WO2012081363A1 - 強磁性材スパッタリングターゲット及びその製造方法 - Google Patents

強磁性材スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2012081363A1
WO2012081363A1 PCT/JP2011/076774 JP2011076774W WO2012081363A1 WO 2012081363 A1 WO2012081363 A1 WO 2012081363A1 JP 2011076774 W JP2011076774 W JP 2011076774W WO 2012081363 A1 WO2012081363 A1 WO 2012081363A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mol
sio
sputtering target
ferromagnetic
Prior art date
Application number
PCT/JP2011/076774
Other languages
English (en)
French (fr)
Inventor
祐希 池田
英生 高見
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201180041715.6A priority Critical patent/CN103097570B/zh
Priority to US13/824,146 priority patent/US20130175167A1/en
Priority to JP2012506826A priority patent/JP4970633B1/ja
Priority to SG2013020284A priority patent/SG188602A1/en
Publication of WO2012081363A1 publication Critical patent/WO2012081363A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording method, and an oxide that causes generation of particles during sputtering.
  • the present invention relates to a non-magnetic material particle-dispersed ferromagnetic sputtering target capable of suppressing abnormal discharge and a method for manufacturing the same.
  • a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma composed of electrons and cations is formed.
  • a plasma composed of electrons and cations is formed.
  • the cations in the plasma collide with the surface of the target (negative electrode)
  • atoms constituting the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • materials based on ferromagnetic metals such as Co, Fe, or Ni are used as magnetic thin film materials for recording.
  • ferromagnetic metals such as Co, Fe, or Ni are used as magnetic thin film materials for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • a melting method or a powder metallurgy method can be considered as a method for producing such a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 An alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
  • Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
  • the target structure is dispersed in a state in which the substrate is bonded in a white shape (sperm sperm) and surrounding SiO 2 (ceramics) (FIG. 2 of Patent Document 1) or in a thin string shape. (FIG. 3 of patent document 1) A state can be seen. Other figures are unclear, but are assumed to be similar.
  • Such a structure has the problems described later and cannot be said to be a suitable sputtering target for a magnetic recording medium.
  • the spherical substance shown by FIG. 4 of patent document 1 is a mechanical alloy powder, and is not a structure
  • the ferromagnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
  • Patent Document 2 a mixed powder obtained by mixing Co powder, Cr powder, TiO 2 powder and SiO 2 powder and Co spherical powder are mixed with a planetary motion mixer, and this mixed powder is molded by hot pressing and used for a magnetic recording medium.
  • Patent Document 2 A method for obtaining a sputtering target has been proposed (Patent Document 2).
  • the target structure in this case has a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed (FIG. 1 of Patent Document 2).
  • a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed FIG. 1 of Patent Document 2.
  • Such a structure is good in terms of improving leakage magnetic flux, but cannot be said to be a suitable sputtering target for a magnetic recording medium from the viewpoint of suppressing generation of particles during sputtering.
  • Patent Document 3 Also proposed is a method of obtaining a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder.
  • the target structure in this case is not shown in the figure, but a Pt phase, a SiO 2 phase and a Co—Cr binary alloy phase can be seen, and a diffusion layer can be observed around the Co—Cr binary alloy layer. It is described.
  • Such a structure is not a suitable sputtering target for magnetic recording media.
  • Patent Document 4 proposes a perpendicular magnetic recording medium having SiC and SiOx (x: 1 to 2).
  • Patent Document 5 describes a magnetic material target containing Co, Pt, a first metal oxide, a second metal oxide, and a third metal oxide.
  • Patent Document 6 proposes a sputtering target composed of a Co and Pt matrix phase and a metal oxide phase, suppresses the growth of crystal grains, and obtains a low magnetic permeability and high density target to form a film. Proposals have been made to increase efficiency. Further, Patent Document 7 discloses a non-magnetic material particle dispersion in which Co, Fe as a main component and a material selected from oxides, nitrides, carbides, and silicides are used as ferromagnetic materials, and the shape of the non-magnetic material is specified. Type ferromagnetic sputtering target is described.
  • Patent Document 8 describes a non-magnetic material particle-dispersed ferromagnetic sputtering target in which non-magnetic material particles made of oxide are dispersed in a ferromagnetic material of a Co—Cr alloy, and the particle diameter thereof is described. A finely defined sputtering target is described.
  • Patent Document 9 describes a magnetic film having a granular structure.
  • an oxide such as SiO 2 , Cr 2 O 3 , or TiO 2 contained is an anomaly. It is the cause of discharge. Due to this abnormal discharge, generation of particles during sputtering becomes a problem.
