WO2022185815A1 - 積層体およびその製造方法 - Google Patents
積層体およびその製造方法 Download PDFInfo
- Publication number
- WO2022185815A1 WO2022185815A1 PCT/JP2022/003844 JP2022003844W WO2022185815A1 WO 2022185815 A1 WO2022185815 A1 WO 2022185815A1 JP 2022003844 W JP2022003844 W JP 2022003844W WO 2022185815 A1 WO2022185815 A1 WO 2022185815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminate
- particles
- hard coat
- layer
- resin
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 146
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 443
- 239000002245 particle Substances 0.000 claims abstract description 429
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 306
- 238000000034 method Methods 0.000 claims abstract description 140
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 133
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims abstract description 101
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 62
- 239000010419 fine particle Substances 0.000 claims abstract description 51
- 229920005989 resin Polymers 0.000 claims description 289
- 239000011347 resin Substances 0.000 claims description 289
- 239000000203 mixture Substances 0.000 claims description 114
- 229920000578 graft copolymer Polymers 0.000 claims description 110
- 229920001971 elastomer Polymers 0.000 claims description 93
- 239000000806 elastomer Substances 0.000 claims description 80
- 239000002904 solvent Substances 0.000 claims description 67
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 63
- 238000000465 moulding Methods 0.000 claims description 53
- 238000000576 coating method Methods 0.000 claims description 47
- 239000011248 coating agent Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 33
- 238000010030 laminating Methods 0.000 claims description 29
- 229920002554 vinyl polymer Polymers 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 27
- 238000009835 boiling Methods 0.000 claims description 25
- 125000000524 functional group Chemical group 0.000 claims description 25
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 24
- 125000005396 acrylic acid ester group Chemical group 0.000 claims description 20
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 17
- 230000001678 irradiating effect Effects 0.000 claims description 16
- 229920001169 thermoplastic Polymers 0.000 claims description 16
- 239000004416 thermosoftening plastic Substances 0.000 claims description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 229920000058 polyacrylate Polymers 0.000 claims description 14
- 230000009257 reactivity Effects 0.000 claims description 11
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 7
- 229920002050 silicone resin Polymers 0.000 claims description 6
- 239000005001 laminate film Substances 0.000 claims description 4
- 238000005336 cracking Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 695
- 239000010408 film Substances 0.000 description 394
- 239000000178 monomer Substances 0.000 description 77
- 230000002087 whitening effect Effects 0.000 description 59
- -1 N-substituted maleimide structures Chemical group 0.000 description 52
- 238000006116 polymerization reaction Methods 0.000 description 40
- 239000000047 product Substances 0.000 description 40
- 238000001723 curing Methods 0.000 description 33
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 32
- 239000003795 chemical substances by application Substances 0.000 description 28
- 230000008901 benefit Effects 0.000 description 25
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 25
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 21
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 18
- 239000002346 layers by function Substances 0.000 description 18
- 238000001035 drying Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 13
- 238000001816 cooling Methods 0.000 description 13
- 239000003960 organic solvent Substances 0.000 description 13
- 239000005060 rubber Substances 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 238000005452 bending Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000004816 latex Substances 0.000 description 10
- 229920000126 latex Polymers 0.000 description 10
- 239000003973 paint Substances 0.000 description 10
- 229910000077 silane Inorganic materials 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 239000012986 chain transfer agent Substances 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 125000003700 epoxy group Chemical group 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000009477 glass transition Effects 0.000 description 9
- 230000003301 hydrolyzing effect Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 125000003566 oxetanyl group Chemical group 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 8
- 230000003373 anti-fouling effect Effects 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 239000003999 initiator Substances 0.000 description 8
- 239000012948 isocyanate Substances 0.000 description 8
- 238000010128 melt processing Methods 0.000 description 8
- 239000002923 metal particle Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 8
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 239000011258 core-shell material Substances 0.000 description 7
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 235000006708 antioxidants Nutrition 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 150000008360 acrylonitriles Chemical class 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000005034 decoration Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 150000005846 sugar alcohols Polymers 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 125000005250 alkyl acrylate group Chemical group 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000004611 light stabiliser Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 4
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 4
- 238000000807 solvent casting Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 3
- 150000003923 2,5-pyrrolediones Chemical group 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 3
- CEXQWAAGPPNOQF-UHFFFAOYSA-N 2-phenoxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC1=CC=CC=C1 CEXQWAAGPPNOQF-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical class SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000010556 emulsion polymerization method Methods 0.000 description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 description 3
- 239000011790 ferrous sulphate Substances 0.000 description 3
- 235000003891 ferrous sulphate Nutrition 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000011254 layer-forming composition Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000006224 matting agent Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 239000011242 organic-inorganic particle Substances 0.000 description 3
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 3
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- VCYCUECVHJJFIQ-UHFFFAOYSA-N 2-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 VCYCUECVHJJFIQ-UHFFFAOYSA-N 0.000 description 2
- FRQQKWGDKVGLFI-UHFFFAOYSA-N 2-methylundecane-2-thiol Chemical compound CCCCCCCCCC(C)(C)S FRQQKWGDKVGLFI-UHFFFAOYSA-N 0.000 description 2
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 2
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- MBCUNESSWNAVFL-UHFFFAOYSA-N C=C.C=C.C=C.N=C=O.N=C=O Chemical compound C=C.C=C.C=C.N=C=O.N=C=O MBCUNESSWNAVFL-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000872198 Serjania polyphylla Species 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000005370 alkoxysilyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 230000003666 anti-fingerprint Effects 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 238000010559 graft polymerization reaction Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 2
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229940119545 isobornyl methacrylate Drugs 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 150000002688 maleic acid derivatives Chemical class 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000113 methacrylic resin Substances 0.000 description 2
- HTEAGOMAXMOFFS-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C HTEAGOMAXMOFFS-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910021392 nanocarbon Inorganic materials 0.000 description 2
- 239000002113 nanodiamond Substances 0.000 description 2
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- SOGFHWHHBILCSX-UHFFFAOYSA-J prop-2-enoate silicon(4+) Chemical class [Si+4].[O-]C(=O)C=C.[O-]C(=O)C=C.[O-]C(=O)C=C.[O-]C(=O)C=C SOGFHWHHBILCSX-UHFFFAOYSA-J 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000010558 suspension polymerization method Methods 0.000 description 2
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- VJDHKUHTYJLWPV-UHFFFAOYSA-N (2-nitrophenyl)methyl 4-(2-methylprop-2-enoyloxy)piperidine-1-carboxylate Chemical compound C(C(=C)C)(=O)OC1CCN(CC1)C(=O)OCC1=C(C=CC=C1)[N+](=O)[O-] VJDHKUHTYJLWPV-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- PQMFVUNERGGBPG-UHFFFAOYSA-N (6-bromopyridin-2-yl)hydrazine Chemical compound NNC1=CC=CC(Br)=N1 PQMFVUNERGGBPG-UHFFFAOYSA-N 0.000 description 1
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- ZIZJPRKHEXCVLL-UHFFFAOYSA-N 1,3-bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione Chemical compound O=C=NCCCCCCN1C(=O)N(CCCCCCN=C=O)C1=O ZIZJPRKHEXCVLL-UHFFFAOYSA-N 0.000 description 1
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- FWWWRCRHNMOYQY-UHFFFAOYSA-N 1,5-diisocyanato-2,4-dimethylbenzene Chemical compound CC1=CC(C)=C(N=C=O)C=C1N=C=O FWWWRCRHNMOYQY-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- UUWJHAWPCRFDHZ-UHFFFAOYSA-N 1-dodecoxydodecane;phosphoric acid Chemical compound OP(O)(O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC UUWJHAWPCRFDHZ-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- CTTJWXVQRJUJQW-UHFFFAOYSA-N 2,2-dioctyl-3-sulfobutanedioic acid Chemical compound CCCCCCCCC(C(O)=O)(C(C(O)=O)S(O)(=O)=O)CCCCCCCC CTTJWXVQRJUJQW-UHFFFAOYSA-N 0.000 description 1
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 1
- JFZBUNLOTDDXNY-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)propoxy]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)OCC(C)OC(=O)C(C)=C JFZBUNLOTDDXNY-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- OFLPBAZQIRUWFV-UHFFFAOYSA-N 2-[3-(5-chlorobenzotriazol-2-yl)-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC1=CC=C(O)C(N2N=C3C=C(Cl)C=CC3=N2)=C1 OFLPBAZQIRUWFV-UHFFFAOYSA-N 0.000 description 1
- HZGBVWQEOOSDCF-UHFFFAOYSA-N 2-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]ethyl prop-2-enoate Chemical compound OC1=CC=C(CCOC(=O)C=C)C=C1N1N=C2C=CC=CC2=N1 HZGBVWQEOOSDCF-UHFFFAOYSA-N 0.000 description 1
- FVBOXNUYGKJKAI-UHFFFAOYSA-N 2-[3-(benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]ethyl 2-methylprop-2-enoate Chemical compound CC(C)(C)C1=CC(CCOC(=O)C(=C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O FVBOXNUYGKJKAI-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- MIRQGKQPLPBZQM-UHFFFAOYSA-N 2-hydroperoxy-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)OO MIRQGKQPLPBZQM-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical class C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- GCYHRYNSUGLLMA-UHFFFAOYSA-N 2-prop-2-enoxyethanol Chemical compound OCCOCC=C GCYHRYNSUGLLMA-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FOLVZNOYNJFEBK-UHFFFAOYSA-N 3,5-bis(isocyanatomethyl)bicyclo[2.2.1]heptane Chemical compound C1C(CN=C=O)C2C(CN=C=O)CC1C2 FOLVZNOYNJFEBK-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- SLJFKNONPLNAPF-UHFFFAOYSA-N 3-Vinyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1C(C=C)CCC2OC21 SLJFKNONPLNAPF-UHFFFAOYSA-N 0.000 description 1
- KARGMXZXPAWXQJ-UHFFFAOYSA-N 3-[3-(benzotriazol-2-yl)-4-hydroxyphenyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 KARGMXZXPAWXQJ-UHFFFAOYSA-N 0.000 description 1
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- ACYXOHNDKRVKLH-UHFFFAOYSA-N 5-phenylpenta-2,4-dienenitrile prop-2-enoic acid Chemical compound OC(=O)C=C.N#CC=CC=CC1=CC=CC=C1 ACYXOHNDKRVKLH-UHFFFAOYSA-N 0.000 description 1
- RWHRFHQRVDUPIK-UHFFFAOYSA-N 50867-57-7 Chemical class CC(=C)C(O)=O.CC(=C)C(O)=O RWHRFHQRVDUPIK-UHFFFAOYSA-N 0.000 description 1
- XAYDWGMOPRHLEP-UHFFFAOYSA-N 6-ethenyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCCC2OC21C=C XAYDWGMOPRHLEP-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- AFWTZXXDGQBIKW-UHFFFAOYSA-N C14 surfactin Natural products CCCCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 AFWTZXXDGQBIKW-UHFFFAOYSA-N 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- MAYCNCJAIFGQIH-UHFFFAOYSA-N buta-1,3-diene 5-phenylpenta-2,4-dienenitrile Chemical compound C=CC=C.N#CC=CC=CC1=CC=CC=C1 MAYCNCJAIFGQIH-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- UURSXESKOOOTOV-UHFFFAOYSA-N dec-5-ene Chemical compound CCCCC=CCCCC UURSXESKOOOTOV-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- AQNSVANSEBPSMK-UHFFFAOYSA-N dicyclopentenyl methacrylate Chemical compound C12CC=CC2C2CC(OC(=O)C(=C)C)C1C2.C12C=CCC2C2CC(OC(=O)C(=C)C)C1C2 AQNSVANSEBPSMK-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- KVILQFSLJDTWPU-UHFFFAOYSA-N heptadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCOC(=O)C=C KVILQFSLJDTWPU-UHFFFAOYSA-N 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002596 lactones Chemical group 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- JFOJYGMDZRCSPA-UHFFFAOYSA-J octadecanoate;tin(4+) Chemical compound [Sn+4].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O JFOJYGMDZRCSPA-UHFFFAOYSA-J 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 101710108497 p-hydroxybenzoate hydroxylase Proteins 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- KNCYXPMJDCCGSJ-UHFFFAOYSA-N piperidine-2,6-dione Chemical group O=C1CCCC(=O)N1 KNCYXPMJDCCGSJ-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001020 poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- NJGWOFRZMQRKHT-UHFFFAOYSA-N surfactin Natural products CC(C)CCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-UHFFFAOYSA-N 0.000 description 1
- NJGWOFRZMQRKHT-WGVNQGGSSA-N surfactin C Chemical compound CC(C)CCCCCCCCC[C@@H]1CC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-WGVNQGGSSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009823 thermal lamination Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/18—Homopolymers or copolymers of nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2201/00—Polymeric substrate or laminate
- B05D2201/04—Laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2502/00—Acrylic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
- B05D7/04—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
- B05D7/54—No clear coat specified
- B05D7/546—No clear coat specified each layer being cured, at least partially, separately
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2451/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2451/06—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
- C08J2475/14—Polyurethanes having carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/26—Silicon- containing compounds
Definitions
- the present invention relates to a laminate containing an acrylic resin film as a base material and a method for producing the same.
- Acrylic resin films which are made by processing and molding acrylic resin compositions containing elastic bodies, are used and developed in various applications by taking advantage of their excellent properties such as transparency, hardness, weather resistance, and secondary moldability. It is Applications of acrylic resin films include, for example, automobile interior and exterior parts that are used by laminating films on the three-dimensional surface of a molded body by methods such as thermal lamination, adhesion, in-mold molding, insert molding, and three-dimensional lamination molding. Applications include decoration, protection, and display as an alternative to painting and printing, decoration and protection of the exterior of products such as mobile electronic devices, personal computers, and home appliances, and use as a building material. In addition, taking advantage of the transparency and low inherent retardation characteristics of acrylic resin films, acrylic resin films are also being used as optical film members for various display devices such as liquid crystal panels and organic EL panels.
- a method for further imparting functionality such as surface hardness, scratch resistance, anti-reflection properties, and anti-glare properties to decorative/protective films including such acrylic resin films, coatings, etc.
- the method of forming a functional layer is performed by the technique of.
- an ionizing radiation-curable resin having a pencil hardness of B or higher and an elongation rate indicating moldability of 100% or higher, a fluorine-based leveling agent or a fluorine-based siloxane-based leveling agent, and inorganic oxide fine particles are contained.
- a molding hard coat film or the like is described which is characterized by providing a hard coat layer formed by coating a coating composition on a film substrate and curing the coating composition.
- Patent Document 2 discloses a translucent resin base sheet, a base layer formed on the base sheet, a hard coat layer formed on the base layer, and a medium refractive index layer formed on the hard coat layer.
- a transparent resin substrate comprising a low refractive index layer and a low refractive index layer formed on the medium refractive index layer is disclosed.
- Patent Document 3 discloses an antireflection film for insert molding in which four layers of a hard coat layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer are provided in this order on a thermoplastic transparent substrate film. is described.
- JP 2016-040105 A WO2018/117018 JP 2016-071307 A JP 2015-152691 A JP 2012-189978 A
- Patent Documents 1 to 3 have sufficient performance from the viewpoint of compatibility between the moldability of the laminate and the functionality of the laminate such as pencil hardness and scratch resistance of the surface of the laminate. That said, there is room for further improvement.
- an object of one embodiment of the present invention is to provide a laminate containing an acrylic resin film, which has functionality such as surface hardness and antireflection properties and is excellent in formability, and a method for producing the same. be.
- the present inventors have found that a hard coat layer having specific physical properties can be used in a laminate composed of an acrylic resin film, a hard coat layer, a low refractive index layer, and the like.
- the present inventors have found for the first time that a laminate having excellent moldability can be obtained by this method, and completed an embodiment of the present invention.
- a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin.
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
- the hard coat layer contains a urethane acrylate resin
- the laminate has a crack elongation of 80 at 120°C. % or more.
- a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin.
- forming a hard coat layer wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer is made of urethane acrylate resin. and wherein the laminate has a crack elongation of 80% or more at 120°C.
- one aspect of the present invention is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, wherein the acrylic resin film is heated at 120°C.
- the tensile elongation at break is 170% or more
- the hard coat layer contains a urethane acrylate resin
- the laminate has a pencil hardness of H or more
- a laminate containing an acrylic resin film which has functionality such as surface hardness and antireflection properties, and which has excellent formability, and a method for producing the same.
- FIG. 2 is a diagram showing a TEM image after a tensile test of a laminate obtained by laminating an acrylic resin film, a hard coat layer and a low refractive index layer according to one embodiment of the present invention.
- first method for producing a laminate includes (A1) a urethane acrylate resin applied to at least one side of an acrylic resin film.
- the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C.
- the coat layer contains a urethane acrylate resin, and the laminate has a crack elongation of 80% or more at 120°C.
- the laminate obtained by the above-described first laminate manufacturing method has surface hardness and is excellent in surface hardness.
- the surface hardness of the laminate is evaluated by the "pencil hardness” of the laminate.
- a method for measuring the "pencil hardness” of the laminate will be described in detail later.
- the laminate obtained by the first method for producing a laminate has antireflection properties and is excellent in antireflection properties.
- the antireflection property of the laminate is evaluated by the "luminous reflectance" of the laminate.
- a method for measuring the "luminous reflectance” of the laminate will be described in detail later.
- the laminate obtained by the first method for producing a laminate has excellent moldability.
- the moldability of the laminate is evaluated by the "crack elongation at 120°C" of the laminate.
- a method for measuring the "crack elongation at 120°C” of the laminate will be described in detail later.
- the laminate obtained by the first method for producing the laminate described above also has excellent scratch resistance. Further, when the laminate obtained by the first method for producing a laminate described above contains particles in the hard coat layer as described later, the laminate has antiglare properties and is excellent in antiglare properties. , can also be said.
- the method for manufacturing a laminate includes (A1) irradiating a resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film with an active energy ray. and curing the resin layer containing the urethane acrylate resin to form a hard coat layer, wherein the acrylic resin film has a tensile elongation at break of 170 at 120°C. % or more, the hard coat layer contains a urethane acrylate resin, and the laminate has a crack elongation of 80% or more at 120°C.
- This manufacturing method is also a manufacturing method of the first laminate.
- first laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. and, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C., the hard coat layer contains a urethane acrylate resin, and the laminate has a pencil hardness is H or higher, and the crack elongation at 120° C. is 80% or higher.
- first laminate both the laminate obtained by the method for manufacturing the laminate according to the first embodiment and the laminate according to the first embodiment may be referred to as "first laminate".
- Patent Literatures 1 and 2 have low surface hardness and, for example, when used to protect the surface of a display device having a touch panel function, there is a possibility that problems such as scratches on the display portion may occur. be.
- the techniques described in Patent Documents 2 and 3 for example, when laminating a decorative and protective film on a three-dimensional surface of a large molded body such as an automobile interior part integrated with the information display part as described above, in addition, as the film is stretched and shaped along the shape of the molded product, partial whitening of the stretched part of the film, cracking, peeling from the surface of the molded product, cracking and peeling of the functional layer, etc. It turned out that there was a problem.
- the prior art has (1) a problem of moldability of the laminate, (2) a problem of antireflection of the laminate provided with a low refractive index layer, and (3) a problem of whitening of the laminate. rice field. Therefore, no decorative or protective film has been found that satisfies the requirements when used for the above purposes, and there is room for further improvement.
- the inventors of the present invention have mainly studied the improvement of the moldability of the laminate, and have made a large-sized molded article by giving specific physical properties to the hard coat layer, the refractive index adjustment layer, etc. in the laminate. It was found for the first time that even when laminated on a three-dimensional surface, peeling and cracking of the functional layer do not occur, and it is possible to obtain a laminate having excellent formability. Moreover, the present inventors have found that the laminate obtained by the above method can solve the problem of antireflection and the problem of whitening of the stretched portion in addition to the moldability.
- the present inventors found that with regard to the whitening of the stretched portion, on the surface of the low refractive index layer located on the outermost surface of the laminate, during stretching, there was a minute crack that did not reach a visually identifiable size. It has been found that the occurrence of microcracks is one of the causes of whitening. Whitening is caused by microcracks in the low refractive index layer. It is surprising that the resulting whitening of the stretch can be ameliorated.
- a laminate having various functions and having excellent moldability which is composed of an acrylic resin film and a hard coat layer, or an acrylic resin film, a hard coat layer and a low refractive index layer, No report has been made so far, and the first method for manufacturing a laminate is an extremely excellent technique.
- the present inventor believes that the mechanism for suppressing whitening is that the hard coat layer before forming the low refractive index layer has uncured residual functional groups by adjusting the configuration of the hard coat layer and the curing conditions using active energy rays. and the crosslink density is lower than that in the completely cured state, the adhesion between the hard coat layer and the low refractive index layer is increased, and as a result, the shape of the microcracks in the low refractive index layer is caused It is speculated that bleaching is suppressed. It should be noted that the present invention is by no means limited to such speculation. The method for manufacturing the first laminate will be described in detail below.
- the "laminate” intends a product (laminate) containing a hard coat layer, and a product (laminate) that does not contain a hard coat layer is described as a "laminate film". More specifically, in the first embodiment, for example, the “laminate” is a laminate composed of (1) an acrylic resin film and a hard coat layer, or (2) an acrylic resin film and a hard coat layer. A laminate consisting of a coat layer and a low refractive index layer is intended, and the "laminated film” intends a laminate consisting of (3) an acrylic resin film and a low refractive index layer.
- the surface hardness of the hard coat layer is improved, and the crack elongation is high.
- the film should not break or become significantly whitened upon stretching.
- the cured product of the curable resin composition is highly crosslinked and/or contains a filler with high hardness to suppress deformation of the surface of the cured product against external stress. , surface hardness and scratch resistance. Therefore, conventionally, surface hardness and scratch resistance and deformability and extensibility are contradictory properties, and it was not easy to achieve both.
- Examples of methods for imparting high stretchability during secondary molding to such hard coat curable resins while maintaining hardness include the following methods.
- the glass transition temperature of the curable resin is designed between room temperature and the secondary molding temperature so that it is hard at room temperature and softens and deforms at the secondary molding temperature. As a result, while exhibiting high surface hardness at room temperature, it exhibits high stretchability during secondary molding.
- the crosslinked structure after curing of the curable resin is not uniform, and has portions with high crosslink density and portions with low crosslink density. , is designed to be non-uniform in terms of microstructure.
- the high crosslink density portion in the cured product exhibits high surface hardness, and the low crosslink density portion deforms during secondary molding to exhibit high stretchability.
- Examples of such resin components having a low cross-linking degree, uncross-linked or low elastic modulus include (a) methacrylic resins, styrene acrylonitrile resins, aliphatic or aromatic polycarbonate resins, polyester resins, phenoxy resins, cellulose acylate resins, and the like.
- a crosslinked or non-crosslinked soft resin such as acrylic rubber, silicone rubber, hydrogenated styrene-butadiene rubber, acrylonitrile-butadiene rubber, olefin rubber, which may optionally have a reactive functional group;
- core-shell type rubber particles in which a thermoplastic resin is graft-polymerized on the surface of crosslinked rubber particles For the hard coat layer in the first laminate, these methods (1) to (3) may be used alone or in combination as appropriate.
- the first laminate manufacturing method includes the following steps (A1) and (B1).
- Step (A1) A resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
- the acrylic resin film has a tensile elongation at break of 170% or more at 120° C.
- the hard coat layer contains a urethane acrylate resin
- the laminate is , the crack elongation at 120° C. is 80% or more.
- a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with active energy rays to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
- a resin layer containing an acrylate-based resin is applied in a solution state on the hard coat layer containing the cured urethane acrylate resin formed in the step (A1), dried, and dried.
- a low refractive index layer is formed by irradiating the resin layer with an active energy ray to cure the resin layer.
