WO2020053972A1 - スパッタリングターゲット、磁性膜および、磁性膜の製造方法 - Google Patents

スパッタリングターゲット、磁性膜および、磁性膜の製造方法 Download PDF

Info

Publication number
WO2020053972A1
WO2020053972A1 PCT/JP2018/033697 JP2018033697W WO2020053972A1 WO 2020053972 A1 WO2020053972 A1 WO 2020053972A1 JP 2018033697 W JP2018033697 W JP 2018033697W WO 2020053972 A1 WO2020053972 A1 WO 2020053972A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
powder
oxide
sputtering target
magnetic film
Prior art date
Application number
PCT/JP2018/033697
Other languages
English (en)
French (fr)
Inventor
愛美 増田
清水 正義
彰 下宿
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to US16/470,588 priority Critical patent/US11821076B2/en
Priority to PCT/JP2018/033697 priority patent/WO2020053972A1/ja
Priority to CN201880004047.1A priority patent/CN111183243B/zh
Publication of WO2020053972A1 publication Critical patent/WO2020053972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material

Definitions

  • the present invention has a structure in which oxide particles are dispersed in a metal phase mainly composed of Co, and has a sputtering target, a magnetic film, and a magnetic film used for forming a magnetic recording layer and other magnetic films constituting a magnetic recording medium.
  • the present invention proposes a technique that can contribute to the improvement of the magnetic properties of a magnetic film.
  • a perpendicular magnetic recording method for recording magnetism in a direction perpendicular to a recording surface has been put to practical use, and has been widely adopted because high-density recording is possible as compared with the conventional horizontal magnetic recording method. I have.
  • Perpendicular magnetic recording type magnetic recording media are generally formed by sequentially laminating a soft magnetic layer, a non-magnetic intermediate layer, a magnetic recording layer, and a protective layer on a substrate such as aluminum or glass.
  • a magnetic film having a granular structure in which an oxide such as SiO 2 is added to a Co—Cr—Pt-based alloy containing Co as a main component is used.
  • the oxide as a nonmagnetic material precipitates at the grain boundaries of magnetic particles such as a Co alloy orientated in the vertical direction, and the magnetic interaction between the magnetic particles is reduced.
  • noise characteristics are improved, and high recording density is realized.
  • the magnetic recording layer of such a magnetic recording medium is usually sputtered on a predetermined layer by a magnetron sputtering apparatus using a sputtering target in which predetermined oxide particles are dispersed in a metal phase containing Co as a main component. It is formed by this.
  • a magnetron sputtering apparatus using a sputtering target in which predetermined oxide particles are dispersed in a metal phase containing Co as a main component. It is formed by this.
  • Patent Documents 1 to 7 there are techniques described in Patent Documents 1 to 7, and the like.
  • a metal such as SiO 2 or TiO 2 is used as an oxide for magnetically separating magnetic particles oriented in a perpendicular direction from each other.
  • An oxide is used.
  • SiO 2 or TiO 2 it has been found that the addition of such an oxide of Si or Ti is insufficient for the separation between the magnetic particles, thereby causing a problem from the viewpoint of reducing noise caused by the recording layer.
  • the present invention is to solve such a problem of the prior art, and an object of the present invention is to form a magnetic film having both good magnetic separation between magnetic particles and high coercive force.
  • An object of the present invention is to provide a sputtering target, a magnetic film, and a method for manufacturing a magnetic film.
  • the inventor When manufacturing the sputtering target, the inventor adds a ZnO powder in addition to a metal powder such as Co and an oxide powder of Si and / or Ti, and for example, uses a hot press method to form a vacuum atmosphere or By performing powder sintering in a temperature range of 700 to 1500 ° C. in an inert gas atmosphere, a composite oxide of Zn—Ti—O and / or Zn—Si—O is formed. They have been found to provide good magnetic separation and high coercivity.
  • the sputtering target of the present invention has a 1 at. % Or more of Zn, part or all of which forms a composite oxide of Zn-Ti-O and / or Zn-Si-O, and has a Pt of 45 at. % Or less, and the balance contains Co and unavoidable impurities.
  • the oxide preferably contains Zn 2 TiO 4 and / or Zn 2 SiO 4 . Further, the sputtering target of the present invention contains Zn at 1 at. % To 15 at. %.
  • the sputtering target of the present invention can further form an oxide of at least one element selected from the group consisting of Co, Cr, Si, B, W, Nb, Mn, Mo, and Ti. . Further, the sputtering target of the present invention further includes Au, Ag, B, Cu, Cr, Ga, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Si, Sn, Ti, Ta, W, V and at least one selected from the group consisting of Zn at 60 at. % Or less.
  • the magnetic film of the present invention is 1 at. % Or more of Zn and Ti and / or Zn and Si, part or all of which is present as an oxide and has a Pt of 45 at. % Or less, and the balance contains Co and inevitable impurities.
  • Zn is added at 1 at. % And 15 at. % Is preferable.
  • the magnetic film of the present invention may further form an oxide of at least one element selected from the group consisting of Co, Cr, Si, B, W, Nb, Mn, Mo and Ti.
  • the magnetic film of the present invention further comprises Au, Ag, B, Cu, Cr, Ga, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Si, Sn, Ti, Ta, W, V and at least one selected from the group consisting of Zn at 60 at. % Or less.
  • the method of manufacturing a magnetic film according to the present invention forms a magnetic film by sputtering using any of the above-described sputtering targets.
  • the present invention by containing a composite oxide of Zn-Ti-O and / or Zn-Si-O, it is possible to achieve both good magnetic separation between magnetic particles and high coercive force. . As a result, the magnetic characteristics of the magnetic film can be improved.
  • . 6 is a graph showing changes in magnetization Ms, coercive force Hc, magnetization curve slope ⁇ , and magnetic anisotropy Ku with respect to the film thickness of the magnetic films formed by the sputtering targets of Example 1 of Test Example 1 and Comparative Example 1, respectively.
  • . 7 is a graph showing changes in magnetization Ms, coercive force Hc, magnetization curve slope ⁇ , and magnetic anisotropy Ku with respect to the film thickness of the magnetic films formed by the sputtering targets of Example 2 and Comparative Example 2 of Test Example 1, respectively.