  • an object of the present invention is to suppress abnormal discharge of oxides and reduce the generation of particles during sputtering caused by abnormal discharge.
  • the probability of abnormal discharge has been reduced by reducing the particle size of the oxide, but with the increase in recording density of magnetic recording media, the allowable particle level has become stricter, so it has been further improved
  • the present inventors have conducted intensive research. As a result, by adjusting the composition and structure of the target, abnormal discharge due to oxide during sputtering does not occur, and generation of particles is small. I found that I got a target.
  • the present invention 1) A sputtering target having a composition in which Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
  • a ferromagnetic sputtering target characterized in that the Sn is contained in SiO 2 particles (B) dispersed in A).
  • the present invention also provides: 2) In addition to the SiO 2 , at least one kind of oxidation selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 5-15 mol% of the product, these oxides are dispersed in the metal substrate (A), and Sn is contained in these oxides.
  • a ferromagnetic sputtering target is provided.
  • the present invention provides 3) The ferromagnetic sputtering target according to any one of 1) to 2) above, which contains 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta. To do. 4) The ferromagnetic sputtering target according to any one of 1) to 3) above, wherein the relative density is 97% or more.
  • the present invention provides 5) SiO 2 powder and SnO so that the composition is such that Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
  • this mixed powder is further mixed with Co powder, Cr powder, and Pt powder similarly prepared so as to have the above composition, and these mixed powders are hot pressed.
  • the SiO 2 particles (B) are dispersed in the sintered metal substrate (A), and a sintered body having a structure containing the Sn is contained in the dispersed SiO 2 particles (B).
  • the manufacturing method of the ferromagnetic material sputtering target characterized by these is provided.
  • the present invention provides 6) In addition to the SiO 2 , at least one kind of oxidation selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 5 to 15 mol% of the product is added, and these oxides are dispersed in the sintered metal substrate (A), and a sintered body having a structure containing Sn in these oxides is obtained.
  • the method for producing a ferromagnetic sputtering target according to 5) above is provided.
  • the present invention provides 7) The ferromagnetic material sputtering according to any one of 5) to 6) above, wherein 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta are added and sintered. A method for manufacturing a target is provided.
  • the thus prepared non-magnetic material particle dispersion type ferromagnetic sputtering target of the present invention does not cause abnormal discharge due to oxide during sputtering, and a target with less generation of particles can be obtained. Furthermore, it has an excellent effect of suppressing the abnormal discharge of the oxide, reducing the generation of particles during sputtering caused by the abnormal discharge, and obtaining the cost improvement effect by improving the yield.
  • the main components constituting the ferromagnetic sputtering target of the present invention are: Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co. It is made of a metal having a composition of These Cr amount, Pt amount, and Co amount are effective amounts for retaining the properties of the ferromagnetic material sputtering target, that is, the ferromagnetic material thin film.
  • Cr is added as an essential component and excludes 0 mol%. That is, it contains at least a Cr amount that is at least the lower limit that can be analyzed. If the amount of Cr is 20 mol% or less, there is an effect even when a small amount is added.
  • the present invention includes these.
  • the above are components required as a magnetic recording medium, and the blending ratio can be variously adjusted within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium. In the above,
  • the ferromagnetic material sputtering target was prepared by mixing SiO 2 powder and SnO 2 powder or Sn powder in advance so as to have the above-mentioned composition, and then preparing the mixed powder in the same manner so as to have the above-mentioned composition.
  • Co powder, Cr powder, and Pt powder can be mixed, and these mixed powders can be hot pressed.
  • the ferromagnetic Co-Cr-Pt-based, the addition of SiO 2 is SiO 2 in the sintered sputtering target is present as particles, since SiO 2 is an insulator, alone If present, it causes arcing (abnormal discharge). Therefore, in the present invention, by introducing a Sn having electrical conductivity SiO 2, lowering the electrical resistance, it is to suppress abnormal discharge due to oxides.
  • the reason why the amount of SiO 2 is 5 mol% or more and 15 mol% or less is that it is a general range showing good magnetic properties.
  • the addition of Sn may be single, or even when combined.
  • Single addition means addition as SnO 2 powder or Sn powder
  • composite addition means addition as SiO 2 powder and SnO 2 powder or mixed powder of SiO 2 powder and Sn powder.
