WO2012014504A1 - 磁気記録膜用スパッタリングターゲット及びその製造方法 - Google Patents

磁気記録膜用スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2012014504A1
WO2012014504A1 PCT/JP2011/052125 JP2011052125W WO2012014504A1 WO 2012014504 A1 WO2012014504 A1 WO 2012014504A1 JP 2011052125 W JP2011052125 W JP 2011052125W WO 2012014504 A1 WO2012014504 A1 WO 2012014504A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sio
target
intensity
cristobalite
Prior art date
Application number
PCT/JP2011/052125
Other languages
English (en)
French (fr)
Inventor
英生 高見
淳史 奈良
真一 荻野
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/808,172 priority Critical patent/US9567665B2/en
Priority to CN201180035899.5A priority patent/CN103210115B/zh
Priority to SG2012087003A priority patent/SG185767A1/en
Priority to JP2011539571A priority patent/JP5032706B2/ja
Publication of WO2012014504A1 publication Critical patent/WO2012014504A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material

Definitions

  • the present invention relates to a sputtering target for a magnetic recording film used for forming a magnetic thin film of a magnetic recording medium, in particular, a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording system, and relates to cristobalite that causes generation of particles during sputtering.
  • the present invention relates to a sputtering target capable of suppressing the formation of the film and shortening the time required from the start of sputtering to the main film formation (hereinafter referred to as burn-in time).
  • a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • SiO 2 is added to such a magnetic recording film sputtering target in order to magnetically separate the alloy phase.
  • a melting method or a powder metallurgy method can be considered as a method for producing the ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of a ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of a perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because inorganic particles such as SiO 2 need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 An alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
  • Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
  • the target structure is dispersed in a state in which the substrate is bonded in a white shape (sperm sperm) and surrounding SiO 2 (ceramics) (FIG. 2 of Patent Document 1) or in a thin string shape. (FIG. 3 of patent document 1)
  • a state can be seen.
  • Other figures are unclear, but are assumed to be similar.
  • Such a structure has the problems described later and cannot be said to be a suitable sputtering target for a magnetic recording medium.
  • the spherical substance shown by FIG. 4 of patent document 1 is a mechanical alloy powder, and is not a structure
  • the ferromagnetic material sputtering target can be produced by mixing by the above method and molding and sintering the mixed powder by hot pressing.
  • a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma consisting of electrons and cations is formed.
  • a plasma consisting of electrons and cations is formed.
  • the cations in this plasma collide with the surface of the target (negative electrode)
  • the atoms that make up the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • SiO 2 is added to the sputtering target for a magnetic recording film in order to magnetically separate the alloy phase.
  • SiO 2 is added to the magnetic metal material, microcracks are generated in the target, and there is a problem that many particles are generated during sputtering. Further, the magnetic material target addition of SiO 2, resulting also disadvantageously burn time longer than the magnetic material target without the addition of SiO 2.
  • Reference 2 discloses a target having a metal phase as a matrix, a ceramic phase dispersed in the matrix phase, an interfacial reaction phase between the metal phase and the ceramic phase, and a relative density of 99% or more. . Although there is a choice of SiO 2 in the ceramic phase, there is no recognition of the above problems and no proposal of a solution.
  • Document 3 proposes that when a CoCrPt—SiO 2 sputtering target is manufactured, Pt powder and SiO 2 powder are calcined, Cr powder and Co powder are mixed with the calcined powder, and pressure sintering is performed.
  • Reference 4 discloses a sputtering target having a metal phase containing Co, a ceramic phase having a particle size of 10 ⁇ m or less, an interfacial reaction phase between the metal phase and the ceramic phase, and the ceramic phase interspersed in the metal phase. It has been proposed that the ceramic phase also has a choice of SiO 2 .
  • Reference 5 below proposes a sputtering target of nonmagnetic oxide 0.5 to 15 mol, Cr 4 to 20 mol, Pt 5 to 25 mol, B 0.5 to 8 mol, and the balance Co.
  • the non-magnetic oxide has been proposed that some selection of SiO 2.
  • Reference 6 below is cited as a reference.
  • This document discloses a technique for producing cristobalite particles as a filler for a sealing element for a semiconductor element such as a memory. Although this document is a technique unrelated to the sputtering target, it is a technique related to cristobalite of SiO 2 .
  • the following document 7 is used as a carrier core material for an electrophotographic developer, and is a technique unrelated to a sputtering target, but discloses a type of crystal relating to SiO 2 .
  • One is a quartz crystal of SiO 2 and the other is a cristobalite crystal.
  • the following document 8 is a technique unrelated to the sputtering target, there is an explanation that cristobalite is a material that impairs the oxidation protection function of silicon carbide.
  • Reference 9 below describes a sputtering target for forming an optical recording medium protective film having a structure in which amorphous SiO 2 is dispersed in a zinc chalcogenide substrate.
  • the occurrence of cracking during the bending strength and the sputtering target made of chalcogenide zinc -SiO 2 has influenced the forms SiO 2 and shape, when the amorphous (amorphous) in a sputtering high output
  • spatter cracks do not occur. Although this suggests in a certain sense, it is only a sputtering target for forming an optical recording medium protective film using zinc chalcogenide, and it is completely unknown whether the problem of magnetic materials with different matrix materials can be solved.
  • a composite material composed of a ferromagnetic alloy and a nonmagnetic inorganic material is often used, and SiO 2 is added as the inorganic material.
  • An object of the present invention is to suppress the generation of particles during sputtering and shorten the burn-in time in a sputtering target for a magnetic recording film to which SiO 2 is added.
  • the present inventors have conducted intensive research. As a result, by devising addition of SiO 2 to the sputtering target for magnetic recording films, cristobalite formation that causes generation of particles during sputtering is performed. It was found that can be suppressed. That is, it was found that microcracks in the target and generation of particles during sputtering can be suppressed and the burn-in time can be shortened.
  • a sputtering target for a magnetic recording film containing SiO 2 crystallized peak intensity ratio of cristobalite is SiO 2 to the background intensity in the X-ray diffraction (cristobalite peak intensity / background intensity) is 1.40
  • a sputtering target for a magnetic recording film characterized by: 2) A sputtering target for a magnetic recording film containing SiO 2 , wherein the rate of change of the thermal expansion coefficient when the temperature is raised from 250 ° C. to 350 ° C. is 7% or less.
  • the sputtering target for magnetic recording films as described.
  • the magnetic recording material of the sputtering target for magnetic recording film containing SiO 2 is not particularly limited and can be applied to various magnetic recording materials. However, it is particularly useful for a target made of the following magnetic recording film material. is there. That is, the present invention provides the following targets 3), 4) and 5). 3) The sputtering target for magnetic recording films according to 1) or 2) above, wherein Cr is 50 mol% or less, SiO 2 is 20 mol% or less, and the balance is Co. 4) The sputtering target for magnetic recording films according to 1) or 2) above, wherein Cr is 50 mol% or less, Pt is 50 mol% or less, SiO 2 is 20 mol% or less, and the balance is Co. 5) The sputtering target for a magnetic recording film according to 1) or 2) above, wherein Pt is 5 mol% or more and 60 mol% or less, SiO 2 is 20 mol% or less, and the remainder is Fe.
  • additive element one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Au, Cu, and Ag are contained in an amount of 0.01 mol% to 10 mol%.
  • the sputtering target for a magnetic recording film according to any one of 1) to 5) above is provided.
  • the additive material further comprises one or more inorganic materials selected from carbon, oxides other than SiO 2 , nitrides, and carbides, as the additive material, according to any one of 1) to 6) above A sputtering target for a magnetic recording film is provided.
  • the present invention uses an amorphous SiO 2 as the SiO 2 powder raw material, mixing the powder material the SiO 2 and the magnetic metal powder material, sintering the sintering temperature below 1120 ° C
  • the method for producing a sputtering target for a magnetic recording film according to any one of the above 1) to 7) is provided.
  • the sputtering target target for a magnetic recording film of the present invention thus adjusted is excellent in that it can suppress the generation of microcracks in the target, suppress the generation of particles during sputtering, and shorten the burn-in time. Has an effect. Since the generation of particles is small as described above, the defective rate of the magnetic recording film is reduced, and the cost is reduced. The shortening of the burn-in time greatly contributes to the improvement of production efficiency.
  • FIG. 6 is a graph showing measurement results of X-ray diffraction intensities of Co—Cr—Pt—SiO 2 targets of Example 1 and Comparative Example 1.
  • FIG. 6 is a diagram showing a result of comparison between target life and the number of particles when sputtering is performed using the Co—Cr—Pt—SiO 2 target of Example 1 and Comparative Example 1. It is a figure which shows the cross section of the wafer formed into a film on the board
  • FIG. 6 is a diagram showing the measurement results of the X-ray diffraction intensity of the SiO 2 raw material and the Co—Cr—Pt—SiO 2 target of Comparative Example 1.
  • Magnetic recording film for sputtering target of the present invention is a sputtering target for a magnetic recording film containing SiO 2, the peak intensity ratio of cristobalite is SiO 2 crystallized (cristobalite peak intensity / background intensity) is 1.40 It is as follows. That is, it is a sputtering target for a magnetic recording film in which cristobalite that is crystallized SiO 2 is eliminated or reduced as much as possible.
  • a composite material composed of a ferromagnetic alloy and a non-magnetic inorganic material is often used, and SiO 2 is added as an inorganic material.
  • SiO 2 exists as cristobalite crystallized in the target, a volume change due to phase transition occurs in the temperature rising or cooling process of the target (this temperature is about 270 ° C.). This will cause micro cracks in the target. This results in particle generation during sputtering. Therefore, it is effective that the crystallized cristobalite is not generated and exists in the target as amorphous SiO 2 .
  • the magnetic recording film sputtering target is not particularly limited to a magnetic material, but Cr is 50 mol% or less, SiO 2 is 20 mol% or less, and the remainder is Co, Further, a sputtering target for a magnetic recording film in which Cr is 50 mol% or less, Pt is 50 mol% or less, SiO 2 is 20 mol% or less, and the balance is Co, Pt is 5 mol% or more and 60 mol% or less, and SiO 2 is 20 mol% or less. It is useful for a sputtering target for a magnetic recording film in which the balance is Fe.
  • 0 mol% when adding said Cr as an essential component, 0 mol% is remove
