WO2009084541A1 - アクリル系熱可塑性樹脂、及び光学材料用成形体 - Google Patents

アクリル系熱可塑性樹脂、及び光学材料用成形体 Download PDF

Info

Publication number
WO2009084541A1
WO2009084541A1 PCT/JP2008/073449 JP2008073449W WO2009084541A1 WO 2009084541 A1 WO2009084541 A1 WO 2009084541A1 JP 2008073449 W JP2008073449 W JP 2008073449W WO 2009084541 A1 WO2009084541 A1 WO 2009084541A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
repeating unit
acrylic thermoplastic
optical
formula
Prior art date
Application number
PCT/JP2008/073449
Other languages
English (en)
French (fr)
Inventor
Masami Yonemura
Mayuko Kimura
Michio Ogawa
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2008801228554A priority Critical patent/CN101910223B/zh
Priority to KR1020107014021A priority patent/KR101201168B1/ko
Priority to US12/810,265 priority patent/US8779076B2/en
Priority to JP2009548047A priority patent/JP4717947B2/ja
Publication of WO2009084541A1 publication Critical patent/WO2009084541A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an acrylic thermoplastic resin having excellent optical properties, and a molded article for optical material comprising the same.
  • the optical materials used have not only excellent transparency but also high heat resistance. It has been required to have high optical isotropy (so-called low birefringence).
  • a required molded body for an optical material is also increased in size, and there is a problem that a contrast is lowered because a birefringence distribution is generated due to a bias of external force.
  • a material having a small change in birefringence due to an external force that is, a small absolute value of the photoelastic coefficient.
  • Methacrylic resin represented by methyl methacrylate homopolymer (PMMA) is excellent in transparency and has low birefringence, so it is used for various optical applications as a material having optical isotropy. I came. However, the material properties required in the market are now changing to a minimum birefringence, a change in birefringence due to a smaller external force, and higher heat resistance, and the development of materials that satisfy these simultaneously is awaited. (See Non-Patent Documents 1 and 2).
  • Patent Documents 1 to 3 disclose terpolymers.
  • Patent Document 1 discloses the weight ratio (a / b) of the content (a) of the repeating unit derived from the vinyl aromatic monomer and the content (b) of the cyclic acid anhydride repeating unit in the ternary copolymer.
  • Patent Document 4 describes a copolymer of methyl methacrylate and one or more copolymerizable monomers such as styrene, benzyl methacrylate, and maleic anhydride. It is a description as one of the constituents of the body and does not mention any optical properties. Further, there is no example relating to a quaternary copolymer corresponding to the present invention.
  • Patent Document 5 describes a copolymer containing styrenes, maleic anhydrides and methacrylic esters. Specifically, there is a description that methyl methacrylate and benzyl methacrylate may be copolymerized in the copolymer as methacrylic acid esters. However, Examples relating to quaternary copolymers comprising methyl methacrylate and styrene, benzyl methacrylate and maleic anhydride of the present invention are not described.
  • methacrylic acid esters there is a description that an ester composed of a lower alkyl group is preferable, and no suggestion is given about the repeating unit derived from a methacrylate monomer having an aromatic group in the present invention. Furthermore, there is a description that a copolymer in which a part or all of maleic anhydride as a structural unit has undergone a hydrolyzate is a preferable resin.
  • Patent Document 6 describes a copolymer having a monomer selected from styrenes, maleic anhydrides, and methacrylic acid esters as a main component.
  • methacrylic acid ester monomers include methyl methacrylate and benzyl methacrylate.
  • copolymers of styrenes and methacrylic acid esters, maleic anhydrides and methacrylic acid esters are referred to as a main component.
  • examples relating to the quaternary copolymer of the present invention are not described.
  • an ester composed of a lower alkyl group is preferable as the methacrylic acid ester in the copolymer, and it does not give any suggestion about the repeating unit derived from the methacrylate monomer having an aromatic group in the present invention.
  • a copolymer in which a part or all of maleic anhydride as a structural unit has undergone a hydrolyzate is a preferable resin.
  • Patent Document 7 describes a copolymer of maleic anhydride and acrylate. Specifically, methyl (meth) acrylate and benzyl (meth) acrylate may be used in combination as the acrylate monomer in the copolymer, and other monomers as long as the heat resistance is not impaired. It is described that styrenes may be copolymerized. However, Examples relating to the quaternary copolymer of the present invention are not described. Japanese Patent No. 1704667 Japanese Patent No. 2886893 Japanese Patent Laid-Open No. 5-288929 JP-A-8-85729 Japanese Patent No. 3521374 Japanese Patent No. 3711666 JP 2007-261265 A Chemical Review, No. 39, 1988 (published by Academic Publishing Center) Monthly display, April issue, 2005
  • An object of the present invention is to provide an acrylic thermoplastic resin having excellent optical characteristics and a molded article for optical material comprising the same.
  • the present invention is surprising that a molded article for an optical material comprising a specific acrylic thermoplastic resin, for example, the optical film can simultaneously achieve a low birefringence and a low photoelastic coefficient as compared with a conventional optical film. It was based on facts.
  • R 1 represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
  • R 2 and R 3 may be the same or different and each represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms
  • L represents an integer of 1 to 3
  • R 4 represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms
  • m is an integer of 1 to 3
  • n is 0 to Indicates an integer of 2.
  • R 5 to R 8 may be the same or different, and each represents hydrogen or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • the repeating unit derived from the methacrylate monomer represented by the formula (1) is 10 to 70% by weight, and the repeating unit derived from the vinyl aromatic monomer represented by the formula (2) is 5 to 40% by weight.
  • the repeating unit derived from a methacrylate monomer having an aromatic group represented by formula (3) is 0.1 to 5% by weight, and the cyclic acid anhydride repeating unit represented by formula (4) or formula (5) Is contained in an amount of 20 to 50% by weight, according to [1] or [2].
  • the molar ratio (B / A) of the content (A) of the repeating unit derived from the vinyl aromatic monomer and the content (B) of the cyclic acid anhydride repeating unit is greater than 1 and 10 or less.
  • the absolute value of the thickness direction retardation (Rth) is 30 nm or less.
  • the ratio (Rth / Re) of the in-plane direction retardation (Re) and the thickness direction retardation (Rth) satisfies the following formula (c).
  • Optical film. [16] The film according to [14], wherein the film is formed by cast molding and stretched in at least one axial direction, and the stretching ratio is 0.1 to 300%.
  • Optical film. [17] A polarizing plate protective film comprising the optical film according to any one of [14] to [16].
  • a retardation film comprising the optical film according to any one of [14] to [16].
  • thermoplastic resin excellent in optical characteristics it is possible to provide an acrylic thermoplastic resin excellent in optical characteristics and a molded article for optical material comprising the same.
  • thermoplastic resin excellent in at least one of optical characteristics among photoelastic coefficient, birefringence, and phase difference it is possible to provide a thermoplastic resin excellent in at least one of optical characteristics among photoelastic coefficient, birefringence, and phase difference, and a molded article for optical material comprising the same.
  • FIG. 1 is a 1 H-NMR spectrum diagram of an acrylic thermoplastic resin (Example 1).
  • FIG. 1 is a 1 H-NMR spectrum diagram of an acrylic thermoplastic resin (Example 1).
  • the acrylic thermoplastic resin of the present invention includes a repeating unit derived from a methacrylate monomer represented by the following formula (1), a repeating unit derived from a vinyl aromatic monomer represented by the following formula (2), and the following formula It consists of a repeating unit derived from a methacrylate monomer having an aromatic group represented by (3) and a cyclic acid anhydride repeating unit represented by the following formula (4) or the following formula (5).
  • R 1 represents hydrogen, a linear or branched alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 5 to 12 carbon atoms.
  • R 2 and R 3 may be the same or different and each represents hydrogen, halogen, hydroxyl group, alkoxy group, nitro group, linear or branched alkyl group having 1 to 12 carbon atoms
  • L represents an integer of 1 to 3
  • R 4 represents hydrogen, halogen, hydroxyl group, alkoxy group, linear or branched alkyl group having 1 to 12 carbon atoms, m is an integer of 1 to 3, and n is an integer of 0 to 2) Is shown.
  • R 5 to R 8 may be the same or different, and each represents hydrogen or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • the repeating unit represented by the formula (1) is derived from methacrylic acid and a methacrylic acid ester monomer.
  • the methacrylic acid ester used include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid. Cyclohexyl acid; and the like.
  • Methacrylic acid and methacrylic acid ester may be used alone or in combination of two or more.
  • methacrylic acid esters methacrylic acid alkyl esters having 1 to 7 carbon atoms in the alkyl group are preferred, and methyl methacrylate is particularly preferred because the resulting acrylic thermoplastic resin is excellent in heat resistance and transparency. .
  • the content of the repeating unit represented by the formula (1) is 10 to 70% by mass, preferably 25 to 70% by mass, more preferably 40 to 70% by mass from the viewpoint of transparency.
  • the repeating unit represented by the formula (2) is derived from an aromatic vinyl monomer.
  • the monomer used include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, and 2-methyl-4-chlorostyrene.
  • styrene and ⁇ -methylstyrene are preferred because they are easily copolymerized.
  • the content of the repeating unit represented by the formula (2) is 5 to 40% by mass, preferably 5 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoints of transparency and heat resistance.
  • the acrylic thermoplastic resin of the present invention contains the repeating unit represented by the formula (3), thereby maintaining optical properties with a further minimized photoelastic coefficient while maintaining heat resistance and birefringence.
  • the repeating unit represented by the formula (3) is derived from a methacrylate monomer having an aromatic group. Examples of the monomer used include phenyl methacrylate, benzyl methacrylate, and 1-phenylethyl methacrylate. These monomers may be used alone or in combination of two or more. Of these monomers, benzyl methacrylate is particularly preferred.
  • the content ratio of the repeating unit represented by the formula (3) is 0.1 to 5 in order to express the optical characteristics (particularly, minimizing the low photoelastic coefficient described later) which is the effect of the present invention to a higher degree.
  • % By mass preferably 0.1 to 4% by mass, more preferably 0.1 to 3% by mass.
  • the cyclic acid anhydride repeating unit represented by the formula (4) is derived from unsubstituted and / or substituted maleic anhydride.
  • the monomer used include maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, and diphenylmaleic anhydride. Can be mentioned. Of these monomers, maleic anhydride is preferable because of easy copolymerization.
  • the cyclic acid anhydride repeating unit represented by the formula (5) is derived by a condensation cyclization reaction between the repeating units described later, and examples thereof include glutaric anhydride.
  • the cyclic acid anhydride repeating unit represented by the formula (4) or the formula (5) may be partially hydrolyzed and opened by an external environment such as moisture in the air.
  • the hydrolysis rate is desirably less than 10 mol% from the viewpoint of optical properties and heat resistance. Furthermore, it is preferable that it is less than 5 mol%, and it is more preferable that it is less than 1 mol%.
  • the hydrolysis rate (mol%) is obtained by ⁇ 1- (the amount of cyclic acid anhydride after hydrolysis (mol)) / the amount of cyclic acid anhydride before hydrolysis (mol) ⁇ ⁇ 100.
  • the content ratio of the cyclic acid anhydride repeating unit represented by the formula (4) or the formula (5) achieves higher heat resistance and optical characteristics (particularly, control of retardation described later), which are the effects of the present invention. Therefore, the content is 20 to 50% by mass, preferably 20 to 45% by mass.
  • the molar ratio (B / A) of the content (B) of cyclic acid anhydride repeating units is preferably more than 1 and 10 or less, more preferably more than 1 and 5 or less.
  • the weight average molecular weight (Mw) in terms of PMMA according to the GPC measurement method of the acrylic thermoplastic resin of the present invention is 10,000 to 400,000, preferably 40,000 to 300,000, more preferably 70,000 to 200.
  • the molecular weight distribution (Mw / Mn) is in the range of 1.8 to 3.0, preferably 1.8 to 2.7, and more preferably 1.8 to 2.5.
  • the glass transition temperature (Tg) of the acrylic thermoplastic resin of the present invention can be arbitrarily controlled by the resin composition, but is preferably controlled to 120 ° C. or more from the viewpoint of industrial applicability. More preferably, it is controlled to 130 ° C. or higher, more preferably 135 ° C. or higher.
  • Polymerization reaction As a polymerization method of the acrylic thermoplastic resin of the present invention, for example, a polymerization method generally performed such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, anionic polymerization, etc. can be used. As a material application, it is preferable to avoid contamination of minute foreign matters as much as possible. From this viewpoint, it is desirable to use cast polymerization or solution polymerization without using a suspending agent or an emulsifier.
  • the polymerization mode for example, either a batch polymerization method or a continuous polymerization method can be used, but it is desirable to use the continuous polymerization method in that a polymer having a more uniform composition can be obtained.
  • the temperature and polymerization time during the polymerization reaction vary depending on the type and ratio of the monomer used, and for example, the polymerization temperature is 0 to 150 ° C., the polymerization time is 0.5 to 24 hours, and preferably Has a polymerization temperature of 80 to 150 ° C. and a polymerization time of 1 to 12 hours.
  • examples of the polymerization solvent include aromatic hydrocarbon solvents such as toluene, xylene, and ethylbenzene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ether solvents such as tetrahydrofuran; Can be mentioned. These solvents may be used alone or in combination of two or more. If the boiling point of the solvent to be used is too high, the residual volatile content of the finally obtained acrylic thermoplastic resin will increase. Therefore, a solvent having a boiling point of 50 to 200 ° C. is preferred.
  • a polymerization initiator may be added as necessary.
