WO2012081363A1 - 強磁性材スパッタリングターゲット及びその製造方法 - Google Patents
強磁性材スパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2012081363A1 WO2012081363A1 PCT/JP2011/076774 JP2011076774W WO2012081363A1 WO 2012081363 A1 WO2012081363 A1 WO 2012081363A1 JP 2011076774 W JP2011076774 W JP 2011076774W WO 2012081363 A1 WO2012081363 A1 WO 2012081363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- mol
- sio
- sputtering target
- ferromagnetic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0026—Matrix based on Ni, Co, Cr or alloys thereof
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording method, and an oxide that causes generation of particles during sputtering.
- the present invention relates to a non-magnetic material particle-dispersed ferromagnetic sputtering target capable of suppressing abnormal discharge and a method for manufacturing the same.
- a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
- a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
- the inert gas is ionized and a plasma composed of electrons and cations is formed.
- a plasma composed of electrons and cations is formed.
- the cations in the plasma collide with the surface of the target (negative electrode)
- atoms constituting the target are knocked out.
- the projected atoms adhere to the opposing substrate surface to form a film.
- the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
- materials based on ferromagnetic metals such as Co, Fe, or Ni are used as magnetic thin film materials for recording.
- ferromagnetic metals such as Co, Fe, or Ni are used as magnetic thin film materials for recording.
- a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
- a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
- a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
- a melting method or a powder metallurgy method can be considered as a method for producing such a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
- Patent Document 1 An alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
- Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
- the target structure is dispersed in a state in which the substrate is bonded in a white shape (sperm sperm) and surrounding SiO 2 (ceramics) (FIG. 2 of Patent Document 1) or in a thin string shape. (FIG. 3 of patent document 1) A state can be seen. Other figures are unclear, but are assumed to be similar.
- Such a structure has the problems described later and cannot be said to be a suitable sputtering target for a magnetic recording medium.
- the spherical substance shown by FIG. 4 of patent document 1 is a mechanical alloy powder, and is not a structure
- the ferromagnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
- Patent Document 2 a mixed powder obtained by mixing Co powder, Cr powder, TiO 2 powder and SiO 2 powder and Co spherical powder are mixed with a planetary motion mixer, and this mixed powder is molded by hot pressing and used for a magnetic recording medium.
- Patent Document 2 A method for obtaining a sputtering target has been proposed (Patent Document 2).
- the target structure in this case has a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed (FIG. 1 of Patent Document 2).
- a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed FIG. 1 of Patent Document 2.
- Such a structure is good in terms of improving leakage magnetic flux, but cannot be said to be a suitable sputtering target for a magnetic recording medium from the viewpoint of suppressing generation of particles during sputtering.
- Patent Document 3 Also proposed is a method of obtaining a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder.
- the target structure in this case is not shown in the figure, but a Pt phase, a SiO 2 phase and a Co—Cr binary alloy phase can be seen, and a diffusion layer can be observed around the Co—Cr binary alloy layer. It is described.
- Such a structure is not a suitable sputtering target for magnetic recording media.
- Patent Document 4 proposes a perpendicular magnetic recording medium having SiC and SiOx (x: 1 to 2).
- Patent Document 5 describes a magnetic material target containing Co, Pt, a first metal oxide, a second metal oxide, and a third metal oxide.
- Patent Document 6 proposes a sputtering target composed of a Co and Pt matrix phase and a metal oxide phase, suppresses the growth of crystal grains, and obtains a low magnetic permeability and high density target to form a film. Proposals have been made to increase efficiency. Further, Patent Document 7 discloses a non-magnetic material particle dispersion in which Co, Fe as a main component and a material selected from oxides, nitrides, carbides, and silicides are used as ferromagnetic materials, and the shape of the non-magnetic material is specified. Type ferromagnetic sputtering target is described.
- Patent Document 8 describes a non-magnetic material particle-dispersed ferromagnetic sputtering target in which non-magnetic material particles made of oxide are dispersed in a ferromagnetic material of a Co—Cr alloy, and the particle diameter thereof is described. A finely defined sputtering target is described.
- Patent Document 9 describes a magnetic film having a granular structure.
