WO2010110033A1 - 非磁性材粒子分散型強磁性材スパッタリングターゲット - Google Patents
非磁性材粒子分散型強磁性材スパッタリングターゲット Download PDFInfo
- Publication number
- WO2010110033A1 WO2010110033A1 PCT/JP2010/053754 JP2010053754W WO2010110033A1 WO 2010110033 A1 WO2010110033 A1 WO 2010110033A1 JP 2010053754 W JP2010053754 W JP 2010053754W WO 2010110033 A1 WO2010110033 A1 WO 2010110033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- target
- mol
- phase
- spherical
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0026—Matrix based on Ni, Co, Cr or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0068—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
- H01F41/183—Sputtering targets therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- the present invention relates to a non-magnetic material particle-dispersed ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular magnetic recording film of a hard disk adopting a perpendicular magnetic recording method, and has a large leakage magnetic flux.
- the present invention relates to a sputtering target capable of obtaining a stable discharge when sputtering with a magnetron sputtering apparatus and having a high density and few particles generated during sputtering.
- a technique for improving magnetic characteristics by finely dispersing a nonmagnetic material in a magnetic thin film has been developed.
- a hard disk recording medium employing a perpendicular magnetic recording system employs a granular film in which the magnetic interaction between the magnetic particles in the magnetic recording film is blocked or weakened by a non-magnetic material. Has improved various characteristics.
- One of the most suitable materials for this granular film is Co—Cr—Pt—SiO 2
- this Co—Cr—Pt—SiO 2 granular film is generally made of a ferromagnetic material mainly composed of Co.
- Non-magnetic material particle-dispersed ferromagnetic material target in which SiO 2 as a non-magnetic material is uniformly finely dispersed in a Co—Cr—Pt alloy substrate.
- Such a non-magnetic material particle-dispersed ferromagnetic sputtering target is manufactured by powder metallurgy because it is impossible to uniformly and finely disperse non-magnetic material particles in the ferromagnetic alloy substrate by the melting method. It is widely known. For example, an alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated. A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
- nonmagnetic material particle-dispersed ferromagnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
- magnetron sputtering apparatuses are widely used in the above-described formation of magnetic recording films because of their high productivity.
- a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
- the inert gas is ionized and a plasma composed of electrons and cations is formed.
- the cations in the plasma collide with the surface of the target (negative electrode)
- atoms constituting the target are knocked out.
- the projected atoms adhere to the opposing substrate surface to form a film.
- the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
- the magnetron sputtering device has a magnet on the back side of the target. Magnetic flux leaking from the magnet to the target surface (leakage magnetic flux) causes electrons to cycloidly move in the vicinity of the target surface, thereby efficiently generating plasma. It is possible to generate.
- the present inventor investigated the influence of the temperature during sintering on the magnetic characteristics of the target in order to improve the leakage magnetic flux of the non-magnetic material particle-dispersed ferromagnetic sputtering target. As a result, it was found that when the sintering temperature is lowered, the leakage flux increases when the target having the same composition and shape is produced using the same mixed powder. However, in this case, since the relative density of the target was less than 98%, a new problem of generation of particles was encountered.
- the present invention improves the leakage magnetic flux, obtains a stable discharge in a magnetron sputtering apparatus, and is a non-magnetic material particle-dispersed ferromagnetic material sputtering target with high density and few particles generated during sputtering. It is an issue to provide.
- the present inventors have conducted intensive research and found that a target having a large leakage magnetic flux can be obtained by adjusting the target structure. Further, the present inventors have found that the density can be sufficiently increased and particles generated during sputtering can be reduced.
- the present invention provides a sputtering target comprising a mixture of an alloy having Cr of 5 mol% or more and 20 mol% or less and the balance of Co and the non-magnetic material particles.
- a non-magnetic material particle-dispersed ferromagnetic sputtering target characterized by comprising:
- the present invention also provides a sputtering target comprising a mixture of an alloy having Cr of 5 mol% to 20 mol%, Pt of 5 mol% to 30 mol%, and the balance of Co and the nonmagnetic material particles.
- the phase (A) in which the non-magnetic material particles are uniformly finely dispersed in the alloy, and the spherical alloy phase in which the volume ratio in the target is 4% or more and 40% or less in the phase (A).
- B A nonmagnetic material particle-dispersed ferromagnetic sputtering target is provided.
- the present invention provides a mixture of an alloy and nonmagnetic material particles in which Cr is 5 mol% to 20 mol%, Pt is 5 mol% to 30 mol%, B is 0.5 mol% to 8 mol%, and the balance is Co.
- the structure of the target has a phase (A) in which the nonmagnetic material particles are uniformly finely dispersed in an alloy, and a volume ratio in the target in the phase (A).
- a nonmagnetic material particle-dispersed ferromagnetic sputtering target characterized by having a spherical alloy phase (B) of 4% or more and 40% or less.
- the spherical alloy phase (B) occupies the entire volume of the target including the phase (A) in which the nonmagnetic material particles as a matrix are uniformly finely dispersed.
- the volume ratio is set to 4% or more and 40% or less because when the volume ratio occupied by the spherical alloy phase (B) is smaller than the above numerical range, the improvement of the leakage magnetic flux is small.
- the volume ratio of the nonmagnetic material particles relatively increases in the phase (A), so that the nonmagnetic material particles can be uniformly and finely dispersed.
- the non-magnetic material particle-dispersed ferromagnetic sputtering target of the present invention has a spherical alloy phase (B) having a volume ratio of 4% to 40%.
- the reason why the alloy composition of the target is limited to the above composition is that it is a material used for a magnetic recording film of a hard disk drive.
- the spherical alloy phase (B) contained in the target structure is concentrated in the vicinity of the center by 25 mol% or more of Cr, and the content of Cr from the center to the outer periphery. It is effective to form an alloy phase having a lower composition.
- the present invention provides such a target. That is, in such a target, the spherical alloy phase (B) has a remarkable non-uniformity between the central portion and the outer peripheral portion. This can be clearly confirmed by measuring the element distribution on the polished surface of the target using an electron probe microanalyzer (EPMA).
- EPMA electron probe microanalyzer
- the distribution state of Cr concentration in the spherical alloy phase (B) varies depending on the sintering temperature and the properties of the raw material powder. As described above, the presence of the spherical alloy phase (B) is a unique structure of the target of the present invention. This shows the structure and is a major factor for increasing the leakage flux of the target of the present application.
- the mechanism for increasing the leakage magnetic flux due to the presence of the spherical alloy phase (B) is not necessarily clear, but the following reasons are presumed.
- the spherical alloy phase (B) there are at least a region having a low Cr concentration and a region having a high Cr concentration, and it is considered that lattice distortion exists in a place where such a concentration variation is large.
- the magnetic moments of Co atoms are in a non-equilibrium state, and therefore a stronger magnetic field is required to align the directions of these magnetic moments.
- the magnetic permeability is lowered, so that the magnetic flux from the magnet of the magnetron sputtering apparatus decreases in the amount passing through the inside of the target and leaks to the target surface. The amount that comes out increases.
- the region with a high Cr concentration in the spherical alloy phase (B) prevents the domain wall from moving as a precipitate.
- the magnetic permeability of the target is lowered and the leakage magnetic flux is increased.
- a method of imparting dislocations in the target by cold rolling and improving leakage magnetic flux is widely known, but the same effect can be obtained by the spherical alloy phase (B). Presumed to have been done.
- the region with a high Cr concentration in the phase (B) blocks the magnetic interaction in the ferromagnetic phase as the parent phase, the presence of the region with a high Cr concentration may affect the leakage magnetic flux. Sex is conceivable.
- the spherical shape used in the present invention represents a solid shape including a true sphere, a pseudo true sphere, an oblate (spheroid), and an artificial oblate.
