WO2011089760A1 - 強磁性材スパッタリングターゲット - Google Patents

強磁性材スパッタリングターゲット Download PDF

Info

Publication number
WO2011089760A1
WO2011089760A1 PCT/JP2010/067160 JP2010067160W WO2011089760A1 WO 2011089760 A1 WO2011089760 A1 WO 2011089760A1 JP 2010067160 W JP2010067160 W JP 2010067160W WO 2011089760 A1 WO2011089760 A1 WO 2011089760A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
target
phase
spherical
sputtering target
Prior art date
Application number
PCT/JP2010/067160
Other languages
English (en)
French (fr)
Inventor
敦 佐藤
篤俊 荒川
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/383,886 priority Critical patent/US9228251B2/en
Priority to CN201080029130.8A priority patent/CN102471876B/zh
Priority to JP2010546126A priority patent/JP4673453B1/ja
Priority to SG2011082203A priority patent/SG175953A1/en
Publication of WO2011089760A1 publication Critical patent/WO2011089760A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Definitions

  • the present invention relates to a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording method, and has a large leakage flux when sputtering with a magnetron sputtering apparatus.
  • the present invention relates to a sputtering target capable of obtaining a stable discharge.
  • a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • a melting method or a powder metallurgy method can be considered as a method for producing such a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 An alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
  • Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
  • the target structure is dispersed in a state in which the substrate is bonded in a white shape (sperm sperm) and surrounding SiO 2 (ceramics) (FIG. 2 of Patent Document 1) or in a thin string shape. (FIG. 3 of patent document 1)
  • a state can be seen.
  • Other figures are unclear, but are assumed to be similar.
  • Such a structure has the problems described later and cannot be said to be a suitable sputtering target for a magnetic recording medium.
  • the spherical substance shown by FIG. 4 of patent document 1 is a mechanical alloy powder, and is not a structure
  • the ferromagnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
  • a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma composed of electrons and cations is formed.
  • a plasma composed of electrons and cations is formed.
  • the cations in the plasma collide with the surface of the target (negative electrode)
  • atoms constituting the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • an object of the present invention is to provide a ferromagnetic material sputtering target that improves the leakage magnetic flux and can obtain a stable discharge with a magnetron sputtering apparatus.
  • the present inventors have conducted intensive research and found that a target having a large leakage magnetic flux can be obtained by adjusting the target structure.
  • the present invention also provides: 2) A sputtering target made of a metal having a composition in which Cr is 20 mol% or less, Pt is 5 mol% or more and 30 mol% or less, and the balance is Co, and the structure of this target is a metal substrate (A) and the above (A)
  • the ferromagnetic material sputtering target is characterized in that it has a spherical phase (B) containing 90 wt% or more of Co and having a difference between the major axis and the minor axis of 0 to 50%.
  • the present invention provides 3) The above 1) characterized in that one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, and W are contained as additive elements in an amount of 0.5 mol% to 10 mol%.
  • a ferromagnetic material sputtering target according to any one of (1) to (2) is provided.
  • the present invention provides 4) The ferromagnetic sputtering target according to any one of 1) to 3) above, wherein the diameter of the spherical phase (B) is in the range of 30 to 150 ⁇ m.
  • the present invention provides 5) Any one of 1) to 4) above, wherein the metal substrate (A) contains one or more inorganic materials selected from carbon, oxide, nitride, and carbide in the metal substrate.
  • the ferromagnetic sputtering target according to the item is provided.
  • the present invention provides 6) The ferromagnetic sputtering target according to any one of 1) to 5) above, wherein the relative density is 98% or more.
  • the target adjusted in this way becomes a target with a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas efficiently proceeds and a stable discharge can be obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost.
  • tissue image when the polished surface of the target of Example 1 is observed with an optical microscope. It is a figure which shows an element distribution image when the grinding
  • the main components constituting the ferromagnetic sputtering target of the present invention are a metal with Cr of 20 mol% or less and the balance of Co, or Cr of 20 mol% or less, Pt of 5 to 30 mol% and the balance of Co. It is a metal.
  • the Cr is added as an essential component and excludes 0 mol%. That is, the amount of Cr is equal to or greater than the lower limit that can be analyzed. If the amount of Cr is 20 mol% or less, there is an effect even when a small amount is added.
  • the present invention includes these. These are components required as a magnetic recording medium, and the mixing ratio varies within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium.
  • the target structure has a spherical phase (B) in which the difference between the major axis and the minor axis containing 90 wt% or more of Co is 0 to 50%.
  • the spherical phase (B) has a maximum magnetic permeability higher than that of the surrounding tissue and has a structure separated from each other by the metal substrate (A).
  • the reason why the leakage magnetic field is improved in the target having such a structure is not clear at present, but a dense part and a sparse part are generated in the magnetic flux inside the target, and compared with a structure having a uniform magnetic permeability. Since the magnetostatic energy increases, it is considered that it is advantageous in terms of energy when the magnetic flux leaks to the outside of the target.
  • the Co concentration of the preferred phase (B) is 90 wt% or more, More preferably, it is 95 wt% or more, More preferably, it is 97 wt% or more.
  • Co is the main component, but the center has a high purity and the surroundings tend to have a slightly lower purity.
  • the present invention as an additive element, one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, and W are contained at a blending ratio of 0.5 mol% to 10 mol%. Is also effective. These are elements added as necessary in order to improve the characteristics as a magnetic recording medium.
  • the phase (B) is preferably spherical with a diameter of 30 to 150 ⁇ m. When the target material is produced by the sintering method in the spherical shape, voids are less likely to be generated at the interface between the metal substrate (A) and the phase (B), and the target density can be increased.
  • the metal base (A) and the phase (B) having different compositions are easily generated, and have a spherical phase (B) containing 90 wt% or more of Co and having a difference between the major axis and the minor axis of 0 to 50%.