  • the present invention includes these. These are components required as a magnetic recording medium, and the mixing ratio varies within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium.
  • Pt is added as an essential component, 0 mol% is excluded. That is, it contains at least a Pt amount that is at least the lower limit that can be analyzed. If the amount of Pt is 50 mol% or less, it is effective even when a very small amount is added.
  • the present invention includes these. These are components required as a magnetic recording medium, and the mixing ratio varies within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium.
  • additive element one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Au, Cu, and Ag are contained in an amount of 0.01 mol% to 10 mol%. Further, it is effective for the above-mentioned sputtering target for a magnetic recording film.
  • the additive element is an element added as necessary in order to improve characteristics as a magnetic recording medium. Further, the present invention is effective for the sputtering target for magnetic recording film containing one or more inorganic materials selected from carbon, oxides other than SiO 2 , nitrides, and carbides.
  • the present invention provides many alloy systems containing SiO 2 , such as Co—Pt—SiO 2 —X, Co—Cr—Pt—SiO 2 —X, Co—Cr—SiO 2 —X, Fe— Applicable to Pt—SiO 2 —X.
  • amorphous SiO 2 as the SiO 2 powder raw material and aim for amorphization from the raw material itself.
  • the powder raw material of SiO 2 and the magnetic metal powder raw material are mixed and sintered at a sintering temperature of 1120 ° C. or lower. This lowering of the sintering temperature is effective in suppressing crystallization of SiO 2 . Further, by using high-purity SiO 2 , crystallization can be further suppressed. In this sense, it is desirable to use high-purity SiO 2 of 4N or more, more preferably 5N or more.
  • the ferromagnetic material sputtering target of the present invention can be produced by powder metallurgy. First, a powder raw material for each metal element (magnetic metal powder raw material), a SiO 2 powder raw material, and, if necessary, a powder raw material for an additional metal element are prepared. These powder raw materials are desirably those having a maximum particle size of 20 ⁇ m or less.
  • alloy powders of these metals may be prepared instead of the powders of the respective metal elements.
  • the maximum particle size be 20 ⁇ m or less.
  • it is too small there is a problem that oxidation is accelerated and the component composition does not fall within the range.
  • these metal powders are weighed so as to have a desired composition, and mixed using a known method such as a ball mill for pulverization. What is necessary is just to mix with a metal powder at this stage, when adding an inorganic substance powder.
  • the inorganic powder carbon powder, oxide powder other than SiO 2 , nitride powder, or carbide powder is prepared, and it is desirable to use inorganic powder having a maximum particle size of 5 ⁇ m or less.
  • the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • the ferromagnetic material sputtering target of the present invention is produced by molding and sintering the powder thus obtained using a vacuum hot press apparatus and cutting it into a desired shape.
  • the sintering temperature is 1120 ° C. or lower. This lowering of the sintering temperature is a temperature necessary for suppressing the crystallization of SiO 2 .
  • the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Although it depends on the composition of the target, in many cases, the temperature range is 900 to 1120 ° C.
  • Example 1 Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, Pt powder having an average particle size of 1 ⁇ m, and amorphous SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders. Co powder 70.76 wt%, Cr powder 9.6 wt%, Pt powder 15.01 wt%, SiO 2 powder 4 so that the composition of the target of the powder is 78Co-12Cr-5Pt-5SiO 2 (mol%). Weighed at a weight ratio of .62 wt%.
  • Co powder, Cr powder, Pt powder, and SiO 2 powder were sealed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours.
  • This mixed powder is filled into a carbon mold, and in a vacuum atmosphere, the temperature is 1100 ° C. (to avoid crystallization of SiO 2 powder, the temperature is 1120 ° C. or lower), the holding time is 3 hours, and the applied pressure is 30 MPa.
  • the sintered compact was obtained by hot pressing under the conditions of Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 7 mm.
  • the peak intensity of cristobalite a part of the target was cut out, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method.
  • the peak intensity appearing at 2 ⁇ : 21.98 ° is 35
  • the background intensity (((average value of intensity of 20.5 to 21.5 °) + (22.5 to 23.5 °)) The average value of intensity)) ⁇ 2) was measured.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.26. This result is shown in the XRD measurement result at the bottom of FIG.
  • the SiO 2 raw material was amorphous, and no cristobalite peak appeared at 2 ⁇ : 21.98 on the target after sintering.
  • the X-ray diffraction intensity of Comparative Example 1 shown below is shown on the same figure, but a cristobalite peak appeared at 2 ⁇ : 21.98.
  • the same results as shown in FIG. 1 were obtained.
  • Rigak Ultima IV was used as a measuring device, and the measurement conditions were tube voltage 40 kv, tube current 30 mA, scan speed 4 ° / min, and step 0.02 °.
  • the rate of change of the thermal expansion coefficient is 20 mm ⁇ 3 mm ⁇ 3 mm cut out from the target, and thermal expansion from 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min using a Rigaku Thermo plus2 TMA8310.
  • the coefficient change rate was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.6%.
  • FIG. 2 shows the result of comparison between the target life and the number of particles when sputtering was performed using the Co—Cr—Pt—SiO 2 target of Example 1 and Comparative Example 1 below.
  • the sputtering conditions were as follows: power: 1 kW, time 20 seconds, pressure (Ar atmosphere) 1.7 Pa.
  • the number of particles generated in a steady state was 2.8.
  • the burn-in time was 0.37 kWh.
  • Comparative Example 1 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. Co powder 70.76 wt%, Cr powder 9.6 wt%, Pt 15.01 wt%, SiO 2 powder 4.62 wt% so that the target composition is 78Co-12Cr-5Pt-5SiO 2 (mol%). Weighed at a weight ratio of
  • FIG. 3 shows a cross section of the wafer formed on the substrate and the result of elemental analysis by EDX.
  • the left side of FIG. 3 shows particles. As is apparent from the result of elemental analysis on the right side of the figure, almost all particles were SiO 2 .
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method.
  • XRD X-ray diffraction
  • FIG. Although the SiO 2 raw material is amorphous, a cristobalite peak appears at 2 ⁇ : 21.98 in the target after sintering. The lower line is the X-ray diffraction intensity of the SiO 2 raw material and is shown for reference. 2 ⁇ : Peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured.
  • Example 1 the peak intensity appearing at 2 ⁇ : 21.98 ° was 56, and the peak intensity ratio of cristobalite, which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity), was 1.42. . These were all larger than Example 1.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.5%, which is larger than that of Example 1, generating a volume change, and this volume change causes microcracks in the target. Occurred.
  • Comparative Example 2 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of 84.11 wt% Co powder, 10.73 wt% Cr powder, and 5.17 wt% SiO 2 powder so that the target composition would be 83Co-12Cr-5SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 129, and the ratio of the cristobalite crystal intensity, which is crystallized SiO 2 , to the background intensity (cristobalite peak intensity / background intensity) is 1.92. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient at the time of temperature increase from 250 ° C. to 350 ° C. is 11.2%, which is larger than that in Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 2 Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, and amorphous SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of 84.11 wt% Co powder, 10.73 wt% Cr powder, and 5.17 wt% SiO 2 powder so that the target composition would be 83Co-12Cr-5SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 31.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.13.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 5.5%.
  • Example 3 In Example 3, as a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Co—B powder having an average particle diameter of 5 ⁇ m, and amorphous having an average particle diameter of 1 ⁇ m. Quality SiO 2 powder was prepared. These powders so that the target composition is 66Co-15Cr-12Pt-2B- 5SiO 2 (mol%), Co powder 53.05wt%, Cr powder 10.64wt%, Pt powder 31.93wt%, B powder 0 .29 wt% and SiO 2 powder 4.10 wt% were weighed.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 30, and the ratio of the peak intensity of cristobalite being crystallized SiO 2 to the background intensity (cristobalite peak intensity / background intensity) was 1.04. .
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.8%.
  • Example 4 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and amorphous having an average particle diameter of 1 ⁇ m are used as the raw material powder. SiO 2 powder and Cr 2 O 3 powder having an average particle diameter of 1 ⁇ m were prepared. These powders so that the target composition is 67Co-10Cr-15Pt-3TiO 2 -2Si0 2 -3Cr 2 O 3 (mol%), Co powder 48.09wt%, Cr powder 6.33wt%, Pt powder 35. Weighed at a weight ratio of 64 wt%, TiO 2 powder 0.69 wt%, SiO 2 powder 0.67 wt%, and Cr 2 O 3 powder 1.07 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 32.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.18.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion when the temperature was raised from 250 ° C. to 350 ° C. was 3.3%.
  • Comparative Example 3 Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m, and an average particle diameter of 1 ⁇ m Cr 2 O 3 powder was prepared.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 317, and the peak intensity ratio of cristobalite which is crystallized SiO 2 to the background intensity (cristobalite peak intensity / background intensity) is 4.71. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 8.5%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Comparative Example 4 In Comparative Example 4, as a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and amorphous having an average particle diameter of 1 ⁇ m SiO 2 powder and Cr 2 O 3 powder having an average particle diameter of 1 ⁇ m were prepared. These powders so that the target composition is 67Co-10Cr-15Pt-3TiO 2 -2SiO 2 -3Cr 2 O 3 (mol%), Co powder 48.09wt%, Cr powder 6.33wt%, Pt powder 35. Weighed at a weight ratio of 64 wt%, TiO 2 powder 0.69 wt%, SiO 2 powder 0.67 wt%, and Cr 2 O 3 powder 1.07 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 62, and the ratio of cristobalite, which is crystallized SiO 2 to the background intensity, is 1.57 (cristobalite peak intensity / background intensity). This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.6%, which is larger than that of Example 1, causing a volume change, and this volume change causes microcracks in the target. Occurred.
  • Example 5 (Example 5)
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 35.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.28.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 7.8%.
  • Comparative Example 5 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were weighed in a weight ratio of 21.13 wt% Fe powder, 73.82 wt% Pt powder, and 5.05 wt% SiO 2 powder so that the target composition was 45Fe-45Pt-10SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° becomes as large as 224, and the ratio of the peak intensity of cristobalite which is crystallized SiO 2 to the background intensity (cristobalite peak intensity / background intensity) is 3.4. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 8.1%, which is larger than that of Example 1 and generates a volume change, which causes microcracks in the target. Occurred.