  • any initiator generally used in radical polymerization can be used.
  • cumene hydroperoxide diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide
  • Organic peroxides such as oxide, t-butylperoxyisopropyl carbonate, t-amylperoxy-2-ethylhexanoate; 2,2′-azobis (isobutyronitrile), 1,1′-azobis (cyclohexane) Carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo compounds such as dimethyl-2,2′-azobisisobutyrate; and the like.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used may be appropriately set according to the combination of monomers and reaction conditions, and is not particularly limited, but is preferably in the range of 0.005 to 5 wt%.
  • molecular weight regulator used as necessary in the polymerization reaction, any one used in general radical polymerization is used, and for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. It is mentioned as preferable.
  • mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. It is mentioned as preferable.
  • These molecular weight regulators are added in a concentration range such that the degree of polymerization is controlled within the above range.
  • the concentration of the acrylic thermoplastic resin generated in the polymerization reaction solution is 50% by mass or less in order to suppress gelation of the polymerization reaction solution.
  • a polymerization solvent is appropriately added to the polymerization reaction liquid to control it to 50% by mass or less. It is preferable.
  • the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution is more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution is preferably 10% by mass or more, more preferably 20% by mass or more.
  • the form of appropriately adding the polymerization solvent to the polymerization reaction solution is not particularly limited, and for example, the polymerization solvent may be added continuously or the polymerization solvent may be added intermittently. By controlling the concentration of the acrylic thermoplastic resin produced in the polymerization reaction solution in this way, the gelation of the reaction solution can be more sufficiently suppressed.
  • the polymerization solvent to be added may be, for example, the same type of solvent used during the initial charging of the polymerization reaction or a different type of solvent, but the solvent used during the initial charging of the polymerization reaction. It is preferable to use the same type of solvent.
  • the polymerization solvent to be added may be only one kind of single solvent or two or more kinds of mixed solvents.
  • the acrylic thermoplastic resin containing the cyclic acid anhydride repeating unit represented by the formula (5) is represented by the formula (1), the formula (2), and the formula (3). It is induced
  • this cyclic acid anhydride repeating unit By forming this cyclic acid anhydride repeating unit, high heat resistance and high optical isotropy are imparted to the acrylic thermoplastic resin of the present invention. If the reaction rate of this condensed cyclization reaction is insufficient, the optical isotropy is lowered, and the heat resistance is not sufficiently improved. Further, a condensation reaction may occur during the molding due to the heat treatment during molding, resulting in gelation, water or alcohol, and appearing as foam or silver streak in the molded product.
  • a conventionally known method for example, a method in which a polymerization reaction liquid containing a solvent obtained by a polymerization step is directly heat-treated; necessary in the presence of a solvent.
  • esterification catalyst or transesterification catalyst such as p-toluenesulfonic acid; acetic acid, propionic acid, benzoic acid, acrylic acid, methacrylic acid, etc.
  • Organic carboxylic acids; basic compounds, organic carboxylates, carbonates and the like disclosed in JP-A-61-254608 and JP-A-61-261303; organic phosphorus compounds may also be used.
  • organophosphorus compounds examples include alkyl (aryl) phosphonous acids such as methyl phosphonous acid, ethyl phosphonous acid, and phenyl phosphonous acid (however, these include alkyl (aryl) phosphinic acid which is a tautomer).
  • alkyl (aryl) phosphonous acids such as methyl phosphonous acid, ethyl phosphonous acid, and phenyl phosphonous acid (however, these include alkyl (aryl) phosphinic acid which is a tautomer).
  • Dialkyl (aryl) phosphinic acids such as dimethylphosphinic acid, diethylphosphinic acid, diphenylphosphinic acid, phenylmethylphosphinic acid, phenylethylphosphinic acid and their esters; methylphosphonic acid Alkyl (aryl) phosphonic acids such as ethylphosphonic acid, trifluoromethylphosphonic acid, phenylphosphonic acid and monoesters or diesters thereof; methylphosphinic acid, ethylphosphinic acid, phenylphosphine Alkyl (aryl) phosphinic acids and esters thereof such as methyl phosphite, ethyl phosphite, phenyl phosphite, dimethyl phosphite, diethyl phosphite, diphenyl phosphite, trimethyl phosphite, Phos
  • the amount of catalyst used in the condensation cyclization reaction is, for example, preferably 0.001 to 5% by mass, more preferably 0.01 to 2.5% by mass, and still more preferably with respect to the acrylic thermoplastic resin. Is 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass.
  • the amount of the catalyst used is less than 0.001% by mass, the reaction rate of the cyclization condensation reaction may not be sufficiently improved.
  • the amount of the catalyst used exceeds 5% by mass, the obtained acrylic thermoplastic resin may be colored, or the acrylic thermoplastic resin may be cross-linked to make melt molding difficult.
  • the addition timing of the catalyst is not particularly limited.
  • the catalyst may be added in the early stage of the reaction, may be added during the reaction, or may be added in both of them.
  • the condensed cyclization reaction is performed in the presence of a solvent, and a devolatilization step is used in combination during the condensation cyclization reaction.
  • a devolatilization step is used in combination during the condensation cyclization reaction.
  • water or alcohol produced as a by-product in the condensation cyclization reaction is forcibly devolatilized and removed, so that the equilibrium of the reaction is advantageous to the side where the condensed cyclization product is produced.
  • the devolatilization step refers to (i) volatile components such as polymerization solvent, residual monomer, and / or (ii) water or alcohol by-produced by the condensation cyclization reaction, under reduced pressure heating conditions as necessary, It means the process of removing. If this removal treatment is insufficient, residual volatile components in the obtained thermoplastic resin increase, and coloring due to deterioration during molding, or molding defects such as bubbles and silver streaks may occur.
  • Examples of the apparatus used in the devolatilization step include a devolatilizer composed of a heat exchanger and a devolatilization tank; an extruder with a vent; an apparatus in which the devolatilizer and the extruder are arranged in series.
  • a devolatilizer composed of a heat exchanger and a devolatilization tank
  • an extruder with a vent an apparatus in which the devolatilizer and the extruder are arranged in series.
  • an extruder with a vent one or a plurality of vents may be used, but it is preferable to have a plurality of vents.
  • the reaction treatment temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C. If the reaction treatment temperature is less than 150 ° C., the cyclization condensation reaction may be insufficient and the residual volatile matter may increase. Conversely, when the reaction treatment temperature exceeds 350 ° C., the obtained thermoplastic resin may be colored or decomposed.
  • the reaction treatment pressure is preferably 931 to 1.33 hPa (700 to 1 mmHg), more preferably 798 to 66.5 hPa (600 to 50 mmHg).
  • the reaction treatment pressure exceeds 931 hPa (700 mmHg)
  • volatile components including water or alcohol may easily remain.
  • the reaction treatment pressure is less than 1.33 hPa (1 mmHg)
  • industrial implementation may be difficult.
  • the reaction treatment time is appropriately selected depending on the condensation cyclization rate and the amount of residual volatile components, but a shorter one is preferable in order to suppress coloring and decomposition of the obtained acrylic thermoplastic resin.
  • the number of foreign substances contained in the acrylic thermoplastic resin of the present invention is preferably as small as possible when used for optical applications.
  • the acrylic thermoplastic resin solution or melt is filtered, for example, with a filtration accuracy of 1.5 to 15 ⁇ m. And filtering with a leaf disk type polymer filter.
  • the molded article for an optical material comprising the acrylic thermoplastic resin of the present invention, for example, an optical film, an optical lens or the like, may contain various additives within a range that does not significantly impair the effects of the present invention.
  • the type of additive is not particularly limited as long as it is generally used for blending resins and rubber-like polymers.
  • inorganic fillers pigments such as iron oxides, lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, mold release agents, paraffinic process oil, naphthenic process Oils, aromatic process oils, paraffins, organic polysiloxanes, mineralizers and other softeners / plasticizers, hindered phenol antioxidants, phosphorus heat stabilizers and other antioxidants, hindered amine light stabilizers, benzo Examples include triazole ultraviolet absorbers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, reinforcing agents such as metal whiskers, colorants, other additives, or mixtures thereof.
  • the content of the additive in the molded article for optical material is preferably 0 to 5% by mass, more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass.
  • the molded article for an optical material comprising the acrylic thermoplastic resin of the present invention includes, for example, a polyolefin such as polyethylene and polypropylene; a styrene series such as polystyrene and a styrene acrylonitrile copolymer, within the range not impairing the object of the present invention.
  • At least one or more of thermosetting resins such as silicone resins and epoxy resins can be mixed.
  • the method for producing a molded body for an optical material in the present invention is not particularly limited, and a known method can be used.
  • a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a Brabender, or various kneaders.
  • the unstretched molded product in the present invention can be molded by a known method such as injection molding, sheet molding, blow molding, injection blow molding, inflation molding, extrusion molding, foam molding, etc. Secondary processing molding methods such as these can also be used.
  • the form of the molded article for optical material of the present invention is a film or a sheet
  • a technique such as extrusion molding or cast molding is used.
  • an unstretched film can be extruded by using an extruder equipped with a T die, a circular die, or the like.
  • extrusion molding it can also be molded through melt kneading of resins other than the above-mentioned various additives and the acrylic thermoplastic resin of the present invention.
  • an unstretched film can be cast-molded by dissolving the acrylic thermoplastic resin of the present invention using a solvent such as chloroform or methylene dichloride and then casting and solidifying the resin.
  • the method for molding an optical film comprising the acrylic thermoplastic resin of the present invention is free from exposure to solvents such as chloroform and methylene dichloride, which are essential for cast molding, a drying apparatus for drying and solidifying, and a solvent. Extrusion molding is preferred from the viewpoints of safety and profitability, such as the necessity of ancillary equipment such as a recovery device.
  • the obtained unstretched film can be longitudinally uniaxially stretched in the mechanical flow direction and transversely uniaxially stretched in the direction perpendicular to the mechanical flow direction. Also, by the sequential biaxial stretching method of roll stretching and tenter stretching, tenter stretching.
  • a biaxially stretched film can be produced by stretching by a simultaneous biaxial stretching method, a biaxial stretching method by tubular stretching, or the like. By stretching, the strength of the film can be improved.
  • the final draw ratio can be determined from the heat shrinkage rate of the obtained molded body.
  • the draw ratio is preferably 0.1% or more and less than 300% in at least one direction, more preferably 0.2% or more and 300% or less, and 0.3% or more and 300% or less. Especially preferred. By designing in this range, a stretched molded article that is preferable in terms of birefringence, heat resistance, and strength can be obtained.
  • stretching can be performed continuously by extrusion molding and cast molding.
  • the molded object for optical materials of this invention for example, an optical film, in order to stabilize the optical isotropy and mechanical characteristic, heat processing (annealing) etc. can be performed after an extending
  • the heat treatment conditions may be appropriately selected in the same manner as the heat treatment conditions performed on a conventionally known stretched film, and are not particularly limited.
  • the difference between a film and a sheet is only the thickness, the film means a thickness of 300 ⁇ m or less, and the sheet has a thickness exceeding 300 ⁇ m.
  • the film is desirably 1 ⁇ m or more, and more desirably 5 ⁇ m or more.
  • the sheet is desirably 10 mm or less, and more desirably 5 mm or less.
  • the molded article for an optical material using the acrylic thermoplastic resin of the present invention is a polarizing plate protective film used for a display such as a liquid crystal display, a plasma display, an organic EL display, a field emission display, a rear projection television, a quarter wavelength plate, It can be suitably used for a retardation plate such as a half-wave plate, a liquid crystal optical compensation film such as a viewing angle control film, a display front plate, a display substrate, a lens, etc., and a transparent substrate used in a solar cell.
  • optical communication systems in the fields of optical communication systems, optical switching systems, and optical measurement systems, they can also be used for waveguides, lenses, optical fibers, optical fiber coating materials, LED lenses, lens covers, and the like.
  • the optical material by the molded body of the present invention can be subjected to surface functionalization treatment such as antireflection treatment, transparent conductive treatment, electromagnetic wave shielding treatment, gas barrier treatment and the like.
  • optical film The optical film formed by molding the acrylic thermoplastic resin of the present invention has applications that require birefringence and applications that do not require the optical film for industrial applications.
  • Applications that do not require birefringence are, for example, polarizing plate protective films, and applications that require birefringence, such as retardation films.
  • the optical film formed by molding the acrylic thermoplastic resin of the present invention satisfies the following optical property (i).
  • the absolute value of the photoelastic coefficient is 3.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. Furthermore, it preferably satisfies the optical property (ii).
  • ⁇ n (S) K ⁇ S + C (a)
  • the absolute value of the phase difference (Re) in the in-plane direction is 30 nm or less.
  • the absolute value of the thickness direction retardation (Rth) is 30 nm or less.
