WO2012077665A1 - 強磁性材スパッタリングターゲット - Google Patents

強磁性材スパッタリングターゲット Download PDF

Info

Publication number
WO2012077665A1
WO2012077665A1 PCT/JP2011/078152 JP2011078152W WO2012077665A1 WO 2012077665 A1 WO2012077665 A1 WO 2012077665A1 JP 2011078152 W JP2011078152 W JP 2011078152W WO 2012077665 A1 WO2012077665 A1 WO 2012077665A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
target
mol
phase
sputtering target
Prior art date
Application number
PCT/JP2011/078152
Other languages
English (en)
French (fr)
Inventor
荒川 篤俊
祐希 池田
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201180042894.5A priority Critical patent/CN103080368B/zh
Priority to US13/877,411 priority patent/US20130220804A1/en
Priority to JP2012529451A priority patent/JP5426030B2/ja
Priority to SG2013020276A priority patent/SG188601A1/en
Publication of WO2012077665A1 publication Critical patent/WO2012077665A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films

Definitions

  • Patent Document 1 An alloy powder having an alloy phase produced by a rapid solidification method and a powder constituting the ceramic phase are mechanically alloyed, and the powder constituting the ceramic phase is uniformly dispersed in the alloy powder, and then molded by hot pressing and magnetically generated.
  • Patent Document 1 A method for obtaining a sputtering target for a recording medium has been proposed (Patent Document 1).
  • the target structure is dispersed in a state in which the substrate is bonded in a white shape (sperm sperm) and surrounding SiO 2 (ceramics) (FIG. 2 of Patent Document 1) or in a thin string shape. (FIG. 3 of patent document 1)
  • a state can be seen.
  • Other figures are unclear, but are assumed to be similar.
  • Such a structure has the problems described later and cannot be said to be a suitable sputtering target for a magnetic recording medium.
  • the spherical substance shown by FIG. 4 of patent document 1 is a mechanical alloying powder, and is not a structure
  • Patent Document 3 Also proposed is a method of obtaining a sputtering target for forming a magnetic recording medium thin film by mixing Co—Cr binary alloy powder, Pt powder, and SiO 2 powder and hot-pressing the obtained mixed powder.
  • a magnetron sputtering apparatus equipped with a DC power source is widely used because of high productivity.
  • a substrate serving as a positive electrode and a target serving as a negative electrode are opposed to each other, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere.
  • the inert gas is ionized and a plasma composed of electrons and cations is formed.
  • a plasma composed of electrons and cations is formed.
  • the cations in the plasma collide with the surface of the target (negative electrode)
  • atoms constituting the target are knocked out.
  • the projected atoms adhere to the opposing substrate surface to form a film.
  • the principle that the material constituting the target is formed on the substrate by such a series of operations is used.
  • an object of the present invention is to provide a non-magnetic material particle-dispersed ferromagnetic sputtering target that can increase the leakage magnetic flux and obtain a stable discharge in a magnetron sputtering apparatus.
  • the present inventors conducted extensive research and found that a target having a large leakage magnetic flux can be obtained by adjusting the composition and structure of the target.
  • the present invention also provides: 2) A sputtering target made of a metal having a composition in which Pt is 5 mol% or more, Cr is 20 mol% or less, and the balance is Co, and the structure of this target is a metal substrate (A) and the above (A)
  • a ferromagnetic sputtering target characterized by having a phase (B) made of a Co—Pt alloy containing 40 to 76 mol% of Pt.
  • the present invention provides 3) It is characterized by containing 0.5 mol% or more and 10 mol% or less of one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Si, and Al as additive elements.
  • the ferromagnetic sputtering target according to either 1) or 2) is provided.
  • the present invention provides 4) The above 1) to 3), wherein the metal substrate (A) contains one or more inorganic materials selected from carbon, oxide, nitride, carbide and carbonitride in the metal substrate.
  • a ferromagnetic material sputtering target according to any one of the above.
  • the inorganic material is one or more oxides selected from Cr, Ta, Si, Ti, Zr, Al, Nb, B, and Co, and the volume ratio of the inorganic material is 22 vol% to 40 vol%.
  • the ferromagnetic material sputtering target according to the above item 4) is provided.
  • the present invention provides 6) The ferromagnetic sputtering target according to any one of 1) to 5) above, wherein the particle size of the phase (B) made of the Co—Pt alloy is 10 ⁇ m or more and 150 ⁇ m or less.
  • the present invention provides 7) The ferromagnetic sputtering target according to any one of 1) to 6) above, wherein the relative density is 97% or more.
  • the non-magnetic material particle-dispersed ferromagnetic sputtering target of the present invention adjusted as described above becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas efficiently proceeds and is stable. Discharge is obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost.
  • tissue image when the polished surface of the target of Example 1 is observed with an optical microscope. It is a structure
  • the main component constituting the ferromagnetic sputtering target of the present invention is made of a metal having a composition in which Pt is 5 mol% or more and the balance is Co. These are components required as a magnetic recording medium, but Pt is desirably 45 mol% or less. When Pt is added excessively, the characteristics as a magnetic material are lowered, and since Pt is expensive, it can be said that it is desirable from the viewpoint of production cost to reduce the addition amount as much as possible.
  • One or more elements selected from Al can be contained.
  • the blending ratio can be variously adjusted within the above range, and any of them can maintain the characteristics as an effective magnetic recording medium. That is, these are elements added as necessary in order to improve the characteristics as a magnetic recording medium.
  • Cr can be blended more than other additive elements.
  • the above is basically present in the metal substrate (A), but these slightly diffuse into the phase (B) via the interface of the phase (B) made of a Co—Pt alloy described later. There is a case.
  • the present invention includes these.
  • the target structure has a metal substrate (A) and a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt in (A). It is.
  • This phase (B) has a lower maximum magnetic permeability than metal bases (A) having different compositions, and has a structure in which the phases (B) are separated from each other by surrounding structures made of the metal base (A).
  • the reason why the leakage flux is improved in the target having such a structure is not necessarily clear, but a dense part and a sparse part are generated in the magnetic flux inside the target, and compared with a structure having a uniform magnetic permeability. This is because the magnetostatic energy increases, and it is considered that it is advantageous in terms of energy to leak the magnetic flux outside the target.
  • the phase (B) can be spherical or flat (flaky).
  • the spherical or flat phase (B) has advantages and disadvantages according to the shape. It can be said that it is desirable to select this shape according to the purpose of use of the target.
  • the diameter is preferably 10 to 150 ⁇ m.
  • the spherical surface area is smaller in the same volume, the diffusion of the metal element is less likely to proceed between the metal substrate (A) and the phase (B) when the target material is sintered.
  • a metal substrate (A) and a phase (B) having different compositions can be easily formed, and a material having a Co—Pt alloy phase containing 40 to 76 mol% of Pt can be produced.
