WO2010038873A1 - 多孔質ポリイミド膜及びその製造方法 - Google Patents

多孔質ポリイミド膜及びその製造方法 Download PDF

Info

Publication number
WO2010038873A1
WO2010038873A1 PCT/JP2009/067266 JP2009067266W WO2010038873A1 WO 2010038873 A1 WO2010038873 A1 WO 2010038873A1 JP 2009067266 W JP2009067266 W JP 2009067266W WO 2010038873 A1 WO2010038873 A1 WO 2010038873A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous polyimide
polyimide film
film
polyamic acid
mass
Prior art date
Application number
PCT/JP2009/067266
Other languages
English (en)
French (fr)
Inventor
大矢 修生
信 松尾
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN2009801427317A priority Critical patent/CN102203174B/zh
Priority to US13/121,830 priority patent/US8420211B2/en
Priority to EP09817905.4A priority patent/EP2354180B1/en
Priority to KR1020117007524A priority patent/KR101680391B1/ko
Priority to JP2010531932A priority patent/JP5636960B2/ja
Publication of WO2010038873A1 publication Critical patent/WO2010038873A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0544Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249961With gradual property change within a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/24998Composite has more than two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components

Definitions

  • the present invention relates to a porous polyimide film and a method for producing the same.
  • Porous polyimide membranes are used for battery separators, electrolytic capacitor membranes, dust collection, microfiltration, separation, and the like.
  • Patent Document 1 discloses a porous film polyimide having a large number of through-holes communicating with each other and having a diameter of about 0.1 to 5 ⁇ m.
  • the problem of the present invention is that it is superior to conventional porous polyimide membranes in permeability of substances such as gas, has high porosity, excellent smoothness on both surfaces, relatively high in strength, and has high porosity.
  • An object of the present invention is to provide a porous polyimide film having a large number of macrovoids having excellent resistance to compressive stress in the thickness direction of the film and a method for producing the same.
  • the present invention provides the following porous polyimide membrane and method for producing the same.
  • a porous polyimide film having a three-layer structure having two surface layers (a) and (b) and a macrovoid layer sandwiched between the surface layers (a) and (b), The macrovoid layer has a partition wall bonded to the surface layers (a) and (b), and an average pore diameter in the film plane direction of 10 to 500 ⁇ m surrounded by the partition wall and the surface layers (a) and (b).
  • the macrovoid layer has a plurality of macrovoids having an average pore diameter of 10 to 500 ⁇ m in the film plane direction when observed from the surface layer (a) side and / or the surface layer (b) side.
  • the porous polyimide film according to [1].
  • the cross-sectional area of the macrovoid having an average pore diameter of 10 to 500 ⁇ m in the film plane direction is 50% or more of the film cross-sectional area.
  • 60% or more of the macrovoids are a film plane direction length (L) and a film thickness direction length (d).
  • the porous polyimide film according to any one of [1] to [7] which has a glass transition temperature of 240 ° C. or higher or no clear transition point at 300 ° C. or higher.
  • a method for producing a porous polyimide film according to any one of [1] to [8], (A) a polyamic acid solution comprising 0.3 to 60% by mass of a polyamic acid comprising a tetracarboxylic acid unit and a diamine unit and 40 to 99.7% by mass of an organic polar solvent, and (B) 100 parts by mass of the polyamic acid.
  • a polyamic acid solution composition containing an organic compound having a polar group in an amount of 0.1 to 200 parts by mass is cast into a film and immersed in or brought into contact with a coagulation solvent containing water as an essential component.
  • a step of producing a porous film of acid, and a step of heat-treating the porous film of polyamic acid obtained in the step to imidize, wherein the organic compound (B) having the polar group comprises the polyamic acid comprises the polyamic acid
  • a method for producing a porous polyimide film which is an organic compound that promotes the penetration of water into a film-like cast product of a solution composition.
  • the polyamic acid is at least one tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride, benzenediamine, diaminodiphenyl ether, and bis (aminophenoxy).
  • the coagulation solvent containing water as an essential component is water, or a mixed solution of 5% by mass or more and less than 100% by mass of water and more than 0% by mass and 95% by mass or less of an organic polar solvent.
  • the porous polyimide membrane of the present invention is 1) The cross-sectional structure of the film is mostly symmetrical, and it is very easy to use when used as various flat film materials. 2) A large porosity can be obtained, for example, when used as an insulating substrate, the dielectric constant can be lowered, 3) Since both the surface and the support layer have communication holes from one surface to the other surface, it is easy to fill and move the substance, 4) Since it has macrovoids, the filling amount of the substance can be increased, 5) Excellent smoothness on both surfaces, 6) Since both surface layers and the support part are mostly ladder structures, the strength is relatively high compared to the bulk density, and the resistance to compressive stress in the film thickness direction despite high porosity.
  • the manufacturing method of the porous polyimide film of this invention can manufacture the porous polyimide film of this invention simply and efficiently.
  • FIG. 1 (a) is a plan sectional view of a preferred embodiment of the porous polyimide film of the present invention
  • FIG. 1 (b) is a sectional view taken along the line BB of FIG. 1 (a).
  • FIG. 2 is an enlarged side sectional view of a preferred embodiment of the porous polyimide membrane of the present invention.
  • FIG. 3 is a scanning electron micrograph of a side cross section of a preferred embodiment of the porous polyimide film of the present invention.
  • FIG. 4 is an enlarged photograph of FIG.
  • FIG. 5 is a scanning electron micrograph of the air side surface of the porous polyimide film of Example 4.
  • FIG. 6 is a scanning electron micrograph of the substrate-side surface of the porous polyimide film of Example 4.
  • FIG. 7 is a scanning electron micrograph of the side cross-section of the porous polyimide film of Example 4.
  • FIG. 8 is an enlarged photograph of FIG.
  • FIG. 9 is a scanning electron micrograph of the air-side surface of the porous polyimide film of Example 7.
  • FIG. 10 is a scanning electron micrograph of the substrate-side surface of the porous polyimide film of Example 7.
  • FIG. 11 is a scanning electron micrograph of a side cross-section of the porous polyimide film of Example 7.
  • FIG. 12 is an enlarged photograph of FIG.
  • FIG. 13 is an optical micrograph of the air-side surface of the porous polyimide film of Example 8.
  • FIG. 14 is a scanning electron micrograph of the air-side surface of the porous polyimide film of Example 9.
  • FIG. 15 is a scanning electron micrograph of the substrate-side surface of the porous polyimide film of Example 9.
  • FIG. 16 is a scanning electron micrograph of the side cross section of the porous polyimide film of Example 9.
  • FIG. 17 is an enlarged photograph of FIG. 18 is a scanning electron micrograph of the side cross-section of the porous polyimide film of Example 12.
  • FIG. 19 is a scanning electron micrograph of the side cross-section of the porous polyimide film of Comparative Example 3.
  • FIG. 20 is a scanning electron micrograph of a side cross-section of the porous polyimide film of Comparative Example 5.
  • FIG. 1 (a) is a plan sectional view of a preferred embodiment of the porous polyimide film of the present invention
  • FIG. 1 (b) is a sectional view taken along the line BB of FIG. 1 (a).
  • FIG. 2 is an enlarged side sectional view of a preferred embodiment of the porous polyimide film of the present invention.
  • FIG. 3 is a scanning electron micrograph of a side cross section of a preferred embodiment of the porous polyimide film of the present invention.
  • FIG. 4 is an enlarged photograph of FIG. As shown in FIGS.
  • the porous polyimide film 1 of the present invention is sandwiched between two surface layers 2 and 4 (surface layers (a) and (b)) and the surface layers 2 and 4.
  • 3 is a porous polyimide film having a three-layer structure including the macrovoid layer 3.
  • the thicknesses of the surface layers 2 and 4 are each 0.1 to 50 ⁇ m, and from the viewpoint of the strength of the polyimide film, preferably 0.5 to 10 ⁇ m, more preferably 1 to 9 ⁇ m, still more preferably 2 to 8 ⁇ m, particularly The thickness is preferably 2 to 7 ⁇ m. From the viewpoint of using the polyimide film as various flat film materials, the thicknesses of the surface layers 2 and 4 are preferably substantially the same.
  • the surface layers 2 and 4 have a plurality of pores 25 and 45, respectively.
  • the average pore diameter of the pores 25 and 45 is 0.01 to 5 ⁇ m, preferably 0.01 to 3 ⁇ m, more preferably 0.02 to 2 ⁇ m.
  • the maximum pore diameter of the pores 25 and 45 is preferably 10 ⁇ m or less, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.1 to 3 ⁇ m.
  • the pores communicate with each other and further communicate with the macro void 31.
  • the polyimide film of the present invention has a communicating hole from one surface to the other surface, so that the material can be easily filled and moved, and has excellent permeability to a substance such as a gas.
  • the polyimide membrane of the present invention since the average pore diameter of the pores formed on the membrane surface is small, only a substance having a predetermined size can be passed, and the polyimide membrane of the present invention has a filtering function. Moreover, since the average pore diameter of the pores formed on the membrane surface is small, the membrane surface of the polyimide membrane of the present invention is excellent in smoothness.
  • the macrovoid layer 3 includes a plurality of macrovoids 31 and a partition wall 32 that separates the macrovoids 31.
  • the macro void 31 is a space surrounded by the partition wall 32 and the surface layers 2 and 4, and the average pore diameter in the film plane direction is 10 to 500 ⁇ m, preferably 10 to 100 ⁇ m, more preferably 10 to 80 ⁇ m.
  • the cross section when the macrovoid layer 3 is cut in parallel to the film plane direction is a honeycomb structure or a similar structure, as schematically shown in FIG. 1A, and has a plurality of pore diameters. Macrovoids are in close contact with the partition wall. That is, the polyimide film of the present invention has a so-called “honeycomb sandwich structure”.
  • the “honeycomb structure” in the present specification only means a structure in which a large number of individually divided spaces are densely packed, and only the structure in which the spaces are accurately hexagonal in cross section. It doesn't mean.
  • the polyimide film of the present invention Due to the macrovoids 31, the polyimide film of the present invention has a large space and a high porosity. Therefore, for example, when used as an insulating substrate, the dielectric constant can be lowered, and when a substance is filled in a void, the filling amount can be increased.
  • the thickness of the partition wall 32 that separates the macrovoids 31 is 0.1 to 50 ⁇ m, and preferably 1 to 15 ⁇ m, more preferably 2 to 12 ⁇ m from the viewpoint of the strength of the polyimide film 1 and the communication between the macrovoids 31. More preferably, it is 3 to 10 ⁇ m, particularly preferably 4 to 8 ⁇ m. It is preferable that the partition wall 32 and the surface layers 2 and 4 have substantially the same thickness.
  • the partition wall 32 has a plurality of pores 35 similarly to the surface layers 2 and 4.
  • the average pore diameter of the pores 35 is 0.01 to 5 ⁇ m, preferably 0.01 to 3 ⁇ m, more preferably 0.02 to 2 ⁇ m.
  • the maximum pore diameter of the pores 35 is preferably 10 ⁇ m or less, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.1 to 3 ⁇ m.
  • the pores communicate with each other and further communicate with the macro void 31.
  • the polyimide film of the present invention also communicates with macrovoids, is easy to fill and move the substance, and is excellent in the permeability of a substance such as a gas.
  • the average pore diameter of the pores formed in the diaphragm is small, the substance can be confined in the macro void.
  • the partition wall 32 is bonded to the surface layers 2 and 4.
  • the partition wall 32 has a role of separating the macrovoids 31 from each other and a role of a support part for supporting the surface layers 2 and 4.
  • the polyimide film of the present invention is resistant to compressive stress in the film thickness direction despite high porosity, and has high dimensional stability.
  • the partition wall 32 and the surface layers 2 and 4 are formed in a ladder shape in a cross section when the polyimide film of the present invention is cut perpendicular to the film plane direction. That is, the partition walls 32 are formed at substantially constant intervals and in a direction substantially perpendicular to the film plane direction, and are coupled to the surface layers 2 and 4.
  • the cross-sectional area of the macrovoid having an average pore diameter of 10 to 500 ⁇ m in the film plane direction is Preferably it is 50% or more, more preferably 60% or more, still more preferably 70% or more, particularly preferably 75% or more, preferably 98% or less, more preferably 95% or less, still more preferably 90% or less. Especially preferably, it is 85% or less.
  • a macropore whose average pore size in the membrane plane direction is 10 to 500 ⁇ m.
  • the number of macrovoids satisfying such L / d is preferably 60% or more, more preferably 70% or more, and further preferably 75 to 100%.
