WO2012011204A1 - パーティクル発生の少ない強磁性材スパッタリングターゲット - Google Patents

パーティクル発生の少ない強磁性材スパッタリングターゲット Download PDF

Info

Publication number
WO2012011204A1
WO2012011204A1 PCT/JP2010/067179 JP2010067179W WO2012011204A1 WO 2012011204 A1 WO2012011204 A1 WO 2012011204A1 JP 2010067179 W JP2010067179 W JP 2010067179W WO 2012011204 A1 WO2012011204 A1 WO 2012011204A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
powder
phase
sputtering target
mol
Prior art date
Application number
PCT/JP2010/067179
Other languages
English (en)
French (fr)
Inventor
真一 荻野
佐藤 敦
中村 祐一郎
荒川 篤俊
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to SG2011075827A priority Critical patent/SG177237A1/en
Priority to US13/320,840 priority patent/US8679268B2/en
Priority to CN201080025681.7A priority patent/CN102482765B/zh
Priority to JP2011502582A priority patent/JP4758522B1/ja
Publication of WO2012011204A1 publication Critical patent/WO2012011204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Definitions

  • the present invention relates to a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording method, and has a large leakage flux when sputtering with a magnetron sputtering apparatus.
  • the present invention relates to a sputtering target that can obtain a stable discharge and generates less particles.
  • a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
  • a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity.
  • a melting method or a powder metallurgy method can be considered as a method for producing such a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of a ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of a perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because the inorganic particles need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
  • Patent Document 1 a mixed powder obtained by mixing Co powder, Cr powder, TiO 2 powder and SiO 2 powder and Co spherical powder are mixed with a planetary motion mixer, and this mixed powder is molded by hot pressing and used for a magnetic recording medium.
  • Patent Document 1 A method for obtaining a sputtering target has been proposed (Patent Document 1).
  • the target structure has a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed (FIG. 1 of Patent Document 1).
  • a spherical phase (B) in the phase (A) which is a metal substrate in which inorganic particles are uniformly dispersed FIG. 1 of Patent Document 1.
  • Such a structure is good in terms of improving leakage magnetic flux, but cannot be said to be a suitable sputtering target for a magnetic recording medium from the viewpoint of suppressing generation of particles during sputtering.
  • Patent Document 2 A method for obtaining a sputtering target for a Co-based alloy magnetic film has been proposed (Patent Document 2).
  • the target structure in this case is unclear, the target structure has a shape in which a black portion (SiO 2 ) surrounds a large white spherical structure (Co—Cr—Ta alloy). Such a structure is not a suitable sputtering target for magnetic recording media.
  • Patent Document 3 Also proposed is a method of obtaining a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder.
  • the target structure in this case is not shown in the figure, but a Pt phase, a SiO 2 phase and a Co—Cr binary alloy phase can be seen, and a diffusion layer can be observed around the Co—Cr binary alloy layer. It is described.
  • Such a structure is not a suitable sputtering target for magnetic recording media.
  • a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma composed of electrons and cations is formed.
  • a plasma composed of electrons and cations is formed.
  • the cations in the plasma collide with the surface of the target (negative electrode)
  • atoms constituting the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • metal coarse particles of about 30 to 150 ⁇ m are introduced in the sputtering target manufacturing process to intentionally make the target structure non-uniform.
  • the sinterability between the metal coarse particles and the base material is often insufficient, and after sintering, the metal coarse particles become a coarse phase different from the base material component.
  • the coarse phase of the film is peeled off during sputtering and particles are generated.
  • abnormal discharge may occur at the boundary to cause generation of particles.
  • the present inventors have conducted intensive research and found that a target with a high leakage magnetic flux and a small particle generation can be obtained by adjusting the target structure. .
  • the present invention 1) A sputtering target made of a metal having a composition of Cr of 20 mol% or less and the balance of Co, the target structure comprising a metal substrate (A) and (A) containing 90 wt% or more of Co A ferromagnetic material having a flat phase (B) that has an average particle diameter of 10 ⁇ m to 150 ⁇ m and an average aspect ratio of 1: 2 to 1:10 Sputtering target.
  • the present invention also provides: 2) A sputtering target made of a metal having a composition in which Cr is 20 mol% or less, Pt is 5 mol% or more and 30 mol% or less, and the remainder is Co, and the target structure includes a metal substrate (A) and the above (A) It has a flat phase (B) containing 90 wt% or more of Co, the average particle size of the phase (B) is 10 ⁇ m to 150 ⁇ m, and the average aspect ratio is 1: 2 to 1:10 A ferromagnetic material sputtering target is provided.
  • the present invention provides 3) The above 1) characterized in that one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, and W are contained as additive elements in an amount of 0.5 mol% to 10 mol%.
  • a ferromagnetic material sputtering target according to any one of (1) to (2) is provided.
  • the present invention provides 4) The ferromagnetic material sputtering target according to any one of 1) to 3) above, wherein an area ratio of the phase (B) in the cross section of the sputtering target is 15 to 50%. provide.
  • the present invention provides 5) The above 1) to 4), wherein the metal substrate (A) contains one or more inorganic materials selected from carbon, oxide, nitride, carbide, carbonitride in the metal substrate.
  • a ferromagnetic material sputtering target according to any one of the above.
  • the target adjusted in this way has a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas proceeds efficiently, and a stable discharge can be obtained. Since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost. Further, since the generation of particles is small, there is an advantage that the number of defective magnetic recording films formed by sputtering is reduced and the cost can be reduced.
  • tissue image when the polished surface of the target of Example 1 is observed with an optical microscope. It is a structure
  • 3 is a three-dimensional image of the erosion surface of the target of Example 1.
  • FIG. 3 is a three-dimensional image of the erosion surface of the target of Comparative Example 1; 6 is a three-dimensional image of the erosion surface of the target of Example 2. 6 is a three-dimensional image of the erosion surface of the target of Comparative Example 2.
  • the main components constituting the ferromagnetic sputtering target of the present invention are a metal with Cr of 20 mol% or less and the balance of Co, or Cr of 20 mol% or less, Pt of 5 to 30 mol% and the balance of Co. It is a metal.
  • the Cr is added as an essential component and excludes 0 mol%. That is, the amount of Cr is equal to or greater than the lower limit that can be analyzed. If the amount of Cr is 20 mol% or less, there is an effect even when a small amount is added.
  • the present invention includes these. These are components required as a magnetic recording medium, and the mixing ratio varies within the above range, but any of them can maintain the characteristics as an effective magnetic recording medium.
  • the target structure has a flat phase (B) containing 90 wt% or more of Co, the average particle diameter of the phase (B) is 10 to 150 ⁇ m, and the average aspect ratio is The ratio is 1: 2 to 1:10, and the phase (B) has a component different from that of the metal substrate (A) and is separated from each other by the metal substrate (A).