  • the spherical shape has an advantage that diffusion is less likely to proceed, but is not completely free of diffusion.
  • fine inorganic particles are present in the metal substrate (A) (the black portions finely dispersed in FIG. 1 are inorganic particles), but the diameter of the phase (B) is less than 10 ⁇ m.
  • the diameter of the phase (B) is preferably 10 ⁇ m or more. The diameter is preferably 30 ⁇ m or more.
  • the size of the phase (B) is desirably 10 to 150 ⁇ m, preferably 30 to 150 ⁇ m. These are all means for increasing the leakage magnetic flux, but since the leakage magnetic flux can be adjusted by the amount and type of the added metal and inorganic particles, the size of the phase (B) must be set to this condition. It's not something you have to do. However, it goes without saying that this is one of the preferable conditions as described above.
  • the spherical shape used here represents a solid shape including a true sphere, a pseudo true sphere, an oblate (spheroid), and an artificial oblate.
  • the difference between the major axis and the minor axis is 0 to 50% based on the major axis. That is, it can be said that the ratio of the maximum value to the minimum value of the length from the center of gravity to the outer periphery of the sphere is 2 or less. If it is this range, even if there are some unevenness
  • the ratio of the maximum value to the minimum value of the length from the center of gravity of the cross section of the phase (B) to the outer periphery may be 2 or less.
  • phase (B) when the phase (B) is flat, it has the effect of preventing the phase (B) from being detached from the surrounding metal substrate (A) at the time of sputtering because of the wedge effect. Further, by destroying the sphere, it is possible to reduce the bias of the erosion speed that is likely to occur when the sphere is formed, and to suppress the generation of particles due to the boundary having different erosion speeds.
  • the flat phase (B) means, for example, a shape such as a wedge, a crescent moon, or a crescent moon, or a shape formed by connecting two or more such shapes.
  • the ratio of the minor axis to the major axis corresponds to an average of 1: 2 to 1:10.
  • the flat shape is a shape when viewed from above, and does not mean a state where there is no unevenness and a flat surface is desired. That is, the thing with some unevenness
  • the phase (B) when flattened has an average particle diameter of 10 ⁇ m to 150 ⁇ m, preferably 15 ⁇ m to 150 ⁇ m.
  • the preferable lower limit of the average particle diameter in this case is slightly different from that in the case of a sphere, but this is because a slightly larger particle diameter is desirable because the flat shape is slightly diffused.
  • phase (B) and fine inorganic particles are present in the metal substrate (A) (in FIG. 1, the finely dispersed black portions are inorganic particles and have a relatively large circular shape.
  • the diameter of the phase (B) is less than 10 ⁇ m, the difference in particle size from the inorganic particles is small, so when the target material is sintered, the phase (B) And the diffusion of the metal substrate (A) easily proceeds. As this diffusion proceeds, the difference between the constituent elements of the metal substrate (A) and the phase (B) tends to be unclear. Therefore, the diameter is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and still more preferably 30 ⁇ m or more.
  • the size of the phase (B) is desirably 10 ⁇ m or more and 150 ⁇ m or less, preferably 15 ⁇ m or more and 150 ⁇ m or less, more preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the phase (B) in the present invention is a phase composed of a Co—Pt alloy containing 40 to 76 mol% of Pt as described above.
  • the phase (B) may be spherical, flat, or a metal substrate ( Since the composition is different from that of A), the outer periphery of the phase (B) may be slightly deviated from the composition of the phase (B) due to the diffusion of elements during sintering.
  • the Co—Pt alloy having a Pt concentration of 40 to 76 mol% is used. If there is, it is possible to achieve the purpose.
  • the present invention includes these cases, and the object of the present invention can be achieved even under such conditions.
  • the ferromagnetic sputtering target of the present invention can contain one or more inorganic materials selected from carbon, oxide, nitride, carbide, and carbonitride in a dispersed state in the metal substrate.
  • the magnetic recording film having a granular structure, particularly, a characteristic suitable for a material of a recording film of a hard disk drive adopting a perpendicular magnetic recording system is provided.
  • the inorganic material one or more oxides selected from Cr, Ta, Si, Ti, Zr, Al, Nb, B, and Co are effective, and the volume ratio of the inorganic material is 22% to 40%. %.
  • the said Cr oxide it is different from the amount of Cr added as a metal, and is a volume ratio as chromium oxide.
  • the non-magnetic material particles are basically dispersed in the metal substrate (A), but may be fixed around the phase (B) during the production of the target or may be contained inside. If the amount is small, even in such a case, the magnetic properties of the phase (B) are not affected and the purpose is not hindered.
  • the relative sputtering density of the ferromagnetic material sputtering target of the present invention is desirably 97% or more. In general, it is known that a higher density target can reduce the amount of particles generated during sputtering. Similarly, in the present invention, a high density is preferable, and the present invention can achieve the above-described relative density.
  • the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
  • the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
  • Calculated density Sigma ⁇ (Molecular weight of constituent component x Molar ratio of constituent component) / ⁇ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
  • means taking the sum for all the constituent components of the target.
  • the target thus adjusted becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, the promotion of ionization of the inert gas proceeds efficiently, and a stable discharge can be obtained. Further, since the thickness of the target can be increased, there is an advantage that the replacement frequency of the target is reduced and the magnetic thin film can be manufactured at low cost. Further, there is an advantage that the amount of particles that cause a decrease in yield can be reduced by increasing the density.
  • the ferromagnetic material sputtering target of the present invention can be produced by powder metallurgy.
  • a metal element or alloy powder in order to form the phase (B), a Co—Pt alloy powder is essential), and if necessary, an additive metal element powder or an inorganic material powder.
  • an additive metal element powder or an inorganic material powder prepare.
  • the method for producing the powder of each metal element but it is desirable to use a powder having a maximum particle size of 20 ⁇ m or less. On the other hand, if it is too small, there is a problem that oxidation is promoted and the component composition does not fall within the range.
  • these metal powder and alloy powder are weighed so as to have a desired composition, and mixed by pulverization using a known technique such as a ball mill.
  • a metal powder and an alloy powder When adding an inorganic powder, it may be mixed with a metal powder and an alloy powder at this stage.
  • the inorganic powder carbon powder, oxide powder, nitride powder, carbide powder or carbonitride powder is prepared. It is desirable to use inorganic powder having a maximum particle size of 5 ⁇ m or less. On the other hand, since it will be easy to aggregate when it is too small, it is more desirable to use a 0.1 micrometer or more thing.
  • phase (B) is spherical
  • a Co-45 mol% Pt spherical powder having a diameter in the range of 30 to 150 ⁇ m is used, and a metal powder (a selected inorganic powder as required) is mixed with a mixer.