  • the ratio (Rth / Re) of the in-plane direction retardation (Re) and the thickness direction retardation (Rth) satisfies the following relational expression (c). 0.1 ⁇ Rth / Re ⁇ 1 (c)
  • (Vi) The glass transition temperature (Tg) is 120 ° C. or higher. Furthermore, preferably the following condition (vii) is satisfied: (Vii) The total light transmittance is 85% or more.
  • the absolute value of the photoelastic coefficient of the optical film made of the acrylic thermoplastic resin of the present invention is preferably 3.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. More preferably, it is 2.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and further preferably 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient is described in various documents (see, for example, Chemical Review, No. 39, 1998 (published by the Academic Publishing Center)), and is defined by the following equation.
  • C R
  • nx ⁇ ny
  • C R photoelastic coefficient
  • ⁇ R stretching stress
  • absolute value of birefringence
  • nx refractive index in the stretching direction
  • ny refractive index perpendicular to the stretching direction
  • the value of the slope K represents the magnitude of the increase in birefringence ( ⁇ n (S)) with respect to the draw ratio (S).
  • a preferable K value range of the optical film made of the acrylic thermoplastic resin of the present invention is
  • ⁇ 0.15 ⁇ 10 ⁇ 6 more preferably
  • the value of K is a value obtained by measuring the glass transition temperature (Tg) of the thermoplastic resin by DSC measurement and stretching at a stretching temperature of (Tg + 20) ° C. and a stretching speed of 500 mm / min.
  • Tg glass transition temperature
  • Tg + 20 glass transition temperature
  • Tg + 20 stretching temperature
  • Tg + 20 stretching temperature
  • Tg + 20 stretching temperature
  • Tg + 20 stretching temperature
  • Tg + 20 ° C.
  • a stretching speed 500 mm / min.
  • the increase in birefringence decreases when the stretching speed is decreased.
  • the value of K for example, the value of birefringence ( ⁇ n (S)) is measured when the draw ratio (S) is 100 times, 200 times, and 300 times, and these values are approximated by the least square method. Can be calculated.
  • the draw ratio (S) is a value represented by the following formula, where L 0 is the distance between chucks before stretching and L 1 is the distance between chucks after stretching.
  • the absolute value of the retardation (Re) per 100 ⁇ m thickness in the in-plane direction of the optical film made of the acrylic thermoplastic resin of the present invention is 30 nm or less.
  • the thickness is preferably 20 nm or less, more preferably 15 nm or less, and particularly preferably 11 nm or less.
  • the absolute value of the phase difference is an index representing the magnitude of birefringence. Therefore, the birefringence of the optical film made of the acrylic thermoplastic resin of the present invention is small.
  • the phase difference per 100 ⁇ m thickness in the in-plane direction exceeds 30 nm, it means that the anisotropy of the refractive index is high and may not be used for applications requiring low birefringence.
  • the retardation of an optical film made of a thermoplastic resin increases by stretching.
  • it may be stretched, but when the obtained stretched optical film has a phase difference per 100 ⁇ m in the in-plane direction exceeding 30 nm, low birefringence This is not to say that a protective film was obtained.
  • the absolute value of the retardation (Rth) per 100 ⁇ m in the thickness direction of the optical film made of the acrylic thermoplastic resin of the present invention is 30 nm or less.
  • the thickness is preferably 20 nm or less, more preferably 15 nm or less, and particularly preferably 11 nm or less.
  • the retardation in the thickness direction is an index that correlates with, for example, the viewing angle characteristics of a display device incorporating an optical film. Specifically, the smaller the absolute value of the phase difference in the thickness direction, the better the viewing angle characteristics, and the smaller the change in the color tone of the display color depending on the viewing angle and the lower the contrast.
  • the absolute value of the retardation (Rth) is small in the thickness direction of the optical film.
  • the glass transition temperature (Tg) of the optical film is preferably 120 ° C. or higher. More preferably, it is 130 degreeC or more, More preferably, it is 135 degreeC or more. When the glass transition temperature is less than 120 ° C., the glass transition temperature may not be used for applications requiring high heat resistance such as poor dimensional stability under the use environment temperature.
  • the total light transmittance of the optical film is preferably 85% or more. More preferably, it is 88% or more, More preferably, it is 90% or more. When the total light transmittance is less than 85%, the transparency is lowered, and it may not be used for applications requiring high transparency.
  • the birefringence is extremely small (approximately zero) in both the in-plane direction and the film thickness direction, and the low photoelastic coefficient is also extremely small (approximate)
  • the optically complete isotropic property that cannot be achieved by conventionally known resins is realized. Furthermore, high heat resistance is also realized.
  • the optical film comprising the acrylic thermoplastic resin of the present invention is suitable for applications that do not require birefringence, such as a polarizing plate protective film.
  • thermoplastic resin (1) Repeating unit From 1 H-NMR measurement, (i) a repeating unit derived from a methacrylate monomer, (ii) a repeating unit derived from a vinyl aromatic monomer, (iii) a repeating unit derived from a methacrylate monomer having an aromatic group, And (iv) an acid anhydride repeating unit was identified and its abundance was calculated.
  • Measuring instrument DPX-400 manufactured by Blue Car Co., Ltd.
  • Solvent for measurement CDCl 3 or d 6 -DMSO Measurement temperature: 40 ° C
  • Glass transition temperature The glass transition temperature (Tg) was measured using a differential scanning calorimeter (Diamond DSC manufactured by PerkinElmer Japan Co., Ltd.) under a nitrogen gas atmosphere with ⁇ -alumina as a reference and JIS-K-7121. Based on the DSC curve obtained by heating about 10 mg of the sample from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min, it was calculated by the midpoint method.
  • Example 1 Methyl methacrylate / styrene / benzyl methacrylate / maleic anhydride
  • a jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used.
  • the pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
  • MMA methyl methacrylate
  • St styrene
  • BzMA benzyl methacrylate
  • MAH maleic anhydride
  • 240 g of methyl isobutyl ketone and 1.2 g of n-octyl mercaptan nitrogen was mixed.
  • a raw material solution was prepared by replacing with gas.
  • An initiator solution was prepared by dissolving 0.364 g of 2,2′-azobis (isobutyronitrile) in 12.96 g of methyl isobutyl ketone and then substituting with nitrogen gas.
  • the raw material solution was introduced from the raw material solution introduction nozzle at 6.98 ml / min using a pump.
  • the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump.
  • the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle.
  • the polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge.
  • the polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge.
  • the obtained polymer solution was dropped into methanol as a product solvent, and precipitated and purified. It was dried at 130 ° C. for 2 hours under vacuum to obtain the desired thermoplastic resin.
  • thermoplastic resin was obtained by performing the same operation as in Example 1, except that methyl methacrylate was changed to 509 g, styrene 48 g, benzyl methacrylate 19 g, and maleic anhydride 384 g.
  • Composition: MMA / St / BzMA / MAH 62/12/2/24 wt%
  • thermoplastic resin was obtained by performing the same operation as in Example 1, except that methyl methacrylate was changed to 499 g, styrene 42 g, benzyl methacrylate 48 g, and maleic anhydride 371 g.
  • Composition: MMA / St / BzMA / MAH 60/11/5/24 wt%
  • thermoplastic resin was obtained in the same manner as in Example 1 except that 469 g of methyl methacrylate, 37 g of styrene, 96 g of benzyl methacrylate, and 358 g of maleic anhydride were used.
  • Composition: MMA / St / BzMA / MAH 59/7/12/22 wt%
  • Example 2 a thermoplastic resin was obtained in the same manner as in Example 1, except that benzyl methacrylate was not used and methyl 768 g, styrene 144 g, and maleic anhydride 48 g were used.
  • Composition: MMA / St / MAH 76/17/7 wt%
  • Methyl methacrylate / styrene / benzyl methacrylate / methacrylic acid / glutaric anhydride [Example 4] A jacketed glass reactor (capacity: 1 L) equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen gas introduction nozzle, a raw material solution introduction nozzle, an initiator solution introduction nozzle, and a polymerization solution discharge nozzle was used. The pressure in the polymerization reactor was slightly pressurized, and the reaction temperature was controlled at 100 ° C.
  • the initiator solution was introduced from the initiator solution introduction nozzle at 0.08 ml / min using a pump. After 30 minutes, the polymer solution was discharged at a constant flow rate of 425 ml / hr using a pump extracted from the polymerization solution discharge nozzle. The polymer solution was collected separately in the initial flow tank for 1.5 hours after discharge. The polymer solution was collected for 2.5 hours after 1.5 hours from the start of discharge. The obtained polymer solution was dropped into methanol as a product solvent, and precipitated and purified. The precursor was obtained by drying at 130 ° C. for 2 hours under vacuum.
  • the precursor was heat-treated with a lab plast mill equipped with a devolatilizer (treatment temperature: 250 ° C., vacuum degree: 133 hPa (100 mmHg)) to obtain the desired thermoplastic resin.
  • Composition: MMA / St / BzMA / MAA / glutaric anhydride 70/5/4/4/21 wt%
  • Example 4 a thermoplastic resin was obtained by performing the same operation as in Example 4 except that benzyl methacrylate was not used and that the methyl methacrylate was changed to 888 g, styrene 60 g, and methacrylic acid 252 g.
  • Composition: MMA / St / MAA / glutaric anhydride 64/9/4/23 wt%
  • thermoplastic resin was obtained in the same manner as in Example 1, except that 960 g of methyl methacrylate was used.
  • Composition: MMA 100 wt%
  • the polymerization results are shown in Table 1.
  • Examples 5 to 8, Comparative Examples 5 to 8 Using the thermoplastic resins obtained in Examples 1 to 4 and Comparative Examples 1 to 4, press films were molded according to the method described above. A 100% stretched film was molded from the press film according to the method described above, and its optical properties were evaluated. The measurement results are shown in Table 2.
  • the optical film made of the acrylic thermoplastic resin of the present invention has low birefringence and a small photoelastic coefficient at the same time as optical characteristics ( ⁇ ), while the optical film made of the thermoplastic resin of the comparative example is, for example, photoelastic Large coefficient and inferior optical properties ( ⁇ ).
  • the photoelastic coefficient is controlled by the benzyl methacrylate content, and when it is in the range of 0.1 to 5% by weight, the absolute value is 2. It is confirmed that the value is as small as 0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • JP 2007-169622 A discloses a method for controlling a photoelastic coefficient by adding an organic low molecular weight compound. At the time of use, there remains a possibility of change in optical properties due to bleeding out of the added compound.
  • the acrylic thermoplastic resin of the present invention since the component controlling the photoelastic coefficient is copolymerized in the polymer main chain, there is no possibility of bleeding out, and stable optical characteristics can be expressed.
  • Example 9 Using the thermoplastic resins obtained in Example 1, Example 3, and Comparative Example 4, a press film was molded according to the method described above. From the press film, 100%, 200% and 300% stretched films were molded according to the method described above, and their optical properties were evaluated. Table 3 shows the measurement results.
  • Example 11 Using a thermoplastic resin obtained by performing the same operation as in Example 1, an extruder of a Technobel T-die mounting extruder (KZW15TW-25MG-NH type / width 150 mm T-die mounting / lip thickness 0.5 mm) Extrusion molding was carried out by adjusting the resin temperature in the cylinder and the temperature of the T die. 100%, 200%, and 300% stretched films were formed from the obtained extruded films (while appropriately changing the stretching speed) according to the above-described method, and their optical properties were evaluated. Table 4 shows the measurement results.
  • KZW15TW-25MG-NH type / width 150 mm T-die mounting / lip thickness 0.5 mm Extrusion molding was carried out by adjusting the resin temperature in the cylinder and the temperature of the T die. 100%, 200%, and 300% stretched films were formed from the obtained extruded films (while appropriately changing the stretching speed) according to the above-described method, and their optical properties were evaluated. Table 4 shows the measurement results.
  • the optical film made of the acrylic thermoplastic resin of the present invention is excellent in heat resistance, and has high optical isotropy that its optical properties (very small birefringence value, extremely small photoelastic coefficient) are not found in conventional materials. It is confirmed that Moreover, it is confirmed that the birefringence change rate is extremely small at the time of film forming or after arbitrary stretching. This feature is extremely advantageous in that even if film forming by extrusion molding or subsequent drawing is performed, it is not affected by the orientation due to the flow during melt molding and birefringence does not occur. These characteristics are suitable for polarizing plate protective film applications.
  • Example 12 The stretched film obtained in Example 5 was placed in an atmosphere having a temperature of 80 ° C. and a humidity of 90%, two types of stretched films having different hydrolysis rates were prepared, and the optical properties were evaluated. Table 5 shows the measurement results.
  • the optical film made of the acrylic thermoplastic resin of the present invention sufficiently retains its low birefringence when the hydrolysis rate is less than 10 mol%.
  • the molded article for an optical material comprising the acrylic thermoplastic resin of the present invention has high heat resistance, excellent optical properties, and exhibits industrially advantageous melt moldability.
  • Polarizing plate protective films used for displays such as organic EL displays, field emission displays, rear projection televisions, retardation plates such as quarter-wave plates and half-wave plates, and liquid crystal optical compensation films such as viewing angle control films ,
  • optical communication systems in the fields of optical communication systems, optical switching systems, and optical measurement systems, they can also be used for waveguides, lenses, optical fibers, optical fiber coating materials, LED lenses, lens covers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(i)メタクリレート単量体由来の繰り返し単位、(ii)ビニル芳香族単量体由来の繰り返し単位、(iii)芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び(iv)環状酸無水物繰り返し単位を含有するアクリル系熱可塑性樹脂、及びそれからなる光学材料用成形体。