  • the flat shape used in the present invention refers to, for example, a shape such as a wedge, a crescent moon, a moon of an upper chord, or a shape formed by connecting two or more of such shapes.
  • the ratio of the minor axis to the major axis corresponds to an average of 1: 2 to 1:10.
  • the flat shape is a shape when viewed from above, and does not mean a state where there is no unevenness and a flat surface is desired. That is, the thing with some unevenness
  • the Co atomized spherical powder By making the Co atomized spherical powder into a wedge-like shape in a target having such a structure, it is possible to prevent the generation of particles due to the detachment of the phase (B) during sputtering by the effect of the wedge. Further, by destroying the spherical shape, it is possible to reduce the unevenness of the erosion speed that occurs when the atomized powder is spherical, and it is possible to suppress the generation of particles due to the boundary having different erosion speeds.
  • the phase (B) preferably has an average particle size of 10 ⁇ m to 150 ⁇ m.
  • fine particles of inorganic material one or more components selected from carbon, oxide, nitride, and carbide
  • the diameter of the phase (B) is less than 10 ⁇ m, the particle size difference between the inorganic material particles and the mixed metal becomes small, so that the target material is sintered.
  • the phase (B) has a spherical shape, the diffusion speed is slow, but the diffusion still proceeds. Therefore, the presence of the phase (B) becomes unclear as the diffusion proceeds.
  • the thickness exceeds 150 ⁇ m, the smoothness of the target surface is lost as the sputtering proceeds, and particle problems may easily occur. Therefore, the size of the phase (B) is preferably 10 to 150 ⁇ m.
  • the phase (B) is a Co-based phase containing 90 wt% or more of Co.
  • the ferromagnetic material sputtering target has suitable characteristics.
  • the Co concentration is high. Pure Co is used as a raw material, but since the flat phase (B) diffuses mutually with the surrounding metal substrate (A) during sintering, the Co content of the preferred phase (B) is 90 wt% or more. More preferably, it is 95 wt% or more, More preferably, it is 97 wt% or more.
  • the Co content of the phase (B) can be measured using EPMA. Further, any analysis method capable of measuring the amount of Co in the phase (B) does not hinder the use of other measurement methods, and can be similarly applied. As described above, Co is the main component, but the center has a high purity and the surroundings tend to have a slightly lower purity. In the range of the similar (flat) phase (hereinafter referred to as “near the center”) when it is assumed that the diameter of the flat phase (B) (each of the major axis and the minor axis) is reduced to 1/3. Co concentration of 97 wt% or more can be achieved, and the present invention includes these.
  • 1 element or more selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, and W as an additive element is contained with the compounding ratio of 0.5 mol% or more and 10 mol% or less. Is also possible. These are preferable elements that are added as necessary in order to improve the characteristics as a magnetic recording medium.
  • the ferromagnetic material sputtering target of the present invention can contain one or more inorganic materials selected from carbon, oxide, nitride, carbide or carbonitride in a dispersed state in the metal substrate.
  • the magnetic recording film having a granular structure, particularly, a characteristic suitable for a material of a recording film of a hard disk drive adopting a perpendicular magnetic recording system is provided.
  • the target thus adjusted becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas proceeds efficiently, and a stable discharge can be obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at a low cost. Further, since the bias of the erosion speed can be reduced and the phase can be prevented from falling off, there is an advantage that the generation amount of particles that cause a decrease in yield can be reduced.
  • the ferromagnetic material sputtering target of the present invention is produced by a melting method or a powder metallurgy method.
  • powder metallurgy first, a powder of each metal element and, if necessary, a powder of an additional metal element are prepared. These powders desirably have a maximum particle size of 20 ⁇ m or less. Further, alloy powders of these metals may be prepared instead of the powders of the respective metal elements, but in this case as well, it is desirable that the maximum particle size is 20 ⁇ m or less.
  • these metal powders are weighed so as to have a desired composition, and mixed using a known method such as a ball mill for pulverization. What is necessary is just to mix with a metal powder at this stage, when adding an inorganic substance powder.
  • the inorganic powder carbon powder, oxide powder, nitride powder, carbide powder or carbonitride powder is prepared. It is desirable to use inorganic powder having a maximum particle size of 5 ⁇ m or less. On the other hand, since it will be easy to aggregate when it is too small, it is more desirable to use a 0.1 micrometer or more thing.
  • a Co atomized powder having a diameter in the range of 50 to 300 ⁇ m is prepared, and the Co atomized powder and the above mixed powder are pulverized and mixed using a high energy ball mill.
  • the Co atomized powder becomes flat and is pulverized and mixed until the average particle size is 150 ⁇ m or less.
  • the high energy ball mill used can pulverize and mix the raw material powder in a shorter time than a ball mill or a vibration mill.
  • the prepared Co atomized powder having a diameter in the range of 50 to 300 ⁇ m is individually pulverized and sieved to produce flat coarse particles having an average range of 10 to 150 ⁇ m, which can be mixed with the above mixed powder.
  • a mixer, a mortar or the like that does not have a pulverizing force is preferable.
  • the ferromagnetic material sputtering target of the present invention is produced by molding and sintering the powder thus obtained using a vacuum hot press apparatus and cutting it into a desired shape.
  • the Co powder whose shape has been destroyed by pulverization corresponds to the flat phase (B) observed in the target structure.
  • the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 800-1200 ° C.
  • the pressure during sintering is preferably 300 to 500 kg / cm 2 .
  • Example 1 Comparative Example 1
  • a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, a SiO 2 powder having an average particle diameter of 1 ⁇ m, and a Co atomized powder having a diameter in the range of 50 to 150 ⁇ m were prepared as raw material powders.
  • Co powder, Cr powder, SiO 2 powder, and Co atomized powder were weighed so that these powders had a target composition of 78.73Co-13.07Cr-8.2SiO 2 (mol%).
  • Co powder, Cr powder, and SiO 2 powder were encapsulated in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co atomized powder were put into a high energy ball mill, and pulverized and mixed.
  • This mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under conditions of a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was cut with a lathe to obtain a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm.
  • the Co content of the flat phase (B) of Example 1 was 98 wt% or more near the center of the phase (B).
  • the size of the flat phase (B) is measured by using a cut surface of a sintered body (including a sputtering target) and flattened by a 30 cm line segment on a photograph magnified 220 times. The number of the phase (B) was counted, and the average value ( ⁇ m) of the cut lengths was obtained. The results are shown in Table 1 as average particle diameters.
  • the aspect ratio of the phase (B) is measured by observing the cut surface of the sintered body (including the sputtering target) with a microscope and measuring the minor axis and major axis of the flat phase (B) existing in a 220-fold field of view. These were averaged. And this was implemented in five arbitrary visual fields, and it was set as the average.
  • the flat phase (B) contained only in a part of the visual field was excluded. Further, the flat phase (B) was measured for a minor axis of 4 ⁇ m or more. The results are shown in Table 1.