- the hard coat layer and the low refractive index layer is preferably well adhered.
- the low refractive index layer often contains a hard filler such as hollow silica, and often has a lower crack elongation than the hard coat layer. For this reason, there is a possibility that microcracks that cause whitening may occur at a drawing ratio lower than the crack elongation of the hard coat layer alone.
- the opening width of microcracks generated in the low refractive index layer by stretching becomes extremely fine, for example, 1 ⁇ m or less, and whitening occurs due to stretching. less likely to occur.
- the following (a) and (b) are preferable: (a) a resin layer that becomes the low refractive index layer in step (B1) is applied in a solution state, the applied resin layer (low refractive index layer) is hardened to a certain extent within the range that the final interface between the two layers does not become unclear and the antireflection properties are not impaired. (b) the acrylate groups remaining after curing of the hard coat layer are impregnated into the resin layer ( Reactive curing with the low refractive index layer) to form a chemical bond at the interface between the finally obtained hard coat layer and the low refractive index layer.
- the resin layer containing the urethane acrylate resin forming the hard coat layer is not completely cured, the crosslink density is slightly lowered, and the unreacted acrylate groups are partially removed. It is preferable to leave it.
- a resin layer containing an acrylate-based resin that forms a low refractive index layer is applied in a solution state and optionally dried. In order to impregnate the layer surface, (a) the coating conditions and drying conditions of the solvent are appropriately adjusted, and/or (b) a fixed amount of a slow-drying, high-boiling solvent is used as the solvent used in the solution. and the like are preferred.
- the tensile elongation at break at 120° C. of the acrylic resin film in the laminate is 170% or more, preferably 180% or more, and 190% or more. is more preferred.
- the tensile elongation at break at 120° C. of the acrylic resin film is 170% or more, there is an advantage that the shape followability of molding is excellent.
- the upper limit of the tensile elongation at break is not particularly limited, but from the viewpoint of improving the tensile strength and elastic modulus, it is, for example, 350% or less, and 300% or less. is preferred.
- tensile elongation at break at 120°C means the elongation at which the film breaks after a tensile test is performed in a constant temperature bath at 120°C.
- the tensile elongation at break at 120°C of the acrylic resin film is measured by the method described in Examples.
- the crack elongation of the laminate at 120° C. is, for example, 80% or more, preferably 100% or more, more preferably 110% or more, and 120 % or more is particularly preferable.
- the crack elongation at 120° C. of the laminate is 80% or more, it has the advantages of being excellent in shape followability during molding and suppressing whitening of the stretched portion during molding.
- the upper limit of the crack elongation is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 200% or less and 180% or less. is preferred.
- the "crack elongation of the laminate at 120°C” means the elongation at which cracks occur in the coating layer when the laminate is subjected to a tensile test in a constant temperature bath at 120°C.
- the crack elongation of the laminate at 120°C is measured by the method described in Examples.
- the crack elongation of the laminate at 120 ° C. is 80%. It is preferably 100% or more, more preferably 120% or more, and most preferably 130% or more.
- the "crack elongation of the laminate at 120 ° C.” means "a laminate composed of an acrylic resin film, a hard coat layer, and a low refractive index layer. , crack elongation at 120° C.”.
- the acrylic resin film is preferably composed of an acrylic resin composition containing graft copolymer particles containing an acrylic resin and a rubber component.
- the acrylic resin film preferably contains graft copolymer particles (A) having an average particle diameter of 20 nm or more and 200 nm or less as the rubber component-containing graft copolymer particles.
- graft copolymer particles (B) having a larger average particle size than the graft copolymer particles (A) may be included.
- the graft copolymer particles (A) are dispersed in the acrylic resin or the matrix containing the acrylic resin and other components, or the It is preferred that the copolymer particles (A) and the graft copolymer particles (B) are dispersed.
- acrylic resins can be used as the acrylic resin used for the acrylic resin film.
- the acrylic resin contains 50% by mass or more and 100% by mass or less of methyl methacrylate units, and 0% by mass or more and 50% by mass of other structural units. It preferably contains 20% by mass or more and 100% by mass or less of the thermoplastic acrylic polymer composed of 20% by mass or less.
- the total amount of methyl methacrylate units and other structural units in the thermoplastic acrylic polymer is 100% by mass.
- Examples of other structural units include structural units derived from acrylic acid, acrylic acid derivatives, methacrylic acid, methacrylic acid derivatives, aromatic vinyl derivatives, vinyl cyanide derivatives, and the like.
- the other structural units contained in the acrylic resin may be of one type or a combination of two or more types.
- acrylic acid derivatives include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 2-phenoxyethyl acrylate, and acrylic acid.
- acrylicates such as benzyl and glycidyl acrylate.
- methacrylic acid derivatives examples include ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, 2-phenoxyethyl methacrylate, and isobornyl methacrylate.
- a methacrylic acid ester and the like can be mentioned.
- Styrene, vinyltoluene, and ⁇ -methylstyrene are examples of aromatic vinyl derivatives.
- vinyl cyanide derivatives examples include acrylonitrile and methacrylonitrile.
- a structural unit having a specific structure may be introduced into the acrylic resin by copolymerization, functional group modification, modification, or the like.
- specific structures include, for example, glutarimide structures as disclosed in JP-A-62-89705, JP-A-02-178310, and WO2005/54311, JP-A-2004-168882, and Lactone ring structures as shown in JP-A-2006-171464, etc., glutaric acid obtained by thermally condensing (meth)acrylic acid units as shown in JP-A-2004-307834, etc.
- Anhydride structures maleic anhydride structures as disclosed in JP-A-5-119217, N-substituted maleimide structures and unsubstituted maleimide structures as disclosed in WO2009/84541, and the like.
- introducing these structures into an acrylic resin makes the molecular chain rigid.
- effects such as improved heat resistance, improved surface hardness, reduced heat shrinkage, and improved chemical resistance can be expected.
- the method for producing the acrylic resin is not particularly limited, and for example, known polymerization methods such as suspension polymerization method, bulk polymerization method, solution polymerization method and emulsion polymerization method can be applied. Also, any of known radical polymerization methods, living radical polymerization methods, anionic polymerization methods, and cationic polymerization methods can be applied.
- the acrylic resin film is preferably formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer.
- a crosslinked elastomer is a rubber component. Therefore, the polymer particles can be said to be polymer particles containing a rubber component.
- the polymer particles preferably have a core-shell structure (multilayer structure) comprising a crosslinked elastomer that is a rubber component and a graft polymer layer positioned closer to the surface than the crosslinked elastomer.
- a polymer particle having a core-shell structure comprising a crosslinked elastomer and a graft polymer layer is sometimes referred to as a graft copolymer particle.
- the crosslinked elastomer preferably contains 50% by mass or more of acrylic acid ester units in 100% by mass of the crosslinked elastomer.
- the crosslinked elastomer is preferably a crosslinked elastomer (A1) and/or a crosslinked elastomer (B1) described below.
- the polymer particles are preferably graft copolymer particles containing a crosslinked elastomer and a graft polymer layer located closer to the surface than the crosslinked elastomer.
- the graft copolymer particles are preferably graft copolymer particles (A) and/or graft copolymer particles (B) which will be described later.
- the acrylic resin film preferably contains the graft copolymer particles (A) as the rubber component-containing graft copolymer particles. It may further contain graft copolymer particles (B).
- the graft copolymer particles (A) have a core-shell structure (multilayer structure) comprising a crosslinked elastomer (A1) as a rubber component and a graft polymer layer (A2) positioned closer to the surface than the crosslinked elastomer (A1). is preferred.
- the crosslinked elastomer (A1) may be a known crosslinked elastomer.
- the crosslinked elastomer (A1) is an acrylic ester-based crosslinked elastomer (a crosslinked elastomer composed of a polymer containing an acrylic ester as a main component).
- the particles of the acrylate-based crosslinked elastomer (A1) may have a concentric spherical multilayer structure in which a hard or semi-hard crosslinked resin layer is provided inside the crosslinked elastomer layer.
- a hard or semi-hard crosslinked resin layer examples include hard crosslinked methacrylic resin particles as shown in JP-B-55-27576, methyl methacrylate-acrylic acid as shown in JP-A-4-270751 and the like.
- Examples include semi-rigid crosslinked particles made of ester-styrene, crosslinked rubber particles with a high degree of crosslinking, and the like.
- the graft copolymer particles (A) are formed by graft-polymerizing a monomer mixture forming the graft polymer layer (A2) in the presence of the particles of the above-mentioned acrylic acid ester-based crosslinked elastomer (A1). , preferably have a core-shell structure.
- the average particle size of the graft copolymer particles (A) is preferably 20 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less, and particularly preferably 50 nm or more and 120 nm or less.
- the average particle size of the graft copolymer particles (A) When the average particle size of the graft copolymer particles (A) is too small, the impact resistance and bending crack resistance of the acrylic resin film tend to decrease. If the average particle size of the graft copolymer particles (A) is excessively large, the transparency of the acrylic resin film tends to deteriorate, and whitening tends to occur easily due to bending.
- the acrylic acid ester-based crosslinked elastomer (A1) is a multifunctional polyfunctional polymer that is copolymerizable with (a) an acrylic acid ester and (b) an acrylic acid ester and has two or more non-conjugated double bonds per molecule.
- crosslinked elastomer particles obtained by polymerizing a monomer mixture (a-1) containing a vinyl monomer and (c) optionally another vinyl monomer copolymerizable with an acrylic acid ester. Available.
- the acrylic acid ester, other vinyl-based monomers, and polyfunctional monomers may all be mixed and polymerized in one step.
- the composition of the acrylic acid ester, other vinyl monomers, and polyfunctional monomers may be appropriately changed or the same.
- the acrylic acid ester, the other vinyl-based monomer, and the polyfunctional monomer may be polymerized in two or more stages without changing the composition.
- acrylate ester aliphatic esters of acrylic acid are preferable, alkyl acrylate esters are more preferable, and the number of carbon atoms in the alkyl group is preferable, because they are excellent in polymerizability, are inexpensive, and give a polymer having a low Tg. is 1 or more and 22 or less can be particularly preferably used.
- alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and isobornyl acrylate. , cyclohexyl acrylate, dodecyl acrylate, stearyl acrylate, heptadecyl acrylate, octadecyl acrylate, and the like. These may be used individually by 1 type, and may use 2 or more types together.
- the amount of acrylic acid ester is preferably 50% by mass or more, more preferably 70% by mass or more, most preferably 80% by mass or more in 100% by mass of the monomer mixture (a-1). preferable.
- the acrylic acid ester content is 50% by mass or more, the acrylic resin film has good impact resistance and elongation at breakage, and cracks are less likely to occur during secondary molding.
- vinyl monomers include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacrylic acid.
- methacrylic acid esters such as cyclohexyl, phenoxyethyl methacrylate, isobornyl methacrylate, and dicyclopentenyl methacrylate; vinyl cyanide derivatives such as acrylonitrile and methacrylonitrile; aromatics such as styrene, vinyltoluene, and ⁇ -methylstyrene Vinyl derivatives; acrylic acid; acrylic acid derivatives such as ⁇ -hydroxyethyl acrylate, phenoxyethyl acrylate, benzyl acrylate, glycidyl acrylate; methacrylic acid; ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, and methacrylic acid methacrylic acid derivatives such as glycidyl acid; maleic anhydride; maleic acid derivatives such as N-alkylmaleimide and N-phenylmaleimide; These may be used individually by 1 type, and 2 or more
- the amount of the other vinyl monomer is preferably 0% by mass or more and 49.9% by mass or less, and 0% by mass or more and 30% by mass or less in 100% by mass of the monomer mixture (a-1). is more preferable, and it is most preferably 0% by mass or more and 20% by mass or less. If the amount of the other vinyl monomer exceeds 49.9% by mass, the impact resistance of the acrylic resin film tends to decrease, the elongation at tensile breakage decreases, and cracks tend to occur during secondary molding. Sometimes.
- polyfunctional monomer a monomer that is commonly used as a cross-linking agent and/or a graft crossing agent can be suitably used.
- polyfunctional monomers include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinylbenzene, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, Diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, polyethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, and the like can be used.
- One of these polyfunctional monomers may be used alone, or two or more thereof may be used in combination.
- those having a function as a graft crossing agent improve the number of graft bonds in the later-described graft polymer layer (A2) with respect to the crosslinked elastomer (A1). It is more preferable because it brings about good dispersibility of the polymer (A) in the acrylic resin, improves crack resistance against tensile and bending deformation, and reduces stress whitening.
- a polyfunctional monomer having the function of a graft crossing agent those having an allyl group such as allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, and diallyl maleate are preferred. , allyl methacrylate, allyl acrylate and the like are particularly preferred.
- the amount of the polyfunctional monomer is preferably 0.1% by mass or more and 10% by mass or less in 100% by mass of the monomer mixture (a-1), and 1.0% by mass or more and 4% by mass or less. It is more preferable to have If the blending amount of the polyfunctional monomer is within such a range, it is preferable from the viewpoint of bending crack resistance and bending whitening resistance of the acrylic resin film and fluidity of the resin during molding.
- the amount of the polyfunctional monomer is adjusted to the inside and surface of the crosslinked elastomer (A1). It may be changed in the vicinity. Specifically, as shown in Japanese Patent No. 1460364 and Japanese Patent No.
- a polyfunctional monomer having a function as a graft crossing agent By increasing the content from the inside, the coating of the graft copolymer particles (A) with the graft polymer layer is improved, the dispersibility in the acrylic resin is improved, and the graft copolymer particles (A) and the acrylic It is possible to suppress deterioration of cracking resistance due to exfoliation of resin interfaces.
- the graft copolymer particles (A ) can be reduced, and therefore the melt viscosity of the acrylic resin composition can be reduced, and the melt processability of the acrylic resin film, the improvement of the film processing accuracy, the improvement of the surface hardness, etc. can be expected.
- the monomer mixture (a-1) contains the double bonds of the polymer for the purpose of controlling the molecular weight and crosslink density of the acrylic ester-based crosslinked elastomer (A1) and the disproportionation termination reaction during polymerization.
- a chain transfer agent may be added for the purpose of controlling thermal stability and the like by reducing the number of terminals.
- the chain transfer agent can be selected and used from those commonly used in radical polymerization.
- chain transfer agents examples include monofunctional or polyfunctional mercaptan compounds having 2 to 20 carbon atoms such as n-octylmercaptan, n-dodecylmercaptan, and t-dodecylmercaptan, mercapto acids, thiophenol, and tetrachloride. Carbon or mixtures thereof and the like are preferred.
- the amount of the chain transfer agent added is preferably 0 parts by mass or more and 1.0 parts by mass or less, more preferably 0 parts by mass or more and 0 .2 parts by mass or less.
- the particles of the crosslinked elastomer (A1) may be a single layer composed of the acrylic ester-based crosslinked elastomer (A1), or two or more layers composed of the acrylic ester-based crosslinked elastomer (A1). It may be a multilayer structure containing a hard or semi-hard crosslinked resin layer, and may have an acrylic ester-based crosslinked elastomer (A1) in at least one layer of the multilayer particles.
- Examples of monomers constituting the hard or semi-hard crosslinked resin layer include methacrylate esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate and phenoxyethyl methacrylate, methyl acrylate and ethyl acrylate.
- methacrylate esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate and phenoxyethyl methacrylate, methyl acrylate and ethyl acrylate.
- alkyl acrylates such as propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate; fragrances such as styrene and ⁇ -methyl styrene group vinyl derivatives, vinyl cyanide derivatives such as acrylonitrile, maleic acid derivatives such as maleic anhydride and maleimides, and polyfunctional monomers having two or more nonconjugated double bonds per molecule.
- fragrances such as styrene and ⁇ -methyl styrene group vinyl derivatives, vinyl cyanide derivatives such as acrylonitrile, maleic acid derivatives such as maleic anhydride and maleimides, and polyfunctional monomers having two or more nonconjugated double bonds per molecule.
- one or more selected from the group consisting of methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, styrene, acrylonitrile and the like is particularly preferable.
- the polyfunctional monomer the same monomers as those used for the polymerization of the acrylic acid ester-based crosslinked elastomer (A1) layer can be used.
- chain A transfer agent may be used in combination.
- the chain transfer agent the same chain transfer agent as used in the polymerization of the acrylate-based crosslinked elastomer (A1) layer can be used.
- the amount of the chain transfer agent added is preferably 0 parts by mass or more and 2 parts by mass or less, more preferably 0 parts by mass or more and 0.5 parts by mass with respect to 100 parts by mass of the total amount of the rigid or semi-rigid crosslinked resin layer. It is below the department.
- the graft copolymer particle (A) When the graft copolymer particle (A) has a two-layer structure of a crosslinked elastomer particle (A1) as a core particle and a graft polymer layer (A2), the graft copolymer particle (A) is typically contains 50% by mass or more and 100% by mass or less of a methacrylic acid ester and 0% by mass or more and 50% by mass or less of another vinyl monomer copolymerizable with the methacrylic acid ester in the presence of the crosslinked elastomer particles (A1). by graft-copolymerizing a monomer mixture (a-2) containing (provided that the total of methacrylic acid ester and other vinyl monomers is 100% by mass) to form a graft polymer layer (A2) Obtainable.
- the amount of methacrylic acid ester in 100% by mass of the monomer mixture (a-2) is (a) to ensure compatibility with the matrix acrylic resin, and (b) to be a solvent during coating on the acrylic resin film. It is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more from the viewpoint of suppressing deterioration of toughness of the coating film due to impregnation of the coating film, whitening and cracking due to stretching during molding. It is even more preferable to have
- the graft polymer layer (A2) preferably contains 70% by mass or more and 99% by mass or less of an alkyl methacrylate in the presence of 5 parts by mass or more and 90 parts by mass or less of the crosslinked elastomer particles (A1), and the number of carbon atoms in the alkyl group is 2 or more acrylic acid alkyl esters of 0.5% by mass or more and 30% by mass or less, and other vinyl monomers of 0% by mass or more and 19% by mass or less (however, methacrylic acid alkyl esters, acrylic acid alkyl esters and other 100 mass % of the vinyl-based monomer in total) monomer mixture (a-2) 10 parts by mass or more and 95 parts by mass or less is graft-copolymerized in at least one step or more. .
- the total amount of the crosslinked elastomer particles (A1) and the monomer mixture (a-2) should satisfy 100 parts by mass.
- methacrylates in the graft polymer layer (A2) include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, hexyl methacrylate, and methacrylic acid. and methacrylic acid alkyl esters such as cyclohexyl, 2-ethylhexyl methacrylate, octyl methacrylate, phenyl methacrylate, and benzyl methacrylate. Among them, methacrylic acid alkyl esters in which the alkyl group has 1 to 4 carbon atoms are preferred.
- an acrylic acid alkyl ester having an alkyl group having 2 or more carbon atoms can be used as another vinyl-based monomer.
- alkyl acrylates having 2 or more carbon atoms in the alkyl group include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, hexyl acrylate, cyclohexyl acrylate, and acrylic.
- One or more selected from the group consisting of octyl acid, dodecyl acrylate, stearyl acrylate, and the like is preferable, and selected from the group consisting of ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and t-butyl acrylate.
- One or more are more preferred, and n-butyl acrylate is particularly preferred.
- vinyl monomers that can be used in the monomer mixture (a-2) include aromatic vinyl derivatives such as styrene and its nucleus-substituted derivatives, vinyl cyanide derivatives such as acrylonitrile, methacrylic acid and its derivatives, Acrylic acid and its derivatives, N-substituted maleimides, maleic anhydride, methacrylamide, acrylamide and the like.
- the monomer mixture (a-2) preferably contains a reactive UV absorber as another vinyl-based monomer. That is, the graft polymer layer (A2) preferably contains structural units derived from the reactive ultraviolet absorber. When the monomer mixture (a-2) contains a reactive ultraviolet absorber, it is easy to obtain an acrylic resin film with good weather resistance and chemical resistance.
- a known reactive UV absorber can be used as the reactive UV absorber, and is not particularly limited.
- Compounds represented by the following general formula (1) are preferable as the reactive ultraviolet absorber from the standpoint of moldability and weather resistance of the acrylic resin film.
- X is a hydrogen atom or a halogen atom
- R 1 is a hydrogen atom, a methyl group, or a t-alkyl group having 4 to 6 carbon atoms
- R 2 is linear, or a branched alkylene group having 2 to 10 carbon atoms
- R 3 is a hydrogen atom or a methyl group
- the reactive ultraviolet absorber represented by the general formula (1) include 2-(2′-hydroxy-5′-(meth)acryloyloxyethylphenyl)-2H-benzotriazoles. , more specifically 2-(2′-hydroxy-5′-acryloyloxyethylphenyl)-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxyethylphenyl-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxyethylphenyl)-5-chloro-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxypropylphenyl)-2H-benzotriazole, 2- (2'-Hydroxy-5'-methacryloyloxyethyl-3'-t-butylphenyl)-2H-benzotriazole, etc.
- the content of the structural unit derived from the reactive ultraviolet absorber in 100% by mass of the graft polymer layer (A2) is preferably 0.01% by mass or more and 5% by mass or less, and 0.1% by mass or more and 3 % or less is more preferable.
- graft copolymer particles (A) especially in the graft copolymerization of the monomer mixture (a-2) in the presence of the crosslinked elastomer particles (A1), for example, the acrylic acid ester-based crosslinked elastomer particles (A1)
- a polymer component (free polymer) that is not graft-bonded to the acrylic acid ester-based crosslinked elastomer particles (A1) may occur.
- a free polymer can be used as one that constitutes part or all of the acrylic resin that constitutes the matrix phase of the acrylic resin composition and the acrylic resin film.
- the rate of grafting to the crosslinked elastomer (A1) and the amount of free polymer not bonded to the crosslinked elastomer (A1) are controlled.
- a chain transfer agent may be added for the purpose of controlling the thermal stability and the like by reducing the double bond ends of the polymer due to the disproportionation termination reaction during polymerization.
- the same chain transfer agents as those usable for polymerization of the crosslinked elastomer (A1) can be used.
- the amount of the chain transfer agent used is 0 to 2 parts by mass, preferably 0 to 0.5 parts by mass, per 100 parts by mass of the total amount of the monomer mixture (a-2).
- the graft ratio of the monomer mixture (a-2) to the crosslinked elastomer particles (A1) is preferably 5% or more and 250% or less, more preferably 10% or more and 200% or less, and even more preferably 20% or more and 150% or less. If the graft ratio is less than 5%, the acrylic resin film may have reduced resistance to whitening on bending, reduced transparency, or reduced elongation at tensile break, which may cause cracks during secondary molding. tend to become If the graft ratio exceeds 250%, the melt viscosity of the acrylic resin composition tends to increase during film formation, and the formability of the acrylic resin film tends to deteriorate.
- the average particle diameter d (nm) of the crosslinked elastomer particles (A1) in the acrylic resin film and the amount w (% by mass) of the polyfunctional monomer used in the acrylic acid ester-based crosslinked elastomer are represented by the relational expression: It is preferable to satisfy 0.015d ⁇ w ⁇ 0.06d, more preferably 0.02d ⁇ w ⁇ 0.05d. If the amount of the polyfunctional monomer is within the range of the above relational expression, the elongation during secondary molding of the acrylic resin film is less likely to decrease, cracks are less likely to occur during molding and cutting, and transparency is improved.
- the graft copolymer particles (B) used as necessary also include the crosslinked elastomer (B1), which is a rubber component, like the graft copolymer particles (A).
- the graft copolymer particles (B) typically have a graft polymer layer (B2) located closer to the surface than the crosslinked elastomer (B1), like the graft copolymer particles (A). That is, the graft copolymer particles (B) preferably comprise a crosslinked elastomer (B1) and a graft polymer layer (B2).
- the graft copolymer particles (B) are generally the same as the graft copolymer particles (A) in raw materials, production method, etc., except that the average particle size thereof is larger than that of the graft copolymer particles (A). good too.