  • the Co—Pt spherical powder used here can be obtained by sieving the one produced by the gas atomization method.
  • the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • phase (B) is flat (flaky)
  • a Co-45 mol% Pt spherical powder having a diameter in the range of 50 to 300 ⁇ m is prepared, and the Co-Pt powder is pulverized using a high energy ball mill. To do.
  • the Co—Pt powder becomes flat with pulverization and is pulverized until the particle size becomes 150 ⁇ m or less.
  • the Co—Pt spherical powder used here can be obtained by sieving the one produced by the gas atomization method.
  • the high-energy ball mill used can pulverize and mix raw material powders in a shorter time than ball mills and vibration mills. Thereafter, the flat Co—Pt powder, the metal powder prepared in advance as described above, and the inorganic powder selected as necessary are mixed with the mixed powder with a mixer.
  • the mixer is preferably a planetary motion type mixer or a planetary motion type stirring mixer. Furthermore, considering the problem of oxidation during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • the Co—Pt spherical powder having a diameter in the range of 50 to 300 ⁇ m and the previously prepared metal powder (selected inorganic powder as required) can be pulverized and mixed using a high energy ball mill. it can. In this case, the Co—Pt powder is flattened and pulverized and mixed until it becomes 150 ⁇ m or less. In view of the problem of oxidation of metal components during mixing, it is preferable to mix in an inert gas atmosphere or in a vacuum.
  • the powder thus obtained is molded and sintered using a vacuum hot press apparatus, and cut into a desired shape, whereby the ferromagnetic sputtering target of the present invention is produced.
  • the Co—Pt spherical powder described above or the Co—Pt powder whose shape has been flattened by the pulverization corresponds to the spherical phase (B) observed in the target tissue.
  • the molding / sintering is not limited to hot pressing, and a plasma discharge sintering method and a hot isostatic pressing method can also be used.
  • the holding temperature at the time of sintering is preferably set to the lowest temperature in a temperature range where the target is sufficiently densified. Depending on the composition of the target, it is often in the temperature range of 800-1300 ° C.
  • the pressure during sintering is preferably 300 to 500 kg / cm 2 .
  • Example 1 Comparative Example 1
  • a spherical powder was prepared. These powders as the composition of the target is 74Co-19Pt-7SiO 2 (mol %), Co powder 40.08wt%, Pt powder 13.06wt%, SiO 2 powder 4.96wt%, Co-Pt spherical powder Weighed at a weight ratio of 41.91 wt%.
  • Co powder, Pt powder, and SiO 2 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Pt spherical powder were mixed for 10 minutes with a planetary motion type mixer having a ball capacity of about 7 liters.
  • Leakage magnetic flux was measured according to ASTM F2086-01 (Standard Test Method for Pass Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2). The magnetic flux density measured by fixing the center of the target and rotating it at 0, 30, 60, 90, and 120 degrees is divided by the value of the reference field defined by ASTM and multiplied by 100. Expressed as a percentage. And the result averaged about these 5 points
  • Co powder having an average particle size of 3 ⁇ m, Pt powder having an average particle size of 3 ⁇ m, and SiO 2 powder having an average particle size of 1 ⁇ m were prepared as raw material powders. These powders were weighed at a weight ratio of 51.38 wt% Co powder, 43.67 wt% Pt powder, and 4.96 wt% SiO 2 powder so that the target composition would be 74Co-19Pt-7SiO 2 (mol%).
  • Example 1 As shown in Table 1, it was confirmed that the average leakage magnetic flux density of the target of Example 1 was 41.5%, which was improved more than 39.1% of Comparative Example 1. Moreover, the relative density of Example 1 was 97.4%, and a high-density target exceeding 97% was obtained.
  • FIG. 1 The structure image when the target polishing surface of Example 1 is observed with an optical microscope is shown in FIG. In FIG. 1, black spots correspond to the SiO 2 particles.
  • This phase corresponds to the phase (B) of the present invention, and is a phase made of a Co—Pt alloy containing 45 mol% of Pt.
  • the ratio of the maximum value to the minimum value of the length from the center of gravity to the outer periphery is 1 .2 or so, and was almost spherical.
  • Example 2 Comparative Examples 2, 3, 4
  • Co powder having an average particle diameter of 3 ⁇ m Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, and Cr 2 having an average particle diameter of 3 ⁇ m.
  • An O 3 powder and a Co-53Pt (mol%) spherical powder having a diameter in the range of 50 to 100 ⁇ m were prepared.
  • Co powder, Cr powder, TiO 2 powder, SiO 2 powder, and Cr 2 O 3 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Pt spherical powder were put into a high energy ball mill and pulverized and mixed for 2 hours. This mixed powder was filled into a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a surface grinder, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Co powder, Cr powder, TiO 2 powder, SiO 2 powder, and Cr 2 O 3 powder were enclosed in a ball mill pot with a capacity of 10 liters together with zirconia balls as a grinding medium, and rotated and mixed for 20 hours. Further, the obtained mixed powder and Co—Pt spherical powder were put into a high energy ball mill and pulverized and mixed for 2 hours. This mixed powder was filled into a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a surface grinder, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Comparative Example 3 As a raw material powder, Co powder having an average particle diameter of 3 ⁇ m, Cr powder having an average particle diameter of 5 ⁇ m, TiO 2 powder having an average particle diameter of 1 ⁇ m, SiO 2 powder having an average particle diameter of 1 ⁇ m, and Cr 2 having an average particle diameter of 3 ⁇ m.
  • An O 3 powder, Co-79Pt (mol%) spherical powder having a diameter in the range of 50 to 100 ⁇ m was prepared.
  • Co powder, Cr powder, Pt powder, TiO 2 powder, SiO 2 powder, and Cr 2 O 3 powder are encapsulated in a 10-liter ball mill pot together with zirconia balls as a grinding medium, and rotated for 20 hours to be mixed. did. Further, the obtained mixed powder was put into a high energy ball mill and pulverized and mixed for 2 hours. This mixed powder was filled into a carbon mold and hot-pressed in a vacuum atmosphere under the conditions of a temperature of 1050 ° C., a holding time of 2 hours, and a pressure of 30 MPa to obtain a sintered body. Further, this was processed into a disk-shaped target having a diameter of 180 mm and a thickness of 5 mm with a surface grinder, and the average leakage magnetic flux density was measured. The results are shown in Table 2.
  • Example 1 the presence of a metal substrate (A) and a phase (B) surrounded by the metal substrate (A) and having a diameter in the range of 50 to 100 ⁇ m (structure photograph confirmation) was observed. It was.
  • the phase (B) was confirmed to be a phase composed of a Co—Pt alloy containing 40 to 76 mol% of Pt. It can be seen that such a tissue structure plays a very important role in improving the leakage flux.
  • the above example shows an example in which the composition of the target is 74Co-19Pt-7SiO 2 (mol%) and 59Co-11Cr-21Pt-5TiO 2 -2SiO 2 -2Cr 2 O 3 (mol%).
  • the same effect is confirmed.
  • one or more elements selected from B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Si, and Al can be contained, and any of them can be used as an effective magnetic recording medium. Characteristics can be maintained. That is, these are elements added as necessary to improve the characteristics as a magnetic recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。Ptが5mol%以上、Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金からなる相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。漏洩磁束を向上させて、マグネトロンスパッタ装置で安定した放電が可能な強磁性材スパッタリングターゲットを得る。