  • the effective addition amount is in the range of 0.05 to 0.60 mol%. If it is less than the lower limit, there is no effect of imparting conductivity to SiO 2 , and if it exceeds the upper limit, the magnetic properties of the sputtered film may be affected, and desired properties may not be obtained.
  • one or more oxides selected from TiO 2 , Ti 2 O 3 , Cr 2 O 3 , Ta 2 O 5 , Ti 5 O 9 , B 2 O 3 , CoO, and Co 3 O 4 may be used. 5 to 15 mol% can be contained. These oxides are dispersed in the metal substrate (A), and Sn can also be contained in these oxides as in the case of the SiO 2 . These oxides can be arbitrarily selected and added according to the type of ferromagnetic film required. The said addition amount is an effective amount for exhibiting the effect of addition.
  • 0.5 to 10 mol% of one or more elements selected from Ru, B, and Ta can be added to the ferromagnetic material sputtering target of the present invention. These are elements added as necessary in order to improve the characteristics as a magnetic recording medium.
  • the said addition amount is an effective amount for exhibiting the effect of addition.
  • the ferromagnetic material sputtering target of the present invention desirably has a relative density of 97% or more.
  • a higher density target can reduce the amount of particles generated during sputtering.
  • a relative density of 97% or more can be achieved.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • Calculated density Sigma ⁇ (Molecular weight of constituent component x Molar ratio of constituent component) / ⁇ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
  • means taking the sum for all the constituent components of the target.
  • the target adjusted in this way does not cause arcing (abnormal discharge) due to oxide during sputtering, and a target with less generation of particles can be obtained. Furthermore, as described above, it is possible to impart conductivity to the SiO 2 particles by adding Sn, to prevent the occurrence of abnormal discharge, and to reduce the amount of particles that cause a decrease in yield. effective.
  • the ferromagnetic material sputtering target of the present invention can be produced by powder metallurgy.
  • a powder of each metal element and, if necessary, a powder of an additional metal element are prepared. These powders desirably have a maximum particle size of 20 ⁇ m or less. Further, alloy powders of these metals may be prepared instead of the powders of the respective metal elements, but in this case as well, it is desirable that the maximum particle size is 20 ⁇ m or less. On the other hand, if it is too small, there is a problem that oxidation is accelerated and the component composition does not fall within the range.
  • these metal powder and alloy powder are weighed so as to have a desired composition, and mixed by pulverization using a known technique such as a ball mill.
  • oxide powder other than SiO 2 it may be mixed with metal powder and alloy powder at this stage. It is desirable to use an oxide powder other than SiO 2 having a maximum particle size of 5 ⁇ m or less. On the other hand, since it will be easy to aggregate when it is too small, it is more desirable to use a 0.1 micrometer or more thing.
  • the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • the SiO 2 powder and SnO are mixed so that the composition of Cr is 20 mol% or less, Pt is 5 to 30 mol%, SiO 2 is 5 to 15 mol%, Sn is 0.05 to 0.60 mol%, and the balance is Co.
  • a method of mixing Co powders, Cr powders, and Pt powders prepared in the same manner so as to have the above composition is effective.
  • the ferromagnetic material sputtering target of the present invention can be produced by molding and sintering the powder thus obtained using a vacuum hot press apparatus and cutting it into a desired shape.
  • the added Sn or SnO 2 is preferentially contained in the SiO 2 grains dispersed in the metal base phase in the sintered compact target, and the electric resistance of the SiO 2 grains is lowered.
  • the electrical resistance after the addition can be 5.5 ⁇ 10 16 ⁇ ⁇ cm or less.
  • Sn or SnO 2 is not added, the electric resistance exceeds 5.5 ⁇ 10 16 ⁇ ⁇ cm and acts as an insulating material, causing abnormal discharge.
  • the present invention eliminates this phenomenon. The occurrence of arcing (abnormal discharge) has been significantly reduced.
  • the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 900 to 1200 ° C.
  • the Co—Cr—Pt ferromagnet has been described. However, the Co—Pt ferromagnet can obtain the same effect by the same component composition and manufacturing method.
  • Example 1 As raw material powder, SiO 2 powder with an average particle diameter of 1 ⁇ m and SnO 2 powder with an average particle diameter of 1 ⁇ m were weighed in advance so as to be 95 wt% of SiO 2 powder and 5 wt% of SnO 2 powder. For 1 hour to prepare a SiO 2 —SnO 2 mixed powder.
  • This mixed powder a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, and a Pt powder having an average particle diameter of 3 ⁇ m, have a target composition of 78Co-12Cr-5Pt-5SiO 2 -0.1SnO 2 (mol %), Co powder 70.56 wt%, Cr powder 9.59 wt%, Pt powder 14.99 wt%, SiO 2 —SnO 2 mixed powder 4.86 wt% were weighed.