- an oxide such as SiO 2 , Cr 2 O 3 , or TiO 2 contained is an anomaly. It is the cause of discharge. Due to this abnormal discharge, generation of particles during sputtering becomes a problem.
- an object of the present invention is to suppress abnormal discharge of oxides and reduce the generation of particles during sputtering caused by abnormal discharge.
- the probability of abnormal discharge has been reduced by reducing the particle size of the oxide, but with the increase in recording density of magnetic recording media, the allowable particle level has become stricter, so it has been further improved
- the present inventors have conducted intensive research. As a result, by adjusting the composition and structure of the target, abnormal discharge due to oxide during sputtering does not occur, and generation of particles is small. I found that I got a target.
- the present invention 1) A sputtering target having a composition in which Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
- a ferromagnetic sputtering target characterized in that the Sn is contained in SiO 2 particles (B) dispersed in A).
- the present invention also provides: 2) In addition to the SiO 2 , at least one kind of oxidation selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 5-15 mol% of the product, these oxides are dispersed in the metal substrate (A), and Sn is contained in these oxides.
- a ferromagnetic sputtering target is provided.
- the present invention provides 3) The ferromagnetic sputtering target according to any one of 1) to 2) above, which contains 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta. To do. 4) The ferromagnetic sputtering target according to any one of 1) to 3) above, wherein the relative density is 97% or more.
- the present invention provides 5) SiO 2 powder and SnO so that the composition is such that Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
- this mixed powder is further mixed with Co powder, Cr powder, and Pt powder similarly prepared so as to have the above composition, and these mixed powders are hot pressed.
- the SiO 2 particles (B) are dispersed in the sintered metal substrate (A), and a sintered body having a structure containing the Sn is contained in the dispersed SiO 2 particles (B).
- the manufacturing method of the ferromagnetic material sputtering target characterized by these is provided.
- the present invention provides 6) In addition to the SiO 2 , at least one kind of oxidation selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 5 to 15 mol% of the product is added, and these oxides are dispersed in the sintered metal substrate (A), and a sintered body having a structure containing Sn in these oxides is obtained.
- the method for producing a ferromagnetic sputtering target according to 5) above is provided.
- the present invention provides 7) The ferromagnetic material sputtering according to any one of 5) to 6) above, wherein 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta are added and sintered. A method for manufacturing a target is provided.
- the thus prepared non-magnetic material particle dispersion type ferromagnetic sputtering target of the present invention does not cause abnormal discharge due to oxide during sputtering, and a target with less generation of particles can be obtained. Furthermore, it has an excellent effect of suppressing the abnormal discharge of the oxide, reducing the generation of particles during sputtering caused by the abnormal discharge, and obtaining the cost improvement effect by improving the yield.
- the main components constituting the ferromagnetic sputtering target of the present invention are: Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co. It is made of a metal having a composition of These Cr amount, Pt amount, and Co amount are effective amounts for retaining the properties of the ferromagnetic material sputtering target, that is, the ferromagnetic material thin film.
- Cr is added as an essential component and excludes 0 mol%. That is, it contains at least a Cr amount that is at least the lower limit that can be analyzed. If the amount of Cr is 20 mol% or less, there is an effect even when a small amount is added.
- the present invention includes these.
- the above are components required as a magnetic recording medium, and the blending ratio can be variously adjusted within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium. In the above,
- the ferromagnetic material sputtering target was prepared by mixing SiO 2 powder and SnO 2 powder or Sn powder in advance so as to have the above-mentioned composition, and then preparing the mixed powder in the same manner so as to have the above-mentioned composition.
- Co powder, Cr powder, and Pt powder can be mixed, and these mixed powders can be hot pressed.
- the ferromagnetic Co-Cr-Pt-based, the addition of SiO 2 is SiO 2 in the sintered sputtering target is present as particles, since SiO 2 is an insulator, alone If present, it causes arcing (abnormal discharge). Therefore, in the present invention, by introducing a Sn having electrical conductivity SiO 2, lowering the electrical resistance, it is to suppress abnormal discharge due to oxides.
- the reason why the amount of SiO 2 is 5 mol% or more and 15 mol% or less is that it is a general range showing good magnetic properties.
- the addition of Sn may be single, or even when combined.