Description

アクリル系熱可塑性樹脂、及び光学材料用成形体
 本発明は、優れた光学特性を有するアクリル系熱可塑性樹脂、及びそれからなる光学材料用成形体に関する。
 近年、液晶表示装置やプラズマディスプレイ、有機EL表示装置などのフラットパネルディスプレイや、赤外線センサー、光導波路などの進歩に伴い、用いられる光学材料には、透明性に優れるだけでなく、高い耐熱性と高い光学的等方性(いわゆる低複屈折性)を有することが求められるようになってきている。
 例えば、フラットパネルディスプレイの大型化の結果、必要とされる光学材料用成形体も大型化しており、外力の偏りによって複屈折分布が生じるためにコントラストが低下するという問題がある。複屈折分布を小さくするためには、外力による複屈折の変化が小さい、即ち、光弾性係数の絶対値が小さい材料が求められている。
 また、フラットパネルディスプレイが大型化するに伴い、正面からだけでなく、斜め方向から見る機会が増加している。このような場合、表示装置の原理上、見る方向によって表示色変化やコントラストが低下するという問題がある。視野角特性を改良するために、複屈折の絶対値が小さい材料が求められている。
 メタクリル酸メチルの単独重合体(PMMA)に代表されるメタクリル系樹脂は、透明性に優れ、且つ、複屈折が小さいことから、光学的等方性を有する材料として、様々な光学用途に使用されてきた。しかし、現在、市場で要求される材料特性は、より極小化された複屈折、より小さい外力による複屈折変化、より高い耐熱性へと変化し、これらを同時に満たす材料の開発が待望されている(非特許文献1、2参照)。
 本発明周辺の公知技術として、本発明のアクリル系熱可塑性樹脂を構成している4種類の単量体のうち、メタクリル酸ベンジルを除く、メタクリル酸メチル、スチレン、及び無水マレイン酸を用いてなる3元共重合体が、例えば、特許文献1~3などに開示されている。特許文献1には、該3元共重合体におけるビニル芳香族単量体由来の繰り返し単位の含有量(a)と環状酸無水物繰り返し単位の含有量(b)の重量比(a/b)が、1以上3未満であることが耐熱変形性、耐候性などの点で好ましいとの記載がある。一方、特許文献2には含量比(a/b)、及びその範囲から期待される効果に関する記載がないが、実施例としてa/b=14/10で1より大きい3元共重合体の記載があるのみである。同様に、特許文献3もビニル芳香族単量体由来の繰り返し単位の含有量(a)と環状酸無水物繰り返し単位の含有量(b)の重量比(a/b)、及びその範囲から期待される効果に関する記載がないが、実施例としてa/b=15/12で1より大きい3元共重合体の記載があるのみである。
 また、特許文献4にメタクリル酸メチルとスチレン、メタクリル酸ベンジル、無水マレイン酸等の共重合可能な単量体のいずれか一つ以上との共重合体の記載があるが、熱可塑性帯電防止積層体を構成する組成物の1つとしての記載であり、光学的特性に関しては一切言及していない。さらに、本発明に相当する4元共重合体に関する実施例もない。
 また、特許文献5にスチレン類と無水マレイン酸類とメタクリル酸エステル類を含む共重合物に関する記載がある。具体的には、該共重合体中で、メタクリル酸エステル類として、メタクリル酸メチル、メタクリル酸ベンジルを共重合しても良いとの記載がある。しかし、本発明のメタクリル酸メチルとスチレン、メタクリル酸ベンジル、無水マレイン酸からなる4元共重合体に関する実施例は記載されていない。さらに、メタクリル酸エステル類としては低級アルキル基からなるエステルが好ましいとの記載もあり、本発明での芳香族基を有するメタクリレート単量体由来の繰り返し単位についてなんら示唆を与えるものではない。さらに、構成単位である無水マレイン酸の一部又は全部が加水分解物を受けた共重合体が好ましい樹脂であるとの記載もある。
 また、特許文献6にスチレン類と無水マレイン酸類とメタクリル酸エステル類から選ばれる単量体を主成分とする共重合物に関する記載がある。メタクリル酸エステル類の単量体として、メタクリル酸メチル、メタクリル酸ベンジルが挙げられているが、具体的には、スチレン類とメタクリル酸エステル類からなる共重合体と無水マレイン酸類とメタクリル酸エステル類からなる共重合体のブレンド物、スチレン類と無水マレイン酸類からなる共重合体と無水マレイン酸とメタクリル酸エステルからなる共重合体のブレンド物に関しての記載であり、3種以上の単量体を同時に共重合した場合に得られる効果については言及されていない。特に、本発明の4元共重合体に関する実施例は記載されていない。共重合体中のメタクリル酸エステル類としては低級アルキル基からなるエステルが好ましいとの記載もあり、本発明での芳香族基を有するメタクリレート単量体由来の繰り返し単位についてなんら示唆を与えるものではない。さらに、構成単位である無水マレイン酸の一部又は全部が加水分解物を受けた共重合体が好ましい樹脂であるとの記載もある。
 さらに、特許文献7に無水マレイン酸とアクリレートの共重合体に関する記載がある。具体的には、該共重合体中にアクリレート単量体として(メタ)アクリル酸メチル、(メタ)アクリル酸ベンジルを併用しても良いこと、及び耐熱性を損なわない範囲でその他の単量体としてスチレン類を共重合しても良いことが記載されている。しかし、本発明の4元共重合体に関する実施例は記載されていない。
特許第1704667号公報 特許第2886893号公報 特開平5-288929号公報 特開平8-85729号公報 特許第3521374号公報 特許第3711666号公報 特開2007-261265号公報 化学総説、No.39、1988(学会出版センター刊行) 月刊ディスプレイ、4月号、2005年
 本発明は、光学特性に優れるアクリル系熱可塑性樹脂、及び、それからなる光学材料用成形体を提供することを目的とする。
 本発明は、特定のアクリル系熱可塑性樹脂からなる光学材料用成形体、例えば、その光学フィルムが、従来の光学フィルムと比較して、低い複屈折と低い光弾性係数を同時に達成できるという驚くべき事実に基づいてなされたものである。
 すなわち、本発明は、
[1] 下記式(1)で表されるメタクリレート単量体由来の繰り返し単位、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位、下記式(3)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び下記式(4)又は下記式(5)で表される環状酸無水物繰り返し単位を含有するアクリル系熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000006
(式中:Rは、水素、直鎖状又は分岐状の炭素数1~12のアルキル基、炭素数5~12のシクロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。lは1~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
(式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。mは1~3の整数、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中:R~Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。)
[2] GPC測定法による重量平均分子量で10,000~400,000、分子量分布で1.8~3.0の範囲にある[1]に記載のアクリル系熱可塑性樹脂。
[3] 式(1)で表されるメタクリレート単量体由来の繰り返し単位が10~70重量%、式(2)で表されるビニル芳香族単量体由来の繰り返し単位が5~40重量%、式(3)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位が0.1~5重量%、式(4)又は式(5)で表される環状酸無水物繰り返し単位が20~50重量%含有されることを特徴とする[1]又は[2]に記載のアクリル系熱可塑性樹脂。
[4] ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下であることを特徴とする[1]~[3]のいずれかに記載のアクリル系熱可塑性樹脂。
[5] メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジル、環状酸無水物繰り返し単位が無水マレイン酸からそれぞれ誘導されるものである[1]~[4]のいずれかに記載のアクリル系熱可塑性樹脂。
[6] 下記(i)の光学的性質を満足する[1]~[5]のいずれかに記載のアクリル系熱可塑性樹脂。
(i)光弾性係数の絶対値が3.0×10-12Pa-1以下である。
[7] 下記(ii)の光学的性質を満足する[1]~[6]のいずれかに記載のアクリル系熱可塑性樹脂。
(ii)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
 Δn(S)=K×S+C  ・・・(a)
 |K|<0.30×10-6  ・・・(b)
[8] さらに下記(iii)の光学的性質を満足する[1]~[7]のいずれかに記載のアクリル系熱可塑性樹脂。
(iii)面内方向の位相差(Re)の絶対値が30nm以下である。
[9] さらに下記(iv)の光学的性質を満足する[1]~[8]のいずれかに記載のアクリル系熱可塑性樹脂。
(iv)厚み方向の位相差(Rth)の絶対値が30nm以下である。
[10] さらに下記(v)の光学的性質を満足する[1]~[9]のいずれかに記載のアクリル系熱可塑性樹脂。
(v)面内方向の位相差(Re)と厚み方向の位相差(Rth)との比(Rth/Re)が下記式(c)を満たす。
    0.1<Rth/Re<1   ・・・(c)
[11] さらに下記の条件(vi)を満足することを特徴とする[1]~[10]のいずれかに記載のアクリル系熱可塑性樹脂。
(vi)ガラス転移温度(Tg)が120℃以上である。
[12] さらに下記の条件(vii)を満足することを特徴とする[1]~[11]のいずれかに記載のアクリル系熱可塑性樹脂。
(vii)全光線透過率が85%以上である。
[13] [1]~[12]のいずれかに記載のアクリル系熱可塑性樹脂からなる光学材料用成形体。
[14] 光学材料用成形体が光学フィルムである[13]記載の光学材料用成形体。
[15] 押し出し成形で成形されたフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[14]に記載の光学フィルム。
[16] キャスト成形で成形されたフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする[14]に記載の光学フィルム。
[17] [14]~[16]のいずれかに記載の光学フィルムよりなる偏光板保護フィルム。
[18] [14]~[16]のいずれかに記載の光学フィルムよりなる位相差フィルム。
[19] 光学材料用成形体が光学レンズである[13]に記載の光学材料用成形体。
に関する。
 本発明によって、光学特性に優れるアクリル系熱可塑性樹脂、及び、それからなる光学材料用成形体を提供することができる。特に、光弾性係数、複屈折、位相差のうち少なくとも1つの光学特性に優れた熱可塑性樹脂及び、それからなる光学材料用成形体を提供することができる。
アクリル系熱可塑性樹脂(実施例1)のH-NMRスペクトル図である。
 [アクリル系熱可塑性樹脂]
 本発明のアクリル系熱可塑性樹脂は、下記式(1)で表されるメタクリレート単量体由来の繰り返し単位、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位、下記式(3)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び下記式(4)又は下記式(5)で表される環状酸無水物繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000011
(式中:Rは、水素、直鎖状又は分岐状の炭素数1~12のアルキル基、炭素数5~12のシクロアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000012
(式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。lは1~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000013
(式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。mは1~3の整数、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式中:R~Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。)
 該アクリル系熱可塑性樹脂において、式(1)で表される繰り返し単位は、メタクリル酸、及びメタクリル酸エステル単量体から誘導される。使用されるメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル;などが挙げられる。メタクリル酸、及びメタクリル酸エステルは、単独で用いても2種以上を併用してもよい。
 これらメタクリル酸エステルのうち、アルキル基の炭素数が1~7であるメタクリル酸アルキルエステルが好ましく、得られたアクリル系熱可塑性樹脂の耐熱性や透明性が優れることから、メタクリル酸メチルが特に好ましい。
 式(1)で表される繰り返し単位の含有割合は、透明性の観点から10~70質量%、好ましくは25~70質量%、より好ましくは40~70質量%である。
 式(2)で表される繰り返し単位は、芳香族ビニル単量体から誘導される。使用される単量体としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2-メチル-4-クロロスチレン、2,4,6-トリメチルスチレン、α―メチルスチレン、cis-β-メチルスチレン、trans-β-メチルスチレン、4-メチル-α-メチルスチレン、4-フルオロ-α-メチルスチレン、4-クロロ-α-メチルスチレン、4-ブロモ-α-メチルスチレン、4-t-ブチルスチレン、2-フルオロスチレン、3-フルオロスチレン、4-フルオロスチレン、2,4-ジフルオロスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、2,4-ジクロロスチレン、2,6-ジクロロスチレン、2-ブロモスチレン、3-ブロモスチレン、4-ブロモスチレン、2,4-ジブロモスチレン、α-ブロモスチレン、β-ブロモスチレン、2-ヒドロキシスチレン、4-ヒドロキシスチレンなどが挙げられる。これらの芳香族ビニル単量体は、単独で用いても2種以上を併用してもよい。
 これらの単量体のうち、共重合が容易なことから、スチレン、α-メチルスチレンが好ましい。
 式(2)で表される繰り返し単位の含有割合は、透明性、耐熱性の観点から5~40質量%、好ましくは5~30質量%、より好ましくは5~20質量%である。
 本発明のアクリル系熱可塑性樹脂は、式(3)で表される繰り返し単位を含有することにより、耐熱性と複屈折性を維持しながら、その光弾性係数がより極小化された光学特性を発現する。
 式(3)で表される繰り返し単位は、芳香族基を有するメタクリレート単量体から誘導される。使用される単量体としては、例えば、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸1-フェニルエチルなどが挙げられる。これらの単量体は、単独で用いても2種以上を併用してもよい。これらの単量体のうち、メタクリル酸ベンジルが特に好ましい。
 式(3)で示される繰り返し単位の含有割合は、本発明の効果である光学特性(特に、後述する低光弾性係数を極小化する)をより高度に発現させる上で、0.1~5質量%、好ましくは0.1~4質量%、より好ましくは0.1~3質量%である。
 式(4)で表される環状酸無水物繰り返し単位は、無置換及び/又は置換無水マレイン酸から誘導される。使用される単量体としては、例えば、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸などが挙げられる。これらの単量体のうち、共重合が容易なことから、無水マレイン酸が好ましい。
 また、式(5)で表される環状酸無水物繰り返し単位は、後述する繰り返し単位間での縮合環化反応により誘導され、例えば、無水グルタル酸などが挙げられる。
 本発明のアクリル系熱可塑性樹脂において、式(4)又は式(5)であらわされる環状酸無水物繰り返し単位は、空気中の湿気など外的環境により一部加水分解を受け開環する可能性がある。本発明のアクリル系樹脂では、光学的特性や耐熱性の観点から、その加水分解率は10モル%未満であることが望ましい。さらに5モル%未満であることが好ましく、1モル%未満であることがより好ましい。
 ここで、加水分解率(モル%)は、{1-(加水分解後の環状酸無水物量(モル))/加水分解前の環状酸無水物量(モル)}×100で求められる。
 式(4)又は式(5)で示される環状酸無水物繰り返し単位の含有割合は、本発明の効果である高い耐熱性と光学特性(特に、後述する位相差の制御)をより高度に達成するために、20~50質量%、好ましくは20~45質量%である。但し、本発明のアクリル系熱可塑性樹脂中、式(2)で表されるビニル芳香族単量体由来の繰り返し単位の含有量(A)と式(4)又は式(5)で表される環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)は、好ましくは1より大きく、10以下であり、より好ましくは1より大きく、5以下である。
 本発明のアクリル系熱可塑性樹脂のGPC測定法によるPMMA換算の重量平均分子量(Mw)は、10,000~400,000、好ましくは40,000~300,000、より好ましくは70,000~200,000であり、その分子量分布(Mw/Mn)は1.8~3.0、好ましくは1.8~2.7、より好ましくは1.8~2.5の範囲である。
 本発明のアクリル系熱可塑性樹脂のガラス転移温度(Tg)は、樹脂組成で任意に制御できるが、産業上での応用性の観点から、好ましくは120℃以上に制御される。より好ましくは130℃以上、さらに好ましくは135℃以上に制御される。
[重合反応]
 本発明のアクリル系熱可塑性樹脂の重合方法として、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の一般に行われている重合方法を用いることができるが、光学材料用途としては微小な異物の混入は出来るだけ避けるのが好ましく、この観点から懸濁剤や乳化剤を用いないキャスト重合や溶液重合を用いることが望ましい。