  • Example 6 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were weighed in a weight ratio of 21.13 wt% Fe powder, 73.82 wt% Pt powder, and 5.05 wt% SiO 2 powder so that the target composition was 45Fe-45Pt-10SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 30.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.12.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.7%.
  • Example 7 Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders so that the target composition is 84Co-10Pt-3TiO 2 -3SiO 2 (mol%), Co powder 67.62wt%, Pt powder 26.65wt%, TiO 2 powder 3.27wt%, SiO 2 powder Weighed at a weight ratio of 2.46 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 30.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.11.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.5%.
  • Comparative Example 6 Co powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. In these powders, Co powder 67.62 wt%, Pt powder 26.65 wt%, TiO 2 powder 3.27 wt%, SiO 2 powder so that the target composition would be 84Co-10Pt-3TiO 2 -3SiO 2 (mol%). Weighed at a weight ratio of 2.46 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 55, and the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) is 1.43. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 8.3%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 8 In Example 8, as a raw material powder, Co powder with an average particle diameter of 3 ⁇ m, Cr powder with an average particle diameter of 5 ⁇ m, Pt powder with an average particle diameter of 1 ⁇ m, Ta 2 O 5 powder with an average particle diameter of 1 ⁇ m, non-average particle diameter of 1 ⁇ m A crystalline SiO 2 powder was prepared. These powders were made to have a target composition of 72Co-8Cr-13Pt-5Ta 2 O 5 -2Si0 2 (mol%), Co powder 44.55 wt%, Cr powder 4.37 wt%, Pt powder 26.63 wt%, Weighed at a weight ratio of 23.2 wt% Ta 2 O 5 powder and 1.26 wt% SiO 2 powder.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 32.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.18.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min. The rate of change in thermal expansion coefficient up to 0 ° C. was measured. The rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.6%.
  • Comparative Example 7 (Comparative Example 7)
  • Co powder with an average particle diameter of 3 ⁇ m, Cr powder with an average particle diameter of 5 ⁇ m, Pt powder with an average particle diameter of 1 ⁇ m, Ta 2 O 5 powder with an average particle diameter of 1 ⁇ m, non-average particle diameter of 1 ⁇ m A crystalline SiO 2 powder was prepared.
  • These powders were made to have a target composition of 72Co-8Cr-13Pt-5Ta 5 O 2 -2SiO 2 (mol%) with 44.55 wt% Co powder, 4.37 wt% Cr powder, 26.63 wt% Pt powder, Weighed at a weight ratio of 23.2 wt% Ta 2 O 5 powder and 1.26 wt% SiO 2 powder.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° becomes as large as 109, and the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) is 2.81. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.7%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 9 In Example 9, as a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Co—B powder having an average particle diameter of 5 ⁇ m, and amorphous having an average particle diameter of 1 ⁇ m. SiO 2 powder and CoO powder having an average particle diameter of 1 ⁇ m were prepared. Co powder 56.30 wt%, Cr powder 3.50 wt%, Pt powder 31.50 wt%, B so that the target composition is 71Co-5Cr-12Pt-3B-4Si0 2 -5CoO (mol%). The powder was weighed at a weight ratio of 0.44 wt%, SiO 2 powder 3.23 wt%, and CoO powder 5.04 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 33.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.21.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min. The rate of change in thermal expansion coefficient up to 0 ° C. was measured. The rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.6%.
  • Comparative Example 8 In Comparative Example 8, as raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Co—B powder having an average particle diameter of 5 ⁇ m, and amorphous having an average particle diameter of 1 ⁇ m. SiO 2 powder and CoO powder having an average particle size of ⁇ ⁇ m were prepared. Co powder 56.30 wt%, Cr powder 3.50 wt%, Pt powder 31.50 wt%, B so that the target composition is 71Co-5Cr-12Pt-3B-4SiO 2 -5CoO (mol%). The powder was weighed at a weight ratio of 0.44 wt%, SiO 2 powder 3.23 wt%, and CoO powder 5.04 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 64, and the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) is 1.67. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.4%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 10 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Au powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. In these powders, 17.72 wt% Fe powder, 61.89 wt% Pt powder, 15.62 wt% Au powder, and 15.2 wt% SiO 2 powder so that the target composition is 40Fe-40Pt-10Au-10SiO 2 (mol%). Weighed at a weight ratio of 77 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 31.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.13.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion when the temperature was raised from 250 ° C. to 350 ° C. was 3.4%.
  • Comparative Example 9 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Au powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. In these powders, 17.72 wt% Fe powder, 61.89 wt% Pt powder, 15.62 wt% Au powder, and 15.2 wt% SiO 2 powder so that the target composition is 40Fe-40Pt-10Au-10SiO 2 (mol%). Weighed at a weight ratio of 77 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 70, and the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) is 1.86. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 8.1%, which is larger than that of Example 1 and generates a volume change, which causes microcracks in the target. Occurred.
  • Example 11 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Cu powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. In these powders, Fe powder 18.87 wt%, Pt powder 64.17 wt%, Cu powder 12.64 wt%, SiO 2 powder 4 so that the target composition is 41Fe-41Pt-8Cu-10SiO 2 (mol%). Weighed at a weight ratio of 82 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 33. In addition, the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.2. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.5%.
  • Comparative Example 10 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Cu powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. In these powders, Fe powder 18.87 wt%, Pt powder 64.17 wt%, Cu powder 12.64 wt%, SiO 2 powder 4 so that the target composition is 41Fe-41Pt-8Cu-10SiO 2 (mol%). Weighed at a weight ratio of 82 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 47, and the peak intensity ratio of cristobalite which is crystallized SiO 2 to the background intensity (cristobalite peak intensity / background intensity) is 1.73. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.9%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 12 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Ag powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders are prepared so that the target composition is 45Fe-45Pt-2Ag-8SiO 2 (mol%), Fe powder 20.96 wt%, Pt powder 73.23 wt%, Ag powder 1.8 wt%, SiO 2 powder 4. Weighed at a weight ratio of 01 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 32.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.18.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min. The rate of change in thermal expansion coefficient up to 0 ° C. was measured. The rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.6%.
  • Comparative Example 11 Fe powder having an average particle diameter of 5 ⁇ m, Pt powder having an average particle diameter of 1 ⁇ m, Ag powder having an average particle diameter of 5 ⁇ m, and amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders are prepared so that the target composition is 45Fe-45Pt-2Ag-8SiO 2 (mol%), Fe powder 20.96 wt%, Pt powder 73.23 wt%, Ag powder 1.8 wt%, SiO 2 powder 4. Weighed at a weight ratio of 01 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 134, and the ratio of the cristobalite crystallized SiO 2 to the background intensity is 2.02 (cristobalite peak intensity / background intensity). This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 7.8%, which is larger than that of Example 1 and generates a volume change. This volume change causes microcracks in the target. Occurred.
  • Example 13 a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, and an amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of Co powder 47.08 wt%, Cr powder 36.92 wt%, and SiO 2 powder 16.00 wt% so that the target composition would be 45Co-40Cr-15SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 32.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.15.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min. The rate of change in thermal expansion coefficient up to 0 ° C. was measured. The rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 6.1%.
  • Comparative Example 12 Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, and amorphous SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of Co powder 47.08 wt%, Cr powder 36.92 wt%, and SiO 2 powder 16.00 wt% so that the target composition would be 45Co-40Cr-15SiO 2 (mol%).
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° is as large as 161, and the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) is 2.41. This also increased. As a result, most SiO 2 was crystallized as compared with Example 1. The measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the coefficient of thermal expansion at the time of temperature increase from 250 ° C. to 350 ° C. is 9.2%, which is larger than that in Example 1, causing a volume change, and this volume change causes microcracks in the target. Occurred.
  • Example 14 As a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, amorphous SiO 2 powder having an average particle diameter of 1 ⁇ m, and an average particle diameter of 1 ⁇ m. Cr 2 O 3 powder was prepared. Co powder 78.35 wt%, Cr powder 8.43 wt%, TiO 2 powder 3.88 wt so that these powders have a target composition of 82 Co-10 Cr-3 TiO 2 -2SiO 2 -3Cr 2 O 3 (mol%). %, SiO 2 powder 1.95 wt%, Cr 2 O 3 powder 7.39 wt%.
  • the peak intensity of cristobalite a part of the target was cut out in the same manner as in Example 1, and the X-ray diffraction intensity was measured by the X-ray diffraction (XRD) method. That is, 2 ⁇ : peak intensity and background intensity appearing at 21.98 ° (((average value of intensity of 20.5 to 21.5 °) + (average value of intensity of 22.5 to 23.5 °)) ⁇ 2) was measured. As a result, the peak intensity appearing at 2 ⁇ : 21.98 ° was 40.
  • the peak intensity ratio of cristobalite which is crystallized SiO 2 with respect to the background intensity (cristobalite peak intensity / background intensity) was 1.20.
  • the measurement apparatus and measurement conditions were the same as in Example 1.
  • the rate of change of the thermal expansion coefficient was cut out from 20 mm ⁇ 3 mm ⁇ 3 mm from the target, and in the same manner as in Example 1, using Thermo Plus2 TMA8310 manufactured by Rigaku Corporation, 250 ° C. to 350 ° C. at a temperature rising rate of 5 ° C./min.
  • the rate of change in thermal expansion coefficient up to 0 ° C. was measured.
  • the rate of change of the thermal expansion coefficient when the temperature was raised from 250 ° C. to 350 ° C. was 3.2%.
  • Table 1 summarizes the above results. As shown in Table 1, all of the examples of the sputtering target of the present invention have a cristobalite peak intensity ratio of 1.40 or less within the scope of the present invention. There was little result of shortening the burn-in time of sputtering.
  • the sputtering target for magnetic recording film according to the present invention has excellent effects of suppressing generation of microcracks in the target, suppressing generation of particles during sputtering, and shortening burn-in time. Since the generation of particles is small as described above, the defective rate of the magnetic recording film is reduced, and the cost is reduced. The shortening of the burn-in time greatly contributes to the improvement of production efficiency. This is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a hard disk drive recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Powder Metallurgy (AREA)