- Single addition means addition as SnO 2 powder or Sn powder
- composite addition means addition as SiO 2 powder and SnO 2 powder or mixed powder of SiO 2 powder and Sn powder.
- the effective addition amount is in the range of 0.05 to 0.60 mol%. If it is less than the lower limit, there is no effect of imparting conductivity to SiO 2 , and if it exceeds the upper limit, the magnetic properties of the sputtered film may be affected, and desired properties may not be obtained.
- one or more oxides selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 may be used. 5 to 15 mol% can be contained. These oxides are dispersed in the metal substrate (A), and Sn can also be contained in these oxides as in the case of the SiO 2 . These oxides can be arbitrarily selected and added according to the type of ferromagnetic film required. The said addition amount is an effective amount for exhibiting the effect of addition.
- 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta can be added to the ferromagnetic material sputtering target of the present invention. These are elements added as necessary in order to improve the characteristics as a magnetic recording medium.
- the said addition amount is an effective amount for exhibiting the effect of addition.
- the ferromagnetic material sputtering target of the present invention desirably has a relative density of 97% or more.
- a higher density target can reduce the amount of particles generated during sputtering.
- a relative density of 97% or more can be achieved.
- the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
- the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
- Calculated density Sigma ⁇ (Molecular weight of constituent component x Molar ratio of constituent component) / ⁇ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
- ⁇ means taking the sum for all the constituent components of the target.
- the target adjusted in this way does not cause arcing (abnormal discharge) due to oxide during sputtering, and a target with less generation of particles can be obtained. Furthermore, as described above, it is possible to impart conductivity to the SiO 2 particles by adding Sn, to prevent the occurrence of abnormal discharge, and to reduce the amount of particles that cause a decrease in yield. effective.
- the ferromagnetic material sputtering target of the present invention can be produced by powder metallurgy.
- a powder of each metal element and, if necessary, a powder of an additional metal element are prepared. These powders desirably have a maximum particle size of 20 ⁇ m or less. Further, alloy powders of these metals may be prepared instead of the powders of the respective metal elements, but in this case as well, it is desirable that the maximum particle size is 20 ⁇ m or less. On the other hand, if it is too small, there is a problem that oxidation is accelerated and the component composition does not fall within the range.
- these metal powder and alloy powder are weighed so as to have a desired composition, and mixed by pulverization using a known technique such as a ball mill.
- oxide powder other than SiO 2 it may be mixed with metal powder and alloy powder at this stage. It is desirable to use an oxide powder other than SiO 2 having a maximum particle size of 5 ⁇ m or less. On the other hand, since it will be easy to aggregate when it is too small, it is more desirable to use a 0.1 micrometer or more thing.
- the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
- the SiO 2 powder and SnO are mixed so that the composition of Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
- a method of mixing Co powders, Cr powders, and Pt powders prepared in the same manner so as to have the above composition is effective.
- the ferromagnetic material sputtering target of the present invention can be produced by molding and sintering the powder thus obtained using a vacuum hot press apparatus and cutting it into a desired shape.
- the added Sn or SnO 2 is preferentially contained in the SiO 2 grains dispersed in the metal base phase in the sintered compact target, and the electric resistance of the SiO 2 grains is lowered.
- the electrical resistance after the addition can be 5.5 ⁇ 10 16 ⁇ ⁇ cm or less.
- Sn or SnO 2 is not added, the electric resistance exceeds 5.5 ⁇ 10 16 ⁇ ⁇ cm and acts as an insulating material, causing abnormal discharge.
- the present invention eliminates this phenomenon. The occurrence of arcing (abnormal discharge) has been significantly reduced.
- the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
- the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 900 to 1200 ° C.
- the Co—Cr—Pt ferromagnet has been described. However, the Co—Pt ferromagnet can obtain the same effect by the same component composition and manufacturing method.
- Example 1 As raw material powder, SiO 2 powder with an average particle diameter of 1 ⁇ m and SnO 2 powder with an average particle diameter of 1 ⁇ m were weighed in advance so as to be 95 wt% of SiO 2 powder and 5 wt% of SnO 2 powder. For 1 hour to prepare a SiO 2 —SnO 2 mixed powder.