 また、重合形式として、例えば、バッチ重合法、連続重合法のいずれも用いることができるが、より均一組成の重合物が得られる点で、連続重合法を用いることが望ましい。
 重合反応時の温度や重合時間は、使用する単量体の種類や割合などに応じて変化するが、例えば、重合温度が0~150℃、重合時間が0.5~24時間であり、好ましくは、重合温度が80~150℃、重合時間が1~12時間である。
 重合反応時に溶剤を使用する場合、重合溶剤としては、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;テトラヒドロフランなどのエーテル系溶剤;などが挙げられる。これらの溶剤は、単独で用いても2種以上を併用してもよい。使用する溶剤の沸点が高すぎると、最終的に得られるアクリル系熱可塑性樹脂の残存揮発分が多くなることから、沸点が50~200℃である溶剤が好ましい。
 重合反応時には、必要に応じて、重合開始剤を添加してもよい。
 重合開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエートなどの有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビスイソブチレートなどのアゾ化合物;などを挙げることができる。これらの重合開始剤は、単独で用いても2種以上を併用してもよい。
 重合開始剤の使用量は、単量体の組合せや反応条件などに応じて適宜設定すればよく、特に限定されるものではないが、好ましくは0.005~5wt%の範囲で用いられる。
 重合反応に必要に応じて用いられる分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用され、例えばブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2-エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、重合度が上記の範囲内に制御されるような濃度範囲で添加される。
 重合反応を行う際には、重合反応液のゲル化を抑制するために、重合反応液中に生成したアクリル系熱可塑性樹脂の濃度が50質量%以下となるように制御することが好ましい。具体的には、重合反応液中に生成したアクリル系熱可塑性樹脂の濃度が50質量%を超える場合には、重合溶剤を重合反応液に適宜添加して50質量%以下となるように制御することが好ましい。重合反応液中に生成したアクリル系熱可塑性樹脂の濃度は、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。
 但し、生産性の確保という観点から、重合反応液中に生成したアクリル系熱可塑性樹脂の濃度は、好ましくは10質量%以上、より好ましくは20質量%以上である。
 重合溶剤を重合反応液に適宜添加する形態としては、特に限定されるものではなく、例えば、連続的に重合溶剤を添加してもよいし、間欠的に重合溶剤を添加してもよい。このように重合反応液中に生成したアクリル系熱可塑性樹脂の濃度を制御することによって、反応液のゲル化をより充分に抑制することができる。添加する重合溶剤としては、例えば、重合反応の初期仕込み時に使用した溶剤と同じ種類の溶剤であってもよいし、異なる種類の溶剤であってもよいが、重合反応の初期仕込み時に使用した溶剤と同じ種類の溶剤を用いることが好ましい。また、添加する重合溶剤は、1種のみの単一溶剤であっても2種以上の混合溶剤であってもよい。
[縮合環化反応]
 本発明のアクリル系熱可塑性樹脂において、式(5)で表される環状酸無水物繰り返し単位を含有するアクリル系熱可塑性樹脂は、式(1)、式(2)、式(3)で表される繰り返し単位を含有するアクリル系熱可塑性樹脂を、加熱処理することにより誘導される。
 即ち、加熱処理により、式(1)、及び式(3)で表される繰り返し単位間で、
(i)カルボキシル基+カルボキシル基 → 環状酸無水物+水、
Figure JPOXMLDOC01-appb-C000016
(ii)カルボキシル基+エステル基 → 環状酸無水物+アルコール
Figure JPOXMLDOC01-appb-C000017
で表現される縮合環化反応を起こして式(5)で表される環状酸無水物繰り返し単位が生じることにより誘導されるものである。
 この環状酸無水物繰り返し単位が形成されることにより、本発明のアクリル系熱可塑性樹脂に高い耐熱性と高い光学的等方性が付与される。この縮合環化反応の反応率が不充分であると、光学的等方性が低下したり、耐熱性が充分に向上しない。また、成形時の加熱処理によって成形途中に縮合反応が起こり、ゲル化や水又はアルコール生じ成形品中に泡やシルバーストリークとなって現れることがある。
 縮合環化反応を促進するために加熱処理する方法としては、従来公知の方法、例えば、重合工程によって得られた、溶剤を含む重合反応液を、そのまま加熱処理する方法;溶剤の存在下、必要に応じて閉環触媒の共存下に加熱処理する方法;揮発成分を除去するための真空装置あるいは脱揮装置を備えた加熱炉や反応装置、脱揮装置を備えた押出機などを用いて加熱処理する方法などが挙げられる。
 縮合環化反応を行う際には、必要に応じて、閉環触媒として、例えば、p-トルエンスルホン酸などのエステル化触媒又はエステル交換触媒;酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸などの有機カルボン酸類;特開昭61-254608号公報や特開昭61-261303号公報に開示されている塩基性化合物、有機カルボン酸塩、炭酸塩など;有機リン化合物を用いてもよい。
 有機リン化合物としては、例えば、メチル亜ホスホン酸、エチル亜ホスホン酸、フェニル亜ホスホン酸などのアルキル(アリール)亜ホスホン酸(但し、これらは、互変異性体であるアルキル(アリール)ホスフィン酸になっていてもよい)及びこれらのモノエステル又はジエステル;ジメチルホスフィン酸、ジエチルホスフィン酸、ジフェニルホスフィン酸、フェニルメチルホスフィン酸、フェニルエチルホスフィン酸などのジアルキル(アリール)ホスフィン酸及びこれらのエステル;メチルホスホン酸、エチルホスホン酸、トリフルオルメチルホスホン酸、フェニルホスホン酸などのアルキル(アリール)ホスホン酸及びこれらのモノエステル又はジエステル;メチル亜ホスフィン酸、エチル亜ホスフィン酸、フェニル亜ホスフィン酸などのアルキル(アリール)亜ホスフィン酸及びこれらのエステル;亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルなどの亜リン酸モノエステル、ジエステル又はトリエステル;リン酸メチル、リン酸エチル、リン酸2-エチルヘキシル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ-2-エチルヘキシル、リン酸オクチル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニルなどのリン酸モノエステル、ジエステル又はトリエステル;メチルホスフィン、エチルホスフィン、フェニルホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどのモノ-、ジ-又はトリ-アルキル(アリール)ホスフィン;メチルジクロロホスフィン、エチルジクロロホスフィン、フェニルジクロロホスフィン、ジメチルクロロホスフィン、ジエチルクロロホスフィン、ジフェニルクロロホスフィンなどのアルキル(アリール)ハロゲンホスフィン;酸化メチルホスフィン、酸化エチルホスフィン、酸化フェニルホスフィン、酸化ジメチルホスフィン、酸化ジエチルホスフィン、酸化ジフェニルホスフィン、酸化トリメチルホスフィン、酸化トリエチルホスフィン、酸化トリフェニルホスフィンなどの酸化モノ-、ジ-又はトリ-アルキル(アリール)ホスフィン;塩化テトラメチルホスホニウム、塩化テトラエチルホスホニウム、塩化テトラフェニルホスホニウムなどのハロゲン化テトラアルキル(アリール)ホスホニウム;などが挙げられる。
 これらの化合物はそれぞれ単独で用いても良いが、2種以上を併用することにより効果が大きい場合がある。
 縮合環化反応の際に用いる触媒の使用量は、例えば、アクリル系熱可塑性樹脂に対して、好ましくは0.001~5質量%、より好ましくは0.01~2.5質量%、さらに好ましくは0.01~1質量%、特に好ましくは0.05~0.5質量%である。触媒の使用量が0.001質量%未満であると、環化縮合反応の反応率が充分に向上しないことがある。逆に、触媒の使用量が5質量%を超えると、得られたアクリル系熱可塑性樹脂が着色することや、アクリル系熱可塑性樹脂が架橋して、溶融成形が困難になることがある。
 触媒の添加時期は、特に限定されるものではなく、例えば、反応初期に添加してもよいし、反応途中に添加してもよいし、それらの両方で添加してもよい。
 また、縮合環化反応は、溶剤の存在下で行い、かつ、縮合環化反応の際に、脱揮工程を併用することが好ましい。この場合、縮合環化反応で副生する水又はアルコールを強制的に脱揮させて除去するので、反応の平衡が縮合環化物の生成側に有利となる。
[脱揮工程]
 脱揮工程とは、(i)重合溶剤、残存単量体などの揮発分、及び/又は(ii)縮合環化反応により副生した水又はアルコールを、必要に応じて減圧加熱条件下で、除去処理する工程を意味する。この除去処理が不充分であると、得られた熱可塑性樹脂中の残存揮発分が多くなり、成形時の変質などにより着色することや、泡やシルバーストリークなどの成形不良が起こることがある。
 脱揮工程に用いる装置としては、例えば、熱交換器と脱揮槽からなる脱揮装置;ベント付き押出機;脱揮装置と押出機を直列に配置したものなどが挙げられる。ベント付き押出機を用いる場合、ベントは1個でも複数個でもいずれでもよいが、複数個のベントを有する方が好ましい。
 反応処理温度は、好ましくは150~350℃、より好ましくは200~300℃である。反応処理温度が150℃未満であると、環化縮合反応が不充分となって残存揮発分が多くなることがある。逆に、反応処理温度が350℃を超えると、得られた熱可塑性樹脂の着色や分解が起こることがある。
 反応処理圧力は、好ましくは931~1.33hPa(700~1mmHg)、より好ましくは798~66.5hPa(600~50mmHg)である。反応処理圧力が931hPa(700mmHg)を超えると、水又はアルコールを含めた揮発分が残存しやすいことがある。逆に、反応処理圧力が1.33hPa(1mmHg)未満であると、工業的な実施が困難になることがある。
 反応処理時間は、縮合環化率や残存揮発分の量により適宜選択されるが、得られたアクリル系熱可塑性樹脂の着色や分解を抑えるために短いほど好ましい。
 本発明のアクリル系熱可塑性樹脂に含まれる異物数は、光学用途に用いる場合少ないほど好ましい。異物数を減少させる方法としては、重合反応工程、縮合環化反応工程、脱揮工程、及び成形工程において、該アクリル系熱可塑性樹脂の溶液又は溶融液を、例えば、濾過精度1.5~15μmのリーフディスク型ポリマーフィルターなどで濾過する方法が挙げられる。
[光学材料用成形体]
 本発明のアクリル系熱可塑性樹脂からなる光学材料用成形体、例えば、光学フィルム、光学レンズなどには、本発明の効果を著しく損なわない範囲内で、種々の添加剤を含有していてもよい。添加剤の種類は、樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。
 例えば、無機充填剤、酸化鉄等の顔料、ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤、離型剤、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤、ヒンダードフェノール系酸化防止剤、りん系熱安定剤等の酸化防止剤、ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤、着色剤、その他添加剤あるいはこれらの混合物等が挙げられる。
 光学材料用成形体中における添加剤の含有割合は、好ましくは0~5質量%、より好ましくは0~2質量%、さらに好ましくは0~1質量%である。
 また、本発明のアクリル系熱可塑性樹脂からなる光学材料用成形体には、本発明の目的を損なわない範囲で、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリスチレン、スチレンアクリロニトリル共重合体等のスチレン系樹脂;ポリアミド;ポリフェニレンサルファイド樹脂;ポリエーテルエーテルケトン樹脂;ポリエステル;ポリスルホン;ポリフェニレンオキサイド;ポリイミド、ポリエーテルイミド;ポリアセタール;トリアセチルセルロースなどのセルロース樹脂;等の熱可塑性樹脂、及びフェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂などの少なくとも1種以上を混合することができる。
 本発明における光学材料用成形体の製造方法は、特に制限されるものではなく、公知の方法が利用できる。例えば単軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、各種ニーダー等の溶融混練機を用いて製造することができる。また本発明における未延伸成形体は、射出成形、シート成形、ブロー成形、インジェクションブロー成形、インフレーション成形、押出成形、発泡成形等、公知の方法で成形することが可能であり、圧空成形、真空成形等の二次加工成形法も用いることができる。
 本発明の光学材料用成形体の形態がフィルム又はシートである場合は、押出成形、キャスト成形等の手法が用いられる。例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸フィルムを押し出し成形することができる。押し出し成形時に、上記各種添加剤、本発明のアクリル系熱可塑性樹脂以外の樹脂の溶融混錬を経て成形することもできる。
 また、例えばクロロホルム、二塩化メチレン等の溶媒を用いて、本発明のアクリル系熱可塑性樹脂を溶解後、キャスト乾燥固化することにより未延伸フィルムをキャスト成形することができる。本発明のアクリル系熱可塑性樹脂からなる光学フィルムの成形方法は、キャスト成形で必須であるクロロホルム、二塩化メチレンなどの溶剤への暴露の危険性がないこと、乾燥固化のための乾燥装置、溶媒回収装置などの附帯設備が不要であることなど安全性及び採算性などの観点から押出成形であることが好ましい。
 得られた未延伸フィルムは、機械的流れ方向に縦一軸延伸、機械的流れ方向に直行する方向に横一軸延伸することができ、またロール延伸とテンター延伸の逐次2軸延伸法、テンター延伸による同時2軸延伸法、チューブラー延伸による2軸延伸法等によって延伸することにより2軸延伸フィルムを製造することができる。延伸を行うことによりフィルムの強度を向上させることができる。
 最終的な延伸倍率は得られた成形体の熱収縮率より判断することができる。延伸倍率は少なくともどちらか一方向に0.1%以上300%未満であることが好ましく、0.2%以上300%以下であることがさらに好ましく、0.3%以上300%以下であることがとりわけ好ましい。この範囲に設計することにより、複屈折、耐熱性、強度の観点で好ましい延伸成形体が得られる。
 本発明において、延伸は押し出し成形、キャスト成形に連続して行うことができる。なお、本発明の光学材料用成形体、例えば、光学フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)などを行うことができる。
 熱処理の条件は、従来公知の延伸フィルムに対して行われる熱処理の条件と同様に適宜選択すればよく、特に限定されるものではない。
 本発明において、フィルムとシートの違いは厚さのみであり、フィルムは300μm以下の厚さのものを言い、シートは300μmを超える厚さのものである。また、フィルムは1μm以上が望ましく、5μm以上がより望ましい。シートは10mm以下が望ましく、5mm以下がより望ましい。
 本発明のアクリル系熱可塑性樹脂による光学材料用成形体は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、1/4波長板、1/2波長板等の位相差板、視野角制御フィルム等の液晶光学補償フィルム、ディスプレイ前面板、ディスプレイ基盤、レンズ等、また、太陽電池に用いられる透明基盤等に好適に用いることができる。
 その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。本発明の成形体による光学材料は、例えば反射防止処理、透明導電処理、電磁波遮蔽処理、ガスバリア処理等の表面機能化処理をすることもできる。
[光学フィルム]
 本発明のアクリル系熱可塑性樹脂を成形してなる光学フィルムには、産業的応用上、光学フィルムに複屈折が必要な用途と必要でない用途が存在する。複屈折を必要としない用途は、例えば偏光板保護フィルムであり、複屈折を必要とする用途、例えば位相差フィルムである。
 本発明のアクリル系熱可塑性樹脂を成形してなる光学フィルムは、下記光学的性質(i)を満足する。
(i)光弾性係数の絶対値が3.0×10-12Pa-1以下である。
 さらに、好ましくは光学的性質(ii)を満足する。
(ii)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
 Δn(S)=K×S+C  ・・・(a)
 |K|<0.30×10-6  ・・・(b)
 さらに、好ましくは光学的性質(iii)を満足する:
(iii)面内方向の位相差(Re)の絶対値が30nm以下である。
 さらに、好ましくは光学的性質(iv)を満足する:
(iv)厚み方向の位相差(Rth)の絶対値が30nm以下である。
 さらに、好ましくは光学的性質(v)を満足する:
(v)面内方向の位相差(Re)と厚み方向の位相差(Rth)との比(Rth/Re)が次の関係式(c)を満たす。
0.1<Rth/Re<1   ・・・(c)
 さらに、好ましくは下記条件(vi)を満足する:
(vi)ガラス転移温度(Tg)が120℃以上である。
 さらに、好ましくは下記条件(vii)を満足する:
(vii)全光線透過率が85%以上である。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムの光弾性係数の絶対値は3.0×10-12Pa-1以下であることが好ましい。より好ましくは2.0×10-12Pa-1以下、さらに好ましくは1.0×10-12Pa-1以下である。
 光弾性係数に関しては種々の文献に記載があり(例えば化学総説,No.39,1998(学会出版センター発行)参照)、下式により定義されるものである。
    C=|Δn|/σ
    |Δn|=nx-ny
(式中、C:光弾性係数、σ:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