  • the Co powder, Cr powder, Pt powder, and SiO 2 —SnO 2 mixed powder were enclosed in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1100 ° C., a holding time of 3 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • the number of particles generated in a steady state was 2.8.
  • the relative density was 98.5%, and a high-density target exceeding 97% was obtained.
  • Comparative Example 1 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, and SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were 70.76 wt% Co powder, 9.60 wt% Cr powder, 15.01 wt% Pt, 4.62 wt% SiO 2 powder so that the target composition would be 78Co-12Cr-5Pt-5SiO 2 (mol%). Weighed at a weight ratio of
  • the present invention makes it possible to adjust the structure of the ferromagnetic material sputtering target and reduce the generation of particles without causing abnormal discharge due to oxides during sputtering. Therefore, when the target of the present invention is used, a stable discharge can be obtained when sputtering with a magnetron sputtering apparatus. Furthermore, it has the excellent effect of suppressing the abnormal discharge of oxide, reducing the generation of particles during sputtering caused by the abnormal discharge, and obtaining the cost improvement effect by improving the yield. It is useful as a ferromagnetic material sputtering target used for forming a thin film, particularly a hard disk drive recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成のスパッタリングターゲットであって、金属素地(A)中に分散しているSiOの粒子(B)中に、前記Snが含有されていることを特徴とする強磁性材スパッタリングターゲット。スパッタリング時のパーティクル発生の原因となる酸化物の異常放電を抑制することができる非磁性材粒子分散型強磁性材スパッタリングターゲットを得る。

Description

強磁性材スパッタリングターゲット及びその製造方法
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、スパッタリング時のパーティクル発生の原因となる酸化物の異常放電を抑制することができる非磁性材粒子分散型強磁性材スパッタリングターゲット及びその製造方法に関する。
 スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
 この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
 一方、磁性材料に関する開発を見ると、ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
 そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
 このような強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。
 例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 この場合のターゲット組織は、素地が白子(鱈の精子)状に結合し、その周りにSiO(セラミックス)が取り囲んでいる様子(特許文献1の図2)又は細紐状に分散している(特許文献1の図3)様子が見える。他の図は不鮮明であるが、同様の組織と推測される。このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。なお、特許文献1の図4に示されている球状物質は、メカニカルアロイグ粉末であり、ターゲットの組織ではない。
 また、急冷凝固法で作製した合金粉末を用いなくても、ターゲットを構成する各成分について市販の原料粉末を用意し、それらの原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法で混合し、混合粉末をホットプレスにより成型・焼結することによって、強磁性材スパッタリングターゲットは作製できる。
 例えば、Co粉末とCr粉末とTiO粉末とSiO粉末を混合して得られた混合粉末とCo球形粉末を遊星運動型ミキサーで混合し、この混合粉をホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献2)。
 この場合のターゲット組織は、無機物粒子が均一に分散した金属素地である相(A)の中に、球形の相(B)を有している様子が見える(特許文献2の図1)。
 このような組織は、漏洩磁束向上の点では良いがスパッタ時のパーティクルの発生抑制の点からは好適な磁気記録媒体用スパッタリングターゲットとは言えない。
 また、Co-Cr二元系合金粉末とPt粉末とSiO粉末を混合して、得られた混合粉末をホットプレスすることにより、磁気記録媒体薄膜形成用スパッタリングターゲットを得る方法が提案されている(特許文献3)。
 この場合のターゲット組織は、図によって示されていないが、Pt相、SiO相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金層の周囲に拡散層が観察できたことが記載されている。このような組織も、好適な磁気記録媒体用スパッタリングターゲットとは言えない。
 上記の他、磁性材の開発を目途として、いくつか提案されている。例えば、特許文献4には、SiCとSiOx(x:1~2)とを有する垂直磁気記録媒体が提案されている。また、特許文献5には、Co、Pt、第1金属酸化物、第2金属酸化物、第3金属酸化物を含有する磁性材ターゲットが記載されている。
