CN103261469A - 强磁性材料溅射靶 - Google Patents

强磁性材料溅射靶 Download PDF

Info

Publication number
CN103261469A
CN103261469A CN2011800603268A CN201180060326A CN103261469A CN 103261469 A CN103261469 A CN 103261469A CN 2011800603268 A CN2011800603268 A CN 2011800603268A CN 201180060326 A CN201180060326 A CN 201180060326A CN 103261469 A CN103261469 A CN 103261469A
Authority
CN
China
Prior art keywords
target
powder
sputtering target
phase
moles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800603268A
Other languages
English (en)
Inventor
荒川笃俊
池田祐希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of CN103261469A publication Critical patent/CN103261469A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种强磁性材料溅射靶,其为包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、其余为Co的组成的金属的溅射靶,其特征在于,该靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上Ru的Co-Ru合金相(B)。本发明得到提高漏磁通、利用磁控溅射装置可以稳定放电的强磁性材料溅射靶。

Description

强磁性材料溅射靶
技术领域
本发明涉及磁记录介质的磁性体薄膜、特别是采用垂直磁记录方式的硬盘的磁记录层的成膜中使用的强磁性材料溅射靶,涉及漏磁通大、在利用磁控溅射装置进行溅射时可以得到稳定的放电的非磁性材料粒子分散型强磁性材料溅射靶。
背景技术
在以硬盘驱动器为代表的磁记录领域,作为承担记录的磁性薄膜的材料,使用以作为强磁性金属的Co、Fe或Ni为基质的材料。例如,采用面内磁记录方式的硬盘的记录层中使用以Co为主成分的Co-Cr型或Co-Cr-Pt型强磁性合金。
另外,在采用近年实用化的垂直磁记录方式的硬盘的记录层中,通常使用包含以Co为主成分的Co-Cr-Pt型强磁性合金与非磁性的无机物的复合材料。
而且,硬盘等磁记录介质的磁性薄膜,从生产率高的观点考虑,通常通过将以上述材料为成分的强磁性材料溅射靶进行溅射来制作。
作为这样的强磁性材料溅射靶的制作方法,考虑溶炼法或粉末冶金法。采用哪种方法来制作取决于所要求的特性,不能一概而论,在垂直磁记录方式的硬盘的记录层中使用的包含强磁性合金和非磁性的无机物粒子的溅射靶,一般通过粉末冶金法来制作。这是因为:需要将无机物粒子均匀地分散到合金基质中,因此难以通过溶炼法制作。
例如,提出了将通过急冷凝固法制作的具有合金相的合金粉末与构成陶瓷相的粉末进行机械合金化,使构成陶瓷相的粉末均匀地分散到合金粉末中,通过热压进行成形,从而得到磁记录介质用溅射靶的方法(专利文献1)。
此时的靶组织,看起来是基质以鱼白(鳕鱼的精子)状结合,在其周围包围着SiO2(陶瓷)的形态(专利文献1的图2)或者呈细绳状分散(专利文献1的图3)的形态。其它图不清晰,但是推测为同样的组织。
这样的组织具有后述的问题,不能说是合适的磁记录介质用溅射靶。另外,专利文献1的图4所示的球状物质是机械合金化的粉末,并非靶的组织。