- the particles of the acrylate-based crosslinked elastomer (B1) have a concentric spherical multi-layered structure comprising a hard or semi-hard crosslinked resin layer inside the crosslinked elastomer layer. Examples of such a hard or semi-hard crosslinked resin layer include hard crosslinked methacrylic resin particles as shown in JP-B-55-27576, etc., and as shown in JP-A-4-270751 and WO2014/41803.
- the graft copolymer particles (B) having a larger particle diameter than the graft copolymer particles (A) can be improved in transparency, bending whitening resistance, and folding resistance. Flexural crack resistance and the like can be improved.
- the average particle size of the graft copolymer particles (B) is preferably 150 nm or more and 400 nm or less, more preferably 200 nm or more and 350 nm or less.
- the average particle size of the graft copolymer particles (B) is larger than the average particle size of the graft copolymer particles (A).
- Graft copolymer particles (B) having a large average particle size more effectively induce plastic deformation (craze) in the acrylic resin phase surrounding the graft copolymer particles against the action of external force on the acrylic resin material. do. Therefore, the graft copolymer particles (B) are extremely effective in imparting impact resistance and crack resistance to the acrylic resin material.
- the graft copolymer particles (B) are inferior to the graft copolymer particles (A) in bending whitening resistance and/or solvent whitening resistance.
- the graft copolymer particles (B) for example, by adding a small amount of the graft copolymer particles (B) to the acrylic resin composition containing the acrylic resin and the graft copolymer particles (A), (a) the acrylic resin film (b) when external stress is applied to the acrylic resin film, when a coating liquid containing an organic solvent is applied, and / Alternatively, the whitening property during molding is hardly deteriorated, and (c) the effect of efficiently improving the crack resistance, secondary moldability, etc. of the functional film can be expected.
- the average particle size of the graft copolymer particles (A) and the graft copolymer particles (B) is determined by a laser diffraction method such as Microtrac particle size distribution analyzer MT3000 manufactured by Nikkiso Co., Ltd. It can be measured using a particle size distribution analyzer and a light scattering method in a latex state.
- the method for producing the graft copolymer particles (A) and the graft copolymer particles (B) is not particularly limited, and known emulsion polymerization methods, miniemulsion polymerization methods, suspension polymerization methods, solution polymerization methods, etc. are applicable. It is possible.
- the emulsion polymerization method is particularly preferred because it has a wide adjustment range for the resin structure.
- initiators used in the emulsion polymerization of the graft copolymer particles (A) and/or the graft copolymer particles (B) known organic peroxides, inorganic peroxides, azo compounds and the like can be used. of initiators can be used.
- t-butyl hydroperoxide 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, alkylperoxycarbonates, alkylperoxide, Organic peroxides such as oxyesters; inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate; and azo compounds such as azobisisobutyronitrile can be used. These may be used individually by 1 type, and may use 2 or more types together.
- initiators may be used (a) as thermal decomposition radical polymerization initiators, or (b) in combination with these initiators sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic It may be used as a redox type polymerization initiator system in combination with reducing agents such as acids, hydroxyacetone acid and ferrous sulfate. Ferrous sulfate may be used in combination with a complex such as ethylenediaminetetraacetate-2-sodium.
- inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate are used, or t-butyl hydroperoxide, cumene hydroperoxide and the like are used.
- an inorganic reducing agent such as divalent iron salt and/or an organic reducing agent such as sodium formaldehyde sulfoxylate, reducing sugar and ascorbic acid. more preferred.
- the above inorganic peroxide or organic peroxide is added by a known method such as a method of adding as it is to the polymerization system, a method of adding by mixing with a monomer, or a method of adding by dispersing in an aqueous emulsifier solution.
- a method of adding by mixing with a monomer and a method of adding by dispersing in an aqueous emulsifier solution are preferable.
- the surfactant (also referred to as an emulsifier) used for emulsion polymerization of the graft copolymer particles (A) and/or the graft copolymer particles (B) is not particularly limited. A wide range of known surfactants can be used for emulsion polymerization.
- Preferred surfactants include, for example, (a) alkylsulfonic acid, alkylbenzenesulfonic acid, dioctylsulfosuccinic acid, alkylsulfuric acid, fatty acid sodium, polyoxyethylene alkyl ether acetic acid, alkyl phosphoric acid, alkyl ether phosphate, alkylphenyl Anionic surfactants such as ether phosphoric acid, sodium salts such as surfactin, potassium salts and ammonium salts, and (b) reaction products of alkylphenols, aliphatic alcohols and propylene oxide and/or ethylene oxide, etc. nonionic surfactants, and the like. These surfactants may be used alone or in combination of two or more.
- Graft copolymer particles (A) or graft copolymer particles ( B) can be separated and recovered. For example, after coagulating the graft copolymer particles by adding a water-soluble electrolyte such as calcium chloride, magnesium sulfate, magnesium chloride, calcium acetate, sodium chloride, hydrochloric acid, acetic acid, and sulfuric acid to the latex, or by freezing the latex. After the graft copolymer particles are coagulated, the graft copolymer particles (A) or graft copolymer particles (B) can be separated and recovered by filtration, washing and drying of the solid content. Alternatively, the graft copolymer particles (A) or the graft copolymer particles (B) can be separated and recovered by treating the latex with spray drying, freeze drying, or the like.
- a water-soluble electrolyte such as calcium chloride, magnesium sulfate, magnesium chloride, calcium acetate, sodium chloride, hydrochloric
- graft copolymerization is carried out in advance.
- a filter and/or a mesh By filtering the latex of the coalesced particles (A) or the latex of the graft copolymer particles (B) with a filter and/or a mesh, substances causing foreign matter defects such as environmental foreign matter and polymerization scale are removed.
- filter and mesh known filters and meshes used for filtering liquid media can be used.
- the type of filter and mesh, the mesh size of the filter and mesh, filtration accuracy, filtration capacity, etc. are appropriately selected according to the target application, the type, size and amount of foreign matter to be removed.
- the opening and filtering accuracy of the filter and mesh are preferably, for example, at least twice the average particle size of the graft copolymer particles (A) or graft copolymer particles (B).
- the content of the graft copolymer particles (A) in 100% by mass of the acrylic resin film is not particularly limited, but is preferably 1% by mass or more and 70% by mass or less, and 5% by mass or more and 65% by mass or less. more preferably 10% by mass or more and 60% by mass or less.
- the content of the graft copolymer particles (B) in 100% by mass of the acrylic resin film is not particularly limited, but is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass. % or less.
- the acrylic resin film may optionally contain a thermoplastic resin at least partially compatible with the acrylic resin within a range that does not impair the object of the present invention. may contain.
- thermoplastic resins include styrene resins, polycarbonate resins, amorphous saturated polyester resins, polyamide resins, phenoxy resins, polyarylate resins, olefin-methacrylic acid derivative resins, olefin-acrylic acid derivative resins, Cellulose derivatives (cellulose acylate, etc.), vinyl acetate resins, polyvinyl alcohol resins, polyvinyl acetal resins, polylactic acid resins, and PHBH (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) resins.
- Styrene-based resins include, for example, styrene-acrylonitrile resin, styrene-(meth)acrylic acid resin, styrene-maleic anhydride resin, styrene-N-substituted or unsubstituted maleimide resin, styrene-acrylonitrile-butadiene resin, and styrene- Acrylonitrile-acrylic acid ester resins, etc.
- thermoplastic resins selected from the group consisting of styrene resins, polycarbonate resins, and cellulose acylate resins have excellent compatibility with acrylic resins, and acrylic It is preferable because it is possible to improve the bending crack resistance, solvent resistance, low hygroscopicity of the resin film, and the glass scattering prevention performance of the laminate.
- the acrylic resin film (acrylic resin composition that constitutes the acrylic resin film) may also be used in conventional acrylic resin films, if necessary, to the extent that the object of one embodiment of the present invention is not impaired. It may contain known additives. Such additives include antioxidants, ultraviolet absorbers, light stabilizers, light diffusing agents, matting agents, lubricants, colorants such as pigments and dyes, fibrous fillers, organic particles and/or inorganic particles. Antiblocking agents consisting of, infrared reflecting agents consisting of metals and / or metal oxides, plasticizers, antistatic agents, and the like. Additives are not limited to these. These additives can be used in an arbitrary amount depending on the type of additive within a range that does not hinder the purpose of one embodiment of the present invention or to enhance the effects of one embodiment of the present invention.
- the glass transition temperature (Tg) of the acrylic resin film is preferably 140° C. or lower, more preferably 135° C. or lower, and even more preferably 130° C. or lower.
- Tg glass transition temperature
- the lower limit of the glass transition temperature of the acrylic resin film is not particularly limited, it is preferably 100° C. or higher from the viewpoints of preventing printing misalignment during drying of printing and improving reliability.
- the glass transition temperature of the acrylic resin film is measured by the method described in Examples.
- the thickness of the acrylic resin film is not particularly limited, it is, for example, 75 to 500 ⁇ m, more preferably 75 to 300 ⁇ m, and more preferably 100 to 250 ⁇ m.
- the film thickness of the acrylic resin film is 75 to 500 ⁇ m, it has the advantage that the film has elasticity and is excellent in handleability.
- the film thickness of the acrylic resin film is measured by the method described in Examples.
- the pencil hardness of the acrylic resin film measured according to JIS K 5600-5-4 is preferably 2B or higher, more preferably B or higher, and particularly preferably HB or higher.
- the acrylic resin film can be produced by a known processing method.
- known processing methods include melt processing, calendar molding, press molding, and solvent casting.
- the melt processing method include an inflation method and a T-die extrusion method.
- the solvent casting method after the acrylic resin composition is dissolved and dispersed in a solvent, the resulting dispersion (dope) is poured onto a belt-like substrate in the form of a film. Next, an acrylic resin film is obtained by volatilizing the solvent from the drooled film-like dope.
- the melt processing method that does not use a solvent is preferred, and the T-die extrusion method is particularly preferred. According to the melt processing method, there are few restrictions on the thickness of the film to be manufactured, it is possible to manufacture a film with excellent surface properties with high productivity, and the load on the natural environment and working environment due to the solvent and the manufacturing cost are reduced. be able to.
- the acrylic resin composition When the acrylic resin composition is formed into a film by a melt processing method or a solvent casting method, from the viewpoint of improving the appearance quality of the acrylic resin film, filtration using a filter or mesh is used to remove appearance defects of the acrylic resin film. It is preferable to remove environmental foreign matter, polymerization scale, degraded resin, etc. in the acrylic resin composition, which cause internal foreign matter and the like.
- the acrylic resin When producing a film by melt processing, the acrylic resin is added at any one or more times during the preparation of the acrylic resin composition by melt mixing, during pelletization of the molten acrylic resin composition, and during the film formation process using a T-die. Filtration of the composition can be performed. In the solvent casting method, after the acrylic resin, the graft copolymer particles (A), (B) and other components are mixed with a solvent, the acrylic resin composition may be filtered before cast film formation.
- filters and meshes known filters and meshes can be used without particular limitations, as long as the filters and meshes have heat resistance and durability according to melt processing conditions, and resistance to casting solvents, dopes, etc. can.
- the film thickness distribution in the TD direction (perpendicular to the extrusion direction) of the extruded film is measured online.
- An automatic die device can be used that measures and automatically adjusts the T-die lip clearance during film extrusion based on this. Applying an automatic die with an appropriate control method may improve the thickness accuracy of the acrylic resin film.
- both sides of the molten film are brought into contact with (sandwiched between) cooling rolls or cooling belts at the same time to produce a film with better surface properties.
- the molten film is simultaneously brought into contact with a roll or cooling belt maintained at a temperature of ⁇ 80° C. or higher, preferably ⁇ 70° C. or higher, of the glass transition temperature of the acrylic resin composition.
- At least one of the rolls for such sandwiching use a roll having an elastic metal sleeve as disclosed in JP-A-2000-153547 and JP-A-11-235747, Low pinch pressure is used to transfer roll mirrors or specific surface topography.
- a film with less residual strain and excellent smoothness, and / or (b) an internal strain with moderate surface roughness and excellent film surface slipperiness and blocking between films is suppressed. can be obtained.
- uniaxial stretching or biaxial stretching subsequent to film molding can be carried out using a known stretching device.
- Biaxial stretching can be carried out in a known manner, such as successive biaxial stretching, simultaneous biaxial stretching, and longitudinal stretching followed by transverse stretching while relaxing the longitudinal direction to reduce bowing of the film. be.
- one side or both sides of the acrylic resin film can be coated with hairlines, prisms, uneven shapes, three-dimensional decorations, matte surfaces, rough surfaces with a certain degree of surface roughness, knurling on the edges of the film, etc.
- Any surface shape may be given.
- Such a surface profile can be imparted by a known method. For example, by sandwiching both sides of a molten film immediately after extrusion or a molded film fed out from a feeding device between two rolls or belts having a surface shape on at least one surface, the surface shape of the roll is changed.
- a method of transcription can be mentioned.
- the hard coat layer in the first method for producing a laminate is a functional layer laminated on at least one side of the acrylic resin film and contains a urethane acrylate resin.
- the hard coat layer may be laminated on one side or both sides of the acrylic resin film.
- various hard coat layers containing urethane acrylate resin which are conventionally provided in various functional films, resin molded products, etc., can be employed without particular limitation.
- a urethane acrylate resin can be obtained, for example, by mixing a polyhydric alcohol, a polyvalent isocyanate, and a hydroxyl group-containing (meth)acrylate to form a urethane bond through a reaction between the isocyanate group and the hydroxyl group.
- urethane acrylate resins include urethane acrylate resins commercially available as UV-curable hard coating agents.
- the hard coat layer of the laminate may contain other components in addition to the urethane acrylate resin.
- Components other than the urethane acrylate resin include, for example, monofunctional or polyfunctional (meth)acrylates, epoxy acrylate monomers, polyester acrylates, silicon acrylates, polycarbonate acrylates, polyacrylic acrylates, and the like, which have radically reactive functional groups. Monomers, oligomers, resins, or mixtures thereof can be used in combination.
- a urethane acrylate resin and, for example, (a) a hydrolytic condensate of a difunctional to tetrafunctional silane compound, and/or (b) a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group may be used in combination with a composition containing a monomer, oligomer, resin, or mixture thereof having As a component used for forming the hard coat layer, the urethane acrylate resin may be used alone, or in addition to the urethane acrylate resin, one or more of the other components may be added in combination. .
- the (meth)acrylate is not particularly limited as long as it has at least one (meth)acryloyl group. Specifically, (a) alicyclic (meth)acrylates such as alkyl (meth)acrylates, aryl (meth)acrylates, phenoxyethyl (meth)acrylates and isobornyl (meth)acrylates, (b) polyalkylene glycol di( meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol multifunctional (meth)acrylates such as tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane
- (meth)acrylates include those commercially available as UV-curable hard coating agents.
- (meth)acrylate is meant to include methacrylate and acrylate.
- the (meth)acryloyl group is intended to include methacryloyl and acryloyl groups.
- epoxy acrylate monomer there are no particular restrictions on the epoxy acrylate monomer. Specifically, glycidyl (meth)acrylate, ⁇ -methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, and vinylcyclohexene monoxide (i.e., 1,2-epoxy-4-vinylcyclohexane ) and the like.
- the hydroxyl group-containing (meth)acrylates are not particularly limited, and hydroxyl group-containing (meth)acrylates such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate, and optionally (a) at least one Compounds with an ethylenically unsaturated bond having a hydroxyl group such as 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, trimethylpropane mono (meth) acrylate, trimethylolpropane di(meth) acrylate, allyl alcohol, ethylene glycol allyl ether, glycerin (mono, di) allyl ether, N-methylol (meth) acrylamide, etc. (b) or a mixture thereof is added It is possible.
- the polyvalent isocyanate is not particularly limited.
- Polyvalent isocyanate compounds that are compounds containing two or more isocyanate groups include, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate isocyanate, 1,5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane triisocyanate , 3,3′-dimethylphenylene diisocyanate, 4,4′-biphenylene diisocyanate, 1,6-hexane diisocyanate, isophorone diisocyanate, methylenebis(4-cyclohe
- polyhydric alcohols include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8 -octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-methyl-1,8-octanediol, 1,4-cyclohexanediol Examples include methanol and polytetramethylene glycol. These polyhydric alcohols may be used singly or in combination of two or more.
- An organic tin-based urethanization catalyst is used to promote the reaction of the isocyanate component with the isocyanate group.
- the organic tin-based urethanization catalyst may be any one generally used in urethanization reactions, and examples thereof include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dialkylmalate, tin stearate, and tin octylate. be done.
- a composition comprising a hydrolytic condensate of a silane compound preferably has the following general formula (2): R 4 —(SiR 5 a (OR 6 ) 3-a ) (2)
- R 4 is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms, and carbon a monovalent hydrocarbon group selected from the group consisting of aralkyl groups having 7 to 12
- the weight average molecular weight of the condensate (A) is preferably 30,000 or less.
- the proportion of the silane compound having a reactive substituent is preferably 10% by mass or more of the total amount of the silane compound (Z) used.
- the reactive substituent in the general formula (2) is an epoxy group or an oxetane group from the viewpoints of less curing shrinkage during the formation of the hard coat layer and the ease of obtaining a functional film with excellent durability and suppressed curling. is preferred.
- a neutral salt catalyst is more preferably used as the catalyst for the hydrolytic condensation reaction of the silane compound (Z). This is because when the reactive substituent is an epoxy group and/or an oxetane group, decomposition of the reactive substituent during hydrolytic condensation is easily suppressed.
- a method for curing the resin layer (resin composition) when forming the hard coat layer a known method can be applied.
- a method of irradiating active energy rays represented by ultraviolet rays is preferable.
- a photopolymerization initiator is used when curing is performed by irradiation with an active energy ray.
- a hydrolytic condensate of the above silane compound and/or (b) a monomer, oligomer, or resin having a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group, or these
- a composition containing a mixture of is used in combination with a urethane acrylate resin, a photoanion generator, photocation generator, or the like is also used as appropriate.
- photopolymerization initiators include acetophenone, benzophenone, benzoylmethyl ether, benzoylethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, dibenzyl, 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy- 2-phenylacetophenone, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane- 1-one compounds and the like.
- 1-hydroxy-cyclohexyl-phenyl-ketone is preferred because of its excellent compatibility with the resin.
- the photocation generator include, for example, CPI-100P, CPI-101A, CPI-200K, and CPI-200S manufactured by San-Apro; Wako Pure Chemical Industries, Ltd. WPI-124, WPI-113, WPI- 116, WPI-169, WPI-170, and WPI-124; and Rhodia 2074 manufactured by Rhodia.
- photoanion generator examples include acetophenone o-benzoyloxium, nifedipine, 2-(9-oxoxanthen-2-yl)-1,5,7-triazabicyclopropionic acid [4.4.0].
- Dec-5-ene 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3-[bis(dimeramino)methylene]guanidinium 2-(3-benzoylphenyl)propionate, 1, 2-dicyclohexyl-4,4,5,5-tetramethylpiguanidinium, n-butyltriphenylbalate and the like.
- the curable composition is used for the purpose of improving coating properties, scratch resistance after curing, and antifouling properties.
- various known leveling agents may be added.
- leveling agents fluorine-based leveling agents, acrylic leveling agents, silicone-based leveling agents, and adducts or mixtures thereof can be used.
- the amount of the leveling agent to be added is not particularly limited, it is, for example, an amount within the range of 0.03 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the curable composition.
- the curable composition When forming a hard coat layer by applying a curable composition, the curable composition contains an ultraviolet absorber, a light stabilizer, an antifoaming agent, an antioxidant, a light diffusing agent, a matting agent, and an anti-oxidant.
- Various additives such as staining agents, lubricants, colorants such as pigments and dyes, organic particles, inorganic particles, and antistatic agents can be added as required. Additives are not limited to these.
- An organic solvent is usually blended in order to give the curable composition appropriate applicability.
- the organic solvent is not particularly limited as long as it can impart desired coatability to the curable composition and can form a hard coat layer with desired film thickness and performance.
- the boiling point of the organic solvent is preferably 50° C. or higher and 150° C. or lower from the viewpoint of coatability and drying property of the formed resin layer (coating film).
- organic solvents include saturated hydrocarbons such as hexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as chloroform and methylene chloride; alcohols such as methanol, ethanol, isopropyl alcohol, and butanol.
- Esters such as methyl acetate, ethyl acetate, and butyl acetate; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Ethers such as tetrahydrofuran, dioxane, propylene glycol monoethyl ether, methyl cellosolve, and ethyl cellosolve. and amides such as N-methylpyrrolidone and dimethylformamide.
- An organic solvent can be used individually by 1 type or in combination of 2 or more types.
- any method can be employed without particular limitation as the application method.
- coating methods include reverse coating, gravure coating, bar coating, die coating, spray coating, kiss coating, wire bar coating, and curtain coating. These coating methods may be carried out singly or in combination.
- the organic solvent is removed from the coating film by drying, and ultraviolet irradiation or the like is performed.
- a hard coat layer is formed by curing the obtained resin layer with light.
- the drying temperature for removing the organic solvent from the coated resin layer is preferably 60°C or higher and 120°C or lower, more preferably 70°C or higher and 100°C or lower. If the drying temperature is too low, the organic solvent may remain in the resin layer (coating film). On the other hand, if the drying temperature is too high, thermal deformation of the base film may impair the flatness of the functional film (hard coat layer).
- the wavelength of the ultraviolet rays irradiated when curing the resin layer (coating film) is preferably in the range of 200 nm or more and 400 nm or less.
- the ultraviolet (UV) integrated light quantity is described later in [4. Laminate manufacturing method] is preferably used.
- Examples of irradiation devices for ultraviolet exposure light include (a) lamp light sources such as high-pressure mercury lamps, low-pressure mercury lamps, metal halide lamps, electrodeless lamps, and excimer lamps, and/or (b) argon ion lasers and helium neon. Irradiation devices comprising pulsed or continuous laser sources, such as lasers, etc., can be used.
- compositions for forming a hard coat layer include, for example, the product name "Z-607-27L” manufactured by Aica Kogyo Co., Ltd., the product name "ENS102” manufactured by DIC Corporation, and the product name manufactured by Arakawa Chemical Industries, Ltd.
- the thickness of the hard coat layer is not particularly limited, but is, for example, 0.6 ⁇ m to 10.0 ⁇ m, preferably 0.7 ⁇ m to 7.0 ⁇ m, more preferably 0.8 ⁇ m to 5.0 ⁇ m. preferable.
- the film thickness of the hard coat layer is 0.6 ⁇ m to 10.0 ⁇ m, there is an advantage that both wear resistance and moldability can be achieved.
- the thickness of the hard coat layer is measured by the method described in Examples.
- inorganic particles and/or metal particles may be added in order to improve the hardness, wear resistance, antistatic properties, etc. of the hard coat layer.
- inorganic particles and metal particles include, but are not limited to, silica, alumina, titanium oxide, zinc oxide, zirconia, graphene, nanocarbon, carbon black, nanodiamond, mica, barium titanate, boron nitride, metallic silver, metal copper etc. are mentioned. These particles may be used without surface treatment, or may be surface-treated in advance by a known method to control the dispersed state, and the affinity with the hard coat layer may be appropriately controlled. .
- the hard coat layer in the first laminate manufacturing method may further contain particles in addition to the urethane acrylate resin.
- the hard coat layer contains particles, it is possible to obtain a laminate containing an acrylic resin film having excellent antiglare properties.
- Particles to be blended in the hard coat layer for the purpose of imparting antiglare properties are desired antiglare properties, sharpness of transmitted images, glare, jet-blackness of the surface, surface hardness, slipperiness, antistatic properties, and the like.