  • the area ratio occupied by the flat phase (B) is the flatness existing in a 220-fold field of view by observing the cut surface of the sintered body (including the sputtering target) with a microscope. It can be obtained by measuring the area of the solid phase (B) and dividing this by the area of the entire field of view. Further, in order to increase the accuracy, it can be carried out in an arbitrary five fields of view and averaged. As in the measurement of the aspect ratio, the flat phase (B) contained only in a part of the visual field was excluded. Further, the flat phase (B) was measured for a minor axis of 4 ⁇ m or more. As a result, it became 15% or more and 50% or less.
  • the abundance ratio of the particles having the target shape in the flat phase (B) exists in a 220-fold field of view by observing the cut surface of the sintered body with a microscope.
  • the number of flat phases (B) having a target shape flat shape including a wedge shape
  • the flat phase (B) contained only in a part of the visual field was excluded. Further, the flat phase (B) was measured for a minor axis of 4 ⁇ m or more. As a result, it became 90% or more.
  • Co powder having an average particle size of 3 ⁇ m, Cr powder having an average particle size of 5 ⁇ m, SiO 2 powder having an average particle size of 1 ⁇ m, and Co atomized powder having a diameter in the range of 30 to 150 ⁇ m were prepared as raw material powders.
  • Co powder, Cr powder, SiO 2 powder, and Co atomized powder were weighed so that these powders had a target composition of 78.73Co-13.07Cr-8.2SiO 2 (mol%).
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe, the number of particles was counted, and the average leakage magnetic flux density was measured. The results are shown in Table 1.
  • Example 1 As shown in Table 1, it was confirmed that the number of particles in the steady state of Example 1 was 12.3, which was smaller than 29.3 in Comparative Example 1. Moreover, although the average leakage magnetic flux density of Example 1 was 54.0% and decreased from 60.6% of Comparative Example 1, a target having a higher leakage magnetic flux density than the conventional one was still obtained. As a result of observation with an optical microscope, it was confirmed that the average particle diameter was 70 ⁇ m, which was larger than 30 ⁇ m of Comparative Example 1, and the aspect ratio of the phase (B) was flat at 1: 5. It was. The Co content near the center of the phase (B) in Comparative Example 1 was 98 wt% or more near the center of the phase (B).
  • FIG. 1 A structure image when the target polished surface of Example 1 is observed with an optical microscope is shown in FIG. 1, and Comparative Example 1 is shown in FIG.
  • black spots correspond to the metal substrate (A) in which inorganic particles are uniformly dispersed.
  • the portion that appears white is the flat phase (B).
  • the extremely characteristic feature of the first embodiment is that the shape of the phase (B) in which the SiO 2 particles are dispersed in the finely dispersed metal substrate is flat (wedge shape). That is.
  • the shape of the phase (B) dispersed in the metal substrate is a spherical shape and a flat shape. Was not observed at all.
  • Example 1 a three-dimensional image of the erosion surface of the target of Example 1 is shown in FIG. 5, and Comparative Example 1 is shown in FIG. In Comparative Example 1 in which there were many particles, many crater-like traces such as spherical atomized powder were confirmed. On the other hand, in the three-dimensional image of the erosion surface of the target obtained by Example 1 shown in FIG.
  • Example 2 comparative example 2
  • a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, an SiO 2 powder having an average particle diameter of 1 ⁇ m, and a Co—Cr pulverized powder having a diameter in the range of 30 to 150 ⁇ m are prepared as raw material powders. did. Co powder, Cr powder, SiO 2 powder, and Co—Cr pulverized powder were weighed so that these powders had a target composition of 78.73Co-13.07Cr-8.2SiO 2 (mol%).
  • Co powder, Cr powder, and SiO 2 powder were encapsulated in a ball mill pot having a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Furthermore, the obtained mixed powder and Co—Cr pulverized powder were mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters. This mixed powder was filled into a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body.
  • a Co powder having an average particle diameter of 3 ⁇ m, a Cr powder having an average particle diameter of 5 ⁇ m, a SiO 2 powder having an average particle diameter of 1 ⁇ m, and a Co—Cr atomized powder having a diameter in the range of 30 to 150 ⁇ m are prepared as raw material powders. did. Co powder, Cr powder, SiO 2 powder, and Co—Cr atomized powder were weighed so that these powders had a target composition of 78.73Co-13.07Cr-8.2SiO 2 (mol%).
  • this mixed powder was filled in a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1100 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a lathe, the number of particles was counted, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Example 2 As shown in Table 2, it was confirmed that the number of particles in the steady state of Example 2 was 21.3, which was significantly reduced from 166.7 in Comparative Example 1. Note that the Co content near the center of Comparative Example 2 was 98 wt%. Moreover, although the average leakage magnetic flux density of Example 2 was 46.6% and decreased from 52.6% of Comparative Example 1, the leakage magnetic flux density is still higher than the conventional (about 45.0%). A target was obtained. Further, as a result of observation with an optical microscope, it was confirmed that the average particle diameter was 50 ⁇ m, which was larger than 40 ⁇ m of Comparative Example 1, and the aspect ratio of the phase (B) was flat at 1: 3. It was.
  • FIG. 3 The structure image when the target polished surface of Example 2 is observed with an optical microscope is shown in FIG. 3, and Comparative Example 2 is shown in FIG.
  • black spots correspond to the metal substrate (A) in which inorganic particles are uniformly dispersed.
  • the portion that appears white is the flat phase (B).
  • the extremely characteristic feature of Example 3 is that the shape of the phase (B) in which the SiO 2 particles are dispersed in the finely dispersed metal substrate is a flat shape (wedge shape). That is.
  • the shape of the phase (B) dispersed in the metal substrate is a spherical shape and a flat shape. Was not observed at all.
  • FIG. 7 A three-dimensional image of the erosion surface of the target of Example 2 is shown in FIG. 7, and Comparative Example 2 is shown in FIG. In Comparative Example 2 in which there were many particles, many crater-like traces such as spherical atomized powder were confirmed. On the other hand, in the three-dimensional image of the erosion surface of the target obtained by Example 2 shown in FIG.
  • the average aspect ratio was in the range of 1: 2 to 1:10.
  • the phase (B) has such a flat shape, the falling of the phase (B) from the sputtering target is suppressed due to the effect of a so-called wedge.
  • the phase (B) has a complicated shape, the time during which the erosion speed is different can be shortened compared to the metal substrate (A) in which the phase and the oxide particles are uniformly dispersed. The erosion became uniform. It can be seen that such a structure has a very important role in suppressing particle generation, making erosion uniform, and improving leakage magnetic flux.
  • the present invention makes it possible to adjust the structure of the ferromagnetic material sputtering target, remarkably suppress the generation of particles, and improve the leakage magnetic flux. Therefore, when the target of the present invention is used, a stable discharge can be obtained when sputtering with a magnetron sputtering apparatus. In addition, since the target thickness can be increased, the target life is lengthened, and a magnetic thin film can be manufactured at low cost. Furthermore, the quality of the film formed by sputtering can be significantly improved. It is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a magnetic recording medium, particularly a hard disk drive recording layer.