  • a material can be produced. More preferably, the Co content of the phase (B) is 95 wt% or more, and more preferably 97 wt% or more.
  • the Co content of the phase (B) can be measured using EPMA. Further, any analysis method capable of measuring the amount of Co in the phase (B) does not hinder the use of other measurement methods, and can be similarly applied.
  • fine particles of inorganic material are present in the metal substrate (A) (black finely dispersed in FIG. 1).
  • the diameter of the phase (B) is less than 30 ⁇ m, the particle size difference between the inorganic material particles and the mixed metal in the metal substrate (A) is small.
  • the diffusion rate is slow because the phase (B) is spherical, but the diffusion still proceeds, so that the presence of the phase (B) becomes unclear due to this diffusion.
  • the thickness exceeds 150 ⁇ m, the smoothness of the target surface is lost as the sputtering proceeds, and particle problems may easily occur. Therefore, the size of the phase (B) is preferably 30 to 150 ⁇ m.
  • the spherical shape used in the present invention represents a solid shape including a true sphere, a pseudo true sphere, an oblate (spheroid), and an artificial oblate.
  • the difference between the major axis and the minor axis is 0 to 50%. That is, it can be said that the ratio of the maximum value to the minimum value of the length from the center to the outer periphery of the sphere is 2 or less. If it is this range, even if there are some unevenness
  • the ratio of the maximum value to the minimum value of the length from the center of the cross section of the phase (B) to the outer periphery may be 2 or less.
  • the spherical phase (B) in which the difference between the major axis and the minor axis containing 90 wt% or more of Co in the metal substrate (A) is 0 to 50% is the total volume of the target or the area of the erosion surface of the target. If it is about 20% or more, the object of the present invention can be achieved. In the present invention, a target of 50% or more, further 60% or more can be manufactured.
  • the ferromagnetic sputtering target of the present invention can contain one or more inorganic materials selected from carbon, oxide, nitride, and carbide in a state dispersed in the metal substrate (A).
  • the magnetic recording film having a granular structure, particularly, a characteristic suitable for a material of a recording film of a hard disk drive adopting a perpendicular magnetic recording system is provided.
  • the ferromagnetic material sputtering target of the present invention desirably has a relative density of 98% or more.
  • a higher density target can reduce the amount of particles generated during sputtering.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • the target thus adjusted becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas proceeds efficiently, and a stable discharge can be obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost. Further, there is an advantage that the amount of particles that cause a decrease in yield can be reduced by increasing the density.
  • the ferromagnetic material sputtering target of the present invention is produced by a melting method or a powder metallurgy method.
  • powder metallurgy first, a powder of each metal element and, if necessary, a powder of an additional metal element are prepared. These powders desirably have a maximum particle size of 20 ⁇ m or less. Further, alloy powders of these metals may be prepared instead of the powders of the respective metal elements, but in this case as well, it is desirable that the maximum particle size is 20 ⁇ m or less. On the other hand, if it is too small, there is a problem that oxidation is accelerated and the component composition does not fall within the range.
  • these metal powders are weighed so as to have a desired composition, and mixed using a known method such as a ball mill for pulverization. What is necessary is just to mix with a metal powder at this stage, when adding an inorganic substance powder.
  • the inorganic powder carbon powder, oxide powder, nitride powder, or carbide powder is prepared. It is desirable to use inorganic powder having a maximum particle size of 5 ⁇ m or less. On the other hand, since it will be easy to aggregate when it is too small, it is more desirable to use a 0.1 micrometer or more thing.
  • a Co spherical powder having a diameter in the range of 30 to 150 ⁇ m is prepared, and mixed with the above mixed powder with a mixer.
  • the Co spherical powder used here can be obtained by sieving the one produced by the gas atomization method.
  • the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • the powder thus obtained is molded and sintered using a vacuum hot press apparatus, and cut into a desired shape, whereby the ferromagnetic sputtering target of the present invention is produced.
  • the Co spherical powder corresponds to the spherical phase (B) observed in the target tissue.
  • the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 900-1300 ° C.
  • Example 1 Comparative Example 1
  • a Co spherical powder was prepared. Co powder 11.95 wt%, Cr powder 10.54 wt%, TiO 2 powder 6.75 wt%, SiO 2 so that the composition of the target is 78 Co-12Cr-5TiO 2 -5SiO 2 (mol%).
  • the powder was weighed at a weight ratio of 5.07 wt% and Co spherical powder 65.69 wt%.
  • Co powder, Cr powder, TiO 2 powder and SiO 2 powder were enclosed in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co spherical powder were mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • the mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere at a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • Leakage magnetic flux was measured according to ASTM F2086-01 (Standard Test Method for Pass Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2). The magnetic flux density measured by fixing the center of the target and rotating it at 0, 30, 60, 90, and 120 degrees is divided by the value of the reference field defined by ASTM and multiplied by 100. Expressed as a percentage. And the result averaged about these 5 points
  • Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders so that the target composition is 78Co-12Cr-5TiO 2 -5SiO 2 (mol%), Co powder 77.64wt%, Cr powder 10.54wt%, TiO 2 6.75wt%, SiO 2 powder 5 Weighed at a weight ratio of 0.07 wt%.
  • Example 1 As shown in Table 1, it was confirmed that the average leakage magnetic flux density of the target of Example 1 was 56%, which was improved more than 40% of Comparative Example 1. Also in Example 1, a high-density target having a relative density exceeding 98% was obtained.
  • FIG. 1 shows a structure image when the target polished surface of Example 1 is observed with an optical microscope
  • FIG. 2 shows an element distribution image when a spherical phase portion is measured with EPMA.
  • black spots correspond to TiO 2 particles and SiO 2 particles.
  • the characteristic feature of Example 1 is that a large spherical shape containing neither TiO 2 particles nor SiO 2 particles in a matrix in which TiO 2 particles and SiO 2 particles are finely dispersed. The phases are dispersed.
  • This phase corresponds to the phase (B) of the present invention
  • Co is 99 wt% or more near the center of the phase (B)