 また、特許文献6には、Co、Ptのマトリックス相と、金属酸化物相からなるスパッタリングターゲットが提案され、結晶粒の成長を抑制し、低透磁率、高密度のターゲットを得て、成膜効率を上げる提案がなされている。
 また、特許文献7には、強磁性体材料としてCo、Feを主成分とし、酸化物、窒化物、炭化物、珪化物から選択した材料で、非磁性材の形状を特定した非磁性材粒子分散型強磁性材スパッタリングターゲットが記載されている。
 また、特許文献8には、Co-Cr合金の強磁性体材料中に、酸化物からなる非磁性材粒子が分散した非磁性材粒子分散型強磁性材スパッタリングターゲットが記載され、その粒子径が細かく規定されたスパッタリングターゲットが記載されている。また、特許文献9には、グラニュラ構造の磁性膜が記載されている。
 上記の通り、Co-Cr-Pt-酸化物などの、非磁性材粒子分散型強磁性材スパッタリングターゲットにおいては、酸化物としてSiOやCr、TiOを用いる提案がなされ、さらに酸化物の形状を特定する提案もなされている。しかし、これらの酸化物は絶縁体であるため異常放電の原因となっている。そして、この異常放電が原因でスパッタリング中のパーティクル発生が問題となる。
 これまでは酸化物の粒径を小さくすることで異常放電の確率を減らしてきたが、磁気記録媒体の記録密度向上に伴い、許容パーティクルレベルが厳しくなってきていることから、さらなる改善が求められているのが現状である。
特開平10-88333号公報 特願2010-011326 特開2009-1860号公報 特開2006-127621号公報 特開2007-4957号公報 特開2009-102707号公報 再公表特許WO2007/080781 国際公開WO2009/119812A1 特開2001-76329号公報
 一般に、Co-Cr-Pt-酸化物などの、非磁性材粒子分散型強磁性材スパッタリングターゲットにおいては、含有するSiO、Cr、TiOなどの酸化物が絶縁体であるため異常放電の原因となっている。そして、この異常放電が原因でスパッタリング中のパーティクル発生が問題となる。
 本発明は上記問題を鑑みて、酸化物の異常放電を抑制し、異常放電が原因となるスパッタリング中のパーティクル発生を減少させることを課題とする。これまでは、酸化物の粒径を小さくすることで異常放電の確率を減らしてきたが、磁気記録媒体の記録密度向上に伴い、許容パーティクルレベルが厳しくなってきていることから、より改善された非磁性材粒子分散型強磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットの組成及び組織構造を調整することにより、スパッタリング時の酸化物による異常放電が生じず、パーティクルの発生の少ないターゲットが得られることを見出した。
 このような知見に基づき、本発明は、
 1)Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成のスパッタリングターゲットであって、金属素地(A)中に分散しているSiOの粒子(B)中に、前記Snが含有されていることを特徴とする強磁性材スパッタリングターゲットを提供する。
 また、本発明は、
 2)前記SiO以外に、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を5~15mol%含有し、これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、Snが含有されていることを特徴とする上記1)記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 3)Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有することを特徴とする上記1)~2)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 4)相対密度が97%以上であることを特徴とする上記1)~3)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 5)Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成となるように、SiO粉とSnO粉若しくはSn粉を、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合し、これらの混合粉をホットプレスして、焼結金属素地(A)中にSiOの粒子(B)を分散させると共に、該分散したSiOの粒子(B)中に、前記Snが含有された組織の焼結体を得ることを特徴とする強磁性材スパッタリングターゲットの製造方法を提供する。
 さらに、本発明は、
 6)前記SiO以外に、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を5~15mol%添加し、これらの酸化物が焼結金属素地(A)中に分散させると共に、かつこれらの酸化物中に、Snが含有された組織の焼結体を得ることを特徴とする上記5)記載の強磁性材スパッタリングターゲットの製造方法を提供する。
 さらに、本発明は、
 7)Ru、B、Taから選択した一種以上の元素を0.5~10mol%添加し、焼結することを特徴とする上記5)~6)のいずれか一項に記載の強磁性材スパッタリングターゲットの製造方法を提供する。
 このように調整した本発明の非磁性材粒子分散型の強磁性材スパッタリングターゲットは、スパッタリング時の酸化物による異常放電が生じず、パーティクルの発生の少ないターゲットが得られる。
 さらに、酸化物の異常放電を抑制し、異常放電が原因となるスパッタリング中のパーティクル発生を減少させ、歩留まり向上によるコスト改善効果を得ることができるという優れた効果を有する。
 本発明の強磁性材スパッタリングターゲットを構成する主要成分は、Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成の金属からなる。これらのCr量、Pt量、Co量は、それぞれ強磁性材スパッタリングターゲットとして、すなわち強磁性材薄膜の特性を保有させるための有効量である。
 なお、当然ながらCrは必須成分として添加するものであり、0mol%を除く。すなわち、少なくとも分析可能な下限値以上のCr量を含有させるものである。Cr量が20mol%以下であれば、微量添加する場合においても効果がある。本願発明は、これらを包含する。上記は、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々に調整できるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
 上記においては、
 強磁性材スパッタリングターゲットは、SiO粉とSnO粉若しくはSn粉を、上記の組成となるように、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合し、これらの混合粉をホットプレスして作製することができる。
 本発明において、重要なことは焼結金属素地(A)中にSiOの粒子(B)を分散させると共に、該分散したSiOの粒子(B)中に、前記Snが含有された組織の焼結体を得ることである。
