)の製造)
 L-ラクチド(Purac社製)48.75gおよびD-ラクチド(Purac社製)1.25gを重合槽に加え、系内を窒素置換した後、ステアリルアルコール0.03g、触媒としてオクチル酸スズ25×10-3gを加え、190℃、2時間、重合を行い、ポリマーを製造した。このポリマーを、35%塩酸を1%含有した2-プロパノールで洗浄し、触媒を除去し、ポリL-乳酸(A-1)を得た。得られたポリL-乳酸の重量平均分子量160000であった。融点(Tm)は159℃であった。
 (製造例2-6:ポリD-乳酸(A-2)の製造)
 L-ラクチド(Purac社製)1.25gおよびD-ラクチド(Purac社製)48.75gを重合槽に加え、系内を窒素置換した後、ステアリルアルコール0.03g、触媒として2-エチルヘキサン酸スズ25×10-3gを加え、190℃、2時間、重合を行い、ポリマーを製造した。このポリマーを35%塩酸を1%含有した2-プロパノールで洗浄し、触媒を除去し、ポリD-乳酸(A-2)を得た。得られたポリD-乳酸の重量平均分子量18万であった。融点(Tm)は156℃であった。
 (製造例2-7:乳酸オリゴマー(a-1')の製造)
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)500gおよび試薬の塩化スズ(II)二水和物(和光純薬社製)1.18gをディーンスタークトラップが備え付けられた丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを40g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で30時間保持し、透明なL-乳酸オリゴマーが得られた。該L-乳酸オリゴマーについて、重量平均分子量(Mw)およびカルボン酸価を測定したところ、30000および1.218×10-4(mol/g)であった。
 さらに、前記フラスコ内に無水コハク酸3.35gを加え、オイルバス温度150℃にて2時間攪拌し、その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノールにて2回洗浄し、ろ過した後、ろ別した固体をさらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色の乳酸オリゴマー(a-1')を340得た。乳酸オリゴマー(a-1')について、重量平均分子量(Mw)、末端カルボン酸率、カルボン酸価および融点(Tm)を測定したところ、それぞれ30000、95%、2.432×10-4(mol/g)および164℃であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは7800であった。
 (製造例2-8:乳酸オリゴマー(a-2')の製造)
 90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.5モル%以上の乳酸)に変更した以外、製造例2-7と同様に乳酸オリゴマー(a-2')を得た。乳酸オリゴマー(a-2')成分について、重量平均分子量(Mw)、末端カルボン酸率、カルボン酸価および融点(Tm)を測定したところ、それぞれ30000、95%、2.428×10-4(mol/g)および162℃であった。カルボン酸価および末端カルボン酸率から計算した数平均分子量Mnは7820であった。
 (製造例2-9:ポリ乳酸樹脂(B-a-1')の製造)
 製造例2-7で合成した乳酸オリゴマー(a-1')150gおよびステアリン酸マグネシウム0.12gを丸底フラスコに装入した。該フラスコ内を窒素置換後、テトラリン150gを挿入し、常圧、窒素雰囲気下で、210℃まで昇温した。次に、該フラスコ内にヘキサメチレンジイソシアネート3.24g(末端官能基数に対しイソシアネート基が1.05当量)を加え、200℃で1時間反応させた。PEP-36(ADEKA製)0.750gおよびイルガノックス1010(チバスペシャリティケミカル製)0.750gを加えた後、テトラリン100gを加え溶液を冷却し、沈殿物をろ過、乾燥することにより白色粉末のポリ乳酸樹脂(B-a-1')が150g得られた。該樹脂について、重量平均分子量を測定したところ、140000であった。得られたポリ乳酸樹脂の13C-NMR測定により、アミド結合の含有を確認した。
 (製造例2-10:ポリ乳酸樹脂(B-a-2')の製造)
製造例2-7で合成した乳酸オリゴマー(a-2')150gを製造例2-8で合成した乳酸オリゴマー(a-2')150gに変更した以外、製造例2-9と同様にポリ乳酸樹脂(B-a-2')を得た。ポリ乳酸樹脂(B-a-2')について、重量平均分子量(Mw)を測定したところ、130000であった。得られたポリ乳酸樹脂の13C-NMR測定により、アミド結合の含有を確認した。
 (実施例2-1:ポリ乳酸樹脂組成物1の製造)
 製造例2-3で得られたポリ乳酸樹脂(B-a-1)100重量部および製造例2-4で得られたポリ乳酸樹脂(B-a-2)100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物1を得た。得られたポリ乳酸樹脂組成物1を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、202℃であった。
 (実施例2-2:ポリ乳酸樹脂組成物2の製造)
 製造例2-5で得られたポリL-乳酸100重量部および製造例2-4で得られたポリ乳酸樹脂(B-a-2)100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物2を得た。得られたポリ乳酸樹脂組成物2を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、204℃であった。
 (実施例2-3:ポリ乳酸樹脂組成物3の製造)
 製造例2-3で得られたポリ乳酸樹脂(B-a-1)100重量部および製造例2-6で得られたポリD-乳酸100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物3を得た。得られたポリ乳酸樹脂組成物3を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、204℃であった。
 (実施例2-4:ポリ乳酸樹脂組成物4の製造)
 製造例2-3で得られたポリ乳酸樹脂(B-a-1)140重量部および製造例2-4で得られたポリ乳酸樹脂(B-a-2)60重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物4を得た。得られたポリ乳酸樹脂組成物4を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、204℃であった。
 (実施例2-5:ポリ乳酸樹脂組成物5の製造)
 製造例2-3で得られたポリ乳酸樹脂(B-a-1)60重量部および製造例2-4で得られたポリ乳酸樹脂(B-a-2)140重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物5を得た。得られたポリ乳酸樹脂組成物5を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、204℃であった。
 (実施例2-6:ポリ乳酸樹脂組成物6の製造)
 製造例2-3で得られたポリ乳酸樹脂(B-a-1)100重量部および製造例2-10で得られたポリ乳酸樹脂(B-a-2')100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物6を得た。得られたポリ乳酸樹脂組成物6を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、205℃であった。
 (実施例2-7:ポリ乳酸樹脂組成物7の製造)
 製造例2-9で得られたポリ乳酸樹脂(B-a-1')100重量部と製造例2-4で得られたポリ乳酸樹脂(B-a-2)100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物7を得た。得られたポリ乳酸樹脂組成物7を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、205℃であった。
 (実施例2-8:ポリ乳酸樹脂組成物8の製造)
 製造例2-9で得られたポリ乳酸樹脂(B-a-1')100重量部と製造例2-10で得られたポリ乳酸樹脂(B-a-2')100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物8を得た。得られたポリ乳酸樹脂組成物8を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 また、融点は、207℃であった。
 (比較例2-1:ポリ乳酸樹脂組成物9の製造)
 製造例2-5で得られたポリL-乳酸100重量部と製造例2-6で得られたポリD-乳酸100重量部を、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度230℃、スクリュー回転数150rpm、吐出量10kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ポリ乳酸樹脂組成物9を得た。得られたポリ乳酸樹脂組成物9を90℃で5時間乾燥させた後、230℃で5分間予熱した後、10MPaで5分間熱プレスを行い、急冷して厚さ0.2mmのシートを得た。これらのシートを用いて各特性を測定した。それらの測定結果を表3に示す。
 (比較例2-2)
 製造例2-5で得られたポリL-乳酸を用いて評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000014
 表3の結果から明らかな通り、L-乳酸を主成分とするポリ乳酸樹脂(A-1)とD-乳酸を主成分とするポリ乳酸樹脂(A-2)からなり、少なくとも一方のポリ乳酸樹脂が乳酸オリゴマーにポリイソシアネートを用いてアミド結合を形成させたポリ乳酸樹脂組成物(C)は、高いステレオコンプレックス形成能を有し、かつ該組成物を用いて得られる成型品は、実用化されているポリL-乳酸と同等の機械特性を有しながら、耐熱性、耐加水分解性に優れ、特性が大きく向上していることがわかる。