Abstract

SiOを含有する磁気記録膜用スパッタリングターゲットであって、X線回折におけるバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)が1.40以下であることを特徴とする磁気記録膜用スパッタリングターゲット。ターゲット中に、スパッタリング時のパーティクル発生の原因となるクリストバライトの形成を抑制し、かつバーンイン時間の短縮が可能な磁気記録膜用スパッタリングターゲットを得ることを課題とする。

Description

磁気記録膜用スパッタリングターゲット及びその製造方法
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される磁気記録膜用スパッタリングターゲットに関し、スパッタリング時のパーティクル発生の原因となるクリストバライトの形成を抑制し、かつスパッタ開始から本成膜までに要する時間(以下、バーンイン時間)、の短縮が可能であるスパッタリングターゲットに関する。
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
 そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。また、このような磁気記録膜用スパッタリングターゲットには、合金相を磁気的に分離させるために、SiOを添加することが行われている。
 強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これはSiO等の無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。
 例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 この場合のターゲット組織は、素地が白子(鱈の精子)状に結合し、その周りにSiO(セラミックス)が取り囲んでいる様子(特許文献1の図2)又は細紐状に分散している(特許文献1の図3)様子が見える。他の図は不鮮明であるが、同様の組織と推測される。このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。なお、特許文献1の図4に示されている球状物質は、メカニカルアロイグ粉末であり、ターゲットの組織ではない。
 また、急冷凝固法で作製した合金粉末を用いなくても、ターゲットを構成する各成分について市販の原料粉末を用意し、それらの原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法で混合し、混合粉末をホットプレスにより成型・焼結することによって、強磁性材スパッタリングターゲットは作製できる。
 スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
 この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出され、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
 上記の通り、磁気記録膜用スパッタリングターゲットには、合金相を磁気的に分離させるために、SiOを添加することが行われている。磁性金属材料に、このSiOを添加するとターゲットにマイクロクラックが発生し、スパッタリング中にパーティクルの発生が多く見られるという問題があった。
 また、SiOを添加した磁性材ターゲットでは、SiOを添加しない磁性材ターゲットに比べてバーンイン時間が長くなるという不都合も生じた。
 これは、SiO自体の問題であるのか、SiOが変質したのか、あるいは他の磁性金属又は添加材料との相互作用の問題か、という程度の問題の提起はあったが、根本的に究明された訳ではなかった。多くの場合、上記の問題は、止むを得ないこととして黙認又は看過されてきたものと考えられる。しかし、今日のように、磁性膜の特性を高度に維持する必要から、スパッタリング膜特性のさらなる向上が求められている。
 従来技術では、磁性材を用いたスパッタリングターゲットにおいて、SiOを添加する技術がいくつか見られる。下記文献2には、マトリックスとしての金属相、このマトリックス相に分散しているセラミックス相、金属相とセラミックス相との界面反応相を有し相対密度が99%以上であるターゲットが開示されている。セラミックス相の中にSiOの選択もあるが、上記の問題の認識及び解決策の提案はない。
 下記文献3には、CoCrPt-SiOスパッタリングターゲットの製造に際し、Pt粉末とSiO粉末を仮焼し、得られた仮焼粉末にCr粉末、Co粉末を混合して加圧焼結する提案がなされている。しかし、上記の問題の認識及び解決策の提案はない。
 下記文献4には、Coを含有する金属相、粒径10μm以下のセラミックス相、金属相とセラミックス相との界面反応相を有し、金属相の中にセラミックス相が散在するスパッタリングターゲットが開示され、前記セラミックス相には、SiOの選択もあることが提案されている。しかし、上記の問題の認識及び解決策の提案はない。
 下記文献5には、非磁性酸化物0.5~15モル、Cr4~20モル、Pt5~25モル、B0.5~8モル、残部Coのスパッタリングターゲットが提案されている。非磁性酸化物には、SiOの選択もあること提案されている。しかし、上記の問題の認識及び解決策の提案はない。
 なお、参考に下記文献6を挙げるが、この文献には、メモリーなどの半導体素子用封止剤の充填剤として、クリストバライト粒子を製造する技術が開示されている。この文献は、スパッタリングターゲットとは無縁の技術ではあるが、SiOのクリストバライトに関する技術である。
 下記文献7は、電子写真現像剤用キャリア芯材として利用されるもので、スパッタリングターゲットとは無縁の技術ではあるが、SiOに関する結晶の種類が開示されている。その一方はSiOのクオーツ結晶であり、他方はクリストバライト結晶である。
 下記文献8は、スパッタリングターゲットとは無縁の技術ではあるが、クリストバライトが炭化珪素の酸化防護機能を損ねる材料であるとしての説明がある。
 下記文献9には、カルコゲン化亜鉛素地中に、無定型SiOが分散した組織の、光記録媒体保護膜形成用スパッタリングターゲットが記載されている。この場合、カルコゲン化亜鉛-SiOからなるターゲットの抗折強度とスパッタリング時の割れの発生は、SiOの形態と形状が影響しており、無定形(アモルファス)にすると、高出力のスパッタリングにおいても、スパッタ割れが発生しないとの開示がある。
 これはある意味での示唆はあるが、あくまでカルコゲン化亜鉛を用いた光記録媒体保護膜形成用スパッタリングターゲットであり、マトリックス材料が異なる磁性材料の問題を解決できるかどうかは全く不明である。
特開平10-88333号公報 特開2006-45587号公報 特開2006-176808号公報 特開2008-179900号公報 特開2009-1861号公報 特開2008-162849号公報 特開2009-80348号公報 特開平10-158097号公報 特開2000-178726号公報
 磁気記録膜用スパッタリングターゲットには、強磁性合金と非磁性の無機物からなる複合材料が多く用いられ、無機物としてはSiOを添加することが行なわれている。本発明の課題は、SiOを添加した磁気記録膜用スパッタリングターゲットにおいて、スパッタリング中のパーティクルの発生を抑制し、かつバーンイン時間を短縮化することにある。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、磁気記録膜用スパッタリングターゲットへのSiOの添加を工夫することにより、スパッタリング時のパーティクル発生の原因となるクリストバライト形成を抑制できることを見出した。すなわち、ターゲット中にマイクロクラック及びスパッタリング中のパーティクル発生を抑制し、かつバーンイン時間の短縮化が可能であることが分かった。
 