  • the average difference between the major axis and the minor axis is about 20%, It had a spherical shape.
  • a portion that appears white in the EPMA element distribution image is a region having a high concentration of the element. That is, the Co concentration in the spherical phase portion is higher (whiter) than the surroundings.
  • Si, Ti, and O are black in the spherical phase region, and thus do not exist in this region.
  • Example 2 comparative example 2
  • Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 2 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and Cr 2 O having an average particle diameter of 3 ⁇ m Three powders, Co spherical powder with a diameter in the range of 50-100 ⁇ m were prepared. These powders were coated with 26.27 wt% Co powder, 9.94 wt% Cr powder, and 32.31 wt% Pt powder so that the composition of the target was 65Co-13Cr-15Pt-5TiO 2 -2Cr 2 O 3 (mol%). TiO 2 powder 5.09 wt%, Cr 2 O 3 powder 3.87 wt%, and Co spherical powder 22.52 wt%, respectively.
  • Co powder, Cr powder, Pt powder, TiO 2 powder, and Cr 2 O 3 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co spherical powder were mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • the mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm with a lathe, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Three powders were prepared. These powders so that the target composition is 65Co-13Cr-15Pt-5TiO 2 -2Cr 2 O 3 (mol%), Co powder 48.79wt%, Cr powder 9.94wt%, Pt powder 32.31wt%, TiO 2 powder was weighed at a weight ratio of 5.09 wt% and Cr 2 O 3 powder was 3.87 wt%.
  • These powders were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm with a lathe, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Example 2 As shown in Table 2, it was confirmed that the average leakage magnetic flux density of the target of Example 2 was 51%, which was larger than 38% of Comparative Example 2. Also in Example 2, a high-density target having a relative density exceeding 98% was obtained.
  • FIG. 4 shows a structure image when the target polished surface of Example 2 is observed with an optical microscope
  • FIG. 5 shows an element distribution image when a spherical phase portion is measured with EPMA.
  • black spots correspond to TiO 2 particles and Cr 2 O 3 particles.
  • the characteristic feature of Example 2 is that the TiO 2 particles and Cr 2 O 3 particles are contained in a matrix in which TiO 2 particles and Cr 2 O 3 particles are finely dispersed. There is no large spherical phase dispersed.
  • This phase corresponds to the phase (B) of the present invention
  • Co is 99 wt% or more near the center of the phase (B)
  • the average difference between the major axis and the minor axis is about 20%, It had a spherical shape.
  • a portion that appears white in the element distribution image of FIG. 5 is a region having a high concentration of the element. That is, the Co concentration in the spherical phase portion is higher (whiter) than the surroundings.
  • Cr and Pt are present at the periphery of the spherical phase, but are hardly seen at the center. Further, in the figure, it can be seen that Ti and O are black in the spherical phase region, and thus do not exist in this region.
  • Example 3 Comparative Example 3
  • a Co powder having an average particle size of 3 ⁇ m, a Cr powder having an average particle size of 5 ⁇ m, and a Co spherical powder having a diameter in the range of 50 to 100 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of 45.81 wt% Co powder, 13.47 wt% Cr powder, and 40.72 wt% Co spherical powder so that the target composition would be 85 Co-15 Cr (mol%).
  • Co powder having an average particle size of 3 ⁇ m and Cr powder having an average particle size of 5 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of 86.53 wt% Co powder and 13.47 wt% Cr powder so that the target composition would be 85 Co-15 Cr (mol%). These powders were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere at a temperature of 950 ° C., a holding time of 2 hours, and a pressing force of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm with a lathe, and the average leakage magnetic flux density was measured. The results are shown in Table 3.
  • Example 3 As shown in Table 3, it was confirmed that the average leakage magnetic flux density of the target of Example 3 was 60%, which was larger than 35% of Comparative Example 3. Also in Example 3, a high-density target having a relative density exceeding 98% was obtained.
  • a spherical phase in which the Co concentration was higher than the surroundings was confirmed.
  • This phase corresponds to the phase (B) of the present invention, and contains 98 wt% or more of Co in the vicinity of the center of the phase (B), and the average difference between the major axis and the minor axis is about 20%. It had a spherical shape.
  • Example 4 comparative example 4
  • a Co powder having an average particle size of 3 ⁇ m, a Cr powder having an average particle size of 5 ⁇ m, a Pt powder having an average particle size of 2 ⁇ m, and a Co spherical powder having a diameter in the range of 50 to 100 ⁇ m were prepared as raw material powders.
  • Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, and Pt powder having an average particle size of 2 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of Co powder 52.68 wt%, Cr powder 9.96 wt%, and Pt powder 37.36 wt% so that the target composition would be 70Co-15Cr-15Pt (mol%). These powders were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm with a lathe, and the average leakage magnetic flux density was measured. The results are shown in Table 4.
  • Example 4 As shown in Table 4, it was confirmed that the average leakage magnetic flux density of the target of Example 4 was 56%, which was larger than 39% of Comparative Example 4. Also in Example 4, a high-density target having a relative density exceeding 98% was obtained.
  • a spherical phase in which the Co concentration was higher than the surroundings was confirmed.
  • This phase corresponds to the phase (B) of the present invention, and contains 98 wt% or more of Co in the vicinity of the center of the phase (B), and the average difference between the major axis and the minor axis is about 20%. It had a spherical shape.
  • any of Examples 1, 2, 3, and 4 the presence of a metal base (A) and a spherical phase (B) having a diameter in the range of 50 to 100 ⁇ m surrounded by the metal base (A) was recognized. It was. And it was confirmed that the phase (B) is a region having a higher Co concentration than the surroundings. It can be seen that such a tissue structure plays a very important role in improving the leakage flux.
  • the present invention makes it possible to dramatically improve the leakage magnetic flux by adjusting the structure of the ferromagnetic material sputtering target. Therefore, when the target of the present invention is used, a stable discharge can be obtained when sputtering with a magnetron sputtering apparatus. In addition, since the target thickness can be increased, the target life is lengthened, and a magnetic thin film can be manufactured at low cost. It is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a hard disk drive recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。漏洩磁束を向上させて、マグネトロンスパッタ装置で安定した放電が可能な強磁性材スパッタリングターゲットを得る。

