WO2012029498A1 - Fe-Pt系強磁性材スパッタリングターゲット - Google Patents

Fe-Pt系強磁性材スパッタリングターゲット Download PDF

Info

Publication number
WO2012029498A1
WO2012029498A1 PCT/JP2011/067936 JP2011067936W WO2012029498A1 WO 2012029498 A1 WO2012029498 A1 WO 2012029498A1 JP 2011067936 W JP2011067936 W JP 2011067936W WO 2012029498 A1 WO2012029498 A1 WO 2012029498A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
powder
sputtering
oxide
sputtering target
Prior art date
Application number
PCT/JP2011/067936
Other languages
English (en)
French (fr)
Inventor
真一 荻野
中村 祐一郎
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/816,043 priority Critical patent/US9328412B2/en
Priority to JP2012531767A priority patent/JP5226155B2/ja
Priority to CN201180041604.5A priority patent/CN103081009B/zh
Publication of WO2012029498A1 publication Critical patent/WO2012029498A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles

Definitions

  • the present invention relates to a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer, and relates to an Fe—Pt ferromagnetic sputtering target with less generation of particles.
  • a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a hard disk recording layer employing a perpendicular magnetic recording system that has been put into practical use in recent years often uses a composite material composed of a Co—Cr—Pt-based ferromagnetic alloy mainly composed of Co and non-magnetic inorganic particles. It has been.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • the recording density of the magnetic recording medium is rapidly increasing year by year, the future from a surface density of 100 Gbit / in 2 of current is believed to reach 1 Tbit / in 2.
  • the size of the recording bit becomes less than 10 nm.
  • superparamagnetization due to thermal fluctuation is expected to be a problem, and magnetic recording media currently used
  • a material in which Pt is added to a Co—Cr base alloy to increase the magnetocrystalline anisotropy, or a medium in which B is further added to weaken the magnetic coupling between the magnetic grains may not be sufficient. is expected. This is because particles having a size of 10 nm or less and stably acting as ferromagnetism must have higher crystal magnetic anisotropy.
  • FePt phase having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium. Further, FePt phase having an L1 0 structure corrosion and excellent oxidation resistance, is what is expected as a material suitable for the application as a recording medium.
  • the magnetic recording layer is composed of a magnetic phase such as an Fe—Pt alloy and a nonmagnetic phase separating the magnetic phase, and a metal oxide is effective as one of the materials of the nonmagnetic phase.
  • a magnetic recording layer is often formed by a sputtering film forming method.
  • the metal oxide is not prepared at the time of sputtering.
  • the magnetic recording layer is composed of a magnetic phase such as an Fe—Pt alloy and a nonmagnetic phase separating the magnetic phase, and a ferromagnetic material sputtering using a metal oxide as one of the materials of the nonmagnetic phase.
  • a target that suppresses the inadvertent desorption of metal oxide during sputtering and the generation of particles due to abnormal discharge starting from the voids contained in the target, thereby ensuring close contact between the metal oxide and the base alloy.
  • An object of the present invention is to provide a ferromagnetic material sputtering target in which the properties of the sputtering target are enhanced and the sputtering target is densified.
  • the present inventors have conducted intensive research, and as a result, by selecting Fe, which is the main component of the base alloy, and a metal oxide having good wettability, the metal oxide and the base are selected. It has been found that the adhesion with the material alloy can be improved and a high-density sputtering target can be made.
  • the sputtering target made in this way can greatly reduce particle generation. That is, it has been found that a target with less generation of particles can be obtained by using a metal oxide having high wettability.
  • the present invention 1) Fe—Pt ferromagnetic sputtering target composed of a metal and a metal oxide having a composition in which Pt is 5 mol% or more and 60 mol% or less and the balance is Fe 2)
  • the wettability value of the metal oxide with respect to the molten metal is 25 ( 1) or the Fe—Pt ferromagnetic sputtering target according to 1) above, wherein the metal oxide content is 15 to 70 vol%.
  • the Fe—Pt ferromagnetic sputtering target described in 4) Any of 1) to 3) above, wherein a metal oxide having a particle size of 0.1 to 50 ⁇ m is dispersed in the metal substrate.
  • An Fe—Pt ferromagnetic sputtering target according to claim 1 is provided.
  • the present invention also provides: 5)
  • the metal oxide is one or more oxides selected from Zr, Mg, Ti, Al, B, Ta, Nb, Zn, Si, Cr, Mn, and Ga.
  • Fe—Pt ferromagnetic sputtering target according to any one of 6) Fe— as described in any one of 1) to 5) above, wherein the relative density is 97% or more.
  • Pt-based ferromagnetic material sputtering target 7) As an additional element, 1 element or more selected from B, C, Ru, Ag, Au, Cu is contained in an amount of 0.5 mol% to 20 mol%, 1) (6) An Fe—Pt ferromagnetic sputtering target according to any one of (1) to (6).
  • the magnetic recording layer is composed of a magnetic phase such as an Fe—Pt alloy and a nonmagnetic phase separating the magnetic phase, and a ferromagnetic material sputtering using a metal oxide as one of the materials of the nonmagnetic phase.
  • the ferromagnetic material sputtering target of the present invention suppresses inadvertent desorption of metal oxide during sputtering and generation of particles due to abnormal discharge starting from voids contained in the target. In addition, it has an excellent effect of providing a ferromagnetic sputtering target having a higher density of the sputtering target and a higher density of the sputtering target. It has an effect that it can be used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the Fe—Pt ferromagnetic sputtering target of the present invention comprises a metal and a metal oxide having a composition in which Pt is 5 mol% to 60 mol% and the balance is Fe. This is the basis of the present invention.
  • a metal oxide one or more oxides selected from Zr, Mg, Ti, Al, B, Ta, Nb, Zn, Si, Cr, Mn, and Ga are added.
  • Fe-Pt ferromagnetic material has the effect of increasing the density of the sputtering target and greatly suppressing the generation of particles, but the wettability of the metal oxide to the molten metal is a common characteristic of these oxide additions I got that knowledge.
  • the wettability between the base metal alloy and the nonmagnetic material can be predicted and evaluated by using a calculated wettability index (hereinafter referred to as “CWI”) by simulation.
  • CWI calculated wettability index
  • the CWI value of the metal oxide with respect to the molten metal is 25 (J / molK) or less (in addition, the unit “K” indicates Kelvin. The same applies in the description). Therefore, the adhesion between the metal oxide and the base alloy is improved, and it is effective for a high-density sputtering target. Thus, the produced sputtering target can suppress particle generation effectively.
  • the wettability can be calculated from the free energy and enthalpy change amount in an arbitrary chemical equilibrium state between Fe and each oxide.
  • a change amount ( ⁇ G 0 ) of free energy in a reaction in which an arbitrary oxide (solid phase) and Fe (liquid phase) exchange oxygen is calculated.
  • an enthalpy change amount ( ⁇ H mix ) when 1 mol of Fe is dissolved in a metal component of an arbitrary oxide is calculated.
  • the value calculated by ( ⁇ G 0 + ⁇ H mix ) / RT was CWI.
  • R is a gas constant
  • T is the temperature of the reaction field. It is generally known that the CWI value correlates with the contact angle between any oxide and metal component.
  • the Fe—Pt ferromagnetic sputtering target of the present invention has a metal oxide content of 15 to 70 vol%, and further contains a metal oxide having a particle size of 0.1 to 50 ⁇ m in the metal substrate. Dispersion is particularly effective. These can produce a high-density sputtering target, and the produced sputtering target can effectively suppress particle generation.
  • the metal oxide is preferably one or more oxides selected from Zr, Mg, Ti, Al, B, Ta, Nb, Zn, Si, Cr, Mn, and Ga. These improve wettability and are all effective for a high-density sputtering target, and the produced sputtering target can effectively suppress the generation of particles. A relative density of 97% or more of the Fe—Pt ferromagnetic sputtering target can be achieved.
  • the Fe—Pt ferromagnetic sputtering target of the present invention contains one or more elements selected from B, C, Ru, Ag, Au, and Cu as additive elements in an amount of 0.5 mol% to 20 mol%. Can do. Addition of these elements has an effect of increasing the coercive force in the vertical direction of the film formed using the ferromagnetic sputtering target of the present invention and lowering the ordering temperature of Fe—Pt.
  • the ferromagnetic material sputtering target of the present invention is produced by powder metallurgy.
  • powders of each metal element Fe and Pt powder
  • powders of additive metal elements B, C, Ru, Ag, Au, Cu powder
  • These powders desirably have a maximum particle size of 20 ⁇ m or less.
  • an atomized alloy powder of these metals for example, an alloy powder of a main component metal powder and an added metal element added as necessary may be used. In this case, it is desirable to use particles having an average particle size of 10 ⁇ m to 200 ⁇ m.
  • the above-mentioned powder is weighed so as to have a desired composition, and mixed using pulverization using a known method such as a ball mill. What is necessary is just to mix with a metal powder at this stage, when adding a metal oxide powder. On the other hand, when the metal powder is too small, there is a problem that oxidation is promoted. Moreover, it is desirable to use a metal oxide powder having a maximum particle size of 5 ⁇ m or less. On the other hand, since this metal oxide powder tends to agglomerate if it is too small, it is more desirable to use a powder of 0.1 ⁇ m or more.
  • the mixed powder thus obtained is molded and sintered with a hot press.
  • a plasma discharge sintering method or a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in the temperature range where the target is sufficiently densified. Although it depends on the composition of the target, in most cases, the temperature range is 800 to 1300 ° C.
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Furthermore, after processing this into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe, sputtering is performed and the number of particles is counted.
  • a high-density Fe—Pt—oxide target having high adhesion between the metal oxide and the base material alloy can be manufactured. Even if the volume ratio of the oxide is increased, it is possible to obtain the effect that the high density of the target is maintained and the number of particles generated during sputtering is small.