  実施例3
 以下、実施例3により本発明{3}を詳述する。ただし、本発明{3}はこれらに限定されるものではない。また実施例3中における各値は下記の方法で求めた。

 <重量平均分子量(Mw)>
 ゲルパーミエーションクロマトグラフィー(GPC、Shimadzu社製、カラム:SHODEX社製LF-G、LF-804)(カラム温度40℃、流速1mL/min、クロロホルム溶媒)により、ポリスチレン標準サンプルを基準として重量平均分子量を算出した。
 <カルボン酸価>
 測定対象オリゴマー0.5gに対してクロロホルム/メタノール=7/3の混合溶媒を20mL加え、完全にポリマーを溶解させた。その後、指示薬としてブロムチモールブルー/フェノールレッド混合のエタノール溶液を2滴加えると、黄色を呈した。0.1Nエタノール性水酸化カリウム溶液で滴定を行い、色が黄色から薄紫色に変化した点を終点とし、オリゴマーのカルボン酸価を求めた。
 <末端カルボン酸率および末端官能基数>
 乳酸オリゴマーと無水コハク酸とを反応させて得られた試料および乳酸と無水コハク酸とから得られた乳酸オリゴマー試料の1H-NMR(装置:日本電子製ECA500、内部標準テトラメチルシラン:δ=0ppm)を測定し、以下の2種のスペクトルを観測した。
 δ=2.61~2.72ppm(マルチプレット):
  乳酸オリゴマー末端に反応したコハク酸ユニットおよび乳酸オリゴマー中のコハク酸のメチレン鎖水素由来(4H)
 δ=4.36ppm、 J=6.92(カルテット):
  乳酸オリゴマー鎖末端ヒドロキシル基のα位のメチン水素由来(1H)
 以上2種の積分値より、
 末端カルボン酸数 [=乳酸オリゴマーカルボキシル基数(=未反応の乳酸オリゴマー末端ヒドロキシル基数)+コハク酸化された末端カルボキシル基数}および末端ヒドロキシル基数(未反応のポリ乳酸末端ヒドロキシル基数)を算出し、これらの値から、末端カルボン酸率を計算した。また上述したカルボン酸価の値と末端カルボン酸率とから末端官能基数を算出した。
 末端カルボン酸率(%)=末端カルボン酸数/(末端カルボン酸数+末端ヒドロキシル基数)×100
 末端官能基数 (mol/g) = カルボン酸価/(末端カルボン酸率/100)
 <アミド結合の同定>
 乳酸オリゴマーとヘキサメチレンジイソシアネートとを反応させて得られたポリ乳酸樹脂の13C-NMR(装置:日本電子製ECA500、内部標準クロロホルム-d:δ=77ppm)を測定し、以下のスペクトルから、ステレオコンプレックスポリ乳酸樹脂組成物(Z)におけるアミド結合の有無を決定した。
 δ=39ppm:
    アミド結合に隣接したヘキサメチレンユニットのα位の炭素由来
 <ステレオ結晶化比率(Cr)>
 広角X線回折透過法測定(装置:リガク製RINT2500、付属装置:回転試料台、X線源:CuKα、出力:50kV,300mA、検出器:シンチレーションカウンター)により回折プロファイルを測定した。ステレオコンプレックス相結晶とホモ相結晶との回折プロファイルからステレオ結晶化比率(Cr)を以下の式から算出した。
 ステレオ結晶化比率(Cr)[%]={ΣISCi/(ΣISCi+IHM)}×100
 ここで、
 ΣISCi=ISC1+ISC2+ISC3:ステレオコンプレックス結晶に由来する各回折ピークの積分強度の総和で、ISCi(i=1~3)はそれぞれ2θ=12.0°、20.7°、24.0°付近の各回折ピークの積分強度。
 IHM:ホモ結晶に由来する回折ピークの積分強度
である。
 <融点(Tm)>
 融点(Tm)は、示差走査熱量測定装置(SII社製DSC装置RDC220)により求めた。試料を5~6mg秤量し、窒素シールしたパンに計り込み、窒素シールされた予め25℃に設定されたDSC測定部に装入した。次いで、10℃/minの昇温速度で240℃まで昇温し(第一昇温過程)、引き続き240度で1分或いは5分保持した後、99.90℃/minの降温速度で0℃まで降温し5分保持した。その後続いて再び10℃/minの昇温速度で0℃から240℃まで昇温(第二昇温過程)した後、99.90℃/minの降温速度で25℃まで降温し測定を終了した。
 <ステレオ化度(S)>
 上記示差走査熱量(DSC)測定により得られた各融解ピークの熱量より、ステレオ化度(S)を以下の式により算出した。
 ステレオ化度(S)[%]  ={ΔHms/(ΔHmh+ΔHms)}×100
 ここで、
 ΔHms:ピーク温度190℃以上のステレオコンプレックス相結晶の融解ピークの熱量(J/g)
 ΔHmh::ピーク温度190℃以下のホモ相結晶の融解ピークの熱量(J/g)
である。
 <重量平均分子量(Mw)保持率>
 重量平均分子量(Mw)保持率は以下の式により算出した。
 Mw保持率(%)=(MwDSC測定後/MwDSC未測定)×100
ここで、
 MwDSC未測定:DSC未測定のステレオコンプレックスポリ乳酸樹脂組成物(Z)の重量平均分子量
 MwDSC測定後:DSC測定後のステレオコンプレックスポリ乳酸樹脂組成物(Z)の重量平均分子量
 である。