- This mixed powder a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, and a Pt powder having an average particle diameter of 3 ⁇ m, have a target composition of 78Co-12Cr-5Pt-5SiO 2 -0.1SnO 2 (mol %), Co powder 70.56 wt%, Cr powder 9.59 wt%, Pt powder 14.99 wt%, SiO 2 —SnO 2 mixed powder 4.86 wt% were weighed.
- the Co powder, Cr powder, Pt powder, and SiO 2 —SnO 2 mixed powder were enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
- This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1100 ° C., a holding time of 3 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
- the number of particles generated in a steady state was 2.8.
- the relative density was 98.5%, and a high-density target exceeding 97% was obtained.
- Comparative Example 1 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were 70.76 wt% Co powder, 9.60 wt% Cr powder, 15.01 wt% Pt, 4.62 wt% SiO 2 powder so that the target composition would be 78Co-12Cr-5Pt-5SiO 2 (mol%). Weighed at a weight ratio of
- the present invention makes it possible to adjust the structure of the ferromagnetic material sputtering target and reduce the generation of particles without causing abnormal discharge due to oxides during sputtering. Therefore, when the target of the present invention is used, a stable discharge can be obtained when sputtering with a magnetron sputtering apparatus. Furthermore, it has the excellent effect of suppressing the abnormal discharge of oxide, reducing the generation of particles during sputtering caused by the abnormal discharge, and obtaining the cost improvement effect by improving the yield. It is useful as a ferromagnetic material sputtering target used for forming a thin film, particularly a hard disk drive recording layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
この場合のターゲット組織は、素地が白子(鱈の精子)状に結合し、その周りにSiO2(セラミックス)が取り囲んでいる様子(特許文献1の図2)又は細紐状に分散している(特許文献1の図3)様子が見える。他の図は不鮮明であるが、同様の組織と推測される。このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。なお、特許文献1の図4に示されている球状物質は、メカニカルアロイグ粉末であり、ターゲットの組織ではない。
このような組織は、漏洩磁束向上の点では良いがスパッタ時のパーティクルの発生抑制の点からは好適な磁気記録媒体用スパッタリングターゲットとは言えない。
また、特許文献7には、強磁性体材料としてCo、Feを主成分とし、酸化物、窒化物、炭化物、珪化物から選択した材料で、非磁性材の形状を特定した非磁性材粒子分散型強磁性材スパッタリングターゲットが記載されている。
これまでは酸化物の粒径を小さくすることで異常放電の確率を減らしてきたが、磁気記録媒体の記録密度向上に伴い、許容パーティクルレベルが厳しくなってきていることから、さらなる改善が求められているのが現状である。
1)Crが20mol%以下、Ptが5~30mol%、SiO2が5~15mol%、Snが0.05~0.60mol%、残余がCoである組成のスパッタリングターゲットであって、金属素地(A)中に分散しているSiO2の粒子(B)中に、前記Snが含有されていることを特徴とする強磁性材スパッタリングターゲットを提供する。
2)前記SiO2以外に、さらにTiO2、Ti2O3、Cr2O3、Ta2O5,Ti5O9、B2O3、CoO、Co3O4から選択した一種以上の酸化物を5~15mol%含有し、これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、Snが含有されていることを特徴とする上記1)記載の強磁性材スパッタリングターゲットを提供する。
3)Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有することを特徴とする上記1)~2)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
4)相対密度が97%以上であることを特徴とする上記1)~3)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