- the difference between the major axis and the minor axis is 0 to 50%. That is, it can be said that the ratio of the maximum value to the minimum value of the length from the center of gravity to the outer periphery of the sphere is 2 or less. If it is this range, even if there are some unevenness
- the ratio of the maximum value to the minimum value of the center of gravity of the cross section of the phase (B) and the length to the outer periphery may be 2 or less.
- the alloy phase (B) is spherical, vacancies are unlikely to occur at the interface between the phase (A) and the phase (B) during sintering, and the density tends to increase.
- the surface area of the spherical shape is smaller at the same volume, diffusion with surrounding metal powder (Co powder, Pt powder, etc.) is difficult to proceed, and the composition non-uniform phase (B), that is, Cr is near the center.
- An alloy phase having a composition in which the concentration is 25 mol% or more and the Cr content is lower than that of the central portion is easily formed on the outer peripheral portion.
- the diameter of the spherical alloy phase (B) is preferably in the range of 50 to 200 ⁇ m. Since there is an upper limit to the volume ratio of the spherical alloy phase (B) in the entire target, the number of the spherical alloy phases (B) contributing to the improvement of the leakage magnetic flux is reduced when it is larger than the above numerical range. As a result, the improvement of leakage magnetic flux is reduced. If the numerical value is smaller than the above range, diffusion of metal elements proceeds and a spherical alloy phase (B) having a Cr concentration distribution is formed when a high-density target is obtained at a sufficient sintering temperature. It becomes difficult to be done. Therefore, in the present invention, it can be said that it is desirable to produce a spherical alloy phase (B) having a diameter within the above numerical range.
- the non-magnetic material particle-dispersed ferromagnetic sputtering target of the present invention is a material that does not reduce or decompose even when the non-magnetic material is ignited at 900 to 1300 ° C. together with a metal material in a vacuum or in an inert gas atmosphere. It is desirable. For example, it can be selected from non-magnetic materials such as oxide, nitride, carbide, and carbon. This is to avoid the unexpected influence of composition variation due to reduction or decomposition during target production.
- these non-magnetic material particles have a volume ratio in the target of 30% or less.
- the reason why the volume ratio of the nonmagnetic material particles is 30% or less is that when the volume ratio is larger than this, it becomes difficult to uniformly disperse the nonmagnetic material particles in the phase (A), and the number of particles increases during sputtering. This is because another problem occurs.
- the relative density of the nonmagnetic material particle-dispersed ferromagnetic sputtering target of the present invention is desirably 98% or more.
- the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
- the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
- the target thus adjusted becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas proceeds efficiently, and a stable discharge can be obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost. Furthermore, there is an advantage that the amount of particles generated can be reduced by increasing the density.
- tissue image when the target surface of Example 1 is observed with a scanning electron microscope (SEM). It is a figure which shows the element distribution image when the target surface of Example 1 is measured with an electron beam probe microanalyzer (EPMA). It is a structure
- the non-magnetic material particle-dispersed ferromagnetic sputtering target of the present invention first, powders of Co, Cr, Pt, and B elements to be produced or alloy powders of these metals are prepared. These powders desirably have a maximum particle size of 20 ⁇ m or less. These metal powders and one or more oxide powders selected from Cr, Ta, Si, Ti, Zr, Al, Nb, and B as nonmagnetic materials are pulverized using a known technique such as a ball mill. Mix as well. In addition to the above oxide powder, nitride powder, carbide powder, or carbon powder may be used as the nonmagnetic material powder. However, it is desirable to use a nonmagnetic material powder having a maximum particle size of 5 ⁇ m or less.
- a Co—Cr spherical powder having a diameter in the range of 50 to 200 ⁇ m is prepared and mixed with the above mixed powder with a mixer.
- the Co—Cr spherical powder used here can be obtained by sieving a powder produced by the gas atomization method.
- the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer.
- the non-magnetic material particle-dispersed ferromagnetic sputtering target of the present invention is produced by molding and sintering the powder thus obtained using a vacuum hot press machine and cutting it into a desired shape.
- the Co—Cr spherical powder described above corresponds to the spherical alloy phase (B) observed in the target structure.
- the composition of the Co—Cr spherical powder is preferably such that the Cr content is 25 mol% or more and 70 mol% or less.
- the reason for limiting the composition of the Co—Cr spherical powder to the above range is that if the Cr content is less than the above range, it becomes difficult to form a Cr-concentrated region in the spherical alloy phase (B), and the leakage magnetic flux This is because improvement cannot be expected.
- the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
- the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 900-1300 ° C.
- Example 1 Comparative Example 1
- a Co powder having an average particle diameter of 3 ⁇ m, a SiO 2 powder having an average particle diameter of 1 ⁇ m, and a Co—Cr spherical powder having a diameter in the range of 50 to 150 ⁇ m and containing 60 mol% of Cr were prepared as raw material powders.
- % Weight ratio %
- Co powder and SiO 2 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
- This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180.00 mm and a thickness of 7.00 mm.
- the leakage magnetic flux was measured according to ASTM F2086-01 (Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2). Leakage magnetic flux measured by fixing the center of the target and rotating it at 0 degree, 30 degree, 60 degree, 90 degree, 120 degree is divided by the value of the reference field defined by ASTM, and multiplied by 100 to get a percentage. Expressed in And the result averaged about these 5 points
- Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, and SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders. These powders so that the target composition is 77.5Co-14.5Cr-8SiO 2 (mol %), Co powder 78.73wt%, Cr powder 12.99wt%, SiO 2 powder 8.28Wt% weight ratio Weighed with. These powders were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
- this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180.00 mm and a thickness of 7.00 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 1.
- Example 1 As shown in Table 1, it was confirmed that the average leakage magnetic flux of the target of Example 1 was 63%, which was improved more than 48% of Comparative Example 1. In Example 1, the relative density was 99.3%, and a high-density target exceeding 98% was obtained.
- FIG. 1 shows a structure image when the target polished surface of Example 1 is observed with a scanning electron microscope (SEM), and FIG. 2 shows an element distribution image when a part of a spherical alloy phase is measured with EPMA.
- SEM scanning electron microscope
- FIG. 2 shows an element distribution image when a part of a spherical alloy phase is measured with EPMA. Show.
- the tissue image in FIG. 1 very characteristic of the above first embodiment, in a matrix of SiO 2 particles are finely dispersed, the alloy phase of major spherical without the SiO 2 particles are dispersed It is.
- a portion that appears white in the element distribution image of EPMA is a region having a high concentration of the element.
- the concentration of Co and Cr is higher in the spherical alloy phase portion, and in particular, the concentration of Cr is higher (whiter) from the peripheral portion toward the central portion.
- the concentration of Cr is higher (whiter) from the peripheral portion toward the central portion.
- Example 2 comparative example 2
- Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, Co having a diameter in the range of 50 to 150 ⁇ m and containing 40 mol% of Cr. -Cr spherical powder was prepared. These powders as the composition of the target is 60Co-16Cr-16Pt-8SiO 2 (mol%), Co powder 26.62wt%, Pt powder 39.16wt%, SiO 2 powder 6.03wt%, Co-Cr Each spherical powder was weighed at a weight ratio of 28.19 wt%.
- Co powder, Pt powder, and SiO 2 powder were encapsulated in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 2.
- Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, Pt powder having an average particle size of 2 ⁇ m, and SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders.
- Each was weighed at a weight ratio of 03 wt%.
- this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1150 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 2.
- Example 2 As shown in Table 2, it was confirmed that the average leakage magnetic flux of the target of Example 2 was 70%, which was improved from 63% of Comparative Example 2. In Example 2, the relative density was 98.3%, and a high-density target exceeding 98% was obtained.
- FIG. 4 shows a tissue image when the target polished surface of Example 2 is observed with an SEM
- FIG. 5 shows an element distribution image when measured with an EPMA.