- the material of the particles, the number of parts to be blended, the type of dispersion solvent for the particles, the particle diameter, the dispersed particle diameter, the film thickness of the hard coat layer, and the relative refractive index difference with the hard coat base material can be appropriately adjusted within a known technical range that does not impair the effects of the present invention.
- the material of the particles to be compounded in the hard coat layer is not particularly limited as long as the effects of the present invention are achieved.
- Examples include (a) silica, alumina, glass beads or flakes, mica, clay, titanium oxide, and zinc oxide. , zirconia, metal particles, and/or (b) crosslinked organic resin particles based on alkyl (meth)acrylate units, aromatic vinyl units, siloxane units, etc., and (c) core-shell type multilayer structure resin particles, and the like.
- the particles are inorganic oxide particles (for example, silica, alumina, titanium oxide, zinc oxide, zirconia, etc.) and/or crosslinked organic Resin particles are preferable, and at least one selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins is more preferable.
- Silica particles, alumina particles, and crosslinked organic resin particles are particularly preferred from the viewpoint of the balance of physical properties such as antiglare properties, dispersibility, and surface hardness.
- these particles are formed by known methods such as using a silane coupling agent or reactive monomer that may have a reactive substituent, plasma treatment, corona treatment, etc.
- Reactive functional groups having reactivity with urethane acrylate resins include (a) radical reactive functional groups such as vinyl groups and (meth)acryloyl groups, (b) epoxy groups, oxetane groups, hydroxyl groups, carboxyl groups, mercapto ionic functional groups such as groups, isocyanyl groups, hydroxyl groups and amino groups; and (c) moisture-curable functional groups such as silyl groups and alkoxysilyl groups.
- particles may be dispersed in the state of primary particles, or may be dispersed in an aggregated state of multiple particles, depending on the size of the primary particles.
- the size of a region (dispersed domain) in which these particles or aggregates thereof are distributed is defined as "average dispersed particle size".
- average dispersed particle size When the size of the primary particles is large, the average dispersed particle size and the primary (basic) particle size may be the same.
- the average dispersed particle diameter of the particles is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 0.1 ⁇ m to 50.0 ⁇ m, 0.2 ⁇ m to 25.0 ⁇ m, 0.5 ⁇ m to It may be 10 ⁇ m or the like.
- the average dispersed particle size of particles is measured by the method described in Examples.
- the content of the particles in the hard coat layer is not particularly limited as long as the effect of one embodiment of the present invention is exhibited, but for example, 0.1% by weight to 30.0% by weight. %, and may be 0.5 wt % to 20.0 wt %, 1.0 wt % to 15.0 wt %, and the like.
- Low refractive index layer In the method for manufacturing the first laminate, it is preferable that a low refractive index layer containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is further provided on the hard coat layer.
- the low refractive index layer constitutes an antireflection layer.
- the low refractive index layer is typically formed by curing a composition for forming a low refractive index layer (curable composition).
- the low refractive index layer is a layer for exhibiting an antireflection effect due to a significant refractive index difference with the hard coat layer described above and/or a significant refractive index difference with the high refractive index layer described later.
- the low refractive index layer may be, for example, a layer containing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm. can.
- As the composition for forming a low refractive index layer a composition obtained by adding hollow silica fine particles as a material for adjusting the refractive index to an acrylate-based resin as the base organic material can be used.
- the acrylate resin contained in the low refractive index layer contains hollow silica fine particles.
- the particle diameter of the hollow silica fine particles is less than 100 nm, preferably 80 nm or less, more preferably 60 nm or less. When the particle diameter of the hollow silica fine particles is less than 100 nm, there is an advantage that the transparency is excellent.
- the lower limit of the particle size of the hollow silica fine particles is not particularly limited, it is, for example, 10 nm or more, preferably 20 nm or more, from the viewpoint of improving antireflection performance.
- the particle diameter of the hollow silica fine particles is measured by the method described in Examples.
- the content of hollow silica fine particles in the acrylate resin is 40% or more, preferably 45% or more, more preferably 50% or more.
- the content of the hollow silica fine particles in the acrylate resin is 50% or more, there is an advantage that antireflection properties are excellent.
- the upper limit of the content of the hollow silica fine particles in the acrylate resin is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 80% or less, preferably 70% or less.
- the composition for forming a low refractive index layer may contain a resin similar to the resin contained in the hard coat layer as an organic material other than the acrylate resin. Further, in the first embodiment of the present invention, the composition for forming a low refractive index layer may contain silica fine particles, fluoride fine particles, etc. as a refractive index adjusting material other than the hollow silica fine particles. Magnesium fluoride, lithium fluoride, aluminum fluoride, calcium fluoride, and the like are examples of fluorides constituting the fluoride fine particles.
- part of the organic material may be replaced with a water-repellent material or an oil-repellent material.
- Water-repellent materials or oil-repellent materials include, for example, (a) compounds containing long-chain hydrocarbon skeletons, fluorocarbon skeletons, fluoropolyether skeletons, polysiloxane skeletons, etc., and (b) each skeleton described above. and resins having These may have, for example, reactive functional groups with urethane acrylate resins, and may contain two or more of these skeletons in one molecule. Also, a plurality of these may be used in combination.
- additives can be added to the low refractive index layer as other components within a range that does not impair the effects of one embodiment of the present invention.
- additives include photopolymerization initiators, dispersants, surfactants, ultraviolet absorbers, antioxidants, light stabilizers, antistatic agents, leveling agents, antifouling agents, anti-fingerprint agents, lubricants.
- Additives such as a property-imparting agent may be used.
- composition for forming a low refractive index layer examples include, for example, the product name “Z-824” manufactured by Aica Kogyo Co., Ltd., the product name “TU-2359” manufactured by Arakawa Chemical Industries, Ltd., and the product name manufactured by JGC Catalysts and Chemicals Co., Ltd. “ A commercially available product such as ELCOM P-5062 may also be used. Since these commercially available products have elongation even after curing, the 120° C. crack elongation of the first laminate can be further increased by using these commercially available products.
- the first laminate may have functional layers other than those described above.
- Other functional layers are not particularly limited, and for example, conventionally known various functional layers can be employed.
- Specific examples of other functional layers include an antiglare layer, an antifouling layer, an anti-fingerprint layer, an anti-scratch layer, an antistatic layer, an ultraviolet shielding layer, an infrared shielding layer, an uneven surface layer, a light diffusion layer, a matte layer, A polarizing layer, a colored layer, a design layer, an embossed layer, a conductive layer, a gas barrier layer, a gas absorbing layer, a high refractive index layer, and the like. Two or more of these functional layers may be combined. Also, one functional layer may have two or more functions.
- the active energy rays include ultraviolet rays (UV).
- the integrated light amount of active energy ray irradiation is, for example, 150 mJ/cm 2 to 500 mJ/cm 2 , and 180 mJ/cm 2 to 450 mJ/cm 2 . and more preferably 200 mJ/cm 2 to 400 mJ/cm 2 .
- the cumulative light quantity of the UV irradiation is 150 mJ/cm 2 to 500 mJ/cm 2 , it is possible to obtain an appropriate hardness of the hard coat layer while ensuring moldability.
- the cumulative amount of UV irradiation is 150 mJ/cm 2 or more, the degree of cross-linking of the hard coat layer is improved, and surface hardness and scratch resistance can be improved.
- the integrated amount of UV irradiation is 500 mJ/m 2 or less, impregnation of the composition for forming a low refractive index layer into the hard coat layer becomes moderate during coating of the composition for forming a low refractive index layer. , the amount of residual acrylate groups in the hard coat layer becomes moderate.
- the adhesion between the hard coat layer and the low refractive index layer is maintained, and the obtained laminate is whitened when stretched 80% at 120°C. can be suppressed.
- the chill roll temperature is, for example, 20°C to 70°C, preferably 25°C to 60°C, and more preferably 30°C to 55°C.
- the resin layer hard coat layer
- the resin layer can be cured while suppressing the temperature rise of the resin layer of the composition for forming a hard coat layer during ultraviolet irradiation. can be performed to produce a laminate with desired physical properties.
- step (A1) For conditions other than the above in step (A1), those described in the above (hard coat layer) are incorporated.
- step (B1) an acrylate-based resin (composition for forming a low refractive index layer) containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied on the hard coat layer obtained in step (A1).
- the resin layer containing the acrylate resin (composition for forming a low refractive index layer) thus obtained is irradiated with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer.
- the active energy ray includes ultraviolet (UV).
- the same conditions as in the step (A1) can be adopted for the integrated light amount of active energy ray irradiation (for example, the integrated light amount of ultraviolet (UV) irradiation).
- the chill roll temperature is, for example, 20°C to 70°C, preferably 25°C to 60°C, and more preferably 30°C to 55°C.
- the cooling roll temperature in the step (B1) is 20° C. to 70° C.
- the resin layer (low refractive index layer) is formed while suppressing the temperature rise of the resin layer of the composition for forming a low refractive index layer during ultraviolet irradiation. can be performed to produce laminates with desired physical properties.
- a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the particle diameter is less than 100 nm.
- a laminate comprising a step of preparing an acrylate resin containing 40% or more of hollow silica fine particles, wherein the solvent contains at least one solvent, and the solvent having the highest boiling point has a boiling point of 115°C to 180°C.
- the "acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm" can also be said to be a "composition for forming a low refractive index layer.”
- the boiling point of the solvent with the highest boiling point is, for example, 115°C to 180°C, preferably 120°C to 170°C, and more preferably 125°C to 160°C.
- the boiling point of the solvent with the highest boiling point is 115° C. to 180° C., the adhesion between the hard coat layer and the low refractive index layer is improved, and a laminate with less whitening (lower degree of whitening) is produced during stretching. Obtainable.
- the solvent used in step (B1') is not particularly limited as long as it contains a solvent having the above boiling point.
- the solvent having a boiling point of 115° C. to 180° C. is not particularly limited, and examples thereof include propylene glycol monomethyl ether (PGM), cyclohexanone, butyl acetate, propylene glycol monomethyl ether acetate (PGMA) and the like.
- PGM is preferable from the viewpoint of compatibility with resin and drying efficiency. These may be used alone or in combination of two or more.
- the method of adding a solvent to the acrylate resin to prepare the acrylate resin containing 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm is not particularly limited, and a known method is used. can do.
- the acrylate resin containing the hollow silica fine particles is prepared by the method described in Examples.
- the first laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. More specifically, the first laminate is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, and the acrylic resin film comprises: The tensile elongation at break at 120° C. is 170% or more, the hard coat layer contains a urethane acrylate resin, the laminate has a pencil hardness of H or more, and a crack elongation at 120° C. 80% or more. Moreover, in a preferred aspect of the first embodiment of the present invention, the first laminate further includes a low refractive index layer on the hard coat layer.
- the first laminate is composed of at least a specific acrylic resin film and a specific hard coat layer, as described above. Moreover, in a preferred aspect of the first embodiment of the present invention, the first laminate is composed of a specific acrylic resin film, a specific hard coat layer, and a specific low refractive index layer.
- the first laminate is composed of the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer).
- the first laminate comprises the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer). and the low refractive index layer described above (low refractive index layer).
- the first laminate is preferably the above [1-2. First Laminate Manufacturing Method].
- the pencil hardness of the first laminate is H or higher, preferably 2H or higher, and more preferably 3H or higher. If the pencil hardness of the first laminate is H or higher, it has the advantage of being less likely to be scratched.
- pencil hardness is an index of abrasion resistance, and abrasion resistance is evaluated by the degree of scratches formed when scratched. In this specification, the pencil hardness of the laminate is measured by the method described in Examples.
- the "tensile elongation at break at 120°C” and the “crack elongation at 120°C” of the first laminate are the same as in [1-2. Laminate manufacturing method] is used.
- the haze of the first laminate is, for example, 1.0% or less, preferably 0.8% or less, and more preferably 0.5% or less.
- the haze of the first laminate is 1.0% or less, there is an advantage that the transparency is excellent.
- the haze of the laminate is measured by the method described in Examples.
- the ⁇ haze after 80% stretching at 120° C. of the first laminate is, for example, 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less. preferable.
- the ⁇ haze after 80% stretching at 120° C. of the first laminate is 3.0% or less, there is an advantage that whitening during molding can be suppressed.
- the ⁇ haze of the first laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
- ⁇ haze after 20% stretching at 120 ° C. is preferably 30% or less, more preferably 20% or less.
- the low refractive index layer in the first laminate improves the crack elongation of the first laminate at 120 ° C. and / or suppresses whitening during stretching at 120 ° C., so whitening during stretching is suppressed. Less is preferred.
- the laminated film obtained by laminating the low refractive index layer on the acrylic resin film if the ⁇ haze after 20% stretching at 120 ° C.
- the first laminate at 120 ° C. is 30% or less
- the first laminate at 120 ° C. is 80% Whitening after stretching is reduced, and a laminate having excellent moldability can be obtained.
- ⁇ haze after 20% stretching at 120° C. is measured by the method described in Examples, with a laminated film obtained by laminating a low refractive index layer on an acrylic resin film. be.
- the luminous reflectance of the first laminate is, for example, 2.0% or less, preferably 1.8% or less, and more preferably 1.6% or less.
- the luminous reflectance of the first laminate is 2.0% or less, there are advantages of excellent antireflection performance and excellent visibility when laminated on the display surface.
- the luminous reflectance of the first laminate is measured by the method described in Examples.
- the in-plane retardation (Re) of the first laminate is, for example, 10 nm or less, preferably 9 nm or less, more preferably 8 nm or less, more preferably 7 nm or less, and 6 nm or less. is particularly preferred.
- the in-plane retardation (Re) is 10 nm or less, a decrease in contrast can be suppressed in a liquid crystal display device.
- the in-plane retardation (Re) is measured by the method described in Examples.
- the absolute value of the thickness direction retardation (Rth) of the first laminate is, for example, 30 nm or less, preferably 25 nm or less, and more preferably 20 nm or less.
- the absolute value of the thickness direction retardation (Rth) is 30 nm or less, a decrease in contrast can be suppressed in a liquid crystal display device.
- the thickness direction retardation (Rth) is measured by the method described in Examples.
- microcrack width of the first laminate is For example, it is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less.
- microcrack width of the first laminate is measured by the method described in Examples. Further, in this specification, “at the time of 80% stretching at 120°C” can also be described as “80% stretching at 120°C”. In this case, the "stretch ratio" simply indicates elongation.
- the depth of the groove of the microcrack from the surface of the low refractive index layer side of the laminate at the microcrack portion in the direction parallel to the tensile stress when the first laminate is stretched 80% at 120 ° C. (hereinafter , sometimes simply referred to as “the depth of the microcrack grooves in the first laminate”) is, for example, 1.0 ⁇ m or less, preferably 0.8 ⁇ m or less, and 0.5 ⁇ m or less. is more preferable. If the depth of the grooves of the microcracks in the first laminate is 1.0 ⁇ m or less, there is an advantage that changes in appearance during molding can be suppressed. The depth of the grooves of the microcracks in the first laminate is measured by the method described in Examples.
- FIG. 1 is a diagram showing a TEM image of the laminate according to the first embodiment of the present invention after a tensile test.
- a laminate 4 in FIG. 1 is composed of an acrylic resin film 1 , a hard coat layer 2 and a low refractive index layer 3 .
- microcracks 5 are generated on the surface of the laminate 4 according to the tensile stress.
- the crack width in the direction parallel to the tensile stress of the generated microcracks 5 is called a microcrack width 6, and the crack width in the stacking direction is called a groove depth 7 of the microcracks.
- the first laminate may have a primer layer on the surface opposite to the surface provided with the hard coat layer.
- the composition of the primer layer includes (a) ink used for printing in the post-processing step, (b) injection resin used for injection molding, and (c) adhesiveness to metals used for metal deposition.
- a good resin, etc. is used.
- urethane-based resins, acrylic-based resins, polyester-based resins, polycarbonates, epoxy-based resins, melamine-based resins, copolymers of vinyl acetate and vinyl chloride, and vinyl acetate resins are used as resin components.
- These resin components may appropriately contain functional groups such as acid groups, amino groups, epoxy groups, oxetane groups, vinyl groups, hydroxyl groups, mercapto groups, isocyanyl groups, silyl groups and salts.
- a resin component and a compound having these functional groups may be used in combination.
- the thickness of the primer layer is preferably 0.5-10 ⁇ m, more preferably 0.5-5 ⁇ m, most preferably 0.5-3 ⁇ m.
- the thickness of the primer layer is 0.5 ⁇ m or more, the adhesion between the injection resin, ink, etc. and the acrylic resin of the first laminate can be ensured, and when the thickness is 10 ⁇ m or less, productivity is better.
- a molded article (hereinafter referred to as "first molded article") comprising a first laminate is provided. Further, in the first embodiment of the present invention, the first molded body is obtained by laminating the first laminate on at least part of the surface of the molded body having a non-planar shape at least in part.
- applications of the first molded body include automotive interior applications such as instrument panels, in-vehicle display front panels, console boxes, meter covers, door lock pezels, steering wheels, power window switch bases, center clusters, and dashboards; a) Weatherstrips, bumpers, bumper guards, side mudguards, body panels, spoilers, front rills, strut mounts, hubcaps, center pillars, door mirrors, center ornaments, side moldings, door moldings, wind moldings, etc., and (b) windows and heads Automobile exterior applications such as lamp covers, tail lamp covers, windshield parts; housings, display windows, buttons, etc.
- the first laminate When the first laminate is used, (a) it has a complicated three-dimensional shape, and (b) surface hardness, scratch resistance, chemical resistance, antifouling property, reflective property, antiglare property, etc. are controlled. In addition, it is possible to easily produce a molded product with excellent appearance. For this reason, the first molded body is preferably used for, among the above uses, for example, an in-vehicle display front panel having a planar shape, a curved surface shape and/or a three-dimensional shape. Accordingly, in a first embodiment of the present invention, there is provided an in-vehicle display front panel comprising a first molded body.
- 2nd Embodiment of this invention is related with the laminated body which contains an acrylic resin film as a base material, and its manufacturing method.
- a method of forming a functional layer on a film substrate by a technique such as coating is used as a method of further imparting functionality to a decorative/protective film containing an acrylic resin film.
- an antiglare hard coat layer is provided on a thermoplastic transparent substrate film, and a specific component is added as the outermost layer on the antiglare hard coat layer side of the thermoplastic transparent substrate film.
- An insert-molding antiglare antireflection film and the like having a low refractive index layer containing a specific concentration are disclosed.
- Patent Document 5 discloses a support, an easy-adhesion layer provided on one surface of the support, and a transparent layer made of a translucent resin provided on the other surface of the support.
- the layer contains light-transmitting particles, the volume-average particle diameter r of the light-transmitting particles satisfies 0.4 ⁇ m ⁇ r ⁇ 3.0 ⁇ m, and the total sum S of the light-transmitting particles is 30 mg/m 2 . It describes an optical laminated film or the like that satisfies ⁇ S ⁇ 500 mg/m 2 and the average film thickness t of the transparent layer satisfies r/4 ⁇ t ⁇ r.
- Patent Documents 4 and 5 have sufficient performance from the viewpoint of compatibility between the moldability of the laminate and the functionality of the laminate such as surface hardness and antiglare properties of the surface of the laminate. That said, there is room for further improvement.
- an object of one embodiment (second embodiment) of the present invention is to provide a laminate containing an acrylic resin film, which is excellent in formability, surface hardness and antiglare properties, and a method for producing the same.
- the present inventors have made intensive studies to solve the above problems, and found that a hard coat containing specific particles and having specific physical properties in a laminate composed of an acrylic resin film, a hard coat layer, etc. It was found for the first time that a layered product having excellent formability, surface hardness and antiglare properties can be obtained by using a layer, and one embodiment (second embodiment) of the present invention was completed.
- (A2) a resin layer containing a urethane acrylate resin and particles, which is coated on at least one side of an acrylic resin film, is irradiated with an active energy ray, and the urethane acrylate a step of curing a resin layer containing a resin and particles to form a hard coat layer, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120°C.
- the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, the average dispersed particle diameter of the particles is r ( ⁇ m), and the hard coat layer
- the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation of 170 at 120° C., where d ( ⁇ m) is the film thickness. % or more, and the crack elongation at 120° C. of the laminated film obtained by laminating the resin layer containing no particles on the acrylic resin film is 80% or more.
- one aspect of the second embodiment of the present invention is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, wherein the acrylic resin film is , a tensile elongation at break at 120° C. of 170% or more, the hard coat layer contains a urethane acrylate resin and particles, the average dispersed particle diameter of the particles is r ( ⁇ m), and the hard coat layer
- the laminate has a pencil hardness of H or more and a haze of 3% or more, and the particles are formed on the acrylic resin film
- the second embodiment of the present invention it is possible to provide a laminate containing an acrylic resin film, which is excellent in moldability, surface hardness and antiglare properties, and a method for producing the same.
- a method for manufacturing a laminate according to a second embodiment of the present invention comprises (A2) a urethane acrylate resin applied to at least one side of an acrylic resin film; and a step of irradiating the resin layer containing the urethane acrylate resin and the particles with an active energy ray to cure the resin layer containing the urethane acrylate resin and the particles to form a hard coat layer.
- the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing,
- d ⁇ r is satisfied
- the laminate has a pencil hardness of H or more
- a laminate according to a second embodiment of the present invention (hereinafter referred to as a "second laminate”) includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. and, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C., the hard coat layer includes a urethane acrylate resin and particles, and the average of the particles When the dispersed particle diameter is r ( ⁇ m) and the film thickness of the hard coat layer is d ( ⁇ m), d ⁇ r is satisfied, and the laminate has a pencil hardness of H or more and a haze of 3% or more, and the crack elongation at 120° C. of a laminated film obtained by laminating a resin layer containing no particles on the acrylic resin film is 80% or more.
- both the laminate obtained by the method for manufacturing the laminate according to the second embodiment and the laminate according to the second embodiment may be referred to as "second laminate".
- the laminate obtained by the above-described second laminate manufacturing method has surface hardness and is excellent in surface hardness. Moreover, it can be said that the laminate obtained by the second laminate manufacturing method has antiglare properties and is excellent in antiglare properties.
- the method for evaluating the antiglare property of the laminate in this specification will be described in detail in later examples. Moreover, the laminate obtained by the second method for producing a laminate has excellent moldability.
- Patent Document 4 only discloses a large-sized and flat-shaped film, and does not disclose a technique for solving "formability", which is one of the problems of the second embodiment.
- Patent Document 5 discloses a constituent element in which the dispersed particle diameter of the antiglare particles is larger than the thickness of the antiglare particle-containing layer, the technical requirement is that the crack elongation of the resin layer is large.
- configurations such as "moldability” and "small whitening during stretching”.
- no laminate that satisfies requirements such as formability, surface hardness and antiglare property has been found in the prior art, and there is room for further improvement.
- the present inventors have mainly studied the improvement of the moldability and surface hardness of the laminate and the antiglare property, and have found (i) a hard coat layer and a refractive index adjustment layer (for example, (low refractive index layer) and the like, and (ii) by controlling the dispersion state of particles in the hard coat layer, the functional It was found for the first time that a laminate excellent in formability, surface hardness and antiglare property can be obtained without causing peeling and cracking of the layers. Moreover, the present inventors have found that the laminate obtained by the above method can solve the problem of whitening of the stretched portion in addition to the moldability.
- a hard coat layer and a refractive index adjustment layer for example, (low refractive index layer) and the like
- laminates for molding having functional layers with surface hardness, anti-glare properties and anti-reflection properties have problems such as peeling and cracking of the coating layer at the stretched portion during molding and breakage of the film.
- problems such as peeling and cracking of the coating layer at the stretched portion during molding and breakage of the film.