  • the wettability of the base metal alloy and the nonmagnetic material is predicted in advance by simulation as necessary, and it is confirmed by experiments that an oxide having a CWI of 25 (J / molK) or less is effective. Can do. The smaller this value, the better the wettability.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • Example 1 The ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder zirconium oxide (ZrO 2 ) having a maximum particle size of 1 ⁇ m was used.
  • the Fe, Pt, and ZrO 2 powders were weighed so as to be 0.60 kg, 2.40 kg, and 0.60 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.4% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering.
  • the film thickness is increased to about 200 times the normal thickness ( The thickness was 1000 nm), and the evaluation was performed by increasing the absolute number of particles.
  • the same treatment was performed. As shown in Table 1, the number of particles was 12.
  • the volume ratio of the oxide (ZrO 2 ) at this time was 22.5%.
  • the target even if the volume fraction of the oxide (ZrO 2 ) is increased to 70%, the target has a high density, and the number of particles generated during sputtering is 20 or less, which is always smaller than the comparative example shown below. The result was obtained.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 23.7 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder magnesium oxide (MgO) having a maximum particle size of 0.5 ⁇ m was used.
  • the powders of Fe, Pt, and MgO were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.6% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 8. The volume ratio of the oxide (MgO) at this time was 30.4%. In this case, even if the volume ratio of the oxide (MgO) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than the comparative example shown below. Results were obtained.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 18.0 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder titanium oxide (TiO 2 ) having a maximum particle size of 3 ⁇ m was used.
  • the powders of Fe, Pt, and TiO 2 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.4% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. The volume ratio of the oxide (TiO 2 ) at this time was 27.2%. In this case, even if the volume ratio of the oxide (TiO 2 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than the comparative example shown below. The result was obtained.
  • Example 1 the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 16.5 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • Example 4 The ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder aluminum oxide (Al 2 O 3 ) having a maximum particle size of 1 ⁇ m was used.
  • the powders of Fe, Pt, and Al 2 O 3 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using a ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.9% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was nine. The volume ratio of the oxide (Al 2 O 3 ) at this time was 29.0%. In this case, even if the volume ratio of the oxide (Al 2 O 3 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. Compared to the comparative example shown below, The result was always less.
  • Example 1 the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 15.2 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder boron oxide (B 2 O 3 ) having a maximum particle size of 3 ⁇ m was used.
  • the Fe, Pt, and B 2 O 3 powders were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.8% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 10. The volume ratio of the oxide (B 2 O 3 ) at this time was 46.4%.
  • the melting point of the oxide (B 2 O 3 ) in this case is about 500 ° C.
  • the volume ratio is preferably about 40%.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 15.0 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • tantalum oxide (Ta 2 O 5 ) having a maximum particle size of 0.7 ⁇ m was used.
  • the Fe, Pt, and Ta 2 O 5 powders were weighed to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.5% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven.
  • the volume ratio of the oxide (Ta 2 O 5 ) at this time was 15.4%. In this case, even if the volume ratio of the oxide (Ta 2 O 5 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. Compared to the comparative example shown below, The result was always less.
  • Example 2 Similar to Example 1, the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 14.3 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder niobium oxide (Nb 2 O 5 ) having a maximum particle size of 0.9 ⁇ m was used.
  • the powders of Fe, Pt, and Nb 2 O 5 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.2% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 8. The volume ratio of the oxide (B 2 O 5 ) at this time was 26.3%. In this case, even when the volume ratio of the oxide (Nb 2 O 5 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. Compared to the comparative example shown below, The result was always less.
  • Example 2 Similar to Example 1, the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 11.8 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder zinc oxide (ZnO) having a maximum particle size of 3 ⁇ m was used.
  • the Fe, Pt, and ZnO powders were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.5% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 8. The volume ratio of the oxide (ZnO) at this time was 22.2%. In this case, even if the volume fraction of the oxide (ZnO) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than the comparative example shown below. Results were obtained.
  • Example 2 Similar to Example 1, the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 9.6 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • Example 9 The ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the powders of Fe, Pt, and SiO 2 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.8% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. The volume ratio of the oxide (SiO 2 ) at this time was 42.0%. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than the comparative example shown below. The result was obtained.
  • Example 2 Similar to Example 1, the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 7.3 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • chromium oxide (Cr 2 O 3 ) having a maximum particle size of 3 ⁇ m was used as the metal oxide powder.
  • the powders of Fe, Pt, and Cr 2 O 3 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using a ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 99.3% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. The volume ratio of the oxide (Cr 2 O 3 ) at this time was 23.4%. In this case, even if the volume ratio of the oxide (Cr 2 O 3 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. Compared to the comparative example shown below, The result was always less.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 6.2 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder manganese oxide (MnO) having a maximum particle size of 3 ⁇ m was used.
  • the Fe, Pt, and MnO powders were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed by pulverization using a ball mill method.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 99.2% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. The volume ratio of the oxide (MnO) at this time was 24.9%. In this case, even if the volume fraction of the oxide (MnO) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always less than the comparative example shown below. Results were obtained.
  • Example 1 the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 6.1 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • gallium oxide (Ga 2 O 3 ) having a maximum particle size of 0.9 ⁇ m was used.
  • the powders of Fe, Pt, and Ga 2 O 3 were weighed so as to be 0.60 kg, 2.40 kg, and 0.30 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 99.5% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. The volume ratio of the oxide (Ga 2 O 3 ) at this time was 19.8%. In this case, even if the volume ratio of the oxide (Ga 2 O 3 ) is increased to 70%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. Compared to the comparative example shown below, The result was always less.
  • Example 2 Similar to Example 1, the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation. As a result, the wettability evaluation CWI was 1.8 (J / molK). This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target. In addition, this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • Example 1 A target was produced under the same conditions as in Example 2 except that CaO was added as the oxide.
  • CaO in which the wettability between the base material alloy and the nonmagnetic material was predicted in advance by simulation was used.
  • This expected wettability evaluation CWI was 32.5 (J / mol ⁇ K), and the wettability was poor.
  • the relative density of the sintered compact target became 95.3%.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 64. The volume ratio of the oxide (CaO) at this time was 32.1%. In this case, even if the volume fraction of the oxide (CaO) is increased to 70%, the target is low in density, and the number of particles generated during sputtering exceeds 20 particles, which is always more than in the above-described embodiment. The result was obtained.
  • the decrease in wettability is considered to decrease the adhesion between the metal oxide and the base alloy, and to greatly affect the density reduction of the sputtering target.
  • this wettability is considered to increase the inadvertent desorption of the metal oxide during sputtering and increase the generation of particles due to abnormal discharge starting from the voids included in the target.
  • the Fe—Pt-oxide (CaO) target to which an oxide (CaO) having poor wettability is added is not preferable.
  • Example 2 A target was produced under the same conditions as in Example 2 except that Y 2 O 3 was added as the oxide. In this case, Y 2 O 3 in which the wettability between the base material alloy and the nonmagnetic material was predicted by simulation in advance was used. This expected wettability evaluation CWI was 27.6 (J / mol ⁇ K), and the wettability was poor. The relative density of the sintered compact target was 96.9%. A low-density Fe—Pt—oxide (Y 2 O 3 ) target with low adhesion between the metal oxide and the base metal alloy was obtained.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 53.
  • the volume ratio of the oxide (Y 2 O 3 ) at this time was 24.1%. In this case, even if the volume ratio of the oxide (Y 2 O 3 ) is increased to 70%, the target has a low density, and the number of particles generated during sputtering exceeds 20 particles. , Always got more results.
  • the decrease in wettability is considered to decrease the adhesion between the metal oxide and the base alloy, and to greatly affect the density reduction of the sputtering target.
  • this wettability is considered to increase the inadvertent desorption of the metal oxide during sputtering and increase the generation of particles due to abnormal discharge starting from the voids included in the target.