 このような知見に基づき、本発明は、
 1)SiOを含有する磁気記録膜用スパッタリングターゲットであって、X線回折におけるバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)が1.40以下であることを特徴とする磁気記録膜用スパッタリングターゲット。
 2)SiOを含有する磁気記録膜用スパッタリングターゲットであって、250°Cから350°Cまで昇温時の熱膨張係数の変化率が7%以下であることを特徴とする前記1)に記載の磁気記録膜用スパッタリングターゲット。
 SiOを含有する磁気記録膜用スパッタリングターゲットの磁気記録材料については、特に制限はなく、種々の磁気記録材料に適用できるのであるが、次の磁気記録膜用材料からなるターゲットに、特に有用である。すなわち、本願発明は、次の3)、4)、5)のターゲットを提供する。
 3)Crが50mol%以下、SiOが20mol%以下、残余がCoであることを特徴とする前記1)又は2)記載の磁気記録膜用スパッタリングターゲット。
 4)Crが50mol%以下、Ptが50mol%以下、SiOが20mol%以下、残余がCoであることを特徴とする前記1)又は2)記載の磁気記録膜用スパッタリングターゲット。
 5)Ptが5mol%以上60mol%以下、SiOが20mol%以下、残余がFeであることを特徴とする前記1)又は2)記載の磁気記録膜用スパッタリングターゲット。
 6)さらに、添加元素として、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Au、Cu、Agから選択した1元素以上を、0.01mol%以上10mol%以下含有することを特徴とする前記1)~5)のいずれか一に記載の磁気記録膜用スパッタリングターゲットを提供する。
 7)また、添加材料として、炭素、SiOを除く酸化物、窒化物、炭化物から選択した1成分以上の無機物材料を含有することを特徴とする前記1)~6)のいずれか一に記載の磁気記録膜用スパッタリングターゲットを提供する。
 8)また、本発明は、SiOの粉末原料として非晶質SiOを使用し、このSiOの粉末原料と磁性金属粉末原料とを混合し、焼結温度を1120°C以下で焼結することを特徴とする前記1)~7)のいずれか一に記載の磁気記録膜用スパッタリングターゲットの製造方法を提供するものである。
 このように調整した本発明の磁気記録膜用スパッタリングターゲットターゲットは、ターゲットのマイクロクラックの発生を抑制すると共に、スパッタリング中のパーティクル発生を抑制し、かつバーンイン時間の短縮化が可能であるという優れた効果を有する。このようにパーティクル発生が少ないので、磁気記録膜の不良率が減少し、コスト低減化になるという大きな効果を有する。また、前記バーンイン時間の短縮化は、生産効率の向上に大きく貢献するものである。
実施例1と比較例1のCo-Cr-Pt-SiOターゲットのX線回折強度の測定結果を示す図である。 実施例1と比較例1のCo-Cr-Pt-SiOターゲットを用いてスパッタリングした場合の、ターゲットライフとパーティクル数の対比を行った結果を示す図である。 比較例1の基板上に成膜したウエハの断面とEDXによる元素分析結果を示す図である。 SiO原料と比較例1のCo-Cr-Pt-SiOターゲットのX線回折強度の測定結果を示す図である。
 本発明の磁気記録膜用スパッタリングターゲットは、SiOを含有する磁気記録膜用スパッタリングターゲットであり、結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)が1.40以下である。すなわち、結晶化したSiOであるクリストバライトを無くすか、又は極力減少させた磁気記録膜用スパッタリングターゲットである。
 磁気記録膜用スパッタリングターゲットには、強磁性合金と非磁性の無機物からなる複合材料が多く用いられ、無機物としてSiOを添加することが行なわれている。
 しかしながら、このSiOがターゲット中で結晶化したクリストバライトとして存在すると、ターゲットの昇温又は降温過程(この温度はおよそ270°C程度)において、相転移による体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生する原因となる。
 これは結果として、スパッタリング中のパーティクル発生の原因となる。したがって、結晶化したクリストバライトを発生させず、非晶質SiOとしてターゲット中に存在させるのが有効である。
 上記のように、磁気記録膜用スパッタリングターゲットとしては、磁性材料に特に制限はないのであるが、Crが50mol%以下、SiOが20mol%以下、残余がCoである磁気記録膜用スパッタリングターゲット、また、Crが50mol%以下、Ptが50mol%以下、SiOが20mol%以下、残余がCoである磁気記録膜用スパッタリングターゲット、さらに、Ptが5mol%以上60mol%以下、SiOが20mol%以下、残余がFeである磁気記録膜用スパッタリングターゲットに有用である。
 これらは、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々であるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
 この場合も、ターゲット中に結晶化したクリストバライトを発生させず、非晶質SiOとしてターゲット中に存在させる必要がある。
 なお、前記Crは、必須成分として添加する場合は、0mol%を除く。すなわち、少なくとも分析可能な下限値以上のCr量を含有させるものである。Cr量が50mol%以下であれば、微量添加する場合においても効果がある。本願発明は、これらを包含する。これらは、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々であるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
 前記Ptも同様に、必須成分として添加する場合は、0mol%を除く。すなわち、少なくとも分析可能な下限値以上のPt量を含有させるものである。Pt量が50mol%以下であれば、微量添加する場合においても効果がある。本願発明は、これらを包含する。これらは、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々であるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
 この他、添加元素として、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Au、Cu、Agから選択した1元素以上を、0.01mol%以上10mol%以下含有させた上記の磁気記録膜用スパッタリングターゲットに有効である。前記添加元素は、磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。さらに添加材料として、炭素、SiOを除く酸化物、窒化物、炭化物から選択した1成分以上の無機物材料を含有する前記磁気記録膜用スパッタリングターゲットに有効である。
 このように、本発明は、SiOを含有する多くの合金系、例えばCo-Pt-SiO-X、Co-Cr-Pt-SiO-X、Co-Cr-SiO-X、Fe-Pt-SiO-Xに適用できる。
 このような磁気記録膜用スパッタリングターゲットの製造に際しては、SiOの粉末原料として非晶質SiOを使用し、原料自体から非晶質化を目途とすることが有効である。このSiOの粉末原料と磁性金属粉末原料とを混合し、焼結温度を1120°C以下で焼結する。この焼結温度の低温化は、SiOの結晶化を抑制するのに有効である。また、高純度のSiOを使用することにより、さらに結晶化を抑制することが可能となる。この意味で、4N以上、さらには5N以上の高純度のSiOを使用することが望ましい。
 なお、以下に製造方法の詳細を説明するが、この製造方法は、代表的かつ好適な例を示すものである。すなわち、本発明は以下の製造方法に制限するものではなく、他の製造方法であっても、本願発明の目的と条件を達成できるものであれば、それらの製造法を任意に採用できることは容易に理解されるであろう。
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製することができる。まず、各金属元素の粉末原料(磁性金属粉末原料)とSiO粉末原料、さらに必要に応じて添加金属元素の粉末原料を用意する。これらの粉末原料は、最大粒径が20μm以下のものを用いることが望ましい。
 また、各金属元素の粉末の代わりに、これら金属の合金粉末を用意してもよいが、その場合も最大粒径が20μm以下とすることが望ましい。
 一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることがさらに望ましい。
 そして、これらの金属粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。無機物粉末を添加する場合は、この段階で金属粉末と混合すればよい。
 無機物粉末としては炭素粉末、SiO以外の酸化物粉末、窒化物粉末または炭化物粉末を用意するが、無機物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
 また、ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットが作製される。この場合、上記の通り、焼結温度を1120°C以下で焼結する。
 この焼結温度の低温化は、SiOの結晶化を抑制するのに必要な温度である。
 また、成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、900~1120°Cの温度範囲とするのが良い。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 実施例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのPt粉末、平均粒径1μmの非晶質SiO粉末を用意した。これらの粉末をターゲットの組成が78Co-12Cr-5Pt-5SiO(mol%)となるように、Co粉末70.76wt%、Cr粉末9.6wt%、Pt粉末15.01wt%、SiO粉末4.62wt%の重量比率で秤量した。
 次に、Co粉末とCr粉末とPt粉末とSiO粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C(SiO粉の結晶化を避けるため、1120°C以下の温度とした。)、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが7mmの円盤状のターゲットを得た。
 クリストバライトのピーク強度は、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。この結果、2θ:21.98°に出現するピーク強度は35となり、またバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。バックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.26となった。
 この結果を、図1の下のXRDの測定結果に示す。SiO原料はアモルファスであり、焼結後のターゲットには、2θ:21.98にクリストバライトのピークは現れなかった。対比として、同図の上に、下記比較例1のX線回折強度を示すが、2θ:21.98にクリストバライトのピークが現れた。以下の実施例及び比較例においても、図1に示すものと同様の結果となった。
 なお、測定装置としてリガク社製UltimaIVを用い、測定条件は管電圧40kv、管電流30mA、スキャンスピード4°/min、ステップ0.02°とした。
 又熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5°C/minにおいて、250°Cから350°Cまでの熱膨張係数変化率を測定した。250°Cから350°Cまで昇温時の熱膨張係数の変化率は3.6%であった。
 図2に、実施例1と下記比較例1のCo-Cr-Pt-SiOターゲットを用いてスパッタリングした場合の、ターゲットライフとパーティクル数の対比を行った結果を示す。スパッタリング条件は、パワー:1kW、時間20秒、圧力(Ar雰囲気)1.7Paで実施した。
 実施例1のターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.8個であった。また、スパッタリング開始時に発生する初期パーティクル数が30個以下となる時間をバーンイン時間とした場合、バーンイン時間は0.37kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。以下の実施例及び比較例においても、図2に示すものと、同様の結果となった。
(比較例1)
 比較例1では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉末、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が78Co-12Cr-5Pt-5SiO(mol%)となるように、Co粉末70.76wt%、Cr粉末9.6wt%、Pt15.01wt%、SiO粉末4.62wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 この製作したCo-Cr-Pt-SiOターゲットをSi基板(ウエハ)へスパッタリングし、パーティクルの状況を調べた。基板上に成膜したウエハの断面とEDXによる元素分析結果を図3に示す。この図3の左側はパーティクルを示すが、同図右の元素分析結果から明らかなように、ほぼ全てのパーティクルが、SiOであった。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。この結果を図2に示す。SiO原料はアモルファスであるが、焼結後のターゲットには、このように、2θ:21.98にクリストバライトのピークが現れた。下の線はSiO原料のX線回折強度であり、参考までに示す。
 2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果、2θ:21.98°に出現するピーク強度は56となり、バックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.42となった。これらは、実施例1に比べていずれも大きくなった。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.5%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は6.7個と増加した。また、スパッタリングのバーンイン時間は1.42kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(比較例2)
 比較例2では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が83Co-12Cr-5SiO(mol%)となるように、Co粉末84.11wt%、Cr粉末10.73wt%、SiO粉末5.17wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は129と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.92となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は11.2%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は8.7個と増加した。また、スパッタリングのバーンイン時間は1.75kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例2)
 実施例2では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が83Co-12Cr-5SiO(mol%)となるように、Co粉末84.11wt%、Cr粉末10.73wt%、SiO粉末5.17wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1060°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は31となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.13となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は5.5%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.5個であった。また、スパッタリングのバーンイン時間は0.53kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(実施例3)
 実施例3では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径5μmのCo-B粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が66Co-15Cr-12Pt-2B-5SiO(mol%)となるように、Co粉末53.05wt%、Cr粉末10.64wt%、Pt粉末31.93wt%、B粉末0.29wt%、SiO粉末4.10wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度900°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は30となり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.04となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.8%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は0.4個であった。また、スパッタリングのバーンイン時間は0.21kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(実施例4)
 実施例4では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCr粉を用意した。これらの粉末をターゲット組成が67Co-10Cr-15Pt-3TiO-2Si0-3Cr(mol%)となるように、Co粉末48.09wt%、Cr粉末6.33wt%、Pt粉末35.64wt%、TiO粉末0.69wt%、SiO粉末0.67wt%、Cr粉末1.07wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は32であった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.18となった。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.3%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2個であった。また、スパッタリングのバーンイン時間は0.2kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例3)
 比較例3では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCr粉を用意した。これらの粉末をターゲット組成が82Co-10Cr-3TiO-2SiO-3Cr(mol%)となるように、Co粉末78.35wt%、Cr粉末8.43wt%、TiO粉3.88wt%、SiO粉末1.95wt%、Cr粉末7.39wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は317と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は4.71となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は8.5%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は13.5個と増加した。また、スパッタリングのバーンイン時間は2kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(比較例4)
 比較例4では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCr粉を用意した。これらの粉末をターゲット組成が67Co-10Cr-15Pt-3TiO-2SiO-3Cr(mol%)となるように、Co粉末48.09wt%、Cr粉末6.33wt%、Pt粉末35.64wt%、TiO粉0.69wt%、SiO粉末0.67wt%、Cr粉末1.07wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は62と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.57となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.6%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は7.2個と増加した。また、スパッタリングのバーンイン時間は1.42kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例5)
 実施例5では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径8μmのRu粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCr粉を用意した。これらの粉末をターゲット組成が67Co-5Cr-18Pt-2Ru-3TiO-2Si0-3Cr(mol%)となるように、Co粉末45.19wt%、Cr粉末2.98wt%、Pt粉末40.19wt%、Ru粉末2.31wt%、TiO粉末2.74wt%、SiO粉末1.38wt%、Cr粉末5.22wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は35であった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.28となった。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.8%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.2個であった。また、スパッタリングのバーンイン時間は0.51kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例5)