 下記の製造例に示す方法により、オリゴマー単位の製造を行った。
 <製造例3-1:L-乳酸オリゴマーの製造>
 Purac社の90%L-乳酸(L体が99.5モル%の乳酸)400gと試薬の酸化スズ(II)(和光純薬社製)1.3gとをディーンスタークトラップが備え付けられた丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温した。該フラスコ内を徐々に減圧し、50mmHgで2時間保持した。次に、該フラスコ内を常圧まで放圧した後、該フラスコ内にキシレンを30g加えた。次に、ディーンスタークトラップを、キシレンが充満されたディーンスタークトラップに交換した。次にオイルバス温度を180℃まで昇温し、該フラスコ内を500mmHgに減圧し、反応溶液温度150℃で3時間保持し、透明なL-乳酸オリゴマーが得られた。該L-乳酸オリゴマーについて、上記測定方法により重量平均分子量(Mw)を測定したところ、10000であった。また、上記測定方法によりカルボン酸価を求めたところ、1.818×10-4(mol/g)であった。
 さらに、上記フラスコ内に無水コハク酸6.5gを加え、オイルバス温度150℃にて1時間攪拌し、その後、該フラスコ内を常圧に放圧し、キシレン300gを加えて希釈後、得られた溶液を抜き出し、窒素気流下でキシレンを風乾した。風乾後の固体を35%塩酸を1%含有した2-プロパノールにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃にて減圧乾燥し、白色のL-乳酸オリゴマー(x'1)を275重量部得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率、カルボン酸価および融点(Tm)を測定したところ、それぞれ10000で、95%、3.652×10-4(mol/g)および163℃であった。
 <製造例3-2:L-乳酸オリゴマーの製造>
 製造例3-1における反応溶液温度150℃での保持時間を4時間に、無水コハク酸の添加量を4.5gに変更した以外は製造例3-1と同様の操作を行いL-乳酸オリゴマー(x'1)を得た。該オリゴマーについてり重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ19000、95%および163℃であった。
 <製造例3-3:L-乳酸オリゴマーの製造>
 製造例3-1における反応溶液温度150℃での保持時間を8時間に、無水コハク酸の添加量を2.6重量部に変更した以外は製造例3-1と同様の操作を行いL-乳酸オリゴマー(x'1)を得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ40000、95%および163℃であった。
 <製造例3-4:L-乳酸オリゴマーの製造>
 製造例3-1における反応溶液温度150℃での保持時間を4時間に、無水コハク酸を4.2gに変更した以外は製造例3-1と同様の操作を行いL-乳酸オリゴマー(x'1)を得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ19000、90%および163℃であった。
 <製造例3-5:L-乳酸オリゴマーの製造>
 製造例3-1において、無水コハク酸との反応を行わないこと以外は、製造例3-1と同様にL-乳酸オリゴマーを得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ19000、50%および163℃であった。
  <製造例3-6:L-乳酸オリゴマーの製造>
 Purac社のL-ラクチド500gとエチレングリコール(和光純薬製)1.5gを丸底フラスコに装入した。該フラスコ内を窒素置換後、常圧、窒素雰囲気下で、150℃に加熱したオイルバスにより130℃まで昇温し、均一に溶解せせた。次にオイルバス温度を170℃まで昇温し、2-エチルヘキサン酸スズ2.0g加えた後、2時間重合反応を行った。その後、反応物をクロロホルムに溶解させ、メタノール(クロロホルムの10倍量)中で攪拌しながら沈殿させ、L-乳酸オリゴマーを得た。得られたオリゴマーを、35%塩酸を1%含有した2-プロパノール790gにて2回洗浄し、ろ過した後、ろ別した固体を、さらにメタノールで数回洗浄して50℃に減圧乾燥し、白色のL-乳酸オリゴマーを得た。該オリゴマーについて重量平均分子量(Mw)を測定したところ、20000であった。また、カルボン酸価を求めたところ、検出されなかった。
 <製造例3-7:D-乳酸オリゴマ-の製造>
 製造例3-1における90%L-乳酸を90%D-乳酸(Purac社製D-ラクチドを加水分解したもの、D体が99.5モル%以上の乳酸)に、反応溶液温度150℃での保持時間を3.5時間に、無水コハク酸の添加量を6.2gに変更した以外は製造例3-1と同様の操作を行いD-乳酸オリゴマー(y'1)を得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ10500、95%および161℃であった。
 <製造例3-8:D-乳酸オリゴマ-の製造>
 製造例3-7における反応溶液温度150℃での保持時間を4.5時間に、無水コハク酸の添加量を4.3gに変更した以外は製造例3-7と同様の操作を行いD-乳酸オリゴマー(y'1)を得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ20000、95%および161℃であった。
 <製造例3-9:D-乳酸オリゴマ-の製造>
 製造例3-7における反応溶液温度150℃での保持時間を9時間に、無水コハク酸の添加量を2.7gに変更した以外は製造例3-7と同様の操作を行いD-乳酸オリゴマー(y'1)を得た。該オリゴマーについて、重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ39000、95%および161℃であった。
 <製造例3-10:D-乳酸オリゴマ-の製造>
 製造例3-7において、無水コハク酸の添加量を4.1gに変更した以外は製造例3-7と同様の操作を行いD-乳酸オリゴマー(y'1)を得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ20000、90%および161℃であった。
  <製造例3-11:D-乳酸オリゴマーの製造>
 製造例3-7において、無水コハク酸との反応を行わないこと以外は、製造例3-8と同様の操作を行いD-乳酸オリゴマーを得た。該オリゴマーについて重量平均分子量(Mw)、末端カルボン酸率および融点(Tm)を測定したところ、それぞれ20000、50%および161℃であった。
 <製造例3-12:D-乳酸オリゴマーの製造>
 L-ラクチドをD-ラクチド(Purac社製)に変更した以外は製造例3-6と同様にD-乳酸オリゴマーを得た。該オリゴマーについて上重量平均分子量(Mw)を測定したところ、20000であった。また、カルボン酸価を求めたところ、検出されなかった。
 下記の実施例に示す方法により、ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造を行った。
 <実施例3-1:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマー(x'1)30g、D-乳酸ポリマー(Purac社製、PDLA HighIV,Lot No.0701001661、重量平均分子量(Mw)229000)100gおよびステアリン酸マグネシウムをL-乳酸オリゴマーの重量に対してマグネシウム換算30ppm、を丸底フラスコに装入した。該フラスコ内を窒素置換後、o-ジクロロベンゼンをL-乳酸オリゴマー(x'1)とD-乳酸ポリマーとの合計重量と同量挿入し、常圧、窒素雰囲気下で、190℃まで昇温し、L-乳酸オリゴマーおよびD-乳酸ポリマーを溶解させた。次に、該フラスコ内にヘキサメチレンジイソシアネート(以下、HDI)をL-乳酸オリゴマーの末端官能基数に対して1.1倍モル供給し、190℃で40分反応させた。反応終了後、L-乳酸オリゴマーとD-乳酸ポリマーとの合計重量の4倍重量のo-ジクロロベンゼンを加え冷却し、さらにキシレンを同様に4倍重量加え晶析した後、吸引ろ過した。得られた粉体を室温で窒素気流下15時間乾燥することにより粉末のステレオコンプレックスポリ乳酸樹脂組成物(Z)が130g得られた。該樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