  • an Fe—Pt-oxide (Y 2 O 3 ) target to which an oxide (Y 2 O 3 ) having poor wettability was added was not preferable.
  • Example 3 A target was prepared under the same conditions as in Example 2 except that CoO was added as the oxide.
  • CoO was used in which the wettability between the base material alloy and the nonmagnetic material was predicted in advance by simulation.
  • the expected wettability CWI was ⁇ 2.0 (J / mol ⁇ K).
  • the relative density of the sintered body target was 99.9%, but CoO is thermally decomposed at a high temperature and cannot be present in the sintered body in the form of this oxide.
  • a sintered compact target having the composition could not be obtained. Note that the volume fraction of the oxide (CoO) at this time was 19.8%.
  • Example 4 A target was prepared under the same conditions as in Example 1 except that In 2 O 3 was added as the oxide. In this case, In 2 O 3 in which the wettability between the base material alloy and the nonmagnetic material was predicted in advance by simulation was used. This expected wettability evaluation CWI was ⁇ 2.3 (J / mol ⁇ K). The relative density of the sintered body target was 99.8%, but In 2 O 3 is thermally decomposed at a high temperature and cannot be present in the sintered body in the form of this oxide. A sintered compact target having the target composition could not be obtained. Note that the volume fraction of the oxide (In 2 O 3 ) at this time was 18.1%.
  • Example 5 A target was prepared under the same conditions as in Example 1 except that GeO 2 was added as the oxide.
  • GeO 2 whose wettability between the base material alloy and the nonmagnetic material was predicted in advance by simulation was used.
  • This expected wettability evaluation CWI was -2.9 (J / molK).
  • the relative density of the sintered compact target was 99.9%, GeO 2 thermally decomposes at high temperature and cannot exist in the sintered compact in the form of this oxide. It was not possible to obtain a sintered compact target having the composition. Note that the volume ratio of the oxide (GeO 2 ) at this time was 20.4%.
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the powders of Fe, Pt, and SiO 2 were weighed so as to be 0.60 kg, 2.40 kg, and 0.70 kg, respectively, and mixed by pulverization using a ball mill method.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.4% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe. And sputtering was performed using this sputtering target, and the number of particles was counted.
  • a high density Fe—Pt—oxide (SiO 2 ) target having high adhesion between the metal oxide and the base metal alloy could be produced.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 19. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 62.8%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the powders of Fe, Pt, and SiO 2 were weighed so as to be 0.60 kg, 2.40 kg, and 0.12 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 99.2% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 22.5%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder titanium oxide (TiO 2 ) having a maximum particle size of 3 ⁇ m was used.
  • the powders of Fe, Pt, and TiO 2 were weighed so as to be 0.60 kg, 2.40 kg, and 1.00 kg, respectively, and mixed by pulverization using a ball mill method.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.2% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 16. In this case, even if the volume ratio of the oxide (TiO 2 ) is increased to 55.5%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 16.5 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • chromium oxide (Cr 2 O 3 ) having a maximum particle size of 3 ⁇ m was used as the metal oxide powder.
  • the powders of Fe, Pt, and Cr 2 O 3 were weighed so as to be 0.60 kg, 2.40 kg, and 1.00 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.9% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 8. In this case, even if the volume ratio of the oxide (Cr 2 O 3 ) is increased to 50.5%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less. The result was less.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 6.2 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder, Pt powder, and Au powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 , and Au powders were weighed so as to be 0.60 kg, 2.40 kg, 0.50 kg, and 0.40 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.8% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 49.7%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is prepared by a powder metallurgy method.
  • Fe powder, Pt powder, and Ag powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 and Ag powders were weighed so as to be 0.60 kg, 2.40 kg, 0.50 kg, and 0.01 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.1% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 10. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 54.5%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than in the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder, Pt powder, and Cu powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the powders of Fe, Pt, SiO 2 and Cu were weighed so as to be 0.60 kg, 2.40 kg, 0.50 kg, and 0.10 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.3% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 51.9%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder, Pt powder, and Cu powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 , and Cu powders were weighed so as to be 0.60 kg, 2.10 kg, 0.30 kg, and 0.20 kg, respectively, and mixed using a ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.8% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 38.4%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder, Pt powder, and Ru powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 and Ru powders were weighed so as to be 0.60 kg, 2.40 kg, 0.50 kg, and 0.10 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.9% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. In this case, even if the volume ratio of the oxide (SiO 2 ) is increased to 52.6%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the nonmagnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is prepared by a powder metallurgy method.
  • Fe powder, Pt powder, and C powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 , and C powders were weighed so as to be 0.60 kg, 2.10 kg, 0.30 kg, and 0.01 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.0% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 18. In this case, even if the volume fraction of the oxide (SiO 2 ) is increased to 45.5%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is prepared by a powder metallurgy method.
  • a Fe powder, a Pt powder, and a B powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder silicon oxide (SiO 2 ) having a maximum particle size of 2 ⁇ m was used.
  • the Fe, Pt, SiO 2 , and B powders were weighed so as to be 0.60 kg, 2.10 kg, 0.30 kg, and 0.01 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 97.9% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was 11. In this case, even if the volume fraction of the oxide (SiO 2 ) is increased to 42.7%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 7.3 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder titanium oxide (TiO 2 ) having a maximum particle size of 3 ⁇ m was used.
  • the powders of Fe, Pt, and TiO 2 were weighed so as to be 1.20 kg, 0.30 kg, and 0.10 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 99.1% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was six. In this case, even if the volume ratio of the oxide (TiO 2 ) is increased to 37.3%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 16.5 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the ferromagnetic material sputtering target of the present invention is produced by a powder metallurgy method.
  • Fe powder and Pt powder were prepared.
  • powders having a maximum particle size of 10 ⁇ m were used.
  • the metal oxide powder titanium oxide (TiO 2 ) having a maximum particle size of 3 ⁇ m was used.
  • the Fe, Pt, and TiO 2 powders were weighed so as to be 0.35 kg, 2.38 kg, and 0.15 kg, respectively, and mixed using the ball mill method for pulverization.
  • the metal oxide powder to be added was mixed simultaneously with the metal powder.
  • this mixed powder is filled into a carbon mold, appropriately selected in a temperature range of 800 to 1300 ° C. in a vacuum atmosphere, hot pressed under the conditions of a holding time of 2 hours and a pressure of 30 MPa, and firing.
  • a ligature was obtained.
  • the sinterability was good, and a sintered body having a relative density of 98.9% could be obtained.
  • this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe.
  • Table 1 shows the number of particles generated by sputtering. As shown in Table 1, the number of particles was seven. In this case, even if the volume ratio of the oxide (TiO 2 ) is increased to 42.7%, the high density of the target is maintained, and the number of particles generated during sputtering is 20 or less, which is always smaller than that of the comparative example. Results were obtained.
  • the wettability of the base metal alloy and the non-magnetic material was predicted in advance by simulation.
  • the wettability evaluation CWI was 16.5 (J / molK). The smaller this value, the better the wettability (the same applies hereinafter).
  • This wettability is considered to greatly affect the adhesion between the metal oxide and the base material alloy and further increase the density of the sputtering target.
  • this wettability is considered to suppress inadvertent desorption of the metal oxide during sputtering and further suppress generation of particles due to abnormal discharge starting from a void included in the target.
  • Table 1 The results are shown in Table 1.
  • the Fe—Pt ferromagnetic sputtering target of the present invention produced as described above is useful as a target used for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.
  • the selection and characteristics between the base alloy and the oxide are important, and it has become possible to obtain an excellent effect of suppressing the generation of particles that are likely to occur during the formation of a sputtering target containing an oxide. .
  • the magnetic recording layer is composed of a magnetic phase such as an Fe—Pt alloy and a nonmagnetic phase separating the magnetic phase, and a ferromagnetic material sputtering using a metal oxide as one of the materials of the nonmagnetic phase. It provides a target.
  • the ferromagnetic material sputtering target of the present invention suppresses inadvertent desorption of metal oxide during sputtering and generation of particles due to abnormal discharge starting from voids contained in the target. It has the outstanding effect that the adhesiveness of this can be improved, and also a sputtering target can be densified. Therefore, it is useful as a ferromagnetic sputtering target for forming a magnetic thin film of a magnetic recording medium, particularly a granular type magnetic recording layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