Description

強磁性材スパッタリングターゲット
 本発明は、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクの磁気記録層の成膜に使用される強磁性材スパッタリングターゲットに関し、漏洩磁束が大きくマグネトロンスパッタ装置でスパッタする際に安定した放電が得られる非磁性材粒子分散型強磁性材スパッタリングターゲットに関する。
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
 そしてハードディスクなどの磁気記録媒体の磁性薄膜は、生産性の高さから、上記の材料を成分とする強磁性材スパッタリングターゲットをスパッタリングして作製されることが多い。
 このような強磁性材スパッタリングターゲットの作製方法としては、溶解法や粉末冶金法が考えられる。どちらの手法で作製するかは、要求される特性によるので一概には言えないが、垂直磁気記録方式のハードディスクの記録層に使用される、強磁性合金と非磁性の無機物粒子からなるスパッタリングターゲットは、一般に粉末冶金法によって作製されている。これは無機物粒子を合金素地中に均一に分散させる必要があるため、溶解法では作製することが困難だからである。
 例えば、急冷凝固法で作製した合金相を持つ合金粉末とセラミックス相を構成する粉末とをメカニカルアロイングし、セラミックス相を構成する粉末を合金粉末中に均一に分散させ、ホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献1)。
 この場合のターゲット組織は、素地が白子(鱈の精子)状に結合し、その周りにSiO(セラミックス)が取り囲んでいる様子(特許文献1の図2)又は細紐状に分散している(特許文献1の図3)様子が見える。他の図は不鮮明であるが、同様の組織と推測される。
 このような組織は、後述する問題を有し、好適な磁気記録媒体用スパッタリングターゲットとは言えない。なお、特許文献1の図4に示されている球状物質は、メカニカルアロイング粉末であり、ターゲットの組織ではない。
 また、急冷凝固法で作製した合金粉末を用いなくても、ターゲットを構成する各成分について市販の原料粉末を用意し、それらの原料粉を所望の組成になるように秤量し、ボールミル等の公知の手法で混合し、混合粉末をホットプレスにより成型・焼結することによって、強磁性材スパッタリングターゲットは作製できる。
 例えば、Co粉末とCo-Cr合金粉末とPt粉末とSiO粉末を原料とし、これらをボールミルで混合し、この混合粉をホットプレスにより成形し磁気記録媒体用スパッタリングターゲットを得る方法が提案されている(特許文献2)。
 この場合のターゲット組織は、無機物粒子が均一に分散した金属素地(A)の中に、Co-Cr合金の金属相(B)を有している様子が見える(特許文献2の図11)。このような組織は、Crがある程度以上含まれている(例えばCr:10mol%以上)ターゲットに対しては好適だが、Cr含有率が低い(例えばCr:5mol%以下)ターゲット組成と比較すると、磁気記録媒体用スパッタリングターゲットとして、記録媒体の特性が劣るので、必ずしも好適とは言えない面を持っている。
 また、Co-Cr二元系合金粉末とPt粉末とSiO粉末を混合して、得られた混合粉末をホットプレスすることにより、磁気記録媒体薄膜形成用スパッタリングターゲットを得る方法が提案されている(特許文献3)。
 この場合のターゲット組織は、図によって示されていないが、Pt相、SiO相およびCo-Cr二元系合金相が見られ、Co-Cr二元系合金層の周囲に拡散層が観察できたことが記載されている。このような酸化物の分散が見られない組織も、好適な磁気記録媒体用スパッタリングターゲットとは言えない。
 スパッタリング装置には様々な方式のものがあるが、上記の磁気記録膜の成膜では、生産性の高さからDC電源を備えたマグネトロンスパッタリング装置が広く用いられている。スパッタリング法とは、正の電極となる基板と負の電極となるターゲットを対向させ、不活性ガス雰囲気下で、該基板とターゲット間に高電圧を印加して電場を発生させるものである。
 この時、不活性ガスが電離し、電子と陽イオンからなるプラズマが形成されるが、このプラズマ中の陽イオンがターゲット(負の電極)の表面に衝突するとターゲットを構成する原子が叩き出されるが、この飛び出した原子が対向する基板表面に付着して膜が形成される。このような一連の動作により、ターゲットを構成する材料が基板上に成膜されるという原理を用いたものである。
特開平10-88333号公報 特許4499183号公報 特開2009-1860号公報
 一般に、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタしようとすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が少なくなり、スパッタ時に放電が立たない、あるいは放電しても放電が安定しないという大きな問題が生じる。
 この問題を解決するには、強磁性金属であるCoの含有割合を減らすことが考えられる。しかし、Coを減少させると、所望の磁気記録膜を得ることができないため本質的な解決策ではない。また、ターゲットの厚みを薄くすることで漏洩磁束を向上させることは可能だが、この場合ターゲットのライフが短くなり、頻繁にターゲットを交換する必要が生じるのでコストアップの要因になる。
 本発明は上記問題を鑑みて、漏洩磁束を増加させて、マグネトロンスパッタ装置で安定した放電が得られる非磁性材粒子分散型強磁性材スパッタリングターゲットを提供することを課題とする。
 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、ターゲットの組成及び組織構造を調整することにより、漏洩磁束の大きいターゲットが得られることを見出した。
 このような知見に基づき、本発明は、
 1)Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金からなる相(B)を有していることを特徴とする強磁性材スパッタリングターゲットを提供する。
 また、本発明は、
 2)Ptが5mol%以上、Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金からなる相(B)を有していることを特徴とする強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 3)添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Alから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする1)又は2)のいずれかに記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 4)金属素地(A)が、炭素、酸化物、窒化物、炭化物、炭窒化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする上記1)~3)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 5)前記無機物材料がCr,Ta,Si,Ti,Zr,Al,Nb,B,Coから選択した1種以上の酸化物であり、当該無機物材料の体積比率が22vol%~40vol%であることを特徴とする上記4)記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 6)Co-Pt合金からなる相(B)の粒径が10μm以上150μm以下であることを特徴とする上記1)~5)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 さらに、本発明は、
 7)相対密度が97%以上であることを特徴とする上記1)~6)のいずれか一項に記載の強磁性材スパッタリングターゲットを提供する。
 このように調整した本発明の非磁性材粒子分散型強磁性材スパッタリングターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。またターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。
実施例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例1のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 実施例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例2のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例3のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。 比較例4のターゲットの研磨面を光学顕微鏡で観察したときの組織画像である。
 本発明の強磁性材スパッタリングターゲットを構成する主要成分は、Ptが5mol%以上、残余がCoである組成の金属からなる。
 これらは、磁気記録媒体として必要とされる成分であるが、Ptは45mol%以下であるのが望ましい。Ptを過剰に添加した場合には、磁性材としての特性が低下すること、また、Ptは高価であることから、添加量をなるべく低減することが生産コストからみて望ましいと言える。
 前記Ptの添加に加え、さらに20mol%以下のCr及び/又は0.5mol%以上10mol%以下の添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Alから選択した1元素以上を含有させることができる。配合割合は上記範囲内で様々に調整でき、いずれも有効な磁気記録媒体としての特性を維持することができる。すなわち、これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。この添加元素の中で、Crについては、他の添加元素に比べて、より多く配合することができる。
 なお、20mol%以下のCr及び/又は0.5mol%以上10mol%以下の添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Alから選択した1元素以上は、基本的には金属素地(A)中に存在するものであるが、これらが後述するCo-Pt合金からなる相(B)の界面を介して、該相(B)中に若干拡散する場合がある。本願発明は、これらを包含するものである。
 本願発明において重要なことは、ターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金相(B)を有していることである。この相(B)は、組成の異なる金属素地(A)よりも最大透磁率が低く、金属素地(A)からなる周囲の組織によって各々分離された構造になっている。
 このような組織を有するターゲットにおいて、漏洩磁束が向上する理由は現時点では、必ずしも明確ではないが、ターゲット内部の磁束に密な部分と疎な部分が生じ、均一な透磁率を有する組織と比較し静磁エネルギーが高くなるため、磁束がターゲット外部に漏れ出た方がエネルギー的に有利になるためと考えられる。
 相(B)は、球形又は扁平状(片状)とすることができる。この球形又は扁平状の相(B)は、それぞれ形状に応じた利害得失を備えている。この形状の選択は、ターゲットの使用目的に応じて選択することが望ましいと言える。
 例えば、球状にした場合には、直径が10~150μmとするのが望ましい。球形の方が、焼結法でターゲット素材を作製する際、金属素地(A)と相(B)の境界面に空孔が生じにくく、ターゲットの密度を高めることができる。