5)Crが20mol%以下、Ptが5~30mol%、SiO2が5~15mol%、Snが0.05~0.60mol%、残余がCoである組成となるように、SiO2粉とSnO2粉若しくはSn粉を、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合し、これらの混合粉をホットプレスして、焼結金属素地(A)中にSiO2の粒子(B)を分散させると共に、該分散したSiO2の粒子(B)中に、前記Snが含有された組織の焼結体を得ることを特徴とする強磁性材スパッタリングターゲットの製造方法を提供する。
6)前記SiO2以外に、さらにTiO2、Ti2O3、Cr2O3、Ta2O5,Ti5O9、B2O3、CoO、Co3O4から選択した一種以上の酸化物を5~15mol%添加し、これらの酸化物が焼結金属素地(A)中に分散させると共に、かつこれらの酸化物中に、Snが含有された組織の焼結体を得ることを特徴とする上記5)記載の強磁性材スパッタリングターゲットの製造方法を提供する。
7)Ru、B、Taから選択した一種以上の元素を0.5~10mol%添加し、焼結することを特徴とする上記5)~6)のいずれか一項に記載の強磁性材スパッタリングターゲットの製造方法を提供する。
さらに、酸化物の異常放電を抑制し、異常放電が原因となるスパッタリング中のパーティクル発生を減少させ、歩留まり向上によるコスト改善効果を得ることができるという優れた効果を有する。
上記においては、
本発明において、重要なことは焼結金属素地(A)中にSiO2の粒子(B)を分散させると共に、該分散したSiO2の粒子(B)中に、前記Snが含有された組織の焼結体を得ることである。
SiO2の量5mol%以上15mol%以下とするのは、良好な磁気特性を示す一般的な範囲であるからである。
これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、前記SiO2と同様に、Snを含有させることもできる。これらの酸化物は、必要とされる強磁性膜の種類に応じて、任意に選択し添加することができる。前記添加量は、添加の効果を発揮させるための有効量である。
本発明においても同様、高密度とするのが好ましい。本願発明では、相対密度97%以上を達成することができる。
式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
さらに、上記の通り、Snの添加によりSiO2の粒子に導電性を付与し、異常放電の発生を防止することが可能となり、歩留まり低下の原因となるパーティクルの発生量を低減させることができるという効果がある。
一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることがさらに望ましい。
SiO2以外の酸化物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
また、ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットを作製することができる。
Sn若しくはSnO2を添加しない場合の電気抵抗は5.5×1016Ω・cmを超え、絶縁物質として作用するため、異常放電を引き起こす原因となっていたが、本願発明はこの現象を無くすことが可能となり、アーキング(異常放電)の発生は著しく減少した。
上記においては、Co-Cr-Pt系の強磁性体について説明したが、Co-Pt系の強磁性体についても、同様な成分組成と製造方法により、同等の効果を得ることができる。
実施例1では、原料粉末として、あらかじめ、平均粒径1μmのSiO2粉末と平均粒径1μmのSnO2粉末を、SiO2粉末95wt%、SnO2粉末5wt%となるように秤量し、ボールミルにて1時間混合し、SiO2-SnO2混合粉末を用意した。この混合粉末と、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末とを、ターゲットの組成が78Co-12Cr-5Pt-5SiO2-0.1SnO2(mol%)となるように、Co粉末70.56wt%、Cr粉末9.59wt%、Pt粉末14.99wt%、SiO2-SnO2混合粉末4.86wt%の重量比率で秤量した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
比較例1では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉末、平均粒径1μmのSiO2粉を用意した。これらの粉末をターゲット組成が78Co-12Cr-5Pt-5SiO2(mol%)となるように、Co粉末70.76wt%、Cr粉末9.60wt%、Pt15.01wt%、SiO2粉末4.62wt%の重量比率で秤量した。
次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
なお、上記実施例においては、SiO2の添加の例を示したが、さらにTiO2、Ti2O3、Cr2O3、Ta2O5,Ti5O9、B2O3、CoO、Co3O4から選択した一種以上の酸化物を添加した場合でも、SiO2を添加した場合と同等の効果を得ることができ、また、Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有する場合には、磁気記録媒体としての特性を、さらに向上させることができることを確認している。
Claims (7)
- Crが20mol%以下、Ptが5~30mol%、SiO2が5~15mol%、Snが0.05~0.60mol%、残余がCoである組成のスパッタリングターゲットであって、金属素地(A)中に分散しているSiO2の粒子(B)中に、前記Snが含有されていることを特徴とする強磁性材スパッタリングターゲット。
- 前記SiO2以外に、さらにTiO2、Ti2O3、Cr2O3、Ta2O5,Ti5O9、B2O3、CoO、Co3O4から選択した一種以上の酸化物を5~15mol%含有し、これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、Snが含有されていることを特徴とする請求項1記載の強磁性材スパッタリングターゲット。
- Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有することを特徴とする請求項1~2のいずれか一項に記載の強磁性材スパッタリングターゲット。
- 相対密度が97%以上であることを特徴とする請求項1~3のいずれか一項に記載の強磁性材スパッタリングターゲット。
- Crが20mol%以下、Ptが5~30mol%、SiO2が5~15mol%、Snが0.05~0.60mol%、残余がCoである組成となるように、SiO2粉とSnO2粉若しくはSn粉を、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合し、これらの混合粉をホットプレスして、焼結金属素地(A)中SiO2の粒子(B)を分散させると共に、該分散したSiO2の粒子(B)中に、前記Snが含有された組織の焼結体を得ることを特徴とする強磁性材スパッタリングターゲットの製造方法。