  <実施例3-2~3-9:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 実施例3-1において、製造例3-1で合成したL-乳酸オリゴマーの配合量を、それぞれ50g(実施例3-2)、60g(実施例3-3)、80g(実施例3-4)、95g(実施例3-5)、120g(実施例3-6)、140g(実施例3-7)、200g(実施例3-8)、300g(実施例3-9)に変更した以外は、実施例3-1と同様の操作を行いステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-10~3-18:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-2で合成したL-乳酸オリゴマーに変更した以外は実施例3-1~3-9と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-19~3-27:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-3で合成したL-乳酸オリゴマーに変更した以外は実施例3-1~3-9と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-28~3-36:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-4で合成したL-乳酸オリゴマーに変更した以外は実施例3-1~3-9と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-37~3-45:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 ヘキサメチレンジイソシアネートを1,3-(ビスイソシアナトメチル)シクロヘキサンに変更した以外は実施例3-10~3-18と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-46~3-54:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-7で合成したD-乳酸オリゴマーに、D-乳酸ポリマー(Purac社製、PDLA HighIV,Lot No.0701001661、重量平均分子量(Mw)229000)をL-乳酸ポリマー(三井化学社製、LACEA、H400、Lot No.060313、重量平均分子量(Mw)223000)に、190℃で40分の反応を190℃で30分に変更した以外は実施例3-1~3-9と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-55~3-63:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-8で合成したD-乳酸オリゴマーに変更した以外は実施例3-46~3-54と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-64~3-72:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-9で合成したD-乳酸オリゴマーに変更した以外は実施例3-46~3-54と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-73~3-81:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-10で合成したD-乳酸オリゴマーに変更した以外は実施例3-46~3-54と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <実施例3-82~3-90:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 ヘキサメチレンジイソシアネートを1,3-(ビスイソシアナトメチル)シクロヘキサンに変更した以外は実施例3-55~3-63と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-1~3-2:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーの配合量をそれぞれ25g(比較例3-1)、400g(比較例3-2)に変更した以外は実施例3-1と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
  <比較例3-3~3-4:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-2で合成したL-乳酸オリゴマーに変更した以外は比較例3-1~3-2と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-5~3-6:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-3で合成したL-乳酸オリゴマーに変更した以外は比較例3-1~3-2と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-7~3-8:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-4で合成したL-乳酸オリゴマーに変更した以外は比較例3-1~3-2と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-9:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-5で合成したL-乳酸オリゴマーを95g配合に変更した以外は実施例3-1と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-10:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-6で合成したL-乳酸オリゴマーを95g配合に変更した以外は実施例3-1と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-11~3-12:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-1で合成したL-乳酸オリゴマーを製造例3-7で合成したD-乳酸オリゴマーに、D-乳酸ポリマー(Purac社製、PDLA HighIV,Lot No.0701001661、重量平均分子量(Mw)229000)をL-乳酸ポリマー(三井化学社製、LACEA、H400、Lot No.060313、重量平均分子量(Mw)223000)に変更した以外は比較例3-1~3-2と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-13~3-14:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-8で合成したD-乳酸オリゴマーに変更した以外は比較例3-11~3-12と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-15~3-16:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-9で合成したD-乳酸オリゴマーに変更した以外は比較例3-11~3-12と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-17~3-18:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-10で合成したD-乳酸オリゴマーに変更した以外は比較例3-11~3-12と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-19:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造3-11で合成したD-乳酸オリゴマーに変更した以外は実施例3-50と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 <比較例3-20:ステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造>
 製造例3-7で合成したD-乳酸オリゴマーを製造例3-12で合成したD-乳酸オリゴマーに変更した以外は実施例3-50と同様の操作を行い、ステレオコンプレックスポリ乳酸樹脂組成物(Z)を得た。各樹脂組成物の13C-NMR測定により、アミド結合の含有を確認した。
 以上、各実施例及び比較例で得られたステレオコンプレックスポリ乳酸樹脂組成物(Z)それぞれについて、上記測定方法により得られた、重量平均分子量(Mw)、ステレオ結晶化比率(Cr)[%]、融点(Tm)[℃]、ステレオ化度(S)[%]、Mw保持率[%]を表4~表11に示す。
 また、一例として、実施例3-14及び実施例3-59で製造したステレオコンプレックスポリ乳酸樹脂組成物(Z)の製造中のGPCクロマトグラム経時変化と、併せて該オリゴマー(製造例3-2及び製造例3-8)、該ポリマーのGPCクロマトグラムを図1、2に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 上記表4~11から明らかなように、本発明{3}のステレオコンプレックスポリ乳酸樹脂組成物(Z)は、高いステレオ化度(S)と高い熱安定性(Mw保持率)を同時に満足していることがわかる。
 また、本発明{3}におけるステレオコンプレックスポリ乳酸樹脂組成物(Z)は、図1~2から明らかなように、(X1)または(Y1)ポリマーの分子量分布を維持しつつオリゴマー(x’1)または(y’1)がポリイソシアネート化合物とアミド結合を形成し高分子量化することにより、該ポリマーの重量平均分子量とほぼ同等のポリ乳酸系樹脂となることで、該ポリマーとほぼ同等の分子量を有するステレオコンプレックスポリ乳酸樹脂組成物(Z)を形成しており、比較的低温、短時間での製造が可能である。