 また、同一体積では球形の方が、表面積が小さくなるので、ターゲット素材を焼結させる際に金属素地(A)と相(B)との間で金属元素の拡散が進みにくい。その結果、組成の異なる金属素地(A)と相(B)が容易に生成され、Ptを40~76mol%含有するCo-Pt合金相を有する素材を作製することができる。
 上記のように球形の方が、拡散が進みにくい有利性を備えているものの、拡散が全くないわけではない。
 図1に示すように、金属素地(A)には細かい無機物粒子が存在している(図1で微細に分散した黒い部分が無機物粒子である)が、相(B)の直径が10μm未満の場合は、無機物粒子と混在している金属との粒サイズ差が小さくなるので、ターゲット素材を焼結させる際に、相(B)と金属素地(A)との拡散が進む。
 この拡散が進むことにより、金属素地(A)と相(B)との構成要素の違いが不明確になる傾向がある。このことから相(B)の直径を10μm以上とするのが良い。好ましくは直径30μm以上である。
 一方、150μmを超える場合には、スパッタリングが進むにつれてターゲット表面の平滑性が低下し、パーティクルの問題が発生しやすくなることがある。従って相(B)の大きさは10~150μm、好ましくは30~150μmとするのが望ましいと言える。
 なお、これらはいずれも漏洩磁束を増加させるための手段であるが、添加金属、無機物粒子の量と種類等により、漏洩磁束を調整することが可能なので、相(B)のサイズを必ずこの条件にしなければならないというものではない。しかし、上記の通り、好ましい条件の一つであることは言うまでもない。
 なお、ここで使用する球形とは、真球、擬似真球、扁球(回転楕円体)、擬似扁球を含む立体形状を表す。いずれも、長軸と短軸の差が長軸を基準として0~50%であるものを言う。すなわち、球形は、その重心から外周までの長さの最小値に対する最大値の比が2以下であると言い換えることもできる。この範囲であれば、外周部に多少の凹凸があっても、相(B)を形成することができる。球形そのものを確認することが難しい場合は、相(B)の断面の重心から外周までの長さの最小値に対する最大値の比が2以下であることを目安としてもよい。
 また、相(B)が、ターゲットの全体積又はターゲットのエロージョン面に占める体積又は面積のわずかな量(例えば1%程度)であっても、それなりの効果を有するものであるが、相(B)の存在による効果を、十分に発揮させるためには、ターゲットの全体積又はターゲットのエロージョン面に占める体積又は面積の10%以上であることが望ましい。相(B)を多く存在させることにより、漏洩磁束を増加させることが可能である。
 ターゲット組成によっては、相(B)をターゲットの全体積又はターゲットのエロージョン面に占める体積又は面積の50%以上、さらには60%以上とすることもでき、これらの体積率又は面積率は、ターゲットの組成に応じて、任意に調整が可能である。本発明はこれらを包含する。
 他方、相(B)を扁平状とした場合、まさに楔の効果で、スパッタ時に周囲の金属素地(A)から該相(B)が脱離するのを防ぐ効果を有する。
 また、球形を破壊することによって、球形のときに生じ易いエロージョン速度の偏りを軽減することができ、エロージョン速度の異なる境界起因のパーティクル発生を抑制することができる効果を有する。
 前記相(B)を扁平状とは、例えば、楔(くさび)、三日月、上弦の月のような形状、若しくは、このような形状のものが2以上連結してなる形状のものを言う。
 また、これらの形状を定量的に規定した場合、短径と長径の比(以下、アスペクト比と称す。)が、平均で1:2~1:10のものがこれに該当する。なお、扁平状とは、上から見たときの形状であり、凹凸がなく完全に平べったい状態を意味するものではない。すなわち、多少の起伏又は凹凸があるものも含まれる。
 扁平状にした場合の相(B)は、平均粒径が10μm以上150μm以下、好ましくは15μm以上150μm以下とするのが望ましい。この場合の好ましい平均粒径の下限値は、球形の場合と若干異なるが、これは扁平状の方が若干拡散し易いために、粒径がやや大きい方が望ましいためである。
 図1に示すように、金属素地(A)には、相(B)と細かい無機物粒子が存在している(図1において、微細に分散した黒い部分が無機物粒子であり、比較的大きな円形の部分が相(B)である。)が、相(B)の直径が10μm未満の場合は、無機物粒子との粒サイズ差が小さくなるので、ターゲット素材を焼結させる際に、相(B)と金属素地(A)との拡散は進み易くなる。
 この拡散が進むことにより、金属素地(A)と相(B)との構成要素の違いが不明確になる傾向がある。このことから直径10μm以上とするのが好ましいが、より好ましくは直径15μm以上、さらに好ましくは直径30μm以上である。
 一方、150μmを超える場合には、スパッタリングが進むにつれてターゲット表面の平滑性が失われ、パーティクルの問題が発生しやすくなることがある。
 以上から、相(B)の大きさは10μm以上150μm以下、好ましくは直径15μm以上150μm以下、さらに好ましくは直径30μm以上150μm以下であるとするのが望ましいと言える。
 また、本発明での相(B)は、上記の通りPtを40~76mol%含有するCo-Pt合金からなる相であるが、ここで相(B)は球形でも扁平状でも、金属素地(A)と組成が異なるので、焼結時の元素の拡散により、相(B)の外周部は、前記相(B)の組成から多少ずれてしまうことがある。
 しかしながら、相(B)の径(長径及び短径のそれぞれ)を2/3に縮小したと仮定した場合の相似形の相の範囲内において、Ptの濃度40~76mol%のCo-Pt合金であれば目的を達成することが可能である。本願発明は、これらのケースを含むものであり、このような条件でも本願発明の目的を達成できる。
 さらに本発明の強磁性材スパッタリングターゲットは、炭素、酸化物、窒化物、炭化物、炭窒化物から選択し一種以上の無機物材料を、金属素地中に分散した状態で含有することができる。この場合、グラニュラー構造をもつ磁気記録膜、特に垂直磁気記録方式を採用したハードディスクドライブの記録膜の材料に好適な特性を備える。
 さらに、前記無機物材料としては、Cr,Ta,Si,Ti,Zr,Al,Nb,B,Coから選択した1種以上の酸化物が有効であり、当該無機物材料の体積比率を22%~40%とすることができる。なお、上記Cr酸化物の場合は、金属として添加するCr量とは別であり、酸化クロムとしての体積比率である。
 非磁性材料粒子は金属素地(A)に分散しているのが基本であるが、ターゲット作製中に相(B)の周囲に固着する場合あるいは内部に含まれる場合もある。少量であれば、このような場合であっても、相(B)の磁気特性に影響を及ぼさず、目的を阻害することはない。
 本発明の強磁性材スパッタリングターゲットは、相対密度を97%以上とすることが望ましい。一般に、高密度のターゲットほどスパッタ時に発生するパーティクルの量を低減させることができることが知られている。本発明においても同様に、高密度とするのが良く、本願発明は、上記の相対密度を達成することができる。
 ここでの相対密度とは、ターゲットの実測密度を計算密度(理論密度ともいう)で割り返して求めた値である。計算密度とはターゲットの構成成分が互いに拡散あるいは反応せずに混在していると仮定したときの密度で、次式で計算される。
 式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
 ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
 このように調整したターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。またターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。
 さらに、高密度化により、歩留まり低下の原因となるパーティクルの発生量を低減させることができるというメリットもある。
 本発明の強磁性材スパッタリングターゲットは、粉末冶金法によって作製することができる。まず、金属元素又は合金の粉末(なお、相(B)を形成するためには、Co-Ptの合金粉末は必須となる)、さらに必要に応じて添加金属元素の粉末又は無機物材料の粉末を用意する。
 各金属元素の粉末の作製方法は特に制限はないが、これらの粉末は最大粒径が20μm以下のものを用いることが望ましい。一方、小さ過ぎると、酸化が促進されて成分組成が範囲内に入らないなどの問題があるため、0.1μm以上とすることが、さらに望ましい。
 そして、これらの金属粉末及び合金粉末を所望の組成になるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。無機物粉末を添加する場合は、この段階で金属粉末及び合金粉末と混合すればよい。
 無機物粉末としては炭素粉末、酸化物粉末、窒化物粉末、炭化物粉末または炭窒化物粉末を用意するが、無機物粉末は最大粒径が5μm以下のものを用いることが望ましい。一方、小さ過ぎると凝集しやすくなるため、0.1μm以上のものを用いることがさらに望ましい。
 相(B)を球形とする場合、例えば直径が30~150μmの範囲にあるCo-45mol%Pt球形粉末を用い、予め準備した金属粉末(必要に応じて、選択した無機物粉末)とを、ミキサーで混合する。ここで使用するCo-Pt球形粉末は、ガスアトマイズ法で作製したものを篩別することで得ることが出来る。また、ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 一方、相(B)が扁平状(片状)の場合、例えば直径が50~300μmの範囲にあるCo-45mol%Pt球形粉末を用意し、高エネルギーボールミルを用いて、Co-Pt粉末を粉砕する。粉砕とともにCo-Pt粉末は扁平状になり、粒径が150μm以下になるまで粉砕する。ここで使用するCo-Pt球形粉末は、ガスアトマイズ法で作製したものを篩別することで得ることが出来る。
 使用する高エネルギーボールミルは、ボールミルや振動ミルに比べて、短時間で原料粉末の粉砕・混合をすることができる。その後、この扁平状Co-Pt粉末と上記のように、予め準備した金属粉末、必要に応じて選択した無機物粉末とを、混合粉末とミキサーで混合する。ミキサーとしては、遊星運動型ミキサーあるいは遊星運動型攪拌混合機であることが好ましい。さらに、混合中の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 また、用意した直径が50~300μmの範囲にあるCo-Pt球形粉末と予め準備した金属粉末(必要に応じて、選択した無機物粉末)とを、高エネルギーボールミルを用いて粉砕・混合することができる。この場合は、Co-Pt粉末は扁平状となり、150μm以下になるまで粉砕・混合する。また、混合中の金属成分の酸化の問題を考慮すると、不活性ガス雰囲気中あるいは真空中で混合することが好ましい。
 このようにして得られた粉末を、真空ホットプレス装置を用いて成型・焼結し、所望の形状へ切削加工することで、本発明の強磁性材スパッタリングターゲットが作製される。なお、上記のCo-Pt球形粉末、あるいは上記の粉砕により形状が扁平状になったCo-Pt粉末は、ターゲットの組織において観察される球形の相(B)に対応するものである。
 また、成型・焼結は、ホットプレスに限らず、プラズマ放電焼結法、熱間静水圧焼結法を使用することもできる。焼結時の保持温度はターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、800~1300°Cの温度範囲にある。また、焼結時の圧力は300~500kg/cmであることが好ましい。
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1、比較例1)