  • FIG. 9 is a graph showing changes in magnetization Ms, coercive force Hc, magnetization curve slope ⁇ , and magnetic anisotropy Ku with respect to the film thickness of the magnetic films formed by the sputtering targets of Example 3 and Comparative Example 3 of Test Example 1, respectively.
  • Changes in magnetization Ms, coercive force Hc, magnetization curve slope ⁇ , and magnetic anisotropy Ku with respect to the film thickness of the magnetic films formed by the sputtering targets of Examples 2, 4, 5 and Comparative Example 2 of Test Example 1 are respectively shown. It is a graph shown.
  • 7A and 7B are a graph showing a result of EDX mapping of a magnetic film formed by the sputtering target of Comparative Example 1 of Test Example 1, and a TEM image.
  • 9A and 9B are a graph showing a result of EDX mapping of a magnetic film formed by the sputtering target of Example 1 of Test Example 1, and a TEM image.
  • 7A and 7B are a graph showing a result of EDX mapping of a magnetic film formed by the sputtering target of Example 2 of Test Example 1 and a TEM image.
  • 9A and 9B are a graph showing a result of EDX mapping of a magnetic film formed by the sputtering target of Example 3 of Test Example 1, and a TEM image.
  • 11 is a graph showing a change in magnetization Ms with respect to a Zn amount in Test Example 2.
  • a metal phase capable of forming magnetic particles by a magnetic film such as a recording magnetic layer of a perpendicular magnetic recording system has a Pt of 45 at. % Or less, and a sputtering target of a sintered body made of a metal or an alloy containing Co in the balance, and 1 at. % Or more of Zn, part or all of which is contained as an oxide in the oxide phase, and part or all of which is a composite oxide of Zn-Ti-O and / or Zn-Si-O.
  • the metal phase is mainly made of Co, and contains Pt as necessary. More specifically, the metal phase is a metal consisting only of Co, or an alloy containing Pt and the balance being Co. When Pt is contained, the content of Pt is 0.1 at. % And 45 at. % Or less. Further, there are cases where impurities that can be unavoidably mixed (so-called unavoidable impurities) are included.
  • the metal phase further includes Au, Ag, B, Cu, Cr, Ga, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Si, Sn, Ti, Ta, W, V And at least one member selected from the group consisting of Zn at 60 at. %, Typically 0.5 at. % To 60 at. %.
  • these elements are mainly contained in the metal phase, but may be partially contained as oxides by being oxidized by sintering at the time of production described later.
  • a sputtering target for forming a magnetic film such as a magnetic recording layer of a perpendicular magnetic recording system includes an oxide phase as a nonmagnetic phase.
  • an oxide containing Zn is contained as an oxide contained in the oxide phase, and at least a part of the oxide containing Zn contains Zn-Ti-O and / or Zn-Si-O Are formed.
  • Such an oxide forms a grain boundary of an oxide phase in the magnetic film so as to surround the magnetic particles. Thereby, the magnetic interaction between the magnetic particles is reduced, and the noise characteristics are improved.
  • the presence of the composite oxide of Zn-Ti-O or Zn-Si-O makes it possible to realize good magnetic separation between the magnetic particles.
  • Zn is 1 at. % Or more, and a part or the whole thereof is included in the oxide. This means that Zn is 1 at. %, Zn—Ti—O and / or Zn—Si—O cannot be formed in a sufficient amount to separate the magnetic particles. On the other hand, if the content of Zn is too large, Zn may be localized in the magnetic grains. Therefore, the content of Zn is 20 at. % Is preferable. In particular, the content of Zn is 1 at. % And 15 at. % Is more preferable. Note that Zn is 1 at. % To 15 at. %.
  • Zn-TiO and / or a composite oxide of Zn-SiO is specifically, Zn-TiO is Zn 2 TiO 4, also Zn-SiO is Zn 2 SiO 4.
  • Zn 2 TiO 4 and Zn 2 SiO 4 are present, a magnetic film having excellent magnetic properties can be formed. This is presumably because the melting point is lower than that of TiO 2 or SiO 2 , so that the oxide is easily rearranged on the substrate during sputtering.
  • XRD X-ray diffraction
  • oxides of at least one element selected from the group consisting of Co, Cr, Si, B, W, Nb, Mn, Mo and Ti can be included.
  • an oxide of Co, an oxide of Cr, an oxide of Si, an oxide of B, an oxide of W It contains at least one of an oxide of Nb, an oxide of Mn, an oxide of Mo, and an oxide of Ti.
  • Such an oxide such as Si also has an oxide phase surrounding the magnetic particles. Are formed, and the separation between magnetic particles is further improved.
  • the oxides of Cr, Si, B, W, Nb, Mn, Mo and Ti have an atomic ratio of 0 to 40 at. %, The crystal orientation and the magnetism of the metal Co can be stably maintained. Especially 0.5 at. % To 20 at. %, DC sputtering can be performed stably.
  • a predetermined magnetic film can be formed by forming a film on a substrate by a magnetron sputtering apparatus or the like using the above-described sputtering target.
  • a magnetic film contains Zn and Ti and / or Zn and Si, and has a Pt of 45 at. % Or less, and the balance contains Co and inevitable impurities.
  • some or all of Zn, Ti, and Si exist as oxides. That is, the magnetic film contains at least one oxide of Zn, Ti, and O and Zn, Si, and O.
  • the content of Zn in the magnetic film is 1 at. % Or more, preferably 1 at. % And 15 at. % Or less.
  • the magnetic film may further include an oxide of at least one element selected from the group consisting of Co, Cr, Si, B, W, Nb, Mn, Mo, and Ti.
  • the magnetic film further includes Au, Ag, B, Cu, Cr, Ga, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Si, Sn, Ti, Ta, W, V And at least one selected from the group consisting of Zn at 60 at. %, Typically 0.5 at. % To 60 at. %.
  • the above-mentioned sputtering target can be manufactured using a powder sintering method, and specific examples thereof are as follows.
  • the metal powder at least a Co powder, and if necessary, a Pt powder and / or a Cr powder, and in some cases, a metal powder such as an Au powder, an Ag powder, a B powder, and a Cu powder are prepared.
  • the metal powder may be not only a single element but also a powder of an alloy. When the metal powder has a particle size in the range of 1 ⁇ m to 10 ⁇ m, uniform mixing can be performed and segregation and coarse crystallization can be prevented. It is preferred in that respect.
  • the oxide particles may not be uniformly dispersed. If the particle size is smaller than 1 ⁇ m, the sputtering target may deviate from a desired composition due to the effect of oxidation of the metal powder. could be.