Description

強磁性材スパッタリングターゲット
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、漏洩磁束が大きくマグネトロンスパッタ装置でスパッタする際に安定した放電が得られるスパッタリングターゲットに関する。
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
 そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
 このような強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。
 例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 この場合のターゲット組織は、素地が白子(鱈の精子)状に結合し、その周りにSiO(セラミックス)が取り囲んでいる様子(特許文献1の図2)又は細紐状に分散している(特許文献1の図3)様子が見える。他の図は不鮮明であるが、同様の組織と推測される。
 このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。なお、特許文献1の図4に示されている球状物質は、メカニカルアロイグ粉末であり、ターゲットの組織ではない。
 また、急冷凝固法で作製した合金粉末を用いなくても、ターゲットを構成する各成分について市販の原料粉末を用意し、それらの原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法で混合し、混合粉末をホットプレスにより成型・焼結することによって、強磁性材スパッタリングターゲットは作製できる。
 スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
 この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
特開平10-88333号公報
 一般に、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタしようとすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が少なくなり、スパッタ時に放電が立たない、あるいは放電しても放電が安定しないという大きな問題が生じる。
 この問題を解決するには、強磁性金属であるCoの含有割合を減らすことが考えられる。しかし、この場合、所望の磁気記録膜を得ることができないため本質的な解決策ではない。また、ターゲットの厚みを薄くすることで漏洩磁束を向上させることは可能だが、この場合ターゲットのライフが短くなり、頻繁にターゲットを交換する必要が生じるのでコストアップの要因になる。
 本発明は上記問題を鑑みて、漏洩磁束を向上させて、マグネトロンスパッタ装置で安定した放電が得られる強磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットの組織構造を調整することにより、漏洩磁束の大きいターゲットが得られることを見出した。
 このような知見に基づき、本発明は、
 1)Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることを特徴とする強磁性材スパッタリングターゲットを提供する。
 また、本発明は、
 2)Crが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることを特徴とする強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 3)添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする上記1)~2)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 4)球形の相(B)の直径が、30~150μmの範囲にあることを特徴とする上記1)~3)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 5)金属素地(A)が、炭素、酸化物、窒化物、炭化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする上記1)~4)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 6)相対密度が98%以上であることを特徴とする上記1)~5)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 このように調整したターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。またターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。
実施例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例1のターゲットの研磨面を電子線プローブマイクロアナライザー(EPMA)で測定したときの元素分布画像を示す図である。 比較例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例2のターゲットの研磨面を電子線プローブマイクロアナライザー(EPMA)で測定したときの元素分布画像を示す図である。 比較例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。
 本発明の強磁性材スパッタリングターゲットを構成する主要成分は、Crが20mol%以下、残余がCoである金属と、またはCrが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである金属である。
 なお、前記Crは必須成分として添加するものであり、0mol%を除く。すなわち、分析可能な下限値以上のCr量を含有させるものである。Cr量が20mol%以下であれば、微量添加する場合においても効果がある。本願発明は、これらを包含する。これらは、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々であるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
 本願発明において重要なことは、ターゲットの組織が、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることである。そして、球形の相(B)は周囲の組織より最大透磁率が高く、金属素地(A)によって各々分離された構造になっていることである。
 このような組織を有するターゲットにおいて、漏洩磁界が向上する理由は現時点で明確にはなっていないが、ターゲット内部の磁束に密な部分と疎な部分が生じ、均一な透磁率を有する組織と比較し静磁エネルギーが高くなるため、磁束がターゲット外部に漏れ出た方がエネルギー的に有利になるためと考えられる。
 前記球形の相(B)の最大透磁率を高く維持するためには、Coの濃度が高い方が望ましい。原料としては純Coを使用するが、焼結時に球形の相(B)が周囲の金属素地(A)と相互に拡散するので、好ましい相(B)のCo含有量は90wt%以上であり、より好ましくは95wt%以上、さらに好ましくは97wt%以上である。
 上記のようにCoが主成分であるが、中心は純度が高く、周囲は純度がやや低くなる傾向にある。球形の相(B)の径を1/3に縮小したと仮定した場合の相似形(球形)の相の範囲(以下「中心付近」という。)内では、Coの濃度97wt%以上を達成することが可能であり、本願発明は、これらを含むものである。
 また、本願発明において、添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下の配合比で含有させることも有効である。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。
 相(B)は、直径が30~150μmの球形とするのが望ましい。球形の方が、焼結法でターゲット素材を作製する際、金属素地(A)と相(B)の境界面に空孔が生じにくく、ターゲットの密度を高めることができる。