Abstract

Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲット組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10以上150μm以下、かつ、平均アスペクト比が1:2~1:10であることを特徴とする強磁性材スパッタリングターゲット。スパッタ時のパーティクルの発生を抑制できるとともに、漏洩磁束を向上させて、マグネトロンスパッタ装置で安定した放電が可能な強磁性材スパッタリングターゲットを得る。

Description

パーティクル発生の少ない強磁性材スパッタリングターゲット
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、漏洩磁束が大きくマグネトロンスパッタ装置でスパッタする際に安定した放電が得られる、パーティクル発生の少ないスパッタリングターゲットに関する。
ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
このような強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。
例えば、Co粉末とCr粉末とTiO粉末とSiO粉末を混合して得られた混合粉末とCo球形粉末を遊星運動型ミキサーで混合し、この混合粉をホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 この場合のターゲット組織は、無機物粒子が均一に分散した金属素地である相(A)の中に、球形の相(B)を有している様子が見える(特許文献1の図1)。このような組織は、漏洩磁束向上の点では良いがスパッタ時のパーティクルの発生抑制の点からは好適な磁気記録媒体用スパッタリングターゲットとは言えない。
 また、アトマイズ法により作製したCo-Cr-Ta合金粉末にSiOの粉末を混合した後、ボールミルによりメカニカルアロイングを施し、酸化物をCo-Cr-Ta合金粉末に分散させ、ホットプレスにより成形し、Co系合金磁性膜用スパッタリングターゲットを得る方法が提案されている(特許文献2)。
 この場合のターゲット組織は、図が不鮮明であるが、大きな白い球状の組織(Co-Cr-Ta合金)のまわりを黒い部分(SiO)が取り囲んでいる形状を備えている。このような組織も、好適な磁気記録媒体用スパッタリングターゲットとは言えない。
 また、Co-Cr二元系合金粉末とPt粉末とSiO粉末を混合して、得られた混合粉末をホットプレスすることにより、磁気記録媒体薄膜形成用スパッタリングターゲットを得る方法が提案されている(特許文献3)。
 この場合のターゲット組織は、図によって示されていないが、Pt相、SiO相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金層の周囲に拡散層が観察できたことが記載されている。このような組織も、好適な磁気記録媒体用スパッタリングターゲットとは言えない。
スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
特願2010-011326 特開平10-088333号公報 特開2009-1860号公報
一般に、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタしようとすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が少なくなり、スパッタ時に放電が立たない、あるいは放電しても放電が安定しないという大きな問題が生じる。
この問題を解決するには、スパッタリングターゲットの製造工程で30~150μm程度の金属粗粒を投入し、ターゲットの組織を意図的に不均一にすることが知られている。しかし、この場合、金属粗粒と母材との焼結性が不十分であることが多く、焼結後には金属粗粒が母材成分と異なる粗大な相になるのであるが、このターゲット中の粗大な相がスパッタリング中において剥離し、パーティクルが発生するという問題がある。また、母材成分と異なる粗大な相と母材とのエロージョンスピードに差があるため、その境界に異常放電が生じてパーティクル発生の原因となることがある。
このように、従来では、マグネトロンスパッタリングの場合であっても、漏洩磁束を多くすることにより、安定的な放電を得ることができたが、スパッタ時に母材成分と異なる粗大な相の脱離が原因となって、パーティクルが増加する傾向にあった。
本発明は上記問題を鑑みて、マグネトロンスパッタ装置で安定した放電が得られるとともに、スパッタ時のパーティクル発生が少ない、漏洩磁束を向上させた強磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットの組織構造を調整することにより、漏洩磁束の大きく、かつ、パーティクル発生の少ないターゲットが得られることを見出した。
 このような知見に基づき、本発明は、
1)Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲット組織が、金属素地(A)と、前記(A)の中に、Coが90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10μm以上150μm以下、かつ、平均アスペクト比が1:2~1:10であることを特徴とする強磁性材スパッタリングターゲット。
 また、本発明は、
2)Crが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲット組織が、金属素地(A)と、前記(A)の中に、Coが90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10μm以上150μm以下、かつ、平均アスペクト比が1:2~1:10であることを特徴とする強磁性材スパッタリングターゲットを提供する。 
さらに、本発明は、
3)添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする上記1)~2)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
4)スパッタリングターゲットの断面において、前記相(B)の占める面積率が、15~50%であることを特徴とする上記1)~3)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
5)金属素地(A)が、炭素、酸化物、窒化物、炭化物、炭窒化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする上記1)~4)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
このように調整したターゲットは、漏洩磁束が大きく、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られるので、
ターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が少なくなり、低コストで磁性体薄膜を製造できるというメリットがある。また、パーティクル発生が少ないため、スパッタ成膜した磁気記録膜の不良品が少なくなり、コスト削減が可能となるというメリットがある。
実施例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例1のターゲットのエロージョン面の3次元画像である。 比較例1のターゲットのエロージョン面の3次元画像である。 実施例2のターゲットのエロージョン面の3次元画像である。 比較例2のターゲットのエロージョン面の3次元画像である。
 本発明の強磁性材スパッタリングターゲットを構成する主要成分は、Crが20mol%以下、残余がCoである金属と、またはCrが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである金属である。なお、前記Crは必須成分として添加するものであり、0mol%を除く。すなわち、分析可能な下限値以上のCr量を含有させるものである。Cr量が20mol%以下であれば、微量添加する場合においても効果がある。本願発明は、これらを包含する。
これらは、磁気記録媒体として必要とされる成分であり、配合割合は上記範囲内で様々であるが、いずれも有効な磁気記録媒体としての特性を維持することができる。
本発明において重要なことは、ターゲットの組織が、Coが90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10以上150μm以下、平均アスペクト比が1:2~1:10であり、前記相(B)は金属素地(A)と成分が異なり、金属素地(A)によって各々分離された構造になっていることである。