 一般に、Co-Cr-Pt系の強磁性体に、SiOを添加した場合には、焼結体スパッタリングターゲットの中でSiOが粒子として存在するが、SiOが絶縁体であるため、単独で存在する場合には、アーキング(異常放電)を誘発する原因となる。このため、本願発明においては、SiOに電気伝導性を有するSnを導入して、電気抵抗を下げ、酸化物による異常放電を抑制するものである。
 SiOの量5mol%以上15mol%以下とするのは、良好な磁気特性を示す一般的な範囲であるからである。
 Snの添加は、単独であっても良いし、複合添加であっても効果を有する。なお、単独添加は、SnO粉又はSn粉としての添加、複合添加はSiO粉とSnO粉又はSiO粉とSn粉の混合粉としての添加を意味する。その有効添加量は、0.05~0.60mol%の範囲である。下限値未満であると、SiOに導電性を付与する効果がなく、また上限値を超えると、スパッタ膜の磁気特性に影響を与え、所望の特性を得られなくなる虞がある。
 前記SiO以外に、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を5~15mol%含有させることができる。
 これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、前記SiOと同様に、Snを含有させることもできる。これらの酸化物は、必要とされる強磁性膜の種類に応じて、任意に選択し添加することができる。前記添加量は、添加の効果を発揮させるための有効量である。
 さらに、本発明の強磁性材スパッタリングターゲットは、Ru、B、Taから選択した一種以上の元素を、0.5~10mol%を添加することができる。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。前記添加量は、添加の効果を発揮させるための有効量である。
 本発明の強磁性材スパッタリングターゲットは、相対密度を97%以上とすることが望ましい。一般に、高密度のターゲットほどスパッタ時に発生するパーティクルの量を低減させることができることが知られている。
 本発明においても同様、高密度とするのが好ましい。本願発明では、相対密度97%以上を達成することができる。
 本発明において相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
 式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
 ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
 このように調整したターゲットは、スパッタリング時の酸化物によるアーキング(異常放電)が発生せず、パーティクルの発生の少ないターゲットが得られる。
 さらに、上記の通り、Snの添加によりSiOの粒子に導電性を付与し、異常放電の発生を防止することが可能となり、歩留まり低下の原因となるパーティクルの発生量を低減させることができるという効果がある。
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製することができる。この場合、まず各金属元素の粉末と、さらに必要に応じて添加金属元素の粉末を用意する。これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。また、各金属元素の粉末の代わりにこれら金属の合金粉末を用意してもよいが、その場合も最大粒径が20μm以下とすることが望ましい。
 一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることがさらに望ましい。
 そして、これらの金属粉末及び合金粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。SiO以外の酸化物粉末を添加する場合は、この段階で金属粉末及び合金粉末と混合すればよい。
 SiO以外の酸化物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
 また、ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 さらに、Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成となるように、SiO粉とSnO粉若しくはSn粉を、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合する方法が有効である。
 このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットを作製することができる。
 添加したSn若しくはSnOは、焼結体ターゲット中では、優先的に金属素地相に分散したSiO粒に含有され、SiO粒の電気抵抗を低下させるようになる。添加後の電気抵抗は、5.5×1016Ω・cm以下にすることができる。
 Sn若しくはSnOを添加しない場合の電気抵抗は5.5×1016Ω・cmを超え、絶縁物質として作用するため、異常放電を引き起こす原因となっていたが、本願発明はこの現象を無くすことが可能となり、アーキング(異常放電)の発生は著しく減少した。
 前記、成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、900~1200°Cの温度範囲にある。
 上記においては、Co-Cr-Pt系の強磁性体について説明したが、Co-Pt系の強磁性体についても、同様な成分組成と製造方法により、同等の効果を得ることができる。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 実施例1では、原料粉末として、あらかじめ、平均粒径1μmのSiO粉末と平均粒径1μmのSnO粉末を、SiO粉末95wt%、SnO粉末5wt%となるように秤量し、ボールミルにて1時間混合し、SiO-SnO混合粉末を用意した。この混合粉末と、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末とを、ターゲットの組成が78Co-12Cr-5Pt-5SiO-0.1SnO(mol%)となるように、Co粉末70.56wt%、Cr粉末9.59wt%、Pt粉末14.99wt%、SiO-SnO混合粉末4.86wt%の重量比率で秤量した。
 次に、Co粉末とCr粉末とPt粉末とSiO-SnO混合粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.8個であった。又、相対密度は98.5%となり、97%を超える高密度なターゲットが得られた。
 また、混合粉の電気抵抗を測定するために、平均粒径1μmのSiO粉末95wt%と平均粒径1μmのSnO粉末5wt%を、容量10リットルのボールミルポットに封入し、1時間回転させて混合した。この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして焼結体を得、この場合の電気抵抗を測定したところ、4.0×1016Ω・cmであった。
(比較例1)