另外,即使不使用通过急冷凝固法制作的合金粉末,也可以通过对于构成靶的各成分准备市售的原料粉末,将这些原料粉末以达到所需组成的方式进行称量,用球磨法等公知的方法进行混合,将混合粉末通过热压进行成型和烧结,由此制作强磁性材料溅射靶。
例如,提出了将Co粉末、Cr粉末、TiO2粉末和SiO2粉末混合而得到的混合粉末与Co球形粉末使用行星运动型混合机进行混合,将所得混合粉末利用热压进行成形而得到磁记录介质用溅射靶的方法(专利文献2)。
此时的靶组织中,可以看到在均匀分散有无机物粒子的金属基质即相(A)中具有球形的金属相(B)的形态(专利文献2的图1)。这样的组织,存在由于Co、Cr等构成元素的含有率而导致漏磁通不充分提高的情况,从而不能说是适合的磁记录介质用溅射靶。
另外,提出了将Co-Cr二元合金粉末与Pt粉末和SiO2粉末混合,对所得到的混合粉末进行热压,由此得到磁记录介质薄膜形成用溅射靶的方法(专利文献3)。
此时的靶组织,虽然没有图示,但是记载了观察到Pt相、SiO2相和Co-Cr二元合金相,并且在Co-Cr二元合金层的周围观察到扩散层。这样的组织也不能说是适合的磁记录介质用溅射靶。
溅射装置有各种方式,在上述磁记录膜的成膜中,从生产率高的观点考虑,广泛使用具备DC电源的磁控溅射装置。溅射法使用的原理如下:将作为正极的衬底与作为负极的靶对置,在惰性气体气氛中,在该衬底与该靶之间施加高电压以产生电场。此时,惰性气体电离,形成包含电子和阳离子的等离子体,该等离子体中的阳离子撞击靶(负极)的表面时将构成靶的原子击出,该飞出的原子附着到对置的衬底表面形成膜。通过这样的一系列动作,构成靶的材料在衬底上形成膜。
现有技术文献
专利文献
专利文献1:日本特开平10-88333号公报
专利文献2:日本特愿2010-011326
专利文献3:日本特开2009-1860号公报
发明内容
一般而言,当欲利用磁控溅射装置对强磁性材料溅射靶进行溅射时,由于大部分来自磁铁的磁通穿过作为强磁性体的靶的内部,因此漏磁通减少,产生溅射时不能进行放电、或者即使放电也不能稳定放电的显著问题。
为了解决该问题,考虑减少作为强磁性金属的Co的含有比例。但是,减少Co时,不能得到所需的磁记录膜,因此不是根本的解决对策。另外,通过减小靶的厚度可以提高漏磁通,但是,此时靶的寿命缩短,产生频繁更换靶的必要性,因此成为成本上升的主要原因。
本发明鉴于上述问题,目的在于提供增加漏磁通,利用磁控溅射装置可以得到稳定的放电的非磁性材料粒子分散型强磁性材料溅射靶。
为了解决上述课题,本发明人进行了广泛深入的研究,结果发现,通过调节靶的组成及组织结构,可以得到漏磁通大的靶。
基于该发现,本发明提供:
1)一种强磁性材料溅射靶,其为包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、其余为Co的组成的金属的溅射靶,其特征在于,该靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上Ru的Co-Ru合金相(B)。
另外,本发明提供:
2)一种强磁性材料溅射靶,其为包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、Pt为0.5摩尔%以上、其余为Co的组成的金属的溅射靶,其特征在于,该靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上Ru的Co-Ru合金相(B)。
另外,本发明提供:
3)如上述1)或2)所述的强磁性材料溅射靶,其特征在于,含有0.5摩尔%以上且10摩尔%以下选自B、Ti、V、Mn、Zr、Nb、Mo、Ta、W、Si、Al的一种以上元素作为添加元素。
另外,本发明提供:
4)如上述1)至3)中任一项所述的强磁性材料溅射靶,其特征在于,金属基质(A)中含有选自碳、氧化物、氮化物、碳化物、碳氮化物的一种以上无机物材料。
另外,本发明提供:
5)如上述4)所述的强磁性材料溅射靶,其特征在于,所述无机物材料为选自Cr、Ta、Si、Ti、Zr、Al、Nb、B、Co的一种以上元素的氧化物,该非磁性材料的体积比率为20体积%~35体积%。
另外,本发明提供:
6)如上述1)至5)中任一项所述的强磁性材料溅射靶,其特征在于,Co-Ru合金相(B)的平均粒径比金属基质(A)的平均粒径大,它们的平均粒径差为50μm以上。
另外,本发明提供:
7)如上述1)至6)中任一项所述的强磁性材料溅射靶,其特征在于,相对密度为97%以上。
发明效果
这样调节的本发明的非磁性材料粒子分散型强磁性材料溅射靶,为漏磁通大的靶,在磁控溅射装置中使用时,有效地促进惰性气体的电离,可以得到稳定的放电。另外,可以增厚靶的厚度,因此具有靶的更换频度小,可以以低成本制造磁性体薄膜的优点。
具体实施方式
构成本发明的强磁性材料溅射靶的主要成分,包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、其余为Co的组成的金属、或者Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、Pt为0.5摩尔%以上、其余为Co的组成的金属。
关于所述Ru,从0.5摩尔%以上开始可以得到磁性体薄膜的效果,因此下限值如前所述。另一方面,Ru过多时,在作为磁性体的特性方面不优选,因此将上限值设定为30摩尔%。
所述Cr作为必要成分而添加,不包括0摩尔%。即,含有能够进行分析的下限值以上的Cr量。Cr量如果为20摩尔%以下,则即使在微量添加的情况下也有效果。
Pt希望为45摩尔%以下。过量添加Pt时,作为磁性材料的特性下降,并且Pt昂贵,因此尽可能降低添加量从生产成本方面考虑是期望的。
另外,可以含有0.5摩尔%以上且10摩尔%以下的作为添加元素的选自B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Al的一种以上元素。这些元素是为了提高作为磁记录介质的特性而根据需要添加的元素。配合比例可以在上述范围内进行各种调节,均可以保持作为有效的磁记录介质的特性。
另外,0.5摩尔%以上且10摩尔%以下的作为添加元素的选自B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Al的一种以上元素,基本上存在于金属基质(A)中,但是这些元素有时通过后述的包含Co-Ru合金的相(B)的界面而稍微扩散到该相(B)中。本申请发明包括这些方面。
本申请发明中重要的是,靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上的Ru的Co-Ru合金相(B)。该相(B)的最大导磁率比周围组织的最大导磁率低,且形成各自被金属基质(A)隔离的结构。
具有这样的组织的靶中漏磁通提高的理由在现阶段未必清楚,但考虑如下:靶内部的磁通产生密集的部分和稀疏的部分,与具有均匀导磁率的组织相比,静磁能提高,因此磁通漏出到靶外部在能量方面是有利的。
另外,相(B)的直径期望设定为10~150μm。在金属基质(A)中存在相(B)和细微的无机物粒子,相(B)的直径小于10μm时,与无机物粒子的粒度差减小,因此,在烧结靶原料时,容易进行相(B)与金属基质(A)的扩散。
通过进行该扩散,具有金属基质(A)与相(B)的构成要素的不同变得不明确的倾向。因此,希望将直径设定为10μm以上。优选直径30μm以上。
另一方面,超过150μm时,有时随着溅射的进行靶表面的平滑性下降,并且无法得到与作为基质的相(A)的平衡,从而容易产生粉粒的问题。因此,相(B)的直径期望设定为150μm以下。