Ptが5mol%以上60mol%以下、残余がFeである組成の金属と金属酸化物からなるFe-Pt系強磁性材スパッタリングターゲット。磁気記録層は、Fe-Pt合金などの磁性相と、それを分離している非磁性相から構成されており、非磁性相の材料の一つとして金属酸化物を利用した強磁性材スパッタリングターゲットを提供するものであり、スパッタ時に金属酸化物の不用意な脱離やターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制し、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させた強磁性材スパッタリングターゲットを提供することを課題とする。

Description

Fe-Pt系強磁性材スパッタリングターゲット
 本発明は、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、パーティクル発生の少ないFe-Pt系強磁性材スパッタリングターゲットに関する。
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物粒子からなる複合材料が多く用いられている。そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
 一方、磁気記録媒体の記録密度は年々急速に増大しており、現状の100Gbit/inの面密度から将来は1Tbit/inに達すると考えられている。
 Tbit/inに記録密度が達すると、記録bitのサイズが10nmを下回るようになり、その場合、熱揺らぎによる超常磁性化が問題となってくると予想され、現在使用されている磁気記録媒体、例えばCo-Cr基合金にPtを添加して結晶磁気異方性を高めた材料、又はこれにさらにBを添加して磁性粒間の磁気結合を弱めたような媒体では十分ではないことが予想される。
 10nm以下のサイズで安定に強磁性として振る舞う粒子は、より高い結晶磁気異方性を持っている必要があるからである。
 上記のようなことから、L1構造を持つFePt相が超高密度記録媒体用材料として注目されている。また、L1構造を持つFePt相は耐食性、耐酸化性に優れているため、記録媒体としての応用に適した材料と期待されているものである。
 FePt相を超高密度記録媒体用材料として使用する場合には、規則化したFePtナノ粒子を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。
 このようなことから、グラニュラー型の磁気記録媒体が提案されている。このグラニュラー媒体は、酸化物等の非磁性マトリックス中に磁性微粒子を析出させた構造を有し、磁性粒子間が非磁性物質の介在により磁気的に絶縁される構造が必要となる。グラニュラー型の磁気記録媒体及びこれに関連する公知文献としては、特許文献1、特許文献2、特許文献3、特許文献4を挙げることができる。
 また、上記磁気記録層はFe-Pt合金などの磁性相とそれを分離している非磁性相から構成されており、非磁性相の材料の一つとして金属酸化物が有効である。このような磁気記録層は、多くはスパッタリング成膜法により形成されるが、一般にマグネトロンスパッタ装置で金属酸化物の含まれる強磁性材スパッタリングターゲットをスパッタしようとすると、スパッタ時に金属酸化物の不用意な脱離やターゲットに内包される空隙を起点として異常放電が生じパーティクル(基板上に付着したゴミ)が発生するという問題がある。
 この問題を解決するには、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させる必要がある。
特開2000-306228号公報 特開2000-311329号公報 特開2008-59733号公報 特開2008-169464号公報
 上記磁気記録層は、Fe-Pt合金などの磁性相と、それを分離している非磁性相から構成されており、非磁性相の材料の一つとして金属酸化物を利用した強磁性材スパッタリングターゲットを提供するものであり、スパッタ時に金属酸化物の不用意な脱離やターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制し、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させた強磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、母材合金の主成分であるFeと濡れ性が良好な金属酸化物を選択することによって、金属酸化物と母材合金との密着性を高め、かつ高密度なスパッタリングターゲットを作れることを見出した。このようにして作られたスパッタリングターゲットは、パーティクル発生を非常に少なくすることが可能になる。すなわち、濡れ性が高い金属酸化物を用いることにより、パーティクル発生の少ないターゲットが得られることを見出した。
  このような知見に基づき、本発明は、
 1)Ptが5mol%以上60mol%以下、残余がFeである組成の金属と金属酸化物からなるFe-Pt系強磁性材スパッタリングターゲット
 2)金属酸化物の溶融金属に対する濡れ性の値が25(J/molK)以下であることを特徴とする上記1)記載のFe-Pt系強磁性材スパッタリングターゲット
 3)金属酸化物の含有割合が15~70vol%であることを特徴とする上記1)又は2)記載のFe-Pt系強磁性材スパッタリングターゲット
 4)金属素地中に、0.1~50μmの粒子径の金属酸化物が分散していることを特徴とする上記1)~3)のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット、を提供する。
  また、本発明は、
 5)前記金属酸化物が、Zr、Mg、Ti、Al、B、Ta、Nb、Zn、Si、Cr、Mn、Gaから選択した一種以上の酸化物であることを特徴とする上記1)~4)のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット
 6)相対密度が97%以上であることを特徴とする上記1)~5)のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット
 7)添加元素として、B、C、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下含有することを特徴とする上記1)~6)のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット、を提供する。
 上記磁気記録層は、Fe-Pt合金などの磁性相と、それを分離している非磁性相から構成されており、非磁性相の材料の一つとして金属酸化物を利用した強磁性材スパッタリングターゲットに関する。本発明の強磁性材スパッタリングターゲットは、スパッタ時に金属酸化物の不用意な脱離やターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制し、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させた強磁性材スパッタリングターゲットを提供できる優れた効果を有する。
 磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用することができるという効果を有する。
 本発明のFe-Pt系強磁性材スパッタリングターゲットは、Ptが5mol%以上60mol%以下、残余がFeである組成の金属と金属酸化物からなる。これが、本発明の基本となるものである。
 下記実施例に示すように、金属酸化物としては、Zr、Mg、Ti、Al、B、Ta、Nb、Zn、Si、Cr、Mn、Gaから選択した一種以上の酸化物を添加することにより、Fe-Pt系強磁性材スパッタリングターゲットの密度を高め、パーティクルの発生を大きく抑制できる効果を有するが、これらの酸化物添加の共通する特性として、金属酸化物の溶融金属に対する濡れ性が向上することの知見を得た。
 母材合金と非磁性材料の濡れ性については、シミュレーションによりCalculated Wettability Index(以下「CWI」という。)を用いて予測し、評価することができる。
 特に、金属酸化物の溶融金属に対するCWIの値が25(J/molK)以下(なお、単位「K」は、ケルビンを示す。明細書記載中、同様。)であることが、濡れ性を良好にし、金属酸化物と母材合金との密着性を高め、かつ高密度なスパッタリングターゲットに有効である。このようにして作製されたスパッタリングターゲットは、パーティクル発生を効果的に抑制できる。
 前記濡れ性については、Feと各酸化物同士の、任意の化学平衡状態における自由エネルギーとエンタルピー変化量から濡れ性を計算することができる。
 計算手順は、まず、任意の酸化物(固相)とFe(液相)が酸素を交換する反応における自由エネルギーの変化量(ΔG0)を算出する。次に、任意の酸化物の金属成分に1モルのFeが溶解する際のエンタルピー変化量(ΔHmix)を計算する。最後に、(ΔG+ΔHmix)/RTによって計算される値をCWIとした。このとき、Rは気体常数、Tは反応場の温度である。CWIの値は、任意の酸化物と金属成分同士の接触角と相関関係があることが一般的に知られている。
 また、本発明のFe-Pt系強磁性材スパッタリングターゲットは、金属酸化物の含有割合を15~70vol%とすること、さらに金属素地中に、0.1~50μmの粒子径の金属酸化物を分散させることが、特に有効である。これらは、高密度なスパッタリングターゲットを作製することができ、作製されたスパッタリングターゲットは、パーティクル発生を効果的に抑制できる。
 また、前記金属酸化物としては、Zr、Mg、Ti、Al、B、Ta、Nb、Zn、Si、Cr、Mn、Gaから選択した一種以上の酸化物であることが望ましい。これらは、濡れ性を向上させ、いずれも高密度なスパッタリングターゲットに有効であり、作製されたスパッタリングターゲットは、パーティクル発生を効果的に抑制できる。そして、Fe-Pt系強磁性材スパッタリングターゲットの相対密度97%以上を達成できる。
 また、本発明のFe-Pt系強磁性材スパッタリングターゲットは、添加元素として、B、C、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下含有させることができる。これらの元素の添加は、本発明の強磁性材スパッタリングターゲットを使用して成膜した膜の垂直方向の保磁力を高め、Fe-Ptの規則化温度を低下できる効果を有する。
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製する。作製にあたり、各金属元素の粉末(Fe及びPtの粉末)と、さらに必要に応じて添加金属元素の粉末(B、C、Ru、Ag、Au、Cuの粉末)を用意する。これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。
 また、各金属元素の粉末の代わりに、これら金属のアトマイズ合金粉末、例えば主成分の金属粉末と必要に応じて投入した添加金属元素との合金粉末を用いることもできる。この場合は平均粒径が10μm~200μmの粒子を使用することが望ましい。
 そして、上記の粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。金属酸化物粉末を添加する場合は、この段階で金属粉末と混合すればよい。
 一方、金属粉が小さ過ぎると、酸化が促進されるなどの問題があるため、0.5μm以上とすることがさらに望ましい。
 また、金属酸化物粉末は、最大粒径が5μm以下のものを用いることが望ましい。一方、この金属酸化物粉末は、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
 こうして得られた混合粉末をホットプレスで成型・焼結する。ホットプレス以外にも、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域で最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、800~1300°Cの温度範囲とする。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工した後、スパッタリングを実施してパーティクル数をカウントする。
 以上により、金属酸化物と母材合金との密着性が高く、且つ高密度なFe-Pt-酸化物ターゲットを作製することができる。酸化物の体積率を増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルが少ないという効果を得ることができる。また、必要に応じて予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測し、それを実験により、CWIが25(J/molK)以下の酸化物が有効であることを確認することができる。この数値が小さいほど、濡れ性は良好となる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が1μmである酸化ジルコニウム(ZrO)を用いた。
 そして、上記Fe、Pt、ZrOの粉末を、それぞれ0.60kg、2.40kg、0.60kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.4%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。なお、パーティクル数の評価は、通常、製品で用いる膜厚(記録層の厚さは5~10nm)ではパーティクル数の差が見えにくいため、膜厚を通常の200倍程度に厚膜にして(厚さは1000nm)、パーティクルの絶対数を増やすことで評価した。以下、同様の処置とした。