- 前記SiO2以外に、さらにTiO2、Ti2O3、Cr2O3、Ta2O5,Ti5O9、B2O3、CoO、Co3O4から選択した一種以上の酸化物を5~15mol%添加し、これらの酸化物が焼結金属素地(A)中に分散させると共に、かつこれらの酸化物中に、Snが含有された組織の焼結体を得ることを特徴とする請求項5記載の強磁性材スパッタリングターゲットの製造方法。
- Ru、B、Taから選択した一種以上の元素を0.5~10mol%添加し、焼結することを特徴とする請求項5~6のいずれか一項に記載の強磁性材スパッタリングターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180041715.6A CN103097570B (zh) | 2010-12-15 | 2011-11-21 | 强磁性材料溅射靶及其制造方法 |
US13/824,146 US20130175167A1 (en) | 2010-12-15 | 2011-11-21 | Ferromagnetic sputtering target and method for manufacturing same |
JP2012506826A JP4970633B1 (ja) | 2010-12-15 | 2011-11-21 | 強磁性材スパッタリングターゲット及びその製造方法 |
SG2013020284A SG188602A1 (en) | 2010-12-15 | 2011-11-21 | Ferromagnetic sputtering target and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-278798 | 2010-12-15 | ||
JP2010278798 | 2010-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012081363A1 true WO2012081363A1 (ja) | 2012-06-21 |
Family
ID=46244476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076774 WO2012081363A1 (ja) | 2010-12-15 | 2011-11-21 | 強磁性材スパッタリングターゲット及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130175167A1 (ja) |
JP (1) | JP4970633B1 (ja) |
CN (1) | CN103097570B (ja) |
MY (1) | MY156201A (ja) |
SG (1) | SG188602A1 (ja) |
TW (1) | TWI555866B (ja) |
WO (1) | WO2012081363A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY149437A (en) | 2010-01-21 | 2013-08-30 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
MY157156A (en) | 2010-07-20 | 2016-05-13 | Jx Nippon Mining & Metals Corp | Sputtering target of ferromagnetic material with low generation of particles |
US8679268B2 (en) | 2010-07-20 | 2014-03-25 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
SG185767A1 (en) | 2010-07-29 | 2013-01-30 | Jx Nippon Mining & Metals Corp | Sputtering target for magnetic recording film and process for producing same |
WO2012086300A1 (ja) | 2010-12-21 | 2012-06-28 | Jx日鉱日石金属株式会社 | 磁気記録膜用スパッタリングターゲット及びその製造方法 |
MY167946A (en) | 2012-01-18 | 2018-10-08 | Jx Nippon Mining & Metals Corp | Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME |
US9761422B2 (en) | 2012-02-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method for same |
CN104126026B (zh) | 2012-02-23 | 2016-03-23 | 吉坤日矿日石金属株式会社 | 含有铬氧化物的强磁性材料溅射靶 |
MY174585A (en) | 2012-03-09 | 2020-04-28 | Jx Nippon Mining & Metals Corp | Sputtering target for magnetic recording medium, and process for producing same |
SG11201404067PA (en) | 2012-06-18 | 2014-10-30 | Jx Nippon Mining & Metals Corp | Sputtering target for magnetic recording film |
WO2014046040A1 (ja) * | 2012-09-18 | 2014-03-27 | Jx日鉱日石金属株式会社 | スパッタリングターゲット |
MY173140A (en) * | 2014-03-18 | 2019-12-31 | Jx Nippon Mining & Metals Corp | Magnetic sputtering target |
JP6545898B2 (ja) | 2016-03-31 | 2019-07-17 | Jx金属株式会社 | 強磁性材スパッタリングターゲット |
TWI671418B (zh) * | 2017-09-21 | 2019-09-11 | 日商Jx金屬股份有限公司 | 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001076329A (ja) * | 1999-09-07 | 2001-03-23 | Fuji Electric Co Ltd | 磁気記録媒体およびその製造方法 |