本発明において使用する扁平状とは、例えば、楔(くさび)、三日月、上弦の月のような形状、若しくは、このような形状のものが2以上連結してなる形状のものを言う。また、これらの形状を定量的に規定した場合、短径と長径の比(以下、アスペクト比と称す。)が、平均で1:2~1:10のものがこれに該当する。
なお、扁平状とは、上から見たときの形状であり、凹凸がなく完全に平べったい状態を意味するものではない。すなわち、多少の起伏又は凹凸があるものも含まれる。
このような組織を有するターゲットにおいて、Coアトマイズ球形粉を楔のような形状にすることによって、まさに楔の効果で、スパッタ時に相(B)の脱離によるパーティクル発生を防ぐことができる。また、球形を破壊することによって、アトマイズ粉が球形のときに生じたエロージョン速度の偏りを軽減することができ、エロージョン速度の異なる境界起因のパーティクル発生を抑制することができる。
相(B)は、平均粒径が10μm以上150μm以下とするのが望ましい。図1に示すように、金属素地(A)には細かい無機物材料(炭素、酸化物、窒化物、炭化物から選択した1成分以上)の粒子が存在している(図1で微細に分散した黒い部分が無機物材料の粒子である)が、相(B)の直径が10μm未満の場合は、無機物材料の粒子と混在している金属との粒サイズ差が小さくなるので、ターゲット素材を焼結させる際に、相(B)が球形であるため拡散速度は遅いけれども、それでも拡散は進むので、この拡散が進むことにより、相(B)の存在が不明確になってしまう。
一方、150μmを超える場合には、スパッタリングが進むにつれてターゲット表面の平滑性が失われ、パーティクルの問題が発生しやすくなることがある。従って相(B)の大きさは10~150μmとするのが望ましい。
 また、本発明において、相(B)はCoが90wt%以上含むCo主成分の相である。この場合、漏洩磁束の大きいターゲットとなり、安定した放電が得られるので、強磁性材スパッタリングターゲットに好適な特性を備える。前記扁平状の相(B)の最大透磁率を高く維持するためには、Coの濃度が高い方が望ましい。
原料としては純Coを使用するが、焼結時に扁平状の相(B)が周囲の金属素地(A)と相互に拡散するので、好ましい相(B)のCo含有量は90wt%以上であり、より好ましくは95wt%以上、さらに好ましくは97wt%以上である。
 なお、相(B)のCo含有量は、EPMAを用いて測定することができる。また、他の測定方法の利用を妨げるものではなく、相(B)のCo量を測定できる分析方法であれば、同様に適用できる。
上記のようにCoが主成分であるが、中心は純度が高く、周囲は純度がやや低くなる傾向にある。扁平状の相(B)の径(長径及び短径のそれぞれ)を1/3に縮小したと仮定した場合の相似形(扁平状)の相の範囲内(以下「中心付近」という。)では、Coの濃度97wt%以上を達成することが可能であり、本願発明は、これらを含むものである。
また、本発明において、添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下の配合比で含有させることも可能である。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される好ましい元素である。
さらに、本発明の強磁性材スパッタリングターゲットは、炭素、酸化物、窒化物、炭化物または炭窒化物から選択し一種以上の無機物材料を、金属素地中に分散した状態で含有することができる。この場合、グラニュラー構造をもつ磁気記録膜、特に垂直磁気記録方式を採用したハードディスクドライブの記録膜の材料に好適な特性を備える。
このように調整したターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。またターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が少なくなり、低コストで磁性体薄膜を製造できるというメリットがある。
そして、さらにはエロージョン速度の偏りを軽減でき、相の脱落を防止することができるため、歩留まり低下の原因となるパーティクルの発生量を低減させることができるというメリットがある。
本発明の強磁性材スパッタリングターゲットは、溶解法または粉末冶金法によって作製される。粉末冶金法の場合は、まず各金属元素の粉末と、さらに必要に応じて添加金属元素の粉末を用意する。これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。また、各金属元素の粉末の代わりにこれら金属の合金粉末を用意してもよいが、その場合も最大粒径が20μm以下とすることが望ましい。
一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることがさらに望ましい。
そして、これらの金属粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。無機物粉末を添加する場合は、この段階で金属粉末と混合すればよい。
無機物粉末としては炭素粉末、酸化物粉末、窒化物粉末、炭化物粉末または炭窒化物粉末を用意するが、無機物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
さらに、直径が50~300μmの範囲にあるCoアトマイズ粉末を用意し、高エネルギーボールミルを用いて、Coアトマイズ粉と上記の混合粉末とを粉砕・混合する。Coアトマイズ粉は扁平状になり、平均粒径が150μm以下になるまで粉砕・混合する。ここで、使用する高エネルギーボールミルは、ボールミルや振動ミルに比べて、短時間で原料粉末の粉砕・混合をすることができる。
または、用意した直径が50~300μmの範囲にあるCoアトマイズ粉末を個別で粉砕し、篩別して平均10~150μmの範囲の扁平状の粗粒を作製し、上記の混合粉末と混合することができる。混合装置としては、粉砕力を有していないミキサー、乳鉢などが好ましい。また、混合中の金属成分の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットが作製される。なお、粉砕により形状が破壊されたCo粉末は、ターゲットの組織において観察される扁平状の相(B)に対応するものである。
また、成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、800~1200°Cの温度範囲にある。また、焼結時の圧力は300~500kg/cmであることが好ましい。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1、比較例1)
実施例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのSiO粉末、直径が50~150μmの範囲にあるCoアトマイズ粉末を用意した。これらの粉末をターゲットの組成が78.73Co-13.07Cr-8.2SiO(mol%)となるように、Co粉末、Cr粉末、SiO粉末、Coアトマイズ粉末を秤量した。
次に、Co粉末とCr粉末とSiO粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに、得られた混合粉末とCoアトマイズ粉末を高エネルギーボールミルに投入して、粉砕・混合した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で切削加工して直径が180mm、厚さが5mmの円盤状のターゲットを得た。
(パーティクル数の評価について)
パーティクル数の評価は、通常、製品で用いる膜厚(記録層の厚さは5~10nm)ではパーティクル数の差が見えにくいため、膜厚を通常の200倍程度に厚膜にして(厚さは1000nm)、パーティクルの絶対数を増やすことで評価した。この結果を、表1に記載した。
(漏洩磁束の測定方法について)
また、漏洩磁束の測定は、ASTM F2086-01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0度、30度、60度、90度、120度と回転させて測定した漏洩磁束密度を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(%)として表1に記載した。
(扁平状の相(B)のCo含有量と大きさの測定方法について)
 本実施例1の扁平状の相(B)のCo含有量は、相(B)の中心付近で98wt%以上であった。また、扁平状の相(B)の大きさの測定は、焼結体(スパッタリングターゲットを含む)の切断面を用いて、220倍に拡大した写真上において、30cmの線分によって切断される扁平状の相(B)の数をかぞえ、その切断長さの平均値(μm)により求めた。これの結果を、平均粒径として表1に記載した。
(扁平状の相(B)のアスペクト比の測定方法について)