 光弾性係数の値がゼロに近いほど外力による複屈折の変化が小さいことを示しており、各用途において設計された複屈折の変化が小さいことを意味する。
 産業的に利用する際、光学フィルムの機械的強度を高めることを目的として延伸加工することが好まれるが、延伸によって生じる配向で複屈折が増大してしまうおそれがある。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムは、延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
 Δn(S)=K×S+C  ・・・(a)
 |K|<0.30×10-6  ・・・(b)
 この傾きKの値は、延伸倍率(S)に対する複屈折(Δn(S))の増加の大きさを表し、Kが大きい程延伸に対する複屈折の増加量が大きく、Kが小さい程延伸に対する複屈折の増加量が小さいことを意味する。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムの好ましいKの値の範囲は、|K|<0.30×10-6である。好ましくは|K|<0.15×10-6であり、より好ましくは、|K|<0.10×10-6である。
 ここでKの値は、熱可塑性樹脂のDSC測定によるガラス転移温度(Tg)を測定し(Tg+20)℃の延伸温度で、かつ500mm/minの延伸速度で延伸を行ったときの値である。一般に、延伸速度を遅くすると複屈折の増加量は小さくなることが知られている。なお、Kの値は、例えば延伸倍率(S)を100倍、200倍、300倍とした場合における複屈折(Δn(S))の値を測定し、これらの値を最小二乗法近似することにより算出することができる。また、延伸倍率(S)とは、延伸前のチャック間距離をL、延伸後のチャック間距離をLとすると、以下の式で表される値である。
Figure JPOXMLDOC01-appb-M000018
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムの面内方向の厚さ100μmあたりの位相差(Re)の絶対値は30nm以下である。好ましくは20nm以下、より好ましくは15nm以下、特に好ましくは11nm以下である。位相差の絶対値は、複屈折の大小を表す指標である。従って、本発明のアクリル系熱可塑性樹脂からなる光学フィルムの複屈折は小さい。一方、面内方向の厚さ100μmあたりの位相差が30nmを超える場合は、屈折率の異方性が高いことを意味し、低複屈折性を要求される用途に使用できないことがある。
 一般に、熱可塑性樹脂からなる光学フィルムは、延伸によりその位相差が増大することが知られている。例えば、光学フィルムの機械的強度を向上させるために延伸加工をする場合があるが、得られた延伸光学フィルムの面内方向の厚さ100μmあたりの位相差が30nmを超える場合は、低複屈折性フィルムが得られたことにならない。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムの厚み方向の厚さ100μmあたりの位相差(Rth)の絶対値は30nm以下である。好ましくは20nm以下、より好ましくは15nm以下、特に好ましくは11nm以下である。この厚み方向の位相差は、例えば、光学フィルムを組み込んだ表示装置の視野角特性と相関する指標である。具体的には、厚み方向の位相差の絶対値が小さいほど視野角特性は良好であり、見る角度による表示色の色調変化、コントラストの低下が小さい。光学フィルムの有する厚み方向に位相差(Rth)の絶対値は小さい。
 光学フィルムのガラス転移温度(Tg)は、120℃以上であることが好ましい。より好ましくは130℃以上、さらに好ましくは135℃以上である。ガラス転移温度が120℃に満たない場合、使用環境温度下の寸法安定性に劣るなど高い耐熱性を要求される用途に使用できないことがある。
 光学フィルムの全光線透過率は85%以上であることが好ましい。より好ましくは88%以上、さらに好ましくは90%以上である。全光線透過率が85%未満であると、透明性が低下し、高い透明性を要求される用途に使用できないことがある。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムの光学的性質は、フィルム面内方向、フィルム厚み方向ともに複屈折が極めて小さく(近似的にはゼロ)、低光弾性係数も極めて小さい(近似的にはゼロ)ことで特徴付けられ、従来公知の樹脂では達成できない光学的に完全な等方性を実現している。さらに、高い耐熱性も実現している。
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムは、主として複屈折を必要としない用途、例えば偏光板保護フィルム等に適している。
 以下、実施例を挙げて本発明をより具体的に説明する。
 本発明に用いられる各測定値の測定方法は次のとおりである。
(a)熱可塑性樹脂の解析
(1)繰り返し単位
 1H-NMR測定より、(i)メタクリレート単量体由来の繰り返し単位、(ii)ビニル芳香族単量体由来の繰り返し単位、(iii)芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び(iv)酸無水物繰り返し単位を同定し、その存在量を算出した。
測定機器:ブルーカー株式会社製 DPX-400
測定溶媒:CDCl、又はd-DMSO
測定温度:40℃
(2)ガラス転移温度
 ガラス転移温度(Tg)は、示差走査熱量計(パーキンエルマージャパン(株)製 Diamond DSC)を用いて、窒素ガス雰囲気下、α-アルミナをリファレンスとし、JIS-K-7121に準拠して、試料約10mgを常温から200℃まで昇温速度10℃/minで昇温して得られたDSC曲線から中点法で算出した。
(3)分子量
 重量平均分子量、及び数平均分子量は、ゲル浸透クロマトグラフ(東ソー(株)製 HLC-8220)を用いて、溶媒はテトラヒドロフラン、設定温度40℃で、市販標準PMMA換算により求めた。
(b)光学特性評価
(1)光学フィルムサンプルの作製
(a)プレスフィルムの成型
真空圧縮成型機((株)神藤金属工業所製 SFV?30型)を用いて、大気圧下、260℃、で25分間予熱後、真空下(約10kPa)、260℃、約10MPaで5分間圧縮してプレスフィルムを成型した。
(b)延伸フィルムの成型
 インストロン社製5t引張り試験機を用いて、延伸温度(Tg+20)℃、延伸速度(500mm/分)で一軸フリー延伸して延伸フィルムを成形した。延伸倍率は、100%、200%、及び300%で延伸した。
(2)複屈折の測定
 大塚電子製RETS-100を用いて、回転検光子法により測定を行った。複屈折の値は、波長550nm光の値である。複屈折(Δn)は、以下の式により計算した。
Δn=nx-ny
(Δn:複屈折、nx:伸張方向の屈折率、ny:伸張方向と垂直な屈折率)
複屈折(Δn)の絶対値(|Δn|)は、以下のように求めた。
|Δn|=|nx-ny|
(3)位相差の測定
<面内の位相差>
 大塚電子(株)製RETS-100を用いて、回転検光子法により波長400~800nmの範囲について測定を行った。
 複屈折の絶対値(|Δn|)と位相差(Re)は以下の関係にある。
Re=|Δn|×d
(|Δn|:複屈折の絶対値、Re:位相差、d:サンプルの厚み)
 また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|nx-ny|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率)
<厚み方向の位相差>
 王子計測機器(株)製位相差測定装置(KOBRA-21ADH)を用いて、波長589nmにおける位相差を測定し、得られた値をフィルムの厚さ100μmに換算して測定値とした。
 複屈折の絶対値(|Δn|)と位相差(Rth)は以下の関係にある。
Rth=|Δn|×d
(|Δn|:複屈折の絶対値、Rth:位相差、d:サンプルの厚み)
また、複屈折の絶対値(|Δn|)は以下に示す値である。
|Δn|=|(nx+ny)/2-nz|
(nx:延伸方向の屈折率、ny:面内で延伸方向と垂直な屈折率、nz:面外で延伸方向と垂直な厚み方向の屈折率)
(理想となる、3次元方向について完全等方的等方性であるフィルムでは、面内位相差(Re)、厚み方向位相差(Rth)ともに0となる。)
(4)光弾性係数の測定
 Polymer Engineering and Science 1999, 39, 2349-2357に詳細について記載のある複屈折測定装置を用いた。レーザー光の経路にフィルムの引張り装置を配置し、23℃で伸張応力をかけながら複屈折を測定した。伸張時の歪速度は50%/分(チャック間:50mm、チャック移動速度:5mm/分)、試験片幅は6mmで測定を行った。複屈折の絶対値(|Δn|)と伸張応力(σ)の関係から、最小二乗近似によりその直線の傾きを求め光弾性係数(C)を計算した。計算には伸張応力が2.5MPa≦σ≦10MPaの間のデータを用いた。
=|Δn|/σ
|Δn|=|nx-ny|
(C:光弾性係数、σ:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向の垂直な屈折率)
[熱可塑性樹脂]
メタクリル酸メチル/スチレン/メタクリル酸ベンジル/無水マレイン酸
[実施例1]
 攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
 メタクリル酸メチル(MMA)518g、スチレン(St)48g、メタクリル酸ベンジル(BzMA)9.6g、無水マレイン酸(MAH)384g、メチルイソブチルケトン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’-アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
 原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
 ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液を、品溶媒であるメタノールに滴下し、沈殿、精製した。真空下、130℃で2時間乾燥して目的とする熱可塑性樹脂を得た。
組成:MMA/St/BzMA/MAH=61/12/1/27wt%
分子量:Mw=18.8×10;Mw/Mn=2.08
Tg:142℃
 このもののH-NMRスペクトルを図1に示す。
[実施例2]
 実施例1において、メタクリル酸メチル509g、スチレン48g、メタクリル酸ベンジル19g、無水マレイン酸384gに変更した以外は、実施例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/BzMA/MAH=62/12/2/24wt%
分子量:Mw=17.3×10;Mw/Mn=2.13
Tg:141℃
[実施例3]
 実施例1において、メタクリル酸メチル499g、スチレン42g、メタクリル酸ベンジル48g、無水マレイン酸371gに変更した以外は、実施例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/BzMA/MAH=60/11/5/24wt%
分子量:Mw=20.2×10;Mw/Mn=2.36
Tg:138℃
[比較例1]
 実施例1において、メタクリル酸メチル469g、スチレン37g、メタクリル酸ベンジル96g、無水マレイン酸358gを用いた以外は、実施例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/BzMA/MAH=59/7/12/22wt%
分子量:Mw=18.0×10;Mw/Mn=2.12
Tg:133℃
[比較例2]
 実施例1において、メタクリル酸ベンジルを用いることなく、メタクリル酸メチル768g、スチレン144g、無水マレイン酸48gに変更した以外は、実施例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/MAH=76/17/7wt%
分子量:Mw=13.4×10;Mw/Mn=2.01
Tg:128℃
メタクリル酸メチル/スチレン/メタクリル酸ベンジル/メタクリル酸/無水グルタル酸
[実施例4]
 攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル、及び重合溶液排出ノズルを備えたジャケット付ガラス反応器(容量1L)を用いた。重合反応器の圧力は、微加圧、反応温度は100℃に制御した。
 メタクリル酸メチル900g、スチレン36g、メタクリル酸ベンジル48g、メタクリル酸(MAA)216g、メチルイソブチルケトン240g、n-オクチルメルカプタン1.2gを混合した後、窒素ガスで置換して原料溶液を調製した。2,2’-アゾビス(イソブチロニトリル)を0.364gをメチルイソブチルケトン12.96gに溶解した後、窒素ガスで置換して開始剤溶液を調整した。
 原料溶液はポンプを用いて6.98ml/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08ml/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて425ml/hrの一定流量でポリマー溶液を排出した。
 ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液を、品溶媒であるメタノールに滴下し、沈殿、精製した。真空下、130℃で2時間乾燥して前駆体を得た。該前駆体を脱揮装置を附帯したラボプラストミルで加熱処理(処理温度:250℃、真空度:133hPa(100mmHg))して目的とする熱可塑性樹脂を得た。
組成:MMA/St/BzMA/MAA/無水グルタル酸
=70/5/4/4/21wt%
分子量:Mw=11.4×10;Mw/Mn=2.40
Tg:128℃
[比較例3]
 実施例4において、メタクリル酸ベンジルを用いることなく、メタクリル酸メチル888g、スチレン60g、メタクリル酸252gに変更した以外は、実施例4と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA/St/MAA/無水グルタル酸=64/9/4/23wt%
分子量:Mw=10.0×10;Mw/Mn=2.09
Tg:131℃
[比較例4]
 実施例1において、メタクリル酸メチル960gを用いた以外は、実施例1と同様の操作を行って熱可塑性樹脂を得た。
組成:MMA=100wt%
分子量:Mw=10×10;Mw/Mn=1.89
Tg:121℃
 これらの重合結果を表1に示す。
Figure JPOXMLDOC01-appb-T000019
[実施例5~8、比較例5~8]
 実施例1~4、比較例1~4で得られた熱可塑性樹脂を用いて、前述の方法に従いプレスフィルムを成型した。該プレスフィルムから前述の方法に従い100%延伸フィルムを成型し、その光学特性を評価した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムは、光学的特性として低複屈折及び光弾性係数が同時に小さい(○)、一方、比較例の熱可塑性樹脂からなる光学フィルムは、例えば、光弾性係数が大きく光学特性に劣る(×)。
 また、実施例5~8、及び比較例1の結果より、メタクリル酸ベンジル含量によって光弾性係数が制御されていること、0.1~5重量%の範囲にある場合はその絶対値が2.0×10-12Pa-1以下と極めて小さい値となることが確認される。従来技術として、例えば、特開2007-169622号公報などに有機低分子化合物を添加することによる光弾性係数の制御方法が開示されているが、該方法では、成形加工時や光学材料用成形体としての使用時に、添加した化合物のブリードアウトなどによる光学特性の変化の可能性が残ってしまう。本発明のアクリル系熱可塑性樹脂では、光弾性係数を制御する成分が、高分子主鎖中に共重合されているためブリードアウトなどの可能性がなく、安定した光学特性を発現し得る。
[実施例9、10、比較例9]
 実施例1、実施例3、及び比較例4で得られた熱可塑性樹脂を用いて、前述の方法に従いプレスフィルムを成型した。該プレスフィルムから前述の方法に従い100%、200%、300%延伸フィルムを成型し、その光学特性を評価した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000021
[実施例11]
 実施例1と同様の操作を行って得られた熱可塑性樹脂を用いて、テクノベル製Tダイ装着押出機(KZW15TW-25MG-NH型/幅150mmTダイ装着/リップ厚0.5mm)の押出機のシリンダー内樹脂温度とTダイの温度を調整し押し出し成形を実施した。得られた押し出しフィルムを(延伸速度を適宜変更しながら)前述の方法に従い100%、200%、300%延伸フィルムを成形し、それらの光学特性を評価した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000022
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムは、耐熱性に優れ、その光学特性(極めて小さい複屈折値、極めて小さい光弾性係数)も従来材料にない高い光学的等方性を有していることが確認される。また、フィルム成形時やその後に任意の延伸をした際の複屈折の変化率が極めて小さいことが確認される。この特徴は、押し出し成形によるフィルム成形やそれに引き続いて延伸加工を行っても、溶融成形時の流れによる配向の影響を受けず、複屈折を生じないという点で極めて有利である。
 これらの特性は、偏光板保護フィルム用途などに好適である。
[実施例12、及び13]
 実施例5で得られた延伸フィルムを温度80℃、湿度90%の雰囲気下に靜置して、加水分解率の異なる延伸フィルムを2種類調製し、その光学特性を評価した。測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000023
 本発明のアクリル系熱可塑性樹脂からなる光学フィルムは、その加水分解率が10モル%未満であれば、十分にその低複屈折性を保持していることが判る。
 本発明のアクリル系熱可塑性樹脂からなる光学材料用成形体は、高い耐熱性と、優れた光学特性を有すること、また、工業的に有利な溶融成形性を示すことから、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、1/4波長板、1/2波長板等の位相差板、視野角制御フィルム等の液晶光学補償フィルム、ディスプレイ前面板、ディスプレイ基盤、レンズ等、また、太陽電池に用いられる透明基盤等に好適に用いることができる。
 その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。