 また、同一体積では球形の方が、表面積が小さくなるので、ターゲット素材を焼結させる際に金属素地(A)と相(B)との間で金属元素の拡散が進みにくい。その結果、組成の異なる金属素地(A)と相(B)が容易に生成され、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有する素材を作製することができる。より好ましい相(B)のCo含有量は95wt%以上であり、さらに好ましくは97wt%以上である。
 なお、相(B)のCo含有量は、EPMAを用いて測定することができる。また、他の測定方法の利用を妨げるものではなく、相(B)のCo量を測定できる分析方法であれば、同様に適用できる。
 図1に示すように、金属素地(A)には細かい無機物材料(炭素、酸化物、窒化物、炭化物から選択した1成分以上)の粒子が存在している(図1で微細に分散した黒い部分が無機物材料の粒子である)が、相(B)の直径が30μm未満の場合は、金属素地(A)における無機物材料の粒子と混在している金属との粒サイズ差が小さくなるので、ターゲット素材を焼結させる際に、相(B)が球形であるため拡散速度は遅いけれども、それでも拡散は進むので、この拡散が進むことにより、相(B)の存在が不明確になってしまう。
 一方、150μmを超える場合には、スパッタリングが進むにつれてターゲット表面の平滑性が失われ、パーティクルの問題が発生しやすくなることがある。従って相(B)の大きさは30~150μmとするのが望ましい。
 なお、本願発明において使用する球形とは、真球、擬似真球、扁球(回転楕円体)、擬似扁球を含む立体形状を表す。いずれも、長径と短径の差が0~50%であるものを言う。すなわち、球形は、その中心から外周までの長さの最小値に対する最大値の比が2以下であると言い換えることもできる。この範囲であれば、外周部に多少の凹凸があっても、相(B)を形成することができる。球形そのものを確認することが難しい場合は、相(B)の断面の中心と外周までの長さの最小値に対する最大値の比が2以下であることを目安としてもよい。
 また、金属素地(A)中のCoを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)は、ターゲットの全体積又はターゲットのエロージョン面の面積の、およそ20%以上であれば、本願発明の目的を達成することができる。本発明では、50%以上、さらには60%以上のターゲットが製造できる。
 さらに本発明の強磁性材スパッタリングターゲットは、炭素、酸化物、窒化物、炭化物から選択し一種以上の無機物材料を、金属素地(A)中に分散した状態で含有することができる。この場合、グラニュラー構造をもつ磁気記録膜、特に垂直磁気記録方式を採用したハードディスクドライブの記録膜の材料に好適な特性を備える。
 本発明の強磁性材スパッタリングターゲットは、相対密度を98%以上とすることが望ましい。一般に、高密度のターゲットほどスパッタ時に発生するパーティクルの量を低減させることができることが知られている。
 ここでの相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
 式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
 ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
 このように調整したターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。またターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。
 さらに、高密度化により、歩留まり低下の原因となるパーティクルの発生量を低減させることができるというメリットもある。
 本発明の強磁性材スパッタリングターゲットは、溶解法または粉末冶金法によって作製される。粉末冶金法の場合は、まず各金属元素の粉末と、さらに必要に応じて添加金属元素の粉末を用意する。これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。また、各金属元素の粉末の代わりにこれら金属の合金粉末を用意してもよいが、その場合も最大粒径が20μm以下とすることが望ましい。
 一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることがさらに望ましい。
 そして、これらの金属粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。無機物粉末を添加する場合は、この段階で金属粉末と混合すればよい。
 無機物粉末としては炭素粉末、酸化物粉末、窒化物粉末または炭化物粉末を用意するが、無機物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
 さらに直径が30~150μmの範囲にあるCo球形粉末を用意し、上記の混合粉末とミキサーで混合する。ここで使用するCo球形粉末は、ガスアトマイズ法で作製したものを篩別することで得ることが出来る。また、ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットが作製される。なお、上記のCo球形粉末は、ターゲットの組織において観察される球形の相(B)に対応するものである。
 また、成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、900~1300°Cの温度範囲にある。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1、比較例1)
 実施例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉末、直径が50~100μmの範囲にあるCo球形粉末を用意した。これらの粉末をターゲットの組成が78Co-12Cr-5TiO-5SiO(mol%)となるように、Co粉末11.95wt%、Cr粉末10.54wt%、TiO粉末6.75wt%、SiO粉末5.07wt%、Co球形粉末65.69wt%の重量比率で秤量した。
 次に、Co粉末とCr粉末とTiO粉末とSiO粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo球形粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
 漏洩磁束の測定はASTM F2086-01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0度、30度、60度、90度、120度と回転させて測定した漏洩磁束密度を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(%)として表1に記載した。
 比較例1では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉を用意した。これらの粉末をターゲット組成が78Co-12Cr-5TiO-5SiO(mol%)となるように、Co粉末77.64wt%、Cr粉末10.54wt%、TiO6.75wt%、SiO粉末5.07wt%の重量比率で秤量した。
 そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1のターゲットの平均漏洩磁束密度は56%であり、比較例1の40%より大きく向上していることが確認された。また、実施例1においても相対密度が98%を超える高密度なターゲットが得られた。
 実施例1のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図1に、また特に球形の相の部分をEPMAで測定したときの元素分布画像を図2に示す。
 図1において黒っぽくみえている箇所がTiO粒子とSiO粒子に対応する。この図1の組織画像に示すように、上記実施例1において極めて特徴的なのは、TiO粒子とSiO粒子が微細分散したマトリックスの中に、TiO粒子とSiO粒子をともに含まない大きな球形の相が分散していることである。
 この相は、本願発明の相(B)に相当するものであり、相(B)の中心付近ではCoを99wt%以上含有し、長径と短径の平均の差は20%程度であり、ほぼ球形を呈していた。
 図2においてEPMAの元素分布画像で白く見えている箇所が、当該元素の濃度の高い領域である。すなわち、球形の相の部分においてCoの濃度が、周囲より高く(白っぽく)なっている。
 一方、同図において、球形の相の領域では、SiとTiとOについては黒くなっているので、この領域に存在していないことが分かる。
 これに対して、図3に示す比較例1によって得られたターゲット研磨面の組織画像には、TiOとSiO粒子が分散したマトリックスの中に球形の相は一切観察されなかった。