また、相(B)のアスペクト比は、焼結体(スパッタリングターゲットを含む)の切断面を顕微鏡で観察し、220倍の視野において存在する扁平状の相(B)の短径と長径を測定し、これらを平均した。そしてこれを任意の5視野において実施し平均とした。なお、視野の一部分のみに含まれる扁平状の相(B)は除いた。また、扁平状の相(B)は、短径4μm以上のものについて測定した。これの結果を、表1に記載した。
なお、表には記載していないが、扁平状の相(B)の占める面積率は、焼結体(スパッタリングターゲットを含む)の切断面を顕微鏡で観察し、220倍の視野において存在する扁平状の相(B)の面積を測定し、これを視野全体の面積で割ることにより求めることができる。また、精度を上げるために任意の5視野において実施し平均とすることができる。なお、アスペクト比の測定と同様に、視野の一部分のみに含まれる扁平状の相(B)は除いた。また、扁平状の相(B)は、短径4μm以上のものについて測定した。その結果、15%以上50%以下となった。
なお、表には記載していないが、扁平状の相(B)のうち目的形状となっている粒子の存在比率は、焼結体の切断面を顕微鏡で観察し、220倍の視野において存在する扁平状の相(B)のうち目的形状(楔状などを含む扁平状)となっている個数を計測し、これを視野全体に存在する扁平状の相(B)の個数で割った。これを任意の5視野において実施し、平均とした。なお、視野の一部分のみに含まれる扁平状の相(B)は除いた。また、扁平状の相(B)は、短径4μm以上のものについて測定した。その結果、90%以上となった。
比較例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのSiO粉末、直径が30~150μmの範囲にあるCoアトマイズ粉末を用意した。これらの粉末をターゲットの組成が78.73Co-13.07Cr-8.2SiO(mol%)となるように、Co粉末、Cr粉末、SiO粉末、Coアトマイズ粉末を秤量した。
そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、パーティクル数をカウントし、平均漏洩磁束密度を測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1に示すとおり、実施例1の定常状態のパーティクル数が12.3個であり、比較例1の29.3個より減少していることが確認された。また、実施例1の平均漏洩磁束密度は54.0%であり、比較例1の60.6%より減少したが、依然として、従来に比べて漏洩磁束密度が高いターゲットが得られた。また、光学顕微鏡で観察した結果、平均粒径は70μmであり、比較例1の30μmよりも大きく、また、相(B)のアスペクト比は1:5と扁平状になっていることが確認された。なお、比較例1の相(B)の中心付近のCo含有量は、相(B)の中心付近で98wt%以上であった。
実施例1のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図1に、比較例1を図2に示す。図1において、黒っぽくみえている箇所が、無機物粒子が均一に分散した金属素地(A)に対応する。白く見えている箇所が、扁平状の相(B)である。この図1の組織画像に示すように、上記実施例1において極めて特徴的なのは、SiO粒子が微細分散した金属素地中に分散している相(B)の形状が扁平状(楔状)であることである。
これに対して、図2に示す比較例1によって得られたターゲット研磨面の組織画像には、金属素地中に分散している相(B)の形状は真球状であって、扁平状のものは一切観察されなかった。
また、実施例1のターゲットのエロージョン面の3次元画像を図5に、比較例1を図6に示す。パーティクルが多かった比較例1では、球形のアトマイズ粉が脱粒したようなクレーター状の痕跡が多数確認された。これに対して、図5に示す実施例1によって得られたターゲットのエロージョン面の3次元画像には、アトマイズ粉が脱粒したような痕跡が確認できなかった。
(実施例2、比較例2)
実施例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのSiO粉末、直径が30~150μmの範囲にあるCo-Cr粉砕粉を用意した。これらの粉末をターゲットの組成が78.73Co-13.07Cr-8.2SiO(mol%)となるように、Co粉末、Cr粉末、SiO粉末、Co-Cr粉砕粉を秤量した。
次に、Co粉末とCr粉末とSiO粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Cr粉砕粉をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、パーティクル数をカウントし、平均漏洩磁束密度を測定した。この結果を、表2に示す。本実施例2の相(B)のCo含有量は、相(B)の中心付近で99wt%であった。
比較例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのSiO粉末、直径が30~150μmの範囲にあるCo-Crアトマイズ粉を用意した。これらの粉末をターゲットの組成が78.73Co-13.07Cr-8.2SiO(mol%)となるように、Co粉末、Cr粉末、SiO粉末、Co-Crアトマイズ粉を秤量した。
そして、これらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを旋盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、パーティクル数をカウントし、平均漏洩磁束密度を測定した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2に示す通り、実施例2の定常状態のパーティクル数が21.3個であり、比較例1の166.7個より著しく減少していることが確認された。なお、比較例2の中心付近のCo含有量は、98wt%であった。
また、実施例2の平均漏洩磁束密度は46.6%であり、比較例1の52.6%より減少したが、依然として、従来(45.0%程度)に比べて、漏洩磁束密度が高いターゲットが得られた。また、光学顕微鏡で観察した結果、平均粒径は50μmであり、比較例1の40μmよりも大きく、また、相(B)のアスペクト比は1:3と扁平状になっていることが確認された。
実施例2のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図3に、比較例2を図4に示す。図3において、黒っぽくみえている箇所が、無機物粒子が均一に分散した金属素地(A)に対応する。白く見えている箇所が、扁平状の相(B)である。
この図3の組織画像に示すように、上記実施例3において極めて特徴的なのは、SiO粒子が微細分散した金属素地中に分散している相(B)の形状が扁平状(楔状)であることである。
これに対して、図4に示す比較例1によって得られたターゲット研磨面の組織画像には、金属素地中に分散している相(B)の形状は真球状であって、扁平状のものは一切観察されなかった。
また、実施例2のターゲットのエロージョン面の3次元画像を図7に、比較例2を図8に示す。パーティクルが多かった比較例2では、球形のアトマイズ粉が脱粒したようなクレーター状の痕跡が多数確認された。これに対して、図7に示す実施例2によって得られたターゲットのエロージョン面の3次元画像には、アトマイズ粉が脱粒したような痕跡が確認できなかった。
実施例1、2のいずれにおいても、金属素地(A)と該(A)に包囲された、直径が10~150μmの範囲にある扁平状のCoを中心付近に97wt%以上含有する相(B)の存在が認められた。また、その平均アスペクト比は1:2~1:10の範囲にあった。
そして、相(B)は、このような扁平状の形状を有することにより、いわゆる楔(くさび)の効果により、スパッタリングターゲットからの相(B)の脱落が抑制された。また、相(B)が複雑な形状を有することによって、相と酸化物粒子が均一に分散している金属素地(A)に比べて、エロージョン速度が異なっている時間を短縮できるため、結果的にエロージョンが均一となった。
こうした組織構造が、パーティクル発生を抑制し、かつ、エロージョンを均一にするとともに、漏洩磁束を向上させるために非常に重要な役割を有することが分かる。
本発明は、強磁性材スパッタリングターゲットの組織構造を調整し、パーティクルの発生を著しく抑制できるとともに、漏洩磁束を向上させることを可能とする。
したがって、本発明のターゲットを使用すれば、マグネトロンスパッタ装置でスパッタリングする際に安定した放電が得られる。またターゲット厚みを厚くすることができるため、ターゲットライフが長くなり、低コストで磁性体薄膜を製造することが可能になる。さらに、スパッタリングにより形成した膜の品質を著しく向上できる。磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。