- tissue image of FIG. 4 very characteristic of the above second embodiment, in a matrix of SiO 2 particles are finely dispersed, the alloy phase of major spherical without the SiO 2 particles are dispersed It is.
- a portion that appears white in the EPMA element distribution image is a region having a high concentration of the element. That is, the concentration of Co and Cr is higher in the spherical alloy phase portion, and in particular, the concentration of Cr is higher (whiter) from the peripheral portion toward the central portion.
- Example 3 Comparative Example 3
- the raw material powder was Co powder having an average particle size of 3 ⁇ m, Pt powder having an average particle size of 2 ⁇ m, B powder having an average particle size of 10 ⁇ m, TiO 2 powder having an average particle size of 0.5 ⁇ m, and a diameter of 100 to 200 ⁇ m.
- a Co—Cr spherical powder in the range and containing 40 mol% of Cr was prepared. In these powders, Co powder 22.89 wt%, Pt powder 39.99 wt%, B powder 0.4 wt so that the composition of the target is 56 Co-16.5Cr-16.5Pt-3B-8TiO 2 (mol%). %, TiO 2 powder 7.94 wt%, and Co—Cr spherical powder 28.78 wt%.
- Co powder, Pt powder, B powder, and TiO 2 powder were sealed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- the mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 3.
- the raw material powder was Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, Pt powder having an average particle size of 2 ⁇ m, B powder having an average particle size of 10 ⁇ m, and TiO 2 having an average particle size of 0.5 ⁇ m. Powder was prepared. These powders were prepared so that the target composition was 56Co-16.5Cr-16.5Pt-3B-8TiO 2 (mol%), Co powder 41 wt%, Cr powder 10.67 wt%, Pt powder 39.99 wt%, B The powder was weighed at a weight ratio of 0.4 wt% and TiO 2 powder 7.94 wt%.
- Example 3 As shown in Table 3, it was confirmed that the average leakage magnetic flux of the target of Example 3 was 72%, which was improved from 64% of Comparative Example 3. In Example 3, the relative density was 99.2%, and a high-density target exceeding 98% was obtained.
- FIG. 7 shows a tissue image when the target polished surface of Example 3 is observed with an SEM
- FIG. 8 shows an element distribution image when measured with an EPMA.
- tissue image in FIG 7 very characteristic of the above third embodiment, in a matrix of TiO 2 particles are finely dispersed, the alloy phase of major spherical free of TiO 2 particles are dispersed It is.
- a portion that appears white in the element distribution image of EPMA is a region having a high concentration of the element. That is, the concentration of Co and Cr is higher in the spherical alloy phase portion, and in particular, the concentration of Cr is higher (whiter) from the peripheral portion toward the central portion.
- Example 4 comparative example 4
- Co powder having an average particle diameter of 3 ⁇ m, B 2 O 3 powder having an average particle diameter of 3 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, a diameter in the range of 75 to 150 ⁇ m, and Cr of 40 mol% Co-Cr spherical powder containing was prepared. Co powder 56.45 wt%, B 2 O 3 powder 2.39 wt%, SiO 2 so that the composition of the target is 77.5Co-14.5Cr-2B 2 O 3 -6SiO 2 (mol%). The two powders were weighed at a weight ratio of 6.19 wt% and Co-Cr spherical powder 34.97 wt%.
- Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, B 2 O 3 powder having an average particle diameter of 3 ⁇ m, and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders.
- Each was weighed at a weight ratio of 2.39 wt% and SiO 2 powder 6.19 wt%.
- Example 4 As shown in Table 4, the average leakage magnetic flux of the target of Example 4 was 68%, which was confirmed to be significantly improved from 53% of Comparative Example 4. In Example 4, the relative density was 99.7%, and a high-density target exceeding 98% was obtained.
- Example 4 When the target polished surface of Example 4 was observed with an SEM, a large spherical alloy phase containing no B 2 O 3 particles and SiO 2 particles in a matrix in which B 2 O 3 particles and SiO 2 particles were finely dispersed. It was confirmed that was dispersed. In addition, when the element distribution image was acquired using EPMA, the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr became higher from the peripheral portion toward the central portion. It was confirmed that
- Example 5 Comparative Example 5
- Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, TiO 2 powder having an average particle diameter of 0.5 ⁇ m, Cr 2 O 3 powder having an average particle diameter of 1 ⁇ m, and a diameter of 75 As a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, TiO 2 powder having an average particle diameter of 0.5 ⁇ m, Cr 2 O 3 powder having an average particle diameter of 1 ⁇ m, and a diameter of 75.
- a Co—Cr spherical powder in the range of ⁇ 150 ⁇ m and containing 40 mol% of Cr was prepared.
- Co powder, Pt powder, TiO 2 powder, and Cr 2 O 3 powder were enclosed in a 10-liter ball mill pot together with zirconia balls serving as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- This mixed powder was filled into a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 5.
- Co powder with an average particle size of 3 ⁇ m, Cr powder with an average particle size of 5 ⁇ m, Pt powder with an average particle size of 2 ⁇ m, TiO 2 powder with an average particle size of 0.5 ⁇ m, Cr with an average particle size of 1 ⁇ m 2 O 3 powder was prepared. These powders were made to have a target composition of 58.7Co-15.65Cr-15.65Pt-7TiO 2 -3Cr 2 O 3 (mol%), Co powder 41.47 wt%, Cr powder 9.76 wt%, Pt The powder was weighed at a weight ratio of 36.6 wt%, TiO 2 powder 6.7 wt%, and Cr 2 O 3 powder 5.47 wt%.
- Example 5 As shown in Table 5, it was confirmed that the average leakage magnetic flux of the target of Example 5 was 65%, which was improved more than 60% of Comparative Example 5. In Example 5, the relative density was 98.5%, and a high-density target exceeding 98% was obtained.
- Example 5 When the target polished surface of Example 5 was observed by SEM, a large spherical alloy phase not containing TiO 2 particles and Cr 2 O 3 particles in a matrix in which TiO 2 particles and Cr 2 O 3 particles were finely dispersed. It was confirmed that was dispersed. In addition, when the element distribution image was acquired using EPMA, the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr became higher from the peripheral portion toward the central portion. It was confirmed that
- Example 6 Comparative Example 6
- Two powders, Co—Cr spherical powder having a diameter in the range of 75 to 150 ⁇ m and containing 40 mol% of Cr were prepared.
- Co powder, Pt powder, B powder, TiO 2 powder, and SiO 2 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- the mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 6.
- the raw material powder was Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, Pt powder having an average particle size of 2 ⁇ m, B powder having an average particle size of 10 ⁇ m, and TiO 2 having an average particle size of 0.5 ⁇ m.
- a powder and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared.
- These powders were made to have a target composition of 58Co-16Cr-16Pt-2B-3TiO 2 -5SiO 2 (mol%), Co powder 43.08 wt%, Cr powder 10.49 wt%, Pt powder 39.35 wt%, B powder 0.27 wt%, TiO 2 powder 3.02 wt%, SiO 2 powder 3.79 wt% were weighed respectively.
- Example 6 As shown in Table 6, it was confirmed that the average leakage magnetic flux of the target of Example 6 was 70%, which was improved from 63% of Comparative Example 6. In Example 6, the relative density was 99.1%, and a high-density target exceeding 98% was obtained.
- Target polished surface of Example 6 was observed by SEM, in the matrix of TiO 2 particles and SiO 2 particles are finely dispersed, alloy phase of a large spherical free of TiO 2 particles and SiO 2 particles are dispersed It was confirmed.