Claims (18)


  1.  末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物とポリイソシアネート化合物を反応させることにより得られ、下記式(1)で表される構成単位を含むポリ乳酸系樹脂(I)。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Rはポリイソシアネート残基であって、炭素数1~20の脂肪族炭化水素基、脂環構造を含む炭素数3~20の炭化水素基または芳香環を含む炭素数6~20の炭化水素基を表す。)
  2.  前記ポリ(L-乳酸)とポリ(D-乳酸)の末端官能基がカルボキシル基である割合が85%以上である請求項1に記載のポリ乳酸系樹脂(I)。
  3.  前記ポリイソシアネート化合物が、脂肪族ジイソシアネート化合物である、請求項1または2に記載のポリ乳酸系樹脂(I)。
  4.  末端官能基がカルボキシル基である割合が50%を超えるポリ(L-乳酸)および末端官能基がカルボキシル基である割合が50%を超えるポリ(D-乳酸)を少なくとも含有する混合物と、ポリイソシアネート化合物とを反応させる工程を含む請求項1に記載のポリ乳酸系樹脂(I)の製造方法。
  5.  前記ポリイソシアネート化合物が、脂肪族ジイソシアネート化合物である請求項4に記載のポリ乳酸系樹脂(I)の製造方法。
  6.  アミド化触媒の存在下で前記混合物とポリイソシアネート化合物を反応させる工程を含む請求項4または5に記載のポリ乳酸系樹脂(I)の製造方法。
  7.  前記アミド化触媒が、周期律表第1族、2族および3族に属する金属からなる群より選ばれる少なくとも1種の金属を含む請求項6に記載のポリ乳酸系樹脂(I)の製造方法。
  8.  前記アミド化触媒が、マグネシウムまたはカルシウムを含む請求項6に記載のポリ乳酸系樹脂(I)の製造方法。
  9.  L-乳酸を主成分とするポリ乳酸樹脂(A-1)とD-乳酸を主成分とするポリ乳酸樹脂(A-2)を含有し、少なくとも一方のポリ乳酸樹脂(A-1)または(A-2)がL-乳酸を主成分とする乳酸オリゴマー(a-1)またはD-乳酸を主成分とする乳酸オリゴマー(a-2)にポリイソシアネートを反応させて得られたアミド結合を有するポリ乳酸樹脂(B)であることを特徴とするポリ乳酸樹脂組成物(C)。
  10.  L-乳酸を主成分とするポリ乳酸樹脂(A-1)およびD-乳酸を主成分とするポリ乳酸樹脂(A-2)の重量平均分子量が70,000~500,000である請求項9に記載のポリ乳酸樹脂組成物(C)。
  11.  乳酸オリゴマー(a-1)および乳酸オリゴマー(a-2)の重量平均分子量がそれぞれ5,000~100,000である請求項9または10に記載のポリ乳酸樹脂組成物(C)。
  12.  前記ポリイソシアネートが脂肪族ジイソシアネートである請求項9~11のいずれか1項に記載のポリ乳酸樹脂組成物(C)。
  13. 示差走査熱量計(DSC)測定において、昇温過程における融解ピークのうち、195℃以上のポリ乳酸樹脂に由来する融解ピークの割合が70%以上であることを特徴とする請求項9~12のいずれか1項に記載のポリ乳酸樹脂組成物(C)。
  14.  重量平均分子量が70,000~500,000であり、下記要件(i)~(iv)を満たすステレオコンプレックスポリ乳酸樹脂組成物(Z)。
    (i)ステレオ結晶化比率が51%以上
    保持温度240℃、保持時間1分における示差走査熱量(DSC)測定において、
    (ii)第一昇温過程におけるステレオ化度(S)が60%以上
    (iii)第二昇温過程におけるステレオ化度(S)が88%以上
    (iv)第二昇温過程後の重量平均分子量(Mw)保持率が77%以上
  15.  重量平均分子量が70,000~500,000であり、下記要件(i')~(iv')を満たすステレオコンプレックスポリ乳酸樹脂組成物(Z)。
    (i')ステレオ結晶化比率が51%以上
    保持温度240℃、保持時間5分における示差走査熱量(DSC)測定において、
    (ii')第一昇温過程におけるステレオ化度(S)が60%以上
    (iii')第二昇温過程におけるステレオ化度(S)が95%以上
    (iv')第二昇温過程後の重量平均分子量(Mw)保持率が70%以上
  16.  主な繰り返し単位がL-乳酸であり、末端官能基がカルボキシル基である割合が50%を超えるオリゴマー(x'1)と、主な繰り返し単位がD-乳酸であり、前記オリゴマー(x'1)よりも大きい分子量を持つポリマー(Y1)の混合物、或いは、
     主な繰り返し単位がD-乳酸であり、末端官能基がカルボキシル基である割合が50%を超えるオリゴマー(y'1)と、主な繰り返し単位がL-乳酸であり、前記オリゴマー(y'1)よりも大きい分子量を持つポリマー(X1)の混合物と、
     ポリイソシアネート化合物を反応させることにより得られる請求項14または15に記載のステレオコンプレックスポリ乳酸樹脂組成物(Z)。
  17.  主な繰り返し単位がL-乳酸であり、末端官能基がカルボキシル基である割合が50%を超えるオリゴマー(x'1)30~300重量部と、主な繰り返し単位がD-乳酸であり、前記オリゴマー(x'1)よりも大きい分子量を持つポリマー(Y1)100重量部の混合物、或いは、
     主な繰り返し単位がD-乳酸であり、末端官能基がカルボキシル基である割合が50%を超えるオリゴマー(y'1)30~300重量部と、主な繰り返し単位がL-乳酸であり、前記オリゴマー(y'1)よりも大きい分子量を持つポリマー(X1)100重量部の混合物と、
     ポリイソシアネート化合物を反応させる工程を含むステレオコンプレックスポリ乳酸樹脂組成物の製造方法。
  18.  請求項1~3のいずれか1項に記載のポリ乳酸系樹脂(I)、請求項9~13のいずれか1項に記載のポリ乳酸樹脂組成物(C)、および請求項14~16のいずれか1項に記載のステレオコンプレックスポリ乳酸樹脂組成物(Z)からなる群より選ばれる少なくとも1種を含有する成型体。
PCT/JP2010/061116 2009-06-30 2010-06-30 ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法 WO2011002004A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/380,025 US20120095169A1 (en) 2009-06-30 2009-06-30 Polylactic acid-based resin, process for producing polylactic acid-based resin, polylactic acid resin composition, stereocomplex polylactic acid resin composition and process for producing stereocomplex polylactic acid resin composition
EP10794172.6A EP2450388B1 (en) 2009-06-30 2010-06-30 Polylactic acid resin, method for producing polylactic acid resin, polylactic acid resin composition, stereocomplex polylactic acid resin composition, and method for producing stereocomplex polylactic acid resin composition
CN201080027648.8A CN102459391B (zh) 2009-06-30 2010-06-30 聚乳酸类树脂、聚乳酸类树脂的制造方法、聚乳酸树脂组合物、立体络合物聚乳酸树脂组合物及立体络合物聚乳酸树脂组合物的制造方法
BRPI1016155A BRPI1016155A2 (pt) 2009-06-30 2010-06-30 resina baseada em ácido poliláctico; processo para produção de resina baseada em ácido poliláctico; composição de resina de ácido poliláctico; composição de resina de ácido poliláctico estereocomplexo e processo para produção de uma composição de resina de ácido poliláctico estereocomplexo
KR1020117031448A KR101427459B1 (ko) 2009-06-30 2010-06-30 폴리락트산계 수지, 폴리락트산계 수지의 제조 방법, 폴리락트산 수지 조성물, 스테레오컴플렉스 폴리락트산 수지 조성물 및 스테레오컴플렉스 폴리락트산 수지 조성물의 제조 방법
JP2011520944A JP5438763B2 (ja) 2009-06-30 2010-06-30 ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009156063 2009-06-30
JP2009-156063 2009-06-30
JP2009-254431 2009-11-05
JP2009254431 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011002004A1 true WO2011002004A1 (ja) 2011-01-06