 この表1に示すように、パーティクル数は、12個であった。このときの酸化物(ZrO)の体積率は22.5%であった。この場合、酸化物(ZrO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは23.7(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が0.5μmである酸化マグネシウム(MgO)を用いた。
 そして、上記Fe、Pt、MgOの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.6%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、8個であった。
 このときの酸化物(MgO)の体積率は30.4%であった。この場合、酸化物(MgO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは18.0(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例3)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化チタン(TiO)を用いた。
 そして、上記Fe、Pt、TiOの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.4%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。このときの酸化物(TiO)の体積率は27.2%であった。この場合、酸化物(TiO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは16.5(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例4)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が1μmである酸化アルミニウム(Al)を用いた。
 そして、上記Fe、Pt、Alの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.9%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、9個であった。このときの酸化物(Al)の体積率は29.0%であった。この場合、酸化物(Al)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは15.2(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例5)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化ホウ素(B)を用いた。
 そして、上記Fe、Pt、Bの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.8%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、10個であった。このときの酸化物(B)の体積率は46.4%であった。
 なお、この場合の酸化物(B)は、融点が500°C程度であるため、Bを入れてホットプレスすると、ホットプレス中に溶け出してしまい、高密度化が難しくなる虞がある。したがって、Bの添加の場合は、体積率を40%程度にすることが良い。これによって、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは15.0(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例6)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が0.7μmである酸化タンタル(Ta)を用いた。
 そして、上記Fe、Pt、Taの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.5%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。このときの酸化物(Ta)の体積率は15.4%であった。この場合、酸化物(Ta)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは14.3(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例7)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が0.9μmである酸化ニオブ(Nb)を用いた。
 そして、上記Fe、Pt、Nbの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.2%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、8個であった。このときの酸化物(B)の体積率は26.3%であった。この場合、酸化物(Nb)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは11.8(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例8)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化亜鉛(ZnO)を用いた。
 そして、上記Fe、Pt、ZnOの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.5%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、8個であった。このときの酸化物(ZnO)の体積率は22.2%であった。この場合、酸化物(ZnO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは9.6(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例9)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiOの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.8%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。このときの酸化物(SiO)の体積率は42.0%であった。この場合、酸化物(SiO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは7.3(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例10)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化クロム(Cr)を用いた。
 そして、上記Fe、Pt、Crの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度99.3%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。このときの酸化物(Cr)の体積率は23.4%であった。この場合、酸化物(Cr)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは6.2(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例11)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化マンガン(MnO)を用いた。
 そして、上記Fe、Pt、MnOの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度99.2%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。このときの酸化物(MnO)の体積率は24.9%であった。この場合、酸化物(MnO)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは6.1(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例12)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が0.9μmである酸化ガリウム(Ga)を用いた。
 そして、上記Fe、Pt、Gaの粉末を、それぞれ0.60kg、2.40kg、0.30kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度99.5%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。このときの酸化物(Ga)の体積率は19.8%であった。この場合、酸化物(Ga)の体積率を70%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、下記に示す比較例に比べ、常に少ないという結果が得られた。
 実施例1と同様に、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、濡れ性の評価CWIは1.8(J/molK)となった。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(比較例1)
 前記酸化物として、CaOを添加したことを除き、他は実施例2と同条件で、ターゲットを作製した。この場合、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測したCaOを用いた。この予想した濡れ性の評価CWIは32.5(J/mol・K)であり、濡れ性は悪かった。
 焼結体ターゲットの相対密度は95.3%となった。金属酸化物と母材合金との密着性が低く、且つ低密度なFe-Pt-酸化物(CaO)ターゲットとなった。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、64個であった。このときの酸化物(CaO)の体積率は32.1%であった。この場合、酸化物(CaO)の体積率を70%まで増やしても、ターゲットは低密度であり、スパッタリング時に発生するパーティクルは20個を越えるものであり、上記に示す実施例に比べ、常に多くなる結果が得られた。
 前記濡れ性の低下は、金属酸化物と母材合金との密着性を低下させ、さらに、スパッタリングターゲットを低密度化に大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を増加させ、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を、増加させる原因と考えられる。このように、濡れ性が悪い酸化物(CaO)を添加した、Fe-Pt-酸化物(CaO)ターゲットは、好ましくないことが分かった。
(比較例2)
 前記酸化物として、Yを添加したことを除き、他は実施例2と同条件で、ターゲットを作製した。この場合、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測したYを用いた。この予想した濡れ性の評価CWIは27.6(J/mol・K)であり、濡れ性は悪かった。
 焼結体ターゲットの相対密度は96.9%となった。金属酸化物と母材合金との密着性が低く、且つ低密度なFe-Pt-酸化物(Y)ターゲットとなった。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、53個であった。このときの酸化物(Y)の体積率は24.1%であった。この場合、酸化物(Y)の体積率を70%まで増やしても、ターゲットは低密度であり、スパッタリング時に発生するパーティクルは20個を越えるものであり、上記に示す実施例に比べ、常に多くなる結果が得られた。
 前記濡れ性の低下は、金属酸化物と母材合金との密着性を低下させ、さらに、スパッタリングターゲットを低密度化に大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を増加させ、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を、増加させる原因と考えられる。このように、濡れ性が悪い酸化物(Y)を添加した、Fe-Pt-酸化物(Y)ターゲットは、好ましくないことが分かった。
(比較例3)
 前記酸化物として、CoOを添加したことを除き、他は実施例2と同条件で、ターゲットの作製を予定した。この場合、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測したCoOを用いた。この予想した濡れ性CWIは-2.0(J/mol・K)であった。
 焼結体ターゲットの相対密度は99.9%であったが、CoOは高温で熱分解し、この酸化物の形態で焼結体の中に存在することができないので、本願発明の目的とする組成の焼結体ターゲットを得ることができなかった。なお、このときの酸化物(CoO)の体積率は19.8%であった。
(比較例4)
 前記酸化物として、Inを添加したことを除き、他は実施例1と同条件で、ターゲットの作製を予定した。この場合、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測したInを用いた。この予想した濡れ性の評価CWIは-2.3(J/mol・K)であった。
 焼結体ターゲットの相対密度は99.8%であったが、Inは高温で熱分解し、この酸化物の形態で焼結体の中に存在することができないので、本願発明の目的とする組成の焼結体ターゲットを得ることができなかった。なお、このときの酸化物(In)の体積率は18.1%であった。