Claims (19)

  1. 下記式(1)で表されるメタクリレート単量体由来の繰り返し単位、下記式(2)で表されるビニル芳香族単量体由来の繰り返し単位、下記式(3)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位、及び下記式(4)又は下記式(5)で表される環状酸無水物繰り返し単位を含有するアクリル系熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中:Rは、水素、直鎖状又は分岐状の炭素数1~12のアルキル基、炭素数5~12のシクロアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中:R、Rは、それぞれ同一でも、異なっていても良く、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。lは1~3の整数を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中:Rは、水素、ハロゲン、水酸基、アルコキシ基、ニトロ基、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。mは1~3の整数、nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式中:R~Rは、それぞれ同一でも、異なっていても良く、水素、直鎖状又は分岐状の炭素数1~12のアルキル基を表す。)
  2. GPC測定法による重量平均分子量で10,000~400,000、分子量分布で1.8~3.0の範囲にある請求項1に記載のアクリル系熱可塑性樹脂。
  3. 式(1)で表されるメタクリレート単量体由来の繰り返し単位が10~70重量%、式(2)で表されるビニル芳香族単量体由来の繰り返し単位が5~40重量%、式(3)で表される芳香族基を有するメタクリレート単量体由来の繰り返し単位が0.1~5重量%、式(4)又は式(5)で表される環状酸無水物繰り返し単位が20~50重量%含有されることを特徴とする請求項1又は2に記載のアクリル系熱可塑性樹脂。
  4. ビニル芳香族単量体由来の繰り返し単位の含有量(A)と環状酸無水物繰り返し単位の含有量(B)のモル比(B/A)が、1より大きく、10以下であることを特徴とする請求項1~3のいずれか1項に記載のアクリル系熱可塑性樹脂。
  5. メタクリレート単量体由来の繰り返し単位がメタクリル酸メチル、ビニル芳香族単量体由来の繰り返し単位がスチレン、芳香族基を有するメタクリレート単量体由来の繰り返し単位がメタクリル酸ベンジル、環状酸無水物繰り返し単位が無水マレイン酸からそれぞれ誘導されるものである請求項1~4のいずれか1項に記載のアクリル系熱可塑性樹脂。
  6. 下記(i)の光学的性質を満足する請求項1~5のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (i)光弾性係数の絶対値が3.0×10-12Pa-1以下である。
  7. 下記(ii)の光学的性質を満足する請求項1~6のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (ii)延伸した場合の複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(a)において、傾きKの値が下記式(b)を満たす。
     Δn(S)=K×S+C  ・・・(a)
     |K|<0.30×10-6  ・・・(b)
  8. さらに下記(iii)の光学的性質を満足する請求項1~7のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (iii)面内方向の位相差(Re)の絶対値が30nm以下である。
  9. さらに下記(iv)の光学的性質を満足する請求項1~8のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (iv)厚み方向の位相差(Rth)の絶対値が30nm以下である。
  10. さらに下記(v)の光学的性質を満足する請求項1~9のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (v)面内方向の位相差(Re)と厚み方向の位相差(Rth)との比(Rth/Re)が下記式(c)を満たす。
        0.1<Rth/Re<1   ・・・(c)
  11. さらに下記の条件(vi)を満足することを特徴とする請求項1~10のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (vi)ガラス転移温度(Tg)が120℃以上である。
  12. さらに下記の条件(vii)を満足することを特徴とする請求項1~11のいずれか1項に記載のアクリル系熱可塑性樹脂。
    (vii)全光線透過率が85%以上である。
  13. 請求項1~12のいずれか1項に記載のアクリル系熱可塑性樹脂からなる光学材料用成形体。
  14. 光学材料用成形体が光学フィルムである請求項13記載の光学材料用成形体。
  15. 押し出し成形で成形されたフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項14に記載の光学フィルム。
  16. キャスト成形で成形されたフィルムであって、少なくとも1軸方向に延伸したものであり、かつ、その延伸倍率が0.1~300%であることを特徴とする請求項14に記載の光学フィルム。
  17. 請求項14~16のいずれか1項に記載の光学フィルムよりなる偏光板保護フィルム。
  18. 請求項14~16のいずれか1項に記載の光学フィルムよりなる位相差フィルム。
  19. 光学材料用成形体が光学レンズである請求項13に記載の光学材料用成形体。
     