Claims (5)

  1.  Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲット組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10以上150μm以下、かつ、平均アスペクト比が1:2~1:10であることを特徴とする強磁性材スパッタリングターゲット。
  2. Crが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲット組織が、金属素地(A)と、前記(A)の中に、Coを90wt%以上含有する扁平状の相(B)を有し、前記相(B)の平均粒径が10μm以上150μm以下、かつ、平均アスペクト比が1:2~1:10であることを特徴とする強磁性材スパッタリングターゲット。 
  3.  添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、Wから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする請求項1~2のいずれか一項に記載の強磁性材スパッタリングターゲット。
  4.  スパッタリングターゲットの断面において、前記相(B)の占める面積率が、15~50%であることを特徴とする請求項1~3のいずれか一項に記載の強磁性材スパッタリングターゲット。
  5.  金属素地(A)が、炭素、酸化物、窒化物、炭化物、炭窒化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする請求項1~4のいずれか一項に記載の強磁性材スパッタリングターゲット。
PCT/JP2010/067179 2010-07-20 2010-09-30 パーティクル発生の少ない強磁性材スパッタリングターゲット WO2012011204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2011075827A SG177237A1 (en) 2010-07-20 2010-09-30 Sputtering target of ferromagnetic material with low generation of particles
US13/320,840 US8679268B2 (en) 2010-07-20 2010-09-30 Sputtering target of ferromagnetic material with low generation of particles
CN201080025681.7A CN102482765B (zh) 2010-07-20 2010-09-30 粉粒产生少的强磁性材料溅射靶
JP2011502582A JP4758522B1 (ja) 2010-07-20 2010-09-30 パーティクル発生の少ない強磁性材スパッタリングターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010163296 2010-07-20
JP2010-163296 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012011204A1 true WO2012011204A1 (ja) 2012-01-26

Family

ID=45496643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067179 WO2012011204A1 (ja) 2010-07-20 2010-09-30 パーティクル発生の少ない強磁性材スパッタリングターゲット

Country Status (6)

Country Link
US (1) US8679268B2 (ja)
CN (1) CN102482765B (ja)
MY (1) MY150826A (ja)
SG (1) SG177237A1 (ja)
TW (1) TWI496921B (ja)
WO (1) WO2012011204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046040A1 (ja) * 2012-09-18 2014-03-27 Jx日鉱日石金属株式会社 スパッタリングターゲット