需要说明的是,这些均为增加漏磁通的手段,通过添加金属、无机物粒子的量和种类等可以调节漏磁通,因此并非必须将相(B)的尺寸设定为该条件。但是,如上所述,不言而喻的是,这属于优选条件之一。
关于相(B)的大小,即使在靶的总体积或靶的侵蚀面中所占的体积或面积为微量(例如约1%),也具有相应的效果,但是,为了充分地发挥相(B)存在的效果,期望在靶的总体积或靶的侵蚀面中所占的体积或面积为10%以上。通过大量存在相(B),可以增加漏磁通。
通过靶的组成,可以使相(B)在靶的总体积或靶的侵蚀面中所占的体积或面积为50%以上、进一步为60%以上,这些体积率或面积率可以根据靶的组成任意调节。本发明包括这些方面。另外,本发明中的相(B)的形状无需特别考虑,平均粒径是指最短直径与最长直径的平均。
相(B)的组成与金属基质(A)的组成不同,因此有时由于烧结时元素的扩散,相(B)的外围部会稍微偏离所述相(B)的组成。
但是,在相(B)的直径(长径和短径各自)缩小到2/3的相似形状的相的范围内,只要是Ru浓度为35摩尔%以上的Co-Ru合金,则可以实现目的。本申请发明包括这些情况,这样的条件也可以实现本申请发明的目的。
另外,本发明的强磁性材料溅射靶可以以分散在金属基质中的状态含有选自碳、氧化物、氮化物、碳化物、碳氮化物的一种以上无机物材料。此时,具备适合于具有颗粒结构的磁记录膜、特别是采用垂直磁记录方式的硬盘驱动器的记录膜的材料的特性。
另外,作为所述无机物材料,选自Cr、Ta、Si、Ti、Zr、Al、Nb、B、Co的一种以上元素的氧化物是有效的,该非磁性材料的体积比率可以设定为20%~35%。另外,上述Cr氧化物的情况,与作为金属添加的Cr量不同,是作为氧化铬的体积比率。
非磁性材料粒子通常分散在金属基质(A)中,但在靶的制作中也有时固着在相(B)的周围或者包含在相(B)的内部。如果是少量,则即使是这样的情况,也不会影响相(B)的磁特性,不会妨碍目的。
另外,强磁性材料溅射靶中,Co-Ru合金相(B)的平均粒径大于金属基质(A)的平均粒径,并且可以将它们的平均粒径差调节为50μm以上。如上所述,可以将相(B)的直径调节为10μm~150μm,但为了提高漏磁通密度(PTF),使Co-Ru合金相(B)的平均粒径比金属基质(A)的平均粒径大、并且将其平均粒径差调节为50μm以上更加有效。
更期望将本发明的强磁性材料溅射靶的相对密度调节为97%以上。一般已知密度越高的靶越可以减少溅射时产生的粉粒的量。本发明中同样优选调节为高密度,本申请发明可以实现97%以上的相对密度。
本发明中,相对密度是用靶的实测密度除以计算密度(也称为理论密度)而求出的值。计算密度是假设靶的构成成分不相互扩散或反应而混合存在时的密度,可以由下式计算。
式:计算密度=Σ(构成成分的分子量×构成成分的摩尔比)/Σ(构成成分的分子量×构成成分的摩尔比/构成成分的文献值密度)
在此,Σ是指对靶的全部构成成分求和。
这样调节的靶,是漏磁通大的靶,在磁控溅射装置中使用时,有效地促进惰性气体的电离,可以得到稳定的放电。另外,可以增厚靶的厚度,因此具有靶的更换频度变小,可以以低成本制造磁性体薄膜的优点。另外,通过高密度化,具有可以降低造成成品率下降的粉粒的产生量的优点。
本发明的强磁性材料溅射靶,可以通过粉末冶金法制作。首先,准备金属元素或合金的粉末(为了形成相(B),需要Co-Ru合金粉末)以及根据需要的添加金属元素的粉末或无机物材料的粉末。
各金属元素的粉末的制作方法没有特别限制,这些粉末希望使用最大粒径20μm以下的粉末。另一方面,过细时,存在促进氧化从而成分组成不在范围内的问题,因此进一步希望设定为0.1μm以上。
然后,称量这些金属粉末和合金粉末以成为所需组成,并使用球磨法等公知的方法将它们粉碎和混合。对于要添加无机物粉末的情况,可以在该阶段与金属粉末和合金粉末混合。
准备碳粉末、氧化物粉末、氮化物粉末、碳化物粉末或碳氮化物粉末作为无机物粉末,无机物粉末希望使用最大粒径为5μm以下的粉末。另一方面,过细时容易凝聚,因此进一步希望使用0.1μm以上的粉末。