PCT/JP2008/073449 2007-12-27 2008-12-24 アクリル系熱可塑性樹脂、及び光学材料用成形体 WO2009084541A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801228554A CN101910223B (zh) 2007-12-27 2008-12-24 热塑性丙烯酸树脂以及光学材料用成型体
KR1020107014021A KR101201168B1 (ko) 2007-12-27 2008-12-24 아크릴계 열가소성 수지, 및 광학 재료용 성형체
US12/810,265 US8779076B2 (en) 2007-12-27 2008-12-24 Thermoplastic acrylic resin and molded body for optical member
JP2009548047A JP4717947B2 (ja) 2007-12-27 2008-12-24 アクリル系熱可塑性樹脂、及び光学材料用成形体

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007336187 2007-12-27
JP2007-336187 2007-12-27
JP2008198678 2008-07-31
JP2008198687 2008-07-31
JP2008-198687 2008-07-31
JP2008-198678 2008-07-31

Publications (1)

Publication Number Publication Date
WO2009084541A1 true WO2009084541A1 (ja) 2009-07-09

Family

ID=40824255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073449 WO2009084541A1 (ja) 2007-12-27 2008-12-24 アクリル系熱可塑性樹脂、及び光学材料用成形体

Country Status (6)

Country Link
US (1) US8779076B2 (ja)
JP (1) JP4717947B2 (ja)
KR (1) KR101201168B1 (ja)
CN (1) CN101910223B (ja)
TW (1) TWI383999B (ja)
WO (1) WO2009084541A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053256A (ja) * 2009-08-31 2011-03-17 Nippon Shokubai Co Ltd 光学積層体
WO2011149088A1 (ja) * 2010-05-28 2011-12-01 旭化成ケミカルズ株式会社 アクリル系熱可塑性樹脂、及びその成形体
JP2012052023A (ja) * 2010-09-01 2012-03-15 Asahi Kasei E-Materials Corp 光学フィルム
WO2013051430A1 (ja) * 2011-10-04 2013-04-11 学校法人慶應義塾 光学フィルム及びそれを備える液晶表示装置
JP2014501293A (ja) * 2011-04-13 2014-01-20 エルジー・ケム・リミテッド 光学フィルム用アクリル系共重合体樹脂の製造方法及びこれを用いた光学フィルムの製造方法
JP2014506683A (ja) * 2011-04-13 2014-03-17 エルジー・ケム・リミテッド 光学フィルム用樹脂組成物及びこれを利用した光学フィルム
CN104769684A (zh) * 2012-11-02 2015-07-08 日东电工株式会社 透明导电性膜
JP2016069560A (ja) * 2014-09-30 2016-05-09 株式会社日本触媒 樹脂組成物及びその製造方法
WO2019181752A1 (ja) 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
JP2020508377A (ja) * 2017-02-20 2020-03-19 アルケマ フランス メタクリル酸メチルの酸官能化コポリマー及びこれをベースとするアクリル樹脂組成物
WO2022137768A1 (ja) 2020-12-25 2022-06-30 株式会社カネカ 積層体およびその利用
WO2022185815A1 (ja) 2021-03-05 2022-09-09 株式会社カネカ 積層体およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409208B1 (ko) * 2011-04-13 2014-06-20 주식회사 엘지화학 연속괴상중합법에 의한 광학 필름용 수지 조성물의 제조 방법, 이를 이용한 광학 필름의 제조 방법 및 편광판 제조 방법
KR101508038B1 (ko) * 2011-06-01 2015-04-08 주식회사 엘지화학 광학 필름용 수지 조성물 및 이를 이용한 광학 필름
US20140127518A1 (en) * 2011-06-15 2014-05-08 Konica Minolta , Inc. Water vapor barrier film, method for producing the same, and electronic equipment using the same
US10030134B2 (en) * 2011-07-01 2018-07-24 Asahi Kasei Kabushiki Kaisha Acrylic thermoplastic resin composition and molded article thereof
WO2014021264A1 (ja) * 2012-07-30 2014-02-06 電気化学工業株式会社 メタクリル樹脂耐熱性向上用の共重合体
KR101627975B1 (ko) * 2015-07-20 2016-06-07 주식회사 엘지화학 인성이 우수한 아크릴계 광학 필름 및 이를 포함하는 박형 편광판
KR101951522B1 (ko) * 2016-10-31 2019-05-10 롯데첨단소재(주) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
JP7129181B2 (ja) * 2017-03-17 2022-09-01 旭化成株式会社 ヘッドマウントディスプレイ用部材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814414B1 (ja) * 1969-11-25 1973-05-07
JPS4814413B1 (ja) * 1969-11-20 1973-05-07
JPS4912088B1 (ja) * 1969-11-06 1974-03-22
JPS4912089B1 (ja) * 1969-11-10 1974-03-22
JPS4913852B1 (ja) * 1969-12-09 1974-04-03
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
JPH03123356A (ja) * 1989-10-06 1991-05-27 Fuji Photo Film Co Ltd 電子写真式平版印刷用原版

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398591A (en) 1972-02-10 1975-06-25 Ici Ltd Process for growing a fungus
JPS5815431B2 (ja) 1972-05-31 1983-03-25 株式会社日立製作所 ヘイセツエレベ−タシンゴウソウチ
JPS4912089A (ja) 1972-05-15 1974-02-02
JPS57153008A (en) 1981-03-19 1982-09-21 Asahi Chem Ind Co Ltd Methacrylic resin having excellent heat resistance
JPS59221314A (ja) 1983-05-31 1984-12-12 Kyowa Gas Chem Ind Co Ltd メタクリル共重合体の製造方法
JPS6071661A (ja) 1983-09-29 1985-04-23 Asahi Chem Ind Co Ltd 熱可塑性ポリアミド組成物
JPS60147417A (ja) 1984-01-11 1985-08-03 Mitsubishi Rayon Co Ltd 耐熱性メタクリル系樹脂の製造法
JPS63264613A (ja) 1986-12-25 1988-11-01 Asahi Chem Ind Co Ltd 光学素子基体
JPH0386712A (ja) * 1989-08-31 1991-04-11 Kuraray Co Ltd 低複屈折性および低吸湿性に優れたメタクリル系樹脂
EP0421685A3 (en) 1989-10-06 1992-02-26 Fuji Photo Film Co., Ltd. An electrophotographic lithographic printing plate precursor
JP2977274B2 (ja) * 1989-12-26 1999-11-15 日本ゼオン株式会社 成形用材料および成形品
WO1991013105A1 (en) * 1990-02-23 1991-09-05 Mitsubishi Rayon Co., Ltd. Methacrylic resin molding material for optical information recording medium
JPH0662694B2 (ja) 1991-04-04 1994-08-17 旭化成工業株式会社 耐熱性に優れた共重合体の製造方法
JPH04227613A (ja) 1991-05-10 1992-08-17 Asahi Chem Ind Co Ltd 耐熱性、無色透明性に優れたメタクリル樹脂の製造法
JPH05186659A (ja) * 1991-06-28 1993-07-27 Asahi Chem Ind Co Ltd 耐熱性耐衝撃性樹脂組成物
JPH05288929A (ja) 1992-02-14 1993-11-05 Kuraray Co Ltd 偏光板
JPH05311025A (ja) * 1992-05-01 1993-11-22 Mitsubishi Rayon Co Ltd メタクリル系樹脂成形材料
EP0578498B1 (en) * 1992-07-10 1997-04-16 Nippon Shokubai Co., Ltd. Acrylic polymer, its use and process for producing it
JPH0885729A (ja) 1994-09-16 1996-04-02 Asahi Chem Ind Co Ltd 帯電防止性熱可塑性樹脂積層成形体
JPH10130449A (ja) * 1996-10-29 1998-05-19 Sumitomo Chem Co Ltd 光選択吸収性メタクリル系樹脂組成物およびシート
TWI302916B (en) * 2002-03-26 2008-11-11 Toray Industries Thermoplastic polymer, its production method and its molding
DE602004027220D1 (de) * 2003-03-12 2010-07-01 Toray Industries Thermoplastische harzzusammensetzung, formkörper und folie
TWI249552B (en) 2003-11-17 2006-02-21 Chi Mei Corp Photosensitive resin composition used for color filter
US20080039609A1 (en) * 2004-07-09 2008-02-14 Mitsui Chemicals, Inc. Thermoplastic Resin
JP2006131898A (ja) 2004-10-07 2006-05-25 Toray Ind Inc 熱可塑性樹脂フィルム
JP2006274118A (ja) 2005-03-30 2006-10-12 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品、フィルムおよびシート
CN101283040B (zh) 2005-10-07 2010-12-22 旭化成电子材料株式会社 光学材料用树脂组合物
JP5074010B2 (ja) 2005-11-28 2012-11-14 旭化成イーマテリアルズ株式会社 優れた光学材料用樹脂組成物及び成形体
JP5159124B2 (ja) 2006-03-01 2013-03-06 株式会社日本触媒 アクリル系樹脂成型品の製造方法及びアクリル系樹脂成型品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912088B1 (ja) * 1969-11-06 1974-03-22
JPS4912089B1 (ja) * 1969-11-10 1974-03-22
JPS4814413B1 (ja) * 1969-11-20 1973-05-07
JPS4814414B1 (ja) * 1969-11-25 1973-05-07
JPS4913852B1 (ja) * 1969-12-09 1974-04-03
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
JPH03123356A (ja) * 1989-10-06 1991-05-27 Fuji Photo Film Co Ltd 電子写真式平版印刷用原版

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053256A (ja) * 2009-08-31 2011-03-17 Nippon Shokubai Co Ltd 光学積層体
US8822614B2 (en) 2010-05-28 2014-09-02 Asahi Kasei Chemicals Corporation Acrylic thermoplastic resin and molded object thereof
JP2014028956A (ja) * 2010-05-28 2014-02-13 Asahi Kasei Chemicals Corp アクリル系熱可塑性樹脂、及びその成形体
WO2011149088A1 (ja) * 2010-05-28 2011-12-01 旭化成ケミカルズ株式会社 アクリル系熱可塑性樹脂、及びその成形体
JP5362110B2 (ja) * 2010-05-28 2013-12-11 旭化成ケミカルズ株式会社 アクリル系熱可塑性樹脂、及びその成形体
KR101449225B1 (ko) 2010-05-28 2014-10-08 아사히 가세이 케미칼즈 가부시키가이샤 아크릴계 열가소성 수지 및 그 성형체
JP2012052023A (ja) * 2010-09-01 2012-03-15 Asahi Kasei E-Materials Corp 光学フィルム
US9494712B2 (en) 2011-04-13 2016-11-15 Lg Chem, Ltd. Resin composition for optical film and optical film using the same
JP2014506683A (ja) * 2011-04-13 2014-03-17 エルジー・ケム・リミテッド 光学フィルム用樹脂組成物及びこれを利用した光学フィルム
JP2014501293A (ja) * 2011-04-13 2014-01-20 エルジー・ケム・リミテッド 光学フィルム用アクリル系共重合体樹脂の製造方法及びこれを用いた光学フィルムの製造方法
WO2013051430A1 (ja) * 2011-10-04 2013-04-11 学校法人慶應義塾 光学フィルム及びそれを備える液晶表示装置
JP2013078900A (ja) * 2011-10-04 2013-05-02 Keio Gijuku 光学フィルム及びそれを備える液晶表示装置
CN103958156A (zh) * 2011-10-04 2014-07-30 学校法人庆应义塾 光学膜及具备该光学膜的液晶显示装置
CN104769684A (zh) * 2012-11-02 2015-07-08 日东电工株式会社 透明导电性膜
JP2016069560A (ja) * 2014-09-30 2016-05-09 株式会社日本触媒 樹脂組成物及びその製造方法
JP7228521B2 (ja) 2017-02-20 2023-02-24 トリンセオ ユーロップ ゲーエムベーハー メタクリル酸メチルの酸官能化コポリマー及びこれをベースとするアクリル樹脂組成物
JP2020508377A (ja) * 2017-02-20 2020-03-19 アルケマ フランス メタクリル酸メチルの酸官能化コポリマー及びこれをベースとするアクリル樹脂組成物
WO2019181752A1 (ja) 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
WO2022137768A1 (ja) 2020-12-25 2022-06-30 株式会社カネカ 積層体およびその利用
WO2022185815A1 (ja) 2021-03-05 2022-09-09 株式会社カネカ 積層体およびその製造方法

Also Published As

Publication number Publication date
CN101910223A (zh) 2010-12-08
CN101910223B (zh) 2012-11-07
TW200930734A (en) 2009-07-16
JPWO2009084541A1 (ja) 2011-05-19
US20110009585A1 (en) 2011-01-13
JP4717947B2 (ja) 2011-07-06
TWI383999B (zh) 2013-02-01
KR101201168B1 (ko) 2012-11-13
US8779076B2 (en) 2014-07-15
KR20100097183A (ko) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4717947B2 (ja) アクリル系熱可塑性樹脂、及び光学材料用成形体
JP5283701B2 (ja) アクリル系熱可塑性樹脂、及びその成形体
JP5142938B2 (ja) 光学フィルム
TWI440646B (zh) 丙烯酸系熱可塑性樹脂及其成形體
JP5190564B2 (ja) アクリル系熱可塑性樹脂組成物及びその成形体
JP4928187B2 (ja) 低複屈折共重合体
US20100168363A1 (en) Low Birefringent Copolymers
JP5919611B2 (ja) 低い光弾性係数を有する位相差板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122855.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548047

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20107014021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12810265

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08867328

Country of ref document: EP

Kind code of ref document: A1