- the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr became higher from the peripheral portion toward the central portion. It was confirmed that
- Example 7 Comparative Example 7
- the raw material powder was Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, C powder having an average particle diameter of 1 ⁇ m, Co—with a diameter in the range of 75 to 150 ⁇ m and containing 40 mol% of Cr. Cr spherical powder was prepared. Co powder 26.66 wt%, Pt powder 39.19 wt%, C powder 5.95 wt% so that the composition of the target is 45.66Co-12.17Cr-12.17Pt-30C (mol%). The Co—Cr spherical powder was weighed at a weight ratio of 28.2 wt%.
- Co powder, Pt powder, and C powder were encapsulated in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- the mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1300 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 7.
- Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, Pt powder having an average particle size of 2 ⁇ m, and C powder having an average particle size of 1 ⁇ m were prepared as raw material powders.
- C powder was weighed at a weight ratio of 5.95 wt%.
- Example 7 As shown in Table 7, the average leakage magnetic flux of the target of Example 7 was 67%, which was confirmed to be significantly improved from 61% of Comparative Example 7. In Example 7, the relative density was 98.0%, and a high-density target was obtained.
- Example 7 When the target polished surface of Example 7 was observed with an SEM, it was confirmed that a large spherical alloy phase not containing C particles was dispersed in a matrix in which C particles were finely dispersed. In addition, when the element distribution image was acquired using EPMA, the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr became higher from the peripheral portion toward the central portion. It was confirmed that
- Example 8 comparative example 8
- the raw material powder was Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, SiC powder having an average particle diameter of 2 ⁇ m, Co—with a diameter in the range of 75 to 150 ⁇ m and containing 40 mol% of Cr.
- Cr spherical powder was prepared. Co powder 25.9 wt%, Pt powder 38.1 wt%, SiC powder 8.58 wt% so that the composition of these powders was 54.78Co-14.61Cr-14.61Pt-16SiC (mol%).
- the Co—Cr spherical powder was weighed at a weight ratio of 27.42 wt%.
- Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, and SiC powder having an average particle diameter of 2 ⁇ m were prepared as raw material powders. These powders were coated with 43.16 wt% Co powder, 10.16 wt% Cr powder, 38.10 wt% Pt powder, and 54.78 Co-14.61 Cr-14.61 Pt-16 SiC (mol%). Each of the SiC powders was weighed at a weight ratio of 8.58 wt%.
- Example 8 As shown in Table 8, it was confirmed that the average leakage magnetic flux of the target of Example 8 was 66%, which was improved from 58% of Comparative Example 8. In Example 8, the relative density was 98.5%, and a high-density target exceeding 98% was obtained.
- Example 8 When the target polished surface of Example 8 was observed by SEM, it was confirmed that a large spherical alloy phase not containing SiC particles was dispersed in a matrix in which SiC particles were finely dispersed. In addition, when the element distribution image was acquired using EPMA, the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr became higher from the peripheral portion toward the central portion. It was confirmed that
- Example 9 Comparative Example 9
- the raw material powder was Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, TiN powder having an average particle diameter of 5 ⁇ m, Co—with a diameter in the range of 75 to 150 ⁇ m and containing 40 mol% of Cr.
- Cr spherical powder was prepared. Co powder 24.99 wt%, Pt powder 36.74 wt%, TiN powder 11.83 wt% so that the composition of the target is 55.44Co-14.78Cr-14.78Pt-15TiN (mol%).
- the Co—Cr spherical powder was weighed at a weight ratio of 26.44 wt%.
- Co powder, Pt powder, and TiN powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Cr spherical powder were mixed for 10 minutes by a planetary motion type mixer having a ball capacity of about 7 liters.
- This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere at a temperature of 1000 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 165.10 mm and a thickness of 6.35 mm with a lathe, and the average leakage magnetic flux was measured. The results are shown in Table 9.
- a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, a Pt powder having an average particle diameter of 2 ⁇ m, and a TiN powder having an average particle diameter of 5 ⁇ m were prepared as raw material powders. These powders were made to have a target composition of 55.44Co-14.78Cr-14.78Pt-15TiN (mol%), 41.64 wt% Co powder, 9.79 wt% Cr powder, 36.74 wt% Pt powder, The TiN powder was weighed at a weight ratio of 11.83 wt%.
- Example 9 As shown in Table 9, it was confirmed that the average leakage magnetic flux of the target of Example 9 was 63%, which was significantly improved from 57% of Comparative Example 9. In Example 9, the relative density was 98.5%, and a high-density target exceeding 98% was obtained.
- Example 9 When the target polished surface of Example 9 was observed by SEM, it was confirmed that a large spherical alloy phase not containing TiN particles was dispersed in a matrix in which TiN particles were finely dispersed. Further, when an element distribution image was acquired using EPMA, the concentration of Co and Cr was high in the spherical alloy phase portion, and in particular, the concentration of Cr was higher from the peripheral portion toward the central portion. It was confirmed.