Co-Ru粉末可以通过将Co粉末与Ru粉末的混合粉末烧结后进行粉碎和筛分来得到。粉碎期望使用高能球磨机。使用由此准备的直径在30~150μm范围内的Co-Ru粉末,与预先准备的金属粉末、根据需要选择的无机物粉末用混合机进行混合。作为混合机,优选行星运动型混合机或行星运动型搅拌混合机。另外,考虑到混合中的氧化问题,优选在惰性气体气氛中或真空中混合。
使用的高能球磨机与球磨机或振动磨机相比,可以在短时间内进行原料粉末的粉碎、混合。
使用真空热压装置将这样得到的粉末成形、烧结,并切削加工为所需的形状,由此可以制作本发明的强磁性材料溅射靶。另外,所述的Co-Ru粉末与靶的组织中观察到的相(B)相对应。
另外,成形、烧结不限于热压,也可以使用放电等离子体烧结法、热等静压烧结法。烧结时的保持温度优选设定为靶充分致密化的温度范围中的最低温度。虽然也取决于靶的组成,但多数情况下在800~1300℃的温度范围内。另外,烧结时的压力优选为300~500kg/cm2
实施例
以下,基于实施例和比较例进行说明。另外,本实施例仅仅是一例,本发明不限于该实施例。即,本发明仅仅由权利要求书的范围限制,本发明也包括实施例以外的各种变形。
(实施例1、比较例1)
在实施例1中,作为原料粉末,准备平均粒径3μm的Co粉末、平均粒径6μm的Cr粉末、平均粒径3μm的Pt粉末、平均粒径2μm的CoO粉末、平均粒径1μm的SiO2粉末、直径在50~150μm范围内的Co-45Ru(摩尔%)粉末。
以Co粉末33.46重量%、Cr粉末2.83重量%、Pt粉末31.86重量%、CoO粉末4.64重量%、SiO2粉末5.20重量%、Co-Ru粉末22.01重量%的重量比率称量这些粉末,使得靶的组成为88(Co-5Cr-15Pt-9Ru)-5CoO-7SiO2(摩尔%)。
然后,将Co粉末、Cr粉末、Pt粉末和SiO2粉末与作为粉碎介质的二氧化锆球一起密封到容量10升的球磨机罐中,旋转20小时进行混合。再将所得到的混合粉末与Co-Ru粉末在球容量约7升的行星运动型混合机中混合10分钟。
将该混合粉填充到碳制模具中,在真空气氛下、在温度1100℃、保持时间2小时、压力30MPa的条件下进行热压,得到烧结体。然后,使用平面磨床将所得烧结体进行切削加工,得到直径180mm、厚度5mm的圆盘状靶。
漏磁通的测定根据ASTM F2086-01(Standard Test Method for PassThrough Flux of Circular Magnetic Sputtering Targets,方法2)实施。将靶的中心固定,用使其旋转0度、30度、60度、90度和120度测定的漏磁通密度除以ASTM中定义的Reference Field(参考场)的值,并乘以100,以百分率表示。然后,将对这五个点求平均而得到的结果作为平均漏磁通密度(PTF(%))记载于表1中。
比较例1中,作为原料粉末,准备平均粒径3μm的Co粉末、平均粒径6μm的Cr粉末、平均粒径3μm的Pt粉末、平均粒径10μm的Ru粉末、平均粒径2μm的CoO粉末、平均粒径1μm的SiO2粉末。以Co粉末45.56重量%、Cr粉末2.83重量%、Pt粉末31.86重量%、Ru粉末9.90重量%、CoO粉末4.64重量%、SiO2粉末5.20重量%的重量比率称量这些粉末,使得靶的组成为88(Co-5Cr-15Pt-9Ru)-5CoO-7SiO2(摩尔%)。
然后,将这些粉末与作为粉碎介质的二氧化锆球一起密封到容量10L的球磨罐中,旋转混合20小时。
然后,将该混合粉末填充到碳制模具中,在真空气氛中,在温度1100℃、保持时间2小时、压力30MPa的条件下进行热压,得到烧结体。然后,用平面磨床将所得烧结体加工为直径180mm、厚度5mm的圆盘状靶,并测定平均漏磁通密度。结果如表1所示。
表1