Family

ID=43411075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061116 WO2011002004A1 (ja) 2009-06-30 2010-06-30 ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法

Country Status (8)

Country Link
US (1) US20120095169A1 (ja)
EP (1) EP2450388B1 (ja)
JP (1) JP5438763B2 (ja)
KR (1) KR101427459B1 (ja)
CN (3) CN104017153B (ja)
BR (1) BRPI1016155A2 (ja)
TW (1) TWI473828B (ja)
WO (1) WO2011002004A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675858A (zh) * 2012-05-22 2012-09-19 同济大学 一种具有形状记忆功能可降解泪管栓塞的制备方法
WO2018026388A1 (en) 2016-08-05 2018-02-08 Greyrock Energy, Inc. Catalysts, related methods and reaction products
US10626271B2 (en) * 2012-03-07 2020-04-21 Huhtamäki Oyj Essentially biobased, thermoformable composition and containers formed thereof
CN111748085A (zh) * 2020-07-03 2020-10-09 中国科学院长春应用化学研究所 一种生物降解材料多嵌段聚酯及其制备方法
US11116275B2 (en) 2013-04-19 2021-09-14 Adidas Ag Shoe

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934533B2 (ja) * 2012-03-23 2016-06-15 富士フイルム株式会社 複層フィルム及び光学シート
TW201425583A (zh) * 2012-09-19 2014-07-01 Plaxica Ltd 乳酸鹽製造方法
CN103965595B (zh) * 2014-04-18 2016-08-24 浙江海正生物材料股份有限公司 一种具有互穿网络结构的聚乳酸立构复合物及其制备方法
KR102130039B1 (ko) * 2014-06-05 2020-07-03 에스케이케미칼 주식회사 열 접착성 유연 폴리유산 수지 조성물
KR101713215B1 (ko) * 2015-08-11 2017-03-07 롯데케미칼 주식회사 폴리유산의 제조 방법
CN107693284A (zh) * 2016-09-19 2018-02-16 成都测迪森生物科技有限公司 用于手术台液压系统中导向套骨架的复合聚四氟乙烯材料
CN106566216B (zh) * 2016-11-08 2018-08-14 常州大学 一种提高聚羟基酸二次加工稳定性的方法
KR101865813B1 (ko) * 2016-12-23 2018-06-11 한국과학기술연구원 폴리락트산 복합체 제조방법
US10435557B2 (en) * 2017-03-24 2019-10-08 The United States Of America, As Represented By The Secretary Of Agriculture High heat deflection temperature polylactic acids with tunable flexibility and toughness
CN107090609B (zh) * 2017-05-27 2019-12-06 安徽桑尼旅游休闲用品有限公司 一种用于户外用品的聚乳酸纤维制备方法
KR102286545B1 (ko) * 2018-01-05 2021-08-04 주식회사 엘지화학 블록 공중합체
KR102241367B1 (ko) * 2018-01-05 2021-04-15 주식회사 엘지화학 블록 공중합체
EP3847039A1 (en) * 2018-09-07 2021-07-14 Société BIC Body for a writing, tracing, drawing or coloring pencil
CN109651778B (zh) * 2018-11-19 2021-04-13 江苏科技大学 一种高立构复合晶含量高分子量聚乳酸材料的制备方法
CN109880327A (zh) * 2019-03-07 2019-06-14 华东理工大学 一种聚乳酸组合物、其自组装体以及制备方法
KR20200115166A (ko) 2019-03-26 2020-10-07 주식회사 엘지화학 트리블록 공중합체 및 이의 제조 방법
CN110670165B (zh) * 2019-09-29 2022-04-15 孔令孝 一种聚乳酸卷烟丝束、制备方法及其应用
CN111087776B (zh) * 2020-01-02 2021-12-14 万华化学集团股份有限公司 一种基于氮丙啶增容剂的高韧性、高熔体强度pla/pbat合金及其制备方法
KR20230005125A (ko) * 2020-02-21 2023-01-09 네이쳐웍스 엘엘씨 저 분자량 비정질 등급 폴리락트산 수지를 함유하는 화장료 조성물
CN112341773B (zh) * 2020-11-13 2022-03-11 南通大学 一种sc-PLA/PTT生物质复合膜及其制备方法与应用
CN117480209A (zh) * 2021-03-31 2024-01-30 自然工作有限责任公司 含有亚磷酸酯的熔体稳定的聚丙交酯树脂组合物
KR102334643B1 (ko) * 2021-04-09 2021-12-02 주식회사 엘지화학 블록 공중합체
WO2023282864A1 (en) * 2021-07-09 2023-01-12 Md Poli̇mer Gida Sanayi̇ Ti̇caret Li̇mi̇ted Şi̇rketi̇ Synthesis of poly(lactic acid) catalyzed by nanoparticle metal
CN114940749B (zh) * 2022-07-05 2023-12-26 普立思生物科技有限公司 一种淋膜聚乳酸树脂的合成工艺
CN115746283B (zh) * 2022-11-18 2024-01-30 大连理工大学 一类高活性催化剂、制备方法及其在内酯或交酯聚合中的应用
CN116444479A (zh) * 2023-03-17 2023-07-18 扬州大学 一种高光学纯度l-丙交酯的制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPS6136321A (ja) 1984-07-27 1986-02-21 Daicel Chem Ind Ltd 新規なポリマ−およびその樹脂組成物
JPS63241024A (ja) 1986-12-22 1988-10-06 イー・アイ・デュポン・デ・ニモアス・アンド・カンパニー ポリラクチド組成物
JPH0912688A (ja) * 1995-06-27 1997-01-14 Toyobo Co Ltd ポリ乳酸系樹脂組成物
JPH0995603A (ja) * 1995-09-29 1997-04-08 Dainippon Ink & Chem Inc ヒドロキシカルボン酸系ポリエステル組成物の製造方法
JP2000017163A (ja) 1998-06-30 2000-01-18 Shimadzu Corp ポリ乳酸ステレオコンプレックスポリマー組成物
JP2000302852A (ja) 1998-04-28 2000-10-31 Mitsui Chemicals Inc ポリエステルの製造方法
JP2001122954A (ja) 1999-10-27 2001-05-08 Mitsui Chemicals Inc 脂肪族ポリエステルの製造方法
JP2002356543A (ja) 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP3410075B2 (ja) 2000-11-17 2003-05-26 ユニチカ株式会社 結晶性ポリ乳酸樹脂組成物、これを用いたフィルムおよびシート
JP2003192884A (ja) 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系ポリマー組成物、成形品及びその製造方法