JP2009087407A (ja) * | 2007-09-27 | 2009-04-23 | Hoya Corp | 垂直磁気記録媒体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100603128B1 (ko) * | 1999-05-10 | 2006-07-20 | 닛코킨조쿠 가부시키가이샤 | 스퍼터링 타겟트 |
US6759005B2 (en) * | 2002-07-23 | 2004-07-06 | Heraeus, Inc. | Fabrication of B/C/N/O/Si doped sputtering targets |
JP2007176706A (ja) * | 2005-12-26 | 2007-07-12 | Mitsui Mining & Smelting Co Ltd | 酸化物焼結体及びその製造方法並びにスパッタリングターゲット及び透明導電膜 |
JP2009001860A (ja) * | 2007-06-21 | 2009-01-08 | Mitsubishi Materials Corp | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット |
JP2009076329A (ja) * | 2007-09-20 | 2009-04-09 | Sharp Corp | 面光源装置 |
-
2011
- 2011-11-21 SG SG2013020284A patent/SG188602A1/en unknown
- 2011-11-21 CN CN201180041715.6A patent/CN103097570B/zh active Active
- 2011-11-21 MY MYPI2013001517A patent/MY156201A/en unknown
- 2011-11-21 JP JP2012506826A patent/JP4970633B1/ja active Active
- 2011-11-21 US US13/824,146 patent/US20130175167A1/en not_active Abandoned
- 2011-11-21 WO PCT/JP2011/076774 patent/WO2012081363A1/ja active Application Filing
- 2011-11-23 TW TW100142870A patent/TWI555866B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001076329A (ja) * | 1999-09-07 | 2001-03-23 | Fuji Electric Co Ltd | 磁気記録媒体およびその製造方法 |
JP2009087407A (ja) * | 2007-09-27 | 2009-04-23 | Hoya Corp | 垂直磁気記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
TWI555866B (zh) | 2016-11-01 |
CN103097570A (zh) | 2013-05-08 |
SG188602A1 (en) | 2013-04-30 |
US20130175167A1 (en) | 2013-07-11 |
CN103097570B (zh) | 2015-04-01 |
TW201229277A (en) | 2012-07-16 |
JP4970633B1 (ja) | 2012-07-11 |
MY156201A (en) | 2016-01-29 |
JPWO2012081363A1 (ja) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4970633B1 (ja) | 強磁性材スパッタリングターゲット及びその製造方法 | |
JP5394576B2 (ja) | 強磁性材スパッタリングターゲット | |
JP5009448B2 (ja) | 磁気記録膜用スパッタリングターゲット及びその製造方法 | |
JP4837801B2 (ja) | Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット | |
JP5623552B2 (ja) | Fe−Pt系強磁性材スパッタリングターゲット及びその製造方法 | |
JP4885333B1 (ja) | 強磁性材スパッタリングターゲット | |
JP5426030B2 (ja) | 強磁性材スパッタリングターゲット | |
JP5394575B2 (ja) | 強磁性材スパッタリングターゲット | |
JP5009447B1 (ja) | 磁気記録膜用スパッタリングターゲット及びその製造方法 | |
WO2011089760A1 (ja) | 強磁性材スパッタリングターゲット | |
JP5394577B2 (ja) | 強磁性材スパッタリングターゲット | |
WO2012011204A1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット | |
WO2012014504A1 (ja) | 磁気記録膜用スパッタリングターゲット及びその製造方法 | |
JP4673453B1 (ja) | 強磁性材スパッタリングターゲット | |
JP5888664B2 (ja) | 強磁性材スパッタリングターゲット | |
JP6971901B2 (ja) | スパッタリングターゲット | |
JP4758522B1 (ja) | パーティクル発生の少ない強磁性材スパッタリングターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180041715.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012506826 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848870 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13824146 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11848870 Country of ref document: EP Kind code of ref document: A1 |