Figure BDA00003346611800121
如表1所示,实施例1的靶的平均漏磁通密度为45.5%,确认与比较例1的39.1%相比显著提高。另外,实施例1的相对密度为98.5%,得到相对密度超过97%的高密度靶。
观察实施例1的靶研磨面,在靶的组织中可以观察到与SiO2粒子对应的部分。另外,也可以观察到在微细分散有SiO2粒子的基质中分散着不含SiO2粒子的大尺寸相。该相相当于本申请发明的相(B),是包含含有45摩尔%Ru的Co-Ru合金的相,与相(A)的平均粒径差为60μm以上。
与此相对,在比较例1中,在分散有SiO2粒子的靶的基质相中,完全没有观察到与相(A)的平均粒径差为50μm以上的粗粒的相。结果,如表1所示,比较例1的平均漏磁通密度(PTF)低至39.1%,因此可以看出,实施例1中观察到的相(B)的存在是有效的。
(实施例2)
在实施例2中,作为原料粉末,准备平均粒径3μm的Co粉末、平均粒径6μm的Cr粉末、均粒径2μm的CoO粉末、平均粒径1μm的SiO2粉末、直径在50~150μm范围内的Co-45Ru(摩尔%)粉末。
以Co粉末55.40重量%、Cr粉末3.64重量%、CoO粉末5.96重量%、SiO2粉末6.69重量%、Co-Ru粉末28.30重量%的重量比率称量这些粉末,使得靶的组成为88(Co-5Cr-9Ru)-5CoO-7SiO2(摩尔%)。
然后,将Co粉末、Cr粉末、CoO粉末和SiO2粉末与作为粉碎介质的二氧化锆球一起密封到容量10升的球磨机罐中,旋转20小时进行混合。再将所得到的混合粉末与Co-Ru粉末在球容量约7升的行星运动型混合机中混合10分钟。
将该混合粉填充到碳制模具中,在真空气氛下、在温度1050℃、保持时间2小时、压力30MPa的条件下进行热压,得到烧结体。然后,用平面磨床将所得烧结体加工为直径180mm、厚度5mm的圆盘状靶,并测定平均漏磁通密度。结果如表2所示。
表2
Figure BDA00003346611800131
如表2所示,实施例2的靶的平均漏磁通密度为42.5%,并且相对密度为98.5%,得到超过97%的高密度靶。
另外,与实施例1同样地观察实施例2的靶研磨面,在靶组织中可以观察到与SiO2粒子对应的部分。另外,也可以观察到在微细分散有SiO2粒子的基质中分散着不含SiO2粒子的大尺寸相。该相相当于本申请发明的相(B),是包含含有45摩尔%Ru的Co-Ru合金的相,与相(A)的平均粒径差为60μm以上。
上述实施例中,例示了靶的组成为88(Co-5Cr-15Pt-9Ru)-5CoO-7SiO2(摩尔%)的例子和靶的组成为88(Co-5Cr-9Ru)-5CoO-7SiO2(摩尔%)的例子,但是,即使在本申请发明的范围内变更它们的组成比,也可以确认同样的效果。
另外,上述实施例中,例示了单独添加Ru的例子,但可以含有选自B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Al的一种以上元素作为添加元素,均可以保持作为有效的磁记录介质的特性。即,这些元素是为了提高作为磁记录介质的特性而根据需要添加的元素,虽然实施例中并没有特别例示,但确认具有与本申请实施例同样的效果。
另外,上述实施例中,例示了添加有Si的氧化物的例子,但除此以外的Cr、Ta、Ti、Zr、Al、Nb、B、Co的氧化物也具有同等的效果。另外,关于这些元素,例示了添加氧化物的情况,但添加它们的氮化物、碳化物、碳氮化物以及碳的情况下,也确认可以得到与氧化物的添加同等的效果。
产业实用性
本发明通过调节强磁性材料溅射靶的组织结构可以显著地提高漏磁通。因此,如果使用本发明的靶,在利用磁控溅射装置进行溅射时可以得到稳定的放电。另外,可以增厚靶的厚度,因此可以延长靶的寿命,可以以低成本制造磁性体薄膜。
本发明作为磁记录介质的磁性体薄膜、特别是硬盘驱动器记录层的成膜中使用的强磁性材料溅射靶有用。