  • the oxide powder a ZnO powder, a SiO 2 powder and / or a TiO 2 powder, and if necessary, Co 3 O 4 , B 2 O 3 and the like are prepared.
  • the oxide powder preferably has a particle size in the range of 1 ⁇ m to 30 ⁇ m. Thereby, the oxide particles can be more uniformly dispersed in the metal phase when mixed with the metal powder and sintered under pressure.
  • the particle size of the oxide powder is larger than 30 ⁇ m, coarse oxide particles may be generated after pressure sintering, while when smaller than 1 ⁇ m, aggregation of the oxide powders may occur. .
  • the raw material powder composed of the metal powder and the oxide powder is weighed so as to have a desired composition, mixed using a known method such as a ball mill, and ground. At this time, it is desirable to fill the inside of the container used for mixing and pulverization with an inert gas to suppress oxidation of the raw material powder as much as possible. Thus, a mixed powder in which the predetermined metal powder and the oxide powder are uniformly mixed can be obtained.
  • the mixed powder thus obtained is pressed and sintered under a vacuum atmosphere or an inert gas atmosphere, and molded into a predetermined shape such as a disk shape.
  • various pressure sintering methods such as a hot press sintering method, a hot isostatic pressing method, and a plasma discharge sintering method can be used.
  • the hot isostatic sintering method is effective from the viewpoint of improving the density of the sintered body.
  • the holding temperature at the time of sintering is in a temperature range of 700 to 1500 ° C., and particularly preferably 800 to 1400 ° C.
  • the time for maintaining the temperature in this range is preferably 1 hour or more.
  • the pressure during sintering is preferably 10 MPa to 40 MPa, more preferably 25 MPa to 35 MPa. Thereby, the oxide particles can be more uniformly dispersed in the metal phase.
  • a sputtering target can be manufactured by subjecting the sintered body obtained by the above pressure sintering to cutting or other machining using a lathe or the like to obtain a desired shape.
  • the sputtering target manufactured as described above can be used for manufacturing the above-described magnetic film. Specifically, by using such a sputtering target and generally performing sputtering by a magnetron sputtering apparatus, a film can be formed on a predetermined substrate or another film, and a magnetic film can be formed thereon. .
  • the sputtering target of Example 2 was the same as the sputtering target of Example 1 except that the composition ratio was 63: 21: 7: 9 using Co powder, Pt powder, TiO 2 powder, and ZnO powder as the raw material powder. It was produced in the same manner as described above.
  • the sputtering target of Example 1 was the same as the sputtering target of Example 1, except that Co powder, Pt powder, SiO 2 powder, and ZnO powder were used as raw material powders and the composition ratio was 64: 22: 5: 9. It was produced in the same manner as described above.
  • the sputtering target of Example 4 used Co powder, Pt powder, TiO 2 powder, ZnO powder, and Co 3 O 4 powder as raw material powders, except that the composition ratio was 65: 22: 5: 6: 2. Thus, a sputtering target was produced in the same manner as in Example 1.
  • the sputtering target of Example 5 used Co powder, Pt powder, TiO 2 powder, ZnO powder and B 2 O 3 powder as raw material powders, except that the composition ratio was 65: 22: 5: 6: 2. Thus, a sputtering target was produced in the same manner as in Example 1.
  • the sputtering target of Comparative Example 1 uses the Co powder, Pt powder, TiO 2 powder, and SiO 2 powder as raw material powders, except that the composition ratio was 66: 22: 7: 5. It was produced in the same manner as the target.
  • the sputtering target of Comparative Example 2 was produced in the same manner as the sputtering target of Example 1 except that the composition ratio was 64:22:14 using Co powder, Pt powder, and TiO 2 powder as the raw material powder. .
  • the sputtering target of Comparative Example 3 was manufactured in the same manner as the sputtering target of Example 1 except that the composition ratio was 67:23:10, using Co powder, Pt powder, and SiO 2 powder as raw material powders. .
  • each of the sputtering targets of Examples 1 to 5 and Comparative Examples 1 to 3 was set in a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and Ta (2.8 nm), Ni— W (5 nm) and Ru (16 nm) were formed in this order by sputtering at 300 W in an atmosphere of Ar 5.0 Pa to form magnetic films having thicknesses of 7 nm, 11 nm, 14 nm, and 18 nm.
  • the coercive force Hc, the magnetic anisotropy Ku, the magnetization Ms, and the slope ⁇ of the magnetization curve were measured for the magnetic films having the respective film thicknesses, and the results shown in the graphs in FIGS. 1 to 4 were obtained.
  • the coercive force Hc, the magnetization Ms, and the inclination ⁇ of the magnetization curve are measured by a sample vibration magnetometer (VSM) manufactured by Tamagawa Seisakusho, and the magnetic anisotropy Ku is measured by a magnetic torque meter (TRQ) manufactured by Tamagawa Seisakusho. did.
  • VSM sample vibration magnetometer
  • TRQ magnetic torque meter
  • FIGS. 5 to 8 are graphs in which the vertical axis represents relative intensity and the horizontal axis represents distance (nm).
  • FIG. 5 shows Comparative Example 1
  • FIG. 6 shows Example 1
  • FIG. 7 shows Example 2
  • FIG. 8 corresponds to each result of Example 3.
  • Test Example 2 The amount of ZnO was changed between a sputtering target produced using Co powder, Pt powder, TiO 2 powder and ZnO powder, and a sputtering target produced using Co powder, Pt powder, SiO 2 powder and ZnO powder. Prototypes were manufactured. The manufacturing conditions are substantially the same as those described in Test Example 1 above. Using each of these prototypes, a magnetic film was formed in the same manner as in Test Example 1, and the magnetization Ms of each magnetic film was measured. FIG. 9 shows the result.
  • the magnetization Ms rapidly increased with a relatively small amount of Zn, and when the Zn amount was 15 at. %, It can be seen that it slightly decreases. Therefore, from the viewpoint of increasing the magnetization Ms, the Zn amount is 1 to 15 at. % Is preferable.
  • compositions of the sputtering targets of Examples 1 to 5 and Comparative Examples 1 to 3 and the respective sputtering targets shown in FIG. 9 are shown in Table 1 for reference. Since the sputtering targets of Examples 6 to 10 were also prepared, Table 1 also shows the compositions of the sputtering targets of Examples 6 to 10 for reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