- there was the following problem regarding whitening of the stretched portion (1) In the hard coat layer containing antiglare particles in the laminate, the hard coat layer sometimes undergoes significant whitening when the laminate is stretched during molding. (2) The low refractive index layer located on the outermost surface of the laminate sometimes whitened during stretching.
- the inventors succeeded in obtaining the following knowledge in the process of earnestly examining these issues.
- the resin used for the hard coat layer in the laminate should have a high crack elongation when stretched, and the film thickness of the hard coat layer and the content and dispersion state of the particles should be controlled. As a result, it has been found that, during the process of stretching the laminate, minute cleavage of the hard coat layer surface around the particles dispersed in the hard coat layer can be suppressed, and significant whitening of the hard coat layer during stretching can be prevented. .
- the resin used in the hard coat layer in the laminate should have a high crack elongation during stretching
- a laminate having excellent moldability, surface hardness and antiglare properties which is composed of an acrylic resin film and a hard coat layer, or an acrylic resin film, a hard coat layer and a low refractive index layer, has not been developed so far. There is no report, and the manufacturing method of the second laminate is an extremely excellent technique. The method for manufacturing the laminate will be described in detail below.
- “laminate” intends a product (laminate) containing a hard coat layer containing particles, and a product (laminate) that does not contain a hard coat layer or a hard coat layer that contains particles.
- the surface hardness of the hard coat layer is improved, and the crack elongation is high. Originally, it may be required not to cause breakage or significant whitening upon stretching. However, as described above, conventionally, surface hardness and scratch resistance and deformability and extensibility are contradictory properties, and it was not easy to achieve both.
- Methods for imparting high stretchability during secondary molding while maintaining hardness to such a curable resin for hard coating include, for example, the methods (1) to (3) described above. . These methods (1) to (3) may be used alone or in combination as appropriate for the hard coat layer in the second laminate. may
- the second laminate manufacturing method includes the following step (A2). - Step (A2): A resin layer containing a urethane acrylate resin and particles applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles. forming a hard coat layer.
- the method for manufacturing the second laminate further includes the following step (B2). - Step (B2): A coating liquid containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied onto the hard coat layer obtained in the step (A2), and dried. A step of irradiating the obtained resin layer containing the acrylate-based resin with an active energy ray to cure the resin layer containing the acrylate-based resin to form a low refractive index layer.
- step (A2) the resin layer containing the urethane acrylate resin and the particles applied to at least one side of the acrylic resin film is irradiated with active energy rays to cure the resin layer containing the urethane acrylate resin and the particles. to form a hard coat layer.
- step (B2) a resin layer containing an acrylate-based resin is applied in a solution state on the hard coat layer containing the cured urethane acrylate resin formed in step (A2), and the resin layer is coated with The resin layer is cured by irradiation with active energy rays to form a low refractive index layer.
- the second laminate manufacturing method further includes the following configuration in addition to the step (A2) and optional step (B2).
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C.
- the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, and the average dispersed particle diameter of the particles is r ( ⁇ m), and the thickness of the hard coat layer is is d ( ⁇ m), d ⁇ r is satisfied.
- the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120°C of 170% or higher.
- the crack elongation at 120°C of the laminated film obtained by laminating the resin layer containing no particles on the acrylic resin film is 80% or more.
- the hard coat layer and the low refractive index layer is preferably well adhered.
- the low refractive index layer often contains a hard filler such as hollow silica, and often has a lower crack elongation than the hard coat layer. Therefore, cracks and microcracks may occur at a drawing ratio lower than the crack elongation of the hard coat layer alone.
- the opening width of microcracks generated in the low refractive index layer will be fine, for example, 1 ⁇ m or less, and whitening will not easily occur due to stretching. .
- the following (a) and/or (b) are preferable: (a) the low refractive index layer is formed in the step (B2) When the resin layer is applied in a solution state, the applied resin layer (low refractive index layer) to a certain extent within a range where the final interface between the two layers does not become unclear and the antireflection properties are not impaired. is impregnated into the hard coat layer; (b) the acrylate groups remaining after curing of the hard coat layer cause the resin layer Reactive curing with (low refractive index layer) to form a chemical bond at the interface between the finally obtained hard coat layer and the low refractive index layer.
- the resin layer containing the urethane acrylate resin forming the hard coat layer is not completely cured, the crosslink density is slightly lowered, and the unreacted acrylate groups are partially removed. It is preferable to leave it.
- a resin layer containing an acrylate-based resin that forms a low refractive index layer is applied in a solution state and optionally dried. In order to impregnate the layer, (a) appropriately adjusting the coating conditions and drying conditions, and/or (b) using a fixed amount of a slow-drying, high-boiling solvent as the solvent used in the solution, etc. is preferred.
- the tensile elongation at break at 120°C of the acrylic resin film in the laminate is 170% or more, preferably 180% or more, and 190% or more. is more preferred.
- the tensile elongation at break at 120° C. of the acrylic resin film is 170% or more, there is an advantage that the shape followability of molding is excellent.
- the upper limit of the tensile elongation at break is not particularly limited, but from the viewpoint of improving the tensile strength, it is, for example, 350% or less, preferably 300% or less.
- the pencil hardness of the laminate is H or higher, preferably 2H or higher, and more preferably 3H or higher.
- H or higher it has the advantage of being less likely to be scratched.
- the laminate has a haze of 3.0% or more, preferably 3.5% or more, more preferably 4.0% or more, and 4.5%. % or more is more preferable.
- the haze of the laminate is 3.0% or more, there is an advantage that the antiglare property is excellent.
- the haze of the laminate is measured by the method described in Examples.
- the crack elongation of the laminate at 120°C is 80% or more, preferably 90% or more, and more preferably 100% or more.
- the crack elongation at 120° C. of the laminate is 80% or more, there is an advantage that the shape followability during molding is excellent.
- the upper limit of the crack elongation is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 350% or less, and 300% or less. is preferred.
- the "crack elongation of the laminate at 120°C” means the elongation at which cracks occur in the coating layer when the laminate is subjected to a tensile test in a constant temperature bath at 120°C.
- the crack elongation of the laminate at 120°C is measured by the method described in Examples.
- the crack elongation at 120 ° C. in the laminated film (hereinafter also referred to as "particle-free laminated film") in which the resin layer not containing the particles is laminated on the acrylic resin film
- the degree is 80% or more, preferably 90% or more, and more preferably 100% or more.
- the crack elongation at 120° C. of the particle-free laminated film is 80% or more, the advantage is that the laminated body is excellent in shape followability during molding, and whitening of the stretched portion during molding is suppressed. have The upper limit of the crack elongation at 120° C.
- the particle-free laminated film is not particularly limited, but from the viewpoint of improving surface hardness and/or wear resistance, it is, for example, 200% or less and 180% or less. is preferred.
- the crack elongation at 120° C. of the particle-free laminated film is measured by the method described in Examples.
- the hard coat layer in the second laminate manufacturing method is a functional layer laminated on at least one side of the acrylic resin film, and contains a urethane acrylate resin and particles.
- the hard coat layer may be laminated on one side or both sides of the acrylic resin film.
- the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, and the average dispersed particles of the particles When the diameter is r ( ⁇ m) and the thickness of the hard coat layer is d ( ⁇ m), d ⁇ r is satisfied.
- various hard coat layers containing urethane acrylate resin which are conventionally provided in various functional films, resin molded products, etc., can be employed without particular limitation.
- Particles to be blended in the hard coat layer for the purpose of imparting antiglare properties are desired antiglare properties, sharpness of transmitted images, glare, jet-blackness of the surface, surface hardness, slipperiness, antistatic properties, and the like.
- the material of the particles, the number of parts to be blended, the type of dispersion solvent for the particles, the particle diameter, the dispersed particle diameter, the film thickness of the hard coat layer, and the relative refractive index difference with the hard coat base material can be appropriately adjusted within a known technical range that does not impair the effects of the present invention.
- the material of the particles to be compounded in the hard coat layer is not particularly limited as long as the effects of the present invention are achieved.
- Examples include (a) silica, alumina, glass beads or flakes, mica, clay, titanium oxide, and zinc oxide. , zirconia, metal particles, and/or (b) crosslinked organic resin particles based on alkyl (meth)acrylate units, aromatic vinyl units, siloxane units, etc., and (c) core-shell type multilayer structure resin particles, and the like.
- the particles are inorganic oxide particles (for example, silica, alumina, titanium oxide, zinc oxide, zirconia, etc.) and/or crosslinked organic Resin particles are preferable, and at least one selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins is more preferable.
- Silica particles, alumina particles, and crosslinked organic resin particles are particularly preferred from the viewpoint of the balance of physical properties such as antiglare properties, dispersibility, and surface hardness.
- these particles are formed by known methods such as using a silane coupling agent or reactive monomer that may have a reactive substituent, plasma treatment, corona treatment, etc.
- Reactive functional groups having reactivity with urethane acrylate resins include (a) radical reactive functional groups such as vinyl groups and (meth)acryloyl groups, (b) epoxy groups, oxetane groups, hydroxyl groups, carboxyl groups, mercapto ionic functional groups such as groups, isocyanyl groups, hydroxyl groups and amino groups; and (c) moisture-curable functional groups such as silyl groups and alkoxysilyl groups.
- the particles contained in the hard coat layer satisfy d ⁇ r, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer. That is, the particles contained in the hard coat layer have an average dispersed particle size equal to or larger than the thickness of the hard coat layer.
- the average dispersed particle diameter of the particles contained in the hard coat layer is smaller than the film thickness of the hard coat layer, local cleavage of the hard coat layer occurs at the peripheral portion of the dispersed particles in the thin hard coat layer during stretching. / Or cracks may occur and the dispersed particles may be exposed on the surface of the hard coat layer.
- the state of the hard coat surface changes (color difference, haze, smoothness, etc.) before and after stretching becomes large, and this is thought to be observed as whitening of the stretched portion.
- the average dispersed particle size of the particles contained in the hard coat layer is approximately the same as the thickness of the hard coat layer or larger than the thickness of the hard coat layer, at least Since some particles are exposed on the hard coat layer surface, there is a tendency for changes in the state of the hard coat surface before and after stretching (color difference, haze, gloss, smoothness, etc.) to be small, and whitening after stretching is reduced. It is considered to have the advantage of
- particles may be dispersed in the state of primary particles, or may be dispersed in an aggregated state of multiple particles, depending on the size of the primary particles.
- the size of a region (dispersed domain) in which these particles or aggregates thereof are distributed is defined as "average dispersed particle size".
- average dispersed particle size When the size of the primary particles is large, the average dispersed particle size and the primary (basic) particle size may be the same.
- the average dispersed particle diameter of the particles is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 0.1 ⁇ m to 50.0 ⁇ m, 0.2 ⁇ m to 25.0 ⁇ m, 0.5 ⁇ m to It may be 10 ⁇ m, 1.0 ⁇ m to 4.0 ⁇ m, 1.2 ⁇ m to 3.8 ⁇ m, 1.4 ⁇ m to 3.6 ⁇ m, and the like.
- the average dispersed particle size of particles is measured by the method described in Examples.
- the content of the particles in the hard coat layer is not particularly limited as long as the effect of one embodiment of the present invention is exhibited. Yes, 0.5 to 20.0 wt%, 1.0 to 15.0 wt%, 2.0 to 5.0 wt%, 2.2 to 4.8 wt%, 2.4 to It may be 4.6% by weight or the like.
- the thickness of the hard coat layer is not particularly limited as long as the effects of the present invention can be achieved. It may be 0.4 to 2.8 ⁇ m or the like. The thickness of the hard coat layer is measured by the method described in Examples.
- urethane acrylate resin in addition to the urethane acrylate resin, other components may be used in combination in the hard coat layer of the laminate in the second method for producing the laminate.
- Components other than the urethane acrylate resin include, for example, monofunctional or polyfunctional (meth)acrylates, epoxy acrylate monomers, polyester acrylates, silicon acrylates, polycarbonate acrylates, polyacrylic acrylates, and the like, which have radically reactive functional groups. Monomers, oligomers, resins, or mixtures thereof can be used in combination.
- a urethane acrylate resin and, for example, (a) a hydrolytic condensate of a difunctional to tetrafunctional silane compound, and/or (b) a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group may be used in combination with a composition containing a monomer, oligomer, resin, or mixture thereof having As a component used for forming the hard coat layer, the urethane acrylate resin may be used alone, or in addition to the urethane acrylate resin, one or more of the other components may be added in combination. .
- composition comprising (meth)acrylate, epoxy acrylate monomer, hydroxyl group-containing (meth)acrylate, polyisocyanate, polyhydric alcohol, organotin-based urethanization catalyst and hydrolytic condensate of silane compound, Since the contents are the same as those described in the ⁇ Others> section of the first embodiment, the description is used and the description is omitted here.
- the curable composition When a resin layer (coating film) made of a curable composition is cured to form a hard coat layer, the curable composition is used for the purpose of improving coating properties, scratch resistance after curing, and antifouling properties.
- various known leveling agents may be added. The content of the leveling agent is the same as that described in the ⁇ Others> section of the first embodiment, so the description is incorporated and the description thereof is omitted here.
- the curable composition When forming a hard coat layer by applying a curable composition, the curable composition contains an ultraviolet absorber, a light stabilizer, an antifoaming agent, an antioxidant, a light diffusing agent, a matting agent, and an anti-oxidant.
- Various additives such as staining agents, lubricants, colorants such as pigments and dyes, organic particles, inorganic particles, and antistatic agents can be added as required. Additives are not limited to these.
- An organic solvent is usually blended in order to give the curable composition appropriate applicability. Since the content of the organic solvent is the same as that described in the ⁇ Others> section of the first embodiment, the description is incorporated and the description thereof is omitted here.
- the method of applying the curable composition to the main surface of the above-mentioned acrylic resin film, which is the base film, is the same as the content described in the ⁇ Others> section of the first embodiment. , the description is used, and the description is omitted here.
- the hard coat is formed by curing the resin layer obtained by light such as ultraviolet irradiation. A layer is formed.
- the organic solvent may optionally be removed from the resin layer (coating film) by drying.
- the drying temperature of the resin layer (coating film) when removing the organic solvent by drying is the same as the content described in the ⁇ Others> section of the first embodiment, so that description is used and described here. is omitted.
- a commercially available product may be used as the composition for forming the hard coat layer. Since the content of the marketing is the same as that described in the ⁇ Others> section of the first embodiment, the description is used and the description is omitted here.
- inorganic particles and/or metal particles may be further added.
- examples of such inorganic particles and metal particles include, but are not limited to, silica, alumina, titanium oxide, zinc oxide, zirconia, graphene, nanocarbon, carbon black, nanodiamond, mica, barium titanate, boron nitride, Examples thereof include metallic silver and metallic copper.
- These particles may be added for the purpose of improving the abrasion resistance of the hard coat layer, or may be added for further imparting antiglare properties.
- inorganic particles and/or metal particles having a function of improving wear resistance and inorganic particles and/or metal particles having a function of imparting antiglare properties may be used in combination. These particles may be used without surface treatment, or may be surface-treated in advance by a known method to control the dispersed state, and the affinity with the hard coat layer may be appropriately controlled. .
- a low refractive index layer containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is further provided on the hard coat layer.
- the low refractive index layer constitutes an antireflection layer. Since each aspect of the low refractive index layer is the same as the content described in the section (low refractive index layer) of the first embodiment, the description is used and the description is omitted here.
- the second laminate may have functional layers other than those described above.
- the other functional layers are the same as those described in the ⁇ Other functional layers> section of the first embodiment, so the description is used and the description is omitted here.
- each aspect of (a) the integrated amount of ultraviolet (UV) light in the step (A2) and (b) the chill roll temperature in the step (A2) will be described in the (Others) section of the first embodiment.
- the conditions described in the above (hard coat layer) section of the second embodiment are used for conditions other than those described above in the step (A2).
- the hard coat layer obtained in the step (A2) is coated with an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm. Then, the resin layer containing the acrylate-based resin is irradiated with an active energy ray to cure the resin layer containing the acrylate-based resin, thereby forming a low refractive index layer.
- each aspect of (a) the integrated amount of ultraviolet (UV) light in the step (B2) and (b) the cooling roll temperature in the step (B2) will be described in the (Others) section of the first embodiment.
- the conditions described in the above (hard coat layer) section of the second embodiment are used for conditions other than those described above in the step (B2).
- a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the particle diameter is less than 100 nm.
- a laminate comprising a step of preparing an acrylate resin containing 40% or more of hollow silica fine particles, wherein the solvent contains at least one solvent, and the solvent having the highest boiling point has a boiling point of 115°C to 180°C.
- the "acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm" can also be said to be a "composition for forming a low refractive index layer.”
- step (a) the boiling point of the highest boiling solvent in step (B2′), (b) the solvent used in step (B2′), and (c) in step (B2′), the acrylate-based
- the acrylate-based Each aspect of the method of adding a solvent to the resin to prepare the acrylate-based resin containing 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm was described in the (Others) section of the first embodiment.
- step (12′) (a) the boiling point of the solvent with the highest boiling point in step (B1′), (b) the solvent used in step (B1′), and (c) the solvent added to the acrylate resin in step (12′) and the method for preparing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm.
- the second laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. More specifically, the second laminate is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, and the acrylic resin film is The hard coat layer has a tensile elongation at break of 170% or more at 120° C., contains a urethane acrylate resin and particles, and has an average dispersed particle diameter of r ( ⁇ m) of the particles. When the thickness is d ( ⁇ m), d ⁇ r is satisfied, the laminate has a pencil hardness of H or more and a haze of 3% or more, and the particles are formed on the acrylic resin film.
- the crack elongation at 120° C. of the laminated film laminated with the resin layer not containing the resin layer is 80% or more.
- the second laminate further includes a low refractive index layer on the hard coat layer.
- the second laminate is composed of at least a specific acrylic resin film and a specific hard coat layer, as described above. Moreover, in a preferred aspect of the second embodiment of the present invention, the second laminate is composed of a specific acrylic resin film, a specific hard coat layer, and a specific low refractive index layer.
- the second laminate is composed of the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer).
- the second laminate comprises the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer). and the low refractive index layer described above (low refractive index layer).
- the second laminate is preferably the above [2-2. Second Laminate Manufacturing Method].
- the ⁇ haze after 80% stretching at 120° C. of the second laminate is, for example, 8.0% or less. , preferably 7.5% or less, more preferably 7.0% or less.
- the ⁇ haze of the second laminate after 80% stretching at 120° C. is 8.0% or less, it has the advantage of suppressing whitening during molding.
- the ⁇ haze of the second laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
- the ⁇ haze after 80% stretching at 120° C. of the second laminate is, for example, , 10% or less, preferably 9.5% or less, more preferably 9.0% or less, and even more preferably 8.5% or less. If the ⁇ haze of the second laminate after 80% stretching at 120° C. is 10% or less, it has the advantage of suppressing whitening during molding.
- the ⁇ haze of the second laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
- the luminous reflectance of the second laminate is, for example, 3.0% or less, preferably 2.8% or less, and more preferably 2.6% or less.
- the second laminate has a luminous reflectance of 3.0% or less, it has the advantage of excellent antireflection performance and excellent visibility when laminated on the display surface.
- the luminous reflectance of the second laminate is measured by the method described in Examples.
- each aspect of the absolute value of the thickness direction retardation (Rth) is, for each aspect, in the first laminate described in the section (Laminate) of the first embodiment, (a) In the laminated film obtained by laminating the low refractive index layer on the acrylic resin film, ⁇ haze after 20% stretching at 120 ° C., (b) in-plane retardation (Re) and (c) thickness direction retardation ( Rth), the description is incorporated, and the description is omitted here.
- the second laminate may have a primer layer on the surface (two surfaces) of the acrylic resin film opposite to the surface provided with the hard coat layer.
- the aspect of the primer layer in the second laminate is the same as the aspect of the primer layer in the first laminate described in the section (Laminate) of the first embodiment, so the description is omitted. The description is omitted here.
- a molded body (hereinafter referred to as "second molded body") comprising a second laminate is provided.
- the second molded body is obtained by laminating the second laminate on at least part of the surface of the molded body having at least a non-planar shape.
- the second laminate When the second laminate is used, (a) it has a complicated three-dimensional shape, and (b) surface hardness, scratch resistance, chemical resistance, antifouling property, reflective property, antiglare property, etc. are controlled. In addition, it is possible to easily produce a molded product with excellent appearance. For this reason, the second molded body is the same as [1-4. Molded article], for example, it is preferably used for applications such as a front plate of an in-vehicle display having a planar shape, a curved shape and/or a three-dimensional shape. Accordingly, in a second embodiment of the present invention, there is provided an in-vehicle display front panel comprising a second molded body.
- An embodiment of the present invention may have the following configuration. ⁇ X1> (A1) A resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer. process and (B1) An acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is coated on the hard coat layer obtained in the step (A1) to obtain a resin containing the acrylate-based resin.
- a method for producing a laminate comprising a step of irradiating the layer with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer,
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
- the hard coat layer contains a urethane acrylate resin
- the method for producing a laminate wherein the laminate has a crack elongation of 80% or more at 120°C.
- ⁇ X2> The method for producing a laminate according to ⁇ X1>, wherein the integrated amount of active energy ray irradiation in the step (A1) is 150 to 500 mJ/cm 2 .
- a solvent is added to the acrylate resin that is the material of the low refractive index layer to contain 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm.
- ⁇ X4> Any of ⁇ X1> to ⁇ X3>, wherein the laminated film obtained by laminating the low refractive index layer on the acrylic resin film has a ⁇ haze of 30% or less after 20% stretching at 120°C. 2.
- ⁇ X5> (A1) A resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
- a method for manufacturing a laminate comprising: The acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer contains a urethane acrylate resin, The method for producing a laminate, wherein the laminate has a crack elongation of 80% or more at 120°C.
- ⁇ X6> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The hard coat layer contains a urethane acrylate resin, The laminate has a pencil hardness of H or more and a crack elongation at 120° C. of 80% or more.
- a low refractive index layer is further provided on the hard coat layer,
- ⁇ X8> The laminate according to ⁇ X7>, wherein the laminate has a luminous reflectance of 2.0% or less.
- ⁇ X9> The laminate according to ⁇ X7> or ⁇ X8>, wherein the laminate has an in-plane retardation (Re) of 10 nm or less and an absolute value of a thickness direction retardation (Rth) of 30 nm or less.
- ⁇ X10> The laminate according to any one of ⁇ X6> to ⁇ X9>, having a ⁇ haze of 3.0% or less when the stretching rate at 120° C. is 80%.
- ⁇ X11> Any one of ⁇ X7> to ⁇ X10>, wherein the microcrack width in the direction parallel to the tensile stress of the low refractive index layer is 2.0 ⁇ m or less when the stretching ratio at 120° C. is 80%.
- the laminate according to . ⁇ X12> When the stretching ratio at 120° C. is 80%, microcracks from the surface of the laminate on the low refractive index layer side at the microcrack sites in the direction parallel to the tensile stress of the low refractive index layer.
- ⁇ X13> A molded article comprising the laminate according to any one of ⁇ X6> to ⁇ X12>.
- ⁇ X14> A product obtained by laminating the laminate according to any one of ⁇ X6> to ⁇ X12> on at least part of the surface of a molded article having a non-planar shape at least in part. , ⁇ X13>.
- one embodiment of the present invention may have the following configuration.
- ⁇ Y1> A resin layer containing a urethane acrylate resin and particles coated on at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles.
- a method for manufacturing a laminate comprising a step of forming a hard coat layer by The acrylic resin film has a tensile elongation at break of 170% or more at 120°C,
- the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r
- the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C. of 170% or higher,
- a method for producing a laminate wherein a crack elongation at 120° C.
- step (B) A coating liquid containing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied onto the hard coat layer obtained in the step (A), and the obtained acrylate-based A step of irradiating a resin layer containing a resin with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer.