  • the length (d) of the macrovoid in the film thickness direction is the maximum length of the macrovoid in the film thickness direction
  • the length (L) of the macrovoid in the film plane direction is This is the maximum length of the macrovoid in the film plane direction.
  • the total film thickness of the polyimide film of the present invention is 5 to 500 ⁇ m, and from the viewpoint of mechanical strength, it is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 25 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 100 ⁇ m. Hereinafter, it is more preferably 50 ⁇ m or less.
  • the porosity of the polyimide membrane of the present invention is 70 to 95%, and preferably 71 to 92%, more preferably 71 to 85% from the viewpoints of material permeability, mechanical strength, and membrane structure retention. Range.
  • the Gurley value (seconds required for 100 cc of air to pass through the membrane under a pressure of 0.879 g / m 2) of the polyimide film of the present invention is preferably 100 seconds or less. Preferably it is 80 seconds or less, more preferably 60 seconds or less, particularly preferably 50 seconds or less, and the lower limit is not particularly limited, but is preferably the measurement limit or more.
  • the Gurley value can be measured according to JIS P8117.
  • the polyimide film of the present invention has a rate of change in film thickness after a compression stress of 0.5 MPa at 250 ° C. for 15 minutes, preferably 5% or less, more preferably 3% or less, and still more preferably 0 to 1%. .
  • the dimensional stability in the film plane direction at 200 ° C. for 2 hours in accordance with ASTM D1204 is preferably within ⁇ 1%, more preferably within ⁇ 0.8%, and even more preferably within ⁇ 0.5%. is there.
  • the polyimide film of the present invention preferably has a glass transition temperature of 240 ° C. or higher or no clear transition point at 300 ° C. or higher from the viewpoint of heat resistance and dimensional stability at high temperatures.
  • the porous polyimide film of the present invention is a porous polyimide film mainly composed of a polyimide obtained from tetracarboxylic dianhydride and diamine, preferably from a polyimide obtained from tetracarboxylic dianhydride and diamine.
  • a porous polyimide film is a porous polyimide film mainly composed of a polyimide obtained from tetracarboxylic dianhydride and diamine, preferably from a polyimide obtained from tetracarboxylic dianhydride and diamine.
  • tetracarboxylic dianhydride any tetracarboxylic dianhydride can be used, and can be appropriately selected according to desired characteristics.
  • tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4 ′.
  • -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid an
  • At least one aromatic tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is particularly preferable.
  • the biphenyltetracarboxylic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be suitably used.
  • diamine Any diamine can be used as the diamine.
  • diamines include the following.
  • benzene nucleus such as 1,4-diaminobenzene (paraphenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, benzene diamine,
  • diamine to be used can be appropriately selected according to desired characteristics.
  • aromatic diamine compounds are preferable, and 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used.
  • at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is preferred.
  • the porous polyimide film is composed of a tetracarboxylic dianhydride and a diamine having a glass transition temperature of 240 ° C. or higher or a clear transition point of 300 ° C. or higher from the viewpoint of heat resistance and dimensional stability at high temperatures. It is preferable that it is formed from the polyimide obtained combining these.
  • the porous polyimide film of the present invention is preferably a porous polyimide film made of the following aromatic polyimide from the viewpoints of heat resistance and dimensional stability at high temperatures.
  • an aromatic polyimide comprising at least one tetracarboxylic acid unit selected from the group consisting of a biphenyltetracarboxylic acid unit and a pyromellitic acid unit, and an aromatic diamine unit
  • an aromatic polyimide comprising a tetracarboxylic acid unit and at least one aromatic diamine unit selected from the group consisting of a benzenediamine unit, a diaminodiphenyl ether unit and a bis (aminophenoxy) phenyl unit
  • the method for producing a porous polyimide film of the present invention comprises: (A) a polyamic acid solution comprising 0.3 to 60% by mass of a polyamic acid comprising a tetracarboxylic acid unit and a diamine unit and 40 to 99.7% by mass of an organic polar solvent. And (B) 0.1 to 200 parts by mass of a polyamic acid solution composition containing an organic compound having a polar group with respect to 100 parts by mass of the polyamic acid is cast into a film and water is an essential component.
  • the organic compound (B) having the polar group is an organic compound that promotes water intrusion into the film-like cast product of the polyamic acid solution composition.
  • Polyamic acid is composed of a tetracarboxylic acid unit and a diamine unit, and is a polyimide precursor or a partially imidized polyimide precursor.
  • the polyamic acid can be obtained by polymerizing tetracarboxylic dianhydride and diamine.
  • polyimidic acid thermal imidization or chemical imidization By polyimidic acid thermal imidization or chemical imidization, ring closure can be made into polyimide.
  • the polyimide in the present invention preferably has an imidization ratio of about 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more.
  • any organic polar solvent can be used.
  • Organic polar solvents such as (DMAc), N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, phenol, cresol, etc. can be used, especially N-methyl-2-pyrrolidone (NMP), N, N-dimethyl Acetamide (DMAc) can be preferably used.
  • NMP N-dimethyl-2-pyrrolidone
  • DMAc N-dimethyl Acetamide
  • tetracarboxylic dianhydride and diamine those described above can be preferably used.
  • a polyamic acid can be manufactured by arbitrary methods using tetracarboxylic dianhydride, diamine, said organic polar solvent, etc.
  • tetracarboxylic dianhydride and diamine are approximately equimolar, preferably about 100 ° C. or lower, more preferably 80 ° C. or lower, more preferably 0 to 60 ° C., particularly preferably 20 to 60 ° C. Can be reacted for about 0.2 hours or longer, more preferably 0.3 to 60 hours to produce a polyamic acid solution.
  • an arbitrary molecular weight adjusting component may be added to the reaction solution for the purpose of adjusting the molecular weight.
  • the logarithmic viscosity (30 ° C., concentration: 0.5 g / 100 mL, solvent: NMP) of the polyamic acid may be any viscosity that can produce the porous polyimide film of the present invention.
  • the polyamic acid even if a part of the amic acid is imidized, it can be used as long as it does not affect the present invention.
  • the polyamic acid solution (A) comprises 0.3 to 60% by mass of polyamic acid and 40 to 99.7% by mass of organic polar solvent.
  • content of the polyamic acid is less than 0.3% by mass, the film strength when the porous polyimide film is produced is lowered, and when it exceeds 60% by mass, the material permeability of the porous polyimide film is lowered.
  • the content of the polyamic acid in the polyamic acid solution (A) is preferably 1 to 30% by mass, more preferably 2 to 15% by mass, still more preferably 5 to 10% by mass, and the organic content in the polyamic acid solution (A)
  • the content of the polar solvent is preferably 70 to 99% by mass, more preferably 85 to 98% by mass, and still more preferably 90 to 95% by mass.
  • the polyamic acid solution (A) may be a solution obtained by polymerizing tetracarboxylic dianhydride and diamine in the presence of an organic polar solvent, or a solution obtained by dissolving polyamic acid in an organic polar solvent. It may be.
  • the polyamic acid solution composition contains a polyamic acid solution (A) and an organic compound (B) having a polar group.
  • the organic compound (B) having a polar group is an organic compound that promotes the penetration of water into the film-like casting of the polyamic acid solution composition. By promoting the penetration of water into the film cast of the polyamic acid solution composition, macrovoids having an average pore diameter of 10 to 500 ⁇ m can be formed in the polyimide film.
  • the organic compound (B) having a polar group is a polyamic acid in which the solidification of the polyamic acid does not contain the organic compound (B) having a polar group in the step of immersing the film-like casting of the polyamic acid solution composition in the coagulation bath. What is necessary is that the effect accelerated compared with the solidification process of the polyamic acid in the acid solution composition is recognized, especially the effect of promptly promoting the solidification in the film thickness direction from the surface in contact with the coagulation bath to the inside. It is preferable that it has. Therefore, the organic compound (B) having a polar group is preferably a compound that does not react or hardly reacts with the polyamic acid in view of the above characteristics.
  • Examples of the organic compound (B) having a polar group include organic compounds having a carboxylic acid group such as benzoic acid and phthalic acid, organic compounds having a hydroxyl group, and organic compounds having a sulfonic acid group. It can be used alone or in combination of two or more.
  • the organic compound having a polar group is preferably an organic compound having a carboxylic acid group such as benzoic acid or phthalic acid.
  • the content of the organic compound (B) having a polar group is from 0.1 to 200 parts by weight, preferably from 1 to 150 parts, based on 100 parts by weight of the polyamic acid, from the viewpoint of forming macrovoids.
  • the amount is 10 parts by mass, more preferably 10 to 100 parts by mass, and still more preferably 20 to 70 parts by mass.
  • a polyamic acid solution composition contains a vinyl polymer (C) further from a viewpoint of substance permeability.
  • the vinyl polymer (C) has at least one of the following features (C1) to (C4), preferably the following features (C1) to (C3), more preferably all of the following features (C1) to (C4). It is preferable.
  • (C1) Insoluble or hardly soluble in water, coagulation solvent and / or organic polar solvent.
  • C2 Decomposing in the thermal imidization step.
  • the vinyl polymer (C) is homogeneously suspended in the polyamic acid solution composition.
  • (C4) Incompatible with polyamic acid.
  • the vinyl polymer (C) remains as an incompatible material in the polyamic acid. A part or all of this vinyl polymer (C) is eluted in a coagulation bath when it is immersed or brought into contact with a coagulation solvent to produce a porous film of polyamic acid, and further decomposed in a process of heating imidization.
  • the substance permeability of the polyimide film is improved by affecting the coagulation process, such as promoting the coagulation of the polyamic acid solution composition.
  • the vinyl polymer (C) is preferably at least one selected from the group consisting of polyvinyl acetate, polystyrene and polymethyl methacrylate. These can be used alone or in combination of two or more.
  • the content of the vinyl polymer (C) is preferably 0.1 to 100 parts by mass, more preferably 1 to 30 parts per 100 parts by mass of the polyamic acid from the viewpoint of material permeability. Part by mass, more preferably 2 to 20 parts by mass, particularly preferably 3 to 12 parts by mass.
  • the vinyl polymer (C) When the vinyl polymer (C) is added to the polyamic acid solution composition, the vinyl polymer (C) can be added as it is or in the form of a solution or suspension.
  • the solution may become a suspension, but if the homogeneous state can be maintained by stirring for a sufficient time, the production of the polyimide of the present invention Can be used.
  • the solution viscosity of the polyamic acid solution composition is preferably 10 to 10000 poise (1 to 1000 Pa ⁇ s), more preferably 100 to 3000 poise (10 to 300 Pa) from the viewpoint of ease of casting and film strength. S), more preferably 200 to 2000 poise (20 to 200 Pa ⁇ s), particularly preferably 300 to 1000 poise (30 to 100 Pa ⁇ s).
  • a polyamic acid solution composition is cast into a film.
  • the casting method is not particularly limited.
  • the polyamic acid solution composition is used as a dope solution, and the polyamic acid solution composition is formed into a film on a glass plate or a stainless steel plate using a blade or a T-die. Can be cast.
  • the polyamic acid solution composition can be intermittently or continuously cast into a film on a continuous movable belt to continuously produce individual pieces or long-form casts. .
  • the belt may be any belt that is not affected by the polyamic acid solution composition and the coagulation solution, and may be made of a metal such as stainless steel or a resin such as polytetrafluoroethylene. Moreover, the polyamic acid solution composition formed into a film form from a T-die can be put into a coagulation bath as it is. Moreover, you may make the one surface or both surfaces of a casting thing contact with gas (air, an inert gas, etc.) containing water vapor
  • gas air, an inert gas, etc.
  • the coagulation solvent containing water as an essential component water or a mixed solution of 5% by mass or more and less than 100% by mass of water and an organic polar solvent of more than 0% by mass and 95% by mass or less can be used. From the viewpoint of ensuring safety such as fire, manufacturing cost, and ensuring the homogeneity of the obtained film, it is preferable to use a coagulation solvent containing water and an organic polar solvent.
  • the organic polar solvent that may be contained in the coagulation solvent include alcohols such as ethanol and methanol, which are poor solvents for polyamic acid, and acetone.