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119812A1 (ja) 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
MY150804A (en) 2009-03-27 2014-02-28 Jx Nippon Mining & Metals Corp Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
US9269389B2 (en) 2009-12-11 2016-02-23 Jx Nippon Mining & Metals Corporation Sputtering target of magnetic material
US9228251B2 (en) 2010-01-21 2016-01-05 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
CN103003468B (zh) * 2010-07-20 2015-03-11 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
JP5226155B2 (ja) 2010-08-31 2013-07-03 Jx日鉱日石金属株式会社 Fe−Pt系強磁性材スパッタリングターゲット
JP5394575B2 (ja) * 2010-12-17 2014-01-22 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
SG11201403857TA (en) 2012-01-18 2014-09-26 Jx Nippon Mining & Metals Corp Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
SG11201404314WA (en) 2012-02-22 2014-10-30 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and manufacturing method for same
WO2013125296A1 (ja) 2012-02-23 2013-08-29 Jx日鉱日石金属株式会社 クロム酸化物を含有する強磁性材スパッタリングターゲット
WO2013133163A1 (ja) 2012-03-09 2013-09-12 Jx日鉱日石金属株式会社 磁気記録媒体用スパッタリングターゲット及びその製造方法
US9540724B2 (en) 2012-06-18 2017-01-10 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film
JP5946974B1 (ja) * 2014-09-04 2016-07-06 Jx金属株式会社 スパッタリングターゲット
SG11201906523QA (en) * 2018-09-11 2020-04-29 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
CN113614279B (zh) * 2019-03-26 2023-12-08 株式会社博迈立铖 V合金靶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038660A (ja) * 1998-07-21 2000-02-08 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにCoPt系磁気記録媒体
JP2005320627A (ja) * 2004-04-07 2005-11-17 Hitachi Metals Ltd Co合金ターゲット材の製造方法、Co合金ターゲット材および垂直磁気記録用軟磁性膜ならびに垂直磁気記録媒体
JP2008163438A (ja) * 2007-01-04 2008-07-17 Mitsui Mining & Smelting Co Ltd CoCrPt系スパッタリングターゲットおよびその製造方法
JP2008240011A (ja) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲット
JP2009132975A (ja) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
WO2009119812A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816595B2 (ja) 1996-09-18 2006-08-30 三井金属鉱業株式会社 スパッタリングターゲットの製造方法
JP2000282229A (ja) 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体
JP2001236643A (ja) 2000-02-23 2001-08-31 Fuji Electric Co Ltd 磁気記録媒体製造用スパッタリングターゲット、それを用いた磁気記録媒体の製造方法および磁気記録媒体
US20070189916A1 (en) * 2002-07-23 2007-08-16 Heraeus Incorporated Sputtering targets and methods for fabricating sputtering targets having multiple materials
WO2005083148A1 (ja) 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
CN100552080C (zh) 2004-03-26 2009-10-21 日矿金属株式会社 Co-Cr-Pt-B类合金溅射靶
US7381282B2 (en) 2004-04-07 2008-06-03 Hitachi Metals, Ltd. Co alloy target and its production method, soft magnetic film for perpendicular magnetic recording and perpendicular magnetic recording medium
CN100470637C (zh) 2004-06-07 2009-03-18 昭和电工株式会社 磁记录介质及其制造方法以及磁记录和再现设备
US20070209547A1 (en) 2004-08-10 2007-09-13 Nippon Mining & Metals Co., Ltd. Barrier Film For Flexible Copper Substrate And Sputtering Target For Forming Barrier Film
JP4975647B2 (ja) 2006-01-13 2012-07-11 Jx日鉱日石金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
WO2007116834A1 (ja) 2006-03-31 2007-10-18 Mitsubishi Materials Corporation パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、および磁気記録膜形成用Co基焼結合金スパッタリングターゲット
JP2009001860A (ja) 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009215617A (ja) * 2008-03-11 2009-09-24 Mitsui Mining & Smelting Co Ltd コバルト、クロム、および白金からなるマトリックス相と酸化物相とを含有するスパッタリングターゲット材およびその製造方法
US8936706B2 (en) 2008-04-03 2015-01-20 Jx Nippon Mining & Metals Corporation Sputtering target with low generation of particles
CN102066025A (zh) 2008-08-28 2011-05-18 Jx日矿日石金属株式会社 包含贵金属粉末和氧化物粉末的混合粉末的制造方法及包含贵金属粉末和氧化物粉末的混合粉末
SG173128A1 (en) 2009-03-03 2011-08-29 Jx Nippon Mining & Metals Corp Sputtering target and process for producing same
MY150804A (en) 2009-03-27 2014-02-28 Jx Nippon Mining & Metals Corp Nonmagnetic material particle-dispersed ferromagnetic material sputtering target
US20110003177A1 (en) * 2009-07-06 2011-01-06 Solar Applied Materials Technology Corp. Method for producing sputtering target containing boron, thin film and magnetic recording media
MY148731A (en) 2009-08-06 2013-05-31 Jx Nippon Mining & Metals Corp Inorganic-particle-dispersed sputtering target
US9269389B2 (en) 2009-12-11 2016-02-23 Jx Nippon Mining & Metals Corporation Sputtering target of magnetic material
MY149640A (en) 2009-12-11 2013-09-13 Jx Nippon Mining & Metals Corp Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film
SG181632A1 (en) 2009-12-25 2012-07-30 Jx Nippon Mining & Metals Corp Sputtering target with reduced particle generation and method of producing said target
US9228251B2 (en) 2010-01-21 2016-01-05 Jx Nippon Mining & Metals Corporation Ferromagnetic material sputtering target
CN103003468B (zh) * 2010-07-20 2015-03-11 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
CN103038388B (zh) 2010-09-03 2015-04-01 吉坤日矿日石金属株式会社 强磁性材料溅射靶
JP5426030B2 (ja) 2010-12-09 2014-02-26 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP4970633B1 (ja) 2010-12-15 2012-07-11 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット及びその製造方法
MY161157A (en) 2010-12-17 2017-04-14 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
CN103168328B (zh) 2010-12-17 2016-10-26 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
JP5394575B2 (ja) 2010-12-17 2014-01-22 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
WO2012086300A1 (ja) 2010-12-21 2012-06-28 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット及びその製造方法
SG189202A1 (en) 2010-12-22 2013-05-31 Jx Nippon Mining & Metals Corp Ferromagnetic sputtering target
MY156203A (en) 2010-12-22 2016-01-29 Jx Nippon Mining & Metals Corp Sintered compact sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038660A (ja) * 1998-07-21 2000-02-08 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにCoPt系磁気記録媒体
JP2005320627A (ja) * 2004-04-07 2005-11-17 Hitachi Metals Ltd Co合金ターゲット材の製造方法、Co合金ターゲット材および垂直磁気記録用軟磁性膜ならびに垂直磁気記録媒体
JP2008163438A (ja) * 2007-01-04 2008-07-17 Mitsui Mining & Smelting Co Ltd CoCrPt系スパッタリングターゲットおよびその製造方法
JP2008240011A (ja) * 2007-03-26 2008-10-09 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲット
JP2009132975A (ja) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
WO2009119812A1 (ja) * 2008-03-28 2009-10-01 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046040A1 (ja) * 2012-09-18 2014-03-27 Jx日鉱日石金属株式会社 スパッタリングターゲット
JPWO2014046040A1 (ja) * 2012-09-18 2016-08-18 Jx金属株式会社 スパッタリングターゲット

Also Published As

Publication number Publication date
US8679268B2 (en) 2014-03-25
TWI496921B (zh) 2015-08-21
CN102482765B (zh) 2014-03-26
US20120097535A1 (en) 2012-04-26
CN102482765A (zh) 2012-05-30
MY150826A (en) 2014-02-28
TW201204851A (en) 2012-02-01
SG177237A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2012011204A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP5763178B2 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2011089760A1 (ja) 強磁性材スパッタリングターゲット
WO2012011294A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP5426030B2 (ja) 強磁性材スパッタリングターゲット
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
WO2010110033A1 (ja) 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP4837801B2 (ja) Co若しくはCo合金相に酸化物相を分散させたスパッタリングターゲット
JP5394576B2 (ja) 強磁性材スパッタリングターゲット
JP5394575B2 (ja) 強磁性材スパッタリングターゲット
JP5394577B2 (ja) 強磁性材スパッタリングターゲット
WO2012086300A1 (ja) 磁気記録膜用スパッタリングターゲット及びその製造方法
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
JP4758522B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4819199B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025681.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011502582

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13320840

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855041

Country of ref document: EP

Kind code of ref document: A1