- ⁇ Y3> The method for producing a laminate according to ⁇ Y1> or ⁇ Y2>, wherein the integrated amount of active energy ray irradiation in the step (A) is 150 to 500 mJ/cm 2 .
- step (B) Before the step (B), (B′) a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the hollow silica fine particles having a particle diameter of less than 100 nm are contained in an amount of 40% or more.
- a laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film,
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
- the hard coat layer contains a urethane acrylate resin and particles, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r
- the laminate has a pencil hardness of H or more and a haze of 3% or more,
- ⁇ Y7> The laminate according to ⁇ Y6>, wherein the particles are silica particles.
- the hard coat layer contains 2.0 to 5.0% by weight of the silica particles, The laminate according to ⁇ Y7>, wherein the silica particles have an average dispersed particle size of 1.0 to 4.0 ⁇ m.
- ⁇ Y9> The laminate according to any one of ⁇ Y6> to ⁇ Y8>, wherein the hard coat layer has a thickness of 0.2 to 3.0 ⁇ m.
- ⁇ Y10> The laminate according to any one of ⁇ Y6> to ⁇ Y9>, having a ⁇ haze of 8.0% or less when the stretching rate at 120° C. is 80%.
- a low refractive index layer is further provided on the hard coat layer,
- ⁇ Y12> The laminate according to ⁇ Y11>, wherein the laminate has a luminous reflectance of 3.0% or less.
- ⁇ Y13> The laminate according to ⁇ Y11> or ⁇ Y12>, which has a crack elongation of 170% or more at 120°C.
- ⁇ Y14> The laminate according to any one of ⁇ Y11> to ⁇ Y13>, which has a ⁇ haze of 10% or less when the stretching rate at 120° C. is 80%.
- ⁇ Y15> A molded article comprising the laminate according to any one of ⁇ Y6> to ⁇ Y14>.
- one embodiment of the present invention may have the following configuration.
- ⁇ Z1> A method for manufacturing a laminate, (A1) A step of irradiating a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer; (B1) An acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is coated on the hard coat layer obtained in the step (A1) to obtain a resin containing the acrylate-based resin.
- a step of irradiating the layer with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The method for producing a laminate, wherein the laminate has a crack elongation of 80% or more at 120°C.
- the acrylic resin film is formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer, and the thermoplastic acrylic polymer is methyl methacrylate.
- Consisting of 50% by mass to 100% by mass of units and 0% by mass to 50% by mass of other structural units, the total amount of the methyl methacrylate unit and the other structural units in the thermoplastic acrylic polymer is The method for producing a laminate according to ⁇ Z1>, which is 100% by mass.
- the crosslinked elastomer contains 50% by mass or more of an acrylic acid ester unit in 100% by mass of the crosslinked elastomer, and the polymer particles are a graft polymer positioned on the surface layer side of the crosslinked elastomer and the crosslinked elastomer.
- the method for producing a laminate according to ⁇ Z2> which is a graft copolymer particle containing a layer.
- ⁇ Z4> The method for producing a laminate according to any one of ⁇ Z1> to ⁇ Z3>, wherein the resin layer containing the urethane acrylate resin further contains particles.
- ⁇ Z5> The method for producing a laminate according to ⁇ Z4>, wherein the particles are inorganic oxide particles and/or crosslinked organic resin particles.
- ⁇ Z6> The particles are one or more selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins, ⁇ Z4> or ⁇ Z5>.
- ⁇ Z7> Any one of ⁇ Z4> to ⁇ Z6>, wherein at least some of the particles contain a reactive functional group having reactivity with the urethane acrylate resin on the surface of the particles A method for manufacturing the described laminate.
- ⁇ Z8> The content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r,
- the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C.
- a solvent is added to the acrylate resin that is the material of the low refractive index layer to contain 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm.
- the solvent contains at least one or more solvents, and the boiling point of the solvent with the highest boiling point among the solvents is 115 to 180 ° C. body manufacturing method.
- ⁇ Z11> Any of ⁇ Z1> to ⁇ Z10>, wherein the laminated film obtained by laminating the low refractive index layer on the acrylic resin film has a ⁇ haze of 30% or less after 20% stretching at 120°C. or a method for producing a laminate according to any one of the above.
- a method for manufacturing a laminate (A1) irradiating a resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer; including
- the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer contains a urethane acrylate resin,
- ⁇ Z13> The method for producing a laminate according to ⁇ Z12>, wherein the laminate has a ⁇ haze of less than 8.0% when the stretch ratio at 120°C is 80%.
- the acrylic resin film is formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer, and the thermoplastic acrylic polymer is methyl methacrylate. Consisting of 50% by mass to 100% by mass of units and 0% by mass to 50% by mass of other structural units, the total amount of the methyl methacrylate unit and the other structural units in the thermoplastic acrylic polymer is The method for producing a laminate according to ⁇ Z12> or ⁇ Z13>, which is 100% by mass.
- the crosslinked elastomer contains 50% by mass or more of an acrylic acid ester unit in 100% by mass of the crosslinked elastomer, and the polymer particles are a graft polymer positioned on the surface layer side of the crosslinked elastomer and the crosslinked elastomer.
- ⁇ Z16> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film,
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
- the hard coat layer contains a urethane acrylate resin
- the laminate has a pencil hardness of H or more and a crack elongation at 120° C. of 80% or more.
- ⁇ Z17> The laminate according to ⁇ Z16>, wherein the hard coat layer further contains particles.
- ⁇ Z18> The laminate according to ⁇ Z17>, wherein the particles are inorganic oxide particles and/or crosslinked organic resin particles.
- the particles are one or more selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins, ⁇ Z17> or ⁇ Z18>.
- a low refractive index layer is further provided on the hard coat layer,
- ⁇ Z22> The laminate according to ⁇ Z21>, wherein the laminate has a luminous reflectance of 2.0% or less.
- ⁇ Z23> The laminate according to ⁇ Z21> or ⁇ Z22>, wherein the laminate has an in-plane retardation (Re) of 10 nm or less and an absolute value of a thickness direction retardation (Rth) of 30 nm or less.
- ⁇ Z24> The laminate according to any one of ⁇ Z16> to ⁇ Z23>, which has a ⁇ haze of less than 8.0% when the stretching rate at 120° C. is 80%.
- ⁇ Z25> The laminate according to any one of ⁇ Z16> to ⁇ Z24>, which has a ⁇ haze of 3.0% or less when the stretching rate at 120° C. is 80%.
- ⁇ Z26> Any one of ⁇ Z21> to ⁇ Z25>, wherein the microcrack width in the direction parallel to the tensile stress of the low refractive index layer is 2.0 ⁇ m or less when the stretching ratio at 120° C. is 80%. 1. Laminate according to one. ⁇ Z27> When the stretching ratio at 120° C.
- ⁇ Z28> A molded article comprising the laminate according to any one of ⁇ Z16> to ⁇ Z27>.
- ⁇ Z29> ⁇ Z28> obtained by laminating the laminate according to any one of ⁇ Z16> to ⁇ Z27> on at least part of the surface of the molded body having a non-planar shape at least in part >.
- a method for manufacturing a laminate (A2) A resin layer containing a urethane acrylate resin and particles coated on at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles for hard coating.
- the acrylic resin film has a tensile elongation at break of 170% or more at 120°C,
- the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r,
- the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C. of 170% or higher,
- a method for producing a laminate wherein a crack elongation at 120° C. in a laminated film obtained by laminating a resin layer containing no particles on the acrylic resin film is 80% or more.
- ⁇ Z31> The method for producing a laminate according to ⁇ Z30>, wherein the laminate has a ⁇ haze of less than 8.0% when the stretch ratio at 120°C is 80%.
- ⁇ Z32> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The hard coat layer contains a urethane acrylate resin and particles, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r, The laminate has a pencil hardness of H or more and a haze of 3% or more, A laminate having a crack elongation at 120° C.
- Example A Hereinafter, the first embodiment of the present invention will be described in more detail based on Example A, but the present invention is not limited to these Examples A.
- Parts and “%” in Example A and Comparative Example A below mean parts by mass or % by mass.
- the average particle size of the crosslinked elastomer or graft copolymer particles dispersed in the aqueous latex was measured using a laser diffraction particle size distribution analyzer (Microtrac particle size distribution analyzer MT3000 manufactured by Nikkiso Co., Ltd.).
- Glass transition temperature (Tg) A differential scanning calorimeter (DSC) SSC-5200 manufactured by Seiko Instruments was used. The sample (acrylic resin film) was once heated to 200°C at a rate of 25°C/min, held at 200°C for 10 minutes, and then lowered to 50°C at a rate of 25°C/min (preliminary adjustment). . Thereafter, the sample was heated to 200° C. at a heating rate of 10° C./min, during which DSC measurement was performed. A differential value (SSDC) was obtained from the obtained DSC curve, and the glass transition temperature of the acrylic resin film was obtained from the maximum point thereof.
- SSDC differential value
- Test breaking elongation A piece of 10 mm (width) ⁇ 100 mm (length) was cut from the acrylic resin film to obtain a test piece.
- the test piece using a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C., the preheating time is 2 minutes, the distance between chucks is 40 mm, and the tensile speed is 200 mm / min. Measurement was performed under the conditions of The elongation at break of the acrylic resin film was taken as the tensile elongation at break.
- the value of the tensile elongation at break is the arithmetic mean of the three values excluding the highest and lowest values among the measurement results obtained using five test pieces.
- the crack elongation was measured for a laminate in which a hard coat layer or a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample. For the sample, using a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C., preheating time 2 minutes, distance between chucks 40 mm, tensile speed 200 mm / min. Measurements were made under the following conditions. The crack elongation at 120° C. was defined as the elongation when cracks occurred in the hard coat layer. The value of crack elongation is the arithmetic mean value of the test results (three) obtained by measuring three samples. The results are shown in Table 5.
- the measurement of whitening after 80% stretching at 120° C. was performed on a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
- a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min.
- the film was stretched by 80% under these conditions, and the degree of whitening was visually observed.
- the evaluation criteria are ⁇ (excellent): no whitening in both reflection and transmission, ⁇ (good): no whitening in reflection, slight whitening in transmission, ⁇ (acceptable): slight whitening in both reflection and transmission, ⁇ (poor): Whitening is assumed to occur in both reflection and transmission.
- the film thickness of the acrylic resin film was measured with a PEACOCK dial gauge No. 25 (manufactured by Ozaki Manufacturing Co., Ltd.).
- the film thickness of the hard coat layer was measured with an F20 film thickness measurement system (manufactured by Filmetrics Co., Ltd.).
- the opposite side of the hard coat layer was painted black with a felt-tip pen, and the refractive index of the acrylic resin film was set at 1.49 and the refractive index of the hard coat layer at 1.50.
- the haze of the laminate was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
- ⁇ haze after 80% stretch at 120°C The measurement of ⁇ haze after stretching the laminate by 80% at 120° C. was performed on a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
- a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min.
- the haze of the laminated body after stretching was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
- the difference between the haze of the laminate before stretching and the haze of the laminate after 80% stretching was defined as " ⁇ haze after 80% stretching at 120°C”.
- ⁇ haze after 20% stretching at 120°C Measurement of ⁇ haze after 20% stretching at 120° C. of the laminate was performed on a laminate in which a low refractive index layer was formed directly on one side of the acrylic resin film without forming a hard coat layer on one side of the acrylic resin film. done for film. Specifically, the laminate film was cut into a piece of 10 mm (width) ⁇ 100 mm (length) to obtain a sample. For the sample, a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C.
- the haze of the laminated body after stretching was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The difference between the haze of the laminate before stretching and the haze of the laminate after 20% stretching was defined as " ⁇ haze after 20% stretching at 120°C”.
- the luminous reflectance of the laminate was measured for a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film.
- the surface opposite to the surface on which the hard coat layer and the low refractive index layer are formed is painted black with a black oil-based marking pen (Magic Ink (registered trademark), manufactured by Teranishi Kagaku Kogyo), and then A black vinyl tape was pasted together to form a sample.
- the luminous reflectance of the sample was measured according to JIS Z 8722 using a colorimeter SC-P (manufactured by Suga Test Instruments Co., Ltd.).
- the pencil hardness of the laminate was measured according to JIS K5600-5-4.
- the width of the microcracks and the depth of the grooves of the microcracks were measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
- a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min. Stretched 80% under conditions. The stretched sample was observed with a transmission microscope to measure the width of the microcracks and the depth of the grooves of the microcracks.
- the particle diameter of the hollow silica fine particles was obtained by observing a cross-sectional photograph of the laminate of 1200 nm ⁇ 800 nm at a magnification of 200,000 times measured with an electron microscope (Hitachi High-Technologies Corporation, H7650). An arithmetic mean value of the particle diameters of 10 hollow silica fine particles was calculated, and the obtained value was taken as the particle diameter of the hollow silica fine particles.
- the average dispersed particle diameter of the particles in the hard coat was obtained by observing a cross-sectional photograph of the laminate of 1200 nm ⁇ 800 nm at a magnification of 200,000 using an electron microscope (Hitachi High-Technologies Corporation, H7650). An arithmetic mean value of the particle sizes of 10 dispersed domains of the particles in the hard coat was calculated, and the obtained value was defined as the average dispersed particle size of the particles in the hard coat.
- the in-plane retardation was measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 40 mm ⁇ 40 mm and used as a sample. The sample was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.) at a temperature of 23 ⁇ 2° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0°.
- KOBRA-WR automatic birefringence meter
- Thickness direction retardation The thickness direction retardation was measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 40 mm ⁇ 40 mm and used as a sample. The sample was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.) at a temperature of 23 ⁇ 2° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0°.
- KOBRA-WR automatic birefringence meter
- the average dispersed particle diameter of the particles was obtained by observing a cross-sectional photograph of 48 ⁇ m ⁇ 32 ⁇ m at a magnification of 10,000 times measured with an electron microscope (Hitachi High-Technologies Co., Ltd., H7650). The average value of dispersed particles was calculated.
- the antiglare properties were measured on laminates having a hard coat layer or a hard coat layer and a low refractive index layer formed on one side. Specifically, a black adhesive PET film was adhered to the surface of the laminate opposite to the side on which the hard coat layer was formed, and reflection of a fluorescent lamp was visually observed in a bright room environment. ⁇ : The outline of the fluorescent lamp was blurred and could not be confirmed, ⁇ : The outline of the fluorescent lamp could be clearly confirmed.
- gloss The glossiness of the laminate was measured for a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film.
- specular gloss of the sample at 60° was measured according to JIS Z 8741 using a gloss meter VG7000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
- the following monomer mixture was continuously added into the polymerization apparatus at a rate (rate) of 10 parts by mass/hour. After the completion of the addition of the monomer mixture, the polymerization was continued for 0.5 hour to obtain particles of crosslinked elastomer (A1) (average particle size: 90 nm). The polymerization conversion rate was 99.5%.
- Monomer mixture - Vinyl monomer mixture (90% n-butyl acrylate (BA) and 10% methyl methacrylate (MMA)) 30 parts - Allyl methacrylate (AlMA) 1 part - Cumene hydroperoxide (CHP) 0.2 parts.
- BA n-butyl acrylate
- MMA methyl methacrylate
- AlMA Allyl methacrylate
- CHP Cumene hydroperoxide
- 0.05 part by mass of sodium dioctyl sulfosuccinate was charged into the polymerization apparatus containing the particles of the crosslinked elastomer (A1).
- the internal temperature of the polymerization apparatus was set to 60° C., and 70 parts of a vinyl monomer mixture (MMA 98%, BA 1%, and RUVA 1%) for forming the graft polymer layer (A2), tertiary dodecyl mercaptan (t-DM) 0.
- a monomer mixture consisting of .5 parts and 0.5 parts of CHP was continuously added into the polymerization apparatus at a rate of 10 parts/hour.
- RUVA is a reactive ultraviolet absorber (2-(2'-hydroxy-5'-methacryloyloxyethylphenyl)-2-H-benzotriazole (RUVA-93, manufactured by Otsuka Chemical Co., Ltd.)).
- graft copolymer particles (B1) consisting of a two-layer core (crosslinked elastomer (B1)) and shell (graft polymer layer (B2)) was obtained.
- the polymerization conversion rate was 100.0%.
- the coagulated solid content was washed with water and dried to obtain white powdery graft copolymer particles (B).
- the average particle size of the graft copolymer particles (B) was 250 nm. Table 2 shows the blending amount of each component.
- melt-kneaded product was taken out from the extruder in the form of a strand, cooled in a water tank, and then cut using a pelletizer to obtain pellets.
- a die with ⁇ 4.5 ⁇ 15 holes was used, and a leaf disk filter (manufactured by Nagase & Co., Ltd., filtration system 10 ⁇ m, size 7 inches, number of sheets 33) was installed as a polymer filter between the die and the head of the extruder.
- the obtained pellets are melt-kneaded at a discharge rate of 150 kg/hr at a cylinder setting temperature of 180° C. to 240° C. using a 90 mm ⁇ single screw extruder with a T die, and discharged from a T die at a die temperature of 240° C. , Both sides are brought into contact with a touch roll equipped with a metal cast roll temperature-controlled to 90 ° C. and an elastic metal sleeve temperature-controlled to 60 ° C. While cooling and solidifying, a film is formed and wound up, and an acrylic film with a thickness of 175 ⁇ m ( An acrylic resin film) was obtained.
- Example A1 On the acrylic film (acrylic resin film) obtained in Production Example 3, Paint 1 shown in Table 4 was applied using a bar coater to form a resin layer on the acrylic film. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light quantity shown in Table 5 to cure the resin layer and form a hard coat layer. The temperature of the cooling roll when forming the hard coat layer was 50°C. Various properties of the obtained laminate were evaluated. Table 5 shows the results. In addition, in Example 1, a laminate composed of an acrylic film and a hard coat layer was produced.
- ultraviolet rays active energy rays
- Example 1 the obtained laminate was measured and evaluated for various physical properties described in the column of "Laminate (hard coat layer, low refractive index layer formation)" in Table 5, and the results are shown in Table 5.
- 5 “Laminate (formation of hard coat layer and low refractive index layer)”.
- the coating material 1 shown in Table 4 is a curable composition for forming a hard coat layer, and can be said to be a composition for forming a hard coat layer.
- Examples A2 to A12, Comparative Examples A1 to A2 On the acrylic film (acrylic resin film) obtained in Production Example 3, the paints 1 to 5 shown in Table 4 are applied in the combinations shown in Table 5 using a bar coater, and the resin layer is formed on the acrylic film. formed. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light quantity shown in Table 5 to cure the resin layer and form a hard coat layer. The temperature of the cooling roll when forming the hard coat layer was 50°C.
- the paints 6 to 9 shown in Table 4 were applied on the resulting hard coat layer in the combinations shown in Table 5 using a bar coater to form a resin layer on the hard coat layer.
- the particle diameter of the hollow silica fine particles in the paints 6 to 9 was all about 50 nm.
- the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
- the resin layer was irradiated with ultraviolet rays (activation energy rays) at the integrated UV light amount and nitrogen atmosphere shown in Table 5 to cure the resin layer and form a low refractive index layer on the hard coat layer.
- ultraviolet rays activation energy rays
- Coatings 1 to 5 listed in Table 4 are curable compositions for forming a hard coat layer, and can also be said to be compositions for forming a hard coat layer.
- Coatings 6 to 9 listed in Table 4 are curable compositions for forming a low refractive index layer, and can also be said to be compositions for forming a low refractive index layer.
- paints 6 to 9 shown in Table 4 were separately applied onto the acrylic film (acrylic resin film) obtained in Production Example 3. It was applied using a bar coater to form a resin layer on the acrylic film. After coating, it was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light amount and nitrogen atmosphere shown in Table 5, and the resin layer was cured to prepare a laminated film in which only the low refractive index layer was formed on the acrylic film. did. Table 5 shows the results of evaluation of ⁇ haze after 20% stretching at 120°C for the obtained laminated film.
- ultraviolet rays active energy rays
- Example A was excellent in formability. It was also found that the laminates of Examples A1 to A7, A10 and A11 had good whitening (low whitening) after 80% stretching at 120° C. in addition to moldability. Furthermore, it was found that the laminates of Examples A2 to A12 are excellent in antireflection effect. On the other hand, the laminate of Comparative Example A was found to be inferior in formability.
- Examples A13 to A21 First, particles 1 to 12 shown in Table 6 were mixed with methyl ethyl ketone (MEK) and thoroughly stirred to prepare a 20 mass % particle dispersion. Next, 20% by mass of the particle dispersion and the coating material 1 were mixed in a predetermined amount (in the finally obtained laminate, the amount of particles contained in the hard coat layer was the amount shown in Table 7). The particles were mixed and sufficiently stirred to prepare a hard coat layer-forming composition containing particles. Next, on the acrylic film (acrylic resin film) obtained in Production Example 3, the composition for forming a hard coat layer containing the particles prepared as described above was applied using a bar coater so as to have the combinations shown in Table 7. to form a resin layer on the acrylic film.
- MEK methyl ethyl ketone
- the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
- the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light amount shown in Table 7 to cure the resin layer and form a hard coat layer containing particles.
- the temperature of the cooling roll when forming the hard coat layer was 50°C.
- paint 6 shown in Table 4 was applied using a bar coater to form a resin layer on the hard coat layer. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
- the resin layer was irradiated with ultraviolet rays (activation energy rays) at the cumulative UV light amount shown in Table 7 and in a nitrogen atmosphere to cure the resin layer and form a low refractive index layer on the hard coat layer.
- ultraviolet rays activation energy rays
- Table 7 shows the results.
- the numerical values of these items are obtained by forming a hard coat layer composed of paint 1 containing no particles on the acrylic film (acrylic resin film) obtained in Production Example 3 by the method described above. It is a value obtained by measuring the crack elongation at 120° C. as a sample.
- Example B The second embodiment of the present invention will be described below in more detail based on Example B, but the present invention is not limited to these Examples B.
- FIG. In addition, “parts” and “%” in Example B and Comparative Example B below mean parts by mass or % by mass.
- the crack elongation at 120°C in laminated film containing no particles was measured for the laminated film having a particle-free hard coat layer formed on one side of the acrylic resin film. Specifically, the laminated film is cut into 10 mm (width) ⁇ 100 mm (length), and a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature chamber set at 120 ° C. is used. , preheating time of 2 minutes, distance between chucks of 40 mm, and tensile speed of 200 mm/min. The crack elongation at 120° C. of the particle-free laminated film was defined as the elongation when cracks occurred in the hard coat layer.
- Example A Since the contents described in the section [Example A] are the same as those described in the above [Example A] section except that the laminate in which the coat layer and the low refractive index layer are formed is used, the description is used and the description is omitted here. omitted.
- Example B In Example B, graft copolymer particles (A) and graft copolymer particles (B) obtained by the same methods as in [Production Example 1] and [Production Example 2] of [Example A] were used. used. Moreover, in Example B, a film obtained by producing in the same manner as in [Example 3] of [Example A] was used as the acrylic film.
- Comparative Example B7 a laminate film of a PMMA resin layer and a PC resin layer (manufactured by AW-10U Shine Techno, thickness 200 ⁇ m) was used as the base film instead of the acrylic film.
- Examples B1 to B10, Comparative Examples B1 to B7 First, particles 1 to 12 shown in Table 6 were mixed with MEK and thoroughly stirred to prepare a 20% by mass particle dispersion. Next, 20% by mass of the particle dispersion and the paints 1 to 5 shown in Table 4 are mixed in predetermined amounts (in the finally obtained laminate, the amount of particles contained in the hard coat layer is shown in Tables 8 and 9). The ingredients were mixed so as to achieve the stated amount) and sufficiently stirred to prepare a hard coat layer-forming composition containing particles. Next, the composition for forming a hard coat layer containing the particles prepared as described above is applied on the acrylic film (acrylic resin film) obtained in Production Example 3 or the laminated film of the PMMA resin layer and the PC resin layer.