  • the content of water in 100% by mass of the coagulation solvent is preferably 5% by mass or more and less than 100% by mass, more preferably 20% by mass or more and 100% by mass. Less than, more preferably 30 to 95% by mass, particularly preferably 45 to 90% by mass.
  • the content of the organic polar solvent in 100% by mass of the coagulation solvent is preferably more than 0% by mass and 95% by mass or less, more preferably more than 0% by mass and 80% by mass or less, still more preferably 5 to 70% by mass, particularly The content is preferably 10 to 55% by mass.
  • the temperature of the coagulation solvent may be appropriately selected according to the purpose and used, for example, in the range of ⁇ 30 to 70 ° C., preferably 0 to 60 ° C., more preferably 10 to 50 ° C.
  • the obtained porous film of polyamic acid is heat-treated and imidized to produce a porous polyimide film.
  • imidization include thermal imidization treatment and chemical imidization treatment.
  • Thermal imidation treatment is performed by, for example, fixing a porous film of polyamic acid to a support using pins, chucks, pinch rolls, etc. so that the smoothness is not impaired by heat shrinkage, and heating in the atmosphere. Can be performed.
  • the reaction conditions are preferably selected appropriately from a heating time of 280 to 600 ° C., preferably 350 to 550 ° C., for a heating time of 5 to 120 minutes, preferably 6 to 60 minutes.
  • the polyamic acid porous film may be heated to a temperature higher than the thermal decomposition start temperature of the vinyl polymer (C) for thermal imidization.
  • the thermal decomposition start temperature of the vinyl polymer (C) can be measured, for example, in the air at 10 ° C./min using a thermogravimetric measuring device (TGA).
  • the chemical imidation treatment is performed using an aliphatic acid anhydride or an aromatic acid anhydride as a dehydrating agent and a tertiary amine such as triethylamine as a catalyst.
  • a tertiary amine such as triethylamine
  • JP-A-4-339835 may be referred to, and imidazole, benzimidazole, or substituted derivatives thereof may be used.
  • the porous polyimide membrane of the present invention is produced via a polyamic acid solution or a polyimide solution, the type of polymer used, the polymer concentration of the polymer solution, the viscosity, the organic solution, and the like, solidification conditions (the type of the solvent substitution rate adjusting layer, By appropriately selecting the temperature, the coagulation solvent, etc.), the porosity, film thickness, surface average pore diameter, maximum pore diameter, center average pore diameter, and the like can be appropriately designed.
  • the porous polyimide film of the present invention may be subjected to a surface treatment of the film by subjecting at least one surface to a corona discharge treatment, a plasma discharge treatment such as a low-temperature plasma discharge or an atmospheric pressure plasma discharge, a chemical etching or the like according to the purpose. Good. Further, the surface layer (a) and / or (b) may be shaved and used. By these treatments, the material permeability, surface pore diameter, and wettability of the membrane can be controlled.
  • porous polyimide is excellent in permeability of substances such as gas, it can be suitably used for applications such as gas filters, liquid filters, and ventilation parts.
  • Reference example 1 Preparation of polyamic acid solution composition A
  • NMP N-methyl-2-pyrrolidone
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • TPE-Q 1,4-bis (4-aminophenyl) benzene
  • Solution composition A was a viscous suspension and had a viscosity of 540 poise (54 Pa ⁇ s) (25 ° C.).
  • Reference Examples 2-9 Preparation of polyamic acid solution compositions BI
  • Polyamic acid solution compositions B to I were obtained in the same manner as in Reference Example 1 except that the addition amounts of acid component, diamine component, benzoic acid and polyvinyl acetate, and the polymer concentration were changed as shown in Table 1.
  • Solution compositions BI were viscous suspensions.
  • the diamine component “ODA” used in the preparation of Reference Examples 6 to 9 means 4,4′-diaminodiphenyl ether.
  • Example 1 At room temperature, using a tabletop automatic coater, uniformly apply the polyamic acid solution composition A prepared in Reference Example 1 to a thickness of about 150 ⁇ m on a stainless steel 20 cm square substrate whose surface is mirror-polished. Cast and apply. Thereafter, the substrate was left in the atmosphere at a temperature of 23 ° C. and a humidity of 40% for 90 seconds, and then the entire substrate was put into a coagulation bath (80 parts by mass of water / 20 parts by mass of NMP, room temperature). After the addition, the mixture was allowed to stand for 8 minutes to deposit a polyamic acid film on the substrate.
  • a coagulation bath 80 parts by mass of water / 20 parts by mass of NMP, room temperature
  • the substrate was taken out from the bath, the polyamic acid film deposited on the substrate was peeled off, and then immersed in pure water for 3 minutes to obtain a polyamic acid film.
  • the polyamic acid film was dried in the air at a temperature of 23 ° C. and a humidity of 40%, and then attached to a 10 cm square pin tenter and set in an electric furnace.
  • a porous polyimide film was obtained by heating to 360 ° C. at a rate of temperature increase of about 10 ° C./min and performing a heat treatment with a temperature profile maintained for 10 minutes.
  • the obtained porous polyimide film had a film thickness of 49 ⁇ m, a porosity of 76%, and a Gurley value of 25 seconds. The results are shown in Table 2.
  • the glass transition temperature of the porous polyimide film was about 290 ° C., and the dimensional stability was within 1% at 200 ° C.
  • the rate of change in the thickness of the film after applying a compressive stress of 250 MPa at 15 ° C. for 15 minutes was 1% or less.
  • the surface on the substrate side had a porous structure having many communicating holes, the average pore diameter on the surface was 0.18 ⁇ m, and the maximum pore diameter was It confirmed that it was 10 micrometers or less.
  • the porous polyimide film had a dimensional stability within 1% at 200 ° C., and the rate of change in film thickness after a compressive stress load of 250 ° C., 15 minutes, 0.5 MPa was 0.8% or less.
  • Example 12 A porous polyimide film was obtained in the same manner as in Example 1 except that the polyamic acid solution composition I prepared in Reference Example 9 had a thickness of about 350 ⁇ m and was uniformly cast applied. About the obtained porous polyimide membrane, the film thickness, the porosity, and the air permeability (Gurley value) were measured. The results are shown in Table 2.
  • the glass transition temperature of the porous polyimide film was about 285 ° C., and the dimensional stability was within 1% at 200 ° C.
  • the rate of change in the thickness of the film after applying a compressive stress of 250 MPa at 15 ° C. for 15 minutes was 1% or less.
  • the surface on the substrate side had a porous structure having many communicating holes, the average pore diameter of the surface was 0.38 ⁇ m, and the maximum pore diameter was It confirmed that it was 10 micrometers or less.
  • the surfaces and cross sections of the films were observed using a scanning electron microscope and an optical microscope, respectively.
  • scanning electron micrographs of the porous polyimide films obtained in Examples 4, 7, 9 and 12 are shown in FIGS. 5 to 12 and 14 to 18, respectively.
  • the optical microscope photograph of the porous polyimide film obtained in Example 8 is shown in FIG.
  • the surface and cross section of the porous polyimide film obtained in other examples were also the same as those examples.
  • FIG. 5 is a scanning electron micrograph (10,000 times) of the surface of the porous polyimide film on the air side opposite to the stainless steel substrate
  • FIG. 6 is a scanning type of the surface of the porous polyimide film on the stainless steel substrate side
  • FIG. 7 is an electron micrograph (10000 times)
  • FIG. 7 is a scanning electron micrograph (250 times) of a side cross-section
  • FIG. 8 is an enlarged photo (2000 times) of FIG.
  • FIG. 5 a large number of holes having a diameter of 0.3 ⁇ m or less could be observed on the air side surface. Further, as is apparent from FIG.
  • FIG. 7 is an image of a cross section of the polyimide film taken obliquely from above, and the white portion at the top of the figure represents the cross section and surface of the air side surface layer of the polyimide film.
  • the space (macrovoid) sandwiched between both surfaces and the support part had a width of almost 10 ⁇ m or more and a lateral length of almost 10 ⁇ m or more.
  • the cross section of the layer on the air side surface, the cross section of the layer on the base material side surface, and the cross section of the support part are all porous structures, each having a large number of pores. I was able to observe.
  • FIG. 9 is a scanning electron micrograph (10,000 times) of the surface of the porous polyimide film on the air side opposite to the stainless steel substrate
  • FIG. 10 is a scanning type of the surface of the porous polyimide film on the stainless steel substrate side
  • FIG. 11 is an electron micrograph (10,000 times)
  • FIG. 11 is a side view cross-sectional scanning electron micrograph (250 times)
  • FIG. 12 is an enlarged photo (2000 times) of FIG.
  • a large number of holes having a diameter of 0.3 ⁇ m or less could be observed on the air side surface. Further, as apparent from FIG.
  • FIG. 11 is a photograph of a cross section of a polyimide film taken obliquely from above, and the white portion at the top in the figure represents the cross section and surface of the air side surface layer of the polyimide film.
  • the space (macrovoid) sandwiched between both surfaces and the support part had a width of almost 10 ⁇ m or more and a lateral length of almost 10 ⁇ m or more.
  • the cross section of the air side surface layer, the cross section of the base material side surface layer, and the cross section of the support part all have a porous structure, and a large number of pores are formed in each. I was able to observe.
  • FIG. 13 is an optical micrograph (200 ⁇ ) taken for the porous polyimide film obtained in Example 8 by transmitting light from the air side surface to the substrate side surface. As is apparent from FIG. 13, it was observed that a plurality of macrovoids were arranged in the polyimide film in a honeycomb structure or a similar structure.
  • FIGS. 14 is a scanning electron micrograph (1000 times) of the surface of the porous polyimide film on the air side opposite to the stainless steel substrate
  • FIG. 15 is a scanning type of the surface of the porous polyimide film on the stainless steel substrate side
  • FIG. 16 is a scanning electron micrograph (250 times) of a side cross section
  • FIG. 17 is an enlarged photo (2000 times) of FIG.
  • FIG. 14 it was observed that a large number of holes exist on the air side surface. Further, as is clear from FIG. 15, a large number of holes from about 0.1 ⁇ m to about 5 ⁇ m were observed on the substrate side surface. Further, as is apparent from FIG.
  • the air-side surface layer and the substrate-side surface layer, and the partition walls supporting both surfaces and separating the macrovoids are formed. It can be observed that is almost bonded in a ladder shape.
  • the upper side is a layer on the air side surface
  • the lower side is a layer on the substrate side surface. It was confirmed that the width of the space (void) sandwiched between both surfaces and the support part was almost 10 ⁇ m or more.
  • the cross section of the air side surface layer, the cross section of the base material side surface layer, and the cross section of the support portion are all porous structures, each of which has a large number of pores. I was able to observe.
  • FIG. 18 is a scanning electron micrograph (50 ⁇ ) of a side cross section.
  • the air side surface layer and the base material side surface layer, and the partition walls supporting both surfaces and separating the macrovoids are formed, and both surfaces and the partition walls (support portions) are almost formed. It was observable that it was bound in a ladder shape. It was confirmed that the width of the space (void) sandwiched between both surfaces and the support part was almost 200 ⁇ m or more.
  • Comparative Examples 1-7 A porous polyimide film was obtained in the same manner as in Example 1 except that the type of polymer solution and the composition of the coagulation bath were changed as shown in Table 2. About the obtained porous polyimide membrane, the film thickness, the porosity, and the air permeability (Gurley value) were measured. The results are shown in Table 2.
  • FIGS. 19 and 20 scanning electron micrographs of the cross sections of the porous polyimide films obtained in Comparative Examples 3 and 5 are shown in FIGS. 19 and 20.
  • the magnification of the micrograph in FIG. 19 is 2000 times, and the magnification of the micrograph in FIG. 20 is 1000 times.
  • FIG. 19 it was observed that the porous polyimide film obtained in Comparative Example 3 had pores formed on the entire cross section of the film, and almost no macrovoids were present.
  • Comparative Examples 8 and 9 About commercially available polytetrafluoroethylene (PTFE) non-woven fabric and membrane filter (Millipore Corp., trade name: OMNIPORE, filter type: 10 ⁇ mJC), the change rate of the film thickness after applying a compressive stress of 0.5 MPa at 250 ° C. for 15 minutes. Was measured. The film thickness change rates were 52% and 78%, respectively.
  • PTFE polytetrafluoroethylene
  • the porous polyimide of the present invention is excellent in permeability of substances such as gas, and can be suitably used for applications such as gas filters, liquid filters, and ventilation parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10~500μmである複数のマクロボイドとを有し、前記のマクロボイド層の隔壁、並びに前記表面層(a)及び(b)はそれぞれ、厚さが0.1~50μmであり、平均孔径0.01~5μmの複数の細孔を有し、当該細孔同士が連通し更に前記マクロボイドに連通しており、総膜厚が5~500μmであり、空孔率が70~95%である、多孔質ポリイミド膜。