 比較例1では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉末、平均粒径1μmのSiO粉を用意した。これらの粉末をターゲット組成が78Co-12Cr-5Pt-5SiO(mol%)となるように、Co粉末70.76wt%、Cr粉末9.60wt%、Pt15.01wt%、SiO粉末4.62wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は6.7個と増加した。なお、相対密度は98.0%となり、97%を超える高密度なターゲットが得られた。
 なお、上記実施例においては、SiOの添加の例を示したが、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を添加した場合でも、SiOを添加した場合と同等の効果を得ることができ、また、Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有する場合には、磁気記録媒体としての特性を、さらに向上させることができることを確認している。
 本発明は、強磁性材スパッタリングターゲットの組織構造を調整し、スパッタリング時の酸化物による異常放電が生じず、パーティクルの発生を減少させることを可能とする。従って本発明のターゲットを使用すれば、マグネトロンスパッタ装置でスパッタリングする際に安定した放電が得られる。さらに、酸化物の異常放電を抑制し、異常放電が原因となるスパッタリング中のパーティクル発生を減少させ、歩留まり向上によるコスト改善効果を得ることができるという優れた効果を有するので、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。

Claims (7)

  1.  Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成のスパッタリングターゲットであって、金属素地(A)中に分散しているSiOの粒子(B)中に、前記Snが含有されていることを特徴とする強磁性材スパッタリングターゲット。
  2.  前記SiO以外に、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を5~15mol%含有し、これらの酸化物が金属素地(A)中に分散しており、かつこれらの酸化物中に、Snが含有されていることを特徴とする請求項1記載の強磁性材スパッタリングターゲット。
  3.  Ru、B、Taから選択した一種以上の元素を、0.5~10mol%含有することを特徴とする請求項1~2のいずれか一項に記載の強磁性材スパッタリングターゲット。
  4.  相対密度が97%以上であることを特徴とする請求項1~3のいずれか一項に記載の強磁性材スパッタリングターゲット。
  5.  Crが20mol%以下、Ptが5~30mol%、SiOが5~15mol%、Snが0.05~0.60mol%、残余がCoである組成となるように、SiO粉とSnO粉若しくはSn粉を、予め調合し混合した後、さらにこの混合粉に、上記組成となるように同様に調合したCo粉、Cr粉、Pt粉を混合し、これらの混合粉をホットプレスして、焼結金属素地(A)中SiOの粒子(B)を分散させると共に、該分散したSiOの粒子(B)中に、前記Snが含有された組織の焼結体を得ることを特徴とする強磁性材スパッタリングターゲットの製造方法。
  6.  前記SiO以外に、さらにTiO、Ti、Cr、Ta,Ti、B、CoO、Coから選択した一種以上の酸化物を5~15mol%添加し、これらの酸化物が焼結金属素地(A)中に分散させると共に、かつこれらの酸化物中に、Snが含有された組織の焼結体を得ることを特徴とする請求項5記載の強磁性材スパッタリングターゲットの製造方法。
  7.  Ru、B、Taから選択した一種以上の元素を0.5~10mol%添加し、焼結することを特徴とする請求項5~6のいずれか一項に記載の強磁性材スパッタリングターゲットの製造方法。
PCT/JP2011/076774 2010-12-15 2011-11-21 強磁性材スパッタリングターゲット及びその製造方法 WO2012081363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180041715.6A CN103097570B (zh) 2010-12-15 2011-11-21 强磁性材料溅射靶及其制造方法
US13/824,146 US20130175167A1 (en) 2010-12-15 2011-11-21 Ferromagnetic sputtering target and method for manufacturing same
JP2012506826A JP4970633B1 (ja) 2010-12-15 2011-11-21 強磁性材スパッタリングターゲット及びその製造方法
SG2013020284A SG188602A1 (en) 2010-12-15 2011-11-21 Ferromagnetic sputtering target and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-278798 2010-12-15
JP2010278798 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081363A1 true WO2012081363A1 (ja) 2012-06-21

Family

ID=46244476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076774 WO2012081363A1 (ja) 2010-12-15 2011-11-21 強磁性材スパッタリングターゲット及びその製造方法

Country Status (7)

Country Link
US (1) US20130175167A1 (ja)
JP (1) JP4970633B1 (ja)
CN (1) CN103097570B (ja)
MY (1) MY156201A (ja)
SG (1) SG188602A1 (ja)
TW (1) TWI555866B (ja)
WO (1) WO2012081363A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY149437A (en) 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
MY157156A (en) 2010-07-20 2016-05-13 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
US8679268B2 (en) 2010-07-20 2014-03-25 Jx Nippon Mining & Metals Corporation Sputtering target of ferromagnetic material with low generation of particles
SG185767A1 (en) 2010-07-29 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film and process for producing same