- Examples B11 to B15, Comparative Examples B8 to B9 In the same manner as in [Examples B1 to B10, Comparative Examples B1 to B7], a hard coat layer-forming composition containing particles was used to obtain an acrylic film (acrylic resin film) in Production Example 3. A hard coat layer was formed thereon. Next, on the resulting hard coat layer, paints 6, 8 or 9 listed in Table 4 are applied in the combinations listed in Tables 8 and 9 using a bar coater to form a resin layer on the hard coat layer. did. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
- the resin layer was irradiated with ultraviolet rays (active energy rays) at the integrated UV light amount shown in Tables 8 and 9 in a nitrogen atmosphere to cure the resin layer and form a low refractive index layer on the hard coat layer.
- ultraviolet rays active energy rays
- the first method for manufacturing a laminate can obtain a laminate with excellent moldability and low whitening.
- the second method for producing a laminate can provide a laminate excellent in moldability, surface hardness, and antiglare properties. Therefore, one embodiment of the present invention can be suitably used in various fields including automotive interior applications such as in-vehicle displays.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
Abstract
Description
〔1-1.本発明の第1実施形態の概要〕
本発明の第1実施形態に係る積層体の製造方法(以下、「第1の積層体の製造方法」と称する。)は、(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、120℃でのクラック伸度が80%以上である、ことを特徴とする。
これらの方法は、第1の積層体におけるハードコート層に対して、例えば(1)ないし(3)などの手法を単独で用いてもよく、あるいは適宜組み合わせて使用してもよい。
第1の積層体の製造方法は、以下の工程(A1)および(B1)を含む。
・工程(A1):アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程
・工程(B1):前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
アクリル系樹脂フィルムは、アクリル樹脂、及びゴム成分を含有するグラフト共重合体粒子を含むアクリル系樹脂組成物で構成されていることが好ましい。
アクリル系樹脂フィルムは、ゴム成分を含有するグラフト共重合体粒子として、平均粒子径が20nm以上200nm以下であるグラフト共重合体粒子(A)を含むことが好ましく、グラフト共重合体粒子(A)に加えて、グラフト共重合体粒子(A)より平均粒子径が大きいグラフト共重合体粒子(B)を含んでもよい。具体的には、第1実施形態のアクリル系樹脂フィルムにおいて、アクリル樹脂、又は、アクリル樹脂及びその他の成分を含むマトリックス中に、グラフト共重合体粒子(A)が分散しているか、又は、グラフト共重合体粒子(A)及びグラフト共重合体粒子(B)が分散していることが好ましい。
アクリル系樹脂フィルムに用いるアクリル樹脂としては、従来公知のものが使用できる。例えば、硬度及び成形性の観点からは、アクリル樹脂が、アクリル樹脂の全量を100質量%とした場合、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成される熱可塑性アクリル重合体を20質量%以上100質量%以下含むのが好ましい。なお、熱可塑性アクリル重合体中の、メタクリル酸メチル単位およびその他の構成単位の合計量は100質量%である。
前述のとおり、アクリル系樹脂フィルムは、ゴム成分を含有するグラフト共重合体粒子として、グラフト共重合体粒子(A)を含むことが好ましく、必要に応じてグラフト共重合体粒子(A)に加えてさらにグラフト共重合体粒子(B)を含んでも良い。
アクリル系樹脂フィルム(アクリル系樹脂フィルムを構成するアクリル系樹脂組成物)は、本発明の目的を損なわない範囲で、必要に応じて、アクリル樹脂と少なくとも部分的に相溶性を有する熱可塑性樹脂を含んでもよい。このような熱可塑性樹脂としては、例えば、スチレン系樹脂、ポリカーボネート樹脂、非晶質の飽和ポリエステル樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリアリレート樹脂、オレフィン-メタクリル酸誘導体樹脂、オレフィン-アクリル酸誘導体樹脂、セルロース誘導体(セルロースアシレート等)、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリ乳酸樹脂、及びPHBH(ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)樹脂等が挙げられる。スチレン系樹脂としては、例えば、スチレン-アクリロニトリル樹脂、スチレン-(メタ)アクリル酸樹脂、スチレン-無水マレイン酸樹脂、スチレン-N置換もしくは非置換マレイミド樹脂、スチレン-アクリロニトリル-ブタジエン樹脂、及びスチレン-アクリロニトリル-アクリル酸エステル樹脂等が挙げられる。中でも、スチレン系樹脂、ポリカーボネート樹脂、及びセルロースアシレート樹脂からなる群から選ばれる1種以上の熱可塑性樹脂が、アクリル樹脂との相溶性に優れ、アクリル系樹脂フィルムの耐折り曲げ割れ性、耐溶剤性、低吸湿性、また積層体のガラス飛散防止性能等を向上できる可能性があることから好ましい。
アクリル系樹脂フィルムのガラス転移温度(Tg)は、140℃以下であることが好ましく、135℃以下であることがより好ましく、130℃以下であることがより好ましい。アクリル系樹脂フィルムのガラス転移温度が140℃以下であると、成形温度を高くすることなく成形が可能であり、成形時のクラック発生を抑制できるとの利点を有する。また、アクリル系樹脂フィルムのガラス転移温度の下限は特に限定されないが、印刷の乾燥時の印刷ズレ防止及び信頼性向上の観点から、例えば、100℃以上であることが好ましい。なお、アクリル系樹脂フィルムのガラス転移温度は、実施例に記載の方法により測定される。
アクリル系樹脂フィルムは、公知の加工方法により製造できる。公知の加工方法の具体例としては、溶融加工法、カレンダー成形法、プレス成形法、及び溶剤キャスト法等が挙げられる。溶融加工法としては、インフレーション法及びTダイ押出法等が挙げられる。また、溶剤キャスト法では、アクリル樹脂組成物を溶剤に溶解・分散させた後、得られた分散液(ドープ)を、ベルト状基材上にフィルム状に流涎する。次いで、流涎されたフィルム状のドープから溶剤を揮発させることにより、アクリル系樹脂フィルムを得る。
第1の積層体の製造方法におけるハードコート層は、前記アクリル系樹脂フィルムの少なくとも片面に積層された機能層であり、ウレタンアクリレート樹脂を含む。ハードコート層は、前記アクリル系樹脂フィルムの片面に積層されていてもよく、両面に積層されていてもよい。
ウレタンアクリレート樹脂は、例えば、多価アルコールと、多価イソシアネートと、水酸基含有(メタ)アクリレートとを混合して、イソシアネート基と水酸基との反応によりウレタン結合を生成させることにより得ることができる。
また、第1の積層体の製造方法において、積層体のハードコート層には、ウレタンアクリレート樹脂に加えて、その他の成分を併用してもよい。ウレタンアクリレート樹脂以外の成分としては、例えば、単官能あるいは多官能の、(メタ)アクリレート、エポキシアクリレート系モノマー、ポリエステルアクリレート、シリコンアクリレート、ポリカーボネートアクリレート、ポリアクリルアクリレート等の、ラジカル反応性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を併用することができる。また、ウレタンアクリレート樹脂と、例えば、(a)2~4官能のシラン化合物の加水分解縮合物、並びに/又は(b)エポキシ基、及びオキセタン基等のカチオン硬化性及び/若しくはアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物、を含む組成物と、を併用してもよい。ハードコート層の形成に用いられる成分として、上記ウレタンアクリレート樹脂を単独で使用してもよく、上記ウレタンアクリレート樹脂に加えて、上記その他の成分を1種または2以上混合して添加してもよい。
R4-(SiR5 a(OR6)3-a)・・・(2)
(一般式(2)中、R4は、少なくとも一部の末端が、エポキシ基、オキセタン基、(メタ)アクリロイル基、ビニル基、水酸基、カルボキシル基、アミノ基、官能基保護されたアミノ基からなる群から選ばれる反応性置換基で置換されていてもよい、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。R5はそれぞれ独立して、水素原子、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。R6はそれぞれ独立して水素原子、又は炭素原子数1以上10以下のアルキル基である。aは0以上2以下の整数である。)で表される、加水分解性シリル基を有するシラン化合物(Z)を加水分解及び縮合させて得られる縮合物(A)、及び、必要に応じて反応性置換基を反応せしめる触媒或いは硬化剤(B)を含有する、硬化性組成物である。
第1の積層体の製造方法におけるハードコート層は、ウレタンアクリレート樹脂に加えて、さらに粒子を含んでいてもよい。第1の積層体の製造方法において、ハードコート層が粒子が含む場合、防眩性に優れたアクリル系樹脂フィルムを含む積層体を得ることができる。
第1の積層体の製造方法において、前記ハードコート層上に、さらに、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む低屈折率層を備えていることが好ましい。低屈折率層は、反射防止層を構成する。
第1の積層体は、上記以外のその他の機能層を有していてもよい。その他の機能層としては、特に限定されず、例えば、従来公知の種々の機能層を採用することができる。その他の機能層の具体例としては、防眩層、防汚層、耐指紋層、耐傷付き層、帯電防止層、紫外線遮蔽層、赤外線遮蔽層、表面凹凸層、光拡散層、艶消層、偏光層、着色層、意匠層、エンボス層、導電層、ガスバリア層、ガス吸収層、高屈折率層等が挙げられる。これらの機能層を、2種以上組み合わせて備えていてもよい。また一つの機能層が、二つ以上の複数の機能を兼ね備えても良い。
工程(A1)において、活性エネルギー線としては、紫外線(UV)が挙げられる。工程(A1)において、活性エネルギー線照射の積算光量(例えば、紫外線(UV)照射の積算光量)は、例えば、150mJ/cm2~500mJ/cm2であり、180mJ/cm2~450mJ/cm2であることが好ましく、200mJ/cm2~400mJ/cm2であることがより好ましい。前記UV照射の積算光量が150mJ/cm2~500mJ/cm2であると、成形性を担保しながら、ハードコート層の適度な硬度を得ることができる。前記UV照射の積算光量が150mJ/cm2以上であるとハードコート層の架橋度が向上し、表面硬度及び耐擦り傷性を良好にできる。前記UV照射の積算光量が500mJ/m2以下であると、低屈折率層形成用組成物の塗工時、ハードコート層への低屈折率層形成用組成物の含侵が適度になるとともに、ハードコート層の残存アクリレート基が適度になる。その結果、低屈折率層形成用組成物(樹脂層)の硬化後、ハードコート層と低屈折率層との密着性が保たれて、得られる積層体において120℃で80%延伸時の白化が抑制され得る。
第1の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む。より具体的には、第1の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である。また、本発明の第1実施形態の好ましい一態様において、第1の積層体は、前記ハードコート層上に、さらに低屈折率層を備える。
第1の積層体は、上述の通り、少なくとも、特定のアクリル系樹脂フィルムと、特定のハードコート層とから構成される。また、本発明の第1実施形態の好ましい一態様において、第1の積層体は、特定のアクリル系樹脂フィルムと、特定のハードコート層と、特定の低屈折率層とから構成される。
本発明の第1実施形態において、第1の積層体を備える、成形体(以下、「第1の成形体」と称する。)を提供する。また、本発明の第1実施形態において、第1の成形体は、少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、第1の積層体を積層して得られる。
本発明の第2実施形態は、アクリル系樹脂フィルムを基材として含む積層体およびその製造方法に関する。
本発明の第2実施形態に係る積層体の製造方法(以下、「第2の積層体の製造方法」と称する。)は、(A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、ことを特徴とする。また、本発明の第2実施形態に係る積層体(以下、「第2の積層体」と称する。)は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、ことを特徴とする。
第2の積層体の製造方法は、以下の工程(A2)を含む。
・工程(A2):アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程。
・工程(B2):前記工程(A2)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む塗布液を塗布し、乾燥し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
・前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上である。
・前記粒子の含有量は、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たす。
・前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上である。
・前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である。
第2実施形態におけるアクリル系樹脂フィルムの各態様については、第1実施形態の(アクリル系樹脂フィルム)の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
第2の積層体の製造方法におけるハードコート層は、前記アクリル系樹脂フィルムの少なくとも片面に積層された機能層であり、ウレタンアクリレート樹脂および粒子を含む。ハードコート層は、前記アクリル系樹脂フィルムの片面に積層されていてもよく、両面に積層されていてもよい。
ウレタンアクリレート樹脂の態様については、第1実施形態の<ウレタンアクリレート樹脂>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
第2の積層体の製造方法において、ハードコート層に粒子が含まれることにより、防眩性に優れたアクリル系樹脂フィルムを含む積層体を得ることができる。
また、第2の積層体の製造方法において、積層体のハードコート層には、ウレタンアクリレート樹脂に加えて、その他の成分を併用してもよい。ウレタンアクリレート樹脂以外の成分としては、例えば、単官能あるいは多官能の、(メタ)アクリレート、エポキシアクリレート系モノマー、ポリエステルアクリレート、シリコンアクリレート、ポリカーボネートアクリレート、ポリアクリルアクリレート等の、ラジカル反応性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を併用することができる。また、ウレタンアクリレート樹脂と、例えば、(a)2~4官能のシラン化合物の加水分解縮合物、並びに/又は(b)エポキシ基、及びオキセタン基等のカチオン硬化性及び/若しくはアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物、を含む組成物と、を併用してもよい。ハードコート層の形成に用いられる成分として、上記ウレタンアクリレート樹脂を単独で使用してもよく、上記ウレタンアクリレート樹脂に加えて、上記その他の成分を1種または2以上混合して添加してもよい。
第2の積層体の製造方法において、前記ハードコート層上に、さらに、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む低屈折率層を備えていることが好ましい。低屈折率層は、反射防止層を構成する。当該低屈折率層の各態様については、第1実施形態の(低屈折率層)の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
第2の積層体は、上記以外のその他の機能層を有していてもよい。当該その他の機能層については、第1実施形態の<その他の機能層>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
第2実施形態において、(a)工程(A2)における紫外線(UV)積算光量及び(b)工程(A2)における冷却ロール温度の各態様については、第1実施形態の(その他)の項で説明した、(a)工程(A1)における紫外線(UV)積算光量及び(b)工程(A1)における冷却ロール温度の各態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。また、第2実施形態において、工程(A2)の上記以外の条件等については、第2実施形態の上記(ハードコート層)の項において記載したものが、援用される。
第2の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む。より具体的には、第2の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である。また、本発明の第2実施形態の好ましい一態様において、第2の積層体は、前記ハードコート層上に、さらに低屈折率層を備える。
第2の積層体は、上述の通り、少なくとも、特定のアクリル系樹脂フィルムと、特定のハードコート層とから構成される。また、本発明の第2実施形態の好ましい一態様において、第2の積層体は、特定のアクリル系樹脂フィルムと、特定のハードコート層と、特定の低屈折率層とから構成される。
本発明の第2実施形態において、第2の積層体を備える、成形体(以下、「第2の成形体」と称する。)を提供する。また、本発明の第2実施形態において、第2の成形体は、少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、第2の積層体を積層して得られる。
<X1>(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<X2>前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cm2である、<X1>に記載の積層体の製造方法。
<X3>前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<X1>または<X2>に記載の積層体の製造方法。<X4>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<X1>~<X3>のいずれかに記載の積層体の製造方法。
<X5>(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<X6>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。
<X7>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<X6>に記載の積層体。
<X8>前記積層体の視感反射率が、2.0%以下である、<X7>に記載の積層体。
<X9>前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、<X7>または<X8>に記載の積層体。
<X10>120℃での延伸率が80%のときのΔヘイズが3.0%以下である、<X6>~<X9>のいずれかに記載の積層体。
<X11>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、<X7>~<X10>のいずれかに記載の積層体。
<X12>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、<X7>~<X11>のいずれか1項に記載の積層体。
<X13><X6>~<X12>のいずれか1項に記載の積層体を備える、成形体。
<X14>少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、<X6>~<X12>のいずれか1項に記載の積層体を積層して得られたものである、<X13>に記載の成形体。
<Y1>(A)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Y2>さらに、以下の工程(B)を含む、<Y1>に記載の積層体の製造方法:
(B)前記工程(A)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む塗布液を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
<Y3>前記工程(A)における活性エネルギー線照射の積算光量が150~500mJ/cm2である、<Y1>または<Y2>に記載の積層体の製造方法。
<Y4>前記工程(B)の前に、(B’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<Y2>または<Y3>に記載の積層体の製造方法。<Y5>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<Y1>~<Y4>のいずれかに記載の積層体の製造方法。
<Y6>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。
<Y7>前記粒子がシリカ粒子である、<Y6>に記載の積層体。
<Y8>前記ハードコート層は、前記シリカ粒子を2.0~5.0重量%含み、
前記シリカ粒子の平均分散粒子径が1.0~4.0μmである、<Y7>に記載の積層体。
<Y9>前記ハードコート層は、膜厚が0.2~3.0μmである、<Y6>~<Y8>のいずれかに記載の積層体。
<Y10>120℃での延伸率が80%のときのΔヘイズが8.0%以下である、<Y6>~<Y9>のいずれかに記載の積層体。
<Y11>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<Y6>~<Y10>のいずれかに記載の積層体。
<Y12>前記積層体の視感反射率が、3.0%以下である、<Y11>に記載の積層体。
<Y13>120℃でのクラック伸度が170%以上である、<Y11>または<Y12>に記載の積層体。
<Y14>120℃での延伸率が80%のときのΔヘイズが10%以下である、<Y11>~<Y13>のいずれかに記載の積層体。
<Y15><Y6>~<Y14>のいずれかに記載の積層体を備える、成形体。
<Z1>積層体の製造方法であって、
(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z2>前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、<Z1>に記載の積層体の製造方法。
<Z3>前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、<Z2>に記載の積層体の製造方法。
<Z4>前記ウレタンアクリレート樹脂を含む樹脂層は、さらに粒子を含む、<Z1>~<Z3>のいずれか1つに記載の積層体の製造方法。
<Z5>前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、<Z4>に記載の積層体の製造方法。
<Z6>前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、<Z4>または<Z5>に記載の積層体の製造方法。
<Z7>前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、<Z4>~<Z6>のいずれか1つに記載の積層体の製造方法。
<Z8>前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、<Z4>~<Z7>のいずれか1つに記載の積層体の製造方法。
<Z9>前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cm2である、<Z1>~<Z8>のいずれか1つに記載の積層体の製造方法。
<Z10>前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<Z1>~<Z9>のいずれか1つに記載の積層体の製造方法。
<Z11>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<Z1>~<Z10>のいずれか1つに記載の積層体の製造方法。
<Z12>積層体の製造方法であって、
(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z13>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z12>に記載の積層体の製造方法。
<Z14>前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、<Z12>または<Z13>に記載の積層体の製造方法。
<Z15>前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、<Z14>に記載の積層体の製造方法。
<Z16>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。
<Z17>前記ハードコート層は、さらに粒子を含む、<Z16>に記載の積層体。
<Z18>前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、<Z17>に記載の積層体。
<Z19>前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、<Z17>または<Z18>に記載の積層体。
<Z20>前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、<Z17>~<Z19>のいずれか1つに記載の積層体。
<Z21>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<Z16>~<Z20>のいずれか1つに記載の積層体。
<Z22>前記積層体の視感反射率が、2.0%以下である、<Z21>に記載の積層体。
<Z23>前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、<Z21>または<Z22>に記載の積層体。
<Z24>120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z16>~<Z23>のいずれか1つに記載の積層体。
<Z25>120℃での延伸率が80%のときのΔヘイズが3.0%以下である、<Z16>~<Z24>のいずれか1つに記載の積層体。
<Z26>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、<Z21>~<Z25>のいずれか1つに記載の積層体。
<Z27>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、<Z21>~<Z26>のいずれか1つに記載の積層体。
<Z28><Z16>~<Z27>のいずれか1つのいずれか1項に記載の積層体を備える、成形体。
<Z29>少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、<Z16>~<Z27>のいずれか1つに記載の積層体を積層して得られた、<Z28>に記載の成形体。
<Z30>積層体の製造方法であって、
(A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z31>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z30>に記載の積層体の製造方法。
<Z32>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。
<Z33>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z32>に記載の積層体。
以下、本発明の第1実施形態を実施例Aに基づいてより詳細に説明するが、本発明はこれら実施例Aに限定されるものではない。なお下記実施例A及び比較例Aにおいて「部」および「%」とあるのは、質量部または質量%を意味する。
実施例Aおよび比較例Aにおける測定および評価を、以下の方法で行った。
水性ラテックス中に分散している架橋エラストマーまたはグラフト共重合体粒子の平均粒子径は、レーザー回折式の粒度分布測定装置(日機装株式会社製、Microtrac粒度分布測定装置 MT3000)を使用して測定した。
セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC-5200を用いた。試料(アクリル系樹脂フィルム)を一旦200℃まで25℃/分の速度で昇温した後200℃で10分間ホールドし、次いで25℃/分の速度で50℃まで温度を下げた(予備調整)。その後、当該試料を10℃/分の昇温速度で200℃まで昇温し、その間DSCの測定を行った。得られたDSC曲線から微分値を求め(SSDC)、その極大点からアクリル系樹脂フィルムのガラス転移温度を求めた。
アクリル系樹脂フィルムを10mm(幅)×100mm(長さ)に切り出し、試験片とした。当該試験片について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で測定を行った。アクリル系樹脂フィルムが破断した際の伸度を引張破断伸度とした。
クラック伸度の測定は、アクリル系樹脂フィルムの片面にハードコート層、またはハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm、引張速度200mm/分の条件で測定を行った。ハードコート層にクラックが発生した時の伸度を120℃でのクラック伸度とした。クラック伸度の値は、3つの試料に対して測定を行って得られた試験結果(3つ)の相加平均値である。結果を、表5に記す。
120℃での80%延伸後の白化の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸し、目視で白化度合を観察した。評価基準は、◎(優良):反射でも透過でも白化無、〇(良):反射では白化無し、透過では僅かに白化、△(可):反射でも透過でも僅かに白化、×(不良):反射でも透過でも白化、とした。
アクリル系樹脂フィルムの膜厚は、PEACOCKダイアルゲージNo25(株式会社尾崎製作所製)で測定した。
積層体のヘイズはヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。
積層体の120℃での80%延伸後のΔヘイズの測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸し、延伸後の積層体のヘイズをヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。延伸前の積層体のヘイズと80%延伸後の積層体のヘイズとの差を「120℃での80%延伸後のΔヘイズ」とした。
積層体の120℃での20%延伸後のΔヘイズの測定は、アクリル系樹脂フィルムの片面にハードコート層を形成せず、アクリル系樹脂フィルムの片面に直接低屈折率層が形成された積層フィルムに対して行われた。具体的には、積層フィルムを10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で20%延伸し、延伸後の積層体のヘイズをヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。延伸前の積層体のヘイズと20%延伸後の積層体のヘイズとの差を「120℃での20%延伸後のΔヘイズ」とした。
積層体の視感反射率の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。アクリル系樹脂フィルムにおける、ハードコート層および低屈折率層が形成された面と反対側の面を黒色の油性マーキングペン(マジックインキ(登録商標)、寺西化学工業製)で黒く塗り、その上に黒のビニールテープを貼り合わせ、試料とした。当該試料について、JIS Z 8722に準じて測色計SC-P(スガ試験機株式会社製)を用いて視感反射率を測定した。
JIS K5600-5-4に準じて積層体の鉛筆硬度を測定した。
マイクロクラック幅及びマイクロクラックの溝の深さは、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸した。延伸後の試料を透過型顕微鏡で観察し、マイクロクラック幅及びマイクロクラックの溝の深さを測定した。
中空シリカ微粒子の粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率200,000倍、1200nm×800nmの積層体の断面写真の観察により求めた。中空シリカ微粒子10個の粒子径の相加平均値を計算し、得られた値を中空シリカ微粒子の粒子径とした。
ハードコート中の粒子の平均分散粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率200,000倍、1200nm×800nmの積層体の断面写真の観察により求めた。ハードコート中の粒子の分散ドメイン10個の粒子径の相加平均値を計算し、得られた値をハードコート中の粒子の平均分散粒子径とした。
面内位相差の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を40mm×40mmに切り出し、試料とした。当該試料について、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃及び湿度50±5%において、波長590nm及び入射角0゜の条件で測定した。
厚み方向位相差の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を40mm×40mmに切り出し、試料とした。当該試料について、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃及び湿度50±5%において、波長590nm及び入射角0゜の条件で測定した。