 実施例1では、原料粉末として、平均粒径3μmのCo粉末、平均粒径3μmのPt粉末、平均粒径1μmのSiO粉末、直径が50~100μmの範囲にあるCo-45Pt(mol%)球形粉末を用意した。これらの粉末をターゲットの組成が74Co-19Pt-7SiO(mol%)となるように、Co粉末40.08wt%、Pt粉末13.06wt%、SiO粉末4.96wt%、Co-Pt球形粉末41.91wt%の重量比率で秤量した。
 次に、Co粉末とPt粉末とSiO粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Pt球形粉末をボール容量約7リットルの遊星運動型ミキサーで10分間混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを、平面研削盤を用いて研削加工して直径が180mm、厚さが5mmの円盤状のターゲットを得た。
 漏洩磁束の測定はASTM F2086-01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0度、30度、60度、90度、120度と回転させて測定した漏洩磁束密度を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(PTF(%))として表1に記載した。
 比較例1では、原料粉末として、平均粒径3μmのCo粉、平均粒径3μmのPt粉、平均粒径1μmのSiO粉を用意した。これらの粉末をターゲット組成が74Co-19Pt-7SiO(mol%)となるように、Co粉末51.38wt%、Pt粉末43.67wt%、SiO粉末4.96wt%の重量比率で秤量した。
 そしてこれらの粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。
 次に、この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1100℃、保持時間2時間、加圧力30MPaの条件のもとホットプレスして、焼結体を得た。さらにこれを平面研削盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1のターゲットの平均漏洩磁束密度は41.5%であり、比較例1の39.1%より大きく向上していることが確認された。また、実施例1の相対密度は97.4%となり、97%を超える高密度なターゲットが得られた。
 実施例1のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図1に示す。図1において黒っぽくみえている箇所がとSiO粒子に対応する。この図1の組織画像に示すように、上記実施例1において極めて特徴的なのは、SiO粒子が微細分散したマトリックスの中に、SiO粒子を含まない大きな球形の相が分散していることである。
 この相は、本願発明の相(B)に相当するものであり、Ptを45mol%含有するCo-Pt合金からなる相で、重心から外周までの長さの最小値に対する最大値の比は1.2程度であり、ほぼ球形を呈していた。
 これに対して、図2に示す比較例1によって得られたターゲット研磨面の組織画像には、SiO粒子が分散したマトリックスの中に球形の相は一切観察されなかった。
(実施例2、比較例2、3、4)
 実施例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉末、平均粒径3μmのCr粉、直径が50~100μmの範囲にあるCo-53Pt(mol%)球形粉末を用意した。
 これらの粉末をターゲットの組成が59Co-11Cr-21Pt-5TiO-2SiO-2Cr(mol%)となるように、Co粉末26.53wt%、Cr粉末6.38wt%、TiO粉末4.45wt%、SiO粉末1.34wt%、Cr粉末3.39wt%、Co-Pt球形粉末57.91wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末とTiO粉末とSiO粉末とCr粉末とを、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Pt球形粉末を高エネルギーボールミルに投入して、2時間粉砕・混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを平面研削盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を、表2に示す。
 比較例2では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉末、平均粒径3μmのCr粉、直径が50~100μmの範囲にあるCo-37Pt(mol%)球形粉末を用意した。
 これらの粉末をターゲットの組成が59Co-11Cr-21Pt-5TiO-2SiO-2Cr(mol%)となるように、Co粉末15.27wt%、Cr粉末6.38wt%、TiO粉末4.45wt%、SiO粉末1.34wt%、Cr粉末3.39wt%、Co-Pt球形粉末69.17wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末とTiO粉末とSiO粉末とCr粉末とを、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Pt球形粉末を高エネルギーボールミルに投入して、2時間粉砕・混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを平面研削盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を、表2に示す。
 比較例3では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉末、平均粒径3μmのCr粉末、直径が50~100μmの範囲にあるCo-79Pt(mol%)球形粉末を用意した。
 これらの粉末をターゲットの組成が59Co-11Cr-21Pt-5TiO-2SiO-2Cr(mol%)となるように、Co粉末35.10wt%、Cr粉末6.38wt%、TiO粉末4.45wt%、SiO粉末1.34wt%、Cr粉末3.39wt%、Co-Pt球形粉末49.34wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末とTiO粉末とSiO粉末とCr粉末とを、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末とCo-Pt球形粉末を高エネルギーボールミルに投入して、2時間粉砕・混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを平面研削盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を、表2に示す。
 比較例4では、原料粉末として、平均粒径3μmのCo粉末、平均粒径5μmのCr粉末、平均粒径3μmのPt粉末、平均粒径1μmのTiO粉末、平均粒径1μmのSiO粉末、平均粒径3μmのCr粉末を用意した。
 これらの粉末をターゲットの組成が59Co-11Cr-21Pt-5TiO-2SiO-2Cr(mol%)となるように、Co粉末38.77wt%、Cr粉末6.38wt%、Pt粉末45.67wt%、TiO粉末4.45wt%、SiO粉末1.34wt%、Cr粉末3.39wt%の重量比率でそれぞれ秤量した。
 次に、Co粉末とCr粉末とPt粉末とTiO粉末とSiO粉末とCr粉末とを、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。さらに得られた混合粉末を高エネルギーボールミルに投入して、2時間粉砕・混合した。
 この混合粉をカーボン製の型に充填し、真空雰囲気中、温度1050°C、保持時間2時間、加圧力30MPaの条件のもとホットプレスして焼結体を得た。さらにこれを平面研削盤で直径が180mm、厚さが5mmの円盤状のターゲットへ加工し、平均漏洩磁束密度を測定した。この結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、実施例2のターゲットの平均漏洩磁束密度は52.2%であり、比較例2の46.7%、比較例3の46.0%、比較例4の45.7%より大きく向上していることが確認された。また、実施例2の相対密度は98.5%となり、98%を超える高密度なターゲットが得られた。
 実施例2のターゲット研磨面を、光学顕微鏡で観察したときの組織画像を図3に示す。図3において黒っぽくみえている箇所がTiO粒子とSiO粒子とCr粒子に対応する。この図3の組織画像に示すように、上記実施例2において極めて特徴的なのは、TiO粒子とSiO粒子とCr粒子が微細分散したマトリックスの中に、TiO粒子とSiO粒子とCr粒子をともに含まない大きな扁平状の相が存在することである。この相は、本願発明の相(B)に相当するものであり、Ptを53mol%含有するCo-Pt合金からなる相で、任意の5点の短径と長径の比は1:5~1:10程度であり、扁平状を呈していた。
 これに対して、図4に示す比較例2によって得られたターゲット研磨面には扁平状の相は観察されたが、Ptを37mol%含有するCo-Pt合金からなる相で、平均漏洩磁束密度があまり向上しなかった。
 図5に示す比較例3によって得られたターゲット研磨面には扁平状の相は観察されたが、Ptを79mol%含有するCo-Pt合金からなる相で、平均漏洩磁束密度があまり向上しなかった。
 また、図6に示す比較例4によって得られたターゲットの研磨面の組織画像には、扁平状の相は一切観察されなかった。
 実施例1、2のいずれにおいても、金属素地(A)と該金属素地(A)に包囲された、直径が50~100μm(組織写真確認)の範囲にある相(B)の存在が認められた。そして相(B)はPtを40~76mol%含むCo-Pt合金からなる相であることが確認された。こうした組織構造が漏洩磁束を向上させるために非常に重要な役割を有することが分かる。
 上記実施例は、ターゲットの組成が、74Co-19Pt-7SiO(mol%)の例と、59Co-11Cr-21Pt-5TiO-2SiO-2Cr(mol%)の例を示しているが、これらの組成比を、本願発明の範囲内で変更した場合でも、同様の効果を確認している。
 また、添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Alから選択した1元素以上を含有させることができ、いずれも有効な磁気記録媒体としての特性を維持することができる。すなわち、これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素であり、特に実施例に示さないが、本願実施例と同等の効果を確認している。
 さらに、上記実施例では、Cr、Si、Tiの酸化物を添加した例を示しているが、この他Ta,Zr,Al,Nb,B,Coの酸化物も同等の効果を有する。さらに、これらについては、酸化物を添加した場合を示しているが、これらの窒化物、炭化物、炭窒化物、さらには炭素を添加した場合も、酸化物添加と同等の効果を得ることができることを確認している。
 本発明は、強磁性材スパッタリングターゲットの組織構造を調整し漏洩磁束を飛躍的に向上させることを可能とする。従って本発明のターゲットを使用すれば、マグネトロンスパッタ装置でスパッタリングする際に安定した放電が得られる。またターゲット厚みを厚くすることができるため、ターゲットライフが長くなり、低コストで磁性体薄膜を製造することが可能になる。
 磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。