この発明のスパッタリングターゲットは、原子比換算で1at.%以上のZnを含有し、その一部または全部がZn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物を形成しており、Ptが45at.%以下であり、残部にCo及び不可避的不純物を含むものである。

Description

スパッタリングターゲット、磁性膜および、磁性膜の製造方法
 この発明は、主としてCoからなる金属相中に酸化物粒子が分散した組織構造を有し、磁気記録媒体を構成する磁気記録層その他の磁性膜の形成に用いるスパッタリングターゲット、磁性膜および、磁性膜の製造方法に関するものであり、特には、磁性膜の磁気特性の向上に寄与することのできる技術を提案するものである。
 たとえばハードディスク装置では、記録面に対して垂直方向に磁気を記録する垂直磁気記録方式が実用化され、それまでの水平磁気記録方式に比べて高密度の記録が可能であることから広く採用されている。
 垂直磁気記録方式の磁気記録媒体は、概して、アルミニウムやガラス等の基板上に軟磁性層、非磁性中間層、磁気記録層および保護層を順次に積層して構成されるものであり、このうち磁気記録層に、Coを主成分とするCo‐Cr‐Pt系合金等にSiO2等の酸化物が添加されたグラニュラー構造の磁性膜が用いられる。これにより、当該磁気記録層中で、非磁性材料となる上記の酸化物が、垂直方向に配向するCo合金等の磁性粒子の粒界へ析出して、磁性粒子間の磁気的な相互作用が低減され、それによるノイズ特性の向上および、高い記録密度を実現している。
 このような磁気記録媒体の磁気記録層は通常、Coを主成分とする金属相に所定の酸化物粒子を分散させてなるスパッタリングターゲットを用いて、マグネトロンスパッタリング装置で、所定の層上にスパッタリングすることにより形成される。
 なお、この種のスパッタリングに関する技術として従来は、特許文献1~7に記載されたもの等がある。
特開2011-208169号公報 特開2011-174174号公報 特開2011-175725号公報 特開2012-117147号公報 特許第4885333号 国際公開第2012/086388号 国際公開第2015/064761号
 ところで、上述したような垂直磁気記録方式の磁気記録層の形成に用いるスパッタリングターゲットでは一般に、垂直方向に配向する磁性粒子の相互を磁気的に分離させる酸化物として、SiO2やTiO2等の金属酸化物が用いられている。
 しかしながら、このようなSiやTiの酸化物を添加しただけでは、磁性粒子間の分離が不十分であり、それにより、記録層起因のノイズの低減の観点から問題があることが解かった。
 一方、分離を良くするために添加酸化物の量を増やそうとすれば、磁性粒子が小さくなったり、磁性粒子内に酸化物が分布したりすることになり、その結果として、高い保磁力を維持することができなくなる。
 この発明は、従来技術が抱えるこのような問題を解決するものであり、その目的は、磁性粒子間の良好な磁気的分離性および、高い保磁力を両立させた磁性膜を形成することのできるスパッタリングターゲット、磁性膜および、磁性膜の製造方法を提供することにある。
 発明者は、スパッタリングターゲットを製造するに当り、Co等の金属粉末ならびに、Si及び/又はTiの酸化物粉末の他、さらにZnO粉末を添加し、たとえば、ホットプレス法を用いて、真空雰囲気または不活性ガス雰囲気の下、700~1500℃の温度範囲で粉末焼結を行うことにより、Zn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物が形成され、この複合酸化物が、良好な磁気的分離性および高い保磁力をもたらすことを見出した。
 これは、Zn‐Ti‐OやZn‐Si‐Oの複合酸化物が、磁性粒子の周囲にほぼ均一に分布し、それによって磁性粒子のサイズと磁気異方性を下げることなく粒間の強磁性交換結合を小さくできると考えられるが、この発明は、このような理論に限定されるものでない。
 かかる知見の下、この発明のスパッタリングターゲットは、原子比換算で1at.%以上のZnを含有し、その一部または全部がZn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物を形成しており、Ptが45at.%以下であり、残部にCo及び不可避的不純物を含有するものからなるものである。
 この発明のスパッタリングターゲットでは、酸化物が、Zn2TiO4及び/又はZn2SiO4を含むことが好ましい。
 また、この発明のスパッタリングターゲットは、Znを1at.%~15at.%で含有することが好ましい。
 この発明のスパッタリングターゲットはさらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を形成しているものとすることができる。
 また、この発明のスパッタリングターゲットはさらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種を、それぞれ60at.%以下で含有するものとすることができる。
 この発明の磁性膜は、1at.%以上のZnとTi及び/又はZnとSiを含有し、その一部または全部が酸化物として存在し、Ptが45at.%以下であり、残部にCo及び不可避的不純物を含むものである。
 この発明の磁性膜では、Znを、1at.%以上かつ15at.%以下で含有することが好ましい。
 この発明の磁性膜はさらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を形成しているものとすることができる。
 また、この発明の磁性膜はさらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種を、それぞれ60at.%以下で含有するものとすることができる。
 この発明の磁性膜の製造方法は、先述したいずれかのスパッタリングターゲットを用いたスパッタリングにより、磁性膜を形成するものである。
 この発明によれば、Zn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物を含有することにより、磁性粒子間の良好な磁気的分離性および、高い保磁力を両立させることができる。その結果として、磁性膜の磁気特性を向上させることができる。