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2006028336A (ja) 2004-07-15 2006-02-02 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法
JP2006265486A (ja) 2005-03-25 2006-10-05 Teijin Ltd ステレオコンプレックスポリ乳酸を含有する樹脂組成物および成形品
JP2007191630A (ja) 2006-01-20 2007-08-02 Teijin Ltd ポリ乳酸組成物
JP2007191548A (ja) 2006-01-18 2007-08-02 Teijin Chem Ltd 電子機器外装部品
JP2008248022A (ja) 2007-03-29 2008-10-16 Teijin Ltd ポリ乳酸組成物
JP2009040997A (ja) 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
WO2009110472A1 (ja) 2008-03-04 2009-09-11 三井化学株式会社 ポリエステル系樹脂、その製造方法およびその用途
JP2009249518A (ja) 2008-04-08 2009-10-29 Teijin Ltd 色相および耐熱性に優れたステレオコンプレックスポリ乳酸組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686540A (en) * 1995-09-29 1997-11-11 Dainippon Ink And Chemicals, Inc. Process for the preparation of lactic acid-based polyester
JP3871822B2 (ja) 1998-12-09 2007-01-24 株式会社カネカ 生分解性を有する発泡性樹脂組成物
JP4511890B2 (ja) * 2004-07-22 2010-07-28 帝人株式会社 ステレオコンプレックスポリ乳酸およびその製造方法
US7964696B2 (en) * 2005-09-20 2011-06-21 Polynovo Biomaterials Pty Limited Chain extenders
JP4988210B2 (ja) 2006-01-18 2012-08-01 帝人化成株式会社 発泡成形品
CN103923447A (zh) * 2006-02-14 2014-07-16 日本电气株式会社 聚乳酸类树脂组合物及成形体
TW200909512A (en) * 2007-03-30 2009-03-01 Teijin Ltd Polylactic acid composition and fiber composed of the same
WO2008123565A1 (ja) * 2007-03-30 2008-10-16 Teijin Limited ポリ乳酸組成物およびそれよりなる繊維
CN101970527A (zh) * 2007-09-28 2011-02-09 自然工作有限责任公司 制备聚乳酸(pla)立体络合物的方法
CN101302284B (zh) * 2008-06-23 2011-11-23 中国科学院长春应用化学研究所 一种高分子量高性能化聚乳酸的制备方法
CN101402723A (zh) * 2008-09-15 2009-04-08 青岛生物能源与过程研究所 一种直接缩聚制备高分子量聚乳酸的方法
CN101362833B (zh) * 2008-09-25 2012-08-22 上海交通大学 聚乳酸发泡材料的制备方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JPS6136321A (ja) 1984-07-27 1986-02-21 Daicel Chem Ind Ltd 新規なポリマ−およびその樹脂組成物
JPS63241024A (ja) 1986-12-22 1988-10-06 イー・アイ・デュポン・デ・ニモアス・アンド・カンパニー ポリラクチド組成物
JPH0912688A (ja) * 1995-06-27 1997-01-14 Toyobo Co Ltd ポリ乳酸系樹脂組成物
JPH0995603A (ja) * 1995-09-29 1997-04-08 Dainippon Ink & Chem Inc ヒドロキシカルボン酸系ポリエステル組成物の製造方法
JP2000302852A (ja) 1998-04-28 2000-10-31 Mitsui Chemicals Inc ポリエステルの製造方法
JP2000017163A (ja) 1998-06-30 2000-01-18 Shimadzu Corp ポリ乳酸ステレオコンプレックスポリマー組成物
JP2001122954A (ja) 1999-10-27 2001-05-08 Mitsui Chemicals Inc 脂肪族ポリエステルの製造方法
JP3410075B2 (ja) 2000-11-17 2003-05-26 ユニチカ株式会社 結晶性ポリ乳酸樹脂組成物、これを用いたフィルムおよびシート
JP2002356543A (ja) 2001-03-29 2002-12-13 Toray Ind Inc ポリ乳酸ブロック共重合体、その製造方法、成形品およびポリ乳酸組成物
JP2003192884A (ja) 2001-12-28 2003-07-09 Asahi Denka Kogyo Kk ポリ乳酸系ポリマー組成物、成形品及びその製造方法
JP2003238672A (ja) 2002-02-15 2003-08-27 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
JP2006028336A (ja) 2004-07-15 2006-02-02 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法
JP2006265486A (ja) 2005-03-25 2006-10-05 Teijin Ltd ステレオコンプレックスポリ乳酸を含有する樹脂組成物および成形品
JP2007191548A (ja) 2006-01-18 2007-08-02 Teijin Chem Ltd 電子機器外装部品
JP2007191630A (ja) 2006-01-20 2007-08-02 Teijin Ltd ポリ乳酸組成物
JP2008248022A (ja) 2007-03-29 2008-10-16 Teijin Ltd ポリ乳酸組成物
JP2009040997A (ja) 2007-07-17 2009-02-26 Toray Ind Inc ポリ乳酸ブロック共重合体の製造方法
WO2009110472A1 (ja) 2008-03-04 2009-09-11 三井化学株式会社 ポリエステル系樹脂、その製造方法およびその用途
JP2009249518A (ja) 2008-04-08 2009-10-29 Teijin Ltd 色相および耐熱性に優れたステレオコンプレックスポリ乳酸組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEW, vol. 81, no. 4, 1981, pages 619 - 621
J. ORG. CHEM., vol. 28, 1963, pages 2069 - 2075
See also references of EP2450388A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626271B2 (en) * 2012-03-07 2020-04-21 Huhtamäki Oyj Essentially biobased, thermoformable composition and containers formed thereof
CN102675858A (zh) * 2012-05-22 2012-09-19 同济大学 一种具有形状记忆功能可降解泪管栓塞的制备方法
US11116275B2 (en) 2013-04-19 2021-09-14 Adidas Ag Shoe
US11678712B2 (en) 2013-04-19 2023-06-20 Adidas Ag Shoe
WO2018026388A1 (en) 2016-08-05 2018-02-08 Greyrock Energy, Inc. Catalysts, related methods and reaction products
CN111748085A (zh) * 2020-07-03 2020-10-09 中国科学院长春应用化学研究所 一种生物降解材料多嵌段聚酯及其制备方法
CN111748085B (zh) * 2020-07-03 2021-09-21 中国科学院长春应用化学研究所 一种生物降解材料多嵌段聚酯及其制备方法