Claims (7)

  1.  Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金からなる相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。
  2.  Ptが5mol%以上、Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットであって、このターゲットの組織が、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金からなる相(B)を有していることを特徴とする強磁性材スパッタリングターゲット。
  3.  添加元素としてB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Si、Alから選択した1元素以上を、0.5mol%以上10mol%以下含有することを特徴とする請求項1又は2のいずれか一項に記載の強磁性材スパッタリングターゲット。
  4.  金属素地(A)が、炭素、酸化物、窒化物、炭化物、炭窒化物から選択した1成分以上の無機物材料を該金属素地中に含有することを特徴とする請求項1~3のいずれか一項に記載の強磁性材スパッタリングターゲット。
  5.  前記無機物材料がCr,Ta,Si,Ti,Zr,Al,Nb,B,Coから選択した1種以上の酸化物であり、当該無機物材料の体積比率が22%~40%であることを特徴とする請求項4記載の強磁性材スパッタリングターゲット。
  6.  Co-Pt合金相(B)の粒径が10μm以上150μm以下であることを特徴とする請求項1~5のいずれか一項に記載の強磁性材スパッタリングターゲット。
  7.  相対密度が97%以上であることを特徴とする請求項1~6のいずれか一項に記載の強磁性材スパッタリングターゲット。
PCT/JP2011/078152 2010-12-09 2011-12-06 強磁性材スパッタリングターゲット WO2012077665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180042894.5A CN103080368B (zh) 2010-12-09 2011-12-06 强磁性材料溅射靶
US13/877,411 US20130220804A1 (en) 2010-12-09 2011-12-06 Ferromagnetic Material Sputtering Target
JP2012529451A JP5426030B2 (ja) 2010-12-09 2011-12-06 強磁性材スパッタリングターゲット
SG2013020276A SG188601A1 (en) 2010-12-09 2011-12-06 Ferromagnetic material sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274607 2010-12-09
JP2010274607 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077665A1 true WO2012077665A1 (ja) 2012-06-14

Family

ID=46207153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078152 WO2012077665A1 (ja) 2010-12-09 2011-12-06 強磁性材スパッタリングターゲット

Country Status (7)

Country Link
US (1) US20130220804A1 (ja)
JP (1) JP5426030B2 (ja)
CN (1) CN103080368B (ja)
MY (1) MY158512A (ja)
SG (1) SG188601A1 (ja)
TW (1) TWI531669B (ja)
WO (1) WO2012077665A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160260590A1 (en) * 2013-10-07 2016-09-08 Heraeus Deutschland GmbH & Co. KG Metal oxide target and method for producing said metal oxide target
JP2016176087A (ja) * 2015-03-18 2016-10-06 Jx金属株式会社 強磁性材スパッタリングターゲット
JP6037415B2 (ja) * 2013-11-28 2016-12-07 Jx金属株式会社 磁性材スパッタリングターゲット及びその製造方法
WO2020053972A1 (ja) * 2018-09-11 2020-03-19 Jx金属株式会社 スパッタリングターゲット、磁性膜および、磁性膜の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG172790A1 (en) 2009-03-27 2011-08-29 Jx Nippon Mining & Metals Corp Ferromagnetic-material sputtering target of nonmagnetic-material particle dispersion type
MY149437A (en) 2010-01-21 2013-08-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
CN102482765B (zh) 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 粉粒产生少的强磁性材料溅射靶
SG185768A1 (en) 2010-07-20 2013-01-30 Jx Nippon Mining & Metals Corp Sputtering target of ferromagnetic material with low generation of particles
MY165512A (en) 2010-07-29 2018-03-28 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for producing same
CN104081458B (zh) 2012-01-18 2017-05-03 吉坤日矿日石金属株式会社 Co‑Cr‑Pt 系溅射靶及其制造方法
WO2013125469A1 (ja) 2012-02-22 2013-08-29 Jx日鉱日石金属株式会社 磁性材スパッタリングターゲット及びその製造方法
CN104126026B (zh) 2012-02-23 2016-03-23 吉坤日矿日石金属株式会社 含有铬氧化物的强磁性材料溅射靶
SG11201405348QA (en) 2012-03-09 2014-11-27 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording medium, and process for producing same
JP5592022B2 (ja) 2012-06-18 2014-09-17 Jx日鉱日石金属株式会社 磁気記録膜用スパッタリングターゲット
WO2015064761A1 (ja) * 2013-10-29 2015-05-07 田中貴金属工業株式会社 マグネトロンスパッタリング用ターゲット
MY191374A (en) * 2016-12-28 2022-06-21 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and method for manufacturing same
WO2020053973A1 (ja) * 2018-09-11 2020-03-19 Jx金属株式会社 強磁性材スパッタリングターゲット
TWI680198B (zh) * 2018-09-26 2019-12-21 日商Jx金屬股份有限公司 強磁性材料濺射靶及其製造方法與磁記錄膜的製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247638A (ja) * 1992-03-03 1993-09-24 Mitsubishi Materials Corp スパッタリング用ターゲットおよびその製造方法
JP2009001862A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009108335A (ja) * 2007-10-26 2009-05-21 Mitsubishi Materials Corp 比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
WO2010110033A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP2010222639A (ja) * 2009-03-24 2010-10-07 Mitsubishi Materials Corp 低透磁率を有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
JP2010255088A (ja) * 2009-04-01 2010-11-11 Tanaka Holdings Kk マグネトロンスパッタリング用ターゲットおよびその製造方法
JP2010272177A (ja) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲット及びその製造方法
JP4673453B1 (ja) * 2010-01-21 2011-04-20 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP4758522B1 (ja) * 2010-07-20 2011-08-31 Jx日鉱日石金属株式会社 パーティクル発生の少ない強磁性材スパッタリングターゲット
JP2011216135A (ja) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG88758A1 (en) * 1996-11-20 2002-05-21 Toshiba Kk Sputtering target and anti-ferromagnetic material film formed using thereof and magneto-resistance effect element formed by using the same
JP2000282229A (ja) * 1999-03-29 2000-10-10 Hitachi Metals Ltd CoPt系スパッタリングターゲットおよびその製造方法ならびにこれを用いた磁気記録膜およびCoPt系磁気記録媒体
US6797137B2 (en) * 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
US6759005B2 (en) * 2002-07-23 2004-07-06 Heraeus, Inc. Fabrication of B/C/N/O/Si doped sputtering targets
WO2005093124A1 (ja) * 2004-03-26 2005-10-06 Nippon Mining & Metals Co., Ltd. Co-Cr-Pt-B系合金スパッタリングターゲット
WO2007116834A1 (ja) * 2006-03-31 2007-10-18 Mitsubishi Materials Corporation パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、および磁気記録膜形成用Co基焼結合金スパッタリングターゲット
JP5204460B2 (ja) * 2007-10-24 2013-06-05 三井金属鉱業株式会社 磁気記録膜用スパッタリングターゲットおよびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247638A (ja) * 1992-03-03 1993-09-24 Mitsubishi Materials Corp スパッタリング用ターゲットおよびその製造方法
JP2009001862A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009108335A (ja) * 2007-10-26 2009-05-21 Mitsubishi Materials Corp 比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
JP2010222639A (ja) * 2009-03-24 2010-10-07 Mitsubishi Materials Corp 低透磁率を有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
WO2010110033A1 (ja) * 2009-03-27 2010-09-30 日鉱金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP2010255088A (ja) * 2009-04-01 2010-11-11 Tanaka Holdings Kk マグネトロンスパッタリング用ターゲットおよびその製造方法
JP2010272177A (ja) * 2009-05-22 2010-12-02 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲット及びその製造方法
JP4673453B1 (ja) * 2010-01-21 2011-04-20 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP2011216135A (ja) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP4758522B1 (ja) * 2010-07-20 2011-08-31 Jx日鉱日石金属株式会社 パーティクル発生の少ない強磁性材スパッタリングターゲット

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160260590A1 (en) * 2013-10-07 2016-09-08 Heraeus Deutschland GmbH & Co. KG Metal oxide target and method for producing said metal oxide target
US10475630B2 (en) * 2013-10-07 2019-11-12 Materion Advanced Materials Germany Gmbh Metal oxide target and method for producing said metal oxide target
JP6037415B2 (ja) * 2013-11-28 2016-12-07 Jx金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JPWO2015080009A1 (ja) * 2013-11-28 2017-03-16 Jx金属株式会社 磁性材スパッタリングターゲット及びその製造方法
JP2016176087A (ja) * 2015-03-18 2016-10-06 Jx金属株式会社 強磁性材スパッタリングターゲット
WO2020053972A1 (ja) * 2018-09-11 2020-03-19 Jx金属株式会社 スパッタリングターゲット、磁性膜および、磁性膜の製造方法
CN111183243A (zh) * 2018-09-11 2020-05-19 Jx金属株式会社 溅射靶、磁性膜和磁性膜的制造方法
US11821076B2 (en) 2018-09-11 2023-11-21 Jx Metals Corporation Sputtering target, magnetic film and method for producing magnetic film

Also Published As

Publication number Publication date
CN103080368A (zh) 2013-05-01
TW201229280A (en) 2012-07-16
US20130220804A1 (en) 2013-08-29
TWI531669B (zh) 2016-05-01
SG188601A1 (en) 2013-04-30
CN103080368B (zh) 2014-08-27
JP5426030B2 (ja) 2014-02-26
JPWO2012077665A1 (ja) 2014-05-19
MY158512A (en) 2016-10-14

Similar Documents

Publication Publication Date Title
JP5426030B2 (ja) 強磁性材スパッタリングターゲット
JP5394576B2 (ja) 強磁性材スパッタリングターゲット
WO2011089760A1 (ja) 強磁性材スパッタリングターゲット
JP5394575B2 (ja) 強磁性材スパッタリングターゲット
JP5394577B2 (ja) 強磁性材スパッタリングターゲット
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
WO2012011204A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2010110033A1 (ja) 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP5763178B2 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
WO2012011294A1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4970633B1 (ja) 強磁性材スパッタリングターゲット及びその製造方法
JP4673453B1 (ja) 強磁性材スパッタリングターゲット
WO2013125469A1 (ja) 磁性材スパッタリングターゲット及びその製造方法
JP4758522B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP4819199B1 (ja) パーティクル発生の少ない強磁性材スパッタリングターゲット
JP6475526B2 (ja) 強磁性材スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042894.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012529451

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13877411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846543

Country of ref document: EP

Kind code of ref document: A1