(実施例2、比較例2)
 実施例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径2μmのPt粉末、平均粒径1μmのTiO粉末、平均粒径3μmのCr粉末、直径が50~100μmの範囲にあるCo球形粉末を用意した。
 これらの粉末をターゲットの組成が65Co-13Cr-15Pt-5TiO-2Cr(mol%)となるように、Co粉末26.27wt%、Cr粉末9.94wt%、Pt粉末32.31wt%、TiO粉末5.09wt%、Cr粉末3.87wt%、Co球形粉末22.52wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末とPt粉末とTiO粉末とCr粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo球形粉をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を、表2に示す。
 比較例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径2μmのPt粉末、平均粒径1μmのTiO粉末、平均粒径3μmのCr粉末を用意した。
 これらの粉末をターゲット組成が65Co-13Cr-15Pt-5TiO-2Cr(mol%)となるように、Co粉末48.79wt%、Cr粉末9.94wt%、Pt粉末32.31wt%、TiO粉末5.09wt%、Cr粉末3.87wt%の重量比率でそれぞれ秤量した。
 そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、実施例2のターゲットの平均漏洩磁束密度は51%であり、比較例2の38%より大きく向上していることが確認された。また、実施例2においても相対密度が98%を超える高密度なターゲットが得られた。
 実施例2のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図4に、また特に球形の相の部分をEPMAで測定したときの元素分布画像を図5に示す。図4において黒っぽくみえている箇所がTiO粒子とCr粒子に対応する。
 この図4の組織画像に示すように、上記実施例2において極めて特徴的なのは、TiO粒子とCr粒子が微細分散したマトリックスの中に、TiO粒子とCr粒子を含まない大きな球形の相が分散していることである。この相は、本願発明の相(B)に相当するものであり、相(B)の中心付近ではCoを99wt%以上含有し、長径と短径の平均の差は20%程度であり、ほぼ球形を呈していた。
 図5の元素分布画像で白く見えている箇所が、当該元素の濃度の高い領域である。すなわち、球形の相の部分においてCoの濃度が、周囲より高く(白っぽく)なっている。
 一方、図5において、CrとPtは球形の相の周縁部に存在するが中心部には殆ど見られない。また同図において、球形の相の領域では、TiとOについては黒くなっているので、この領域に存在していないことが分かる。
 これに対して、図6に示す比較例2によって得られたターゲット研磨面の組織画像には、TiO粒子とCr粒子が分散したマトリックスの中に球形の相は一切観察されなかった。 
(実施例3、比較例3)
 実施例3では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、直径が50~100μmの範囲にあるCo球形粉末を用意した。
 これらの粉末をターゲットの組成が85Co-15Cr(mol%)となるように、Co粉末45.81wt%、Cr粉末13.47wt%、Co球形粉末40.72wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo球形粉をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度950°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表3に示す。
 比較例3では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末を用意した。
 これらの粉末をターゲット組成が85Co-15Cr(mol%)となるように、Co粉末86.53wt%、Cr粉末13.47wt%の重量比率でそれぞれ秤量した。
 そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度950°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、実施例3のターゲットの平均漏洩磁束密度は60%であり、比較例3の35%より大きく向上していることが確認された。また、実施例3においても相対密度が98%を超える高密度なターゲットが得られた。
 また実施例3のターゲットを研磨し、その研磨面においてEPMAで元素分布画像を取得したところ、Coの濃度が周囲より高くなっている球形の相が確認された。この相は、本願発明の相(B)に相当するものであり、相(B)の中心付近ではCoを98wt%以上含有し、長径と短径の平均の差は20%程度であり、ほぼ球形を呈していた。
 これに対して、比較例3によって得られたターゲット研磨面には球形の相は一切観察されなかった。またEPMAで元素分布画像を取得したところ、元素分布に濃淡は観察されず、ほぼ均一な組成の合金相が形成されていることを確認した。
(実施例4、比較例4)
 実施例4では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径2μmのPt粉末、直径が50~100μmの範囲にあるCo球形粉末を用意した。
 これらの粉末をターゲットの組成が70Co-15Cr-15Pt(mol%)となるように、Co粉末11.29wt%、Cr粉末9.96wt%、Pt粉末37.36wt%、Co球形粉末41.39wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo球形粉をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表4に示す。
 比較例4では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径2μmのPt粉末を用意した。
 これらの粉末をターゲット組成が70Co-15Cr-15Pt(mol%)となるように、Co粉末52.68wt%、Cr粉末9.96wt%、Pt粉末37.36wt%の重量比率でそれぞれ秤量した。
 そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとでホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、実施例4のターゲットの平均漏洩磁束密度は56%であり、比較例4の39%より大きく向上していることが確認された。また、実施例4においても相対密度が98%を超える高密度なターゲットが得られた。
 また実施例4のターゲットを研磨し、その研磨面においてEPMAで元素分布画像を取得したところ、Coの濃度が周囲より高くなっている球形の相が確認された。この相は、本願発明の相(B)に相当するものであり、相(B)の中心付近ではCoを98wt%以上含有し、長径と短径の平均の差は20%程度であり、ほぼ球形を呈していた。
 これに対して、比較例4によって得られたターゲット研磨面には球形の相は一切観察されなかった。またEPMAで元素分布画像を取得したところ、元素分布に濃淡は観察されず、ほぼ均一な組成の合金相が形成されていることを確認した。
 実施例1、2、3、4のいずれにおいても、金属素地(A)と該金属素地(A)に包囲された、直径が50~100μmの範囲にある球形の相(B)の存在が認められた。そして相(B)は周囲よりCoの濃度が高い領域であることが確認された。こうした組織構造が漏洩磁束を向上させるために非常に重要な役割を有することが分かる。
 本発明は、強磁性材スパッタリングターゲットの組織構造を調整し漏洩磁束を飛躍的に向上させることを可能とする。従って本発明のターゲットを使用すれば、マグネトロンスパッタ装置でスパッタリングする際に安定した放電が得られる。またターゲット厚みを厚くすることができるため、ターゲットライフが長くなり、低コストで磁性体薄膜を製造することが可能になる。
 磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。