(比較例5)
 前記酸化物として、GeO2を添加したことを除き、他は実施例1と同条件で、ターゲットの作製を予定した。この場合、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測したGeOを用いた。この予想した濡れ性の評価CWIは-2.9(J/molK)であった。
 焼結体ターゲットの相対密度は99.9%であったが、GeO2は高温で熱分解し、この酸化物の形態で焼結体の中に存在することができないので、本願発明の目的とする組成の焼結体ターゲットを得ることができなかった。なお、このときの酸化物(GeO)の体積率は20.4%であった。
(実施例13)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiOの粉末を、それぞれ0.60kg、2.40kg、0.70kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.4%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 以上により、金属酸化物と母材合金との密着性が高く、且つ高密度なFe-Pt-酸化物(SiO)ターゲットを作製することができた。スパッタリングによるパーティクルの発生数を表1に示す。
 この表1に示すように、パーティクル数は、19個であった。この場合、酸化物(SiO)の体積率を62.8%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例14)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiOの粉末を、それぞれ0.60kg、2.40kg、0.12kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度99.2%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。この場合、酸化物(SiO)の体積率を22.5%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例15)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化チタン(TiO)を用いた。
 そして、上記Fe、Pt、TiOの粉末を、それぞれ0.60kg、2.40kg、1.00kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.2%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、16個であった。この場合、酸化物(TiO)の体積率を55.5%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは16.5(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例16)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPt粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化クロム(Cr)を用いた。
 そして、上記Fe、Pt、Crの粉末を、それぞれ0.60kg、2.40kg、1.00kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.9%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、8個であった。この場合、酸化物(Cr)の体積率を50.5%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは6.2(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例17)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とAu粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Auの粉末を、それぞれ0.60kg、2.40kg、0.50kg、0.40kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.8%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。この場合、酸化物(SiO)の体積率を49.7%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例18)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とAg粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Agの粉末を、それぞれ0.60kg、2.40kg、0.50kg、0.01kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.1%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、10個であった。この場合、酸化物(SiO)の体積率を54.5%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例19)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とCu粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Cuの粉末を、それぞれ0.60kg、2.40kg、0.50kg、0.10kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.3%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。この場合、酸化物(SiO)の体積率を51.9%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例20)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とCu粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Cuの粉末を、それぞれ0.60kg、2.10kg、0.30kg、0.20kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.8%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。この場合、酸化物(SiO)の体積率を38.4%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例21)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とRu粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Ruの粉末を、それぞれ0.60kg、2.40kg、0.50kg、0.10kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.9%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。この場合、酸化物(SiO)の体積率を52.6%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。
 また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例22)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とC粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Cの粉末を、それぞれ0.60kg、2.10kg、0.30kg、0.01kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.0%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、18個であった。この場合、酸化物(SiO)の体積率を45.5%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例23)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末とB粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が2μmである酸化ケイ素(SiO)を用いた。
 そして、上記Fe、Pt、SiO、Bの粉末を、それぞれ0.60kg、2.10kg、0.30kg、0.01kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度97.9%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、11個であった。この場合、酸化物(SiO)の体積率を42.7%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは7.3(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例24)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化チタン(TiO)を用いた。
 そして、上記Fe、Pt、TiOの粉末を、それぞれ1.20kg、0.30kg、0.10kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度99.1%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、6個であった。この場合、酸化物(TiO)の体積率を37.3%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは16.5(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
(実施例25)
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製するが、作製にあたって、Fe粉末とPtの粉末を準備した。これらの粉末は、いずれも最大粒径が10μmの粉末を用いた。また、金属酸化物粉末としては、最大粒径が3μmである酸化チタン(TiO)を用いた。
 そして、上記Fe、Pt、TiOの粉末を、それぞれ0.35kg、2.38kg、0.15kgとなるように秤量し、ボールミル法を用い、粉砕を兼ねて混合した。このように、添加する金属酸化物粉末を、金属粉末と同時に混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度800~1300°Cの温度範囲で適宜選択し、保持時間2時間、加圧力30MPaの条件でホットプレスして、焼結体を得た。焼結性は良好であり、相対密度98.9%の焼結体を得ることができた。さらに、これを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットに加工した。
 そして、このスパッタリングターゲットを用いてスパッタリングを行い、パーティクル数をカウントした。
 スパッタリングによるパーティクルの発生数を表1に示す。この表1に示すように、パーティクル数は、7個であった。この場合、酸化物(TiO)の体積率を42.7%まで増やしても、ターゲットの高密度が維持され、スパッタリング時に発生するパーティクルは20個以下であり、比較例に比べ、常に少ないという結果が得られた。
 一方、予め母材合金と非磁性材料の濡れ性を、シミュレーションで予測した。この結果、すなわち濡れ性の評価CWIは16.5(J/molK)となった。この数値が小さいほど、濡れ性は良好となる(以下同様)。この濡れ性は、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることに大きく影響していると考えられる。また、この濡れ性は、スパッタリング時に金属酸化物の不用意な脱離を抑制し、さらにターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制していると考えられる。以上の結果を、表1に示す。
 このようにして製造した本願発明のFe-Pt系強磁性材スパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜に使用するターゲットとして有用である。特に、母材合金と酸化物相互の選択と特性が重要であり、酸化物を含有するスパッタリングターゲットの成膜時に発生し易いパーティクルの発生を抑制できるという優れた効果を得ることが可能となった。
 上記磁気記録層は、Fe-Pt合金などの磁性相と、それを分離している非磁性相から構成されており、非磁性相の材料の一つとして金属酸化物を利用した強磁性材スパッタリングターゲットを提供するものである。本発明の強磁性材スパッタリングターゲットは、スパッタ時に金属酸化物の不用意な脱離やターゲットに内包される空隙を起点とする異常放電によるパーティクルの発生を抑制し、金属酸化物と母材合金との密着性を高め、さらに、スパッタリングターゲットを高密度化させることができるという優れた効果を有する。したがって、磁気記録媒体の磁性体薄膜、特にグラニュラー型の磁気記録層の成膜用強磁性材スパッタリングターゲットに有用である。