試験例1の実施例1及び比較例1のスパッタリングターゲットで形成した磁性膜の、膜厚に対する磁化Ms、保磁力Hc、磁化曲線の傾きα、磁気異方性Kuの変化それぞれを示すグラフである。 試験例1の実施例2及び比較例2のスパッタリングターゲットで形成した磁性膜の、膜厚に対する磁化Ms、保磁力Hc、磁化曲線の傾きα、磁気異方性Kuの変化それぞれを示すグラフである。 試験例1の実施例3及び比較例3のスパッタリングターゲットで形成した磁性膜の、膜厚に対する磁化Ms、保磁力Hc、磁化曲線の傾きα、磁気異方性Kuの変化をそれぞれ示すグラフである。 試験例1の実施例2、4、5及び比較例2のスパッタリングターゲットで形成した磁性膜の、膜厚に対する磁化Ms、保磁力Hc、磁化曲線の傾きα、磁気異方性Kuの変化をそれぞれ示すグラフである。 試験例1の比較例1のスパッタリングターゲットで形成した磁性膜のEDXマッピング結果を示すグラフ及び、TEM像である。 試験例1の実施例1のスパッタリングターゲットで形成した磁性膜のEDXマッピング結果を示すグラフ及び、TEM像である。 試験例1の実施例2のスパッタリングターゲットで形成した磁性膜のEDXマッピング結果を示すグラフ及び、TEM像である。 試験例1の実施例3のスパッタリングターゲットで形成した磁性膜のEDXマッピング結果を示すグラフ及び、TEM像である。 試験例2のZn量に対する磁化Msの変化を示すグラフである。
 以下に、この発明の実施の形態について詳細に説明する。
 この発明の一の実施形態のスパッタリングターゲットは、たとえば垂直磁気記録方式の記録磁性層等の磁性膜で磁性粒子を構成し得る金属相が、Ptが45at.%以下であって、残部にCoを含む金属又は合金からなる焼結体のスパッタリングターゲットであり、1at.%以上のZnを含んでおり、その一部または全部が酸化物相に酸化物として含有され、その一部または全部がZn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物となっている酸化物粒子が分散した組織構造を有する。このような複合酸化物が存在することにより、磁性膜で、当該複合酸化物が、垂直方向に配向する磁性粒子の周囲に均一に分布して、磁性粒子間を磁気的に有効に分離させるべく機能する。
(組成)
 金属相は主としてCoからなり、必要に応じてPtを含む。より具体的には、金属相は、Coのみからなる金属、あるいは、Ptを含有し、残部がCoからなる合金である。Ptを含有する場合、Ptの含有量は、0.1at.%以上かつ45at.%以下とすることができる。さらに、不可避的に混入し得る不純物(いわゆる不可避的不純物)を含むことがある。
 また、金属相はさらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種をそれぞれ、たとえば60at.%以下、典型的には0.5at.%~60at.%で含有することができる。このような元素を含むことにより、磁性膜の磁気特性を更なる向上を期待することができる。なお、これらの元素は、主として金属相中に含まれるが、後述する製造時の焼結で酸化されることによって、一部が酸化物として含まれることもある。
 上述した金属相は磁性相を構成するが、垂直磁気記録方式の磁気記録層等の磁性膜を形成するためのスパッタリングターゲットでは、非磁性相としての酸化物相が含まれる。
 ここで、この発明では、かかる酸化物相に含まれる酸化物としてZnを含む酸化物を含有し、このZnを含む酸化物の少なくとも一部がZn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物を形成している。このような酸化物は、磁性膜で、磁性粒子を取り囲むように酸化物相の粒界を形成する。それにより、磁性粒子間の磁気的な相互作用が低減されて、ノイズ特性の向上をもたらす。特にここでは、Zn‐Ti‐OやZn‐Si‐Oの複合酸化物が存在することにより、磁性粒子間の良好な磁気的分離性を実現することができる。
 Znは1at.%以上含まれており、その一部または全部が酸化物に含まれるものとする。これはすなわち、Znが1at.%未満である場合、磁性粒子を分離するのに十分な量のZn-Ti-O及び/又はZn-Si-Oが形成できないからである。一方、Znの含有量が多すぎると、Znは磁性粒内に局在するおそれがある。そのため、Znの含有量は、20at.%以下とすることが好ましい。特に、Znの含有量は、1at.%以上かつ15at.%以下とすることがより一層好ましい。なおZnは、1at.%~15at.%で含まれることが好適である。
 Zn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物は具体的には、Zn‐Ti‐OがZn2TiO4であり、またZn‐Si‐OがZn2SiO4である。Zn2TiO4およびZn2SiO4のうちの少なくとも一方が存在している場合、磁気特性に優れた磁性膜を形成することができる。これは、TiO2やSiO2に比べ融点が下がることにより、スパッタリング時に酸化物が基板上で再配列しやすいためと考えられる。
 Zn2TiO4ないしZn2SiO4が存在しているか否かは、X線回折法(XRD)による回折強度のピークを観察することにより確認することができる。
 またさらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を含むことができる。一般に垂直磁気記録方式の磁気記録層には、上述したZnの酸化物および複合酸化物の他、Coの酸化物、Crの酸化物、Siの酸化物、Bの酸化物、Wの酸化物、Nbの酸化物、Mnの酸化物,Moの酸化物およびTiの酸化物のうちの少なくとも一種が含まれており、このようなSi等の酸化物もまた、磁性粒子を取り囲むように酸化物相の粒界を形成し、磁性粒子間の分離をさらに良好なものとする。Cr、Si、B、W、Nb、Mn、Mo及びTiの酸化物はそれぞれの原子比がスパッタリングターゲット全体に対して0~40at.%の間で含まれると、金属Coの結晶配向及び磁性を安定に維持することができる。特に0.5at.%~20at.%とすることで安定してDCスパッタすることができる。