 比較例5では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Fe-45Pt-10SiO(mol%)となるように、Fe粉末21.13wt%、Pt粉末73.82wt%、SiO粉末5.05wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は224と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は3.4となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は8.1%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は10.1個と増加した。また、スパッタリングのバーンイン時間は2.1kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例6)
 実施例6では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Fe-45Pt-10SiO(mol%)となるように、Fe粉末21.13wt%、Pt粉末73.82wt%、SiO粉末5.05wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は30となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.12となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.7%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.7個であった。また、スパッタリングのバーンイン時間は0.6kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(実施例7)
 実施例7では、原料粉末として、平均粒径3μmのCo粉、平均粒径1μmのPt粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が84Co-10Pt-3TiO-3SiO(mol%)となるように、Co粉末67.62wt%、Pt粉末26.65wt%、TiO粉末3.27wt%、SiO粉末2.46wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1060°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は30となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.11となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.5%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.4個であった。また、スパッタリングのバーンイン時間は0.41kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例6)
 比較例6では、原料粉末として、平均粒径3μmのCo粉、平均粒径1μmのPt粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が84Co-10Pt-3TiO-3SiO(mol%)となるように、Co粉末67.62wt%、Pt粉末26.65wt%、TiO粉3.27wt%、SiO粉末2.46wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は55と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.43となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は8.3%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は7.1個と増加した。また、スパッタリングのバーンイン時間は1.24kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例8)
 実施例8では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径1μmのTa粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が72Co-8Cr-13Pt-5Ta-2Si0(mol%)となるように、Co粉末44.55wt%、Cr粉末4.37wt%、Pt粉末26.63wt%、Ta粉末23.2wt%、SiO粉末1.26wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1060°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は32であった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.18となった。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.6%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.2個であった。また、スパッタリングのバーンイン時間は0.21kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例7)
 比較例7では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径1μmのTa粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が72Co-8Cr-13Pt-5Ta-2SiO(mol%)となるように、Co粉末44.55wt%、Cr粉末4.37wt%、Pt粉末26.63wt%、Ta粉23.2wt%、SiO粉末1.26wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は109と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は2.81となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.7%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は9.1個と増加した。また、スパッタリングのバーンイン時間は1.83kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例9)
 実施例9では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径5μmのCo-B粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCoO粉を用意した。これらの粉末をターゲット組成が71Co-5Cr-12Pt-3B-4Si0-5CoO(mol%)となるように、Co粉末56.30wt%、Cr粉末3.50wt%、Pt粉末31.50wt%、B粉末0.44wt%、SiO粉末3.23wt%、CoO粉末5.04wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は33であった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.21となった。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.6%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.6個であった。また、スパッタリングのバーンイン時間は0.47kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例8)
 比較例8では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのPt粉、平均粒径5μmのCo-B粉、平均粒径1μmの非晶質SiO粉、平均粒径○μmのCoO粉を用意した。これらの粉末をターゲット組成が71Co-5Cr-12Pt-3B-4SiO-5CoO(mol%)となるように、Co粉末56.30wt%、Cr粉末3.50wt%、Pt粉末31.50wt%、B粉0.44wt%、SiO粉末3.23wt%、CoO粉末5.04wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は64と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.67となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.4%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は9.8個と増加した。また、スパッタリングのバーンイン時間は1.37kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例10)
 実施例10では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのAu粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が40Fe-40Pt-10Au-10SiO(mol%)となるように、Fe粉末17.72wt%、Pt粉末61.89wt%、Au粉末15.62wt%、SiO粉末4.77wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は31となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.13となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.4%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.6個であった。また、スパッタリングのバーンイン時間は0.52kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例9)
 比較例9では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのAu粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が40Fe-40Pt-10Au-10SiO(mol%)となるように、Fe粉末17.72wt%、Pt粉末61.89wt%、Au粉末15.62wt%、SiO粉末4.77wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は70と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.86となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は8.1%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は9.2個と増加した。また、スパッタリングのバーンイン時間は1.78kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例11)
 実施例11では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのCu粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が41Fe-41Pt-8Cu-10SiO(mol%)となるように、Fe粉末18.87wt%、Pt粉末64.17wt%、Cu粉末12.64wt%、SiO粉末4.82wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は33となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.2となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.5%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.3個であった。また、スパッタリングのバーンイン時間は0.45kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例10)
 比較例10では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのCu粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が41Fe-41Pt-8Cu-10SiO(mol%)となるように、Fe粉末18.87wt%、Pt粉末64.17wt%、Cu粉末12.64wt%、SiO粉末4.82wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は47と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.73となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.9%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は6.9個と増加した。また、スパッタリングのバーンイン時間は1.34kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例12)
 実施例12では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Fe-45Pt-2Ag-8SiO(mol%)となるように、Fe粉末20.96wt%、Pt粉末73.23wt%、Ag粉末1.8wt%、SiO粉末4.01wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は32となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.18となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.6%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.1個であった。また、スパッタリングのバーンイン時間は0.39kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例11)
 比較例11では、原料粉末として、平均粒径5μmのFe粉、平均粒径1μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Fe-45Pt-2Ag-8SiO(mol%)となるように、Fe粉末20.96wt%、Pt粉末73.23wt%、Ag粉末1.8wt%、SiO粉末4.01wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は134と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は2.02となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は7.8%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は10.1個と増加した。また、スパッタリングのバーンイン時間は1.91kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例13)
 実施例13では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Co-40Cr-15SiO(mol%)となるように、Co粉末47.08wt%、Cr粉末36.92wt%、SiO粉末16.00wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1060°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は32となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.15となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は6.1%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.4個であった。また、スパッタリングのバーンイン時間は0.74kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
(比較例12)
 比較例12では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmの非晶質SiO粉を用意した。これらの粉末をターゲット組成が45Co-40Cr-15SiO(mol%)となるように、Co粉末47.08wt%、Cr粉末36.92wt%、SiO粉末16.00wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1160°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は161と大きくなり、またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は2.41となり、これも増加した。この結果、実施例1に比べ殆どのSiOが結晶化した。
 なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は9.2%であり、実施例1に比べて大きくなり、体積変化を発生し、この体積変化により、ターゲット中にマイクロクラックが発生した。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は11.1個と増加した。また、スパッタリングのバーンイン時間は2.32kWhであり、バーンインの時間が長くなった。このように、クリストバライト(結晶化したSiO)のピーク強度が大きくなると、スパッタリングのバーンインの時間が長くなり、またスパッタ時のパーティクル発生数が増加する結果となった。
(実施例14)
 実施例14では、原料粉末として、平均粒径3μmのCo粉、平均粒径5μmのCr粉、平均粒径1μmのTiO粉、平均粒径1μmの非晶質SiO粉、平均粒径1μmのCr粉を用意した。これらの粉末をターゲット組成が82Co-10Cr-3TiO-2SiO-3Cr(mol%)となるように、Co粉末78.35wt%、Cr粉末8.43wt%、TiO粉3.88wt%、SiO粉末1.95wt%、Cr粉末7.39wt%の重量比率で秤量した。
 そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1090°C、保持時間3時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが7mmの円盤状のターゲットへ加工した。
 クリストバライトのピーク強度は、実施例1と同様に、ターゲットの一部を切出し、X線回折(XRD)法により、X線回折強度を測定した。すなわち2θ:21.98°に出現するピーク強度及びバックグラウンド強度(((20.5~21.5°の強度の平均値)+(22.5~23.5°の強度の平均値))÷2)を測定した。この結果2θ:21.98°に出現するピーク強度は40となった。またバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)は1.20となった。なお、測定装置、測定条件は実施例1と同様とした。
 又、熱膨張係数の変化率は、ターゲットから20mm×3mm×3mmを切出し、実施例1と同様に、リガク社製Thermo plus2 TMA8310を用いて、昇温速度5℃/minにおいて、250℃から350℃までの熱膨張係数変化率を測定した。250℃から350℃まで昇温時の熱膨張係数の変化率は3.2%であった。
 このターゲットを用いてスパッタリングした結果、定常状態時のパーティクル発生数は2.6個であった。また、スパッタリングのバーンイン時間は0.52kWhであった。このように、クリストバライト(結晶化したSiO)のピーク強度が低い場合には、バーンインが短縮化され、パーティクル発生数は少ない結果となった。
 以上の結果をまとめたものが表1である。表1に示すように、本発明のスパッタリングターゲットの実施例は、いずれもクリストバライトのピーク強度比が1.40以下と本発明の範囲内であり、比較例に比べて常にスパッタリング時に発生するパーティクルが少なく、スパッタリングのバーンイン時間が短縮する結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 
 本発明の磁気記録膜用スパッタリングターゲットターゲットは、ターゲットのマイクロクラックの発生を抑制すると共に、スパッタリング中のパーティクル発生を抑制し、かつバーンイン時間の短縮化が可能であるという優れた効果を有する。このようにパーティクル発生が少ないので、磁気記録膜の不良率が減少し、コスト低減化になるという大きな効果を有する。また、前記バーンイン時間の短縮化は、生産効率の向上に大きく貢献するものである。
 これにより、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。