- the present invention relates to the structure of a non-magnetic material particle-dispersed ferromagnetic sputtering target having a phase (A) in which non-magnetic material particles are uniformly finely dispersed and the volume occupied in the target in the phase (A). Dispersion of non-magnetic material particles by a magnetron sputtering device by adjusting the magnetic flux so that a spherical alloy phase (B) having a ratio of 4% or more and 40% or less is present to increase the leakage magnetic flux and further increase the density of the target. Stable and highly productive sputtering of the type ferromagnetic sputtering target can be realized.
- Non-magnetic material particle-dispersed ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular magnetic recording film of a hard disk employing a perpendicular magnetic recording method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
このグラニュラー膜に最適な材料の一つとしてCo-Cr-Pt-SiO2が知られており、このCo-Cr-Pt-SiO2のグラニュラー膜は、一般に、Coを主成分とした強磁性のCo-Cr-Pt合金の素地中に非磁性材料であるSiO2が均一に微細分散した非磁性材粒子分散型強磁性材ターゲットをスパッタリングして作製される。
例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
また焼結後に密度の高い素材が得られれば、スパッタ時に問題となるパーティクルの発生量が少ないことが一般的に知られている。
スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
この問題を解決するには、ターゲット中の非磁性材粒子の体積比率を増やすことや、Coの含有割合を減らすことが考えられる。しかし、この場合、所望のグラニュラー膜を得ることができないため本質的な解決策ではない。
また、ターゲットの厚みを薄くすることで漏洩磁束を向上させることは可能だが、この場合ターゲットのライフが短くなり、頻繁にターゲットを交換する必要が生じるのでコストアップの要因になる。
しかし、この場合、ターゲットの相対密度が98%を下回ってしまうため、パーティクルの発生という新たな問題に直面した。
本発明は上記問題を鑑みて、漏洩磁束を向上させて、マグネトロンスパッタ装置で安定した放電が得られ、かつ、高密度でスパッタ時に発生するパーティクルの少ない非磁性材粒子分散型強磁性材スパッタリングターゲットを提供することを課題とする。
また、上記数値範囲より大きいときには、ターゲットの組成にもよるが、該相(A)中で、相対的に非磁性材粒子の体積比率が増えるので、非磁性材粒子を均一に微細分散させることが難しくなり、スパッタ時にパーティクルが増加するといった、別の問題が発生するからである。
以上から、本願発明の非磁性材粒子分散型強磁性材スパッタリングターゲットは、体積比率で4%以上40%以下の球形の合金相(B)を有するものである。なおターゲットの合金組成を上記組成に限定するのは、ハードディスクドライブの磁気記録膜に用いられる材料であることを考慮したためである。
すなわち、このようなターゲットでは、球形の合金相(B)は、中心部と外周部にかけて顕著な不均一性を有している。これは電子線プローブマイクロアナライザー(EPMA)を用いてターゲットの研磨面の元素分布を測定すると明確に確認できる。
球形の合金相(B)におけるCr濃度の分布状態は、焼結温度や原料粉の性状によって変化するが、上記の通り、球形の合金相(B)の存在は、本願発明ターゲットの独特の組織構造を示すものであり、本願ターゲットの漏洩磁束を高める大きな要因となっている。
第一に、球形の合金相(B)には、少なからずCrの濃度が低い領域と高い領域が存在し、このような濃度変動の大きな場所では格子歪みが存在すると考えられる。
格子歪みがあると、Co原子が持つ磁気モーメントは互いに非平衡状態をとるため、これらの磁気モーメントの向きを揃えるためには、より強力な磁場が必要となる。
従って、金属元素が均一に拡散し、格子歪みのない状態と比較すると、透磁率が低くなるため、マグネトロンスパッタ装置の磁石からの磁束は、ターゲット内部を通過する量が減って、ターゲット表面に漏れ出てくる量が増す。
圧延加工可能な強磁性材ターゲットでは、冷間圧延でターゲット中に転位を付与し、漏洩磁束を向上させる方法が広く知られているが、それと同様の効果が球形の合金相(B)によってもたらされていると推測される。
さらに該相(B)中のCr濃度の高い領域は、母相である強磁性相内の磁気的相互作用を遮断するので、Cr濃度の高い領域の存在が漏洩磁束に影響を与えている可能性が考えられる。
このように、合金相(B)が球形であると、焼結時に相(A)と相(B)の境界面に空孔が生じにくく、密度が上がり易い。また、同一体積では、球形の方が表面積が小さくなるので、周囲の金属粉(Co粉、Pt粉など)との拡散が進みにくく、組成不均一な相(B)、すなわち中心付近にCrが25mol%以上濃縮し、外周部にかけてCrの含有量が中心部より低くなる組成の合金相が容易に形成されるようになる。
また、上記数値範囲より小さい場合には、十分な焼結温度で高密度のターゲットを得ようとすると、金属元素同士の拡散が進み、Crの濃度分布をもつ球形の合金相(B)が形成され難くなる。従って、本発明においては、上記数値範囲内の直径を有する球形の合金相(B)が生ずるようにするのが望ましいと言える。
例えば、酸化物、窒化物、炭化物、炭素などの非磁性材料から選択することができる。これは、ターゲット製造時に還元または分解することにより、組成の変動という不測の影響を及ぼすことを避けるためである。
ここでの相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。
計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
式:計算密度=Σ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
さらに、高密度化により、パーティクルの発生量を低減させることができるというメリットもある。
これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。そして、これらの金属粉末と、非磁性材としてCr、Ta、Si、Ti、Zr、Al、Nb、Bから選択した1種以上の酸化物粉末とを、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。
非磁性材粉末としては上記の酸化物粉末のほかに、窒化物粉末や炭化物粉末や炭素粉末を用いても良いが、非磁性材粉末は最大粒径が5μm以下のものを用いることが望ましい。
このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の非磁性材粒子分散型強磁性材スパッタリングターゲットが作製される。
Co-Cr球形粉末の組成を上記範囲に限定する理由は、Crの含有量が上記範囲より少ないと、球形の合金相(B)中にCrが濃縮された領域が形成されにくくなり、漏洩磁束の向上が期待できないためである。また、Crの含有量が上記範囲より多いと、焼結の条件にもよるが、球形の合金相(B)の内部にカーケンダルボイドと推測される空洞が生じ、ターゲットの密度低下を引き起こす。
Co-Cr球形粉末は上記組成範囲内のものを用いるが、焼結後のターゲット中の体積比率が4%以上40%以下となるように計算して秤量する。
実施例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径1μmのSiO2粉末、直径が50~150μmの範囲にありCrを60mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が77.5Co-14.5Cr-8SiO2(mol%)となるように、Co粉末68.91wt%、SiO2粉末8.28wt%、Co-Cr球形粉末22.81wt%の重量比率で秤量した。次にCo粉末とSiO2粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Cr球形粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
漏洩磁束の測定はASTM F2086-01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0度、30度、60度、90度、120度と回転させて測定した漏洩磁束を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束(%)として表1に記載した。
そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180.00mm、厚さが7.00mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表1に示す。
図2に示すように、EPMAの元素分布画像で白く見えている箇所が、当該元素の濃度の高い領域である。すなわち、球形の合金相の部分においてCoとCrの濃度が高くなっており、特にCrは周辺部から中心部に向かって、より濃度が高く(白っぽく)なっている。EPMAの測定結果から球形の合金相では、Crが25mol%以上濃縮されたCrリッチ相が中心付近に存在し、外周に近づくにつれてCrの濃度が低くなっていることが確認された。
一方、同図において、球形の合金相の領域では、SiとOについては黒くなっており、この合金相中に殆ど存在していないことが分かる。
実施例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径1μmのSiO2粉末、直径が50~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。
これらの粉末をターゲットの組成が60Co-16Cr-16Pt-8SiO2(mol%)となるように、Co粉末26.62wt%、Pt粉末39.16wt%、SiO2粉末6.03wt%、Co-Cr球形粉末28.19wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1150°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を、表2に示す。
これらの粉末をターゲット組成が60Co-16Cr-16Pt-8SiO2(mol%)となるように、Co粉末44.37wt%、Cr粉末10.44wt%、Pt粉末39.16wt%、SiO2粉末6.03wt%の重量比率でそれぞれ秤量した。
そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
図4に示すように、EPMAの元素分布画像で白く見えている箇所が、当該元素の濃度の高い領域である。すなわち、球形の合金相の部分においてCoとCrの濃度が高くなっており、特にCrは周辺部から中心部に向かって、より濃度が高く(白っぽく)なっている。EPMAの測定結果から球形の合金相では、Crが25mol%以上濃縮されたCrリッチ相が中心付近に存在し、外周に近づくにつれてCrの濃度が低くなっていることが確認された。
一方、図5において、Ptは球形の合金相の周縁部に存在するが中心部には殆ど見られない。また、図5において、球形の合金相の領域では、SiとOについては黒くなっており、この合金相中に殆ど存在していないことが分かる。
実施例3では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径10μmのB粉末、平均粒径0.5μmのTiO2粉末、直径が100~200μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。
これらの粉末をターゲットの組成が56Co-16.5Cr-16.5Pt-3B-8TiO2(mol%)となるように、Co粉末22.89wt%、Pt粉末39.99wt%、B粉末0.4wt%、TiO2粉末7.94wt%、Co-Cr球形粉末28.78wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表3に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表3に示す。
図8に示すように、EPMAの元素分布画像で白く見えている箇所が、当該元素の濃度の高い領域である。すなわち、球形の合金相の部分においてCoとCrの濃度が高くなっており、特にCrは周辺部から中心部に向かって、より濃度が高く(白っぽく)なっている。EPMAの測定結果から球形の合金相では、Crが25mol%以上濃縮されたCrリッチ相が中心付近に存在し、外周に近づくにつれてCrの濃度が低くなっていることが確認された。
一方、図8において、Ptは球形の合金相の周縁部に存在するが中心部には殆ど見られない。また、図8において、球形の合金相の領域では、Bは白く見えるところは極めて少なく、またTiとOについては黒くなっており、これらはこの合金相中に殆ど存在していないことが分かる。