Claims (6)

  1.  Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。
  2.  Crが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する長径と短径の差が0~50%である球形の相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。
  3.  添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする請求項1~2のいずれか一項に記載の強磁性材スパッタリングターゲット。
  4.  球形の相(B)の直径が、30~150μmの範囲にあることを特徴とする請求項1~3のいずれか一項に記載の強磁性材スパッタリングターゲット。
  5.  金属素地(A)が、炭素、酸化物、窒化物、炭化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする請求項1~4のいずれか一項に記載の強磁性材スパッタリングターゲット。
  6.  相対密度が98%以上であることを特徴とする請求項1~5のいずれか一項に記載の強磁性材スパッタリングターゲット。
PCT/JP2010/067160 2010-01-21 2010-09-30 強磁性材スパッタリングターゲット WO2011089760A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/383,886 US9228251B2 (en) 2010-01-21 2010-09-30 Ferromagnetic material sputtering target
CN201080029130.8A CN102471876B (zh) 2010-01-21 2010-09-30 强磁性材料溅射靶
JP2010546126A JP4673453B1 (ja) 2010-01-21 2010-09-30 強磁性材スパッタリングターゲット
SG2011082203A SG175953A1 (en) 2010-01-21 2010-09-30 Ferromagnetic-material sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-011326 2010-01-21
JP2010011326 2010-01-21

Publications (1)

Publication Number Publication Date
WO2011089760A1 true WO2011089760A1 (ja) 2011-07-28

Family

ID=44306576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067160 WO2011089760A1 (ja) 2010-01-21 2010-09-30 強磁性材スパッタリングターゲット

Country Status (6)

Country Link
US (1) US9228251B2 (ja)
CN (1) CN102471876B (ja)
MY (1) MY149437A (ja)
SG (1) SG175953A1 (ja)
TW (1) TWI494453B (ja)
WO (1) WO2011089760A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104105812A (zh) * 2011-08-23 2014-10-15 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
US20150014155A1 (en) * 2012-02-23 2015-01-15 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target Containing Chromium Oxide
WO2020044573A1 (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 安定的に放電可能なスパッタリングターゲット