Claims (7)

  1.  Ptが5mol%以上60mol%以下、残余がFeである組成の金属と金属酸化物からなるFe-Pt系強磁性材スパッタリングターゲット。
  2.  金属酸化物の溶融金属に対する濡れ性の値が25(J/molK)以下であることを特徴とする請求項1記載のFe-Pt系強磁性材スパッタリングターゲット。
  3.  金属酸化物の含有割合が15~70vol%であることを特徴とする請求項1又は2記載のFe-Pt系強磁性材スパッタリングターゲット。
  4.  金属素地中に、0.1~50μmの粒子径の金属酸化物が分散していることを特徴とする請求項1~3のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット。
  5.  前記金属酸化物が、Zr、Mg、Ti、Al、B、Ta、Nb、Zn、Si、Cr、Mn、Gaから選択した一種以上の酸化物であることを特徴とする請求項1~4のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット
  6.  相対密度が97%以上であることを特徴とする請求項1~5のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット。
  7.  添加元素として、B、C、Ru、Ag、Au、Cuから選択した1元素以上を、0.5mol%以上20mol%以下含有することを特徴とする請求項1~6のいずれか一項に記載のFe-Pt系強磁性材スパッタリングターゲット。
PCT/JP2011/067936 2010-08-31 2011-08-05 Fe-Pt系強磁性材スパッタリングターゲット WO2012029498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/816,043 US9328412B2 (en) 2010-08-31 2011-08-05 Fe—Pt-based ferromagnetic material sputtering target
JP2012531767A JP5226155B2 (ja) 2010-08-31 2011-08-05 Fe−Pt系強磁性材スパッタリングターゲット
CN201180041604.5A CN103081009B (zh) 2010-08-31 2011-08-05 Fe-Pt型强磁性材料溅射靶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-195143 2010-08-31
JP2010195143 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029498A1 true WO2012029498A1 (ja) 2012-03-08

Family

ID=45772603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067936 WO2012029498A1 (ja) 2010-08-31 2011-08-05 Fe-Pt系強磁性材スパッタリングターゲット

Country Status (6)

Country Link
US (1) US9328412B2 (ja)
JP (1) JP5226155B2 (ja)
CN (1) CN103081009B (ja)
MY (1) MY156386A (ja)
TW (1) TWI509093B (ja)
WO (1) WO2012029498A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102387A (ja) * 2010-11-12 2012-05-31 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2013105647A1 (ja) * 2012-01-13 2013-07-18 田中貴金属工業株式会社 FePt系スパッタリングターゲット及びその製造方法
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JP5587495B2 (ja) * 2011-12-22 2014-09-10 Jx日鉱日石金属株式会社 C粒子が分散したFe−Pt系スパッタリングターゲット
CN104145306A (zh) * 2012-06-18 2014-11-12 吉坤日矿日石金属株式会社 磁记录膜用溅射靶
CN104246882A (zh) * 2012-08-31 2014-12-24 吉坤日矿日石金属株式会社 Fe基磁性材料烧结体
US9011653B2 (en) 2010-11-29 2015-04-21 Mitsui Mining & Smelting Co., Ltd. Sputtering target
WO2015141571A1 (ja) * 2014-03-18 2015-09-24 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット
JP2016056392A (ja) * 2014-09-05 2016-04-21 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット
JP2017137570A (ja) * 2013-02-15 2017-08-10 Jx金属株式会社 Co又はFeを含有するスパッタリングターゲット
WO2017141558A1 (ja) * 2016-02-19 2017-08-24 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JP7483999B1 (ja) 2023-09-22 2024-05-15 Jx金属株式会社 スパッタリングターゲット及びスパッタリングターゲット組立品