Description

多孔質ポリイミド膜及びその製造方法
 本発明は、多孔質ポリイミド膜及びその製造方法に関する。
 多孔質ポリイミド膜は、電池用セパレータや電解コンデンサ用隔膜用、集塵、精密濾過、分離などに用いられている。例えば、特許文献1には、直径約0.1~5μmの互いに連通した貫通孔を多数有する多孔膜ポリイミドが開示されている。
特開平11-310658号公報
 本発明の課題は、従来の多孔質ポリイミド膜よりも気体などの物質透過性に優れ、空孔率の高い、両表面の平滑性が優れ、相対的に強度が高く、高空孔率にもかかわらず膜厚み方向への圧縮応力に対する耐力に優れるマクロボイドを多数有する多孔質ポリイミド膜及びその製造方法を提供することにある。
 本発明は、以下の多孔質ポリイミド膜及びその製造方法を提供するものである。
[1]2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
 前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10~500μmである複数のマクロボイドとを有し、
 前記のマクロボイド層の隔壁、並びに前記表面層(a)及び(b)はそれぞれ、厚さが0.1~50μmであり、平均孔径0.01~5μmの複数の細孔を有し、当該細孔同士が連通し更に前記マクロボイドに連通しており、
 総膜厚が5~500μmであり、空孔率が70~95%である、多孔質ポリイミド膜。
[2]前記マクロボイド層は、前記表面層(a)側及び/又は前記表面層(b)側から観察して、膜平面方向の平均孔径が10~500μmである複数のマクロボイドを有している、[1]に記載の多孔質ポリイミド膜。
[3]前記のマクロボイド層の隔壁、並びに前記表面層(a)及び(b)の厚さが略同一である、[1]又は[2]に記載の多孔質ポリイミド膜。
[4]ガーレー値が100秒以下である、[1]~[3]のいずれかに記載の多孔質ポリイミド膜。
[5]250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が5%以下である、[1]~[4]のいずれかに記載の多孔質ポリイミド膜。
[6]膜を膜平面方向に対して垂直に切断したときの断面において、膜平面方向の平均孔径が10~500μmのマクロボイドの断面積が膜断面積の50%以上である、[1]~[5]のいずれかに記載の多孔質ポリイミド膜。
[7]前記多孔質ポリイミド膜を膜平面方向に垂直に切断したときの断面において、前記マクロボイドの60%以上が、膜平面方向の長さ(L)と膜厚み方向の長さ(d)との比(L/d)が0.5~3の範囲内にある、[1]~[6]のいずれかに記載の多孔質ポリイミド膜。
[8]ガラス転移温度が、240℃以上であるか、又は300℃以上で明確な転移点がない、[1]~[7]のいずれかに記載の多孔質ポリイミド膜。
[9][1]~[8]のいずれかに記載の多孔質ポリイミド膜の製造方法であって、
(A)テトラカルボン酸単位及びジアミン単位からなるポリアミック酸0.3~60質量%と有機極性溶媒40~99.7質量%とからなるポリアミック酸溶液、及び(B)前記ポリアミック酸100質量部に対して0.1~200質量部の、極性基を有する有機化合物を含有するポリアミック酸溶液組成物を、フィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
 前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程
を含み、前記の極性基を有する有機化合物(B)が、前記ポリアミック酸溶液組成物のフィルム状流延物に水の浸入を促進させる有機化合物である、多孔質ポリイミド膜の製造方法。
[10]前記ポリアミック酸が、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種のテトラカルボン酸二無水物と、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンとから得られる、[9]に記載の多孔質ポリイミド膜の製造方法。
[11]前記の極性基を有する有機化合物(B)が安息香酸である、[9]又は[10]に記載の多孔質ポリイミド膜の製造方法。
[12]前記ポリアミック酸溶液組成物が、更に、前記ポリアミック酸100質量部に対して0.1~100質量部のビニル重合体(C)を含む、[9]~[11]のいずれかに記載の多孔質ポリイミド膜の製造方法。
[13]前記ビニル重合体(C)が、ポリ酢酸ビニル、ポリスチレン及びポリメチルメタクリレートからなる群から選択される少なくとも1種である、[12]に記載の多孔質ポリイミド膜の製造方法。
[14]前記の水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液である、[9]~[13]のいずれかに記載の多孔質ポリイミド膜の製造方法。
 本発明の多孔質ポリイミド膜は、
1)膜の断面構造は大部分が対称構造であり、各種平膜材料として使う場合に非常に利用しやすく、
2)大きな空孔率を得ることができ、例えば絶縁基板として用いると誘電率を低くすることができ、
3)両表面及び支持層ともに、一方の表面から他方の表面に至る連通孔を有するために、物質の充填や移動が容易であり、
4)マクロボイドを有するために物質の充填量を大きくすることができ、
5)両表面の平滑性に優れ、
6)両表面層と支持部とが大部分がラダー構造であるため、かさ密度に比して相対的に強度が高く、高空孔率にもかかわらず膜厚み方向への圧縮応力に対して耐力があり寸法安定性が高く、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が小さい、などの優れた効果を有する。
 また、本発明の多孔質ポリイミド膜の製造方法は、本発明の多孔質ポリイミド膜を簡便かつ効率的に製造することができる。
図1(a)は、本発明の多孔質ポリイミド膜の好ましい一実施態様の平面断面図であり、図1(b)は、図1(a)のB-B線断面図である。 図2は、本発明の多孔質ポリイミド膜の好ましい一実施態様の拡大側面断面図である。 図3は、本発明の多孔質ポリイミド膜の好ましい一実施態様の側面断面の走査型電子顕微鏡写真である。 図4は、図3の拡大写真である。 図5は、実施例4の多孔質ポリイミド膜の空気側表面の走査型電子顕微鏡写真である。 図6は、実施例4の多孔質ポリイミド膜の基板側表面の走査型電子顕微鏡写真である。 図7は、実施例4の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。 図8は、図7の拡大写真である。 図9は、実施例7の多孔質ポリイミド膜の空気側表面の走査型電子顕微鏡写真である。 図10は、実施例7の多孔質ポリイミド膜の基板側表面の走査型電子顕微鏡写真である。 図11は、実施例7の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。 図12は、図11の拡大写真である。 図13は、実施例8の多孔質ポリイミド膜の空気側表面の光学顕微鏡写真である。 図14は、実施例9の多孔質ポリイミド膜の空気側表面の走査型電子顕微鏡写真である。 図15は、実施例9の多孔質ポリイミド膜の基板側表面の走査型電子顕微鏡写真である。 図16は、実施例9の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。 図17は、図16の拡大写真である。 図18は、実施例12の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。 図19は、比較例3の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。 図20は、比較例5の多孔質ポリイミド膜の側面断面の走査型電子顕微鏡写真である。
 本発明の多孔質ポリイミド膜の好ましい実施態様について図面を参照しながら説明する。図1(a)は、本発明の多孔質ポリイミド膜の好ましい一実施態様の平面断面図であり、図1(b)は、図1(a)のB-B線断面図である。図2は、本発明の多孔質ポリイミド膜の好ましい一実施態様の拡大側面断面図である。図3は、本発明の多孔質ポリイミド膜の好ましい一実施態様の側面断面の走査型電子顕微鏡写真である。図4は、図3の拡大写真である。
 図1及び2に示すように、本発明の多孔質ポリイミド膜1は、2つの表面層2及び4(表面層(a)及び(b))と、当該表面層2及び4の間に挟まれたマクロボイド層3とを有する三層構造の多孔質ポリイミド膜である。
 表面層2及び4の厚さはそれぞれ、0.1~50μmであり、ポリイミド膜の強度の観点から、好ましくは0.5~10μm、より好ましくは1~9μm、更に好ましくは2~8μm、特に好ましくは2~7μmである。ポリイミド膜を各種平膜材料として使う観点からは、表面層2及び4の厚さは略同一であることが好ましい。
 表面層2及び4はそれぞれ、複数の細孔25及び45を有する。細孔25及び45の平均孔径は0.01~5μmであり、好ましくは0.01~3μm、より好ましくは0.02~2μmである。また、細孔25及び45の最大孔径は、好ましくは10μm以下、より好ましくは0.1~5μm、更に好ましくは0.1~3μmである。当該細孔同士は互いに連通し、更にマクロボイド31に連通している。
 このように、本発明のポリイミド膜は、一方の表面から他方の表面に至る連通孔を有するために物質の充填や移動が容易であり、気体等の物質透過性に優れる。その一方で、膜表面に形成された細孔の平均孔径が小さいため所定のサイズの物質のみを通過させることができ、本発明のポリイミド膜はフィルタリング機能を有する。また、膜表面に形成された細孔の平均孔径が小さいため、本発明のポリイミド膜の膜表面は平滑性が優れる。
 マクロボイド層3は、複数のマクロボイド31と、マクロボイド31同士を隔てる隔壁32とを有する。マクロボイド31は、隔壁32並びに表面層2及び4によって囲まれた空間であり、膜平面方向の平均孔径は10~500μmであり、好ましくは10~100μm、より好ましくは10~80μmである。マクロボイド層3を膜平面方向に対して平行に切断したときの断面は、図1(a)に模式的に示すように、ハニカム構造またはそれに類似する構造であり、所定の孔径を有する複数のマクロボイドが隔壁を挟んで密接して存在している。すなわち、本発明のポリイミド膜は、いわゆる「ハニカムサンドウィッチ構造」を有する。なお、本明細書における「ハニカム構造」とは、個々に区分された多数の空間部が密集している構造を意味するにすぎず、前記空間部が正確に断面六角形になった構造のみを意味するものではない。
 マクロボイド31により、本発明のポリイミド膜は大きな空間を有し、空孔率が高い。そのため、例えば絶縁基板として用いた場合には誘電率を低くすることができ、また、物質をボイド中に充填する場合にはその充填量を大きくすることができる。
 マクロボイド31同士を隔てる隔壁32の厚さは、0.1~50μmであり、ポリイミド膜1の強度及びマクロボイド31同士の連通性の観点から、好ましくは1~15μm、より好ましくは2~12μm、更に好ましくは3~10μm、特に好ましくは4~8μmである。隔壁32と表面層2及び4との厚さは略同一であることが好ましい。
 隔壁32は、表面層2及び4と同様に、複数の細孔35を有する。細孔35の平均孔径は0.01~5μmであり、好ましくは0.01~3μm、より好ましくは0.02~2μmである。また、細孔35の最大孔径は、好ましくは10μm以下、より好ましくは0.1~5μm、更に好ましくは0.1~3μmである。当該細孔同士は互いに連通し、更にマクロボイド31に連通している。
 このように、本発明のポリイミド膜は、マクロボイド同士も連通しており、物質の充填や移動が容易であり、気体等の物質透過性に優れる。その一方で、隔膜に形成された細孔の平均孔径が小さいためマクロボイド中に物質を閉じ込めることができる。
 図1(b)及び2~4に示すように、隔壁32は、表面層2及び4に結合している。隔壁32は、マクロボイド31同士を隔てる役割を有すると共に、表面層2及び4を支持する支持部としての役割を有する。このため、本発明のポリイミド膜は、高空孔率にもかかわらず膜厚み方向への圧縮応力に対して耐力があり、寸法安定性が高い。
 特に図3及び4に示すように、本発明のポリイミド膜を膜平面方向に対して垂直に切断したときの断面において、隔壁32並びに表面層2及び4はラダー形状に構成されている。すなわち、隔壁32は、ほぼ一定の間隔で、膜平面方向に対してほぼ垂直方向に形成されて表面層2及び4に結合している。
 物質透過性の観点から、本発明のポリイミド膜を膜平面方向に対して垂直に切断した断面において、膜平面方向の平均孔径が10~500μmのマクロボイドの断面積は、膜断面積に対して好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは75%以上であり、また、好ましくは98%以下、より好ましくは95%以下、更に好ましくは90%以下、特に好ましくは85%以下である。
 また、物質透過性、軽量性、及び膜の構造保持性の観点から、本発明のポリイミド膜を膜平面方向に対して垂直に切断した断面において、膜平面方向の平均孔径が10~500μmのマクロボイドの膜平面方向の長さ(L)と膜厚み方向の長さ(d)との比(L/d)は、好ましくは0.5~3、より好ましくはL/d=0.8~3、更に好ましくはL/d=1~3、特に好ましくはL/d=1.2~3の範囲内である。そして、そのようなL/dを満たす前記マクロボイドの数が、60%以上であることが好ましく、70%以上であることがより好ましく、75~100%であることが更に好ましい。なお、図4に示すように、マクロボイドの膜厚み方向の長さ(d)は、マクロボイドの膜厚み方向の最大長さであり、マクロボイドの膜平面方向の長さ(L)は、マクロボイドの膜平面方向の最大長さである。
 本発明のポリイミド膜の総膜厚は5~500μmであり、力学強度の観点から、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは25μm以上であり、好ましくは300μm以下、より好ましくは100μm以下、更に好ましくは50μm以下である。
 また、本発明のポリイミド膜の空孔率は70~95%であり、物質透過性、力学強度、及び膜の構造保持性の観点から、好ましくは71~92%、より好ましくは71~85%の範囲である。
 また、通気性の観点から、本発明のポリイミド膜のガーレー値(0.879g/m2の圧力下で100ccの空気が膜を透過するのに要する秒数)は、好ましくは100秒以下、より好ましくは80秒以下、更に好ましくは60秒以下、特に好ましくは50秒以下であり、下限値は特に限定されないが、好ましくは測定限界以上である。ガーレー値は、JIS P8117に準拠して測定することができる。
 本発明のポリイミド膜は、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が、好ましくは5%以下、より好ましくは3%以下、更に好ましくは0~1%である。また、ASTM D1204に準拠した200℃、2時間での膜平面方向における寸法安定性が、好ましくは±1%以内、より好ましくは±0.8%以内、更に好ましくは±0.5%以内である。
 また、本発明のポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が、240℃以上であるか、又は300℃以上で明確な転移点がないことが好ましい。
 本発明の多孔質ポリイミド膜は、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを主たる成分とする多孔質ポリイミド膜であり、好ましくはテトラカルボン酸二無水物とジアミンとから得られるポリイミドからなる多孔質ポリイミド膜である。
 テトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。また、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸を用いることも好ましい。これらは単独でも、2種以上を組み合わせて用いることもできる。
 これらの中でも、特に、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種の芳香族テトラカルボン酸二無水物が好ましい。ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を好適に用いることができる。
 ジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。
 1)1,4-ジアミノベンゼン(パラフェニレンジアミン)、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン、
 2)4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン、
 3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン、
 4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
 これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
 これらの中でも、芳香族ジアミン化合物が好ましく、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
 多孔質ポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が240℃以上であるか、又は300℃以上で明確な転移点がないテトラカルボン酸二無水物とジアミンとを組み合わせて得られるポリイミドから形成されていることが好ましい。
 本発明の多孔質ポリイミド膜は、耐熱性、高温下での寸法安定性の観点から、以下の芳香族ポリイミドからなる多孔質ポリイミド膜であることが好ましい。
(i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
(ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
(iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
 次に、本発明の多孔質ポリイミド膜の製造方法について説明する。
 本発明の多孔質ポリイミド膜の製造方法は、(A)テトラカルボン酸単位及びジアミン単位からなるポリアミック酸0.3~60質量%と有機極性溶媒40~99.7質量%とからなるポリアミック酸溶液、及び(B)前記ポリアミック酸100質量部に対して0.1~200質量部の、極性基を有する有機化合物を含有するポリアミック酸溶液組成物を、フィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程を含む。ここで、前記の極性基を有する有機化合物(B)は、前記ポリアミック酸溶液組成物のフィルム状流延物に水の浸入を促進させる有機化合物である。
 ポリアミック酸とは、テトラカルボン酸単位及びジアミン単位からなり、ポリイミド前駆体或いはその部分的にイミド化したポリイミド前駆体である。ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを重合することで得ることができる。ポリアミック酸を熱イミド化若しくは化学イミド化することにより、閉環してポリイミドとすることができる。本発明におけるポリイミドは、イミド化率が約80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上であることが好ましい。
 ポリアミック酸を重合するための溶媒としては任意の有機極性溶媒を用いることができ、p-クロロフェノール、o-クロルフェノール、N-メチル-2-ピロリドン(NMP)、ピリジン、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、フェノール、クレゾールなどの有機極性溶媒などを用いることができ、特にN-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)を好ましく用いることができる。テトラカルボン酸二無水物及びジアミンは、上述したものを好ましく用いることができる。
 ポリアミック酸は、テトラカルボン酸二無水物、ジアミン、及び上記の有機極性溶媒などを用いて任意の方法で製造することができる。例えば、テトラカルボン酸二無水物とジアミンと略等モルで、好ましくは約100℃以下、より好ましくは80℃以下、更に好ましくは0~60℃、特に好ましくは20~60℃の温度で、好ましくは約0.2時間以上、より好ましくは0.3~60時間反応させることで、ポリアミック酸溶液を製造することができる。
 ポリアミック酸溶液を製造するときに、分子量を調整する目的で、任意の分子量調整成分を反応溶液に加えてもよい。
 ポリアミック酸の対数粘度(30℃、濃度;0.5g/100mL、溶媒;NMP)は、本発明の多孔質ポリイミド膜が製造できる粘度であればよい。本発明の方法では、前記対数粘度が好ましくは0.3以上、より好ましくは0.5~7であるポリアミック酸を用いることが好ましい。
 ポリアミック酸は、アミック酸の一部がイミド化していても、本発明に影響を及ぼさない範囲であればそれを用いることができる。
 ポリアミック酸溶液(A)は、ポリアミック酸0.3~60質量%と有機極性溶媒40~99.7質量%とからなる。ポリアミック酸の含有量が0.3質量%未満だと多孔質ポリイミド膜を作製した際のフィルム強度が低下し、60質量%を超えると多孔質ポリイミド膜の物質透過性が低下する。ポリアミック酸溶液(A)におけるポリアミック酸の含有量は、好ましくは1~30質量%、より好ましくは2~15質量%、更に好ましくは5~10質量%であり、ポリアミック酸溶液(A)における有機極性溶媒の含有量は、好ましくは70~99質量%、より好ましくは85~98質量%、更に好ましくは90~95質量%である。
 ポリアミック酸溶液(A)は、有機極性溶媒の存在下でテトラカルボン酸二無水物とジアミンを重合反応させて得られる溶液であってもよく、ポリアミック酸を有機極性溶媒に溶解させて得られる溶液であってもよい。
 ポリアミック酸溶液組成物は、ポリアミック酸溶液(A)及び極性基を有する有機化合物(B)を含有する。
 極性基を有する有機化合物(B)は、ポリアミック酸溶液組成物のフィルム状流延物への水の浸入を促進させる有機化合物である。ポリアミック酸溶液組成物のフィルム状流延物への水の浸入を促進させることで、ポリイミド膜中に平均孔径が10~500μmのマクロボイドを形成することができる。
 極性基を有する有機化合物(B)は、ポリアミック酸溶液組成物のフィルム状流延物を凝固浴に浸漬する工程において、ポリアミック酸の凝固が、極性基を有する有機化合物(B)を含有しないポリアミック酸溶液組成物におけるポリアミック酸の凝固過程と比較して促進される効果が認められるものであればよく、特に凝固浴と接触する面から内部へと膜厚み方向に速やかに凝固化を促進する効果を有するものであることが好ましい。したがって、極性基を有する有機化合物(B)は、上記の特性上、ポリアミック酸と反応しないか又は反応しにくい化合物であることが好ましい。
 極性基を有する有機化合物(B)としては、例えば安息香酸、フタル酸などのカルボン酸基を有する有機化合物、水酸基を有する有機化合物、スルホン酸基を有する有機化合物などを用いることができ、これらは単独で、又は2種以上を組み合わせて用いることができる。特に極性基を有する有機化合物としては、安息香酸、フタル酸などのカルボン酸基を有する有機化合物が好ましい。
 ポリアミック酸溶液組成物において、極性基を有する有機化合物(B)の含有量は、マクロボイドの形成の観点から、ポリアミック酸100質量部に対して0.1~200質量部、好ましくは1~150質量部、より好ましくは10~100質量部、更に好ましくは20~70質量部である。
 また、ポリアミック酸溶液組成物は、物質透過性の観点から、更にビニル重合体(C)を含むことが好ましい。ビニル重合体(C)は、下記特徴(C1)~(C4)の少なくとも1つ、好ましくは下記特徴(C1)~(C3)、より好ましくは下記特徴(C1)~(C4)のすべてを備えることが好ましい。
(C1)水、凝固溶媒及び/又は有機極性溶媒に不溶又は難溶であること。
(C2)熱イミド化工程で分解されること。
(C3)ポリアミック酸溶液組成物中にビニル重合体(C)が均質で懸濁していること。
(C4)ポリアミック酸と相溶しないこと。
 ビニル重合体(C)の作用機序については明確でないが、以下のように考えられる。
c1)ポリアミック酸中にビニル重合体(C)が非相溶物として残存する。このビニル重合体(C)の一部または全部は、凝固溶媒に浸漬又は接触させてポリアミック酸の多孔質膜を作製する際において凝固浴中に溶出し、更には加熱イミド化する工程で分解される。その結果、ポリイミド膜のマクロボイド層の隔壁並びに表面層(a)及び(b)において、除去されたビニル重合体(C)が存在していた部分は細孔を形成し、ポリイミド膜の物質透過性が向上する。
及び/又は
c2)ポリアミック酸溶液組成物の凝固を促進するなど、凝固過程に影響を与えることにより、ポリイミド膜の物質透過性が向上する。
 ビニル重合体(C)としては、ポリ酢酸ビニル、ポリスチレン及びポリメチルメタクリレートからなる群から選択される少なくとも一種であることが好ましい。これらは単独で、又は2種以上を組み合わせて用いることができる。
 ポリアミック酸溶液組成物において、ビニル重合体(C)の含有量は、物質透過性の観点から、ポリアミック酸100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~30質量部、更に好ましくは2~20質量部、特に好ましくは3~12質量部である。
 ポリアミック酸溶液組成物にビニル重合体(C)を添加する場合には、ビニル重合体(C)は、原体そのままで、又は溶解溶液もしくは懸濁溶液などの形態で添加することができる。
 なお、ポリアミック酸溶液組成物の製造の際に、溶液が懸濁状になる場合があるが、十分な時間をかけて撹拌することで均質な状態を保つことができれば、本発明のポリイミドの製造に用いることができる。
 また、ポリアミック酸溶液組成物の溶液粘度は、流延のしやすさ及びフィルム強度の観点から、好ましくは10~10000ポアズ(1~1000Pa・s)、より好ましくは100~3000ポアズ(10~300Pa・s)、更に好ましくは200~2000ポアズ(20~200Pa・s)、特に好ましくは300~1000ポアズ(30~100Pa・s)である。
(流延)
 本発明の多孔質ポリイミドの製造方法では、まず、ポリアミック酸溶液組成物を、フィルム状に流延する。流延方法は特に限定されず、例えば、ポリアミック酸溶液組成物をドープ液として使用し、ブレードやTダイなどを用いてガラス板やステンレス板等の上に、ポリアミック酸溶液組成物をフィルム状に流延することができる。また、連続の可動式のベルト上に、ポリアミック酸溶液組成物をフィルム状に断続的又は連続的に流延して、連続的に個片又は長尺状の流延物を製造することができる。ベルトは、ポリアミック酸溶液組成物及び凝固溶液に影響を受けないものであればよく、ステンレスなどの金属製、ポリテトラフルオロエチレンなどの樹脂製を用いることができる。また、Tダイからフィルム状に成形したポリアミック酸溶液組成物をそのまま凝固浴に投入することもできる。また、必要に応じて流延物の片面又は両面を、水蒸気などを含むガス(空気、不活性ガスなど)と接触させてもよい。
(ポリアミック酸の多孔質膜の作製)
 次に、流延物を、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸を析出させて多孔質化を行うことで、ポリアミック酸の多孔質膜を作製する。得られたポリアミック酸の多孔質膜は、必要に応じて洗浄及び/又は乾燥を行う。
 水を必須成分とする凝固溶媒は、水、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液を用いることができる。火災などの安全面、製造原価、及び得られる膜の均質性の確保の観点から、水と有機極性溶媒とを含む凝固溶媒を用いることが好ましい。凝固溶媒に含有してもよい有機極性溶媒としては、ポリアミック酸の貧溶媒であるエタノール、メタノール等のアルコ-ル類、アセトン等が挙げられる。
 凝固溶媒が水と有機極性溶媒との混合液である場合、凝固溶媒100質量%中の水の含有量は、好ましくは5質量%以上100質量%未満、より好ましくは20質量%以上100質量%未満、更に好ましくは30~95質量%、特に好ましくは45~90質量%である。凝固溶媒100質量%中の有機極性溶媒の含有量は、好ましくは0質量%を超え95質量%以下、より好ましくは0質量%を超え80質量%以下、更に好ましくは5~70質量%、特に好ましくは10~55質量%である。
 凝固溶媒の温度は、目的に応じて適宜選択して用いればよく、例えば-30~70℃、好ましくは0~60℃、さらに好ましくは10~50℃の範囲で行うことが好ましい。
(イミド化)
 次に、得られたポリアミック酸の多孔質膜を熱処理してイミド化して多孔質ポリイミド膜を製造する。イミド化としては、熱イミド化処理、化学イミド化処理等を挙げることができる。
 熱イミド化処理は、例えば、ポリアミック酸の多孔質膜を、ピン、チャック若しくはピンチロールなどを用いて熱収縮により平滑性が損なわれないように支持体に固定し、大気中にて加熱することにより行うことができる。反応条件は、例えば280~600℃、好ましくは350~550℃の加熱温度で、5~120分間、好ましくは6~60分間の加熱時間から適宜選択して行うことが好ましい。
 なお、ビニル重合体(C)を含むポリアミック酸溶液組成物を用いる場合には、ポリアミック酸の多孔質膜をビニル重合体(C)の熱分解開始温度以上に加熱して熱イミド化することが好ましい。ビニル重合体(C)の熱分解開始温度は、例えば、熱重量測定装置(TGA)を用いて、空気中、10℃/分の条件で測定することができる。
 化学イミド化処理は、脂肪族酸無水物、芳香族酸無水物を脱水剤として用い、トリエチルアミン等の第三級アミンを触媒として行われる。また、特開平4-339835号公報の記載を参照してもよく、イミダール、ベンズイミダゾール、もしくはそれらの置換誘導体を用いてもよい。
 本発明の多孔質ポリイミド膜は、ポリアミック酸溶液或いはポリイミド溶液を介して製造する場合、用いるポリマーの種類、ポリマー溶液のポリマー濃度、粘度、有機溶液など、凝固条件(溶媒置換速度調整層の種類、温度、凝固溶媒など)などを適宜選択することにより、空孔率、膜厚、表面の平均孔径、最大孔径、中央部の平均孔径などを適宜設計することができる。
 本発明の多孔質ポリイミド膜は、目的に応じて少なくとも片面をコロナ放電処理、低温プラズマ放電或いは常圧プラズマ放電などのプラズマ放電処理、化学エッチングなどを施すことにより、膜の表面処理を行ってもよい。また、表面層(a)及び/又は(b)を面削りして用いてもよい。これらの処理により膜の物質透過性、表面孔径、濡れ性を制御することができる。
 多孔質ポリイミドは、気体などの物質透過性に優れるために、気体用フィルタ、液体用フィルタ、通気部品などの用途に好適に用いることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(多孔質ポリイミド膜の評価)
1)膜厚
 膜厚みの測定は、接触式の厚み計で行った。
2)気体透過性
 ガーレー値(0.879g/m2の圧力下で100ccの空気が膜を透過するのに要する秒数)の測定は、JIS P8117に準拠して行った。
3)寸法安定性
 寸法安定性の測定は、200℃で2時間の条件で、ASTM D1204に準拠して行った。
4)表面の平均孔径
 多孔質フィルム表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めた。
Figure JPOXMLDOC01-appb-M000001
(式中、Saは孔面積の平均値を意味する。)
5)表面の最大孔径
 多孔質フィルム表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積から孔の形状が真円であるとした際の直径を計算し、その最大値を最大孔径とした。
6)空孔率
 所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から空孔率を下式(2)によって求めた。
Figure JPOXMLDOC01-appb-M000002
(式中、Sは多孔質フィルムの面積、dは膜厚、wは測定した質量、Dはポリイミドの密度をそれぞれ意味する。ポリイミドの密度は1.34g/cm3とする。)