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981224B (zh) 2008-03-28 2012-08-22 Jx日矿日石金属株式会社 非磁性材料粒子分散型强磁性材料溅射靶
SG172790A1 (en) * 2009-03-27 2011-08-29 Jx Nippon Mining & Metals Corp Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type
SG185768A1 (en) 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
CN103081009B (zh) 2010-08-31 2016-05-18 吉坤日矿日石金属株式会社 Fe-Pt型强磁性材料溅射靶
CN103262166B (zh) 2010-12-21 2016-10-26 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
MY154754A (en) 2011-03-30 2015-07-15 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
CN104081458B (zh) 2012-01-18 2017-05-03 吉坤日矿日石金属株式会社 Co‑Cr‑Pt 系溅射靶及其制造方法
WO2013125469A1 (ja) 2012-02-22 2013-08-29 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104126026B (zh) 2012-02-23 2016-03-23 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
SG11201405348QA (en) 2012-03-09 2014-11-27 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording medium, and process for producing same
JP5592022B2 (ja) 2012-06-18 2014-09-17 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
CN105026589B (zh) * 2013-04-30 2017-07-18 吉坤日矿日石金属株式会社 烧结体、包含该烧结体的磁记录膜形成用溅射靶
WO2015064761A1 (ja) * 2013-10-29 2015-05-07 田中貴金属工業株式会社 マグネトロンスパッタリング用ターゲット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282229A (ja) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体
JP2006176808A (ja) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp 磁気記録膜形成用CoCrPt−SiO2スパッタリングターゲットの製造方法
JP3964453B2 (ja) * 2004-03-26 2007-08-22 日鉱金属株式会社 Co−Cr−Pt−B系合金スパッタリングターゲット
WO2009119812A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP4422203B1 (ja) * 2009-04-01 2010-02-24 Tanakaホールディングス株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法
WO2010110033A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816595B2 (ja) 1996-09-18 2006-08-30 三井金属鉱業株式会社 スパッタリングターゲットの製造方法
JP2000038660A (ja) 1998-07-21 2000-02-08 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにCoPt系磁気記録媒体
JP2001236643A (ja) 2000-02-23 2001-08-31 Fuji Electric Co Ltd 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体
US20070189916A1 (en) * 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
WO2005083148A1 (ja) 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
US7381282B2 (en) 2004-04-07 2008-06-03 Hitachi Metals, Ltd. Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium
US20080062575A1 (en) 2004-06-07 2008-03-13 Showa Denko K.K. Magnetic Recording Medium, Method For Production Thereof And Magnetic Recording And Reproducing Device Using The Medium
WO2006016473A1 (ja) 2004-08-10 2006-02-16 Nippon Mining & Metals Co., Ltd. フレキシブル銅基板用バリア膜及びバリア膜形成用スパッタリングターゲット
WO2007080781A1 (ja) 2006-01-13 2007-07-19 Nippon Mining & Metals Co., Ltd. 非磁性材粒子分散型強磁性材スパッタリングターゲット
WO2007116834A1 (ja) 2006-03-31 2007-10-18 Mitsubishi Materials Corporation パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、および磁気記録膜形成用Co基焼結合金スパッタリングターゲット
JP5155565B2 (ja) 2007-01-04 2013-03-06 三井金属鉱業株式会社 CoCrPt系スパッタリングターゲットおよびその製造方法
JP2009001860A (ja) 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009028687A (ja) 2007-07-30 2009-02-12 Chuo Kakoki Kk メカノケミストリー処理の方法
JP5204460B2 (ja) * 2007-10-24 2013-06-05 三井金属鉱業株式会社 磁気記録膜用スパッタリングターゲットおよびその製造方法
JP2009132975A (ja) 2007-11-30 2009-06-18 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009215617A (ja) * 2008-03-11 2009-09-24 Mitsui Mining & Smelting Co Ltd コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法
SG178815A1 (en) 2008-08-28 2012-03-29 Jx Nippon Mining & Metals Corp Method of producing mixed power comprising noble metal powder and oxide powder, and mixed powder comprising noble metal powder and oxide powder
CN102224276B (zh) 2009-03-03 2014-02-19 吉坤日矿日石金属株式会社 溅射靶及其制造方法
US20110003177A1 (en) 2009-07-06 2011-01-06 Solar Applied Materials Technology Corp. Method for producing sputtering target containing boron, thin film and magnetic recording media
CN102482764B (zh) 2009-08-06 2014-06-18 吉坤日矿日石金属株式会社 无机物粒子分散型溅射靶
MY149640A (en) 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
SG185768A1 (en) * 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
US20130134038A1 (en) 2010-09-03 2013-05-30 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target
CN103080368B (zh) 2010-12-09 2014-08-27 吉坤日矿日石金属株式会社 强磁性材料溅射靶
US20130175167A1 (en) 2010-12-15 2013-07-11 Jx Nippon Mining & Metals Corporation Ferromagnetic sputtering target and method for manufacturing same
SG188603A1 (en) 2010-12-17 2013-04-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
CN103261469A (zh) 2010-12-17 2013-08-21 吉坤日矿日石金属株式会社 强磁性材料溅射靶
SG189202A1 (en) 2010-12-22 2013-05-31 Jx Nippon Mining & Metals Corp Ferromagnetic sputtering target
WO2012086388A1 (ja) 2010-12-22 2012-06-28 Jx日鉱日石金属株式会社 焼結体スパッタリングターゲット
CN105239042B (zh) 2011-06-30 2019-07-05 吉坤日矿日石金属株式会社 Co-Cr-Pt-B型合金溅射靶及其制造方法
SG10201500148WA (en) * 2011-08-23 2015-03-30 Jx Nippon Mining & Metals Corp Ferromagnetic sputtering target with less particle generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282229A (ja) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体
JP3964453B2 (ja) * 2004-03-26 2007-08-22 日鉱金属株式会社 Co−Cr−Pt−B系合金スパッタリングターゲット
JP2006176808A (ja) * 2004-12-21 2006-07-06 Mitsubishi Materials Corp 磁気記録膜形成用CoCrPt−SiO2スパッタリングターゲットの製造方法
WO2009119812A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
WO2010110033A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP4422203B1 (ja) * 2009-04-01 2010-02-24 Tanakaホールディングス株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105812A (zh) * 2011-08-23 2014-10-15 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
US20150014155A1 (en) * 2012-02-23 2015-01-15 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target Containing Chromium Oxide
CN104395497A (zh) * 2012-02-23 2015-03-04 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
JP2016121395A (ja) * 2012-02-23 2016-07-07 Jx金属株式会社 クロム酸化物を含有する強磁性材スパッタリングターゲット
TWI640642B (zh) * 2012-02-23 2018-11-11 Jx日鑛日石金屬股份有限公司 Strong magnetic material sputtering target containing chromium oxide
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104169457A (zh) * 2012-03-15 2014-11-26 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
JPWO2013136962A1 (ja) * 2012-03-15 2015-08-03 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JP2015172244A (ja) * 2012-03-15 2015-10-01 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
WO2020044573A1 (ja) * 2018-08-31 2020-03-05 Jx金属株式会社 安定的に放電可能なスパッタリングターゲット

Also Published As

Publication number Publication date
TW201126000A (en) 2011-08-01
TWI494453B (zh) 2015-08-01
SG175953A1 (en) 2011-12-29
US9228251B2 (en) 2016-01-05
MY149437A (en) 2013-08-30
US20120118734A1 (en) 2012-05-17
CN102471876A (zh) 2012-05-23
CN102471876B (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2011089760A1 (ja) 強磁性材スパッタリングターゲット
JP5426030B2 (ja) 強磁性材スパッタリングターゲット
WO2010110033A1 (ja) 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP5394576B2 (ja) 強磁性材スパッタリングターゲット
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
WO2012011204A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
JP5394575B2 (ja) 強磁性材スパッタリングターゲット
JP5763178B2 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP5394577B2 (ja) 強磁性材スパッタリングターゲット
WO2012011294A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JPWO2011070850A1 (ja) Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット
WO2012081363A1 (ja) 強磁性材スパッタリングターゲット及びその製造方法
JP4758522B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4819199B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP6475526B2 (ja) 強磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029130.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010546126

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13383886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843924

Country of ref document: EP

Kind code of ref document: A1