Claims (8)

  1.  SiOを含有する磁気記録膜用スパッタリングターゲットであって、X線回折におけるバックグラウンド強度に対する結晶化したSiOであるクリストバライトのピーク強度比(クリストバライトピーク強度/バックグラウンド強度)が1.40以下であることを特徴とする磁気記録膜用スパッタリングターゲット。
  2.  SiOを含有する磁気記録膜用スパッタリングターゲットであって、250°Cから350°Cまで昇温時の熱膨張係数の変化率が7%以下であることを特徴とする請求項1に記載の磁気記録膜用スパッタリングターゲット。
  3.  Crが50mol%以下、SiOが20mol%以下、残余がCoであることを特徴とする請求項1又は2記載の磁気記録膜用スパッタリングターゲット。
  4.  Crが50mol%以下、Ptが50mol%以下、SiOが20mol%以下、残余がCoであることを特徴とする請求項1又は2記載の磁気記録膜用スパッタリングターゲット。
  5.  Ptが5mol%以上60mol%以下、SiOが20mol%以下、残余がFeであることを特徴とする請求項1又は2記載の磁気記録膜用スパッタリングターゲット。
  6.  添加元素として、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Au、Cu、Agから選択した1元素以上を、0.01mol%以上10mol%以下含有することを特徴とする請求項1~5のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
  7.  添加材料として、炭素、SiOを除く酸化物、窒化物、炭化物から選択した1成分以上の無機物材料を含有することを特徴とする請求項1~6のいずれか一項に記載の磁気記録膜用スパッタリングターゲット。
  8.  SiOの粉末原料として非晶質SiOを使用し、このSiOの粉末原料と磁性金属粉末原料とを混合し、焼結温度を1120°C以下で焼結することを特徴とする請求項1~7のいずれか一項に記載の磁気記録膜用スパッタリングターゲットの製造方法。
PCT/JP2011/052125 2010-07-29 2011-02-02 磁気記録膜用スパッタリングターゲット及びその製造方法 WO2012014504A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/808,172 US9567665B2 (en) 2010-07-29 2011-02-02 Sputtering target for magnetic recording film, and process for producing same
CN201180035899.5A CN103210115B (zh) 2010-07-29 2011-02-02 磁记录膜用溅射靶及其制造方法
SG2012087003A SG185767A1 (en) 2010-07-29 2011-02-02 Sputtering target for magnetic recording film and process for producing same
JP2011539571A JP5032706B2 (ja) 2010-07-29 2011-02-02 磁気記録膜用スパッタリングターゲット及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010171038 2010-07-29
JP2010-171038 2010-07-29
JP2010283678 2010-12-20
JP2010-283678 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012014504A1 true WO2012014504A1 (ja) 2012-02-02

Family

ID=45529729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052125 WO2012014504A1 (ja) 2010-07-29 2011-02-02 磁気記録膜用スパッタリングターゲット及びその製造方法

Country Status (7)

Country Link
US (1) US9567665B2 (ja)
JP (1) JP5032706B2 (ja)
CN (2) CN104975264B (ja)
MY (1) MY165512A (ja)
SG (1) SG185767A1 (ja)
TW (1) TWI551705B (ja)
WO (1) WO2012014504A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064995A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石金属株式会社 非磁性物質分散型Fe-Pt系スパッタリングターゲット
US9011653B2 (en) 2010-11-29 2015-04-21 Mitsui Mining & Smelting Co., Ltd. Sputtering target

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG185768A1 (en) 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
MY156716A (en) * 2010-12-21 2016-03-15 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film and process for production thereof
MY169053A (en) 2012-02-22 2019-02-11 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method for same
CN104126026B (zh) 2012-02-23 2016-03-23 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
US9540724B2 (en) * 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
JP5567227B1 (ja) 2012-09-21 2014-08-06 Jx日鉱日石金属株式会社 Fe−Pt系磁性材焼結体
US10600440B2 (en) * 2014-09-22 2020-03-24 Jx Nippon Mining & Metals Corporation Sputtering target for forming magnetic recording film and method for producing same
MY184036A (en) 2016-02-19 2021-03-17 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording medium, and magnetic thin film
MY189794A (en) 2016-03-31 2022-03-08 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
TWI684658B (zh) * 2016-12-06 2020-02-11 光洋應用材料科技股份有限公司 鈷鉻鉑基合金靶材及其製法
US10760156B2 (en) 2017-10-13 2020-09-01 Honeywell International Inc. Copper manganese sputtering target
US11035036B2 (en) 2018-02-01 2021-06-15 Honeywell International Inc. Method of forming copper alloy sputtering targets with refined shape and microstructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798835A (ja) * 1993-09-29 1995-04-11 Victor Co Of Japan Ltd 磁気記録媒体及びその製造方法
JP2001236643A (ja) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体
JP2006313584A (ja) * 2005-05-06 2006-11-16 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体の製造方法
JP2007031808A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用スパッタリングターゲット