粒子の平均分散粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率10,000倍、48μm×32μmの断面写真より、断面写真の観察により求めた、視野中の5か所の分散粒子の平均値を計算した。
防眩性の測定は、片面にハードコート層、またはハードコート層及び低屈折率層が形成された積層体に対して行われた。具体的には、積層体の、ハードコート層の形成された側とは反対の面に黒色粘着PETフィルムを貼り合わせ、明室環境下で、蛍光灯の映り込みを、目視で観察した。〇:蛍光灯の輪郭がぼけていて確認できない、×:蛍光灯の輪郭がはっきり確認できる、とした。
積層体の光沢の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。当該試料について、JIS Z 8741に準じてグロスメーターVG7000(日本電色工業株式会社製)を用いて60°における鏡面光沢を測定した。
撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 200部
・ジオクチルスルフォコハク酸ナトリウム 0.24部
・ソディウムホルムアルデヒドスルフォキシレート 0.15部
・エチレンジアミン四酢酸-2-ナトリウム 0.001部
・硫酸第一鉄 0.00025部
重合装置内の気体を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を60℃にした。次いで、下記単量体混合物を10質量部/時間の割合(速度)で連続的に重合装置内に添加した。単量体混合物の添加終了後、さらに0.5時間重合を継続し、架橋エラストマー(A1)の粒子(平均粒子径90nm)を得た。重合転化率は99.5%であった。
・ビニル単量体混合物(アクリル酸n-ブチル(BA)90%及びメタクリル酸メチル(MMA)10%) 30部
・アリルメタクリレート(AlMA) 1部
・クメンハイドロパーオキサイド(CHP) 0.2部。
さらに1時間重合を継続し、グラフト共重合体粒子(平均粒子径90nm)を得た。重合転化率は98.2%であった。得られたラテックスを塩化カルシウムで塩析及び凝固させた後、凝固した固形分を水洗、及び乾燥させてグラフト共重合体粒子(A)の粉末を得た。なお、各成分の配合量は表1に示した通りである。
撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 180部
・ポリオキシエチレンラウリルエーテルリン酸 0.002部
・ホウ酸 0.4725部
・炭酸ナトリウム 0.04725部
・水酸化ナトリウム 0.0098部
重合装置内の気体を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を80℃にした。過硫酸カリウム0.027部を2%水溶液として重合装置内に入れた後、ビニル単量体混合物(MMA97%、及びBA3%)27部と、メタクリル酸アリル0.036部とからなる混合液を81分かけて連続的に重合装置内に添加した。
得られた粉末状のグラフト共重合体粒子(A)および(B)、ならびにパラペットHM(ポリメタクリル酸メチル;株式会社クラレ製、メタクリル酸メチル100重量%)およびAO60(株式会社ADEKA製)を、各々表3に示す配合量(部)で配合した。得られた混合物を、ヘンシェルミキサーを用いて混合した。次いで、シリンダ温度を190℃~250℃に調整した58mmΦベント式同方向二軸押出機(東芝機械株式会社製TEM58 L/D=41.7)を使用し、スクリュー回転数150rpm、吐出量180kg/時間にて混合物の溶融混練を行った。得られた溶融混練物を、押出機からストランド状に引き取り、水槽にて冷却後、ペレタイザーを用いて切断して、ペレット得た。ダイスはΦ4.5×15穴を使用し、ダイスと押出機のヘッドとの間にポリマーフィルターとして、リーフディスクフィルター(長瀬産業製、濾過制度10μ、サイズ7インチ、枚数33枚)を設置した。得られたペレットを、Tダイ付90mmΦ単軸押出機を用いて、シリンダ設定温度180℃~240℃にて吐出量150kg/hrにて溶融混練し、ダイス温度240℃にてTダイより吐出し、90℃に温調した金属性キャストロールと60℃に温調した弾性金属スリーブを備えたタッチロールに両面を接触させて冷却固化しつつ成膜して巻き取り、厚さ175μmのアクリルフィルム(アクリル系樹脂フィルム)を得た。
製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、表4に記載の塗料1をバーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。得られた積層体について種々の特性を評価した。結果を表5に示す。なお、実施例1では、アクリルフィルムおよびハードコート層からなる積層体を作製した。そして、実施例1では、得られた積層体について、表5の「積層体(ハードコート層、低屈折率層形成)」の欄に記載の各種物性を測定および評価し、その結果を、表5の「積層体(ハードコート層、低屈折率層形成)」の欄に記載している。また、表4に記載の塗料1は、ハードコート層を形成するための硬化性組成物であり、ハードコート層形成用組成物ともいえる。
製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、表4に記載の塗料1~5を表5に記載の組み合わせで、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。次いで、得られたハードコート層上に、表4に記載の塗料6~9を表5に記載の組み合わせで、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。なお、塗料6~9中の中空シリカ微粒子の粒子径(低屈折率層中の中空シリカ微粒子の粒子径)は、いずれも約50nmであった。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表5に示す。なお、表4に記載の塗料1~5は、ハードコート層を形成するための硬化性組成物であり、ハードコート層形成用組成物ともいえる。また、表4に記載の塗料6~9は、低屈折率層を形成するための硬化性組成物であり、低屈折率層形成用組成物ともいえる。
表5より、実施例Aの積層体は、成形性に優れることが分かった。また、実施例A1~A7、A10およびA11の積層体は、成形性に加えて、120℃での80%延伸後に白化が良好である(低白化である)ことが分かった。さらに、実施例A2~A12の積層体は、反射防止効果に優れることが分かった。一方、比較例Aの積層体は、成形性に劣ることが分かった。
まず、表6に記載の粒子1~12をメチルエチルケトン(MEK)と混合し、十分に撹拌して20質量%の粒子分散液を作製した。次いで、20質量%の粒子分散液と塗料1とを所定配合量(最終的に得られる積層体において、ハードコート層中に含まれる粒子の量が表7に記載の量となる配合量)となる様に混合し、十分に撹拌して、粒子を含有するハードコート層形成用組成物を調製した。次に、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、上述のように調製した粒子を含有するハードコート層形成用組成物を、表7の組み合わせとなるようにバーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表7に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させて粒子を含むハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。次いで、得られたハードコート層上に、表4に記載の塗料6、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表7に記載のUV積算光量及び窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表7に示す。なお、表7において「粒子不含積層フィルムの120℃でのクラック伸度」という項目がある。かかる項目の数値は、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、粒子を含まない塗料1からなるハードコート層を、上述の方法で形成して得られた積層体を試料として120℃でのクラック伸度を測定して得られた値である。
以下、本発明の第2実施形態を実施例Bに基づいてより詳細に説明するが、本発明はこれら実施例Bに限定されるものではない。なお下記実施例B及び比較例Bにおいて「部」及び「%」とあるのは、質量部または質量%を意味する。
実施例Bおよび比較例Bにおける測定および評価を、以下の方法で行った。
粒子不含積層フィルムにおける120℃でのクラック伸度の測定は、アクリル樹脂フィルムの片面に粒子を含有していないハードコート層が形成された積層フィルムに対して行われた。具体的には、積層フィルムを10mm(幅)×100mm(長さ)に切り出し、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm、引張速度200mm/分の条件で測定を行った。ハードコート層にクラックが発生した時の伸度を、粒子不含積層フィルムにおける120℃でのクラック伸度とした。
ガラス転移温度(Tg)、引張破断伸度、クラック伸度、膜厚、ヘイズ、120℃での20%延伸後のΔヘイズ、視感反射率、鉛筆硬度、防眩性、粒子の平均分散粒子径及び中空シリカ微粒子の粒子径の測定及び評価方法については、前記〔実施例A〕の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。また、成形性(白化)、120℃での80%延伸後のΔヘイズ、面内位相差(Re)及び厚み方向位相差(Rth)については、これらの測定を片面にハードコート層、またはハードコート層及び低屈折率層が形成された積層体に対して行ったこと以外は、前記〔実施例A〕の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
実施例Bでは、〔実施例A〕の〔製造例1〕及び〔製造例2〕と同じ方法で製造して得られたグラフト共重合体粒子(A)及びグラフト共重合体粒子(B)を使用した。また、実施例Bでは、アクリルフィルムとして、〔実施例A〕の〔製造例3〕と同じ方法で製造して得られたフィルムを使用した。
まず、表6に記載の粒子1~12をMEKと混合し、十分に撹拌して20質量%の粒子分散液を作製した。次いで、20質量%の粒子分散液と表4に記載の塗料1~5とを所定配合量(最終的に得られる積層体において、ハードコート層中に含まれる粒子の量が表8及び9に記載の量となる配合量)となる様に混合し、十分に撹拌して、粒子を含有するハードコート層形成用組成物を調製した。次に、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)又はPMMA樹脂層とPC樹脂層との積層フィルム上に、上述のように調製した粒子を含有するハードコート層形成用組成物を、表8及び9に記載の組み合わせで、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表8及び9に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。得られた積層体について種々の特性を評価した。結果を表8及び9に示す。
前記〔実施例B1~B10、比較例B1~B7〕と同様の方法で、粒子を含有するハードコート層形成用組成物を使用し、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、ハードコート層を形成した。次いで、得られたハードコート層上に、表4に記載の塗料6、8または9を表8及び9に記載の組み合わせで、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表8及び9に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表8及び9に示す。
2 ハードコート層
3 低屈折率層
4 積層体
5 マイクロクラック
6 マイクロクラック幅
7 マイクロクラックの溝の深さ
Claims (33)
- 積層体の製造方法であって、
(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。 - 前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、
前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、請求項1に記載の積層体の製造方法。 - 前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、
前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、請求項2に記載の積層体の製造方法。 - 前記ウレタンアクリレート樹脂を含む樹脂層は、さらに粒子を含む、請求項1~3のいずれか1項に記載の積層体の製造方法。
- 前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、請求項4に記載の積層体の製造方法。
- 前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、請求項4または5に記載の積層体の製造方法。
- 前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、請求項4~6のいずれか1項に記載の積層体の製造方法。
- 前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、請求項4~7のいずれか1項に記載の積層体の製造方法。 - 前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cm2である、請求項1~8のいずれか1項に記載の積層体の製造方法。
- 前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、請求項1~9のいずれか1項に記載の積層体の製造方法。 - 前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、請求項1~10のいずれか1項に記載の積層体の製造方法。
- 積層体の製造方法であって、
(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。 - 前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項12に記載の積層体の製造方法。
- 前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、
前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、請求項12または13に記載の積層体の製造方法。 - 前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、
前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、請求項14に記載の積層体の製造方法。 - アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。 - 前記ハードコート層は、さらに粒子を含む、請求項16に記載の積層体。
- 前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、請求項17に記載の積層体。
- 前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、請求項17または18に記載の積層体。
- 前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、請求項17~19のいずれか1項に記載の積層体。
- 前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、請求項16~20のいずれか1項に記載の積層体。 - 前記積層体の視感反射率が、2.0%以下である、請求項21に記載の積層体。
- 前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、請求項21または22に記載の積層体。
- 120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項16~23のいずれか1項に記載の積層体。
- 120℃での延伸率が80%のときのΔヘイズが3.0%以下である、請求項16~24のいずれか1項に記載の積層体。
- 120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、請求項21~25のいずれか1項に記載の積層体。
- 120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、請求項21~26のいずれか1項に記載の積層体。
- 請求項16~27のいずれか1項に記載の積層体を備える、成形体。
- 少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、請求項16~27のいずれか1項に記載の積層体を積層して得られた、請求項28に記載の成形体。
- 積層体の製造方法であって、
(A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。 - 前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項30に記載の積層体の製造方法。
- アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。 - 前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項32に記載の積層体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280018541.XA CN116963907A (zh) | 2021-03-05 | 2022-02-01 | 层叠体及其制造方法 |
EP22762873.2A EP4302996A1 (en) | 2021-03-05 | 2022-02-01 | Laminate and method for producing same |
JP2023503644A JPWO2022185815A1 (ja) | 2021-03-05 | 2022-02-01 | |
US18/241,465 US20230416556A1 (en) | 2021-03-05 | 2023-09-01 | Laminate and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021035774 | 2021-03-05 | ||
JP2021-035772 | 2021-03-05 | ||
JP2021035772 | 2021-03-05 | ||
JP2021-035774 | 2021-03-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/241,465 Continuation US20230416556A1 (en) | 2021-03-05 | 2023-09-01 | Laminate and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185815A1 true WO2022185815A1 (ja) | 2022-09-09 |
Family
ID=83155007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003844 WO2022185815A1 (ja) | 2021-03-05 | 2022-02-01 | 積層体およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230416556A1 (ja) |
EP (1) | EP4302996A1 (ja) |
JP (1) | JPWO2022185815A1 (ja) |
WO (1) | WO2022185815A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115873289A (zh) * | 2022-12-21 | 2023-03-31 | 合肥乐凯科技产业有限公司 | 一种强柔韧性的防紫外硬化膜 |
WO2024203401A1 (ja) * | 2023-03-30 | 2024-10-03 | 株式会社カネカ | 積層体及びそれを含む樹脂成形体 |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5527576B2 (ja) | 1971-11-05 | 1980-07-22 | ||
JPS6289705A (ja) | 1985-08-27 | 1987-04-24 | ロ−ム・アンド・ハ−ス・カンパニ− | イミドポリマ− |
JPH02178310A (ja) | 1988-12-29 | 1990-07-11 | Mitsubishi Rayon Co Ltd | メタクリルイミド含有重合体およびこれを含む樹脂組成物 |
JPH04270751A (ja) | 1991-02-26 | 1992-09-28 | Kanegafuchi Chem Ind Co Ltd | 耐衝撃性メタクリル系樹脂組成物 |
JPH05119217A (ja) | 1991-10-23 | 1993-05-18 | Kanegafuchi Chem Ind Co Ltd | 偏光膜保護用フイルム |
JPH11235747A (ja) | 1998-02-24 | 1999-08-31 | Hitachi Zosen Corp | シート・フィルムの成形用ロール装置 |
JP2000153547A (ja) | 1998-11-19 | 2000-06-06 | Toshiba Mach Co Ltd | シート成形装置 |
JP2004168882A (ja) | 2002-11-20 | 2004-06-17 | Toray Ind Inc | 共重合体およびその製造方法 |
JP2004307834A (ja) | 2003-03-26 | 2004-11-04 | Toray Ind Inc | 熱可塑性共重合体の製造方法 |
WO2005054311A1 (ja) | 2003-12-02 | 2005-06-16 | Kaneka Corporation | イミド樹脂、並びにその製造方法及び利用 |
JP2006171464A (ja) | 2004-12-16 | 2006-06-29 | Nippon Shokubai Co Ltd | 光学フィルム |
WO2009084541A1 (ja) | 2007-12-27 | 2009-07-09 | Asahi Kasei Chemicals Corporation | アクリル系熱可塑性樹脂、及び光学材料用成形体 |
JP2012189978A (ja) | 2011-02-23 | 2012-10-04 | Fujifilm Corp | 光学積層フィルム、及び表示装置 |
JP2013056424A (ja) * | 2011-09-07 | 2013-03-28 | Toray Advanced Film Co Ltd | 成型用積層フィルム |
JP2013086279A (ja) * | 2011-10-13 | 2013-05-13 | Kaneka Corp | 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム |
JP2013087136A (ja) * | 2011-10-13 | 2013-05-13 | Kaneka Corp | 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム |
WO2014041803A1 (ja) | 2012-09-13 | 2014-03-20 | 株式会社カネカ | アクリル系樹脂フィルム |
JP2015152691A (ja) | 2014-02-12 | 2015-08-24 | 日油株式会社 | インサート成形用防眩性反射防止フィルム及びこれを用いた樹脂成形品 |
JP2016040105A (ja) | 2014-08-13 | 2016-03-24 | 日本製紙株式会社 | 成型用ハードコートフィルム |
JP2016071307A (ja) | 2014-10-02 | 2016-05-09 | 日油株式会社 | インサート成形用反射防止フィルム及びそれを用いた樹脂成形品 |
JP2017126077A (ja) * | 2017-02-24 | 2017-07-20 | 東レフィルム加工株式会社 | 成型用積層フィルム |
WO2018117018A1 (ja) | 2016-12-22 | 2018-06-28 | フクビ化学工業株式会社 | 透明樹脂基板 |
JP2019119206A (ja) * | 2017-12-27 | 2019-07-22 | 東山フイルム株式会社 | インサート成形用多層フィルムおよびインサート成形物 |
WO2019181752A1 (ja) * | 2018-03-22 | 2019-09-26 | 株式会社カネカ | アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品 |
WO2019235160A1 (ja) * | 2018-06-04 | 2019-12-12 | 株式会社カネカ | ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板 |
-
2022
- 2022-02-01 WO PCT/JP2022/003844 patent/WO2022185815A1/ja active Application Filing
- 2022-02-01 JP JP2023503644A patent/JPWO2022185815A1/ja active Pending
- 2022-02-01 EP EP22762873.2A patent/EP4302996A1/en active Pending
-
2023
- 2023-09-01 US US18/241,465 patent/US20230416556A1/en active Pending
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5527576B2 (ja) | 1971-11-05 | 1980-07-22 | ||
JPS6289705A (ja) | 1985-08-27 | 1987-04-24 | ロ−ム・アンド・ハ−ス・カンパニ− | イミドポリマ− |
JPH02178310A (ja) | 1988-12-29 | 1990-07-11 | Mitsubishi Rayon Co Ltd | メタクリルイミド含有重合体およびこれを含む樹脂組成物 |
JPH04270751A (ja) | 1991-02-26 | 1992-09-28 | Kanegafuchi Chem Ind Co Ltd | 耐衝撃性メタクリル系樹脂組成物 |
JPH05119217A (ja) | 1991-10-23 | 1993-05-18 | Kanegafuchi Chem Ind Co Ltd | 偏光膜保護用フイルム |
JPH11235747A (ja) | 1998-02-24 | 1999-08-31 | Hitachi Zosen Corp | シート・フィルムの成形用ロール装置 |
JP2000153547A (ja) | 1998-11-19 | 2000-06-06 | Toshiba Mach Co Ltd | シート成形装置 |
JP2004168882A (ja) | 2002-11-20 | 2004-06-17 | Toray Ind Inc | 共重合体およびその製造方法 |
JP2004307834A (ja) | 2003-03-26 | 2004-11-04 | Toray Ind Inc | 熱可塑性共重合体の製造方法 |
WO2005054311A1 (ja) | 2003-12-02 | 2005-06-16 | Kaneka Corporation | イミド樹脂、並びにその製造方法及び利用 |
JP2006171464A (ja) | 2004-12-16 | 2006-06-29 | Nippon Shokubai Co Ltd | 光学フィルム |
WO2009084541A1 (ja) | 2007-12-27 | 2009-07-09 | Asahi Kasei Chemicals Corporation | アクリル系熱可塑性樹脂、及び光学材料用成形体 |
JP2012189978A (ja) | 2011-02-23 | 2012-10-04 | Fujifilm Corp | 光学積層フィルム、及び表示装置 |
JP2013056424A (ja) * | 2011-09-07 | 2013-03-28 | Toray Advanced Film Co Ltd | 成型用積層フィルム |
JP2013086279A (ja) * | 2011-10-13 | 2013-05-13 | Kaneka Corp | 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム |
JP2013087136A (ja) * | 2011-10-13 | 2013-05-13 | Kaneka Corp | 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム |
WO2014041803A1 (ja) | 2012-09-13 | 2014-03-20 | 株式会社カネカ | アクリル系樹脂フィルム |
JP2015152691A (ja) | 2014-02-12 | 2015-08-24 | 日油株式会社 | インサート成形用防眩性反射防止フィルム及びこれを用いた樹脂成形品 |
JP2016040105A (ja) | 2014-08-13 | 2016-03-24 | 日本製紙株式会社 | 成型用ハードコートフィルム |
JP2016071307A (ja) | 2014-10-02 | 2016-05-09 | 日油株式会社 | インサート成形用反射防止フィルム及びそれを用いた樹脂成形品 |
WO2018117018A1 (ja) | 2016-12-22 | 2018-06-28 | フクビ化学工業株式会社 | 透明樹脂基板 |
JP2017126077A (ja) * | 2017-02-24 | 2017-07-20 | 東レフィルム加工株式会社 | 成型用積層フィルム |
JP2019119206A (ja) * | 2017-12-27 | 2019-07-22 | 東山フイルム株式会社 | インサート成形用多層フィルムおよびインサート成形物 |
WO2019181752A1 (ja) * | 2018-03-22 | 2019-09-26 | 株式会社カネカ | アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品 |
WO2019235160A1 (ja) * | 2018-06-04 | 2019-12-12 | 株式会社カネカ | ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115873289A (zh) * | 2022-12-21 | 2023-03-31 | 合肥乐凯科技产业有限公司 | 一种强柔韧性的防紫外硬化膜 |
WO2024203401A1 (ja) * | 2023-03-30 | 2024-10-03 | 株式会社カネカ | 積層体及びそれを含む樹脂成形体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022185815A1 (ja) | 2022-09-09 |
EP4302996A1 (en) | 2024-01-10 |
US20230416556A1 (en) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7142090B2 (ja) | ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板 | |
JP6395478B2 (ja) | ポリ(メタ)アクリルイミド系樹脂積層体 | |
WO2022185815A1 (ja) | 積層体およびその製造方法 | |
JP4406304B2 (ja) | 多層構造重合体及びこれを含む樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品 | |
TWI551881B (zh) | Optical continuum | |
WO2004081090A1 (ja) | 二軸配向ポリエステルフィルム及び離型フィルム | |
TW201634281A (zh) | 硬化塗佈層積薄膜 | |
WO2014041803A1 (ja) | アクリル系樹脂フィルム | |
TWI564153B (zh) | Optical continuum | |
JP5158852B2 (ja) | アクリル樹脂組成物、アクリル樹脂フィルム、熱成形用艶消しアクリル樹脂フィルム、光硬化性アクリル樹脂フィルム及びこれらを積層した積層体 | |
JPWO2016199847A1 (ja) | 積層フィルム | |
JP2007283665A (ja) | 熱成形用艶消しアクリル樹脂フィルム状物、熱成形用艶消しアクリル樹脂フィルム状物の製造方法、および、この熱成形用艶消しアクリル樹脂フィルム状物を含む積層体 | |
WO2014083643A1 (ja) | ガラス調意匠を有する物品 | |
KR20160088302A (ko) | 청색 광 차폐성 수지 조성물 | |
US20230340218A1 (en) | Laminate and use thereof | |
US11760855B2 (en) | Acrylic resin film, laminated film, production method for laminated film, and molded article | |
JP7245082B2 (ja) | フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム | |
WO2017022704A1 (ja) | 成型用コーティングフィルム | |
WO2014083644A1 (ja) | 活性エネルギー線硬化性樹脂組成物 | |
CN116963907A (zh) | 层叠体及其制造方法 | |
WO2020203359A1 (ja) | 防眩性積層体 | |
JP2023145140A (ja) | 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法 | |
WO2024203401A1 (ja) | 積層体及びそれを含む樹脂成形体 | |
JP2023145141A (ja) | 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法 | |
JP2012187765A (ja) | 傷修復型アクリル樹脂フィルムおよびその利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22762873 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503644 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280018541.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022762873 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022762873 Country of ref document: EP Effective date: 20231005 |