7)ガラス転移温度(℃)
 固体粘弾性アナライザーを用いて、引張モード、周波数10Hz、ひずみ2%、窒素ガス雰囲気の条件で動的粘弾性測定を行い、その温度分散プロファイルにおいて損失正接が極大値を示す温度をガラス転移温度とした。
8)溶液粘度
 溶液粘度の測定は、E型回転粘度計で行った。以下に測定手順を示す。
(i)参考例で調製したポリアミック酸溶液を密閉容器に入れ、30℃の恒温槽に10時間保持した。
(ii)E型粘度計(東京計器製、高粘度用(EHD型)円錐平板型回転式、コーンローター:1°34’)を用い、(i)で準備したポリアミック酸溶液を測定溶液として、温度30±0.1℃の条件で測定した。3回測定を行い、平均値を採用した。測定点に5%以上のばらつきがあった場合は、さらに2回の測定を行い5点の平均値を採用した。
9)250℃、15分で、0.5MPaの圧縮応力負荷試験
 測定する膜を3cm角の正方形に切り出し、格子状に9点にマジックで目印を付け接触式の厚み計で膜厚みを測定した。次に、平行度±10μm未満、温度分布±1℃の圧縮盤である高精度ホットプレスを用いて、測定対象膜を250℃、15分、0.5MPaの条件で圧縮した。続いて、膜を室温のSUS板の上に30分間静置した後に、接触式の膜厚み計で目印部分の膜厚みを測定した。9点での圧縮前後の膜厚みの変化率を下式(3)によって求めた。9点の平均値を膜厚み変化率とした。
Figure JPOXMLDOC01-appb-M000003
参考例1
(ポリアミック酸溶液組成物Aの調製)
 500mlのセパラブルフラスコに、N-メチル-2-ピロリドン(NMP)を溶媒として用いて、酸無水物として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を、ジアミンとして1,4-ビス(4-アミノフェニル)ベンゼン(TPE-Q)を、モル比がほぼ1、ポリマー濃度が6質量%になる量を測り取って投入した。その後、撹拌羽、窒素導入管、排気管を取り付けたセパラブルカバーで蓋をし、撹拌を開始した。23時間後、安息香酸をポリアミック酸100質量部に対して30質量部の量を、3,3’、4,4’-ビフェニルテトラカルボン酸をポリアミック酸100質量部に対して1質量部の量をそれぞれフラスコ内に添加し、撹拌操作を継続した。さらに25時間後、ポリ酢酸ビニル50質量%含有酢酸エチル溶液をポリアミック酸100質量部に対して10質量部の量(ポリアミック酸100質量部に対して、ポリ酢酸ビニル5質量部に相当)をフラスコ内に添加して撹拌操作を継続した。38時間後に撹拌を終了し、フラスコ内のドープを加圧ろ過器(濾紙:アドバンテック東洋(株)製:粘稠液用濾紙No.60)でろ過して、ポリアミック酸溶液組成物Aを得た。溶液組成物Aは粘稠な懸濁液体で、粘度は540ポアズ(54Pa・s)(25℃)であった。
参考例2~9
(ポリアミック酸溶液組成物B~Iの調製)
 酸成分、ジアミン成分、安息香酸及びポリ酢酸ビニルの添加量、並びにポリマー濃度を表1に示すように変更したこと以外は参考例1と同様にして、ポリアミック酸溶液組成物B~Iを得た。溶液組成物B~Iは粘稠な懸濁液体であった。
 表1中、参考例6~9の調製で用いたジアミン成分「ODA」は、4,4’-ジアミノジフェニルエーテルを意味する。
参考例10~14
(ポリアミック酸溶液組成物J~Nの調製)
 安息香酸を添加せず、かつ、酸成分、ジアミン成分、及びポリ酢酸ビニルの添加量、並びにポリマー濃度を表1に示すように変更したこと以外は参考例1と同様にして、ポリアミック酸溶液組成物J~Nを得た。溶液組成物J~Nは粘稠な懸濁液体であった。
実施例1
 室温下で、卓上の自動コーターを用いて、表面に鏡面研磨を施したステンレス製の20cm角の基板上に、参考例1で調製したポリアミック酸溶液組成物Aを厚さ約150μmで、均一に流延塗布した。その後、90秒間、温度23℃、湿度40%の大気中に放置し、その後、凝固浴(水80質量部/NMP20質量部、室温)中に基板全体を投入した。投入後、8分間静置し、基板上にポリアミック酸膜を析出させた。その後、基板を浴中から取りだし、基板上に析出したポリアミック酸膜を剥離した後に、純水中に3分間浸漬し、ポリアミック酸膜を得た。このポリアミック酸膜を温度23℃、湿度40%の大気中で乾燥させた後、10cm角のピンテンタ-に張りつけて電気炉内にセットした。約10℃/分の昇温速度で360℃まで加熱し、そのまま10分間保持する温度プロファイルで熱処理を行い、多孔質ポリイミド膜を得た。
 得られた多孔質ポリイミド膜は、膜厚みが49μm、空孔率が76%、ガーレー値が25秒であった。結果を表2に示す。
 多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、膜横方向の長さ10μm以上のマクロボイドが多数確認でき、
・横方向の長さ5μm以上のボイド中、横方向の長さ(L)と膜厚み方向の長さ(d)との比がL/d=0.5~3の範囲に入るボイドの数が75%以上であることを確認できた。
・膜横方向の長さ10μm以上のマクロボイドを多数有し、その断面積が総断面積の75%以上であること確認できた。
 多孔質ポリイミド膜のガラス転移温度は、約290℃であり、寸法安定性は200℃で1%以内であった。250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率は、1%以下であった。
 また、多孔質ポリイミド膜の表面を走査型電子顕微鏡で観察したところ、基板側の表面には連通する孔を多数有する多孔質構造であり、表面の平均孔径が0.18μmであり、最大孔径が10μm以下であることを確認した。
実施例2~11
 ポリマー溶液の種類及び凝固浴の組成を表2に示したように変更したこと以外は実施例1と同様にして、多孔質ポリイミド膜を得た。
 得られた多孔質ポリイミド膜についてそれぞれ、膜厚、空孔率及び透気度(ガーレー値)を測定した。結果を表2に示す。
 多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、すべて複数のマクロボイドが確認でき、
・横方向の長さ5μm以上のボイド中、横方向の長さ(L)と膜厚み方向の長さ(d)との比がL/d=0.5~3の範囲に入るボイドの数が75%以上であることを確認できた。
・横方向の長さ10μm以上のボイドの断面積が総断面積の70%以上であること確認できた。
 多孔質ポリイミド膜は、寸法安定性が200℃で1%以内であり、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率は、0.8%以下であった。
実施例12
 参考例9で調製したポリアミック酸溶液組成物Iを厚さ約350μmで、均一に流延塗布したこと以外は実施例1と同様にして、多孔質ポリイミド膜を得た。
 得られた多孔質ポリイミド膜についてそれぞれ、膜厚、空孔率及び透気度(ガーレー値)を測定した。結果を表2に示す。
 多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、膜横方向の長さ200μm以上のマクロボイドが多数確認でき、
・横方向の長さ5μm以上のボイド中、横方向の長さ(L)と膜厚み方向の長さ(d)との比がL/d=0.5~3の範囲に入るボイドの数が75%以上であることを確認できた。
・膜横方向の長さ200μm以上のマクロボイドを多数有し、その断面積が総断面積の75%以上であること確認できた。
 多孔質ポリイミド膜のガラス転移温度は、約285℃であり、寸法安定性は200℃で1%以内であった。250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率は、1%以下であった。
 また、多孔質ポリイミド膜の表面を走査型電子顕微鏡で観察したところ、基板側の表面には連通する孔を多数有する多孔質構造であり、表面の平均孔径が0.38μmであり、最大孔径が10μm以下であることを確認した。
 実施例1~12で得られた多孔質ポリイミド膜について、それぞれ走査型電子顕微鏡及び光学顕微鏡を用いて膜の表面及び断面を観察した。これらを代表して、実施例4、7、9及び12で得られた多孔質ポリイミド膜の走査型電子顕微鏡写真を図5~12及び14~18に示す。また、実施例8で得られた多孔質ポリイミド膜の光学顕微鏡写真を図13に示す。その他の実施例で得られた多孔質ポリイミド膜の表面及び断面も、これらの実施例と同様であった。
 実施例4で得られた多孔質ポリイミド膜の走査型電子顕微鏡写真を図5~図8に示す。図5はステンレス製基板とは反対側の空気側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(10000倍)であり、図6はステンレス製基板側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(10000倍)であり、図7は側面断面の走査型電子顕微鏡写真(250倍)であり、図8は図7の拡大写真(2000倍)である。
 図5から明らかなように、空気側表面には、直径が0.3μm以下の多数の孔が観察できた。また、図6から明らかなように、基板側表面には、0.1μm程度から5μm程度までの多数の孔が観察できた。また、図7から明らかなように、空気側表面の層及び基材側表面の層、並びに両表面を支持しかつマクロボイドを隔てる隔壁が形成されており、両表面と隔壁(支持部)とがほとんどラダー状に結合していることが観察できた。なお、図7中、上側が空気側表面の層であり、下側が基材側表面の層である。図7は、ポリイミド膜の断面を斜め上方から撮影したものであり、図中上部の白い部分は、ポリイミド膜の空気側表面の層の断面及び表面を表す。両表面と支持部とに挟まれた空間(マクロボイド)は、幅がほとんど10μm以上であり、横方向の長さがほとんど10μm以上であることが観察できた。更に、図8から明らかなように、空気側表面の層の断面、基材側表面の層の断面及び支持部の断面のすべてが多孔構造であり、それぞれには多数の細孔が形成されていることが観察できた。
 実施例7で得られた多孔質ポリイミド膜の走査型電子顕微鏡写真を図9~図12に示す。図9はステンレス製基板とは反対側の空気側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(10000倍)であり、図10はステンレス製基板側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(10000倍)であり、図11は側面断面の走査型電子顕微鏡写真(250倍)であり、図12は図11の拡大写真(2000倍)である。
 図9から明らかなように、空気側表面には、直径が0.3μm以下の多数の孔が観察できた。また、図10から明らかなように、基板側表面には、0.1μm程度から5μm程度までの多数の孔が観察できた。また、図11から明らかなように、空気側表面の層及び基材側表面の層、並びに両表面を支持しかつマクロボイドを隔てる隔壁が形成されており、両表面と隔壁(支持部)とがほとんどラダー状に結合していることが観察できた。なお、図11中、上側が空気側表面の層であり、下側が基材側表面の層である。図11は、ポリイミド膜の断面を斜め上方から撮影したものであり、図中上部の白い部分は、ポリイミド膜の空気側表面の層の断面及び表面を表す。両表面と支持部とに挟まれた空間(マクロボイド)は、幅がほとんど10μm以上であり、横方向の長さがほとんど10μm以上であることが観察できた。更に、図12から明らかなように、空気側表面の層の断面、基材側表面の層の断面及び支持部の断面の全てが多孔構造であり、それぞれには多数の細孔が形成されていることが観察できた。
 実施例8で得られた多孔質ポリイミド膜の光学顕微鏡写真を図13に示す。図13は、実施例8で得られた多孔質ポリイミド膜について、空気側表面から基板側表面に光を透過して撮影した光学顕微鏡写真(200倍)である。
 図13から明らかなように、ポリイミド膜中には、ハニカム構造またはそれに類似する構造で複数のマクロボイドが配列していることが観察できた。
 実施例9で得られた多孔質ポリイミド膜の走査型電子顕微鏡写真を図14~図17に示す。
 図14はステンレス製基板とは反対側の空気側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(1000倍)であり、図15はステンレス製基板側の多孔質ポリイミド膜の表面の走査型電子顕微鏡写真(10000倍)であり、図16は側面断面の走査型電子顕微鏡写真(250倍)であり、図17は図16の拡大写真(2000倍)である。
 図14から明らかなように、空気側表面には、多数の孔が存在することが観察できた。また、図15から明らかなように、基板側表面には、0.1μm程度から5μm程度までの多数の孔が観察できた。また、図16から明らかなように、空気側表面の層及び基材側表面の層、並びに両表面を支持しかつマクロボイドを隔てる隔壁が形成されており、両表面と隔壁(支持部)とがほとんどラダー状に結合していることが観察できた。なお、図15中、上側が空気側表面の層であり、下側が基材側表面の層である。両表面と支持部とに挟まれた空間(ボイド)の幅はほとんどが10μm以上であることが確認できた。更に、図17から明らかなように、空気側表面の層の断面、基材側表面の層の断面及び支持部の断面の全てが多孔構造であり、それぞれには多数の細孔が形成されていることが観察できた。
 実施例12で得られた多孔質ポリイミド膜の走査型電子顕微鏡写真を図18に示す。
 図18は側面断面の走査型電子顕微鏡写真(50倍)である。図18から明らかなように、空気側表面の層及び基材側表面の層、並びに両表面を支持しかつマクロボイドを隔てる隔壁が形成されており、両表面と隔壁(支持部)とがほとんどラダー状に結合していることが観察できた。両表面と支持部とに挟まれた空間(ボイド)の幅はほとんどが200μm以上であることが確認できた。
比較例1~7
 ポリマー溶液の種類及び凝固浴の組成を表2に示したように変更したこと以外は実施例1と同様にして、多孔質ポリイミド膜を得た。
 得られた多孔質ポリイミド膜についてそれぞれ、膜厚、空孔率及び透気度(ガーレー値)を測定した。結果を表2に示す。
 比較例1~7で得られた多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、いずれも2つの表面層及びそれに挟まれたマクロボイド層という三層構造が存在せず、また、マクロボイドがほとんど存在していないことが観察できた。
 これらを代表して、比較例3及び比較例5で得られた多孔質ポリイミド膜の断面の走査型電子顕微鏡写真を図19及び図20に示す。図19の顕微鏡写真の倍率は2000倍であり、図20の顕微鏡写真の倍率は1000倍である。
 図19から明らかなように、比較例3で得られた多孔質ポリイミド膜は、膜断面全体に細孔が形成されており、マクロボイドがほとんど存在していないことが観察できた。また、2つの表面層及びそれに挟まれたマクロボイド層が存在していないことも観察できた。膜平面方向の長さ10μm以上のボイドは数個確認できた。しかし、そのボイドの断面積は膜断面積の50%未満であった。また、図20から明らかなように、比較例5で得られた多孔質ポリイミド膜も、膜断面全体に細孔が形成されており、マクロボイドがほとんど存在していないことが観察できた。また、2つの表面層及びそれに挟まれたマクロボイド層が存在していないことも観察できた。また、膜平面方向の長さ10μm以上のボイドがないことも観察できた。
 なお、その他の比較例で得られた多孔質ポリイミド膜の断面も、これらの比較例と同様であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
比較例8及び9
 市販のポリテトラフルオロエチレン(PTFE)不織布、及びメンブレンフィルタ(ミリポア社製、商品名:OMNIPORE、フィルタタイプ:10μmJC)について、250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率を測定した。膜厚み変化率はそれぞれ、52%、78%であった。
 本発明の多孔質ポリイミドは、気体などの物質透過性に優れ、気体用フィルタ、液体用フィルタ、通気部品などの用途に好適に用いることができる。
 1  多孔質ポリイミド膜
 2  表面層(a)
 25 細孔
 3  マクロボイド層
 31 マクロボイド
 32 隔壁(支持部)
 35 細孔
 4  表面層(b)
 45 細孔