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116526A (ja) * 1989-09-29 1991-05-17 Matsushita Electric Ind Co Ltd 磁気記録媒体の製造方法
US5441804A (en) * 1991-02-12 1995-08-15 Mitsubishi Plastics Industries Limited Magneto-optical recording medium and method for production thereof
US5989728A (en) * 1994-11-02 1999-11-23 International Business Machines Corporation Thin film magnetic recording medium having high coercivity
JP3816595B2 (ja) 1996-09-18 2006-08-30 三井金属鉱業株式会社 スパッタリングターゲットの製造方法
JPH10158097A (ja) 1996-11-28 1998-06-16 Chokoon Zairyo Kenkyusho:Kk 酸化防護皮膜
JP3468136B2 (ja) 1998-12-18 2003-11-17 三菱マテリアル株式会社 光記録媒体保護膜形成用スパッタリングターゲット
JP4175829B2 (ja) 2002-04-22 2008-11-05 株式会社東芝 記録媒体用スパッタリングターゲットと磁気記録媒体
US20070189916A1 (en) 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
WO2005093124A1 (ja) * 2004-03-26 2005-10-06 Nippon Mining & Metals Co., Ltd. Co-Cr-Pt-B系合金スパッタリングターゲット
US7381282B2 (en) * 2004-04-07 2008-06-03 Hitachi Metals, Ltd. Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium
JP2005320627A (ja) * 2004-04-07 2005-11-17 Hitachi Metals Ltd Co合金ターゲット材の製造方法、Co合金ターゲット材および垂直磁気記録用軟磁性膜ならびに垂直磁気記録媒体
JP4422574B2 (ja) 2004-07-30 2010-02-24 三井金属鉱業株式会社 セラミックス−金属複合材料からなるスパッタリングターゲット材およびその製造方法
JP2006176808A (ja) 2004-12-21 2006-07-06 Mitsubishi Materials Corp 磁気記録膜形成用CoCrPt−SiO2スパッタリングターゲットの製造方法
WO2007080781A1 (ja) 2006-01-13 2007-07-19 Nippon Mining & Metals Co., Ltd. 非磁性材粒子分散型強磁性材スパッタリングターゲット
CN101405429A (zh) * 2006-03-31 2009-04-08 三菱麻铁里亚尔株式会社 颗粒产生少的磁记录膜形成用Co基烧结合金溅射靶的制造方法、及磁记录膜形成用Co基烧结合金溅射靶
US20100270146A1 (en) 2006-03-31 2010-10-28 Mitsubishi Materials Corporation Method for manufacturing co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate partricles, and co-base sintered alloy sputtering target for formation of magnetic recording film
JP5062396B2 (ja) 2006-12-28 2012-10-31 信越化学工業株式会社 高純度クリストバライト粒子及びその製造方法
JP2009001861A (ja) 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP4948342B2 (ja) 2007-09-26 2012-06-06 Dowaエレクトロニクス株式会社 電子写真現像用キャリア芯材およびその製造方法、磁性キャリア並びに電子写真現像剤
CN100549199C (zh) * 2007-12-26 2009-10-14 安泰科技股份有限公司 一种磁控溅射Co-Cr-Ta合金靶的制造方法
JP4468461B2 (ja) 2008-02-27 2010-05-26 三井金属鉱業株式会社 セラミックス−金属複合材料からなるスパッタリングターゲット材の製造方法
MY145087A (en) 2008-03-28 2011-12-30 Jx Nippon Mining & Metals Corp Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material
SG172295A1 (en) 2009-03-27 2011-07-28 Jx Nippon Mining & Metals Corp Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
US9034155B2 (en) 2009-08-06 2015-05-19 Jx Nippon Mining & Metals Corporation Inorganic-particle-dispersed sputtering target
MY149640A (en) 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
MY149437A (en) 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
SG185768A1 (en) 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
WO2012029498A1 (ja) 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Fe-Pt系強磁性材スパッタリングターゲット
JP4885333B1 (ja) 2010-09-03 2012-02-29 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
US20130220804A1 (en) 2010-12-09 2013-08-29 Jx Nippon Mining & Metals Corporation Ferromagnetic Material Sputtering Target
WO2012081363A1 (ja) 2010-12-15 2012-06-21 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット及びその製造方法
CN103168328B (zh) 2010-12-17 2016-10-26 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
US20130213804A1 (en) 2010-12-17 2013-08-22 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
JP5623552B2 (ja) 2010-12-20 2014-11-12 Jx日鉱日石金属株式会社 Fe−Pt系強磁性材スパッタリングターゲット及びその製造方法
MY156716A (en) 2010-12-21 2016-03-15 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film and process for production thereof
CN103270190B (zh) 2010-12-22 2016-01-20 吉坤日矿日石金属株式会社 烧结体溅射靶
SG191134A1 (en) 2011-03-30 2013-07-31 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
MY162450A (en) 2011-08-23 2017-06-15 Jx Nippon Mining & Metals Corp Ferromagnetic sputtering target with less particle generation
CN104081458B (zh) 2012-01-18 2017-05-03 吉坤日矿日石金属株式会社 Co‑Cr‑Pt 系溅射靶及其制造方法
MY169053A (en) 2012-02-22 2019-02-11 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method for same
SG11201401542YA (en) 2012-03-15 2014-11-27 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method thereof
US9540724B2 (en) 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
CN104379801A (zh) 2012-09-18 2015-02-25 吉坤日矿日石金属株式会社 溅射靶
CN104411862B (zh) 2012-10-25 2017-07-18 吉坤日矿日石金属株式会社 非磁性物质分散型Fe‑Pt基溅射靶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798835A (ja) * 1993-09-29 1995-04-11 Victor Co Of Japan Ltd 磁気記録媒体及びその製造方法
JP2001236643A (ja) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体
JP2006313584A (ja) * 2005-05-06 2006-11-16 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体の製造方法
JP2007031808A (ja) * 2005-07-29 2007-02-08 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用スパッタリングターゲット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011653B2 (en) 2010-11-29 2015-04-21 Mitsui Mining & Smelting Co., Ltd. Sputtering target
JP5730903B2 (ja) * 2010-11-29 2015-06-10 三井金属鉱業株式会社 スパッタリングターゲット
WO2014064995A1 (ja) * 2012-10-25 2014-05-01 Jx日鉱日石金属株式会社 非磁性物質分散型Fe-Pt系スパッタリングターゲット
CN104411862A (zh) * 2012-10-25 2015-03-11 吉坤日矿日石金属株式会社 非磁性物质分散型Fe-Pt基溅射靶
US20150107991A1 (en) * 2012-10-25 2015-04-23 Jx Nippon Mining & Metals Corporation Fe-Pt-Based Sputtering Target Having Nonmagnetic Substance Dispersed Therein
JP5974327B2 (ja) * 2012-10-25 2016-08-23 Jx金属株式会社 非磁性物質分散型Fe−Pt系スパッタリングターゲット

Also Published As

Publication number Publication date
CN104975264A (zh) 2015-10-14
US20130098760A1 (en) 2013-04-25
JP5032706B2 (ja) 2012-09-26
CN104975264B (zh) 2020-07-28
MY165512A (en) 2018-03-28
TWI551705B (zh) 2016-10-01
TW201204852A (en) 2012-02-01
JPWO2012014504A1 (ja) 2013-09-12
US9567665B2 (en) 2017-02-14
CN103210115A (zh) 2013-07-17
CN103210115B (zh) 2016-01-20
SG185767A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5032706B2 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
JP5009448B2 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
JP5009447B1 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
TWI555866B (zh) Magnetic particle sputtering target and its manufacturing method
JP5876138B2 (ja) 磁性材スパッタリングターゲット及びその製造方法
JP5226155B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット
US9228251B2 (en) Ferromagnetic material sputtering target
WO2012086578A1 (ja) Fe-Pt系強磁性材スパッタリングターゲット及びその製造方法
JP6005767B2 (ja) 磁性記録媒体用スパッタリングターゲット
JP5888664B2 (ja) 強磁性材スパッタリングターゲット
CN109844167B (zh) 磁性材料溅射靶及其制造方法
JP6971901B2 (ja) スパッタリングターゲット
JP2011181140A (ja) 磁気記録媒体用Fe−Co系合金軟磁性膜
JP6062586B2 (ja) 磁気記録膜形成用スパッタリングターゲット
TW202325873A (zh) 濺射靶部件、濺射靶組件、以及成膜方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011539571

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812100

Country of ref document: EP

Kind code of ref document: A1