Also Published As

Publication number Publication date
US20120095169A1 (en) 2012-04-19
EP2450388A4 (en) 2015-11-25
EP2450388A1 (en) 2012-05-09
CN104017153B (zh) 2017-01-11
KR101427459B1 (ko) 2014-08-08
JPWO2011002004A1 (ja) 2012-12-13
KR20120027425A (ko) 2012-03-21
CN104017152B (zh) 2016-06-29
CN102459391B (zh) 2014-07-09
BRPI1016155A2 (pt) 2016-04-19
TWI473828B (zh) 2015-02-21
JP5438763B2 (ja) 2014-03-12
CN104017153A (zh) 2014-09-03
EP2450388B1 (en) 2017-01-11
CN104017152A (zh) 2014-09-03
CN102459391A (zh) 2012-05-16
TW201114791A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
JP5438763B2 (ja) ポリ乳酸系樹脂、ポリ乳酸系樹脂の製造方法、ポリ乳酸樹脂組成物、ステレオコンプレックスポリ乳酸樹脂組成物およびステレオコンプレックスポリ乳酸樹脂組成物の製造方法
KR101507193B1 (ko) 방향족 폴리카보네이트 수지 조성물
WO2011087155A1 (ja) ポリ乳酸組成物
JP2011162651A (ja) ポリ乳酸樹脂組成物
JP5612369B2 (ja) ポリ乳酸組成物
JP2012041400A (ja) 発泡成型品
JP5584803B2 (ja) 熱成形品
JP5769833B2 (ja) ブロー成型品
JP6077262B2 (ja) ポリ乳酸樹脂組成物および射出成形品
JP5506284B2 (ja) 発泡成型体
JP5654104B2 (ja) 押出成型品
JP2011256276A (ja) ポリ乳酸樹脂組成物
JP2012041401A (ja) 熱成型品
JP5612361B2 (ja) ポリ乳酸樹脂組成物
JP2011038038A (ja) 熱成型品
JP5612366B2 (ja) ポリ乳酸組成物
JP5812947B2 (ja) ポリ乳酸の製造方法およびその成形体
JP2011038040A (ja) 押出成型品
JP5346252B2 (ja) ポリ乳酸樹脂成型品
JP2012041399A (ja) 押出成型品
JP5662245B2 (ja) ポリ乳酸樹脂組成物
JP2012041398A (ja) ポリ乳酸樹脂成型品
JP2012041402A (ja) ブロー成型品
JP2011038037A (ja) ブロー成型品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027648.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13380025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011520944

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031448

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010794172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010794172

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1016155

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1016155

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111226