WO2012086300A1 (ja) 2010-12-21 2012-06-28 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット及びその製造方法
MY167946A (en) 2012-01-18 2018-10-08 Jx Nippon Mining & Metals Corp Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
US9761422B2 (en) 2012-02-22 2017-09-12 Jx Nippon Mining & Metals Corporation Magnetic material sputtering target and manufacturing method for same
CN104126026B (zh) 2012-02-23 2016-03-23 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
MY174585A (en) 2012-03-09 2020-04-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording medium, and process for producing same
SG11201404067PA (en) 2012-06-18 2014-10-30 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
WO2014046040A1 (ja) * 2012-09-18 2014-03-27 Jx日鉱日石金属株式会社 スパッタリングターゲット
MY173140A (en) * 2014-03-18 2019-12-31 Jx Nippon Mining & Metals Corp Magnetic sputtering target
JP6545898B2 (ja) 2016-03-31 2019-07-17 Jx金属株式会社 強磁性材スパッタリングターゲット
TWI671418B (zh) * 2017-09-21 2019-09-11 日商Jx金屬股份有限公司 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076329A (ja) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
JP2009087407A (ja) * 2007-09-27 2009-04-23 Hoya Corp 垂直磁気記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603128B1 (ko) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트
US6759005B2 (en) * 2002-07-23 2004-07-06 Heraeus, Inc. Fabrication of B/C/N/O/Si doped sputtering targets
JP2007176706A (ja) * 2005-12-26 2007-07-12 Mitsui Mining & Smelting Co Ltd 酸化物焼結体及びその製造方法並びにスパッタリングターゲット及び透明導電膜
JP2009001860A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009076329A (ja) * 2007-09-20 2009-04-09 Sharp Corp 面光源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076329A (ja) * 1999-09-07 2001-03-23 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
JP2009087407A (ja) * 2007-09-27 2009-04-23 Hoya Corp 垂直磁気記録媒体

Also Published As

Publication number Publication date
TWI555866B (zh) 2016-11-01
CN103097570A (zh) 2013-05-08
SG188602A1 (en) 2013-04-30
US20130175167A1 (en) 2013-07-11
CN103097570B (zh) 2015-04-01
TW201229277A (en) 2012-07-16
JP4970633B1 (ja) 2012-07-11
MY156201A (en) 2016-01-29
JPWO2012081363A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP4970633B1 (ja) 強磁性材スパッタリングターゲット及びその製造方法
JP5394576B2 (ja) 強磁性材スパッタリングターゲット
JP5009448B2 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
JP4837801B2 (ja) Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット
JP5623552B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット及びその製造方法
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
JP5426030B2 (ja) 強磁性材スパッタリングターゲット
JP5394575B2 (ja) 強磁性材スパッタリングターゲット
JP5009447B1 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
WO2011089760A1 (ja) 強磁性材スパッタリングターゲット
JP5394577B2 (ja) 強磁性材スパッタリングターゲット
WO2012011204A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2012014504A1 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
JP5888664B2 (ja) 強磁性材スパッタリングターゲット
JP6971901B2 (ja) スパッタリングターゲット
JP4758522B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041715.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012506826

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848870

Country of ref document: EP

Kind code of ref document: A1