(磁性膜)
 上述したようなスパッタリングターゲットを用いて、マグネトロンスパッタリング装置等で基板上に成膜することにより、所定の磁性膜を形成することができる。
 このような磁性膜は、ZnとTi及び/又はZnとSiを含有し、Ptが45at.%以下であり、残部にCo及び不可避的不純物が含まれる。このうち、一部または全部のZn、Ti、Siは酸化物として存在する。つまり、磁性膜には、ZnとTiとO及びZnとSiとOのうちの少なくとも一種の酸化物が含まれる。磁性膜中のZnの含有量は1at.%以上、好ましくは1at.%以上かつ15at.%以下である。
 なお、磁性膜中に、上記のZn、Ti、Siが複合酸化物として含まれているか否かについては、わずか10nm程度の膜の中で、幅1nm程度の磁性粒子間の隙間(粒界)に分布しているため一般的なX線を用いた構造解析ではどのように複合しているか確認することが困難である。
 そしてまた、磁性膜はさらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を含むことができる。
 なお、磁性膜はさらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種をそれぞれ60at.%以下、典型的には0.5at.%~60at.%で含有することがある。
(スパッタリングターゲットの製造方法)
 先述したスパッタリングターゲットは、粉末焼結法を用いて製造することができ、その具体例としては以下のとおりである。
 はじめに、金属粉末として、少なくともCo粉末、さらに、必要に応じてPt粉末及び/又はCr粉末、場合によってはAu粉末、Ag粉末、B粉末、Cu粉末等の金属粉を用意する。金属粉末は、単元素のみならず合金の粉末であってもよく、その粒径が1μm~10μmの範囲内のものであることが、均一な混合を可能にして偏析と粗大結晶化を防止できる点で好ましい。金属粉末の粒径が10μmより大きい場合は、酸化物粒子が均一に分散しないことがあり、また、1μmより小さい場合は、金属粉末の酸化の影響でスパッタリングターゲットが所望の組成から外れたものになるおそれがある。
 また、酸化物粉末として、ZnO粉末とSiO2粉末及び/又はTiO2粉末、さらに必要に応じてCo34、B23等を用意する。酸化物粉末は粒径が1μm~30μmの範囲のものとすることが好ましい。それにより、上記の金属粉末と混合して加圧焼結した際に、金属相中に酸化物粒子をより均一に分散させることができる。酸化物粉末の粒径が30μmより大きい場合は、加圧焼結後に粗大な酸化物粒子が生じることがあり、この一方で、1μmより小さい場合は、酸化物粉末同士の凝集が生じることがある。
 次いで、上記の金属粉末及び酸化物粉末からなる原料粉末を、所望の組成になるように秤量し、ボールミル等の公知の手法を用いて混合するとともに粉砕する。このとき、混合・粉砕に用いる容器の内部を不活性ガスで充満させて、原料粉末の酸化をできる限り抑制することが望ましい。これにより、所定の金属粉末と酸化物粉末とが均一に混合した混合粉末を得ることができる。
 その後、このようにして得られた混合粉末を、真空雰囲気又は不活性ガス雰囲気下で加圧して焼結させ、円盤状等の所定の形状に成型する。ここでは、ホットプレス焼結法、熱間静水圧焼結法、プラズマ放電焼結法等の様々な加圧焼結方法を使用することができる。なかでも、熱間静水圧焼結法は焼結体の密度向上の観点から有効である。
 焼結時の保持温度は、700~1500℃の温度範囲とし、特に800℃~1400℃とすることが好ましい。そして、この範囲の温度に保持する時間は、1時間以上とすることが好適である。
 また焼結時の加圧力は、好ましくは10MPa~40MPa、より好ましくは25MPa~35MPaとする。
 それにより、金属相中に酸化物粒子をより均一に分散させることができる。
 上記の加圧焼結により得られた焼結体に対し、旋盤等を用いてで所望の形状にする切削その他の機械加工を施すことにより、スパッタリングターゲットを製造することができる。
(磁性膜の製造方法)
 上述したようにして製造したスパッタリングターゲットは、先述の磁性膜の製造に用いることができる。具体的には、かかるスパッタリングターゲットを用いて、一般にはマグネトロンスパッタリング装置にてスパッタリングを行うことにより、所定の基板上ないし他の膜上に成膜して、そこに磁性膜を形成することができる。
 次に、この発明のスパッタリングターゲットを試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。
(試験例1)
 Co粉末、Pt粉末、TiO2粉末、SiO2粉末およびZnO粉末を、組成比が分子数比率で64:22:5:3:6となるように秤量し、該粉末を、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、24時間回転させて混合した。そして、ボールミルから取り出した混合粉末を直径190mmのカーボン製の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300℃/時間、保持温度950℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。このようにして得られた焼結体を、直径180.0mm、厚さ5.0mmの円盤状になるよう旋盤で切削加工し、実施例1のスパッタリングターゲットを作製した。