Claims (14)

  1.  2つの表面層(a)及び(b)と、当該表面層(a)及び(b)の間に挟まれたマクロボイド層とを有する三層構造の多孔質ポリイミド膜であって、
     前記マクロボイド層は、前記表面層(a)及び(b)に結合した隔壁と、当該隔壁並びに前記表面層(a)及び(b)に囲まれた、膜平面方向の平均孔径が10~500μmである複数のマクロボイドとを有し、
     前記のマクロボイド層の隔壁、並びに前記表面層(a)及び(b)はそれぞれ、厚さが0.1~50μmであり、平均孔径0.01~5μmの複数の細孔を有し、当該細孔同士が連通し更に前記マクロボイドに連通しており、
     総膜厚が5~500μmであり、空孔率が70~95%である、多孔質ポリイミド膜。
  2.  前記マクロボイド層は、前記表面層(a)側及び/又は前記表面層(b)側から観察して、膜平面方向の平均孔径が10~500μmである複数のマクロボイドを有している、請求項1に記載の多孔質ポリイミド膜。
  3.  前記のマクロボイド層の隔壁、並びに前記表面層(a)及び(b)の厚さが略同一である、請求項1又は2に記載の多孔質ポリイミド膜。
  4.  ガーレー値が100秒以下である、請求項1~3のいずれかに記載の多孔質ポリイミド膜。
  5.  250℃、15分、0.5MPaの圧縮応力負荷後の膜厚み変化率が5%以下である、請求項1~4のいずれかに記載の多孔質ポリイミド膜。
  6.  前記多孔質ポリイミド膜を膜平面方向に対して垂直に切断したときの断面において、膜平面方向の平均孔径が10~500μmのマクロボイドの断面積が膜断面積の50%以上である、請求項1~5のいずれかに記載の多孔質ポリイミド膜。
  7.  前記多孔質ポリイミド膜を膜平面方向に対して垂直に切断したときの断面において、前記マクロボイドの60%以上が、膜平面方向の長さ(L)と膜厚み方向の長さ(d)との比(L/d)が0.5~3の範囲内にある、請求項1~6のいずれかに記載の多孔質ポリイミド膜。
  8.  ガラス転移温度が、240℃以上であるか、又は300℃以上で明確な転移点がない、請求項1~7のいずれかに記載の多孔質ポリイミド膜。
  9.  請求項1~8のいずれかに記載の多孔質ポリイミド膜の製造方法であって、
    (A)テトラカルボン酸単位及びジアミン単位からなるポリアミック酸0.3~60質量%と有機極性溶媒40~99.7質量%とからなるポリアミック酸溶液、及び(B)前記ポリアミック酸100質量部に対して0.1~200質量部の、極性基を有する有機化合物を含有するポリアミック酸溶液組成物を、フィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製する工程、及び
     前記工程で得られたポリアミック酸の多孔質膜を熱処理してイミド化する工程
    を含み、前記の極性基を有する有機化合物(B)が、前記ポリアミック酸溶液組成物のフィルム状流延物に水の浸入を促進させる有機化合物である、多孔質ポリイミド膜の製造方法。
  10.  前記ポリアミック酸が、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種のテトラカルボン酸二無水物と、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンとから得られる、請求項9に記載の多孔質ポリイミド膜の製造方法。
  11.  前記の極性基を有する有機化合物(B)が安息香酸である、請求項9又は10に記載の多孔質ポリイミド膜の製造方法。
  12.  前記ポリアミック酸溶液組成物が、更に、前記ポリアミック酸100質量部に対して0.1~100質量部のビニル重合体(C)を含む、請求項9~11のいずれかに記載の多孔質ポリイミド膜の製造方法。
  13.  前記ビニル重合体(C)が、ポリ酢酸ビニル、ポリスチレン及びポリメチルメタクリレートからなる群から選択される少なくとも1種である、請求項12に記載の多孔質ポリイミド膜の製造方法。
  14.  前記の水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液である、請求項9~13のいずれかに記載の多孔質ポリイミド膜の製造方法。
PCT/JP2009/067266 2008-10-02 2009-10-02 多孔質ポリイミド膜及びその製造方法 WO2010038873A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801427317A CN102203174B (zh) 2008-10-02 2009-10-02 多孔质聚酰亚胺膜及其制造方法
US13/121,830 US8420211B2 (en) 2008-10-02 2009-10-02 Porous polyimide membrane and process for production of same
EP09817905.4A EP2354180B1 (en) 2008-10-02 2009-10-02 Porous polyimide membrane and process for production of same
KR1020117007524A KR101680391B1 (ko) 2008-10-02 2009-10-02 다공질 폴리이미드막 및 그의 제조 방법
JP2010531932A JP5636960B2 (ja) 2008-10-02 2009-10-02 多孔質ポリイミド膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257805 2008-10-02
JP2008-257805 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038873A1 true WO2010038873A1 (ja) 2010-04-08

Family

ID=42073630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067266 WO2010038873A1 (ja) 2008-10-02 2009-10-02 多孔質ポリイミド膜及びその製造方法

Country Status (6)

Country Link
US (1) US8420211B2 (ja)
EP (1) EP2354180B1 (ja)
JP (1) JP5636960B2 (ja)
KR (1) KR101680391B1 (ja)
CN (1) CN102203174B (ja)
WO (1) WO2010038873A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011219585A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法
JP2011219586A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法
JP2014517507A (ja) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド ポリイミド系キャパシタ電池及びその製造方法
JP2014132057A (ja) * 2013-01-07 2014-07-17 Unitika Ltd ポリイミド多孔質フィルムおよびその用途
JP2014180787A (ja) * 2013-03-18 2014-09-29 Ube Ind Ltd 積層体および積層体の製造方法
WO2015012415A1 (ja) 2013-07-26 2015-01-29 宇部興産株式会社 細胞の培養方法、細胞培養装置及びキット
JP2015199844A (ja) * 2014-04-09 2015-11-12 ユニチカ株式会社 多孔質ポリイミドおよびその製造方法
WO2016121768A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 物質の産生方法
WO2016121767A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 ポリイミド多孔質膜を用いる細胞の長期培養、及びポリイミド多孔質膜を用いる細胞の凍結保存方法
WO2016121771A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜
WO2016121775A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 細胞の培養方法及びキット
JP2016194025A (ja) * 2015-04-02 2016-11-17 宇部興産株式会社 ポリイミドフィルムの製造方法
KR20170093983A (ko) 2015-01-26 2017-08-16 우베 고산 가부시키가이샤 폴리이미드 다공질막을 이용하는 세포의 대량 배양 방법, 장치 및 키트
WO2018021359A1 (ja) 2016-07-25 2018-02-01 宇部興産株式会社 サイフォン式培養法
WO2018021357A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 幹細胞の分化を抑制する方法、幹細胞を調製する方法、及び幹細胞を分化誘導する方法
WO2018021356A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜
WO2018020746A1 (ja) * 2016-07-25 2018-02-01 日東電工株式会社 多孔質の低誘電性ポリマーフィルム及びミリ波アンテナ用フィルム
WO2018021366A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 細胞の調製方法、細胞培養装置及びキット
JP2018024262A (ja) * 2017-11-20 2018-02-15 宇部興産株式会社 積層体および積層体の製造方法
JP2018027705A (ja) * 2017-11-20 2018-02-22 宇部興産株式会社 積層体および積層体の製造方法
WO2018174186A1 (ja) 2017-03-23 2018-09-27 宇部興産株式会社 神経幹細胞の分化を抑制する方法、神経幹細胞を調製する方法、及び神経幹細胞を分化誘導する方法
WO2021029409A1 (ja) 2019-08-09 2021-02-18 宇部興産株式会社 小片多孔膜を適用した細胞培養法
WO2021029408A1 (ja) 2019-08-09 2021-02-18 宇部興産株式会社 エクソソームの産生方法
US11932841B2 (en) 2016-07-25 2024-03-19 Ube Corporation Cell cultivation module