実施例4では、原料粉末として、平均粒径3μmのCo粉末、平均粒径3μmのB2O3粉末、平均粒径1μmのSiO2粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が77.5Co-14.5Cr-2B2O3-6SiO2(mol%)となるように、Co粉末56.45wt%、B2O3粉末2.39wt%、SiO2粉末6.19wt%、Co-Cr球形粉末34.97wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180.00mm、厚さが7.00mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表4に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が180.00mm、厚さが7.00mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表4に示す。
実施例5では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径0.5μmのTiO2粉末、平均粒径1μmのCr2O3粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が58.7Co-15.65Cr-15.65Pt-7TiO2-3Cr2O3(mol%)となるように、Co粉末24.89wt%、Pt粉末36.6wt%、TiO2粉末6.7wt%、Cr2O3粉末5.47wt%、Co-Cr球形粉末26.34wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表5に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表5に示す。
実施例6では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径10μmのB粉末、平均粒径0.5μmのTiO2粉末、平均粒径1μmのSiO2粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が58Co-16Cr-16Pt-2B-3TiO2-5SiO2(mol%)となるように、Co粉末25.26wt%、Pt粉末39.35wt%、B粉末0.27wt%、TiO2粉末3.02wt%、SiO2粉末3.79wt%、Co-Cr球形粉末28.31wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表6に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表6に示す。
実施例7では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径1μmのC粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が45.66Co-12.17Cr-12.17Pt-30C(mol%)となるように、Co粉末26.66wt%、Pt粉末39.19wt%、C粉末5.95wt%、Co-Cr球形粉末28.2wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1300°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表7に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1300°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表7に示す。
実施例8では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径2μmのSiC粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が54.78Co-14.61Cr-14.61Pt-16SiC(mol%)となるように、Co粉末25.9wt%、Pt粉末38.1wt%、SiC粉末8.58wt%、Co-Cr球形粉末27.42wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表8に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。さらに、これを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表8に示す。
実施例9では、原料粉末として、平均粒径3μmのCo粉末、平均粒径2μmのPt粉末、平均粒径5μmのTiN粉末、直径が75~150μmの範囲にありCrを40mol%含有するCo-Cr球形粉末を用意した。これらの粉末をターゲットの組成が55.44Co-14.78Cr-14.78Pt-15TiN(mol%)となるように、Co粉末24.99wt%、Pt粉末36.74wt%、TiN粉末11.83wt%、Co-Cr球形粉末26.44wt%の重量比率でそれぞれ秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表9に示す。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1000°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。
さらにこれを旋盤で直径が165.10mm、厚さが6.35mmの円盤状のターゲットへ加工し、平均漏洩磁束を測定した。この結果を表9に示す。
磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクのグラニュラー磁気記録膜の成膜に使用される非磁性材粒子分散型強磁性材スパッタリングターゲットとして有用である。
Claims (8)
- Crが5mol%以上20mol%以下、残余がCoである合金と非磁性材粒子との混合体からなるスパッタリングターゲットにおいて、このターゲットの組織が、合金の中に前記非磁性材粒子が均一に微細分散した相(A)と、前記相(A)の中に、ターゲット中に占める体積の比率が4%以上40%以下の球形の合金相(B)とを有していることを特徴とする非磁性材粒子分散型強磁性材スパッタリングターゲット。
- Crが5mol%以上20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである合金と非磁性材粒子との混合体からなるスパッタリングターゲットにおいて、このターゲットの組織が、合金の中に前記非磁性材粒子が均一に微細分散した相(A)と、前記相(A)の中に、ターゲット中に占める体積の比率が4%以上40%以下の球形の合金相(B)とを有していることを特徴とする非磁性材粒子分散型強磁性材スパッタリングターゲット。
- Crが5mol%以上20mol%以下、Ptが5mol%以上30mol%以下、Bが0.5mol%以上8mol%以下、残余がCoである合金と非磁性材粒子との混合体からなるスパッタリングターゲットにおいて、このターゲットの組織が、合金の中に前記非磁性材粒子が均一に微細分散した相(A)と、前記相(A)の中に、ターゲット中に占める体積の比率が4%以上40%以下の球形の合金相(B)とを有していることを特徴とする非磁性材粒子分散型強磁性材スパッタリングターゲット。
- 球形の合金相(B)は、中心部がCr25mol%以上であって、中心部から外周部にかけてCrの含有量が中心部より低くなる組成の合金相を形成していることを特徴とする請求項1~3のいずれか一項に記載の非磁性材粒子分散型強磁性材スパッタリングターゲット。
- 球形の合金相(B)の直径が、50~200μmの範囲にあることを特徴とする請求項1~4のいずれか一項に記載の非磁性材粒子分散型強磁性材スパッタリングターゲット。
- 非磁性材料が、Cr、Ta、Si、Ti、Zr、Al、Nb、Bからなる酸化物、窒化物若しくは炭化物又は炭素から選択した1成分以上含むことを特徴とする請求項1~5のいずれか一項に記載の非磁性材粒子分散型強磁性材スパッタリングターゲット。
- ターゲット中で、非磁性材料の体積比率が30%以下であることを特徴とする請求項6に記載の非磁性材粒子分散型強磁性材スパッタリングターゲット。
- 相対密度が98%以上であることを特徴とする請求項1~7のいずれか一項に記載の非磁性材粒子分散型強磁性材スパッタリングターゲット。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800096112A CN102333905B (zh) | 2009-03-27 | 2010-03-08 | 非磁性材料粒子分散型强磁性材料溅射靶 |
JP2010537196A JP4673448B2 (ja) | 2009-03-27 | 2010-03-08 | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
US13/131,124 US9103023B2 (en) | 2009-03-27 | 2010-03-08 | Nonmagnetic material particle-dispersed ferromagnetic material sputtering target |
SG2011047073A SG172790A1 (en) | 2009-03-27 | 2010-03-08 | Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type |
SG2011045358A SG172295A1 (en) | 2009-03-27 | 2010-03-08 | Nonmagnetic material particle-dispersed ferromagnetic material sputtering target |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-078243 | 2009-03-27 | ||
JP2009078243 | 2009-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110033A1 true WO2010110033A1 (ja) | 2010-09-30 |
Family
ID=42780726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053754 WO2010110033A1 (ja) | 2009-03-27 | 2010-03-08 | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
Country Status (7)
Country | Link |
---|---|
US (1) | US9103023B2 (ja) |
JP (1) | JP4673448B2 (ja) |
CN (1) | CN102333905B (ja) |
MY (1) | MY150804A (ja) |
SG (2) | SG172790A1 (ja) |
TW (1) | TWI482867B (ja) |
WO (1) | WO2010110033A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4673453B1 (ja) * | 2010-01-21 | 2011-04-20 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2011089760A1 (ja) * | 2010-01-21 | 2011-07-28 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2012077665A1 (ja) * | 2010-12-09 | 2012-06-14 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2012086335A1 (ja) * | 2010-12-20 | 2012-06-28 | Jx日鉱日石金属株式会社 | C粒子が分散したFe-Pt系スパッタリングターゲット |
WO2012133166A1 (ja) * | 2011-03-30 | 2012-10-04 | Jx日鉱日石金属株式会社 | 磁気記録膜用スパッタリングターゲット |
CN104105812A (zh) * | 2011-08-23 | 2014-10-15 | 吉坤日矿日石金属株式会社 | 粉粒产生少的强磁性材料溅射靶 |
JP2015155573A (ja) * | 2014-01-17 | 2015-08-27 | Jx日鉱日石金属株式会社 | 磁性記録媒体用スパッタリングターゲット |
JP5973056B2 (ja) * | 2013-03-11 | 2016-08-23 | Jx金属株式会社 | 磁気記録膜形成用スパッタリングターゲットの製造方法 |
JPWO2014125897A1 (ja) * | 2013-02-15 | 2017-02-02 | Jx金属株式会社 | Co又はFeを含有するスパッタリングターゲット |
WO2021085410A1 (ja) * | 2019-11-01 | 2021-05-06 | 田中貴金属工業株式会社 | 熱アシスト磁気記録媒体用スパッタリングターゲット |
WO2023079856A1 (ja) * | 2021-11-05 | 2023-05-11 | Jx金属株式会社 | スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY145087A (en) * | 2008-03-28 | 2011-12-30 | Jx Nippon Mining & Metals Corp | Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material |
WO2009123055A1 (ja) * | 2008-04-03 | 2009-10-08 | 日鉱金属株式会社 | パーティクルの発生の少ないスパッタリングターゲット |
JP2011021254A (ja) * | 2009-07-16 | 2011-02-03 | Solar Applied Materials Technology Corp | ホウ素を含むスパッタリングターゲットの製造方法、薄膜及び磁気記録媒体 |
WO2011016365A1 (ja) | 2009-08-06 | 2011-02-10 | Jx日鉱日石金属株式会社 | 無機物粒子分散型スパッタリングターゲット |
CN102652184B (zh) | 2009-12-11 | 2014-08-06 | 吉坤日矿日石金属株式会社 | 磁性材料溅射靶 |
US8679268B2 (en) | 2010-07-20 | 2014-03-25 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
US9181617B2 (en) | 2010-07-20 | 2015-11-10 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
MY165512A (en) | 2010-07-29 | 2018-03-28 | Jx Nippon Mining & Metals Corp | Sputtering target for magnetic recording film, and process for producing same |
JP4871406B1 (ja) * | 2010-08-06 | 2012-02-08 | 田中貴金属工業株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
JP5226155B2 (ja) | 2010-08-31 | 2013-07-03 | Jx日鉱日石金属株式会社 | Fe−Pt系強磁性材スパッタリングターゲット |
JP5009447B1 (ja) | 2010-12-21 | 2012-08-22 | Jx日鉱日石金属株式会社 | 磁気記録膜用スパッタリングターゲット及びその製造方法 |
JP5748639B2 (ja) * | 2011-11-17 | 2015-07-15 | 田中貴金属工業株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
JP5863411B2 (ja) * | 2011-11-17 | 2016-02-16 | 田中貴金属工業株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
WO2013108520A1 (ja) | 2012-01-18 | 2013-07-25 | Jx日鉱日石金属株式会社 | Co-Cr-Pt系スパッタリングターゲット及びその製造方法 |
US9761422B2 (en) | 2012-02-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method for same |
CN104126026B (zh) * | 2012-02-23 | 2016-03-23 | 吉坤日矿日石金属株式会社 | 含有铬氧化物的强磁性材料溅射靶 |
MY192950A (en) | 2012-03-09 | 2022-09-19 | Jx Nippon Mining & Metals Corp | Sputtering target for magnetic recording medium, and process for producing same |
WO2013190943A1 (ja) | 2012-06-18 | 2013-12-27 | Jx日鉱日石金属株式会社 | 磁気記録膜用スパッタリングターゲット |
JP5768029B2 (ja) * | 2012-10-05 | 2015-08-26 | 田中貴金属工業株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
CN105026610B (zh) * | 2013-03-01 | 2017-10-24 | 田中贵金属工业株式会社 | FePt‑C系溅射靶及其制造方法 |
KR101994722B1 (ko) * | 2013-10-14 | 2019-07-01 | 삼성전기주식회사 | 적층형 전자부품 |
SG11201604730PA (en) * | 2014-03-18 | 2016-08-30 | Jx Nippon Mining & Metals Corp | Magnetic sputtering target |
MY189794A (en) | 2016-03-31 | 2022-03-08 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
JP6734399B2 (ja) * | 2016-12-28 | 2020-08-05 | Jx金属株式会社 | 磁性材スパッタリングターゲット及びその製造方法 |
US10492582B2 (en) * | 2017-03-26 | 2019-12-03 | Stephen Miles | Multifunction convertible suitcase system |
CN113403596A (zh) * | 2021-06-04 | 2021-09-17 | 河南科技大学 | 基于磁控溅射与超声滚压复合强化轴承套圈表面的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005093124A1 (ja) * | 2004-03-26 | 2005-10-06 | Nippon Mining & Metals Co., Ltd. | Co-Cr-Pt-B系合金スパッタリングターゲット |
JP2006176808A (ja) * | 2004-12-21 | 2006-07-06 | Mitsubishi Materials Corp | 磁気記録膜形成用CoCrPt−SiO2スパッタリングターゲットの製造方法 |
WO2007080781A1 (ja) * | 2006-01-13 | 2007-07-19 | Nippon Mining & Metals Co., Ltd. | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
WO2008081841A1 (ja) * | 2007-01-04 | 2008-07-10 | Mitsui Mining & Smelting Co., Ltd. | CoCrPt系スパッタリングターゲットおよびその製造方法 |
JP2008169464A (ja) * | 2007-01-08 | 2008-07-24 | Heraeus Inc | スパッタターゲット及びその製造方法 |
WO2009119812A1 (ja) * | 2008-03-28 | 2009-10-01 | 日鉱金属株式会社 | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
JP4422203B1 (ja) * | 2009-04-01 | 2010-02-24 | Tanakaホールディングス株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523173A (en) * | 1994-12-27 | 1996-06-04 | International Business Machines Corporation | Magnetic recording medium with a CoPtCrB alloy thin film with a 1120 crystallographic orientation deposited on an underlayer with 100 orientation |
JP3816595B2 (ja) | 1996-09-18 | 2006-08-30 | 三井金属鉱業株式会社 | スパッタリングターゲットの製造方法 |
JP2000282229A (ja) * | 1999-03-29 | 2000-10-10 | Hitachi Metals Ltd | CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体 |
JP2001236643A (ja) | 2000-02-23 | 2001-08-31 | Fuji Electric Co Ltd | 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体 |
US20020106297A1 (en) | 2000-12-01 | 2002-08-08 | Hitachi Metals, Ltd. | Co-base target and method of producing the same |
US20030228238A1 (en) | 2002-06-07 | 2003-12-11 | Wenjun Zhang | High-PTF sputtering targets and method of manufacturing |
US6759005B2 (en) | 2002-07-23 | 2004-07-06 | Heraeus, Inc. | Fabrication of B/C/N/O/Si doped sputtering targets |
JP2004339586A (ja) | 2003-05-19 | 2004-12-02 | Mitsubishi Materials Corp | 磁気記録膜形成用スパッタリングターゲットおよびその製造方法 |
WO2005083148A1 (ja) | 2004-03-01 | 2005-09-09 | Nippon Mining & Metals Co., Ltd. | 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法 |
US7381282B2 (en) | 2004-04-07 | 2008-06-03 | Hitachi Metals, Ltd. | Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium |
CN100470637C (zh) | 2004-06-07 | 2009-03-18 | 昭和电工株式会社 | 磁记录介质及其制造方法以及磁记录和再现设备 |
DE602005016432D1 (de) | 2004-08-10 | 2009-10-15 | Nippon Mining Co | Barrierefilm für flexbilbes kupfersubstrat und sputtertarget zur bildung eines barrierefilms |
US20100270146A1 (en) * | 2006-03-31 | 2010-10-28 | Mitsubishi Materials Corporation | Method for manufacturing co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate partricles, and co-base sintered alloy sputtering target for formation of magnetic recording film |
JP2009001861A (ja) | 2007-06-21 | 2009-01-08 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP2009001862A (ja) | 2007-06-21 | 2009-01-08 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP2009001860A (ja) | 2007-06-21 | 2009-01-08 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP5204460B2 (ja) | 2007-10-24 | 2013-06-05 | 三井金属鉱業株式会社 | 磁気記録膜用スパッタリングターゲットおよびその製造方法 |