 実施例2のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末、TiO2粉末およびZnO粉末を用いて、組成比を63:21:7:9としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 実施例3のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末、SiO2粉末およびZnO粉末を用いて、組成比を64:22:5:9としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 実施例4のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末、TiO2粉末、ZnO粉末およびCo34粉末を用いて、組成比を65:22:5:6:2としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 実施例5のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末、TiO2粉末、ZnO粉末およびB23粉末を用いて、組成比を65:22:5:6:2としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 比較例1のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末、TiO2粉末およびSiO2粉末を用いて、組成比を66:22:7:5としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 比較例2のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末およびTiO2粉末を用いて、組成比を64:22:14としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 比較例3のスパッタリングターゲットは、原料粉末としてCo粉末、Pt粉末およびSiO2粉末を用いて、組成比を67:23:10としたことを除いて、実施例1のスパッタリングターゲットと同様に作製した。
 上記の実施例1~5の各スパッタリングターゲットについて、Rigaku社製のSmartlab.を用いて、ターゲット表面のX線回折強度を測定した。このときの測定条件は、θ-2θ測定で、2θ=10-90°とした。それにより、実施例1のスパッタリングターゲットでは、ZnがZn2TiO4及びZn2SiO4として存在し、実施例2、4及び5のスパッタリングターゲットでは、ZnがZn2TiO4として存在し、実施例3のスパッタリングターゲットでは、ZnがZn2SiO4として存在していることが解かった。
 なお、比較例1~3のスパッタリングターゲットでは、ZnOを添加しなかったことにより、Znの酸化物が形成されていないことは明らかである。
 また、実施例1~5及び比較例1~3のそれぞれのスパッタリングターゲットを、マグネトロンスパッタリング装置(キヤノンアネルバ製C‐3010スパッタリングシステム)にセットし、ガラス基板上にTa(2.8nm)、Ni-W(5nm)及びRu(16nm)をこの順序で成膜したものに、Ar5.0Pa雰囲気下にて300Wでスパッタリングを行い、膜厚が7nm、11nm、14nm及び18nmの各磁性膜を形成した。そして、それらの各膜厚の磁性膜について、保磁力Hc、磁気異方性Ku、磁化Ms、磁化曲線の傾きαを測定したところ、図1~4にグラフで示す結果を得た。
 なおここで、保磁力Hc、磁化Ms、磁化曲線の傾きαは玉川製作所製の試料振動型磁力計(VSM)により測定し、玉川製作所製磁気トルク計(TRQ)により磁気異方性Kuを測定した。
 図1より、TiO2-SiO2にZnOを添加することにより、保磁力Hcが上昇し、磁化曲線の傾きαが低下することが解かる。また、図2、3より、TiO2、SiO2のそれぞれにZnOを添加することにより、磁化Msと磁気異方性Kuが上昇し、磁化曲線の傾きαが低下することが解かる。したがって、実施例1~3によれば、ZnOの添加により磁性粒子の分離がよくなっていることが明らかである。さらに、TiO2、SiO2にZnを添加すると磁性粒子の磁気特性がよくなっていることが明らかである。
 なお図4より、Co34やB23を含む実施例4、5であっても、それらを含まない実施例2と同程度に、ZnO添加による効果が得られていることが解かる。
 また、上述したように、比較例1及び実施例1~3のそれぞれのスパッタリングターゲットを用いて成膜した各磁性膜について、Arイオンミリングによりサンプルをガラス基板側から削り、磁性膜だけを残すように加工した後、当該磁性膜に対し、日本電子製透過型電子顕微鏡(TEM)を用いて、エネルギー分散型X線分光法(EDX)にてラインスキャンを行った。その結果を図5~8に示す。なお図5~8はそれぞれ、縦軸を相対強度とし、横軸を距離(nm)としたグラフであり、図5は比較例1、図6は実施例1、図7は実施例2、図8は実施例3の各結果にそれぞれ対応する。
 図5~8に示すところから、ZnOを添加した実施例1~3では、比較例1に比して、元素分布のグラフの立ち上がりが急であることから、酸化物相と磁性粒子相の境目が明確であり、それ故に、実施例1~3は、酸化物による磁性粒子の相互の分離性に優れることが解かる。
(試験例2)
 Co粉末、Pt粉末、TiO2粉末およびZnO粉末を用いて作製したスパッタリングターゲットと、Co粉末、Pt粉末、SiO2粉末およびZnO粉末を用いて作製したスパッタリングターゲットのそれぞれで、ZnOの量を変化させた複数の試作品を製造した。製造条件は、上記の試験例1で述べたものと実質的に同様である。
 これらの試作品のそれぞれを用いて、試験例1と同様の方法により磁性膜を成膜し、各磁性膜の磁化Msを測定した。その結果を図9に示す。
 図9に示すところから、磁化Msは、比較的少ないZn量で急増し、Zn量が15at.%を超えると若干低下することが解かる。したがって、磁化Msを上昇させるとの観点からは、Zn量が1~15at.%であると好ましいといえる。
 なお、先述した実施例1~5及び比較例1~3のスパッタリングターゲットならびに、図9に示す各スパッタリングターゲットの組成を、参考として表1に示す。
 なお実施例6~10のスパッタリングターゲットも作製したので、表1には、参考までに、それらの実施例6~10の各スパッタリングターゲットの組成についても示している。
Figure JPOXMLDOC01-appb-T000001
 以上より、この発明によれば、磁性粒子間の良好な磁気的分離性と、高い保磁力を両立させ、磁気特性を向上させた磁性膜を形成できることが解かった。