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
JP5290468B2 (ja) 2010-12-20 2013-09-18 Jx日鉱日石金属株式会社 C粒子が分散したFe−Pt系スパッタリングターゲット
CN103459656B (zh) * 2011-03-30 2015-05-06 吉坤日矿日石金属株式会社 磁记录膜用溅射靶
SG11201404314WA (en) 2012-02-22 2014-10-30 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method for same
WO2014013920A1 (ja) 2012-07-20 2014-01-23 Jx日鉱日石金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法
SG11201407006WA (en) * 2012-09-21 2015-02-27 Jx Nippon Mining & Metals Corp Fe-Pt BASED MAGNETIC MATERIAL SINTERED COMPACT
JP6285043B2 (ja) 2014-09-22 2018-03-07 Jx金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法
US10704139B2 (en) * 2017-04-07 2020-07-07 Applied Materials, Inc. Plasma chamber target for reducing defects in workpiece during dielectric sputtering
US11227751B1 (en) 2020-07-01 2022-01-18 Applied Materials, Inc. Plasma chamber target for reducing defects in workpiece during dielectric sputtering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306228A (ja) * 1999-04-19 2000-11-02 Univ Tohoku 磁気記録媒体及び磁気記録媒体の製造方法
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2008059733A (ja) * 2006-09-01 2008-03-13 Heraeus Inc 磁気記録媒体及びスパッタターゲット
JP2008090917A (ja) * 2006-09-30 2008-04-17 Hoya Corp 磁気記録媒体製造用スパッタリングターゲット、及び垂直磁気記録媒体の製造方法並びに垂直磁気記録媒体
JP2011208167A (ja) * 2010-03-28 2011-10-20 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736013A (en) * 1994-04-06 1998-04-07 Komag, Inc. Method for forming an improved magnetic media including sputtering of selected oxides or nitrides in the magnetic layer, and apparatus for same
JPH11238221A (ja) * 1998-02-20 1999-08-31 Fujitsu Ltd 磁気記録媒体及び磁気ディスク装置
JPH11335821A (ja) 1998-05-20 1999-12-07 Japan Energy Corp 磁性薄膜形成用Ni−Fe合金スパッタリングターゲット、磁性薄膜および磁性薄膜形成用Ni−Fe合金スパッタリングターゲットの製造方法
JP3152222B2 (ja) * 1999-01-12 2001-04-03 日本電気株式会社 水中送波器及び水中音響送受信装置
JP3328692B2 (ja) 1999-04-26 2002-09-30 東北大学長 磁気記録媒体の製造方法
JP2001098360A (ja) * 1999-09-24 2001-04-10 Hitachi Metals Ltd Co−Cr−Pt−C系ターゲットおよびその製造方法ならびに磁気記録媒体
JP3385004B2 (ja) * 2000-10-11 2003-03-10 秋田県 磁気記録媒体
TW520519B (en) * 2001-03-02 2003-02-11 Aichi Steel Corp Fe-Pt based magnet and manufacturing method thereof
US20070189916A1 (en) 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
TWI233845B (en) 2002-09-10 2005-06-11 Nikko Materials Co Ltd Iron-based sintered compact and its production method
JP4234380B2 (ja) 2002-09-10 2009-03-04 日鉱金属株式会社 粉末冶金用金属粉末及び鉄系焼結体
CN100567535C (zh) 2004-03-01 2009-12-09 日矿金属株式会社 Ni-Pt合金和Ni-Pt合金靶
WO2005083148A1 (ja) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
CN100552080C (zh) 2004-03-26 2009-10-21 日矿金属株式会社 Co-Cr-Pt-B类合金溅射靶
US20070209547A1 (en) 2004-08-10 2007-09-13 Nippon Mining & Metals Co., Ltd. Barrier Film For Flexible Copper Substrate And Sputtering Target For Forming Barrier Film
JP4745240B2 (ja) 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 鉄を主成分とする粉末冶金用金属粉末及び鉄系焼結体
US7691172B2 (en) 2004-08-30 2010-04-06 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
JP4975647B2 (ja) 2006-01-13 2012-07-11 Jx日鉱日石金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP4468461B2 (ja) * 2008-02-27 2010-05-26 三井金属鉱業株式会社 セラミックス−金属複合材料からなるスパッタリングターゲット材の製造方法
WO2009119812A1 (ja) 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
US8936706B2 (en) 2008-04-03 2015-01-20 Jx Nippon Mining & Metals Corporation Sputtering target with low generation of particles
SG173128A1 (en) 2009-03-03 2011-08-29 Jx Nippon Mining & Metals Corp Sputtering target and process for producing same
MY150804A (en) 2009-03-27 2014-02-28 Jx Nippon Mining & Metals Corp Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
MY148731A (en) 2009-08-06 2013-05-31 Jx Nippon Mining & Metals Corp Inorganic-particle-dispersed sputtering target
US9269389B2 (en) 2009-12-11 2016-02-23 Jx Nippon Mining & Metals Corporation Sputtering target of magnetic material
SG181632A1 (en) 2009-12-25 2012-07-30 Jx Nippon Mining & Metals Corp Sputtering target with reduced particle generation and method of producing said target
US9228251B2 (en) 2010-01-21 2016-01-05 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
MY150826A (en) 2010-07-20 2014-02-28 Jx Nippon Mining & Metals Corp Sputtering target of perromagnetic material with low generation of particles
CN103168328B (zh) 2010-12-17 2016-10-26 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
JP5290468B2 (ja) 2010-12-20 2013-09-18 Jx日鉱日石金属株式会社 C粒子が分散したFe−Pt系スパッタリングターゲット
MY161232A (en) 2010-12-20 2017-04-14 Jx Nippon Mining & Metals Corp Fe-pt-based ferromagnetic sputtering target and method for producing same
WO2012086300A1 (ja) 2010-12-21 2012-06-28 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット及びその製造方法
CN103459656B (zh) 2011-03-30 2015-05-06 吉坤日矿日石金属株式会社 磁记录膜用溅射靶
CN103717781B (zh) 2011-09-26 2016-02-24 吉坤日矿日石金属株式会社 Fe-Pt-C型溅射靶
SG2014013940A (en) 2011-12-22 2014-08-28 Jx Nippon Mining & Metals Corp Fe-Pt-BASED SPUTTERING TARGET IN WHICH C PARTICLES ARE DISPERSED
US20140360871A1 (en) 2012-05-22 2014-12-11 Jx Nippon Mining & Metals Corporation Fe-Pt-Ag-C-Based Sputtering Target Having C Grains Dispersed Therein, and Method for Producing Same
US9540724B2 (en) 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
WO2014013920A1 (ja) 2012-07-20 2014-01-23 Jx日鉱日石金属株式会社 磁気記録膜形成用スパッタリングターゲット及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306228A (ja) * 1999-04-19 2000-11-02 Univ Tohoku 磁気記録媒体及び磁気記録媒体の製造方法
JP2003313659A (ja) * 2002-04-22 2003-11-06 Toshiba Corp 記録媒体用スパッタリングターゲットと磁気記録媒体
JP2008059733A (ja) * 2006-09-01 2008-03-13 Heraeus Inc 磁気記録媒体及びスパッタターゲット
JP2008090917A (ja) * 2006-09-30 2008-04-17 Hoya Corp 磁気記録媒体製造用スパッタリングターゲット、及び垂直磁気記録媒体の製造方法並びに垂直磁気記録媒体
JP2011208167A (ja) * 2010-03-28 2011-10-20 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102387A (ja) * 2010-11-12 2012-05-31 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP5730903B2 (ja) * 2010-11-29 2015-06-10 三井金属鉱業株式会社 スパッタリングターゲット
US9011653B2 (en) 2010-11-29 2015-04-21 Mitsui Mining & Smelting Co., Ltd. Sputtering target
JP5587495B2 (ja) * 2011-12-22 2014-09-10 Jx日鉱日石金属株式会社 C粒子が分散したFe−Pt系スパッタリングターゲット
US9314845B2 (en) 2012-01-13 2016-04-19 Tanaka Kikinzoku Kogyo K.K. Process for producing FePt-based sputtering target
US20140322063A1 (en) * 2012-01-13 2014-10-30 Tanaka Kikinzoku Kogio K.K. Process for producing fept-based sputtering target
JPWO2013105647A1 (ja) * 2012-01-13 2015-05-11 田中貴金属工業株式会社 FePt系スパッタリングターゲット及びその製造方法
US9358612B2 (en) 2012-01-13 2016-06-07 Tanaka Kikinzoku Kogyo K.K. FePt-based sputtering target
US9314846B2 (en) 2012-01-13 2016-04-19 Tanaka Kikinzoku Kogyo K.K. Process for producing FePt-based sputtering target
US9095901B2 (en) 2012-01-13 2015-08-04 Tanaka Kikinzoku Kogyo K.K. FePt-based sputtering target
WO2013105648A1 (ja) * 2012-01-13 2013-07-18 田中貴金属工業株式会社 FePt系スパッタリングターゲット及びその製造方法
WO2013105647A1 (ja) * 2012-01-13 2013-07-18 田中貴金属工業株式会社 FePt系スパッタリングターゲット及びその製造方法
JPWO2013105648A1 (ja) * 2012-01-13 2015-05-11 田中貴金属工業株式会社 FePt系スパッタリングターゲット及びその製造方法
CN104169457A (zh) * 2012-03-15 2014-11-26 吉坤日矿日石金属株式会社 磁性材料溅射靶及其制造方法
WO2013136962A1 (ja) * 2012-03-15 2013-09-19 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JPWO2013136962A1 (ja) * 2012-03-15 2015-08-03 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JP2015172244A (ja) * 2012-03-15 2015-10-01 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
US9540724B2 (en) * 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
US20140346039A1 (en) * 2012-06-18 2014-11-27 Jx Nippon Mining & Metals Corporation Sputtering Target for Magnetic Recording Film
CN104145306A (zh) * 2012-06-18 2014-11-12 吉坤日矿日石金属株式会社 磁记录膜用溅射靶
CN104246882A (zh) * 2012-08-31 2014-12-24 吉坤日矿日石金属株式会社 Fe基磁性材料烧结体
US10090012B2 (en) * 2012-08-31 2018-10-02 Jx Nippon Mining & Metals Corporation Fe-bases magnetic material sintered compact
US20150107411A1 (en) * 2012-08-31 2015-04-23 Jx Nippon Mining & Metals Corporation Fe-Based Magnetic Material Sintered Compact
JP2017137570A (ja) * 2013-02-15 2017-08-10 Jx金属株式会社 Co又はFeを含有するスパッタリングターゲット
JP6030271B2 (ja) * 2014-03-18 2016-11-24 Jx金属株式会社 磁性材スパッタリングターゲット
CN106795620A (zh) * 2014-03-18 2017-05-31 捷客斯金属株式会社 磁性材料溅射靶
WO2015141571A1 (ja) * 2014-03-18 2015-09-24 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット
JP2016056392A (ja) * 2014-09-05 2016-04-21 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット
WO2017141558A1 (ja) * 2016-02-19 2017-08-24 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JPWO2017141558A1 (ja) * 2016-02-19 2018-10-11 Jx金属株式会社 磁気記録媒体用スパッタリングターゲット及び磁性薄膜
JP7483999B1 (ja) 2023-09-22 2024-05-15 Jx金属株式会社 スパッタリングターゲット及びスパッタリングターゲット組立品

Also Published As

Publication number Publication date
TWI509093B (zh) 2015-11-21
JP5226155B2 (ja) 2013-07-03
JPWO2012029498A1 (ja) 2013-10-28
US9328412B2 (en) 2016-05-03
CN103081009A (zh) 2013-05-01
TW201209192A (en) 2012-03-01
MY156386A (en) 2016-02-15
CN103081009B (zh) 2016-05-18
US20130168240A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5226155B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット
JP5290468B2 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JP5623552B2 (ja) Fe−Pt系強磁性材スパッタリングターゲット及びその製造方法
JP5457615B1 (ja) 磁気記録膜形成用スパッタリングターゲット及びその製造方法
JP5587495B2 (ja) C粒子が分散したFe−Pt系スパッタリングターゲット
JP5705993B2 (ja) C粒子が分散したFe−Pt−Ag−C系スパッタリングターゲット及びその製造方法
US10600440B2 (en) Sputtering target for forming magnetic recording film and method for producing same
US20140083847A1 (en) Fe-Pt-C Based Sputtering Target
JPWO2014185266A1 (ja) 磁性薄膜形成用スパッタリングターゲット
JP6437427B2 (ja) 磁気記録媒体用スパッタリングターゲット
JPWO2014141737A1 (ja) スパッタリングターゲット
JP2023144067A (ja) スパッタリングターゲット、グラニュラ膜および垂直磁気記録媒体
TW201915204A (zh) 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
WO2014196377A1 (ja) 磁性記録媒体用スパッタリングターゲット
WO2020031461A1 (ja) スパッタリングターゲット及び磁性膜
TWI671418B (zh) 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
JP6062586B2 (ja) 磁気記録膜形成用スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041604.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13816043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821516

Country of ref document: EP

Kind code of ref document: A1