JP2009132975A (ja) | 2007-11-30 | 2009-06-18 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP2009132976A (ja) | 2007-11-30 | 2009-06-18 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP2009215617A (ja) | 2008-03-11 | 2009-09-24 | Mitsui Mining & Smelting Co Ltd | コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法 |
JP5547077B2 (ja) | 2008-08-28 | 2014-07-09 | Jx日鉱日石金属株式会社 | 貴金属粉末と酸化物粉末からなる混合粉末の製造方法及び貴金属粉末と酸化物粉末からなる混合粉末 |
WO2010101051A1 (ja) | 2009-03-03 | 2010-09-10 | 日鉱金属株式会社 | スパッタリングターゲット及びその製造方法 |
US20110003177A1 (en) | 2009-07-06 | 2011-01-06 | Solar Applied Materials Technology Corp. | Method for producing sputtering target containing boron, thin film and magnetic recording media |
WO2011016365A1 (ja) | 2009-08-06 | 2011-02-10 | Jx日鉱日石金属株式会社 | 無機物粒子分散型スパッタリングターゲット |
SG175953A1 (en) * | 2010-01-21 | 2011-12-29 | Jx Nippon Mining & Metals Corp | Ferromagnetic-material sputtering target |
US9181617B2 (en) * | 2010-07-20 | 2015-11-10 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
US8679268B2 (en) | 2010-07-20 | 2014-03-25 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
US20130220804A1 (en) | 2010-12-09 | 2013-08-29 | Jx Nippon Mining & Metals Corporation | Ferromagnetic Material Sputtering Target |
US20140001038A1 (en) | 2011-08-23 | 2014-01-02 | Jx Nippon Mining & Metals Corporation | Ferromagnetic Sputtering Target with Less Particle Generation |
-
2010
- 2010-03-08 CN CN2010800096112A patent/CN102333905B/zh active Active
- 2010-03-08 SG SG2011047073A patent/SG172790A1/en unknown
- 2010-03-08 JP JP2010537196A patent/JP4673448B2/ja active Active
- 2010-03-08 WO PCT/JP2010/053754 patent/WO2010110033A1/ja active Application Filing
- 2010-03-08 SG SG2011045358A patent/SG172295A1/en unknown
- 2010-03-08 US US13/131,124 patent/US9103023B2/en active Active
- 2010-03-08 MY MYPI2011002980 patent/MY150804A/en unknown
- 2010-03-17 TW TW099107765A patent/TWI482867B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005093124A1 (ja) * | 2004-03-26 | 2005-10-06 | Nippon Mining & Metals Co., Ltd. | Co-Cr-Pt-B系合金スパッタリングターゲット |
JP2006176808A (ja) * | 2004-12-21 | 2006-07-06 | Mitsubishi Materials Corp | 磁気記録膜形成用CoCrPt−SiO2スパッタリングターゲットの製造方法 |
WO2007080781A1 (ja) * | 2006-01-13 | 2007-07-19 | Nippon Mining & Metals Co., Ltd. | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
WO2008081841A1 (ja) * | 2007-01-04 | 2008-07-10 | Mitsui Mining & Smelting Co., Ltd. | CoCrPt系スパッタリングターゲットおよびその製造方法 |
JP2008163438A (ja) * | 2007-01-04 | 2008-07-17 | Mitsui Mining & Smelting Co Ltd | CoCrPt系スパッタリングターゲットおよびその製造方法 |
JP2008169464A (ja) * | 2007-01-08 | 2008-07-24 | Heraeus Inc | スパッタターゲット及びその製造方法 |
WO2009119812A1 (ja) * | 2008-03-28 | 2009-10-01 | 日鉱金属株式会社 | 非磁性材粒子分散型強磁性材スパッタリングターゲット |
JP4422203B1 (ja) * | 2009-04-01 | 2010-02-24 | Tanakaホールディングス株式会社 | マグネトロンスパッタリング用ターゲットおよびその製造方法 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4673453B1 (ja) * | 2010-01-21 | 2011-04-20 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2011089760A1 (ja) * | 2010-01-21 | 2011-07-28 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2012077665A1 (ja) * | 2010-12-09 | 2012-06-14 | Jx日鉱日石金属株式会社 | 強磁性材スパッタリングターゲット |
WO2012086335A1 (ja) * | 2010-12-20 | 2012-06-28 | Jx日鉱日石金属株式会社 | C粒子が分散したFe-Pt系スパッタリングターゲット |
JP5290468B2 (ja) * | 2010-12-20 | 2013-09-18 | Jx日鉱日石金属株式会社 | C粒子が分散したFe−Pt系スパッタリングターゲット |
JPWO2012086335A1 (ja) * | 2010-12-20 | 2014-05-22 | Jx日鉱日石金属株式会社 | C粒子が分散したFe−Pt系スパッタリングターゲット |
WO2012133166A1 (ja) * | 2011-03-30 | 2012-10-04 | Jx日鉱日石金属株式会社 | 磁気記録膜用スパッタリングターゲット |
CN103459656A (zh) * | 2011-03-30 | 2013-12-18 | 吉坤日矿日石金属株式会社 | 磁记录膜用溅射靶 |
CN104105812A (zh) * | 2011-08-23 | 2014-10-15 | 吉坤日矿日石金属株式会社 | 粉粒产生少的强磁性材料溅射靶 |
JPWO2014125897A1 (ja) * | 2013-02-15 | 2017-02-02 | Jx金属株式会社 | Co又はFeを含有するスパッタリングターゲット |
JP2017137570A (ja) * | 2013-02-15 | 2017-08-10 | Jx金属株式会社 | Co又はFeを含有するスパッタリングターゲット |
JP5973056B2 (ja) * | 2013-03-11 | 2016-08-23 | Jx金属株式会社 | 磁気記録膜形成用スパッタリングターゲットの製造方法 |
JP2016173871A (ja) * | 2013-03-11 | 2016-09-29 | Jx金属株式会社 | 磁気記録膜形成用スパッタリングターゲット及び該ターゲットの製造に用いる炭素原料 |
JP2015155573A (ja) * | 2014-01-17 | 2015-08-27 | Jx日鉱日石金属株式会社 | 磁性記録媒体用スパッタリングターゲット |
WO2021085410A1 (ja) * | 2019-11-01 | 2021-05-06 | 田中貴金属工業株式会社 | 熱アシスト磁気記録媒体用スパッタリングターゲット |
WO2023079856A1 (ja) * | 2021-11-05 | 2023-05-11 | Jx金属株式会社 | スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法 |
JPWO2023079856A1 (ja) * | 2021-11-05 | 2023-05-11 | ||
JP7412659B2 (ja) | 2021-11-05 | 2024-01-12 | Jx金属株式会社 | スパッタリングターゲット部材、スパッタリングターゲット組立品、及び成膜方法 |
Also Published As
Publication number | Publication date |
---|---|
US9103023B2 (en) | 2015-08-11 |
CN102333905B (zh) | 2013-09-04 |
SG172790A1 (en) | 2011-08-29 |
TW201125997A (en) | 2011-08-01 |
JPWO2010110033A1 (ja) | 2012-09-27 |
US20110247930A1 (en) | 2011-10-13 |
CN102333905A (zh) | 2012-01-25 |
MY150804A (en) | 2014-02-28 |
TWI482867B (zh) | 2015-05-01 |
JP4673448B2 (ja) | 2011-04-20 |
SG172295A1 (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010110033A1 (ja) | 非磁性材粒子分散型強磁性材スパッタリングターゲット | |
WO2011089760A1 (ja) | 強磁性材スパッタリングターゲット | |
JP4885333B1 (ja) | 強磁性材スパッタリングターゲット | |
JP5763178B2 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
JP5426030B2 (ja) | 強磁性材スパッタリングターゲット | |
WO2012011204A1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
JP4837801B2 (ja) | Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット | |
JP5394576B2 (ja) | 強磁性材スパッタリングターゲット | |
WO2012011294A1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
JP5394575B2 (ja) | 強磁性材スパッタリングターゲット | |
JP5394577B2 (ja) | 強磁性材スパッタリングターゲット | |
JP4673453B1 (ja) | 強磁性材スパッタリングターゲット | |
JP4758522B1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
JP4819199B1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
JP2016176087A (ja) | 強磁性材スパッタリングターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009611.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010537196 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10755834 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13131124 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10755834 Country of ref document: EP Kind code of ref document: A1 |