Claims (7)

1.一种强磁性材料溅射靶,其为包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、其余为Co的组成的金属的溅射靶,其特征在于,该靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上Ru的Co-Ru合金相(B)。
2.一种强磁性材料溅射靶,其为包含Cr为20摩尔%以下、Ru为0.5摩尔%以上且30摩尔%以下、Pt为0.5摩尔%以上、其余为Co的组成的金属的溅射靶,其特征在于,该靶的组织具有金属基质(A)和在所述(A)中的、含有35摩尔%以上Ru的Co-Ru合金相(B)。
3.如权利要求1或2所述的强磁性材料溅射靶,其特征在于,含有0.5摩尔%以上且10摩尔%以下选自B、Ti、V、Mn、Zr、Nb、Mo、Ta、W、Si、Al的一种以上元素作为添加元素。
4.如权利要求1至3中任一项所述的强磁性材料溅射靶,其特征在于,金属基质(A)中含有选自碳、氧化物、氮化物、碳化物、碳氮化物的一种以上无机物材料。
5.如权利要求1~4中任一项所述的强磁性材料溅射靶,其特征在于,所述无机物材料为选自Cr、Ta、Si、Ti、Zr、Al、Nb、B、Co的一种以上元素的氧化物,该非磁性材料的体积比率为20%~35%。
6.如权利要求4所述的强磁性材料溅射靶,其特征在于,Co-Ru合金相(B)的平均粒径比金属基质(A)的平均粒径大,它们的平均粒径差为50μm以上。
7.如权利要求1至6中任一项所述的强磁性材料溅射靶,其特征在于,相对密度为97%以上。
CN2011800603268A 2010-12-17 2011-12-15 强磁性材料溅射靶 Pending CN103261469A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010281728 2010-12-17
JP2010-281728 2010-12-17
PCT/JP2011/079056 WO2012081668A1 (ja) 2010-12-17 2011-12-15 強磁性材スパッタリングターゲット

Publications (1)

Publication Number Publication Date
CN103261469A true CN103261469A (zh) 2013-08-21

Family

ID=46244762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800603268A Pending CN103261469A (zh) 2010-12-17 2011-12-15 强磁性材料溅射靶

Country Status (7)

Country Link
US (1) US20130206593A1 (zh)
JP (1) JP5394575B2 (zh)
CN (1) CN103261469A (zh)
MY (1) MY166173A (zh)
SG (1) SG189832A1 (zh)
TW (1) TW201229265A (zh)
WO (1) WO2012081668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566253A (zh) * 2018-08-09 2020-08-21 Jx金属株式会社 溅射靶以及磁性膜

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG175953A1 (en) 2010-01-21 2011-12-29 Jx Nippon Mining & Metals Corp Ferromagnetic-material sputtering target
US8679268B2 (en) 2010-07-20 2014-03-25 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
US9181617B2 (en) 2010-07-20 2015-11-10 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
US20130206592A1 (en) * 2010-12-22 2013-08-15 Jx Nippon Mining & Metals Corporation Ferromagnetic Sputtering Target
SG11201403857TA (en) 2012-01-18 2014-09-26 Jx Nippon Mining & Metals Corp Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
US9773653B2 (en) 2012-02-23 2017-09-26 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target containing chromium oxide
WO2013190943A1 (ja) 2012-06-18 2013-12-27 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
SG11201407011UA (en) * 2012-09-18 2014-11-27 Jx Nippon Mining & Metals Corp Sputtering target
TWI671418B (zh) * 2017-09-21 2019-09-11 日商Jx金屬股份有限公司 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
TWI679291B (zh) * 2017-09-21 2019-12-11 日商Jx金屬股份有限公司 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1854318A (zh) * 2005-04-18 2006-11-01 黑罗伊斯有限公司 钴合金基体组合物的增强制剂
US20070169853A1 (en) * 2006-01-23 2007-07-26 Heraeus, Inc. Magnetic sputter targets manufactured using directional solidification
US20070189916A1 (en) * 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345199B2 (ja) * 1994-12-21 2002-11-18 株式会社日立製作所 垂直磁気記録媒体及び磁気記録装置
JP4552668B2 (ja) * 2004-02-05 2010-09-29 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体、および、その製造方法
US20050274221A1 (en) * 2004-06-15 2005-12-15 Heraeus, Inc. Enhanced sputter target alloy compositions
JPWO2009014205A1 (ja) * 2007-07-26 2010-10-07 昭和電工株式会社 垂直磁気記録媒体、その製造方法および磁気記録再生装置
US8679268B2 (en) * 2010-07-20 2014-03-25 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
US9181617B2 (en) * 2010-07-20 2015-11-10 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189916A1 (en) * 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
CN1854318A (zh) * 2005-04-18 2006-11-01 黑罗伊斯有限公司 钴合金基体组合物的增强制剂
US20070169853A1 (en) * 2006-01-23 2007-07-26 Heraeus, Inc. Magnetic sputter targets manufactured using directional solidification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566253A (zh) * 2018-08-09 2020-08-21 Jx金属株式会社 溅射靶以及磁性膜
US11894221B2 (en) 2018-08-09 2024-02-06 Jx Metals Corporation Sputtering target and magnetic film

Also Published As

Publication number Publication date
US20130206593A1 (en) 2013-08-15
JP5394575B2 (ja) 2014-01-22
WO2012081668A1 (ja) 2012-06-21
SG189832A1 (en) 2013-06-28
JPWO2012081668A1 (ja) 2014-05-22
TW201229265A (en) 2012-07-16
MY166173A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
CN103080368B (zh) 强磁性材料溅射靶
CN103261470B (zh) 强磁性材料溅射靶
CN103261469A (zh) 强磁性材料溅射靶
CN102471876B (zh) 强磁性材料溅射靶
CN102482765B (zh) 粉粒产生少的强磁性材料溅射靶
CN102333905B (zh) 非磁性材料粒子分散型强磁性材料溅射靶
CN103180481B (zh) 强磁性材料溅射靶
CN103003468B (zh) 粉粒产生少的强磁性材料溅射靶
CN103097570B (zh) 强磁性材料溅射靶及其制造方法
CN103210115B (zh) 磁记录膜用溅射靶及其制造方法
CN102482764A (zh) 无机物粒子分散型溅射靶
CN104145042A (zh) 磁性材料溅射靶及其制造方法
CN103038388A (zh) 强磁性材料溅射靶
CN102656290A (zh) 在Co或Co合金相中分散有氧化物相的溅射靶、包含Co或Co合金相和氧化物相的磁性体薄膜及使用该磁性体薄膜的磁记录介质
CN104105812A (zh) 粉粒产生少的强磁性材料溅射靶
CN103262166A (zh) 磁记录膜用溅射靶及其制造方法
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
JP5888664B2 (ja) 強磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130821