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354131A1 (en) 2010-02-02 2011-08-10 Momentive Specialty Chemicals Research Belgium Process for the manufacture of a 1,2-epoxide and a device for carrying out said process
US11127964B2 (en) 2010-07-28 2021-09-21 Nanyang Technological University Method for preparing a porous polyimide film and a composite membrane comprising the same
KR101478301B1 (ko) 2011-08-30 2014-12-31 주식회사 엘지화학 고분자 수지 조성물, 폴리이미드 수지 필름, 폴리이미드 수지 필름의 제조 방법, 금속 적층체 및 회로 기판
CN102582138B (zh) * 2012-01-18 2015-05-27 桂林电器科学研究院有限公司 多层结构多孔化聚酰亚胺薄膜及其制造方法
JP6036809B2 (ja) * 2012-03-29 2016-11-30 宇部興産株式会社 ポリイミドフィルムの製造方法およびポリイミドフィルム
US10763480B2 (en) 2014-03-14 2020-09-01 Tokyo Ohka Kogyo Co., Ltd. Porous separator for secondary batteries and secondary battery using same
CN105322118A (zh) * 2014-07-16 2016-02-10 中国科学院青岛生物能源与过程研究所 一种耐高温锂离子电池隔膜及其制备工艺
KR101805373B1 (ko) 2014-12-24 2017-12-05 유니티카 가부시끼가이샤 다공질 폴리이미드 필름 및 그의 제조 방법
US9707722B2 (en) * 2015-03-26 2017-07-18 Fuji Xerox Co., Ltd. Method for producing porous polyimide film, and porous polyimide film
CN109496232A (zh) * 2016-07-25 2019-03-19 宇部兴产株式会社 细胞的制备方法、细胞培养装置和试剂盒
CN110026090B (zh) * 2017-12-05 2022-11-25 旭化成株式会社 多孔膜
CN108329689B (zh) * 2018-03-08 2020-09-15 哈尔滨理工大学 一种低介电常数聚酰亚胺多孔薄膜及其制备方法
CN108864473B (zh) * 2018-07-04 2021-07-16 东华大学 超轻隔热可回弹聚酰亚胺纳米纤维气凝胶及其制备方法
US11149636B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11149634B2 (en) 2019-03-01 2021-10-19 Richard Alan Callahan Turbine powered electricity generation
US11994063B2 (en) 2019-10-16 2024-05-28 Richard Alan Callahan Turbine powered electricity generation
CN111154336B (zh) * 2020-01-03 2021-05-07 中国科学院兰州化学物理研究所 一种多孔聚酰亚胺墨水及其制备方法以及一种直书写3d打印制备多孔聚酰亚胺的方法
KR102552701B1 (ko) * 2021-04-22 2023-07-05 전주대학교 산학협력단 다공성 폴리이미드막 및 이의 제조 방법
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339835A (ja) 1990-11-27 1992-11-26 Ube Ind Ltd 芳香族ポリイミドフィルムの製造法
JPH1085571A (ja) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc 分離膜
JPH11310658A (ja) 1998-04-27 1999-11-09 Ube Ind Ltd ポリイミド多孔膜及び製造方法
JP2003038942A (ja) * 2001-07-31 2003-02-12 Dainippon Ink & Chem Inc 分離膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209611A (ja) * 1983-05-12 1984-11-28 Nitto Electric Ind Co Ltd 中空糸状膜及びその製造方法
JP2003201363A (ja) 2002-01-09 2003-07-18 Hitachi Ltd 多孔質ポリイミドフィルムとその配線基板及びその製造法並びにその用途
US20050118479A1 (en) * 2002-03-07 2005-06-02 Takeo Yamaguchi Electrolyte film and solid polymer fuel cell using the same
US6913517B2 (en) * 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
WO2005030849A1 (ja) * 2003-09-25 2005-04-07 Daicel Chemical Industries, Ltd. 耐薬品性を有する多孔性フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339835A (ja) 1990-11-27 1992-11-26 Ube Ind Ltd 芳香族ポリイミドフィルムの製造法
JPH1085571A (ja) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc 分離膜
JPH11310658A (ja) 1998-04-27 1999-11-09 Ube Ind Ltd ポリイミド多孔膜及び製造方法
JP2003038942A (ja) * 2001-07-31 2003-02-12 Dainippon Ink & Chem Inc 分離膜

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346927B2 (en) 2009-10-09 2016-05-24 Ube Industries, Ltd. Colored polyimide molded article, and process for production thereof
US9902824B2 (en) 2009-10-09 2018-02-27 Ube Industries, Ltd. Colored polyimide molded article, and process for production thereof
WO2011043467A1 (ja) * 2009-10-09 2011-04-14 宇部興産株式会社 着色ポリイミド成形体及びその製造方法
WO2011125988A1 (ja) * 2010-04-07 2011-10-13 宇部興産株式会社 多孔質ポリイミド膜及びその製造方法
JP2011219585A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法
JP2011219586A (ja) * 2010-04-07 2011-11-04 Ube Industries Ltd 多孔質ポリイミド膜及びその製造方法
US8980421B2 (en) 2010-04-07 2015-03-17 Ube Industries, Ltd. Porous polyimide membrane and process for production thereof
JP2014517507A (ja) * 2011-04-29 2014-07-17 シェンジェン ハイフューチャー エレクトリック カンパニー リミテッド ポリイミド系キャパシタ電池及びその製造方法
JP2014132057A (ja) * 2013-01-07 2014-07-17 Unitika Ltd ポリイミド多孔質フィルムおよびその用途
JP2014180787A (ja) * 2013-03-18 2014-09-29 Ube Ind Ltd 積層体および積層体の製造方法
WO2015012415A1 (ja) 2013-07-26 2015-01-29 宇部興産株式会社 細胞の培養方法、細胞培養装置及びキット
JPWO2015012415A1 (ja) * 2013-07-26 2017-03-02 宇部興産株式会社 細胞の培養方法、細胞培養装置及びキット
US9868933B2 (en) 2013-07-26 2018-01-16 Ube Industries, Ltd. Cell culturing method, cell culturing apparatus and kit comprising a porous polyimide film
JP2015199844A (ja) * 2014-04-09 2015-11-12 ユニチカ株式会社 多孔質ポリイミドおよびその製造方法
US10508264B2 (en) 2015-01-26 2019-12-17 Ube Industries, Ltd. Cell culture method using bone marrow-like structure, and porous polyimide film for healing bone injury site
US10590388B2 (en) 2015-01-26 2020-03-17 Ube Industries, Ltd. Cell culture method using bone marrow-like structure, and porous polyimide film for healing bone injury site
WO2016121775A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 細胞の培養方法及びキット
KR20170093250A (ko) 2015-01-26 2017-08-14 우베 고산 가부시키가이샤 폴리이미드 다공질막을 이용하는 세포의 장기 배양, 및 폴리이미드 다공질막을 이용하는 세포의 동결 보존 방법
KR20170093251A (ko) 2015-01-26 2017-08-14 우베 고산 가부시키가이샤 세포의 배양 방법 및 키트
KR20170093983A (ko) 2015-01-26 2017-08-16 우베 고산 가부시키가이샤 폴리이미드 다공질막을 이용하는 세포의 대량 배양 방법, 장치 및 키트
KR20170098922A (ko) 2015-01-26 2017-08-30 우베 고산 가부시키가이샤 물질의 생산 방법
JPWO2016121775A1 (ja) * 2015-01-26 2017-09-21 宇部興産株式会社 細胞の培養方法及びキット
JPWO2016121768A1 (ja) * 2015-01-26 2017-10-19 宇部興産株式会社 物質の産生方法
JPWO2016121767A1 (ja) * 2015-01-26 2017-11-24 宇部興産株式会社 ポリイミド多孔質膜を用いる細胞の長期培養、及びポリイミド多孔質膜を用いる細胞の凍結保存方法
JPWO2016121771A1 (ja) * 2015-01-26 2017-12-07 宇部興産株式会社 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜
WO2016121771A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 骨髄類似構造を利用した細胞培養法、及び骨損傷部位の治療のためのポリイミド多孔質膜
US10982186B2 (en) 2015-01-26 2021-04-20 Ube Industries, Ltd. Cell culturing method and kit
US10738277B2 (en) 2015-01-26 2020-08-11 Ube Industries, Ltd. Cell culturing method and kit
US10696943B2 (en) 2015-01-26 2020-06-30 Ube Industries, Ltd. Method, device and kit for mass cultivation of cells using polyimide porous membrane
US10626365B2 (en) 2015-01-26 2020-04-21 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
US10519478B2 (en) 2015-01-26 2019-12-31 Ube Industries, Ltd. Method of producing substance
KR102059248B1 (ko) * 2015-01-26 2019-12-24 우베 고산 가부시키가이샤 세포의 배양 방법 및 키트
WO2016121768A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 物質の産生方法
US10479974B2 (en) 2015-01-26 2019-11-19 Ube Industries, Ltd. Method, device and kit for mass cultivation of cells using polyimide porous membrane
WO2016121767A1 (ja) * 2015-01-26 2016-08-04 宇部興産株式会社 ポリイミド多孔質膜を用いる細胞の長期培養、及びポリイミド多孔質膜を用いる細胞の凍結保存方法
US10443037B2 (en) 2015-01-26 2019-10-15 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
EP3406710A1 (en) 2015-01-26 2018-11-28 UBE Industries, Ltd. Method, device and kit for mass cultivation of cells using polyimide porous membrane
EP3406272A1 (en) 2015-01-26 2018-11-28 Ube Industries, Ltd. Cell culture method using bone marrow-like structure, and porous polymide film for healing bone injury site
EP3406707A1 (en) 2015-01-26 2018-11-28 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane
EP3406705A1 (en) 2015-01-26 2018-11-28 Ube Industries, Ltd. Cell culturing method and kit
JP2016194025A (ja) * 2015-04-02 2016-11-17 宇部興産株式会社 ポリイミドフィルムの製造方法
WO2018021359A1 (ja) 2016-07-25 2018-02-01 宇部興産株式会社 サイフォン式培養法
US11932841B2 (en) 2016-07-25 2024-03-19 Ube Corporation Cell cultivation module
WO2018020746A1 (ja) * 2016-07-25 2018-02-01 日東電工株式会社 多孔質の低誘電性ポリマーフィルム及びミリ波アンテナ用フィルム
WO2018021356A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜
CN109477055B (zh) * 2016-07-25 2022-06-21 宇部兴产株式会社 细胞的制备方法、细胞培养装置和试剂盒
JP2018021172A (ja) * 2016-07-25 2018-02-08 日東電工株式会社 ミリ波アンテナ用フィルム
WO2018021366A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 細胞の調製方法、細胞培養装置及びキット
JPWO2018021356A1 (ja) * 2016-07-25 2019-05-16 宇部興産株式会社 多孔質ポリイミド膜の製造方法、及び当該方法で製造される多孔質ポリイミド膜
JP2021061855A (ja) * 2016-07-25 2021-04-22 宇部興産株式会社 幹細胞の分化を抑制する方法、幹細胞を調製する方法、及び幹細胞を分化誘導する方法
JPWO2018021366A1 (ja) * 2016-07-25 2019-05-16 宇部興産株式会社 細胞の調製方法、細胞培養装置及びキット
CN109477055A (zh) * 2016-07-25 2019-03-15 宇部兴产株式会社 细胞的制备方法、细胞培养装置和试剂盒
WO2018021357A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 幹細胞の分化を抑制する方法、幹細胞を調製する方法、及び幹細胞を分化誘導する方法
US10968328B2 (en) 2016-07-25 2021-04-06 Ube Industries, Ltd. Porous polyimide film production method and porous polyimide film produced using said method
WO2018174186A1 (ja) 2017-03-23 2018-09-27 宇部興産株式会社 神経幹細胞の分化を抑制する方法、神経幹細胞を調製する方法、及び神経幹細胞を分化誘導する方法
JP2018024262A (ja) * 2017-11-20 2018-02-15 宇部興産株式会社 積層体および積層体の製造方法
JP2018027705A (ja) * 2017-11-20 2018-02-22 宇部興産株式会社 積層体および積層体の製造方法
WO2021029408A1 (ja) 2019-08-09 2021-02-18 宇部興産株式会社 エクソソームの産生方法
WO2021029409A1 (ja) 2019-08-09 2021-02-18 宇部興産株式会社 小片多孔膜を適用した細胞培養法
KR20220042371A (ko) 2019-08-09 2022-04-05 우베 고산 가부시키가이샤 소편 다공막을 적용한 세포 배양법

Also Published As

Publication number Publication date
US20110318556A1 (en) 2011-12-29
EP2354180A1 (en) 2011-08-10
CN102203174B (zh) 2013-02-20
EP2354180A4 (en) 2013-02-20
KR101680391B1 (ko) 2016-11-28
JPWO2010038873A1 (ja) 2012-03-01
EP2354180B1 (en) 2016-05-25
CN102203174A (zh) 2011-09-28
US8420211B2 (en) 2013-04-16
JP5636960B2 (ja) 2014-12-10
KR20110079633A (ko) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5636960B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5641042B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5577804B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5577803B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP5720574B2 (ja) 着色ポリイミド成形体及びその製造方法
KR102189214B1 (ko) 다공질 폴리이미드막의 제조 방법 및 이 방법으로 제조되는 다공질 폴리이미드막
JP2013138416A (ja) スピーカユニット
JP6330261B2 (ja) ポリマー多孔質膜の製造方法及びポリマー多孔質膜
JP2011001434A (ja) ポリイミド多孔質体の製造方法、及びポリイミド多孔質体
JP7326785B2 (ja) 多孔質ポリイミド膜及びその製造方法
JP2014231572A (ja) 高分子多孔質膜
JP6286871B2 (ja) ポリイミド多孔質膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142731.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117007524

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010531932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009817905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121830

Country of ref document: US