Claims (10)

  1.  原子比換算で1at.%以上のZnを含有し、その一部または全部がZn‐Ti‐O及び/又はZn‐Si‐Oの複合酸化物を形成しており、Ptが45at.%以下であり、残部にCo及び不可避的不純物を含むスパッタリングターゲット。
  2.  酸化物が、Zn2TiO4及び/又はZn2SiO4を含む請求項1に記載のスパッタリングターゲット。
  3.  Znを1at.%~15at.%で含有する請求項1又は2に記載のスパッタリングターゲット。
  4.  さらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を形成している請求項1~3のいずれか一項に記載のスパッタリングターゲット。
  5.  さらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種を、それぞれ60at.%以下で含有する請求項1~4のいずれか一項に記載のスパッタリングターゲット。
  6.  1at.%以上のZnとTi及び/又はZnとSiを含有し、その一部または全部が酸化物として存在し、Ptが45at.%以下であり、残部にCo及び不可避的不純物を含む磁性膜。
  7.  Znを、1at.%以上かつ15at.%以下で含有する請求項6に記載の磁性膜。
  8.  さらに、Co、Cr、Si、B、W、Nb、Mn、Mo及びTiからなる群から選択される少なくとも一種の元素の酸化物を形成している請求項6又は7に記載の磁性膜。
  9.  さらに、Au、Ag、B、Cu、Cr、Ga、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Si、Sn、Ti、Ta、W、V及びZnからなる群から選択される少なくとも一種を、それぞれ60at.%以下で含有する請求項6~8のいずれか一項に記載の磁性膜。
  10.  請求項1~5のいずれか一項に記載のスパッタリングターゲットを用いたスパッタリングにより、磁性膜を形成する、磁性膜の製造方法。
PCT/JP2018/033697 2018-09-11 2018-09-11 スパッタリングターゲット、磁性膜および、磁性膜の製造方法 WO2020053972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/470,588 US11821076B2 (en) 2018-09-11 2018-09-11 Sputtering target, magnetic film and method for producing magnetic film
PCT/JP2018/033697 WO2020053972A1 (ja) 2018-09-11 2018-09-11 スパッタリングターゲット、磁性膜および、磁性膜の製造方法
CN201880004047.1A CN111183243B (zh) 2018-09-11 2018-09-11 溅射靶、磁性膜和磁性膜的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033697 WO2020053972A1 (ja) 2018-09-11 2018-09-11 スパッタリングターゲット、磁性膜および、磁性膜の製造方法

Publications (1)

Publication Number Publication Date
WO2020053972A1 true WO2020053972A1 (ja) 2020-03-19

Family

ID=69777183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033697 WO2020053972A1 (ja) 2018-09-11 2018-09-11 スパッタリングターゲット、磁性膜および、磁性膜の製造方法

Country Status (3)

Country Link
US (1) US11821076B2 (ja)
CN (1) CN111183243B (ja)
WO (1) WO2020053972A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077665A1 (ja) * 2010-12-09 2012-06-14 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP2013224259A (ja) * 2006-08-11 2013-10-31 Hitachi Metals Ltd 酸化亜鉛焼結体およびその製造方法
WO2017085933A1 (ja) * 2015-11-18 2017-05-26 国立大学法人東北大学 薄膜の製造方法、薄膜材料の製造方法、垂直磁気記録層、複層膜基板及び磁気記録装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074181B2 (ja) * 2002-11-28 2008-04-09 株式会社東芝 垂直磁気記録媒体
US20060289294A1 (en) * 2005-06-24 2006-12-28 Heraeus, Inc. Enhanced oxygen non-stoichiometry compensation for thin films
JP5358891B2 (ja) 2006-08-11 2013-12-04 日立金属株式会社 酸化亜鉛焼結体の製造方法
JP2011174174A (ja) 2010-01-26 2011-09-08 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
JP2011175725A (ja) 2010-01-26 2011-09-08 Mitsubishi Materials Corp 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
KR20120129972A (ko) * 2010-02-18 2012-11-28 각코호우징 오사카 산교 다이가쿠 산화물 소결체, 산화물 혼합체, 이들의 제조 방법 및 이들을 이용한 타겟
JP5375707B2 (ja) 2010-03-28 2013-12-25 三菱マテリアル株式会社 磁気記録膜形成用スパッタリングターゲットおよびその製造方法
MY160775A (en) 2010-09-03 2017-03-15 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
JP2012117147A (ja) 2010-11-12 2012-06-21 Jx Nippon Mining & Metals Corp コバルト酸化物が残留したスパッタリングターゲット
US20130213802A1 (en) 2010-12-22 2013-08-22 Jx Nippon Mining & Metals Corporation Sintered Compact Sputtering Target
JP5339100B2 (ja) * 2011-09-22 2013-11-13 住友金属鉱山株式会社 Zn−Si−O系酸化物焼結体とその製造方法およびスパッタリングターゲットと蒸着用タブレット
WO2015064761A1 (ja) 2013-10-29 2015-05-07 田中貴金属工業株式会社 マグネトロンスパッタリング用ターゲット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224259A (ja) * 2006-08-11 2013-10-31 Hitachi Metals Ltd 酸化亜鉛焼結体およびその製造方法
WO2012077665A1 (ja) * 2010-12-09 2012-06-14 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
WO2017085933A1 (ja) * 2015-11-18 2017-05-26 国立大学法人東北大学 薄膜の製造方法、薄膜材料の製造方法、垂直磁気記録層、複層膜基板及び磁気記録装置

Also Published As

Publication number Publication date
US20210172055A1 (en) 2021-06-10
US11821076B2 (en) 2023-11-21
CN111183243A (zh) 2020-05-19
CN111183243B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP6692724B2 (ja) 非磁性材料分散型Fe−Pt系スパッタリングターゲット
JP2024040256A (ja) スパッタリングターゲット、積層膜の製造方法および、磁気記録媒体の製造方法
JP2023144067A (ja) スパッタリングターゲット、グラニュラ膜および垂直磁気記録媒体
US11939663B2 (en) Magnetic film and perpendicular magnetic recording medium
CN109844167B (zh) 磁性材料溅射靶及其制造方法
JP5944580B2 (ja) スパッタリングターゲット
WO2020053972A1 (ja) スパッタリングターゲット、磁性膜および、磁性膜の製造方法
JP6845069B2 (ja) スパッタリングターゲット
TWI681067B (zh) 濺鍍靶、磁性膜和磁性膜的製造方法
TW202009307A (zh) 濺鍍靶及磁性膜
TWI671418B (zh) 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
WO2024053176A1 (ja) スパッタリングターゲット、積層膜の製造方法、積層膜、及び磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP