WO2022185815A1 - 積層体およびその製造方法 - Google Patents

積層体およびその製造方法 Download PDF

Info

Publication number
WO2022185815A1
WO2022185815A1 PCT/JP2022/003844 JP2022003844W WO2022185815A1 WO 2022185815 A1 WO2022185815 A1 WO 2022185815A1 JP 2022003844 W JP2022003844 W JP 2022003844W WO 2022185815 A1 WO2022185815 A1 WO 2022185815A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
particles
hard coat
layer
resin
Prior art date
Application number
PCT/JP2022/003844
Other languages
English (en)
French (fr)
Inventor
花子 長谷部
治規 小山
幸展 嶋本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280018541.XA priority Critical patent/CN116963907A/zh
Priority to EP22762873.2A priority patent/EP4302996A1/en
Priority to JP2023503644A priority patent/JPWO2022185815A1/ja
Publication of WO2022185815A1 publication Critical patent/WO2022185815A1/ja
Priority to US18/241,465 priority patent/US20230416556A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/04Laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present invention relates to a laminate containing an acrylic resin film as a base material and a method for producing the same.
  • Acrylic resin films which are made by processing and molding acrylic resin compositions containing elastic bodies, are used and developed in various applications by taking advantage of their excellent properties such as transparency, hardness, weather resistance, and secondary moldability. It is Applications of acrylic resin films include, for example, automobile interior and exterior parts that are used by laminating films on the three-dimensional surface of a molded body by methods such as thermal lamination, adhesion, in-mold molding, insert molding, and three-dimensional lamination molding. Applications include decoration, protection, and display as an alternative to painting and printing, decoration and protection of the exterior of products such as mobile electronic devices, personal computers, and home appliances, and use as a building material. In addition, taking advantage of the transparency and low inherent retardation characteristics of acrylic resin films, acrylic resin films are also being used as optical film members for various display devices such as liquid crystal panels and organic EL panels.
  • a method for further imparting functionality such as surface hardness, scratch resistance, anti-reflection properties, and anti-glare properties to decorative/protective films including such acrylic resin films, coatings, etc.
  • the method of forming a functional layer is performed by the technique of.
  • an ionizing radiation-curable resin having a pencil hardness of B or higher and an elongation rate indicating moldability of 100% or higher, a fluorine-based leveling agent or a fluorine-based siloxane-based leveling agent, and inorganic oxide fine particles are contained.
  • a molding hard coat film or the like is described which is characterized by providing a hard coat layer formed by coating a coating composition on a film substrate and curing the coating composition.
  • Patent Document 2 discloses a translucent resin base sheet, a base layer formed on the base sheet, a hard coat layer formed on the base layer, and a medium refractive index layer formed on the hard coat layer.
  • a transparent resin substrate comprising a low refractive index layer and a low refractive index layer formed on the medium refractive index layer is disclosed.
  • Patent Document 3 discloses an antireflection film for insert molding in which four layers of a hard coat layer, a medium refractive index layer, a high refractive index layer, and a low refractive index layer are provided in this order on a thermoplastic transparent substrate film. is described.
  • JP 2016-040105 A WO2018/117018 JP 2016-071307 A JP 2015-152691 A JP 2012-189978 A
  • Patent Documents 1 to 3 have sufficient performance from the viewpoint of compatibility between the moldability of the laminate and the functionality of the laminate such as pencil hardness and scratch resistance of the surface of the laminate. That said, there is room for further improvement.
  • an object of one embodiment of the present invention is to provide a laminate containing an acrylic resin film, which has functionality such as surface hardness and antireflection properties and is excellent in formability, and a method for producing the same. be.
  • the present inventors have found that a hard coat layer having specific physical properties can be used in a laminate composed of an acrylic resin film, a hard coat layer, a low refractive index layer, and the like.
  • the present inventors have found for the first time that a laminate having excellent moldability can be obtained by this method, and completed an embodiment of the present invention.
  • a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin.
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
  • the hard coat layer contains a urethane acrylate resin
  • the laminate has a crack elongation of 80 at 120°C. % or more.
  • a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin.
  • forming a hard coat layer wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer is made of urethane acrylate resin. and wherein the laminate has a crack elongation of 80% or more at 120°C.
  • one aspect of the present invention is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, wherein the acrylic resin film is heated at 120°C.
  • the tensile elongation at break is 170% or more
  • the hard coat layer contains a urethane acrylate resin
  • the laminate has a pencil hardness of H or more
  • a laminate containing an acrylic resin film which has functionality such as surface hardness and antireflection properties, and which has excellent formability, and a method for producing the same.
  • FIG. 2 is a diagram showing a TEM image after a tensile test of a laminate obtained by laminating an acrylic resin film, a hard coat layer and a low refractive index layer according to one embodiment of the present invention.
  • first method for producing a laminate includes (A1) a urethane acrylate resin applied to at least one side of an acrylic resin film.
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C.
  • the coat layer contains a urethane acrylate resin, and the laminate has a crack elongation of 80% or more at 120°C.
  • the laminate obtained by the above-described first laminate manufacturing method has surface hardness and is excellent in surface hardness.
  • the surface hardness of the laminate is evaluated by the "pencil hardness” of the laminate.
  • a method for measuring the "pencil hardness” of the laminate will be described in detail later.
  • the laminate obtained by the first method for producing a laminate has antireflection properties and is excellent in antireflection properties.
  • the antireflection property of the laminate is evaluated by the "luminous reflectance" of the laminate.
  • a method for measuring the "luminous reflectance” of the laminate will be described in detail later.
  • the laminate obtained by the first method for producing a laminate has excellent moldability.
  • the moldability of the laminate is evaluated by the "crack elongation at 120°C" of the laminate.
  • a method for measuring the "crack elongation at 120°C” of the laminate will be described in detail later.
  • the laminate obtained by the first method for producing the laminate described above also has excellent scratch resistance. Further, when the laminate obtained by the first method for producing a laminate described above contains particles in the hard coat layer as described later, the laminate has antiglare properties and is excellent in antiglare properties. , can also be said.
  • the method for manufacturing a laminate includes (A1) irradiating a resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film with an active energy ray. and curing the resin layer containing the urethane acrylate resin to form a hard coat layer, wherein the acrylic resin film has a tensile elongation at break of 170 at 120°C. % or more, the hard coat layer contains a urethane acrylate resin, and the laminate has a crack elongation of 80% or more at 120°C.
  • This manufacturing method is also a manufacturing method of the first laminate.
  • first laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. and, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C., the hard coat layer contains a urethane acrylate resin, and the laminate has a pencil hardness is H or higher, and the crack elongation at 120° C. is 80% or higher.
  • first laminate both the laminate obtained by the method for manufacturing the laminate according to the first embodiment and the laminate according to the first embodiment may be referred to as "first laminate".
  • Patent Literatures 1 and 2 have low surface hardness and, for example, when used to protect the surface of a display device having a touch panel function, there is a possibility that problems such as scratches on the display portion may occur. be.
  • the techniques described in Patent Documents 2 and 3 for example, when laminating a decorative and protective film on a three-dimensional surface of a large molded body such as an automobile interior part integrated with the information display part as described above, in addition, as the film is stretched and shaped along the shape of the molded product, partial whitening of the stretched part of the film, cracking, peeling from the surface of the molded product, cracking and peeling of the functional layer, etc. It turned out that there was a problem.
  • the prior art has (1) a problem of moldability of the laminate, (2) a problem of antireflection of the laminate provided with a low refractive index layer, and (3) a problem of whitening of the laminate. rice field. Therefore, no decorative or protective film has been found that satisfies the requirements when used for the above purposes, and there is room for further improvement.
  • the inventors of the present invention have mainly studied the improvement of the moldability of the laminate, and have made a large-sized molded article by giving specific physical properties to the hard coat layer, the refractive index adjustment layer, etc. in the laminate. It was found for the first time that even when laminated on a three-dimensional surface, peeling and cracking of the functional layer do not occur, and it is possible to obtain a laminate having excellent formability. Moreover, the present inventors have found that the laminate obtained by the above method can solve the problem of antireflection and the problem of whitening of the stretched portion in addition to the moldability.
  • the present inventors found that with regard to the whitening of the stretched portion, on the surface of the low refractive index layer located on the outermost surface of the laminate, during stretching, there was a minute crack that did not reach a visually identifiable size. It has been found that the occurrence of microcracks is one of the causes of whitening. Whitening is caused by microcracks in the low refractive index layer. It is surprising that the resulting whitening of the stretch can be ameliorated.
  • a laminate having various functions and having excellent moldability which is composed of an acrylic resin film and a hard coat layer, or an acrylic resin film, a hard coat layer and a low refractive index layer, No report has been made so far, and the first method for manufacturing a laminate is an extremely excellent technique.
  • the present inventor believes that the mechanism for suppressing whitening is that the hard coat layer before forming the low refractive index layer has uncured residual functional groups by adjusting the configuration of the hard coat layer and the curing conditions using active energy rays. and the crosslink density is lower than that in the completely cured state, the adhesion between the hard coat layer and the low refractive index layer is increased, and as a result, the shape of the microcracks in the low refractive index layer is caused It is speculated that bleaching is suppressed. It should be noted that the present invention is by no means limited to such speculation. The method for manufacturing the first laminate will be described in detail below.
  • the "laminate” intends a product (laminate) containing a hard coat layer, and a product (laminate) that does not contain a hard coat layer is described as a "laminate film". More specifically, in the first embodiment, for example, the “laminate” is a laminate composed of (1) an acrylic resin film and a hard coat layer, or (2) an acrylic resin film and a hard coat layer. A laminate consisting of a coat layer and a low refractive index layer is intended, and the "laminated film” intends a laminate consisting of (3) an acrylic resin film and a low refractive index layer.
  • the surface hardness of the hard coat layer is improved, and the crack elongation is high.
  • the film should not break or become significantly whitened upon stretching.
  • the cured product of the curable resin composition is highly crosslinked and/or contains a filler with high hardness to suppress deformation of the surface of the cured product against external stress. , surface hardness and scratch resistance. Therefore, conventionally, surface hardness and scratch resistance and deformability and extensibility are contradictory properties, and it was not easy to achieve both.
  • Examples of methods for imparting high stretchability during secondary molding to such hard coat curable resins while maintaining hardness include the following methods.
  • the glass transition temperature of the curable resin is designed between room temperature and the secondary molding temperature so that it is hard at room temperature and softens and deforms at the secondary molding temperature. As a result, while exhibiting high surface hardness at room temperature, it exhibits high stretchability during secondary molding.
  • the crosslinked structure after curing of the curable resin is not uniform, and has portions with high crosslink density and portions with low crosslink density. , is designed to be non-uniform in terms of microstructure.
  • the high crosslink density portion in the cured product exhibits high surface hardness, and the low crosslink density portion deforms during secondary molding to exhibit high stretchability.
  • Examples of such resin components having a low cross-linking degree, uncross-linked or low elastic modulus include (a) methacrylic resins, styrene acrylonitrile resins, aliphatic or aromatic polycarbonate resins, polyester resins, phenoxy resins, cellulose acylate resins, and the like.
  • a crosslinked or non-crosslinked soft resin such as acrylic rubber, silicone rubber, hydrogenated styrene-butadiene rubber, acrylonitrile-butadiene rubber, olefin rubber, which may optionally have a reactive functional group;
  • core-shell type rubber particles in which a thermoplastic resin is graft-polymerized on the surface of crosslinked rubber particles For the hard coat layer in the first laminate, these methods (1) to (3) may be used alone or in combination as appropriate.
  • the first laminate manufacturing method includes the following steps (A1) and (B1).
  • Step (A1) A resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120° C.
  • the hard coat layer contains a urethane acrylate resin
  • the laminate is , the crack elongation at 120° C. is 80% or more.
  • a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with active energy rays to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
  • a resin layer containing an acrylate-based resin is applied in a solution state on the hard coat layer containing the cured urethane acrylate resin formed in the step (A1), dried, and dried.
  • a low refractive index layer is formed by irradiating the resin layer with an active energy ray to cure the resin layer.
  • the hard coat layer and the low refractive index layer is preferably well adhered.
  • the low refractive index layer often contains a hard filler such as hollow silica, and often has a lower crack elongation than the hard coat layer. For this reason, there is a possibility that microcracks that cause whitening may occur at a drawing ratio lower than the crack elongation of the hard coat layer alone.
  • the opening width of microcracks generated in the low refractive index layer by stretching becomes extremely fine, for example, 1 ⁇ m or less, and whitening occurs due to stretching. less likely to occur.
  • the following (a) and (b) are preferable: (a) a resin layer that becomes the low refractive index layer in step (B1) is applied in a solution state, the applied resin layer (low refractive index layer) is hardened to a certain extent within the range that the final interface between the two layers does not become unclear and the antireflection properties are not impaired. (b) the acrylate groups remaining after curing of the hard coat layer are impregnated into the resin layer ( Reactive curing with the low refractive index layer) to form a chemical bond at the interface between the finally obtained hard coat layer and the low refractive index layer.
  • the resin layer containing the urethane acrylate resin forming the hard coat layer is not completely cured, the crosslink density is slightly lowered, and the unreacted acrylate groups are partially removed. It is preferable to leave it.
  • a resin layer containing an acrylate-based resin that forms a low refractive index layer is applied in a solution state and optionally dried. In order to impregnate the layer surface, (a) the coating conditions and drying conditions of the solvent are appropriately adjusted, and/or (b) a fixed amount of a slow-drying, high-boiling solvent is used as the solvent used in the solution. and the like are preferred.
  • the tensile elongation at break at 120° C. of the acrylic resin film in the laminate is 170% or more, preferably 180% or more, and 190% or more. is more preferred.
  • the tensile elongation at break at 120° C. of the acrylic resin film is 170% or more, there is an advantage that the shape followability of molding is excellent.
  • the upper limit of the tensile elongation at break is not particularly limited, but from the viewpoint of improving the tensile strength and elastic modulus, it is, for example, 350% or less, and 300% or less. is preferred.
  • tensile elongation at break at 120°C means the elongation at which the film breaks after a tensile test is performed in a constant temperature bath at 120°C.
  • the tensile elongation at break at 120°C of the acrylic resin film is measured by the method described in Examples.
  • the crack elongation of the laminate at 120° C. is, for example, 80% or more, preferably 100% or more, more preferably 110% or more, and 120 % or more is particularly preferable.
  • the crack elongation at 120° C. of the laminate is 80% or more, it has the advantages of being excellent in shape followability during molding and suppressing whitening of the stretched portion during molding.
  • the upper limit of the crack elongation is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 200% or less and 180% or less. is preferred.
  • the "crack elongation of the laminate at 120°C” means the elongation at which cracks occur in the coating layer when the laminate is subjected to a tensile test in a constant temperature bath at 120°C.
  • the crack elongation of the laminate at 120°C is measured by the method described in Examples.
  • the crack elongation of the laminate at 120 ° C. is 80%. It is preferably 100% or more, more preferably 120% or more, and most preferably 130% or more.
  • the "crack elongation of the laminate at 120 ° C.” means "a laminate composed of an acrylic resin film, a hard coat layer, and a low refractive index layer. , crack elongation at 120° C.”.
  • the acrylic resin film is preferably composed of an acrylic resin composition containing graft copolymer particles containing an acrylic resin and a rubber component.
  • the acrylic resin film preferably contains graft copolymer particles (A) having an average particle diameter of 20 nm or more and 200 nm or less as the rubber component-containing graft copolymer particles.
  • graft copolymer particles (B) having a larger average particle size than the graft copolymer particles (A) may be included.
  • the graft copolymer particles (A) are dispersed in the acrylic resin or the matrix containing the acrylic resin and other components, or the It is preferred that the copolymer particles (A) and the graft copolymer particles (B) are dispersed.
  • acrylic resins can be used as the acrylic resin used for the acrylic resin film.
  • the acrylic resin contains 50% by mass or more and 100% by mass or less of methyl methacrylate units, and 0% by mass or more and 50% by mass of other structural units. It preferably contains 20% by mass or more and 100% by mass or less of the thermoplastic acrylic polymer composed of 20% by mass or less.
  • the total amount of methyl methacrylate units and other structural units in the thermoplastic acrylic polymer is 100% by mass.
  • Examples of other structural units include structural units derived from acrylic acid, acrylic acid derivatives, methacrylic acid, methacrylic acid derivatives, aromatic vinyl derivatives, vinyl cyanide derivatives, and the like.
  • the other structural units contained in the acrylic resin may be of one type or a combination of two or more types.
  • acrylic acid derivatives include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 2-phenoxyethyl acrylate, and acrylic acid.
  • acrylicates such as benzyl and glycidyl acrylate.
  • methacrylic acid derivatives examples include ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, 2-phenoxyethyl methacrylate, and isobornyl methacrylate.
  • a methacrylic acid ester and the like can be mentioned.
  • Styrene, vinyltoluene, and ⁇ -methylstyrene are examples of aromatic vinyl derivatives.
  • vinyl cyanide derivatives examples include acrylonitrile and methacrylonitrile.
  • a structural unit having a specific structure may be introduced into the acrylic resin by copolymerization, functional group modification, modification, or the like.
  • specific structures include, for example, glutarimide structures as disclosed in JP-A-62-89705, JP-A-02-178310, and WO2005/54311, JP-A-2004-168882, and Lactone ring structures as shown in JP-A-2006-171464, etc., glutaric acid obtained by thermally condensing (meth)acrylic acid units as shown in JP-A-2004-307834, etc.
  • Anhydride structures maleic anhydride structures as disclosed in JP-A-5-119217, N-substituted maleimide structures and unsubstituted maleimide structures as disclosed in WO2009/84541, and the like.
  • introducing these structures into an acrylic resin makes the molecular chain rigid.
  • effects such as improved heat resistance, improved surface hardness, reduced heat shrinkage, and improved chemical resistance can be expected.
  • the method for producing the acrylic resin is not particularly limited, and for example, known polymerization methods such as suspension polymerization method, bulk polymerization method, solution polymerization method and emulsion polymerization method can be applied. Also, any of known radical polymerization methods, living radical polymerization methods, anionic polymerization methods, and cationic polymerization methods can be applied.
  • the acrylic resin film is preferably formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer.
  • a crosslinked elastomer is a rubber component. Therefore, the polymer particles can be said to be polymer particles containing a rubber component.
  • the polymer particles preferably have a core-shell structure (multilayer structure) comprising a crosslinked elastomer that is a rubber component and a graft polymer layer positioned closer to the surface than the crosslinked elastomer.
  • a polymer particle having a core-shell structure comprising a crosslinked elastomer and a graft polymer layer is sometimes referred to as a graft copolymer particle.
  • the crosslinked elastomer preferably contains 50% by mass or more of acrylic acid ester units in 100% by mass of the crosslinked elastomer.
  • the crosslinked elastomer is preferably a crosslinked elastomer (A1) and/or a crosslinked elastomer (B1) described below.
  • the polymer particles are preferably graft copolymer particles containing a crosslinked elastomer and a graft polymer layer located closer to the surface than the crosslinked elastomer.
  • the graft copolymer particles are preferably graft copolymer particles (A) and/or graft copolymer particles (B) which will be described later.
  • the acrylic resin film preferably contains the graft copolymer particles (A) as the rubber component-containing graft copolymer particles. It may further contain graft copolymer particles (B).
  • the graft copolymer particles (A) have a core-shell structure (multilayer structure) comprising a crosslinked elastomer (A1) as a rubber component and a graft polymer layer (A2) positioned closer to the surface than the crosslinked elastomer (A1). is preferred.
  • the crosslinked elastomer (A1) may be a known crosslinked elastomer.
  • the crosslinked elastomer (A1) is an acrylic ester-based crosslinked elastomer (a crosslinked elastomer composed of a polymer containing an acrylic ester as a main component).
  • the particles of the acrylate-based crosslinked elastomer (A1) may have a concentric spherical multilayer structure in which a hard or semi-hard crosslinked resin layer is provided inside the crosslinked elastomer layer.
  • a hard or semi-hard crosslinked resin layer examples include hard crosslinked methacrylic resin particles as shown in JP-B-55-27576, methyl methacrylate-acrylic acid as shown in JP-A-4-270751 and the like.
  • Examples include semi-rigid crosslinked particles made of ester-styrene, crosslinked rubber particles with a high degree of crosslinking, and the like.
  • the graft copolymer particles (A) are formed by graft-polymerizing a monomer mixture forming the graft polymer layer (A2) in the presence of the particles of the above-mentioned acrylic acid ester-based crosslinked elastomer (A1). , preferably have a core-shell structure.
  • the average particle size of the graft copolymer particles (A) is preferably 20 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less, and particularly preferably 50 nm or more and 120 nm or less.
  • the average particle size of the graft copolymer particles (A) When the average particle size of the graft copolymer particles (A) is too small, the impact resistance and bending crack resistance of the acrylic resin film tend to decrease. If the average particle size of the graft copolymer particles (A) is excessively large, the transparency of the acrylic resin film tends to deteriorate, and whitening tends to occur easily due to bending.
  • the acrylic acid ester-based crosslinked elastomer (A1) is a multifunctional polyfunctional polymer that is copolymerizable with (a) an acrylic acid ester and (b) an acrylic acid ester and has two or more non-conjugated double bonds per molecule.
  • crosslinked elastomer particles obtained by polymerizing a monomer mixture (a-1) containing a vinyl monomer and (c) optionally another vinyl monomer copolymerizable with an acrylic acid ester. Available.
  • the acrylic acid ester, other vinyl-based monomers, and polyfunctional monomers may all be mixed and polymerized in one step.
  • the composition of the acrylic acid ester, other vinyl monomers, and polyfunctional monomers may be appropriately changed or the same.
  • the acrylic acid ester, the other vinyl-based monomer, and the polyfunctional monomer may be polymerized in two or more stages without changing the composition.
  • acrylate ester aliphatic esters of acrylic acid are preferable, alkyl acrylate esters are more preferable, and the number of carbon atoms in the alkyl group is preferable, because they are excellent in polymerizability, are inexpensive, and give a polymer having a low Tg. is 1 or more and 22 or less can be particularly preferably used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and isobornyl acrylate. , cyclohexyl acrylate, dodecyl acrylate, stearyl acrylate, heptadecyl acrylate, octadecyl acrylate, and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • the amount of acrylic acid ester is preferably 50% by mass or more, more preferably 70% by mass or more, most preferably 80% by mass or more in 100% by mass of the monomer mixture (a-1). preferable.
  • the acrylic acid ester content is 50% by mass or more, the acrylic resin film has good impact resistance and elongation at breakage, and cracks are less likely to occur during secondary molding.
  • vinyl monomers include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacrylic acid.
  • methacrylic acid esters such as cyclohexyl, phenoxyethyl methacrylate, isobornyl methacrylate, and dicyclopentenyl methacrylate; vinyl cyanide derivatives such as acrylonitrile and methacrylonitrile; aromatics such as styrene, vinyltoluene, and ⁇ -methylstyrene Vinyl derivatives; acrylic acid; acrylic acid derivatives such as ⁇ -hydroxyethyl acrylate, phenoxyethyl acrylate, benzyl acrylate, glycidyl acrylate; methacrylic acid; ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, and methacrylic acid methacrylic acid derivatives such as glycidyl acid; maleic anhydride; maleic acid derivatives such as N-alkylmaleimide and N-phenylmaleimide; These may be used individually by 1 type, and 2 or more
  • the amount of the other vinyl monomer is preferably 0% by mass or more and 49.9% by mass or less, and 0% by mass or more and 30% by mass or less in 100% by mass of the monomer mixture (a-1). is more preferable, and it is most preferably 0% by mass or more and 20% by mass or less. If the amount of the other vinyl monomer exceeds 49.9% by mass, the impact resistance of the acrylic resin film tends to decrease, the elongation at tensile breakage decreases, and cracks tend to occur during secondary molding. Sometimes.
  • polyfunctional monomer a monomer that is commonly used as a cross-linking agent and/or a graft crossing agent can be suitably used.
  • polyfunctional monomers include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinylbenzene, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, Diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, polyethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, and the like can be used.
  • One of these polyfunctional monomers may be used alone, or two or more thereof may be used in combination.
  • those having a function as a graft crossing agent improve the number of graft bonds in the later-described graft polymer layer (A2) with respect to the crosslinked elastomer (A1). It is more preferable because it brings about good dispersibility of the polymer (A) in the acrylic resin, improves crack resistance against tensile and bending deformation, and reduces stress whitening.
  • a polyfunctional monomer having the function of a graft crossing agent those having an allyl group such as allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, and diallyl maleate are preferred. , allyl methacrylate, allyl acrylate and the like are particularly preferred.
  • the amount of the polyfunctional monomer is preferably 0.1% by mass or more and 10% by mass or less in 100% by mass of the monomer mixture (a-1), and 1.0% by mass or more and 4% by mass or less. It is more preferable to have If the blending amount of the polyfunctional monomer is within such a range, it is preferable from the viewpoint of bending crack resistance and bending whitening resistance of the acrylic resin film and fluidity of the resin during molding.
  • the amount of the polyfunctional monomer is adjusted to the inside and surface of the crosslinked elastomer (A1). It may be changed in the vicinity. Specifically, as shown in Japanese Patent No. 1460364 and Japanese Patent No.
  • a polyfunctional monomer having a function as a graft crossing agent By increasing the content from the inside, the coating of the graft copolymer particles (A) with the graft polymer layer is improved, the dispersibility in the acrylic resin is improved, and the graft copolymer particles (A) and the acrylic It is possible to suppress deterioration of cracking resistance due to exfoliation of resin interfaces.
  • the graft copolymer particles (A ) can be reduced, and therefore the melt viscosity of the acrylic resin composition can be reduced, and the melt processability of the acrylic resin film, the improvement of the film processing accuracy, the improvement of the surface hardness, etc. can be expected.
  • the monomer mixture (a-1) contains the double bonds of the polymer for the purpose of controlling the molecular weight and crosslink density of the acrylic ester-based crosslinked elastomer (A1) and the disproportionation termination reaction during polymerization.
  • a chain transfer agent may be added for the purpose of controlling thermal stability and the like by reducing the number of terminals.
  • the chain transfer agent can be selected and used from those commonly used in radical polymerization.
  • chain transfer agents examples include monofunctional or polyfunctional mercaptan compounds having 2 to 20 carbon atoms such as n-octylmercaptan, n-dodecylmercaptan, and t-dodecylmercaptan, mercapto acids, thiophenol, and tetrachloride. Carbon or mixtures thereof and the like are preferred.
  • the amount of the chain transfer agent added is preferably 0 parts by mass or more and 1.0 parts by mass or less, more preferably 0 parts by mass or more and 0 .2 parts by mass or less.
  • the particles of the crosslinked elastomer (A1) may be a single layer composed of the acrylic ester-based crosslinked elastomer (A1), or two or more layers composed of the acrylic ester-based crosslinked elastomer (A1). It may be a multilayer structure containing a hard or semi-hard crosslinked resin layer, and may have an acrylic ester-based crosslinked elastomer (A1) in at least one layer of the multilayer particles.
  • Examples of monomers constituting the hard or semi-hard crosslinked resin layer include methacrylate esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate and phenoxyethyl methacrylate, methyl acrylate and ethyl acrylate.
  • methacrylate esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate and phenoxyethyl methacrylate, methyl acrylate and ethyl acrylate.
  • alkyl acrylates such as propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate; fragrances such as styrene and ⁇ -methyl styrene group vinyl derivatives, vinyl cyanide derivatives such as acrylonitrile, maleic acid derivatives such as maleic anhydride and maleimides, and polyfunctional monomers having two or more nonconjugated double bonds per molecule.
  • fragrances such as styrene and ⁇ -methyl styrene group vinyl derivatives, vinyl cyanide derivatives such as acrylonitrile, maleic acid derivatives such as maleic anhydride and maleimides, and polyfunctional monomers having two or more nonconjugated double bonds per molecule.
  • one or more selected from the group consisting of methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, styrene, acrylonitrile and the like is particularly preferable.
  • the polyfunctional monomer the same monomers as those used for the polymerization of the acrylic acid ester-based crosslinked elastomer (A1) layer can be used.
  • chain A transfer agent may be used in combination.
  • the chain transfer agent the same chain transfer agent as used in the polymerization of the acrylate-based crosslinked elastomer (A1) layer can be used.
  • the amount of the chain transfer agent added is preferably 0 parts by mass or more and 2 parts by mass or less, more preferably 0 parts by mass or more and 0.5 parts by mass with respect to 100 parts by mass of the total amount of the rigid or semi-rigid crosslinked resin layer. It is below the department.
  • the graft copolymer particle (A) When the graft copolymer particle (A) has a two-layer structure of a crosslinked elastomer particle (A1) as a core particle and a graft polymer layer (A2), the graft copolymer particle (A) is typically contains 50% by mass or more and 100% by mass or less of a methacrylic acid ester and 0% by mass or more and 50% by mass or less of another vinyl monomer copolymerizable with the methacrylic acid ester in the presence of the crosslinked elastomer particles (A1). by graft-copolymerizing a monomer mixture (a-2) containing (provided that the total of methacrylic acid ester and other vinyl monomers is 100% by mass) to form a graft polymer layer (A2) Obtainable.
  • the amount of methacrylic acid ester in 100% by mass of the monomer mixture (a-2) is (a) to ensure compatibility with the matrix acrylic resin, and (b) to be a solvent during coating on the acrylic resin film. It is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more from the viewpoint of suppressing deterioration of toughness of the coating film due to impregnation of the coating film, whitening and cracking due to stretching during molding. It is even more preferable to have
  • the graft polymer layer (A2) preferably contains 70% by mass or more and 99% by mass or less of an alkyl methacrylate in the presence of 5 parts by mass or more and 90 parts by mass or less of the crosslinked elastomer particles (A1), and the number of carbon atoms in the alkyl group is 2 or more acrylic acid alkyl esters of 0.5% by mass or more and 30% by mass or less, and other vinyl monomers of 0% by mass or more and 19% by mass or less (however, methacrylic acid alkyl esters, acrylic acid alkyl esters and other 100 mass % of the vinyl-based monomer in total) monomer mixture (a-2) 10 parts by mass or more and 95 parts by mass or less is graft-copolymerized in at least one step or more. .
  • the total amount of the crosslinked elastomer particles (A1) and the monomer mixture (a-2) should satisfy 100 parts by mass.
  • methacrylates in the graft polymer layer (A2) include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, hexyl methacrylate, and methacrylic acid. and methacrylic acid alkyl esters such as cyclohexyl, 2-ethylhexyl methacrylate, octyl methacrylate, phenyl methacrylate, and benzyl methacrylate. Among them, methacrylic acid alkyl esters in which the alkyl group has 1 to 4 carbon atoms are preferred.
  • an acrylic acid alkyl ester having an alkyl group having 2 or more carbon atoms can be used as another vinyl-based monomer.
  • alkyl acrylates having 2 or more carbon atoms in the alkyl group include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, hexyl acrylate, cyclohexyl acrylate, and acrylic.
  • One or more selected from the group consisting of octyl acid, dodecyl acrylate, stearyl acrylate, and the like is preferable, and selected from the group consisting of ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and t-butyl acrylate.
  • One or more are more preferred, and n-butyl acrylate is particularly preferred.
  • vinyl monomers that can be used in the monomer mixture (a-2) include aromatic vinyl derivatives such as styrene and its nucleus-substituted derivatives, vinyl cyanide derivatives such as acrylonitrile, methacrylic acid and its derivatives, Acrylic acid and its derivatives, N-substituted maleimides, maleic anhydride, methacrylamide, acrylamide and the like.
  • the monomer mixture (a-2) preferably contains a reactive UV absorber as another vinyl-based monomer. That is, the graft polymer layer (A2) preferably contains structural units derived from the reactive ultraviolet absorber. When the monomer mixture (a-2) contains a reactive ultraviolet absorber, it is easy to obtain an acrylic resin film with good weather resistance and chemical resistance.
  • a known reactive UV absorber can be used as the reactive UV absorber, and is not particularly limited.
  • Compounds represented by the following general formula (1) are preferable as the reactive ultraviolet absorber from the standpoint of moldability and weather resistance of the acrylic resin film.
  • X is a hydrogen atom or a halogen atom
  • R 1 is a hydrogen atom, a methyl group, or a t-alkyl group having 4 to 6 carbon atoms
  • R 2 is linear, or a branched alkylene group having 2 to 10 carbon atoms
  • R 3 is a hydrogen atom or a methyl group
  • the reactive ultraviolet absorber represented by the general formula (1) include 2-(2′-hydroxy-5′-(meth)acryloyloxyethylphenyl)-2H-benzotriazoles. , more specifically 2-(2′-hydroxy-5′-acryloyloxyethylphenyl)-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxyethylphenyl-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxyethylphenyl)-5-chloro-2H-benzotriazole, 2-(2′-hydroxy-5′-methacryloyloxypropylphenyl)-2H-benzotriazole, 2- (2'-Hydroxy-5'-methacryloyloxyethyl-3'-t-butylphenyl)-2H-benzotriazole, etc.
  • the content of the structural unit derived from the reactive ultraviolet absorber in 100% by mass of the graft polymer layer (A2) is preferably 0.01% by mass or more and 5% by mass or less, and 0.1% by mass or more and 3 % or less is more preferable.
  • graft copolymer particles (A) especially in the graft copolymerization of the monomer mixture (a-2) in the presence of the crosslinked elastomer particles (A1), for example, the acrylic acid ester-based crosslinked elastomer particles (A1)
  • a polymer component (free polymer) that is not graft-bonded to the acrylic acid ester-based crosslinked elastomer particles (A1) may occur.
  • a free polymer can be used as one that constitutes part or all of the acrylic resin that constitutes the matrix phase of the acrylic resin composition and the acrylic resin film.
  • the rate of grafting to the crosslinked elastomer (A1) and the amount of free polymer not bonded to the crosslinked elastomer (A1) are controlled.
  • a chain transfer agent may be added for the purpose of controlling the thermal stability and the like by reducing the double bond ends of the polymer due to the disproportionation termination reaction during polymerization.
  • the same chain transfer agents as those usable for polymerization of the crosslinked elastomer (A1) can be used.
  • the amount of the chain transfer agent used is 0 to 2 parts by mass, preferably 0 to 0.5 parts by mass, per 100 parts by mass of the total amount of the monomer mixture (a-2).
  • the graft ratio of the monomer mixture (a-2) to the crosslinked elastomer particles (A1) is preferably 5% or more and 250% or less, more preferably 10% or more and 200% or less, and even more preferably 20% or more and 150% or less. If the graft ratio is less than 5%, the acrylic resin film may have reduced resistance to whitening on bending, reduced transparency, or reduced elongation at tensile break, which may cause cracks during secondary molding. tend to become If the graft ratio exceeds 250%, the melt viscosity of the acrylic resin composition tends to increase during film formation, and the formability of the acrylic resin film tends to deteriorate.
  • the average particle diameter d (nm) of the crosslinked elastomer particles (A1) in the acrylic resin film and the amount w (% by mass) of the polyfunctional monomer used in the acrylic acid ester-based crosslinked elastomer are represented by the relational expression: It is preferable to satisfy 0.015d ⁇ w ⁇ 0.06d, more preferably 0.02d ⁇ w ⁇ 0.05d. If the amount of the polyfunctional monomer is within the range of the above relational expression, the elongation during secondary molding of the acrylic resin film is less likely to decrease, cracks are less likely to occur during molding and cutting, and transparency is improved.
  • the graft copolymer particles (B) used as necessary also include the crosslinked elastomer (B1), which is a rubber component, like the graft copolymer particles (A).
  • the graft copolymer particles (B) typically have a graft polymer layer (B2) located closer to the surface than the crosslinked elastomer (B1), like the graft copolymer particles (A). That is, the graft copolymer particles (B) preferably comprise a crosslinked elastomer (B1) and a graft polymer layer (B2).
  • the graft copolymer particles (B) are generally the same as the graft copolymer particles (A) in raw materials, production method, etc., except that the average particle size thereof is larger than that of the graft copolymer particles (A). good too.
  • the particles of the acrylate-based crosslinked elastomer (B1) have a concentric spherical multi-layered structure comprising a hard or semi-hard crosslinked resin layer inside the crosslinked elastomer layer. Examples of such a hard or semi-hard crosslinked resin layer include hard crosslinked methacrylic resin particles as shown in JP-B-55-27576, etc., and as shown in JP-A-4-270751 and WO2014/41803.
  • the graft copolymer particles (B) having a larger particle diameter than the graft copolymer particles (A) can be improved in transparency, bending whitening resistance, and folding resistance. Flexural crack resistance and the like can be improved.
  • the average particle size of the graft copolymer particles (B) is preferably 150 nm or more and 400 nm or less, more preferably 200 nm or more and 350 nm or less.
  • the average particle size of the graft copolymer particles (B) is larger than the average particle size of the graft copolymer particles (A).
  • Graft copolymer particles (B) having a large average particle size more effectively induce plastic deformation (craze) in the acrylic resin phase surrounding the graft copolymer particles against the action of external force on the acrylic resin material. do. Therefore, the graft copolymer particles (B) are extremely effective in imparting impact resistance and crack resistance to the acrylic resin material.
  • the graft copolymer particles (B) are inferior to the graft copolymer particles (A) in bending whitening resistance and/or solvent whitening resistance.
  • the graft copolymer particles (B) for example, by adding a small amount of the graft copolymer particles (B) to the acrylic resin composition containing the acrylic resin and the graft copolymer particles (A), (a) the acrylic resin film (b) when external stress is applied to the acrylic resin film, when a coating liquid containing an organic solvent is applied, and / Alternatively, the whitening property during molding is hardly deteriorated, and (c) the effect of efficiently improving the crack resistance, secondary moldability, etc. of the functional film can be expected.
  • the average particle size of the graft copolymer particles (A) and the graft copolymer particles (B) is determined by a laser diffraction method such as Microtrac particle size distribution analyzer MT3000 manufactured by Nikkiso Co., Ltd. It can be measured using a particle size distribution analyzer and a light scattering method in a latex state.
  • the method for producing the graft copolymer particles (A) and the graft copolymer particles (B) is not particularly limited, and known emulsion polymerization methods, miniemulsion polymerization methods, suspension polymerization methods, solution polymerization methods, etc. are applicable. It is possible.
  • the emulsion polymerization method is particularly preferred because it has a wide adjustment range for the resin structure.
  • initiators used in the emulsion polymerization of the graft copolymer particles (A) and/or the graft copolymer particles (B) known organic peroxides, inorganic peroxides, azo compounds and the like can be used. of initiators can be used.
  • t-butyl hydroperoxide 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, alkylperoxycarbonates, alkylperoxide, Organic peroxides such as oxyesters; inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate; and azo compounds such as azobisisobutyronitrile can be used. These may be used individually by 1 type, and may use 2 or more types together.
  • initiators may be used (a) as thermal decomposition radical polymerization initiators, or (b) in combination with these initiators sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic It may be used as a redox type polymerization initiator system in combination with reducing agents such as acids, hydroxyacetone acid and ferrous sulfate. Ferrous sulfate may be used in combination with a complex such as ethylenediaminetetraacetate-2-sodium.
  • inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate are used, or t-butyl hydroperoxide, cumene hydroperoxide and the like are used.
  • an inorganic reducing agent such as divalent iron salt and/or an organic reducing agent such as sodium formaldehyde sulfoxylate, reducing sugar and ascorbic acid. more preferred.
  • the above inorganic peroxide or organic peroxide is added by a known method such as a method of adding as it is to the polymerization system, a method of adding by mixing with a monomer, or a method of adding by dispersing in an aqueous emulsifier solution.
  • a method of adding by mixing with a monomer and a method of adding by dispersing in an aqueous emulsifier solution are preferable.
  • the surfactant (also referred to as an emulsifier) used for emulsion polymerization of the graft copolymer particles (A) and/or the graft copolymer particles (B) is not particularly limited. A wide range of known surfactants can be used for emulsion polymerization.
  • Preferred surfactants include, for example, (a) alkylsulfonic acid, alkylbenzenesulfonic acid, dioctylsulfosuccinic acid, alkylsulfuric acid, fatty acid sodium, polyoxyethylene alkyl ether acetic acid, alkyl phosphoric acid, alkyl ether phosphate, alkylphenyl Anionic surfactants such as ether phosphoric acid, sodium salts such as surfactin, potassium salts and ammonium salts, and (b) reaction products of alkylphenols, aliphatic alcohols and propylene oxide and/or ethylene oxide, etc. nonionic surfactants, and the like. These surfactants may be used alone or in combination of two or more.
  • Graft copolymer particles (A) or graft copolymer particles ( B) can be separated and recovered. For example, after coagulating the graft copolymer particles by adding a water-soluble electrolyte such as calcium chloride, magnesium sulfate, magnesium chloride, calcium acetate, sodium chloride, hydrochloric acid, acetic acid, and sulfuric acid to the latex, or by freezing the latex. After the graft copolymer particles are coagulated, the graft copolymer particles (A) or graft copolymer particles (B) can be separated and recovered by filtration, washing and drying of the solid content. Alternatively, the graft copolymer particles (A) or the graft copolymer particles (B) can be separated and recovered by treating the latex with spray drying, freeze drying, or the like.
  • a water-soluble electrolyte such as calcium chloride, magnesium sulfate, magnesium chloride, calcium acetate, sodium chloride, hydrochloric
  • graft copolymerization is carried out in advance.
  • a filter and/or a mesh By filtering the latex of the coalesced particles (A) or the latex of the graft copolymer particles (B) with a filter and/or a mesh, substances causing foreign matter defects such as environmental foreign matter and polymerization scale are removed.
  • filter and mesh known filters and meshes used for filtering liquid media can be used.
  • the type of filter and mesh, the mesh size of the filter and mesh, filtration accuracy, filtration capacity, etc. are appropriately selected according to the target application, the type, size and amount of foreign matter to be removed.
  • the opening and filtering accuracy of the filter and mesh are preferably, for example, at least twice the average particle size of the graft copolymer particles (A) or graft copolymer particles (B).
  • the content of the graft copolymer particles (A) in 100% by mass of the acrylic resin film is not particularly limited, but is preferably 1% by mass or more and 70% by mass or less, and 5% by mass or more and 65% by mass or less. more preferably 10% by mass or more and 60% by mass or less.
  • the content of the graft copolymer particles (B) in 100% by mass of the acrylic resin film is not particularly limited, but is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass. % or less.
  • the acrylic resin film may optionally contain a thermoplastic resin at least partially compatible with the acrylic resin within a range that does not impair the object of the present invention. may contain.
  • thermoplastic resins include styrene resins, polycarbonate resins, amorphous saturated polyester resins, polyamide resins, phenoxy resins, polyarylate resins, olefin-methacrylic acid derivative resins, olefin-acrylic acid derivative resins, Cellulose derivatives (cellulose acylate, etc.), vinyl acetate resins, polyvinyl alcohol resins, polyvinyl acetal resins, polylactic acid resins, and PHBH (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) resins.
  • Styrene-based resins include, for example, styrene-acrylonitrile resin, styrene-(meth)acrylic acid resin, styrene-maleic anhydride resin, styrene-N-substituted or unsubstituted maleimide resin, styrene-acrylonitrile-butadiene resin, and styrene- Acrylonitrile-acrylic acid ester resins, etc.
  • thermoplastic resins selected from the group consisting of styrene resins, polycarbonate resins, and cellulose acylate resins have excellent compatibility with acrylic resins, and acrylic It is preferable because it is possible to improve the bending crack resistance, solvent resistance, low hygroscopicity of the resin film, and the glass scattering prevention performance of the laminate.
  • the acrylic resin film (acrylic resin composition that constitutes the acrylic resin film) may also be used in conventional acrylic resin films, if necessary, to the extent that the object of one embodiment of the present invention is not impaired. It may contain known additives. Such additives include antioxidants, ultraviolet absorbers, light stabilizers, light diffusing agents, matting agents, lubricants, colorants such as pigments and dyes, fibrous fillers, organic particles and/or inorganic particles. Antiblocking agents consisting of, infrared reflecting agents consisting of metals and / or metal oxides, plasticizers, antistatic agents, and the like. Additives are not limited to these. These additives can be used in an arbitrary amount depending on the type of additive within a range that does not hinder the purpose of one embodiment of the present invention or to enhance the effects of one embodiment of the present invention.
  • the glass transition temperature (Tg) of the acrylic resin film is preferably 140° C. or lower, more preferably 135° C. or lower, and even more preferably 130° C. or lower.
  • Tg glass transition temperature
  • the lower limit of the glass transition temperature of the acrylic resin film is not particularly limited, it is preferably 100° C. or higher from the viewpoints of preventing printing misalignment during drying of printing and improving reliability.
  • the glass transition temperature of the acrylic resin film is measured by the method described in Examples.
  • the thickness of the acrylic resin film is not particularly limited, it is, for example, 75 to 500 ⁇ m, more preferably 75 to 300 ⁇ m, and more preferably 100 to 250 ⁇ m.
  • the film thickness of the acrylic resin film is 75 to 500 ⁇ m, it has the advantage that the film has elasticity and is excellent in handleability.
  • the film thickness of the acrylic resin film is measured by the method described in Examples.
  • the pencil hardness of the acrylic resin film measured according to JIS K 5600-5-4 is preferably 2B or higher, more preferably B or higher, and particularly preferably HB or higher.
  • the acrylic resin film can be produced by a known processing method.
  • known processing methods include melt processing, calendar molding, press molding, and solvent casting.
  • the melt processing method include an inflation method and a T-die extrusion method.
  • the solvent casting method after the acrylic resin composition is dissolved and dispersed in a solvent, the resulting dispersion (dope) is poured onto a belt-like substrate in the form of a film. Next, an acrylic resin film is obtained by volatilizing the solvent from the drooled film-like dope.
  • the melt processing method that does not use a solvent is preferred, and the T-die extrusion method is particularly preferred. According to the melt processing method, there are few restrictions on the thickness of the film to be manufactured, it is possible to manufacture a film with excellent surface properties with high productivity, and the load on the natural environment and working environment due to the solvent and the manufacturing cost are reduced. be able to.
  • the acrylic resin composition When the acrylic resin composition is formed into a film by a melt processing method or a solvent casting method, from the viewpoint of improving the appearance quality of the acrylic resin film, filtration using a filter or mesh is used to remove appearance defects of the acrylic resin film. It is preferable to remove environmental foreign matter, polymerization scale, degraded resin, etc. in the acrylic resin composition, which cause internal foreign matter and the like.
  • the acrylic resin When producing a film by melt processing, the acrylic resin is added at any one or more times during the preparation of the acrylic resin composition by melt mixing, during pelletization of the molten acrylic resin composition, and during the film formation process using a T-die. Filtration of the composition can be performed. In the solvent casting method, after the acrylic resin, the graft copolymer particles (A), (B) and other components are mixed with a solvent, the acrylic resin composition may be filtered before cast film formation.
  • filters and meshes known filters and meshes can be used without particular limitations, as long as the filters and meshes have heat resistance and durability according to melt processing conditions, and resistance to casting solvents, dopes, etc. can.
  • the film thickness distribution in the TD direction (perpendicular to the extrusion direction) of the extruded film is measured online.
  • An automatic die device can be used that measures and automatically adjusts the T-die lip clearance during film extrusion based on this. Applying an automatic die with an appropriate control method may improve the thickness accuracy of the acrylic resin film.
  • both sides of the molten film are brought into contact with (sandwiched between) cooling rolls or cooling belts at the same time to produce a film with better surface properties.
  • the molten film is simultaneously brought into contact with a roll or cooling belt maintained at a temperature of ⁇ 80° C. or higher, preferably ⁇ 70° C. or higher, of the glass transition temperature of the acrylic resin composition.
  • At least one of the rolls for such sandwiching use a roll having an elastic metal sleeve as disclosed in JP-A-2000-153547 and JP-A-11-235747, Low pinch pressure is used to transfer roll mirrors or specific surface topography.
  • a film with less residual strain and excellent smoothness, and / or (b) an internal strain with moderate surface roughness and excellent film surface slipperiness and blocking between films is suppressed. can be obtained.
  • uniaxial stretching or biaxial stretching subsequent to film molding can be carried out using a known stretching device.
  • Biaxial stretching can be carried out in a known manner, such as successive biaxial stretching, simultaneous biaxial stretching, and longitudinal stretching followed by transverse stretching while relaxing the longitudinal direction to reduce bowing of the film. be.
  • one side or both sides of the acrylic resin film can be coated with hairlines, prisms, uneven shapes, three-dimensional decorations, matte surfaces, rough surfaces with a certain degree of surface roughness, knurling on the edges of the film, etc.
  • Any surface shape may be given.
  • Such a surface profile can be imparted by a known method. For example, by sandwiching both sides of a molten film immediately after extrusion or a molded film fed out from a feeding device between two rolls or belts having a surface shape on at least one surface, the surface shape of the roll is changed.
  • a method of transcription can be mentioned.
  • the hard coat layer in the first method for producing a laminate is a functional layer laminated on at least one side of the acrylic resin film and contains a urethane acrylate resin.
  • the hard coat layer may be laminated on one side or both sides of the acrylic resin film.
  • various hard coat layers containing urethane acrylate resin which are conventionally provided in various functional films, resin molded products, etc., can be employed without particular limitation.
  • a urethane acrylate resin can be obtained, for example, by mixing a polyhydric alcohol, a polyvalent isocyanate, and a hydroxyl group-containing (meth)acrylate to form a urethane bond through a reaction between the isocyanate group and the hydroxyl group.
  • urethane acrylate resins include urethane acrylate resins commercially available as UV-curable hard coating agents.
  • the hard coat layer of the laminate may contain other components in addition to the urethane acrylate resin.
  • Components other than the urethane acrylate resin include, for example, monofunctional or polyfunctional (meth)acrylates, epoxy acrylate monomers, polyester acrylates, silicon acrylates, polycarbonate acrylates, polyacrylic acrylates, and the like, which have radically reactive functional groups. Monomers, oligomers, resins, or mixtures thereof can be used in combination.
  • a urethane acrylate resin and, for example, (a) a hydrolytic condensate of a difunctional to tetrafunctional silane compound, and/or (b) a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group may be used in combination with a composition containing a monomer, oligomer, resin, or mixture thereof having As a component used for forming the hard coat layer, the urethane acrylate resin may be used alone, or in addition to the urethane acrylate resin, one or more of the other components may be added in combination. .
  • the (meth)acrylate is not particularly limited as long as it has at least one (meth)acryloyl group. Specifically, (a) alicyclic (meth)acrylates such as alkyl (meth)acrylates, aryl (meth)acrylates, phenoxyethyl (meth)acrylates and isobornyl (meth)acrylates, (b) polyalkylene glycol di( meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol multifunctional (meth)acrylates such as tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane
  • (meth)acrylates include those commercially available as UV-curable hard coating agents.
  • (meth)acrylate is meant to include methacrylate and acrylate.
  • the (meth)acryloyl group is intended to include methacryloyl and acryloyl groups.
  • epoxy acrylate monomer there are no particular restrictions on the epoxy acrylate monomer. Specifically, glycidyl (meth)acrylate, ⁇ -methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, and vinylcyclohexene monoxide (i.e., 1,2-epoxy-4-vinylcyclohexane ) and the like.
  • the hydroxyl group-containing (meth)acrylates are not particularly limited, and hydroxyl group-containing (meth)acrylates such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate, and optionally (a) at least one Compounds with an ethylenically unsaturated bond having a hydroxyl group such as 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, trimethylpropane mono (meth) acrylate, trimethylolpropane di(meth) acrylate, allyl alcohol, ethylene glycol allyl ether, glycerin (mono, di) allyl ether, N-methylol (meth) acrylamide, etc. (b) or a mixture thereof is added It is possible.
  • the polyvalent isocyanate is not particularly limited.
  • Polyvalent isocyanate compounds that are compounds containing two or more isocyanate groups include, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate isocyanate, 1,5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane triisocyanate , 3,3′-dimethylphenylene diisocyanate, 4,4′-biphenylene diisocyanate, 1,6-hexane diisocyanate, isophorone diisocyanate, methylenebis(4-cyclohe
  • polyhydric alcohols include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8 -octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-methyl-1,8-octanediol, 1,4-cyclohexanediol Examples include methanol and polytetramethylene glycol. These polyhydric alcohols may be used singly or in combination of two or more.
  • An organic tin-based urethanization catalyst is used to promote the reaction of the isocyanate component with the isocyanate group.
  • the organic tin-based urethanization catalyst may be any one generally used in urethanization reactions, and examples thereof include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dialkylmalate, tin stearate, and tin octylate. be done.
  • a composition comprising a hydrolytic condensate of a silane compound preferably has the following general formula (2): R 4 —(SiR 5 a (OR 6 ) 3-a ) (2)
  • R 4 is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms, and carbon a monovalent hydrocarbon group selected from the group consisting of aralkyl groups having 7 to 12
  • the weight average molecular weight of the condensate (A) is preferably 30,000 or less.
  • the proportion of the silane compound having a reactive substituent is preferably 10% by mass or more of the total amount of the silane compound (Z) used.
  • the reactive substituent in the general formula (2) is an epoxy group or an oxetane group from the viewpoints of less curing shrinkage during the formation of the hard coat layer and the ease of obtaining a functional film with excellent durability and suppressed curling. is preferred.
  • a neutral salt catalyst is more preferably used as the catalyst for the hydrolytic condensation reaction of the silane compound (Z). This is because when the reactive substituent is an epoxy group and/or an oxetane group, decomposition of the reactive substituent during hydrolytic condensation is easily suppressed.
  • a method for curing the resin layer (resin composition) when forming the hard coat layer a known method can be applied.
  • a method of irradiating active energy rays represented by ultraviolet rays is preferable.
  • a photopolymerization initiator is used when curing is performed by irradiation with an active energy ray.
  • a hydrolytic condensate of the above silane compound and/or (b) a monomer, oligomer, or resin having a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group, or these
  • a composition containing a mixture of is used in combination with a urethane acrylate resin, a photoanion generator, photocation generator, or the like is also used as appropriate.
  • photopolymerization initiators include acetophenone, benzophenone, benzoylmethyl ether, benzoylethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, dibenzyl, 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy- 2-phenylacetophenone, tetramethylthiuram monosulfide, tetramethylthiuram disulfide, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane- 1-one compounds and the like.
  • 1-hydroxy-cyclohexyl-phenyl-ketone is preferred because of its excellent compatibility with the resin.
  • the photocation generator include, for example, CPI-100P, CPI-101A, CPI-200K, and CPI-200S manufactured by San-Apro; Wako Pure Chemical Industries, Ltd. WPI-124, WPI-113, WPI- 116, WPI-169, WPI-170, and WPI-124; and Rhodia 2074 manufactured by Rhodia.
  • photoanion generator examples include acetophenone o-benzoyloxium, nifedipine, 2-(9-oxoxanthen-2-yl)-1,5,7-triazabicyclopropionic acid [4.4.0].
  • Dec-5-ene 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3-[bis(dimeramino)methylene]guanidinium 2-(3-benzoylphenyl)propionate, 1, 2-dicyclohexyl-4,4,5,5-tetramethylpiguanidinium, n-butyltriphenylbalate and the like.
  • the curable composition is used for the purpose of improving coating properties, scratch resistance after curing, and antifouling properties.
  • various known leveling agents may be added.
  • leveling agents fluorine-based leveling agents, acrylic leveling agents, silicone-based leveling agents, and adducts or mixtures thereof can be used.
  • the amount of the leveling agent to be added is not particularly limited, it is, for example, an amount within the range of 0.03 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the curable composition.
  • the curable composition When forming a hard coat layer by applying a curable composition, the curable composition contains an ultraviolet absorber, a light stabilizer, an antifoaming agent, an antioxidant, a light diffusing agent, a matting agent, and an anti-oxidant.
  • Various additives such as staining agents, lubricants, colorants such as pigments and dyes, organic particles, inorganic particles, and antistatic agents can be added as required. Additives are not limited to these.
  • An organic solvent is usually blended in order to give the curable composition appropriate applicability.
  • the organic solvent is not particularly limited as long as it can impart desired coatability to the curable composition and can form a hard coat layer with desired film thickness and performance.
  • the boiling point of the organic solvent is preferably 50° C. or higher and 150° C. or lower from the viewpoint of coatability and drying property of the formed resin layer (coating film).
  • organic solvents include saturated hydrocarbons such as hexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as chloroform and methylene chloride; alcohols such as methanol, ethanol, isopropyl alcohol, and butanol.
  • Esters such as methyl acetate, ethyl acetate, and butyl acetate; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Ethers such as tetrahydrofuran, dioxane, propylene glycol monoethyl ether, methyl cellosolve, and ethyl cellosolve. and amides such as N-methylpyrrolidone and dimethylformamide.
  • An organic solvent can be used individually by 1 type or in combination of 2 or more types.
  • any method can be employed without particular limitation as the application method.
  • coating methods include reverse coating, gravure coating, bar coating, die coating, spray coating, kiss coating, wire bar coating, and curtain coating. These coating methods may be carried out singly or in combination.
  • the organic solvent is removed from the coating film by drying, and ultraviolet irradiation or the like is performed.
  • a hard coat layer is formed by curing the obtained resin layer with light.
  • the drying temperature for removing the organic solvent from the coated resin layer is preferably 60°C or higher and 120°C or lower, more preferably 70°C or higher and 100°C or lower. If the drying temperature is too low, the organic solvent may remain in the resin layer (coating film). On the other hand, if the drying temperature is too high, thermal deformation of the base film may impair the flatness of the functional film (hard coat layer).
  • the wavelength of the ultraviolet rays irradiated when curing the resin layer (coating film) is preferably in the range of 200 nm or more and 400 nm or less.
  • the ultraviolet (UV) integrated light quantity is described later in [4. Laminate manufacturing method] is preferably used.
  • Examples of irradiation devices for ultraviolet exposure light include (a) lamp light sources such as high-pressure mercury lamps, low-pressure mercury lamps, metal halide lamps, electrodeless lamps, and excimer lamps, and/or (b) argon ion lasers and helium neon. Irradiation devices comprising pulsed or continuous laser sources, such as lasers, etc., can be used.
  • compositions for forming a hard coat layer include, for example, the product name "Z-607-27L” manufactured by Aica Kogyo Co., Ltd., the product name "ENS102” manufactured by DIC Corporation, and the product name manufactured by Arakawa Chemical Industries, Ltd.
  • the thickness of the hard coat layer is not particularly limited, but is, for example, 0.6 ⁇ m to 10.0 ⁇ m, preferably 0.7 ⁇ m to 7.0 ⁇ m, more preferably 0.8 ⁇ m to 5.0 ⁇ m. preferable.
  • the film thickness of the hard coat layer is 0.6 ⁇ m to 10.0 ⁇ m, there is an advantage that both wear resistance and moldability can be achieved.
  • the thickness of the hard coat layer is measured by the method described in Examples.
  • inorganic particles and/or metal particles may be added in order to improve the hardness, wear resistance, antistatic properties, etc. of the hard coat layer.
  • inorganic particles and metal particles include, but are not limited to, silica, alumina, titanium oxide, zinc oxide, zirconia, graphene, nanocarbon, carbon black, nanodiamond, mica, barium titanate, boron nitride, metallic silver, metal copper etc. are mentioned. These particles may be used without surface treatment, or may be surface-treated in advance by a known method to control the dispersed state, and the affinity with the hard coat layer may be appropriately controlled. .
  • the hard coat layer in the first laminate manufacturing method may further contain particles in addition to the urethane acrylate resin.
  • the hard coat layer contains particles, it is possible to obtain a laminate containing an acrylic resin film having excellent antiglare properties.
  • Particles to be blended in the hard coat layer for the purpose of imparting antiglare properties are desired antiglare properties, sharpness of transmitted images, glare, jet-blackness of the surface, surface hardness, slipperiness, antistatic properties, and the like.
  • the material of the particles, the number of parts to be blended, the type of dispersion solvent for the particles, the particle diameter, the dispersed particle diameter, the film thickness of the hard coat layer, and the relative refractive index difference with the hard coat base material can be appropriately adjusted within a known technical range that does not impair the effects of the present invention.
  • the material of the particles to be compounded in the hard coat layer is not particularly limited as long as the effects of the present invention are achieved.
  • Examples include (a) silica, alumina, glass beads or flakes, mica, clay, titanium oxide, and zinc oxide. , zirconia, metal particles, and/or (b) crosslinked organic resin particles based on alkyl (meth)acrylate units, aromatic vinyl units, siloxane units, etc., and (c) core-shell type multilayer structure resin particles, and the like.
  • the particles are inorganic oxide particles (for example, silica, alumina, titanium oxide, zinc oxide, zirconia, etc.) and/or crosslinked organic Resin particles are preferable, and at least one selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins is more preferable.
  • Silica particles, alumina particles, and crosslinked organic resin particles are particularly preferred from the viewpoint of the balance of physical properties such as antiglare properties, dispersibility, and surface hardness.
  • these particles are formed by known methods such as using a silane coupling agent or reactive monomer that may have a reactive substituent, plasma treatment, corona treatment, etc.
  • Reactive functional groups having reactivity with urethane acrylate resins include (a) radical reactive functional groups such as vinyl groups and (meth)acryloyl groups, (b) epoxy groups, oxetane groups, hydroxyl groups, carboxyl groups, mercapto ionic functional groups such as groups, isocyanyl groups, hydroxyl groups and amino groups; and (c) moisture-curable functional groups such as silyl groups and alkoxysilyl groups.
  • particles may be dispersed in the state of primary particles, or may be dispersed in an aggregated state of multiple particles, depending on the size of the primary particles.
  • the size of a region (dispersed domain) in which these particles or aggregates thereof are distributed is defined as "average dispersed particle size".
  • average dispersed particle size When the size of the primary particles is large, the average dispersed particle size and the primary (basic) particle size may be the same.
  • the average dispersed particle diameter of the particles is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 0.1 ⁇ m to 50.0 ⁇ m, 0.2 ⁇ m to 25.0 ⁇ m, 0.5 ⁇ m to It may be 10 ⁇ m or the like.
  • the average dispersed particle size of particles is measured by the method described in Examples.
  • the content of the particles in the hard coat layer is not particularly limited as long as the effect of one embodiment of the present invention is exhibited, but for example, 0.1% by weight to 30.0% by weight. %, and may be 0.5 wt % to 20.0 wt %, 1.0 wt % to 15.0 wt %, and the like.
  • Low refractive index layer In the method for manufacturing the first laminate, it is preferable that a low refractive index layer containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is further provided on the hard coat layer.
  • the low refractive index layer constitutes an antireflection layer.
  • the low refractive index layer is typically formed by curing a composition for forming a low refractive index layer (curable composition).
  • the low refractive index layer is a layer for exhibiting an antireflection effect due to a significant refractive index difference with the hard coat layer described above and/or a significant refractive index difference with the high refractive index layer described later.
  • the low refractive index layer may be, for example, a layer containing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm. can.
  • As the composition for forming a low refractive index layer a composition obtained by adding hollow silica fine particles as a material for adjusting the refractive index to an acrylate-based resin as the base organic material can be used.
  • the acrylate resin contained in the low refractive index layer contains hollow silica fine particles.
  • the particle diameter of the hollow silica fine particles is less than 100 nm, preferably 80 nm or less, more preferably 60 nm or less. When the particle diameter of the hollow silica fine particles is less than 100 nm, there is an advantage that the transparency is excellent.
  • the lower limit of the particle size of the hollow silica fine particles is not particularly limited, it is, for example, 10 nm or more, preferably 20 nm or more, from the viewpoint of improving antireflection performance.
  • the particle diameter of the hollow silica fine particles is measured by the method described in Examples.
  • the content of hollow silica fine particles in the acrylate resin is 40% or more, preferably 45% or more, more preferably 50% or more.
  • the content of the hollow silica fine particles in the acrylate resin is 50% or more, there is an advantage that antireflection properties are excellent.
  • the upper limit of the content of the hollow silica fine particles in the acrylate resin is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 80% or less, preferably 70% or less.
  • the composition for forming a low refractive index layer may contain a resin similar to the resin contained in the hard coat layer as an organic material other than the acrylate resin. Further, in the first embodiment of the present invention, the composition for forming a low refractive index layer may contain silica fine particles, fluoride fine particles, etc. as a refractive index adjusting material other than the hollow silica fine particles. Magnesium fluoride, lithium fluoride, aluminum fluoride, calcium fluoride, and the like are examples of fluorides constituting the fluoride fine particles.
  • part of the organic material may be replaced with a water-repellent material or an oil-repellent material.
  • Water-repellent materials or oil-repellent materials include, for example, (a) compounds containing long-chain hydrocarbon skeletons, fluorocarbon skeletons, fluoropolyether skeletons, polysiloxane skeletons, etc., and (b) each skeleton described above. and resins having These may have, for example, reactive functional groups with urethane acrylate resins, and may contain two or more of these skeletons in one molecule. Also, a plurality of these may be used in combination.
  • additives can be added to the low refractive index layer as other components within a range that does not impair the effects of one embodiment of the present invention.
  • additives include photopolymerization initiators, dispersants, surfactants, ultraviolet absorbers, antioxidants, light stabilizers, antistatic agents, leveling agents, antifouling agents, anti-fingerprint agents, lubricants.
  • Additives such as a property-imparting agent may be used.
  • composition for forming a low refractive index layer examples include, for example, the product name “Z-824” manufactured by Aica Kogyo Co., Ltd., the product name “TU-2359” manufactured by Arakawa Chemical Industries, Ltd., and the product name manufactured by JGC Catalysts and Chemicals Co., Ltd. “ A commercially available product such as ELCOM P-5062 may also be used. Since these commercially available products have elongation even after curing, the 120° C. crack elongation of the first laminate can be further increased by using these commercially available products.
  • the first laminate may have functional layers other than those described above.
  • Other functional layers are not particularly limited, and for example, conventionally known various functional layers can be employed.
  • Specific examples of other functional layers include an antiglare layer, an antifouling layer, an anti-fingerprint layer, an anti-scratch layer, an antistatic layer, an ultraviolet shielding layer, an infrared shielding layer, an uneven surface layer, a light diffusion layer, a matte layer, A polarizing layer, a colored layer, a design layer, an embossed layer, a conductive layer, a gas barrier layer, a gas absorbing layer, a high refractive index layer, and the like. Two or more of these functional layers may be combined. Also, one functional layer may have two or more functions.
  • the active energy rays include ultraviolet rays (UV).
  • the integrated light amount of active energy ray irradiation is, for example, 150 mJ/cm 2 to 500 mJ/cm 2 , and 180 mJ/cm 2 to 450 mJ/cm 2 . and more preferably 200 mJ/cm 2 to 400 mJ/cm 2 .
  • the cumulative light quantity of the UV irradiation is 150 mJ/cm 2 to 500 mJ/cm 2 , it is possible to obtain an appropriate hardness of the hard coat layer while ensuring moldability.
  • the cumulative amount of UV irradiation is 150 mJ/cm 2 or more, the degree of cross-linking of the hard coat layer is improved, and surface hardness and scratch resistance can be improved.
  • the integrated amount of UV irradiation is 500 mJ/m 2 or less, impregnation of the composition for forming a low refractive index layer into the hard coat layer becomes moderate during coating of the composition for forming a low refractive index layer. , the amount of residual acrylate groups in the hard coat layer becomes moderate.
  • the adhesion between the hard coat layer and the low refractive index layer is maintained, and the obtained laminate is whitened when stretched 80% at 120°C. can be suppressed.
  • the chill roll temperature is, for example, 20°C to 70°C, preferably 25°C to 60°C, and more preferably 30°C to 55°C.
  • the resin layer hard coat layer
  • the resin layer can be cured while suppressing the temperature rise of the resin layer of the composition for forming a hard coat layer during ultraviolet irradiation. can be performed to produce a laminate with desired physical properties.
  • step (A1) For conditions other than the above in step (A1), those described in the above (hard coat layer) are incorporated.
  • step (B1) an acrylate-based resin (composition for forming a low refractive index layer) containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied on the hard coat layer obtained in step (A1).
  • the resin layer containing the acrylate resin (composition for forming a low refractive index layer) thus obtained is irradiated with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer.
  • the active energy ray includes ultraviolet (UV).
  • the same conditions as in the step (A1) can be adopted for the integrated light amount of active energy ray irradiation (for example, the integrated light amount of ultraviolet (UV) irradiation).
  • the chill roll temperature is, for example, 20°C to 70°C, preferably 25°C to 60°C, and more preferably 30°C to 55°C.
  • the cooling roll temperature in the step (B1) is 20° C. to 70° C.
  • the resin layer (low refractive index layer) is formed while suppressing the temperature rise of the resin layer of the composition for forming a low refractive index layer during ultraviolet irradiation. can be performed to produce laminates with desired physical properties.
  • a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the particle diameter is less than 100 nm.
  • a laminate comprising a step of preparing an acrylate resin containing 40% or more of hollow silica fine particles, wherein the solvent contains at least one solvent, and the solvent having the highest boiling point has a boiling point of 115°C to 180°C.
  • the "acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm" can also be said to be a "composition for forming a low refractive index layer.”
  • the boiling point of the solvent with the highest boiling point is, for example, 115°C to 180°C, preferably 120°C to 170°C, and more preferably 125°C to 160°C.
  • the boiling point of the solvent with the highest boiling point is 115° C. to 180° C., the adhesion between the hard coat layer and the low refractive index layer is improved, and a laminate with less whitening (lower degree of whitening) is produced during stretching. Obtainable.
  • the solvent used in step (B1') is not particularly limited as long as it contains a solvent having the above boiling point.
  • the solvent having a boiling point of 115° C. to 180° C. is not particularly limited, and examples thereof include propylene glycol monomethyl ether (PGM), cyclohexanone, butyl acetate, propylene glycol monomethyl ether acetate (PGMA) and the like.
  • PGM is preferable from the viewpoint of compatibility with resin and drying efficiency. These may be used alone or in combination of two or more.
  • the method of adding a solvent to the acrylate resin to prepare the acrylate resin containing 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm is not particularly limited, and a known method is used. can do.
  • the acrylate resin containing the hollow silica fine particles is prepared by the method described in Examples.
  • the first laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. More specifically, the first laminate is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, and the acrylic resin film comprises: The tensile elongation at break at 120° C. is 170% or more, the hard coat layer contains a urethane acrylate resin, the laminate has a pencil hardness of H or more, and a crack elongation at 120° C. 80% or more. Moreover, in a preferred aspect of the first embodiment of the present invention, the first laminate further includes a low refractive index layer on the hard coat layer.
  • the first laminate is composed of at least a specific acrylic resin film and a specific hard coat layer, as described above. Moreover, in a preferred aspect of the first embodiment of the present invention, the first laminate is composed of a specific acrylic resin film, a specific hard coat layer, and a specific low refractive index layer.
  • the first laminate is composed of the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer).
  • the first laminate comprises the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer). and the low refractive index layer described above (low refractive index layer).
  • the first laminate is preferably the above [1-2. First Laminate Manufacturing Method].
  • the pencil hardness of the first laminate is H or higher, preferably 2H or higher, and more preferably 3H or higher. If the pencil hardness of the first laminate is H or higher, it has the advantage of being less likely to be scratched.
  • pencil hardness is an index of abrasion resistance, and abrasion resistance is evaluated by the degree of scratches formed when scratched. In this specification, the pencil hardness of the laminate is measured by the method described in Examples.
  • the "tensile elongation at break at 120°C” and the “crack elongation at 120°C” of the first laminate are the same as in [1-2. Laminate manufacturing method] is used.
  • the haze of the first laminate is, for example, 1.0% or less, preferably 0.8% or less, and more preferably 0.5% or less.
  • the haze of the first laminate is 1.0% or less, there is an advantage that the transparency is excellent.
  • the haze of the laminate is measured by the method described in Examples.
  • the ⁇ haze after 80% stretching at 120° C. of the first laminate is, for example, 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less. preferable.
  • the ⁇ haze after 80% stretching at 120° C. of the first laminate is 3.0% or less, there is an advantage that whitening during molding can be suppressed.
  • the ⁇ haze of the first laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
  • ⁇ haze after 20% stretching at 120 ° C. is preferably 30% or less, more preferably 20% or less.
  • the low refractive index layer in the first laminate improves the crack elongation of the first laminate at 120 ° C. and / or suppresses whitening during stretching at 120 ° C., so whitening during stretching is suppressed. Less is preferred.
  • the laminated film obtained by laminating the low refractive index layer on the acrylic resin film if the ⁇ haze after 20% stretching at 120 ° C.
  • the first laminate at 120 ° C. is 30% or less
  • the first laminate at 120 ° C. is 80% Whitening after stretching is reduced, and a laminate having excellent moldability can be obtained.
  • ⁇ haze after 20% stretching at 120° C. is measured by the method described in Examples, with a laminated film obtained by laminating a low refractive index layer on an acrylic resin film. be.
  • the luminous reflectance of the first laminate is, for example, 2.0% or less, preferably 1.8% or less, and more preferably 1.6% or less.
  • the luminous reflectance of the first laminate is 2.0% or less, there are advantages of excellent antireflection performance and excellent visibility when laminated on the display surface.
  • the luminous reflectance of the first laminate is measured by the method described in Examples.
  • the in-plane retardation (Re) of the first laminate is, for example, 10 nm or less, preferably 9 nm or less, more preferably 8 nm or less, more preferably 7 nm or less, and 6 nm or less. is particularly preferred.
  • the in-plane retardation (Re) is 10 nm or less, a decrease in contrast can be suppressed in a liquid crystal display device.
  • the in-plane retardation (Re) is measured by the method described in Examples.
  • the absolute value of the thickness direction retardation (Rth) of the first laminate is, for example, 30 nm or less, preferably 25 nm or less, and more preferably 20 nm or less.
  • the absolute value of the thickness direction retardation (Rth) is 30 nm or less, a decrease in contrast can be suppressed in a liquid crystal display device.
  • the thickness direction retardation (Rth) is measured by the method described in Examples.
  • microcrack width of the first laminate is For example, it is 2.0 ⁇ m or less, preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • microcrack width of the first laminate is measured by the method described in Examples. Further, in this specification, “at the time of 80% stretching at 120°C” can also be described as “80% stretching at 120°C”. In this case, the "stretch ratio" simply indicates elongation.
  • the depth of the groove of the microcrack from the surface of the low refractive index layer side of the laminate at the microcrack portion in the direction parallel to the tensile stress when the first laminate is stretched 80% at 120 ° C. (hereinafter , sometimes simply referred to as “the depth of the microcrack grooves in the first laminate”) is, for example, 1.0 ⁇ m or less, preferably 0.8 ⁇ m or less, and 0.5 ⁇ m or less. is more preferable. If the depth of the grooves of the microcracks in the first laminate is 1.0 ⁇ m or less, there is an advantage that changes in appearance during molding can be suppressed. The depth of the grooves of the microcracks in the first laminate is measured by the method described in Examples.
  • FIG. 1 is a diagram showing a TEM image of the laminate according to the first embodiment of the present invention after a tensile test.
  • a laminate 4 in FIG. 1 is composed of an acrylic resin film 1 , a hard coat layer 2 and a low refractive index layer 3 .
  • microcracks 5 are generated on the surface of the laminate 4 according to the tensile stress.
  • the crack width in the direction parallel to the tensile stress of the generated microcracks 5 is called a microcrack width 6, and the crack width in the stacking direction is called a groove depth 7 of the microcracks.
  • the first laminate may have a primer layer on the surface opposite to the surface provided with the hard coat layer.
  • the composition of the primer layer includes (a) ink used for printing in the post-processing step, (b) injection resin used for injection molding, and (c) adhesiveness to metals used for metal deposition.
  • a good resin, etc. is used.
  • urethane-based resins, acrylic-based resins, polyester-based resins, polycarbonates, epoxy-based resins, melamine-based resins, copolymers of vinyl acetate and vinyl chloride, and vinyl acetate resins are used as resin components.
  • These resin components may appropriately contain functional groups such as acid groups, amino groups, epoxy groups, oxetane groups, vinyl groups, hydroxyl groups, mercapto groups, isocyanyl groups, silyl groups and salts.
  • a resin component and a compound having these functional groups may be used in combination.
  • the thickness of the primer layer is preferably 0.5-10 ⁇ m, more preferably 0.5-5 ⁇ m, most preferably 0.5-3 ⁇ m.
  • the thickness of the primer layer is 0.5 ⁇ m or more, the adhesion between the injection resin, ink, etc. and the acrylic resin of the first laminate can be ensured, and when the thickness is 10 ⁇ m or less, productivity is better.
  • a molded article (hereinafter referred to as "first molded article") comprising a first laminate is provided. Further, in the first embodiment of the present invention, the first molded body is obtained by laminating the first laminate on at least part of the surface of the molded body having a non-planar shape at least in part.
  • applications of the first molded body include automotive interior applications such as instrument panels, in-vehicle display front panels, console boxes, meter covers, door lock pezels, steering wheels, power window switch bases, center clusters, and dashboards; a) Weatherstrips, bumpers, bumper guards, side mudguards, body panels, spoilers, front rills, strut mounts, hubcaps, center pillars, door mirrors, center ornaments, side moldings, door moldings, wind moldings, etc., and (b) windows and heads Automobile exterior applications such as lamp covers, tail lamp covers, windshield parts; housings, display windows, buttons, etc.
  • the first laminate When the first laminate is used, (a) it has a complicated three-dimensional shape, and (b) surface hardness, scratch resistance, chemical resistance, antifouling property, reflective property, antiglare property, etc. are controlled. In addition, it is possible to easily produce a molded product with excellent appearance. For this reason, the first molded body is preferably used for, among the above uses, for example, an in-vehicle display front panel having a planar shape, a curved surface shape and/or a three-dimensional shape. Accordingly, in a first embodiment of the present invention, there is provided an in-vehicle display front panel comprising a first molded body.
  • 2nd Embodiment of this invention is related with the laminated body which contains an acrylic resin film as a base material, and its manufacturing method.
  • a method of forming a functional layer on a film substrate by a technique such as coating is used as a method of further imparting functionality to a decorative/protective film containing an acrylic resin film.
  • an antiglare hard coat layer is provided on a thermoplastic transparent substrate film, and a specific component is added as the outermost layer on the antiglare hard coat layer side of the thermoplastic transparent substrate film.
  • An insert-molding antiglare antireflection film and the like having a low refractive index layer containing a specific concentration are disclosed.
  • Patent Document 5 discloses a support, an easy-adhesion layer provided on one surface of the support, and a transparent layer made of a translucent resin provided on the other surface of the support.
  • the layer contains light-transmitting particles, the volume-average particle diameter r of the light-transmitting particles satisfies 0.4 ⁇ m ⁇ r ⁇ 3.0 ⁇ m, and the total sum S of the light-transmitting particles is 30 mg/m 2 . It describes an optical laminated film or the like that satisfies ⁇ S ⁇ 500 mg/m 2 and the average film thickness t of the transparent layer satisfies r/4 ⁇ t ⁇ r.
  • Patent Documents 4 and 5 have sufficient performance from the viewpoint of compatibility between the moldability of the laminate and the functionality of the laminate such as surface hardness and antiglare properties of the surface of the laminate. That said, there is room for further improvement.
  • an object of one embodiment (second embodiment) of the present invention is to provide a laminate containing an acrylic resin film, which is excellent in formability, surface hardness and antiglare properties, and a method for producing the same.
  • the present inventors have made intensive studies to solve the above problems, and found that a hard coat containing specific particles and having specific physical properties in a laminate composed of an acrylic resin film, a hard coat layer, etc. It was found for the first time that a layered product having excellent formability, surface hardness and antiglare properties can be obtained by using a layer, and one embodiment (second embodiment) of the present invention was completed.
  • (A2) a resin layer containing a urethane acrylate resin and particles, which is coated on at least one side of an acrylic resin film, is irradiated with an active energy ray, and the urethane acrylate a step of curing a resin layer containing a resin and particles to form a hard coat layer, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120°C.
  • the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, the average dispersed particle diameter of the particles is r ( ⁇ m), and the hard coat layer
  • the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation of 170 at 120° C., where d ( ⁇ m) is the film thickness. % or more, and the crack elongation at 120° C. of the laminated film obtained by laminating the resin layer containing no particles on the acrylic resin film is 80% or more.
  • one aspect of the second embodiment of the present invention is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, wherein the acrylic resin film is , a tensile elongation at break at 120° C. of 170% or more, the hard coat layer contains a urethane acrylate resin and particles, the average dispersed particle diameter of the particles is r ( ⁇ m), and the hard coat layer
  • the laminate has a pencil hardness of H or more and a haze of 3% or more, and the particles are formed on the acrylic resin film
  • the second embodiment of the present invention it is possible to provide a laminate containing an acrylic resin film, which is excellent in moldability, surface hardness and antiglare properties, and a method for producing the same.
  • a method for manufacturing a laminate according to a second embodiment of the present invention comprises (A2) a urethane acrylate resin applied to at least one side of an acrylic resin film; and a step of irradiating the resin layer containing the urethane acrylate resin and the particles with an active energy ray to cure the resin layer containing the urethane acrylate resin and the particles to form a hard coat layer.
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing,
  • d ⁇ r is satisfied
  • the laminate has a pencil hardness of H or more
  • a laminate according to a second embodiment of the present invention (hereinafter referred to as a "second laminate”) includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. and, wherein the acrylic resin film has a tensile elongation at break of 170% or more at 120 ° C., the hard coat layer includes a urethane acrylate resin and particles, and the average of the particles When the dispersed particle diameter is r ( ⁇ m) and the film thickness of the hard coat layer is d ( ⁇ m), d ⁇ r is satisfied, and the laminate has a pencil hardness of H or more and a haze of 3% or more, and the crack elongation at 120° C. of a laminated film obtained by laminating a resin layer containing no particles on the acrylic resin film is 80% or more.
  • both the laminate obtained by the method for manufacturing the laminate according to the second embodiment and the laminate according to the second embodiment may be referred to as "second laminate".
  • the laminate obtained by the above-described second laminate manufacturing method has surface hardness and is excellent in surface hardness. Moreover, it can be said that the laminate obtained by the second laminate manufacturing method has antiglare properties and is excellent in antiglare properties.
  • the method for evaluating the antiglare property of the laminate in this specification will be described in detail in later examples. Moreover, the laminate obtained by the second method for producing a laminate has excellent moldability.
  • Patent Document 4 only discloses a large-sized and flat-shaped film, and does not disclose a technique for solving "formability", which is one of the problems of the second embodiment.
  • Patent Document 5 discloses a constituent element in which the dispersed particle diameter of the antiglare particles is larger than the thickness of the antiglare particle-containing layer, the technical requirement is that the crack elongation of the resin layer is large.
  • configurations such as "moldability” and "small whitening during stretching”.
  • no laminate that satisfies requirements such as formability, surface hardness and antiglare property has been found in the prior art, and there is room for further improvement.
  • the present inventors have mainly studied the improvement of the moldability and surface hardness of the laminate and the antiglare property, and have found (i) a hard coat layer and a refractive index adjustment layer (for example, (low refractive index layer) and the like, and (ii) by controlling the dispersion state of particles in the hard coat layer, the functional It was found for the first time that a laminate excellent in formability, surface hardness and antiglare property can be obtained without causing peeling and cracking of the layers. Moreover, the present inventors have found that the laminate obtained by the above method can solve the problem of whitening of the stretched portion in addition to the moldability.
  • a hard coat layer and a refractive index adjustment layer for example, (low refractive index layer) and the like
  • laminates for molding having functional layers with surface hardness, anti-glare properties and anti-reflection properties have problems such as peeling and cracking of the coating layer at the stretched portion during molding and breakage of the film.
  • problems such as peeling and cracking of the coating layer at the stretched portion during molding and breakage of the film.
  • there was the following problem regarding whitening of the stretched portion (1) In the hard coat layer containing antiglare particles in the laminate, the hard coat layer sometimes undergoes significant whitening when the laminate is stretched during molding. (2) The low refractive index layer located on the outermost surface of the laminate sometimes whitened during stretching.
  • the inventors succeeded in obtaining the following knowledge in the process of earnestly examining these issues.
  • the resin used for the hard coat layer in the laminate should have a high crack elongation when stretched, and the film thickness of the hard coat layer and the content and dispersion state of the particles should be controlled. As a result, it has been found that, during the process of stretching the laminate, minute cleavage of the hard coat layer surface around the particles dispersed in the hard coat layer can be suppressed, and significant whitening of the hard coat layer during stretching can be prevented. .
  • the resin used in the hard coat layer in the laminate should have a high crack elongation during stretching
  • a laminate having excellent moldability, surface hardness and antiglare properties which is composed of an acrylic resin film and a hard coat layer, or an acrylic resin film, a hard coat layer and a low refractive index layer, has not been developed so far. There is no report, and the manufacturing method of the second laminate is an extremely excellent technique. The method for manufacturing the laminate will be described in detail below.
  • “laminate” intends a product (laminate) containing a hard coat layer containing particles, and a product (laminate) that does not contain a hard coat layer or a hard coat layer that contains particles.
  • the surface hardness of the hard coat layer is improved, and the crack elongation is high. Originally, it may be required not to cause breakage or significant whitening upon stretching. However, as described above, conventionally, surface hardness and scratch resistance and deformability and extensibility are contradictory properties, and it was not easy to achieve both.
  • Methods for imparting high stretchability during secondary molding while maintaining hardness to such a curable resin for hard coating include, for example, the methods (1) to (3) described above. . These methods (1) to (3) may be used alone or in combination as appropriate for the hard coat layer in the second laminate. may
  • the second laminate manufacturing method includes the following step (A2). - Step (A2): A resin layer containing a urethane acrylate resin and particles applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles. forming a hard coat layer.
  • the method for manufacturing the second laminate further includes the following step (B2). - Step (B2): A coating liquid containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied onto the hard coat layer obtained in the step (A2), and dried. A step of irradiating the obtained resin layer containing the acrylate-based resin with an active energy ray to cure the resin layer containing the acrylate-based resin to form a low refractive index layer.
  • step (A2) the resin layer containing the urethane acrylate resin and the particles applied to at least one side of the acrylic resin film is irradiated with active energy rays to cure the resin layer containing the urethane acrylate resin and the particles. to form a hard coat layer.
  • step (B2) a resin layer containing an acrylate-based resin is applied in a solution state on the hard coat layer containing the cured urethane acrylate resin formed in step (A2), and the resin layer is coated with The resin layer is cured by irradiation with active energy rays to form a low refractive index layer.
  • the second laminate manufacturing method further includes the following configuration in addition to the step (A2) and optional step (B2).
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C.
  • the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, and the average dispersed particle diameter of the particles is r ( ⁇ m), and the thickness of the hard coat layer is is d ( ⁇ m), d ⁇ r is satisfied.
  • the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120°C of 170% or higher.
  • the crack elongation at 120°C of the laminated film obtained by laminating the resin layer containing no particles on the acrylic resin film is 80% or more.
  • the hard coat layer and the low refractive index layer is preferably well adhered.
  • the low refractive index layer often contains a hard filler such as hollow silica, and often has a lower crack elongation than the hard coat layer. Therefore, cracks and microcracks may occur at a drawing ratio lower than the crack elongation of the hard coat layer alone.
  • the opening width of microcracks generated in the low refractive index layer will be fine, for example, 1 ⁇ m or less, and whitening will not easily occur due to stretching. .
  • the following (a) and/or (b) are preferable: (a) the low refractive index layer is formed in the step (B2) When the resin layer is applied in a solution state, the applied resin layer (low refractive index layer) to a certain extent within a range where the final interface between the two layers does not become unclear and the antireflection properties are not impaired. is impregnated into the hard coat layer; (b) the acrylate groups remaining after curing of the hard coat layer cause the resin layer Reactive curing with (low refractive index layer) to form a chemical bond at the interface between the finally obtained hard coat layer and the low refractive index layer.
  • the resin layer containing the urethane acrylate resin forming the hard coat layer is not completely cured, the crosslink density is slightly lowered, and the unreacted acrylate groups are partially removed. It is preferable to leave it.
  • a resin layer containing an acrylate-based resin that forms a low refractive index layer is applied in a solution state and optionally dried. In order to impregnate the layer, (a) appropriately adjusting the coating conditions and drying conditions, and/or (b) using a fixed amount of a slow-drying, high-boiling solvent as the solvent used in the solution, etc. is preferred.
  • the tensile elongation at break at 120°C of the acrylic resin film in the laminate is 170% or more, preferably 180% or more, and 190% or more. is more preferred.
  • the tensile elongation at break at 120° C. of the acrylic resin film is 170% or more, there is an advantage that the shape followability of molding is excellent.
  • the upper limit of the tensile elongation at break is not particularly limited, but from the viewpoint of improving the tensile strength, it is, for example, 350% or less, preferably 300% or less.
  • the pencil hardness of the laminate is H or higher, preferably 2H or higher, and more preferably 3H or higher.
  • H or higher it has the advantage of being less likely to be scratched.
  • the laminate has a haze of 3.0% or more, preferably 3.5% or more, more preferably 4.0% or more, and 4.5%. % or more is more preferable.
  • the haze of the laminate is 3.0% or more, there is an advantage that the antiglare property is excellent.
  • the haze of the laminate is measured by the method described in Examples.
  • the crack elongation of the laminate at 120°C is 80% or more, preferably 90% or more, and more preferably 100% or more.
  • the crack elongation at 120° C. of the laminate is 80% or more, there is an advantage that the shape followability during molding is excellent.
  • the upper limit of the crack elongation is not particularly limited, but from the viewpoint of improving surface hardness and wear resistance, it is, for example, 350% or less, and 300% or less. is preferred.
  • the "crack elongation of the laminate at 120°C” means the elongation at which cracks occur in the coating layer when the laminate is subjected to a tensile test in a constant temperature bath at 120°C.
  • the crack elongation of the laminate at 120°C is measured by the method described in Examples.
  • the crack elongation at 120 ° C. in the laminated film (hereinafter also referred to as "particle-free laminated film") in which the resin layer not containing the particles is laminated on the acrylic resin film
  • the degree is 80% or more, preferably 90% or more, and more preferably 100% or more.
  • the crack elongation at 120° C. of the particle-free laminated film is 80% or more, the advantage is that the laminated body is excellent in shape followability during molding, and whitening of the stretched portion during molding is suppressed. have The upper limit of the crack elongation at 120° C.
  • the particle-free laminated film is not particularly limited, but from the viewpoint of improving surface hardness and/or wear resistance, it is, for example, 200% or less and 180% or less. is preferred.
  • the crack elongation at 120° C. of the particle-free laminated film is measured by the method described in Examples.
  • the hard coat layer in the second laminate manufacturing method is a functional layer laminated on at least one side of the acrylic resin film, and contains a urethane acrylate resin and particles.
  • the hard coat layer may be laminated on one side or both sides of the acrylic resin film.
  • the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, and the average dispersed particles of the particles When the diameter is r ( ⁇ m) and the thickness of the hard coat layer is d ( ⁇ m), d ⁇ r is satisfied.
  • various hard coat layers containing urethane acrylate resin which are conventionally provided in various functional films, resin molded products, etc., can be employed without particular limitation.
  • Particles to be blended in the hard coat layer for the purpose of imparting antiglare properties are desired antiglare properties, sharpness of transmitted images, glare, jet-blackness of the surface, surface hardness, slipperiness, antistatic properties, and the like.
  • the material of the particles, the number of parts to be blended, the type of dispersion solvent for the particles, the particle diameter, the dispersed particle diameter, the film thickness of the hard coat layer, and the relative refractive index difference with the hard coat base material can be appropriately adjusted within a known technical range that does not impair the effects of the present invention.
  • the material of the particles to be compounded in the hard coat layer is not particularly limited as long as the effects of the present invention are achieved.
  • Examples include (a) silica, alumina, glass beads or flakes, mica, clay, titanium oxide, and zinc oxide. , zirconia, metal particles, and/or (b) crosslinked organic resin particles based on alkyl (meth)acrylate units, aromatic vinyl units, siloxane units, etc., and (c) core-shell type multilayer structure resin particles, and the like.
  • the particles are inorganic oxide particles (for example, silica, alumina, titanium oxide, zinc oxide, zirconia, etc.) and/or crosslinked organic Resin particles are preferable, and at least one selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins is more preferable.
  • Silica particles, alumina particles, and crosslinked organic resin particles are particularly preferred from the viewpoint of the balance of physical properties such as antiglare properties, dispersibility, and surface hardness.
  • these particles are formed by known methods such as using a silane coupling agent or reactive monomer that may have a reactive substituent, plasma treatment, corona treatment, etc.
  • Reactive functional groups having reactivity with urethane acrylate resins include (a) radical reactive functional groups such as vinyl groups and (meth)acryloyl groups, (b) epoxy groups, oxetane groups, hydroxyl groups, carboxyl groups, mercapto ionic functional groups such as groups, isocyanyl groups, hydroxyl groups and amino groups; and (c) moisture-curable functional groups such as silyl groups and alkoxysilyl groups.
  • the particles contained in the hard coat layer satisfy d ⁇ r, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer. That is, the particles contained in the hard coat layer have an average dispersed particle size equal to or larger than the thickness of the hard coat layer.
  • the average dispersed particle diameter of the particles contained in the hard coat layer is smaller than the film thickness of the hard coat layer, local cleavage of the hard coat layer occurs at the peripheral portion of the dispersed particles in the thin hard coat layer during stretching. / Or cracks may occur and the dispersed particles may be exposed on the surface of the hard coat layer.
  • the state of the hard coat surface changes (color difference, haze, smoothness, etc.) before and after stretching becomes large, and this is thought to be observed as whitening of the stretched portion.
  • the average dispersed particle size of the particles contained in the hard coat layer is approximately the same as the thickness of the hard coat layer or larger than the thickness of the hard coat layer, at least Since some particles are exposed on the hard coat layer surface, there is a tendency for changes in the state of the hard coat surface before and after stretching (color difference, haze, gloss, smoothness, etc.) to be small, and whitening after stretching is reduced. It is considered to have the advantage of
  • particles may be dispersed in the state of primary particles, or may be dispersed in an aggregated state of multiple particles, depending on the size of the primary particles.
  • the size of a region (dispersed domain) in which these particles or aggregates thereof are distributed is defined as "average dispersed particle size".
  • average dispersed particle size When the size of the primary particles is large, the average dispersed particle size and the primary (basic) particle size may be the same.
  • the average dispersed particle diameter of the particles is not particularly limited as long as the effect of the present invention is exhibited, but is, for example, 0.1 ⁇ m to 50.0 ⁇ m, 0.2 ⁇ m to 25.0 ⁇ m, 0.5 ⁇ m to It may be 10 ⁇ m, 1.0 ⁇ m to 4.0 ⁇ m, 1.2 ⁇ m to 3.8 ⁇ m, 1.4 ⁇ m to 3.6 ⁇ m, and the like.
  • the average dispersed particle size of particles is measured by the method described in Examples.
  • the content of the particles in the hard coat layer is not particularly limited as long as the effect of one embodiment of the present invention is exhibited. Yes, 0.5 to 20.0 wt%, 1.0 to 15.0 wt%, 2.0 to 5.0 wt%, 2.2 to 4.8 wt%, 2.4 to It may be 4.6% by weight or the like.
  • the thickness of the hard coat layer is not particularly limited as long as the effects of the present invention can be achieved. It may be 0.4 to 2.8 ⁇ m or the like. The thickness of the hard coat layer is measured by the method described in Examples.
  • urethane acrylate resin in addition to the urethane acrylate resin, other components may be used in combination in the hard coat layer of the laminate in the second method for producing the laminate.
  • Components other than the urethane acrylate resin include, for example, monofunctional or polyfunctional (meth)acrylates, epoxy acrylate monomers, polyester acrylates, silicon acrylates, polycarbonate acrylates, polyacrylic acrylates, and the like, which have radically reactive functional groups. Monomers, oligomers, resins, or mixtures thereof can be used in combination.
  • a urethane acrylate resin and, for example, (a) a hydrolytic condensate of a difunctional to tetrafunctional silane compound, and/or (b) a cationically curable and/or anionically curable functional group such as an epoxy group and an oxetane group may be used in combination with a composition containing a monomer, oligomer, resin, or mixture thereof having As a component used for forming the hard coat layer, the urethane acrylate resin may be used alone, or in addition to the urethane acrylate resin, one or more of the other components may be added in combination. .
  • composition comprising (meth)acrylate, epoxy acrylate monomer, hydroxyl group-containing (meth)acrylate, polyisocyanate, polyhydric alcohol, organotin-based urethanization catalyst and hydrolytic condensate of silane compound, Since the contents are the same as those described in the ⁇ Others> section of the first embodiment, the description is used and the description is omitted here.
  • the curable composition When a resin layer (coating film) made of a curable composition is cured to form a hard coat layer, the curable composition is used for the purpose of improving coating properties, scratch resistance after curing, and antifouling properties.
  • various known leveling agents may be added. The content of the leveling agent is the same as that described in the ⁇ Others> section of the first embodiment, so the description is incorporated and the description thereof is omitted here.
  • the curable composition When forming a hard coat layer by applying a curable composition, the curable composition contains an ultraviolet absorber, a light stabilizer, an antifoaming agent, an antioxidant, a light diffusing agent, a matting agent, and an anti-oxidant.
  • Various additives such as staining agents, lubricants, colorants such as pigments and dyes, organic particles, inorganic particles, and antistatic agents can be added as required. Additives are not limited to these.
  • An organic solvent is usually blended in order to give the curable composition appropriate applicability. Since the content of the organic solvent is the same as that described in the ⁇ Others> section of the first embodiment, the description is incorporated and the description thereof is omitted here.
  • the method of applying the curable composition to the main surface of the above-mentioned acrylic resin film, which is the base film, is the same as the content described in the ⁇ Others> section of the first embodiment. , the description is used, and the description is omitted here.
  • the hard coat is formed by curing the resin layer obtained by light such as ultraviolet irradiation. A layer is formed.
  • the organic solvent may optionally be removed from the resin layer (coating film) by drying.
  • the drying temperature of the resin layer (coating film) when removing the organic solvent by drying is the same as the content described in the ⁇ Others> section of the first embodiment, so that description is used and described here. is omitted.
  • a commercially available product may be used as the composition for forming the hard coat layer. Since the content of the marketing is the same as that described in the ⁇ Others> section of the first embodiment, the description is used and the description is omitted here.
  • inorganic particles and/or metal particles may be further added.
  • examples of such inorganic particles and metal particles include, but are not limited to, silica, alumina, titanium oxide, zinc oxide, zirconia, graphene, nanocarbon, carbon black, nanodiamond, mica, barium titanate, boron nitride, Examples thereof include metallic silver and metallic copper.
  • These particles may be added for the purpose of improving the abrasion resistance of the hard coat layer, or may be added for further imparting antiglare properties.
  • inorganic particles and/or metal particles having a function of improving wear resistance and inorganic particles and/or metal particles having a function of imparting antiglare properties may be used in combination. These particles may be used without surface treatment, or may be surface-treated in advance by a known method to control the dispersed state, and the affinity with the hard coat layer may be appropriately controlled. .
  • a low refractive index layer containing an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is further provided on the hard coat layer.
  • the low refractive index layer constitutes an antireflection layer. Since each aspect of the low refractive index layer is the same as the content described in the section (low refractive index layer) of the first embodiment, the description is used and the description is omitted here.
  • the second laminate may have functional layers other than those described above.
  • the other functional layers are the same as those described in the ⁇ Other functional layers> section of the first embodiment, so the description is used and the description is omitted here.
  • each aspect of (a) the integrated amount of ultraviolet (UV) light in the step (A2) and (b) the chill roll temperature in the step (A2) will be described in the (Others) section of the first embodiment.
  • the conditions described in the above (hard coat layer) section of the second embodiment are used for conditions other than those described above in the step (A2).
  • the hard coat layer obtained in the step (A2) is coated with an acrylate resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm. Then, the resin layer containing the acrylate-based resin is irradiated with an active energy ray to cure the resin layer containing the acrylate-based resin, thereby forming a low refractive index layer.
  • each aspect of (a) the integrated amount of ultraviolet (UV) light in the step (B2) and (b) the cooling roll temperature in the step (B2) will be described in the (Others) section of the first embodiment.
  • the conditions described in the above (hard coat layer) section of the second embodiment are used for conditions other than those described above in the step (B2).
  • a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the particle diameter is less than 100 nm.
  • a laminate comprising a step of preparing an acrylate resin containing 40% or more of hollow silica fine particles, wherein the solvent contains at least one solvent, and the solvent having the highest boiling point has a boiling point of 115°C to 180°C.
  • the "acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm" can also be said to be a "composition for forming a low refractive index layer.”
  • step (a) the boiling point of the highest boiling solvent in step (B2′), (b) the solvent used in step (B2′), and (c) in step (B2′), the acrylate-based
  • the acrylate-based Each aspect of the method of adding a solvent to the resin to prepare the acrylate-based resin containing 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm was described in the (Others) section of the first embodiment.
  • step (12′) (a) the boiling point of the solvent with the highest boiling point in step (B1′), (b) the solvent used in step (B1′), and (c) the solvent added to the acrylate resin in step (12′) and the method for preparing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm.
  • the second laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film. More specifically, the second laminate is a laminate including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, and the acrylic resin film is The hard coat layer has a tensile elongation at break of 170% or more at 120° C., contains a urethane acrylate resin and particles, and has an average dispersed particle diameter of r ( ⁇ m) of the particles. When the thickness is d ( ⁇ m), d ⁇ r is satisfied, the laminate has a pencil hardness of H or more and a haze of 3% or more, and the particles are formed on the acrylic resin film.
  • the crack elongation at 120° C. of the laminated film laminated with the resin layer not containing the resin layer is 80% or more.
  • the second laminate further includes a low refractive index layer on the hard coat layer.
  • the second laminate is composed of at least a specific acrylic resin film and a specific hard coat layer, as described above. Moreover, in a preferred aspect of the second embodiment of the present invention, the second laminate is composed of a specific acrylic resin film, a specific hard coat layer, and a specific low refractive index layer.
  • the second laminate is composed of the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer).
  • the second laminate comprises the acrylic resin film described above (acrylic resin film) and the hard coat layer described above (hard coat layer). and the low refractive index layer described above (low refractive index layer).
  • the second laminate is preferably the above [2-2. Second Laminate Manufacturing Method].
  • the ⁇ haze after 80% stretching at 120° C. of the second laminate is, for example, 8.0% or less. , preferably 7.5% or less, more preferably 7.0% or less.
  • the ⁇ haze of the second laminate after 80% stretching at 120° C. is 8.0% or less, it has the advantage of suppressing whitening during molding.
  • the ⁇ haze of the second laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
  • the ⁇ haze after 80% stretching at 120° C. of the second laminate is, for example, , 10% or less, preferably 9.5% or less, more preferably 9.0% or less, and even more preferably 8.5% or less. If the ⁇ haze of the second laminate after 80% stretching at 120° C. is 10% or less, it has the advantage of suppressing whitening during molding.
  • the ⁇ haze of the second laminate after being stretched by 80% at 120° C. is measured by the method described in Examples.
  • the luminous reflectance of the second laminate is, for example, 3.0% or less, preferably 2.8% or less, and more preferably 2.6% or less.
  • the second laminate has a luminous reflectance of 3.0% or less, it has the advantage of excellent antireflection performance and excellent visibility when laminated on the display surface.
  • the luminous reflectance of the second laminate is measured by the method described in Examples.
  • each aspect of the absolute value of the thickness direction retardation (Rth) is, for each aspect, in the first laminate described in the section (Laminate) of the first embodiment, (a) In the laminated film obtained by laminating the low refractive index layer on the acrylic resin film, ⁇ haze after 20% stretching at 120 ° C., (b) in-plane retardation (Re) and (c) thickness direction retardation ( Rth), the description is incorporated, and the description is omitted here.
  • the second laminate may have a primer layer on the surface (two surfaces) of the acrylic resin film opposite to the surface provided with the hard coat layer.
  • the aspect of the primer layer in the second laminate is the same as the aspect of the primer layer in the first laminate described in the section (Laminate) of the first embodiment, so the description is omitted. The description is omitted here.
  • a molded body (hereinafter referred to as "second molded body") comprising a second laminate is provided.
  • the second molded body is obtained by laminating the second laminate on at least part of the surface of the molded body having at least a non-planar shape.
  • the second laminate When the second laminate is used, (a) it has a complicated three-dimensional shape, and (b) surface hardness, scratch resistance, chemical resistance, antifouling property, reflective property, antiglare property, etc. are controlled. In addition, it is possible to easily produce a molded product with excellent appearance. For this reason, the second molded body is the same as [1-4. Molded article], for example, it is preferably used for applications such as a front plate of an in-vehicle display having a planar shape, a curved shape and/or a three-dimensional shape. Accordingly, in a second embodiment of the present invention, there is provided an in-vehicle display front panel comprising a second molded body.
  • An embodiment of the present invention may have the following configuration. ⁇ X1> (A1) A resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer. process and (B1) An acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is coated on the hard coat layer obtained in the step (A1) to obtain a resin containing the acrylate-based resin.
  • a method for producing a laminate comprising a step of irradiating the layer with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer,
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
  • the hard coat layer contains a urethane acrylate resin
  • the method for producing a laminate wherein the laminate has a crack elongation of 80% or more at 120°C.
  • ⁇ X2> The method for producing a laminate according to ⁇ X1>, wherein the integrated amount of active energy ray irradiation in the step (A1) is 150 to 500 mJ/cm 2 .
  • a solvent is added to the acrylate resin that is the material of the low refractive index layer to contain 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm.
  • ⁇ X4> Any of ⁇ X1> to ⁇ X3>, wherein the laminated film obtained by laminating the low refractive index layer on the acrylic resin film has a ⁇ haze of 30% or less after 20% stretching at 120°C. 2.
  • ⁇ X5> (A1) A resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer.
  • a method for manufacturing a laminate comprising: The acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer contains a urethane acrylate resin, The method for producing a laminate, wherein the laminate has a crack elongation of 80% or more at 120°C.
  • ⁇ X6> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The hard coat layer contains a urethane acrylate resin, The laminate has a pencil hardness of H or more and a crack elongation at 120° C. of 80% or more.
  • a low refractive index layer is further provided on the hard coat layer,
  • ⁇ X8> The laminate according to ⁇ X7>, wherein the laminate has a luminous reflectance of 2.0% or less.
  • ⁇ X9> The laminate according to ⁇ X7> or ⁇ X8>, wherein the laminate has an in-plane retardation (Re) of 10 nm or less and an absolute value of a thickness direction retardation (Rth) of 30 nm or less.
  • ⁇ X10> The laminate according to any one of ⁇ X6> to ⁇ X9>, having a ⁇ haze of 3.0% or less when the stretching rate at 120° C. is 80%.
  • ⁇ X11> Any one of ⁇ X7> to ⁇ X10>, wherein the microcrack width in the direction parallel to the tensile stress of the low refractive index layer is 2.0 ⁇ m or less when the stretching ratio at 120° C. is 80%.
  • the laminate according to . ⁇ X12> When the stretching ratio at 120° C. is 80%, microcracks from the surface of the laminate on the low refractive index layer side at the microcrack sites in the direction parallel to the tensile stress of the low refractive index layer.
  • ⁇ X13> A molded article comprising the laminate according to any one of ⁇ X6> to ⁇ X12>.
  • ⁇ X14> A product obtained by laminating the laminate according to any one of ⁇ X6> to ⁇ X12> on at least part of the surface of a molded article having a non-planar shape at least in part. , ⁇ X13>.
  • one embodiment of the present invention may have the following configuration.
  • ⁇ Y1> A resin layer containing a urethane acrylate resin and particles coated on at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles.
  • a method for manufacturing a laminate comprising a step of forming a hard coat layer by The acrylic resin film has a tensile elongation at break of 170% or more at 120°C,
  • the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r
  • the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C. of 170% or higher,
  • a method for producing a laminate wherein a crack elongation at 120° C.
  • step (B) A coating liquid containing an acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is applied onto the hard coat layer obtained in the step (A), and the obtained acrylate-based A step of irradiating a resin layer containing a resin with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer.
  • ⁇ Y3> The method for producing a laminate according to ⁇ Y1> or ⁇ Y2>, wherein the integrated amount of active energy ray irradiation in the step (A) is 150 to 500 mJ/cm 2 .
  • step (B) Before the step (B), (B′) a solvent is added to the acrylate resin that is the material of the low refractive index layer, and the hollow silica fine particles having a particle diameter of less than 100 nm are contained in an amount of 40% or more.
  • a laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film,
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
  • the hard coat layer contains a urethane acrylate resin and particles, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r
  • the laminate has a pencil hardness of H or more and a haze of 3% or more,
  • ⁇ Y7> The laminate according to ⁇ Y6>, wherein the particles are silica particles.
  • the hard coat layer contains 2.0 to 5.0% by weight of the silica particles, The laminate according to ⁇ Y7>, wherein the silica particles have an average dispersed particle size of 1.0 to 4.0 ⁇ m.
  • ⁇ Y9> The laminate according to any one of ⁇ Y6> to ⁇ Y8>, wherein the hard coat layer has a thickness of 0.2 to 3.0 ⁇ m.
  • ⁇ Y10> The laminate according to any one of ⁇ Y6> to ⁇ Y9>, having a ⁇ haze of 8.0% or less when the stretching rate at 120° C. is 80%.
  • a low refractive index layer is further provided on the hard coat layer,
  • ⁇ Y12> The laminate according to ⁇ Y11>, wherein the laminate has a luminous reflectance of 3.0% or less.
  • ⁇ Y13> The laminate according to ⁇ Y11> or ⁇ Y12>, which has a crack elongation of 170% or more at 120°C.
  • ⁇ Y14> The laminate according to any one of ⁇ Y11> to ⁇ Y13>, which has a ⁇ haze of 10% or less when the stretching rate at 120° C. is 80%.
  • ⁇ Y15> A molded article comprising the laminate according to any one of ⁇ Y6> to ⁇ Y14>.
  • one embodiment of the present invention may have the following configuration.
  • ⁇ Z1> A method for manufacturing a laminate, (A1) A step of irradiating a resin layer containing a urethane acrylate resin applied to at least one surface of an acrylic resin film with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer; (B1) An acrylate-based resin containing 40% or more of hollow silica fine particles having a particle diameter of less than 100 nm is coated on the hard coat layer obtained in the step (A1) to obtain a resin containing the acrylate-based resin.
  • a step of irradiating the layer with an active energy ray to cure the resin layer containing the acrylate resin to form a low refractive index layer The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The method for producing a laminate, wherein the laminate has a crack elongation of 80% or more at 120°C.
  • the acrylic resin film is formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer, and the thermoplastic acrylic polymer is methyl methacrylate.
  • Consisting of 50% by mass to 100% by mass of units and 0% by mass to 50% by mass of other structural units, the total amount of the methyl methacrylate unit and the other structural units in the thermoplastic acrylic polymer is The method for producing a laminate according to ⁇ Z1>, which is 100% by mass.
  • the crosslinked elastomer contains 50% by mass or more of an acrylic acid ester unit in 100% by mass of the crosslinked elastomer, and the polymer particles are a graft polymer positioned on the surface layer side of the crosslinked elastomer and the crosslinked elastomer.
  • the method for producing a laminate according to ⁇ Z2> which is a graft copolymer particle containing a layer.
  • ⁇ Z4> The method for producing a laminate according to any one of ⁇ Z1> to ⁇ Z3>, wherein the resin layer containing the urethane acrylate resin further contains particles.
  • ⁇ Z5> The method for producing a laminate according to ⁇ Z4>, wherein the particles are inorganic oxide particles and/or crosslinked organic resin particles.
  • ⁇ Z6> The particles are one or more selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins, ⁇ Z4> or ⁇ Z5>.
  • ⁇ Z7> Any one of ⁇ Z4> to ⁇ Z6>, wherein at least some of the particles contain a reactive functional group having reactivity with the urethane acrylate resin on the surface of the particles A method for manufacturing the described laminate.
  • ⁇ Z8> The content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r,
  • the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C.
  • a solvent is added to the acrylate resin that is the material of the low refractive index layer to contain 40% or more of the hollow silica fine particles having a particle diameter of less than 100 nm.
  • the solvent contains at least one or more solvents, and the boiling point of the solvent with the highest boiling point among the solvents is 115 to 180 ° C. body manufacturing method.
  • ⁇ Z11> Any of ⁇ Z1> to ⁇ Z10>, wherein the laminated film obtained by laminating the low refractive index layer on the acrylic resin film has a ⁇ haze of 30% or less after 20% stretching at 120°C. or a method for producing a laminate according to any one of the above.
  • a method for manufacturing a laminate (A1) irradiating a resin layer containing a urethane acrylate resin applied to at least one side of an acrylic resin film with an active energy ray to cure the resin layer containing the urethane acrylate resin to form a hard coat layer; including
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120° C., and the hard coat layer contains a urethane acrylate resin,
  • ⁇ Z13> The method for producing a laminate according to ⁇ Z12>, wherein the laminate has a ⁇ haze of less than 8.0% when the stretch ratio at 120°C is 80%.
  • the acrylic resin film is formed by molding an acrylic resin composition containing a thermoplastic acrylic polymer and polymer particles containing a crosslinked elastomer, and the thermoplastic acrylic polymer is methyl methacrylate. Consisting of 50% by mass to 100% by mass of units and 0% by mass to 50% by mass of other structural units, the total amount of the methyl methacrylate unit and the other structural units in the thermoplastic acrylic polymer is The method for producing a laminate according to ⁇ Z12> or ⁇ Z13>, which is 100% by mass.
  • the crosslinked elastomer contains 50% by mass or more of an acrylic acid ester unit in 100% by mass of the crosslinked elastomer, and the polymer particles are a graft polymer positioned on the surface layer side of the crosslinked elastomer and the crosslinked elastomer.
  • ⁇ Z16> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film,
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C
  • the hard coat layer contains a urethane acrylate resin
  • the laminate has a pencil hardness of H or more and a crack elongation at 120° C. of 80% or more.
  • ⁇ Z17> The laminate according to ⁇ Z16>, wherein the hard coat layer further contains particles.
  • ⁇ Z18> The laminate according to ⁇ Z17>, wherein the particles are inorganic oxide particles and/or crosslinked organic resin particles.
  • the particles are one or more selected from the group consisting of silica, alumina, zirconia, crosslinked silicone resins, crosslinked acrylic resins and crosslinked aromatic vinyl resins, ⁇ Z17> or ⁇ Z18>.
  • a low refractive index layer is further provided on the hard coat layer,
  • ⁇ Z22> The laminate according to ⁇ Z21>, wherein the laminate has a luminous reflectance of 2.0% or less.
  • ⁇ Z23> The laminate according to ⁇ Z21> or ⁇ Z22>, wherein the laminate has an in-plane retardation (Re) of 10 nm or less and an absolute value of a thickness direction retardation (Rth) of 30 nm or less.
  • ⁇ Z24> The laminate according to any one of ⁇ Z16> to ⁇ Z23>, which has a ⁇ haze of less than 8.0% when the stretching rate at 120° C. is 80%.
  • ⁇ Z25> The laminate according to any one of ⁇ Z16> to ⁇ Z24>, which has a ⁇ haze of 3.0% or less when the stretching rate at 120° C. is 80%.
  • ⁇ Z26> Any one of ⁇ Z21> to ⁇ Z25>, wherein the microcrack width in the direction parallel to the tensile stress of the low refractive index layer is 2.0 ⁇ m or less when the stretching ratio at 120° C. is 80%. 1. Laminate according to one. ⁇ Z27> When the stretching ratio at 120° C.
  • ⁇ Z28> A molded article comprising the laminate according to any one of ⁇ Z16> to ⁇ Z27>.
  • ⁇ Z29> ⁇ Z28> obtained by laminating the laminate according to any one of ⁇ Z16> to ⁇ Z27> on at least part of the surface of the molded body having a non-planar shape at least in part >.
  • a method for manufacturing a laminate (A2) A resin layer containing a urethane acrylate resin and particles coated on at least one side of an acrylic resin film is irradiated with an active energy ray to cure the resin layer containing the urethane acrylate resin and particles for hard coating.
  • the acrylic resin film has a tensile elongation at break of 170% or more at 120°C,
  • the content of the particles is 2.0 to 5.0% by weight with respect to the hard coat layer after curing, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r,
  • the laminate has a pencil hardness of H or higher, a haze of 3% or higher, and a crack elongation at 120° C. of 170% or higher,
  • a method for producing a laminate wherein a crack elongation at 120° C. in a laminated film obtained by laminating a resin layer containing no particles on the acrylic resin film is 80% or more.
  • ⁇ Z31> The method for producing a laminate according to ⁇ Z30>, wherein the laminate has a ⁇ haze of less than 8.0% when the stretch ratio at 120°C is 80%.
  • ⁇ Z32> A laminate comprising an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film, The acrylic resin film has a tensile elongation at break of 170% or more at 120°C, The hard coat layer contains a urethane acrylate resin and particles, where r ( ⁇ m) is the average dispersed particle diameter of the particles and d ( ⁇ m) is the film thickness of the hard coat layer, satisfying d ⁇ r, The laminate has a pencil hardness of H or more and a haze of 3% or more, A laminate having a crack elongation at 120° C.
  • Example A Hereinafter, the first embodiment of the present invention will be described in more detail based on Example A, but the present invention is not limited to these Examples A.
  • Parts and “%” in Example A and Comparative Example A below mean parts by mass or % by mass.
  • the average particle size of the crosslinked elastomer or graft copolymer particles dispersed in the aqueous latex was measured using a laser diffraction particle size distribution analyzer (Microtrac particle size distribution analyzer MT3000 manufactured by Nikkiso Co., Ltd.).
  • Glass transition temperature (Tg) A differential scanning calorimeter (DSC) SSC-5200 manufactured by Seiko Instruments was used. The sample (acrylic resin film) was once heated to 200°C at a rate of 25°C/min, held at 200°C for 10 minutes, and then lowered to 50°C at a rate of 25°C/min (preliminary adjustment). . Thereafter, the sample was heated to 200° C. at a heating rate of 10° C./min, during which DSC measurement was performed. A differential value (SSDC) was obtained from the obtained DSC curve, and the glass transition temperature of the acrylic resin film was obtained from the maximum point thereof.
  • SSDC differential value
  • Test breaking elongation A piece of 10 mm (width) ⁇ 100 mm (length) was cut from the acrylic resin film to obtain a test piece.
  • the test piece using a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C., the preheating time is 2 minutes, the distance between chucks is 40 mm, and the tensile speed is 200 mm / min. Measurement was performed under the conditions of The elongation at break of the acrylic resin film was taken as the tensile elongation at break.
  • the value of the tensile elongation at break is the arithmetic mean of the three values excluding the highest and lowest values among the measurement results obtained using five test pieces.
  • the crack elongation was measured for a laminate in which a hard coat layer or a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample. For the sample, using a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C., preheating time 2 minutes, distance between chucks 40 mm, tensile speed 200 mm / min. Measurements were made under the following conditions. The crack elongation at 120° C. was defined as the elongation when cracks occurred in the hard coat layer. The value of crack elongation is the arithmetic mean value of the test results (three) obtained by measuring three samples. The results are shown in Table 5.
  • the measurement of whitening after 80% stretching at 120° C. was performed on a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
  • a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min.
  • the film was stretched by 80% under these conditions, and the degree of whitening was visually observed.
  • the evaluation criteria are ⁇ (excellent): no whitening in both reflection and transmission, ⁇ (good): no whitening in reflection, slight whitening in transmission, ⁇ (acceptable): slight whitening in both reflection and transmission, ⁇ (poor): Whitening is assumed to occur in both reflection and transmission.
  • the film thickness of the acrylic resin film was measured with a PEACOCK dial gauge No. 25 (manufactured by Ozaki Manufacturing Co., Ltd.).
  • the film thickness of the hard coat layer was measured with an F20 film thickness measurement system (manufactured by Filmetrics Co., Ltd.).
  • the opposite side of the hard coat layer was painted black with a felt-tip pen, and the refractive index of the acrylic resin film was set at 1.49 and the refractive index of the hard coat layer at 1.50.
  • the haze of the laminate was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • ⁇ haze after 80% stretch at 120°C The measurement of ⁇ haze after stretching the laminate by 80% at 120° C. was performed on a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
  • a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min.
  • the haze of the laminated body after stretching was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the difference between the haze of the laminate before stretching and the haze of the laminate after 80% stretching was defined as " ⁇ haze after 80% stretching at 120°C”.
  • ⁇ haze after 20% stretching at 120°C Measurement of ⁇ haze after 20% stretching at 120° C. of the laminate was performed on a laminate in which a low refractive index layer was formed directly on one side of the acrylic resin film without forming a hard coat layer on one side of the acrylic resin film. done for film. Specifically, the laminate film was cut into a piece of 10 mm (width) ⁇ 100 mm (length) to obtain a sample. For the sample, a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C.
  • the haze of the laminated body after stretching was measured according to ISO14782 using a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The difference between the haze of the laminate before stretching and the haze of the laminate after 20% stretching was defined as " ⁇ haze after 20% stretching at 120°C”.
  • the luminous reflectance of the laminate was measured for a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film.
  • the surface opposite to the surface on which the hard coat layer and the low refractive index layer are formed is painted black with a black oil-based marking pen (Magic Ink (registered trademark), manufactured by Teranishi Kagaku Kogyo), and then A black vinyl tape was pasted together to form a sample.
  • the luminous reflectance of the sample was measured according to JIS Z 8722 using a colorimeter SC-P (manufactured by Suga Test Instruments Co., Ltd.).
  • the pencil hardness of the laminate was measured according to JIS K5600-5-4.
  • the width of the microcracks and the depth of the grooves of the microcracks were measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 10 mm (width) ⁇ 100 mm (length) to obtain a sample.
  • a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. was used for a preheating time of 2 minutes, a distance between chucks of 40 mm, and a tensile speed of 200 mm / min. Stretched 80% under conditions. The stretched sample was observed with a transmission microscope to measure the width of the microcracks and the depth of the grooves of the microcracks.
  • the particle diameter of the hollow silica fine particles was obtained by observing a cross-sectional photograph of the laminate of 1200 nm ⁇ 800 nm at a magnification of 200,000 times measured with an electron microscope (Hitachi High-Technologies Corporation, H7650). An arithmetic mean value of the particle diameters of 10 hollow silica fine particles was calculated, and the obtained value was taken as the particle diameter of the hollow silica fine particles.
  • the average dispersed particle diameter of the particles in the hard coat was obtained by observing a cross-sectional photograph of the laminate of 1200 nm ⁇ 800 nm at a magnification of 200,000 using an electron microscope (Hitachi High-Technologies Corporation, H7650). An arithmetic mean value of the particle sizes of 10 dispersed domains of the particles in the hard coat was calculated, and the obtained value was defined as the average dispersed particle size of the particles in the hard coat.
  • the in-plane retardation was measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 40 mm ⁇ 40 mm and used as a sample. The sample was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.) at a temperature of 23 ⁇ 2° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0°.
  • KOBRA-WR automatic birefringence meter
  • Thickness direction retardation The thickness direction retardation was measured for a laminate in which a hard coat layer and a low refractive index layer were formed on one side of an acrylic resin film. Specifically, the laminate was cut into a size of 40 mm ⁇ 40 mm and used as a sample. The sample was measured using an automatic birefringence meter (KOBRA-WR manufactured by Oji Keisoku Co., Ltd.) at a temperature of 23 ⁇ 2° C. and a humidity of 50 ⁇ 5% at a wavelength of 590 nm and an incident angle of 0°.
  • KOBRA-WR automatic birefringence meter
  • the average dispersed particle diameter of the particles was obtained by observing a cross-sectional photograph of 48 ⁇ m ⁇ 32 ⁇ m at a magnification of 10,000 times measured with an electron microscope (Hitachi High-Technologies Co., Ltd., H7650). The average value of dispersed particles was calculated.
  • the antiglare properties were measured on laminates having a hard coat layer or a hard coat layer and a low refractive index layer formed on one side. Specifically, a black adhesive PET film was adhered to the surface of the laminate opposite to the side on which the hard coat layer was formed, and reflection of a fluorescent lamp was visually observed in a bright room environment. ⁇ : The outline of the fluorescent lamp was blurred and could not be confirmed, ⁇ : The outline of the fluorescent lamp could be clearly confirmed.
  • gloss The glossiness of the laminate was measured for a laminate having a hard coat layer and a low refractive index layer formed on one side of an acrylic resin film.
  • specular gloss of the sample at 60° was measured according to JIS Z 8741 using a gloss meter VG7000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the following monomer mixture was continuously added into the polymerization apparatus at a rate (rate) of 10 parts by mass/hour. After the completion of the addition of the monomer mixture, the polymerization was continued for 0.5 hour to obtain particles of crosslinked elastomer (A1) (average particle size: 90 nm). The polymerization conversion rate was 99.5%.
  • Monomer mixture - Vinyl monomer mixture (90% n-butyl acrylate (BA) and 10% methyl methacrylate (MMA)) 30 parts - Allyl methacrylate (AlMA) 1 part - Cumene hydroperoxide (CHP) 0.2 parts.
  • BA n-butyl acrylate
  • MMA methyl methacrylate
  • AlMA Allyl methacrylate
  • CHP Cumene hydroperoxide
  • 0.05 part by mass of sodium dioctyl sulfosuccinate was charged into the polymerization apparatus containing the particles of the crosslinked elastomer (A1).
  • the internal temperature of the polymerization apparatus was set to 60° C., and 70 parts of a vinyl monomer mixture (MMA 98%, BA 1%, and RUVA 1%) for forming the graft polymer layer (A2), tertiary dodecyl mercaptan (t-DM) 0.
  • a monomer mixture consisting of .5 parts and 0.5 parts of CHP was continuously added into the polymerization apparatus at a rate of 10 parts/hour.
  • RUVA is a reactive ultraviolet absorber (2-(2'-hydroxy-5'-methacryloyloxyethylphenyl)-2-H-benzotriazole (RUVA-93, manufactured by Otsuka Chemical Co., Ltd.)).
  • graft copolymer particles (B1) consisting of a two-layer core (crosslinked elastomer (B1)) and shell (graft polymer layer (B2)) was obtained.
  • the polymerization conversion rate was 100.0%.
  • the coagulated solid content was washed with water and dried to obtain white powdery graft copolymer particles (B).
  • the average particle size of the graft copolymer particles (B) was 250 nm. Table 2 shows the blending amount of each component.
  • melt-kneaded product was taken out from the extruder in the form of a strand, cooled in a water tank, and then cut using a pelletizer to obtain pellets.
  • a die with ⁇ 4.5 ⁇ 15 holes was used, and a leaf disk filter (manufactured by Nagase & Co., Ltd., filtration system 10 ⁇ m, size 7 inches, number of sheets 33) was installed as a polymer filter between the die and the head of the extruder.
  • the obtained pellets are melt-kneaded at a discharge rate of 150 kg/hr at a cylinder setting temperature of 180° C. to 240° C. using a 90 mm ⁇ single screw extruder with a T die, and discharged from a T die at a die temperature of 240° C. , Both sides are brought into contact with a touch roll equipped with a metal cast roll temperature-controlled to 90 ° C. and an elastic metal sleeve temperature-controlled to 60 ° C. While cooling and solidifying, a film is formed and wound up, and an acrylic film with a thickness of 175 ⁇ m ( An acrylic resin film) was obtained.
  • Example A1 On the acrylic film (acrylic resin film) obtained in Production Example 3, Paint 1 shown in Table 4 was applied using a bar coater to form a resin layer on the acrylic film. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light quantity shown in Table 5 to cure the resin layer and form a hard coat layer. The temperature of the cooling roll when forming the hard coat layer was 50°C. Various properties of the obtained laminate were evaluated. Table 5 shows the results. In addition, in Example 1, a laminate composed of an acrylic film and a hard coat layer was produced.
  • ultraviolet rays active energy rays
  • Example 1 the obtained laminate was measured and evaluated for various physical properties described in the column of "Laminate (hard coat layer, low refractive index layer formation)" in Table 5, and the results are shown in Table 5.
  • 5 “Laminate (formation of hard coat layer and low refractive index layer)”.
  • the coating material 1 shown in Table 4 is a curable composition for forming a hard coat layer, and can be said to be a composition for forming a hard coat layer.
  • Examples A2 to A12, Comparative Examples A1 to A2 On the acrylic film (acrylic resin film) obtained in Production Example 3, the paints 1 to 5 shown in Table 4 are applied in the combinations shown in Table 5 using a bar coater, and the resin layer is formed on the acrylic film. formed. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light quantity shown in Table 5 to cure the resin layer and form a hard coat layer. The temperature of the cooling roll when forming the hard coat layer was 50°C.
  • the paints 6 to 9 shown in Table 4 were applied on the resulting hard coat layer in the combinations shown in Table 5 using a bar coater to form a resin layer on the hard coat layer.
  • the particle diameter of the hollow silica fine particles in the paints 6 to 9 was all about 50 nm.
  • the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
  • the resin layer was irradiated with ultraviolet rays (activation energy rays) at the integrated UV light amount and nitrogen atmosphere shown in Table 5 to cure the resin layer and form a low refractive index layer on the hard coat layer.
  • ultraviolet rays activation energy rays
  • Coatings 1 to 5 listed in Table 4 are curable compositions for forming a hard coat layer, and can also be said to be compositions for forming a hard coat layer.
  • Coatings 6 to 9 listed in Table 4 are curable compositions for forming a low refractive index layer, and can also be said to be compositions for forming a low refractive index layer.
  • paints 6 to 9 shown in Table 4 were separately applied onto the acrylic film (acrylic resin film) obtained in Production Example 3. It was applied using a bar coater to form a resin layer on the acrylic film. After coating, it was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer. Then, the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light amount and nitrogen atmosphere shown in Table 5, and the resin layer was cured to prepare a laminated film in which only the low refractive index layer was formed on the acrylic film. did. Table 5 shows the results of evaluation of ⁇ haze after 20% stretching at 120°C for the obtained laminated film.
  • ultraviolet rays active energy rays
  • Example A was excellent in formability. It was also found that the laminates of Examples A1 to A7, A10 and A11 had good whitening (low whitening) after 80% stretching at 120° C. in addition to moldability. Furthermore, it was found that the laminates of Examples A2 to A12 are excellent in antireflection effect. On the other hand, the laminate of Comparative Example A was found to be inferior in formability.
  • Examples A13 to A21 First, particles 1 to 12 shown in Table 6 were mixed with methyl ethyl ketone (MEK) and thoroughly stirred to prepare a 20 mass % particle dispersion. Next, 20% by mass of the particle dispersion and the coating material 1 were mixed in a predetermined amount (in the finally obtained laminate, the amount of particles contained in the hard coat layer was the amount shown in Table 7). The particles were mixed and sufficiently stirred to prepare a hard coat layer-forming composition containing particles. Next, on the acrylic film (acrylic resin film) obtained in Production Example 3, the composition for forming a hard coat layer containing the particles prepared as described above was applied using a bar coater so as to have the combinations shown in Table 7. to form a resin layer on the acrylic film.
  • MEK methyl ethyl ketone
  • the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
  • the resin layer was irradiated with ultraviolet rays (active energy rays) at the UV integrated light amount shown in Table 7 to cure the resin layer and form a hard coat layer containing particles.
  • the temperature of the cooling roll when forming the hard coat layer was 50°C.
  • paint 6 shown in Table 4 was applied using a bar coater to form a resin layer on the hard coat layer. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
  • the resin layer was irradiated with ultraviolet rays (activation energy rays) at the cumulative UV light amount shown in Table 7 and in a nitrogen atmosphere to cure the resin layer and form a low refractive index layer on the hard coat layer.
  • ultraviolet rays activation energy rays
  • Table 7 shows the results.
  • the numerical values of these items are obtained by forming a hard coat layer composed of paint 1 containing no particles on the acrylic film (acrylic resin film) obtained in Production Example 3 by the method described above. It is a value obtained by measuring the crack elongation at 120° C. as a sample.
  • Example B The second embodiment of the present invention will be described below in more detail based on Example B, but the present invention is not limited to these Examples B.
  • FIG. In addition, “parts” and “%” in Example B and Comparative Example B below mean parts by mass or % by mass.
  • the crack elongation at 120°C in laminated film containing no particles was measured for the laminated film having a particle-free hard coat layer formed on one side of the acrylic resin film. Specifically, the laminated film is cut into 10 mm (width) ⁇ 100 mm (length), and a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature chamber set at 120 ° C. is used. , preheating time of 2 minutes, distance between chucks of 40 mm, and tensile speed of 200 mm/min. The crack elongation at 120° C. of the particle-free laminated film was defined as the elongation when cracks occurred in the hard coat layer.
  • Example A Since the contents described in the section [Example A] are the same as those described in the above [Example A] section except that the laminate in which the coat layer and the low refractive index layer are formed is used, the description is used and the description is omitted here. omitted.
  • Example B In Example B, graft copolymer particles (A) and graft copolymer particles (B) obtained by the same methods as in [Production Example 1] and [Production Example 2] of [Example A] were used. used. Moreover, in Example B, a film obtained by producing in the same manner as in [Example 3] of [Example A] was used as the acrylic film.
  • Comparative Example B7 a laminate film of a PMMA resin layer and a PC resin layer (manufactured by AW-10U Shine Techno, thickness 200 ⁇ m) was used as the base film instead of the acrylic film.
  • Examples B1 to B10, Comparative Examples B1 to B7 First, particles 1 to 12 shown in Table 6 were mixed with MEK and thoroughly stirred to prepare a 20% by mass particle dispersion. Next, 20% by mass of the particle dispersion and the paints 1 to 5 shown in Table 4 are mixed in predetermined amounts (in the finally obtained laminate, the amount of particles contained in the hard coat layer is shown in Tables 8 and 9). The ingredients were mixed so as to achieve the stated amount) and sufficiently stirred to prepare a hard coat layer-forming composition containing particles. Next, the composition for forming a hard coat layer containing the particles prepared as described above is applied on the acrylic film (acrylic resin film) obtained in Production Example 3 or the laminated film of the PMMA resin layer and the PC resin layer.
  • Examples B11 to B15, Comparative Examples B8 to B9 In the same manner as in [Examples B1 to B10, Comparative Examples B1 to B7], a hard coat layer-forming composition containing particles was used to obtain an acrylic film (acrylic resin film) in Production Example 3. A hard coat layer was formed thereon. Next, on the resulting hard coat layer, paints 6, 8 or 9 listed in Table 4 are applied in the combinations listed in Tables 8 and 9 using a bar coater to form a resin layer on the hard coat layer. did. After coating, the resin layer was dried at 80° C. for 1 minute to volatilize the solvent from the resin layer.
  • the resin layer was irradiated with ultraviolet rays (active energy rays) at the integrated UV light amount shown in Tables 8 and 9 in a nitrogen atmosphere to cure the resin layer and form a low refractive index layer on the hard coat layer.
  • ultraviolet rays active energy rays
  • the first method for manufacturing a laminate can obtain a laminate with excellent moldability and low whitening.
  • the second method for producing a laminate can provide a laminate excellent in moldability, surface hardness, and antiglare properties. Therefore, one embodiment of the present invention can be suitably used in various fields including automotive interior applications such as in-vehicle displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

成形性に優れたアクリル系樹脂フィルムを含む積層体を提供することを課題とする。(A)特定のアクリル系樹脂フィルムの少なくとも片面に、ウレタンアクリレート樹脂を含むハードコート層を形成する工程と、(B)前記工程(A)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む低屈折率層を形成する工程と、を含む、特定のクラック伸度を有する積層体の製造方法、とする。

Description

積層体およびその製造方法
 本発明は、アクリル系樹脂フィルムを基材として含む積層体およびその製造方法に関する。
 弾性体を含むアクリル系樹脂組成物を加工成形してなるアクリル系樹脂フィルムは、透明性、硬度、耐候性、及び二次成形性等の優れた特性を活かして、様々な用途に使用、展開されている。アクリル系樹脂フィルムの用途として、例えば、成形体の立体表面に、フィルムを熱ラミネート、接着、インモールド成形、インサート成型、3次元積層成形等の手法により積層して使用する、自動車内外装部品の塗装、印刷などの代替としての加飾・保護・表示用途や、携帯電子機器やパソコンや家電等の製品の外装の加飾・保護や、建築材としての用途等が挙げられる。また、アクリル系樹脂フィルムの透明性、低い固有位相差特性などを生かして、液晶パネルや有機ELパネル等の各種ディスプレイ装置を構成する光学フィルム部材としても採用が進んでいる。
 近年、自動車用途において、メーターパネルやナビゲーションシステムなどの情報表示部を、自動車内装部品と一体化したデザインを持つものが開発されている。このような用途における成形体の表面加飾・保護を行う場合には、従来の内装加飾用フィルムに求められる透明性や二次成形性に加えて、例えばタッチパネル部を備えたディスプレイ表示部において好ましいと考えられる、低位相差特性、表面硬度、耐擦り傷性、防汚性、反射防止特性、防眩性等の機能性を持つことが好ましい。アクリル系樹脂フィルムは、透明性、二次成形性、低位相差等の優れた特性を備えているという点で、このような用途に好適であると考えられるが、表面硬度、耐擦り傷性、防汚性、反射防止特性、防眩性といった機能については十分ではない。
 このようなアクリル系樹脂フィルムを含む、加飾・保護用フィルムに、表面硬度、耐擦り傷性、反射防止特性、防眩性などの機能性をさらに付与する方法として、フィルム基材上にコーティング等の手法により機能性層を形成する方法が行われている。例えば、特許文献1には、鉛筆硬度B以上かつ成型性を示す伸び率が100%以上の電離放射線硬化型樹脂、フッ素系レベリング剤またはフッ素シロキサン系レベリング剤、及び無機酸化物微粒子を含有させた塗料組成物をフィルム基材上に塗工し硬化させてなるハードコート層を設けたことを特徴とする成型用ハードコートフィルム等が記載されている。
 特許文献2には、透光性樹脂基材シートと、該基材シート上に形成された下地層、該下地層上に形成されたハードコート層、該ハードコート層上に形成された中屈折率層、及び該中屈折率層上に形成された低屈折率層とからなる透明樹脂基板等が記載されている。
 特許文献3には、熱可塑性透明基材フィルム上に、ハードコート層、中屈折率層、高屈折率層、低屈折率層の4層がこの順で設けられた、インサート成形用反射防止フィルムが記載されている。
特開2016-040105号公報 国際公開第2018/117018号 特開2016-071307号公報 特開2015-152691号公報 特開2012-189978号公報
 しかし、特許文献1~3に記載された技術では、積層体の成形性と、積層体表面の鉛筆硬度、耐擦り傷性等の積層体の機能性との両立という観点においては充分な性能を有するとは言えず、さらなる改善の余地があった。
 そこで、本発明の一実施形態の目的は、表面硬度および反射防止性等の機能性を有しつつ、成形性に優れた、アクリル系樹脂フィルムを含む積層体およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、アクリル系樹脂フィルム、ハードコート層および低屈折率層等から構成される積層体において、特定の物性を有するハードコート層を用いることにより、成形性に優れた積層体を得ることができることを初めて見出し、本発明の一実施形態を完成するに至った。
 したがって、本発明の一態様は、(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法である。
 また、本発明の一態様は、(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法である。
 さらに、本発明の一態様は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体である。
 本発明の一態様によれば、表面硬度および反射防止性等の機能性を有しつつ、成形性に優れた、アクリル系樹脂フィルムを含む積層体およびその製造方法を提供することができる。
本発明の一実施形態に係るアクリル系樹脂フィルム、ハードコート層および低屈折率層が積層された積層体について、引張試験後のTEM画像を示す図である。
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。また、本明細書中、「X単量体」に由来する構成単位を「X単位」と称する。
 〔1.第1実施形態〕
 〔1-1.本発明の第1実施形態の概要〕
 本発明の第1実施形態に係る積層体の製造方法(以下、「第1の積層体の製造方法」と称する。)は、(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、(B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、120℃でのクラック伸度が80%以上である、ことを特徴とする。
 上述した第1の積層体の製造方法によって得られる積層体は、表面硬度を有しており、表面硬度に優れる、ともいえる。本明細書において、積層体の表面硬度は、積層体の「鉛筆硬度」によって評価される。積層体の「鉛筆硬度」の測定方法については、後に詳説する。また、第1の積層体の製造方法によって得られる積層体は、反射防止性を有しており、反射防止性に優れる、ともいえる。本明細書において、積層体の反射防止性は、積層体の「視感反射率」によって評価される。積層体の「視感反射率」の測定方法については、後に詳説する。また、第1の積層体の製造方法によって得られる積層体は、成形性に優れる。本明細書において、積層体の成形性は、積層体の「120℃でのクラック伸度」によって評価される。積層体の「120℃でのクラック伸度」の測定方法については、後に詳説する。
 また、上述した第1の積層体の製造方法によって得られる積層体は、耐擦り傷性にも優れる。また、上述した第1の積層体の製造方法によって得られる積層体が、後述するようにハードコート層に粒子を含む場合、当該積層体は防眩性を有しており、防眩性に優れる、ともいえる。
 また、本発明の第1実施形態の別の一態様において、積層体の製造方法は、(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、120℃でのクラック伸度が80%以上である。かかる製造方法もまた、第1の積層体の製造方法である。
 また、本発明の第1実施形態に係る積層体(以下、「第1の積層体」と称する。)は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、ことを特徴とする。
 本明細書において、第1実施形態に係る積層体の製造方法で得られる積層体及び第1実施形態に係る積層体の両方を「第1の積層体」と称する場合がある。
 近年、車載ディスプレイの分野では、大型化及び曲面化が進んでいる。そのような車載ディスプレイ用のフィルムとしては、これまで以上に成形率の高い反射防止フィルムが要求される。
 しかし、特許文献1および2に記載された技術では、表面硬度が低く、例えば、タッチパネル機能を有するディスプレイ装置の表面保護に用いた場合に、表示部に傷が入るなどの不具合が生じる可能性がある。また、特許文献2および3に記載された技術では、例えば、上記のような情報表示部を一体化した自動車内装部品等の大型成形体の立体表面への加飾及び保護用フィルムの積層の際に、成形体の形状に沿ってフィルムが延伸及び賦形されるのに伴い、フィルムの延伸部の部分的な白化、割れ、成形体表面からの剥離、並びに、機能層の割れ及び剥離等の不具合が発生する場合があることがわかった。すなわち、従来の技術では、(1)積層体の成形性の問題、(2)低屈折率層を備える積層体の反射防止の問題、及び(3)積層体の白化の問題があることが分かった。このため、上記の用途に用いた場合に十分に要求を満たす加飾及び保護用フィルムは見出されておらず、さらなる改善の余地があった。
 そこで、本発明者らは、主として、積層体の成形性の改善について検討を進める中で、積層体中のハードコート層及び屈折率調整層等を特定の物性とすることにより、大型成形体の立体表面への積層の際にも、機能層の剥離及び割れ等が発生せず、成形性に優れた積層体を得ることができることを初めて見出した。また、本発明者らは、上記の方法により得られた積層体は、成形性に加えて、反射防止の問題及び延伸部の白化の問題も解決され得ることを見出した。
 本発明者らは、上記検討の過程で、延伸部の白化に関して、積層体の最表面に位置する低屈折率層の表面において、延伸時に、目視上識別できる大きさのクラックには至らない微小なマイクロクラックが発生することが白化の原因の一つであることを見出した。白化の原因が低屈折率層のマイクロクラックであるところ、低屈折率層の下に位置するハードコート層を工夫することで、積層体の成形性のみならず、低屈折率層のマイクロクラックに起因する延伸部の白化を改善できたことは驚くべきことである。このように、アクリル系樹脂フィルムおよびハードコート層、またはアクリル系樹脂フィルム、ハードコート層および低屈折率層から構成される、各種機能性を有しつつ、かつ、成形性に優れた積層体はこれまでに報告がなく、第1の積層体の製造方法は、極めて優れた技術である。
 なお、本発明者は、上記白化抑制のメカニズムとして、ハードコート層の構成及び活性エネルギー線による硬化条件の調整等により、低屈折率層を形成する前のハードコート層が未硬化の残存官能基を有するとともに、架橋密度が完全硬化の状態よりも低い状態とすることにより、ハードコート層と低屈折率層との密着性が高まり、その結果、低屈折率層のマイクロクラックの形状に起因する白化が抑制されると推測している。なお、本発明はかかる推測になんら限定されるものではない。以下、第1の積層体の製造方法について詳説する。
 なお、第1実施形態において、「積層体」はハードコート層を含む製品(積層物)を意図し、ハードコート層を含まない製品(積層物)を「積層フィルム」と記載する。より具体的には、第1実施形態において、例えば、「積層体」は、(1)アクリル系樹脂フィルムと、ハードコート層と、からなる積層物、または(2)アクリル系樹脂フィルムと、ハードコート層と、低屈折率層と、からなる積層物を意図し、「積層フィルム」は、(3)アクリル系樹脂フィルムと、低屈折率層と、からなる積層物を意図する。
 なお、第1の積層体におけるハードコート層を構成する硬化性樹脂組成物においては、ハードコート層の表面硬度の向上とともに、高いクラック伸度を有し、成形体の形状への二次成形のもとでは延伸に伴って破断あるいは著しい白化を生じないことが要求される場合も有る。しかしながら一般的に、硬化性樹脂組成物の硬化物は、高度に架橋されること、及び/又は、硬度の高い充填剤を含有することで、外部応力に対する硬化物表面の変形を抑制することで、表面硬度及び耐擦り傷性を発現している。従って従来は、表面硬度及び耐擦り傷性と、変形性及び延伸性と、は相反する性質であり、両立することは容易ではなかった。
 このようなハードコート用の硬化性樹脂に、硬度を維持しつつ二次成形時の高い延伸性を付与する方法としては、例えば、以下のような方法が挙げられる。
 (1)硬化性樹脂のガラス転移温度を室温と二次成形温度との間に設計し、室温下では硬質としつつ、二次成形温度下では軟化して変形が可能な設計とする。このことにより、室温下では高い表面硬度を示しつつ、二次成形の際には高い延伸性を示す。
 (2)複数の異なった構造の硬化性樹脂を組み合わせて用いることにより、硬化性樹脂の硬化後の架橋構造を、均一なものではなく、架橋密度の高い部分と、架橋密度の低い部分を持ち、ミクロ構造的には不均一なものとなるように設計する。このことにより、硬化物中の架橋密度の高い部分により、高い表面硬度を発現するとともに、二次成形の際には、架橋密度の低い部分が変形して、高い延伸性を示す。
 (3)硬化性樹脂に、低架橋度あるいは非架橋の樹脂成分、及び/又は、低弾性率の樹脂成分を配合する。このことにより、硬化性樹脂の硬化後に、架橋密度の高い硬化性樹脂相に、低架橋度あるいは未架橋、及び/又は、低弾性率の微細領域(ドメイン)が分散した構造が形成される事で、硬化性樹脂のもつ表面硬度をある程度維持しつつ、変形性及び延伸性を付与する。このような低架橋度あるいは未架橋あるいは低弾性率の樹脂成分としては、例えば、(a)メタクリル樹脂、スチレンアクリロニトリル樹脂、脂肪族あるいは芳香族ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、セルロースアシレート樹脂などの熱可塑性樹脂、(b)必要に応じて反応性官能基を有してもよいアクリルゴム、シリコーンゴム、水素添加スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、オレフィンゴムなどの架橋または非架橋の軟質樹脂、(c)架橋されたゴム粒子表面に熱可塑性樹脂がグラフト重合したコア-シェル型ゴム粒子などが挙げられる。
これらの方法は、第1の積層体におけるハードコート層に対して、例えば(1)ないし(3)などの手法を単独で用いてもよく、あるいは適宜組み合わせて使用してもよい。
 〔1-2.第1の積層体の製造方法〕
 第1の積層体の製造方法は、以下の工程(A1)および(B1)を含む。
・工程(A1):アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程
・工程(B1):前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
 第1の積層体の製造方法において、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、かつ、前記積層体は、120℃でのクラック伸度が80%以上である。
 工程(A1)では、アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する。さらに、工程(B1)においては、工程(A1)において形成された、硬化されたウレタンアクリレート樹脂を含むハードコート層上に、アクリレート系樹脂を含む樹脂層を溶液状態で塗布し、乾燥し、当該樹脂層に活性エネルギー線を照射して樹脂層を硬化させて低屈折率層を形成する。
 第1の積層体の製造方法により得られる積層体が、高い表面硬度とともに、120℃における高いクラック伸度及び延伸部の白化の少ない特性を有するためには、ハードコート層と低屈折率層とが良好に密着していることが好ましい。一般に、低屈折率層は中空シリカなどの硬質フィラーを含有することが多く、ハードコート層よりもクラック伸度が低いことが多い。このためハードコート層単独のクラック伸度よりも低い延伸率で白化の原因となるマイクロクラックを発生する可能性がある。この時、ハードコート層と低屈折率層との密着性が良好であれば、延伸により低屈折率層に発生するマイクロクラックの開口幅が、例えば1μm以下の極めて微細なものとなり、延伸によって白化を生じにくくなる。
 ハードコート層と低屈折率層との密着性を向上させるためには、例えば、以下の(a)及び(b)などが好ましい:(a)工程(B1)で低屈折率層となる樹脂層を溶液状態で塗工する際に、最終的な2層間の界面が不明瞭となり反射防止特性が損なわれることのない範囲において、一定の程度、塗工した樹脂層(低屈折率層)がハードコート層表面に含侵すること;(b)ハードコート層の硬化後に残存するアクリレート基が、塗工後の樹脂層(低屈折率層)を活性エネルギー線照射により硬化する際に、樹脂層(低屈折率層)とともに反応硬化し、最終的に得られるハードコート層と低屈折率層との界面に化学結合が形成されること。
 このため、例えば、工程(A1)においては、ハードコート層を形成するウレタンアクリレート樹脂を含む樹脂層を完全に硬化せず、架橋密度をやや低めとするとともに、未反応のアクリレート基を部分的に残留させることが好ましい。さらに工程(B1)においては、低屈折率層を形成するアクリレート系樹脂を含む樹脂層を溶液状態で塗布し、任意で乾燥する工程において、一定の程度、アクリレート系樹脂を含む樹脂層をハードコート層表面へ含侵させるため、(a)適宜塗布条件及び溶剤の乾燥条件を調整すること、並びに/または、(b)溶液に使用する溶剤として、乾燥が遅い高沸点の溶剤を一定量使用すること、などが好ましい。
 第1の積層体の製造方法において、積層体中のアクリル系樹脂フィルムの120℃での引張破断伸度は、170%以上であり、180%以上であることが好ましく、190%以上であることがより好ましい。アクリル系樹脂フィルムの120℃での引張破断伸度が170%以上であると、成形の形状追従性に優れる利点を有する。また、第1の積層体の製造方法において、前記引張破断伸度の上限は特に限定されないが、引張強度及び弾性率の向上の観点から、例えば、350%以下であり、300%以下であることが好ましい。なお、本明細書において、「120℃での引張破断伸度」とは、120℃の恒温槽内で引張試験を行いフィルムが破断する伸度を意図する。アクリル系樹脂フィルムの120℃での引張破断伸度は、実施例に記載の方法により測定される。
 第1の積層体の製造方法において、積層体の120℃でのクラック伸度は、例えば、80%以上であり、100%以上であることが好ましく、110%以上であることがより好ましく、120%以上であることが特に好ましい。積層体の120℃でのクラック伸度が80%以上であると、成形時の形状追従性に優れるとともに、成形にともない延伸される部分の白化が抑制されるとの利点を有する。また、第1の積層体の製造方法において、前記クラック伸度の上限は特に限定されないが、表面硬度及び耐摩耗性の向上の観点から、例えば、200%以下であり、180%以下であることが好ましい。なお、本明細書において、「積層体の120℃でのクラック伸度」とは、120℃の恒温槽内で積層体の引張試験を行いコーティング層にクラックが発生する伸度を意図する。本明細書において、積層体の120℃でのクラック伸度は、実施例に記載の方法により測定される。
 また、第1の積層体が、アクリル系樹脂フィルムと、ハードコート層と、から構成され、低屈性率層を含まない場合は、当該積層体の120℃でのクラック伸度は、80%以上であることが好ましく、より好ましくは100%以上であり、さらに好ましくは120%以上であり、最も好ましくは130%以上である。なお、本明細書において「積層体の120℃でのクラック伸度」は、特記しない限り、「アクリル系樹脂フィルムと、ハードコート層と、低屈性率層と、から構成される積層体の、120℃でのクラック伸度」を意図する。
 (アクリル系樹脂フィルム)
 アクリル系樹脂フィルムは、アクリル樹脂、及びゴム成分を含有するグラフト共重合体粒子を含むアクリル系樹脂組成物で構成されていることが好ましい。
アクリル系樹脂フィルムは、ゴム成分を含有するグラフト共重合体粒子として、平均粒子径が20nm以上200nm以下であるグラフト共重合体粒子(A)を含むことが好ましく、グラフト共重合体粒子(A)に加えて、グラフト共重合体粒子(A)より平均粒子径が大きいグラフト共重合体粒子(B)を含んでもよい。具体的には、第1実施形態のアクリル系樹脂フィルムにおいて、アクリル樹脂、又は、アクリル樹脂及びその他の成分を含むマトリックス中に、グラフト共重合体粒子(A)が分散しているか、又は、グラフト共重合体粒子(A)及びグラフト共重合体粒子(B)が分散していることが好ましい。
 <アクリル樹脂>
 アクリル系樹脂フィルムに用いるアクリル樹脂としては、従来公知のものが使用できる。例えば、硬度及び成形性の観点からは、アクリル樹脂が、アクリル樹脂の全量を100質量%とした場合、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成される熱可塑性アクリル重合体を20質量%以上100質量%以下含むのが好ましい。なお、熱可塑性アクリル重合体中の、メタクリル酸メチル単位およびその他の構成単位の合計量は100質量%である。
 その他の構成単位としては、例えば、アクリル酸、アクリル酸誘導体、メタクリル酸、メタクリル酸誘導体、芳香族ビニル誘導体、シアン化ビニル誘導体等に由来する構成単位が挙げられる。アクリル樹脂に含まれるその他の構成単位は、1種であってもよく、2種以上の組み合わせであってもよい。
 アクリル酸誘導体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-フェノキシエチル、アクリル酸ベンジル、及びアクリル酸グリシジル等のアクリル酸エステル類等が挙げられる。
 メタクリル酸誘導体としては、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸2-フェノキシエチル、メタクリル酸イソボルニル等のメタクリル酸エステル等が挙げられる。
 芳香族ビニル誘導体としては、スチレン、ビニルトルエン、及びα-メチルスチレン等が挙げられる。
 シアン化ビニル誘導体としては、アクリロニトリル、及びメタクリロニトリル等が挙げられる。
 アクリル樹脂の耐熱性、剛性及び表面硬度等を改善するため、アクリル樹脂に対して特定の構造を有する構成単位を共重合、官能基修飾及び変性等により導入してもよい。このような特定の構造としては、例えば、特開昭62-89705号、特開平02-178310号、及びWO2005/54311等に示されているようなグルタルイミド構造、特開2004-168882号、及び特開2006-171464号等に示されているようなラクトン環構造、特開2004-307834号等に示されているような(メタ)アクリル酸単位が熱的に縮合環化して得られるグルタル酸無水物構造、特開平5-119217号に示されているようなマレイン酸無水物構造、並びにWO2009/84541号に示されるようなN-置換マレイミド構造及び非置換マレイミド構造等が挙げられる。例えば、これらの構造がアクリル樹脂に導入されることで、分子鎖が剛直となる。その結果、耐熱性の向上、表面硬度の向上、加熱収縮の低減、耐薬品性の向上等の効果が期待できる。
 アクリル樹脂の製造方法は、特に限定されず、例えば、公知の懸濁重合法、塊状重合法、溶液重合法、乳化重合法等の重合法を適用可能である。また、公知のラジカル重合法、リビングラジカル重合法、アニオン重合法、カチオン重合法のいずれを適用することも可能である。
 アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであることが好ましい。
 架橋エラストマーは、ゴム成分である。それ故、重合体粒子は、ゴム成分を含有する重合体粒子と言える。重合体粒子は、ゴム成分である架橋エラストマーと、架橋エラストマーよりも表層側に位置するグラフトポリマー層とを備えるコアシェル構造(多層構造)を有することが好ましい。架橋エラストマーとグラフトポリマー層とを備えるコアシェル構造を有する重合体粒子を、グラフト共重合体粒子と称する場合もある。
 架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含むことが好ましい。架橋エラストマーは、後述する架橋エラストマー(A1)および/または架橋エラストマー(B1)であることが好ましい。
 重合体粒子は、架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子であることが好ましい。グラフト共重合体粒子は、後述するグラフト共重合体粒子(A)および/またはグラフト共重合体粒子(B)であることが好ましい。
 <ゴム成分を含有するグラフト共重合体>
 前述のとおり、アクリル系樹脂フィルムは、ゴム成分を含有するグラフト共重合体粒子として、グラフト共重合体粒子(A)を含むことが好ましく、必要に応じてグラフト共重合体粒子(A)に加えてさらにグラフト共重合体粒子(B)を含んでも良い。
 グラフト共重合体粒子(A)は、ゴム成分である架橋エラストマー(A1)と、架橋エラストマー(A1)よりも表層側に位置するグラフトポリマー層(A2)とを備えるコアシェル構造(多層構造)を有することが好ましい。
 架橋エラストマー(A1)は、公知の架橋エラストマーであってよい。好ましくは、架橋エラストマー(A1)は、アクリル酸エステル系の架橋エラストマー(アクリル酸エステルを主成分とした重合体からなる架橋エラストマー)である。
 アクリル酸エステル系の架橋エラストマー(A1)の粒子は、架橋エラストマー層の内部に硬質又は半硬質の架橋樹脂層を備える、同心球状の多層構造を有していてもよい。このような硬質又は半硬質の架橋樹脂層としては、例えば特公昭55-27576号等に示されるような硬質の架橋メタクリル樹脂粒子、特開平4-270751に示されるようなメタクリル酸メチル-アクリル酸エステル-スチレンからなる半硬質の架橋粒子、さらには架橋度の高い架橋ゴム粒子等が挙げられる。このような硬質又は半硬質の架橋樹脂層を備えることにより透明性及び色調等の改善が期待できる場合がある。
 グラフト共重合体粒子(A)は、前述のアクリル酸エステル系の架橋エラストマー(A1)の粒子の存在下で、グラフトポリマー層(A2)を形成する単量体混合物をグラフト重合して形成される、コアシェル構造を有するのが好ましい。
 グラフト共重合体粒子(A)の平均粒子径は20nm以上200nm以下であることが好ましく、50nm以上150nm以下がより好ましく、50nm以上120nm以下が特に好ましい。
 グラフト共重合体粒子(A)の平均粒子径が過小である場合、アクリル系樹脂フィルムの耐衝撃性及び耐折曲げ割れ性が低下する傾向がある。グラフト共重合体粒子(A)の平均粒子径が過大である場合、アクリル系樹脂フィルムの透明性が悪化する傾向や、折り曲げによる白化が発生しやすくなる傾向がある。
 アクリル酸エステル系の架橋エラストマー(A1)としては、(a)アクリル酸エステルと、(b)アクリル酸エステルと共重合可能であり、1分子あたり2個以上の非共役二重結合を有する多官能性単量体と、(c)任意にアクリル酸エステルと共重合可能な他のビニル系単量体と、を含む単量体混合物(a-1)を重合して得られる架橋エラストマー粒子を好ましく使用できる。
 アクリル酸エステル、他のビニル系単量体、及び多官能性単量体は全部を混合して1段階で重合されてもよい。また、アクリル系樹脂フィルムの靱性、耐白化性等を調節する目的で、適宜、アクリル酸エステル、他のビニル系単量体、及び多官能性単量体の組成を変化させて、或いは同一の組成のまま、アクリル酸エステルと、他のビニル系単量体と、多官能性単量体とが、2段階以上の多段階に分けて重合されてもよい。
 アクリル酸エステルとしては、重合性に優れ、安価であり、Tgが低い重合体を与える等の点から、アクリル酸の脂肪族エステルが好ましく、アクリル酸アルキルエステルがより好ましく、アルキル基の炭素原子数が1以上22以下のアクリル酸アルキルエステルを特に好ましく用いることができる。
 好ましいアクリル酸アルキルエステルの具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソボルニル、アクリル酸シクロヘキシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸ヘプタデシル、アクリル酸オクタデシル等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル酸エステルの量は、単量体混合物(a-1)100質量%において50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが最も好ましい。アクリル酸エステル量が50質量%以上であれば、アクリル系樹脂フィルムの耐衝撃性及び引張破断時の伸びが良好であり、二次成形時にクラックが発生しにくい。
 他のビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸フェノキシエチル、メタクリル酸イソボルニル、及びメタクリル酸ジシクロペンテニル等のメタクリル酸エステル;アクリロニトリル、及びメタクリロニトリル等のシアン化ビニル誘導体;スチレン、ビニルトルエン、及びα-メチルスチレン等の芳香族ビニル誘導体;アクリル酸;アクリル酸β-ヒドロキシエチル、アクリル酸フェノキシエチル、アクリル酸ベンジル、アクリル酸グリシジル、等のアクリル酸誘導体;メタクリル酸;メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、及びメタクリル酸グリシジル等のメタクリル酸誘導体;無水マレイン酸;N-アルキルマレイミド、及びN-フェニルマレイミド等のマレイン酸誘導体等が挙げられる。これらは1種を単独で使用してもよく、2種以上が併用してもよい。他のビニル系単量体としては、これらの中でも、耐候性及び透明性の観点より、メタクリル酸エステル及び芳香族ビニル誘導体からなる群から選ばれる1種以上の単量体が特に好ましい。
 他のビニル系単量体の量は、単量体混合物(a-1)100質量%において0質量%以上49.9質量%以下であることが好ましく、0質量%以上30質量%以下であることがより好ましく、0質量%以上20質量%以下であることが最も好ましい。他のビニル系単量体の量が49.9質量%を超えると、アクリル系樹脂フィルムの耐衝撃性が低下しやすく、引張破断時の伸びが低下し、二次成形時にクラックが発生しやすい場合がある。
 多官能性単量体としては、架橋剤及び/又はグラフト交叉剤として通常使用される単量体を好適に使用することができる。多官能性単量体としては、例えば、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレエート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリメチルロールプロパントリメタクリレート、ポリエチレングリコールジメタアクリレート、及びジプロピレングリコールジメタクリレート等を使用することができる。これらの多官能性単量体は、1種を単独で使用してもよく、2種以上が併用してもよい。
 これらの多官能性単量体としては、グラフト交叉剤としての機能を有するものが、架橋エラストマー(A1)に対する、後述するグラフトポリマー層(A2)のグラフト結合数を向上し、その結果としてグラフト共重合体(A)のアクリル樹脂への良好な分散性をもたらし、引張り及び曲げ変形に対する耐割れ性が向上するとともに応力白化が低減するため、より好ましい。このようなグラフト交叉剤の機能を有する多官能性単量体としては、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレエート等のアリル基を有するものが好ましく、アリルメタクリレート、アリルアクリレート等が特に好ましい。
 多官能性単量体の量は、単量体混合物(a-1)100質量%において0.1質量%以上10質量%以下であることが好ましく、1.0質量%以上4質量%以下であることがより好ましい。多官能性単量体の配合量がかかる範囲内であれば、アクリル系樹脂フィルムの耐折り曲げ割れ性、及び耐折り曲げ白化性や、成形時における樹脂の流動性の観点から好ましい。
 また、アクリル酸エステル系の架橋エラストマー(A1)において、後述するグラフトポリマー層(A2)のグラフト被覆効率を高める目的で、多官能性単量体の量を、架橋エラストマー(A1)の内部と表面近傍で変更してもよい。具体的には、特許第1460364号公報や特許第1786959号公報等に示されているように、架橋エラストマー(A1)の表面近傍において、グラフト交叉剤としての機能をもつ多官能性単量体の含有量を内部よりも多くすることにより、グラフト共重合体粒子(A)のグラフトポリマー層による被覆を改善し、アクリル樹脂への分散性を良好にしたり、グラフト共重合体粒子(A)とアクリル樹脂の界面の剥離による耐割れ性の低下を抑制したりすることができる。さらに、相対的に少量のグラフトポリマー層(A2)で充分な被覆が得られることから、アクリル系樹脂組成物への所定量の架橋エラストマー(A1)を導入するためのグラフト共重合体粒子(A)の配合量を削減でき、それゆえアクリル系樹脂組成物の溶融粘度を低下し、アクリル系樹脂フィルムの溶融加工性、フィルム加工精度の向上、表面硬度の向上等が期待できる。
 また、単量体混合物(a-1)には、アクリル酸エステル系の架橋エラストマー(A1)の分子量及び架橋密度を制御する目的、並びに重合時の不均化停止反応に伴うポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を加えてもよい。連鎖移動剤は、通常ラジカル重合に用いられるものの中から選択して用いることができる。連鎖移動剤としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、及びt-ドデシルメルカプタン等の炭素原子数2以上20以下の単官能或いは多官能のメルカプタン化合物、メルカプト酸類、チオフェノール、四塩化炭素或いはそれらの混合物等が好ましい。連鎖移動剤の添加量は、単量体混合物(a-1)の総量100質量部に対して、0質量部以上1.0質量部以下であることが好ましく、より好ましくは0質量部以上0.2質量部以下である。
 架橋エラストマー(A1)の粒子は、上記のアクリル酸エステル系の架橋エラストマー(A1)からなる単一層であってもよく、上記のアクリル酸エステル系の架橋エラストマー(A1)からなる層を2層以上含む多層構造であってもよく、硬質又は半硬質の架橋樹脂層を含む多層粒子の少なくとも1層にアクリル酸エステル系の架橋エラストマー(A1)を有するものでもよい。
 硬質又は半硬質の架橋樹脂層を構成する単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル等のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、及びアクリル酸n-オクチル等のアクリル酸アルキルエステル、スチレン、及びαメチルスチレン等の芳香族ビニル誘導体、アクリロニトリル等のシアン化ビニル誘導体、無水マレイン酸やマレイミド類等のマレイン酸誘導体、1分子あたり2個以上の非共役二重結合を有する多官能性単量体等が挙げられる。
 これらのなかでは特にメタクリル酸メチル、メタクリル酸ブチル、アクリル酸ブチル、アクリル酸エチル、スチレン及びアクリロニトリル等からなる群から選ばれる1種以上が好ましい。また、多官能性単量体としては、アクリル酸エステル系の架橋エラストマー(A1)層の重合に使用するものと同様のものが使用できる。さらに硬質又は半硬質の架橋樹脂層の重合時には、これらの単量体に加えて、架橋密度を制御する目的、及びポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を併用してもよい。連鎖移動剤はアクリル酸エステル系の架橋エラストマー(A1)層の重合と同様の連鎖移動剤が使用できる。連鎖移動剤の添加量は、硬質又は半硬質の架橋樹脂層の総量100質量部に対して、0質量部以上2質量部以下であることが好ましく、より好ましくは0質量部以上0.5質量部以下である。
 グラフト共重合体粒子(A)が、コア粒子である架橋エラストマー粒子(A1)と、グラフトポリマー層(A2)との2層構造である場合、グラフト共重合体粒子(A)は、典型的には、架橋エラストマー粒子(A1)の存在下で、メタクリル酸エステル50質量%以上100質量%以下と、メタクリル酸エステルと共重合可能な他のビニル系単量体0質量%以上50質量%以下を含む(但し、メタクリル酸エステル及び他のビニル系単量体の合計が100質量%である)単量体混合物(a-2)をグラフト共重合させてグラフトポリマー層(A2)を形成することにより得ることができる。
 単量体混合物(a-2)100質量%中のメタクリル酸エステルの量は、(a)マトリクスであるアクリル樹脂との相溶性の確保、並びに(b)アクリル系樹脂フィルムへのコーティング時の溶剤の含浸等によるコーティングフィルムの靱性低下、成形時の延伸による白化及び割れの抑止の観点より、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 グラフトポリマー層(A2)は、好ましくは、架橋エラストマー粒子(A1)5質量部以上90質量部以下の存在下で、メタクリル酸アルキルエステル70質量%以上99質量%以下、アルキル基の炭素原子数が2以上のアクリル酸アルキルエステル0.5質量%以上30質量%以下、及び他のビニル系単量体0質量%以上19質量%以下を含む(但し、メタクリル酸アルキルエステル、アクリル酸アルキルエステル及び他のビニル系単量体の合計が100質量%である)単量体混合物(a-2)10質量部以上95質量部以下を、少なくとも1段階以上でグラフト共重合させることにより得られるものである。ただし、架橋エラストマー粒子(A1)と、単量体混合物(a-2)との合計量が100質量部を満たすものとする。
 グラフトポリマー層(A2)において、メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸フェニル、及びメタクリル酸ベンジル等のメタクリル酸アルキルエステルが挙げられる。中でも、アルキル基の炭素原子数が1~4のメタクリル酸アルキルエステルが好ましい。
 グラフトポリマー層(A2)において、他のビニル系単量体としては、アルキル基の炭素原子数が2以上のアクリル酸アルキルエステルを用いることができる。アルキル基の炭素原子数が2以上のアクリル酸アルキルエステルとしては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸ドデシル、及びアクリル酸ステアリル等からなる群から選ばれる1種以上が好ましく、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、及びアクリル酸t-ブチルからなる群から選ばれる1種以上がより好ましく、アクリル酸n-ブチルが特に好ましい。
 単量体混合物(a-2)において使用可能な他のビニル系単量体としては、スチレン及びその核置換体等の芳香族ビニル誘導体、アクリロニトリル等のシアン化ビニル誘導体、メタクリル酸及びその誘導体、アクリル酸及びその誘導体、N-置換マレイミド類、無水マレイン酸、メタクリルアミド、アクリルアミド等が挙げられる。
 単量体混合物(a-2)は、他のビニル系単量体として反応性紫外線吸収剤を含むことが好ましい。つまり、グラフトポリマー層(A2)が、反応性紫外線吸収剤に由来する構成単位を含むことが好ましい。単量体混合物(a-2)が反応性紫外線吸収剤を含む場合、耐候性及び耐薬品性が良好であるアクリル系樹脂フィルムを得やすい。
 反応性紫外線吸収剤としては、公知の反応性紫外線吸収剤を使用することができ、特に限定されない。アクリル系樹脂フィルムの成形加工性及び耐候性の点から、反応性紫外線吸収剤としては、下記一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 (一般式(1)中、Xは水素原子又はハロゲン原子であり、Rは水素原子、メチル基、又は炭素原子数4以上6以下のt-アルキル基であり、Rは直鎖状、又は分岐鎖状の炭素原子数2以上10以下のアルキレン基であり、Rは水素原子又はメチル基である。)。
 一般式(1)で表される反応性紫外線吸収剤としては、具体的には、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール類が挙げられ、より具体的には、2-(2’-ヒドロキシ-5’-アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシプロピルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチル-3’-t-ブチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。好ましくは、コスト及び取り扱い性から、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾールを用いる。
 グラフトポリマー層(A2)100質量%中における、反応性紫外線吸収剤に由来する構成単位の含有量は、0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましい。
 グラフト共重合体粒子(A)の製造において、とりわけ架橋エラストマー粒子(A1)、例えばアクリル酸エステル系の架橋エラストマー粒子(A1)の存在下における単量体混合物(a-2)のグラフト共重合に際して、アクリル酸エステル系の架橋エラストマー粒子(A1)に対してグラフト結合していない重合体成分(フリーポリマー)が生じる場合がある。このようなフリーポリマーは、アクリル系樹脂組成物及びアクリル系樹脂フィルムのマトリクス相を構成するアクリル樹脂の一部又は全部を構成するものとして使用できる。
 単量体混合物(a-2)には、重合体の分子量を制御する目的、上記の架橋エラストマー(A1)へのグラフト率及び架橋エラストマー(A1)に結合していないフリーポリマーの生成量を制御する目的、並びに重合時の不均化停止反応に伴うポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を加えてもよい。このような連鎖移動剤は、架橋エラストマー(A1)の重合に使用可能な連鎖移動剤と同様の連鎖移動剤が使用できる。連鎖移動剤の使用量は、単量体混合物(a-2)の総量100質量部に対して、0質量部以上2質量部以下、好ましくは0質量部以上0.5質量部以下である。
 架橋エラストマー粒子(A1)に対する単量体混合物(a-2)のグラフト率は、5%以上250%以下が好ましく、10%以上200%以下がより好ましく、20%以上150%以下がさらに好ましい。グラフト率が5%未満であると、アクリル系樹脂フィルムの耐折曲げ白化性が低下したり、透明性が低下したり、引張破断時の伸びが低下して二次成形時にクラックが発生しやすくなったりする傾向がある。グラフト率が250%を超えると、フィルム成形時にアクリル系樹脂組成物の溶融粘度が高くなりやすく、アクリル系樹脂フィルムの成形性が低下する傾向がある。
 アクリル系樹脂フィルム中の架橋エラストマー粒子(A1)の平均粒子径d(nm)と、アクリル酸エステル系の架橋エラストマーに用いられる多官能性単量体の量w(質量%)は、関係式:0.015d≦w≦0.06dを満たすのが好ましく、0.02d≦w≦0.05dを満たすのがより好ましい。多官能性単量体の量が、上記関係式の範囲であれば、アクリル系樹脂フィルムの二次成形時の伸びが低下しにくく、成形加工や切削の際にクラックが生じにくく、透明性に優れ、かつ、常温、アクリル系樹脂フィルムの軟化温度以上の高温、あるいは常温と架橋エラストマー粒子(A1)のTgとの間の低温における折り曲げや引張変形の際に応力白化が生じ難い、といった利点を有する。
 前述の通り、必要に応じて使用されるグラフト共重合体粒子(B)も、グラフト共重合体粒子(A)と同じく、ゴム成分である架橋エラストマー(B1)を備える。グラフト共重合体粒子(B)は、典型的には、グラフト共重合体粒子(A)と同じく、架橋エラストマー(B1)よりも表層側に位置するグラフトポリマー層(B2)を備える。つまり、グラフト共重合体粒子(B)は、架橋エラストマー(B1)と、グラフトポリマー層(B2)とを備えるのが好ましい。
 グラフト共重合体粒子(B)について、その平均粒子径がグラフト共重合体粒子(A)よりも大きいことを除いて、グラフト共重合体粒子(A)と原料、製造方法等概ね同様であってもよい。好ましくは、アクリル酸エステル系の架橋エラストマー(B1)の粒子は、架橋エラストマー層の内部に硬質或いは半硬質の架橋樹脂層を備える同心球状の多層構造を有する。このような硬質或いは半硬質の架橋樹脂層としては、例えば特公昭55-27576号等に示されるような硬質の架橋メタクリル樹脂粒子、及び特開平4-270751号やWO2014/41803等に示されるようなメタクリル酸メチル-アクリル酸エステル-スチレン共重合体等からなる半硬質層を有する架橋粒子等が挙げられる。このような硬質或いは半硬質の架橋樹脂層を導入することにより、グラフト共重合体粒子(A)よりも粒子径の大きいグラフト共重合体粒子(B)の透明性、耐折り曲げ白化性、耐折曲げ割れ性等を改善させることができる。
 グラフト共重合体粒子(B)の平均粒子径は、150nm以上400nm以下であることが好ましく、200nm以上350nm以下であることがより好ましい。
 グラフト共重合体粒子(B)の平均粒子径は、グラフト共重合体粒子(A)の平均粒子径よりも大きい。平均粒子径の大きなグラフト共重合体粒子(B)は、アクリル系樹脂材料に対する外力の作用に対して、グラフト共重合体粒子の周囲のアクリル樹脂相に塑性変形(クレイズ)をより効果的に誘起する。このため、グラフト共重合体粒子(B)は、アクリル樹脂材料に耐衝撃性と耐クラック性とを付与する効果に非常に優れている。他方で、グラフト共重合体粒子(B)は、グラフト共重合体粒子(A)よりも、耐折曲げ白化性及び/又は耐溶剤白化性等に劣る。このため、例えば、アクリル樹脂とグラフト共重合体粒子(A)とを含むアクリル系樹脂組成物に対して、グラフト共重合体粒子(B)を少量添加することで、(a)アクリル系樹脂フィルムに対する軟質成分の総含有量を低くしてアクリル系樹脂フィルムの表面硬度を低下させず、(b)アクリル系樹脂フィルムに外部応力が加わった時、有機溶剤を含む塗布液を塗布した時及び/又は成形加工時の白化性は悪化させにくく、かつ(c)機能性フィルムの耐割れ性、二次成形性等を効率的に向上させる効果が期待できる。
 本発明の1以上の実施態様において、グラフト共重合体粒子(A)、及びグラフト共重合体粒子(B)の平均粒子径は、日機装株式会社製のMicrotrac粒度分布測定装置MT3000等のレーザー回折式の粒度分布測定装置を使用し、ラテックス状態での光散乱法を用いて測定できる。
 グラフト共重合体粒子(A)、及びグラフト共重合体粒子(B)の製造方法は、特に限定されず、公知の乳化重合法、ミニエマルジョン重合法、懸濁重合法、溶液重合法等が適用可能である。樹脂構造の調整幅が大きい点から、乳化重合法が特に好ましい。
 グラフト共重合体粒子(A)、及び/又はグラフト共重合体粒子(B)の乳化重合において使用される開始剤としては、有機系過酸化物、無機系過酸化物、及びアゾ化合物等の公知の開始剤を使用することができる。具体的には、t-ブチルハイドロパ-オキサイド、1,1,3,3-テトラメチルブチルハイドロパ-オキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アルキルパーオキシカーボネート類、アルキルパーオキシエステル類等の有機系過酸化物;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機系過酸化物;アゾビスイソブチロニトリル等のアゾ化合物を使用できる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。
 これらの開始剤は、(a)熱分解型のラジカル重合開始剤として使用されてもよく、或いは、(b)これらの開始剤と、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、アスコルビン酸、ヒドロキシアセトン酸、硫酸第一鉄等の還元剤とを組み合わせて、レドックス型重合開始剤系として使用されてもよい。なお、硫酸第一鉄はエチレンジアミン四酢酸-2-ナトリウム等の錯体と併用してもよい。
 これらの中でも、重合安定性及び粒子径制御の点から、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機系過酸化物を用いるか、或いは、t-ブチルハイドロパーオキサイドやクメンハイドロパーオキサイド等の有機経過酸化物を2価の鉄塩等の無機系還元剤及び/又はナトリウムホルムアルデヒドスルフォキシレート、還元糖、アスコルビン酸等の有機系還元剤と組み合わせたレドックス開始剤系を使用するのがより好ましい。
 上記の無機過酸化物又は有機系過酸化物は、重合系にそのまま添加する方法、単量体に混合して添加する方法、乳化剤水溶液に分散させて添加する方法等の公知の方法で添加することができる。アクリル系樹脂フィルムの透明性の観点から、単量体に混合して添加する方法、及び乳化剤水溶液に分散させて添加する方法が好ましい。
 グラフト共重合体粒子(A)及び/又はグラフト共重合体粒子(B)の乳化重合に使用される界面活性剤(乳化剤とも称される。)には特に限定はない。乳化重合には、公知の界面活性剤が広く使用できる。好ましい界面活性剤としては、例えば、(a)アルキルスルフォン酸、アルキルベンゼンスルフォン酸、ジオクチルスルフォコハク酸、アルキル硫酸、脂肪酸ナトリウム、ポリオキシエチレンアルキルエーテル酢酸、アルキルリン酸、アルキルエーテルリン酸、アルキルフェニルエーテルリン酸、サーファクチン等のナトリウム塩、カリウム塩、アンモニウム塩等の陰イオン性界面活性剤、並びに(b)アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド及び/又はエチレンオキサイドとの反応生成物等の非イオン性界面活性剤、等が挙げられる。これらの界面活性剤は1種を単独で使用してもよく、2種以上併用してもよい。
 乳化重合により得られるグラフト共重合体粒子(A)のラテックス、又はグラフト共重合体粒子(B)のラテックスから、公知の方法により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離及び回収することができる。例えば、ラテックスに、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、酢酸カルシウム、塩化ナトリウム、塩酸、酢酸、硫酸等の水溶性電解質を添加してグラフト共重合体粒子を凝固させた後、もしくはラテックスの凍結によりグラフト共重合体粒子を凝固させた後、固形分の濾別、洗浄及び乾燥の操作により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離及び回収できる。また、ラテックスに対する噴霧乾燥、凍結乾燥等の処理により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離及び回収することもできる。
 アクリル系樹脂フィルムの外観欠陥及び/又は内部異物を低減する目的で、好ましくは、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の分離及び回収に先立ち、予めグラフト共重合体粒子(A)のラテックス、又はグラフト共重合体粒子(B)のラテックスをフィルター及び/又はメッシュでろ過することにより、環境異物及び重合スケール等の、異物欠陥原因となる物質が除去される。
 フィルター及びメッシュとしては、液状媒体のろ過に用いられる公知のフィルター及びメッシュを使用可能である。フィルター及びメッシュの形式、フィルター及びメッシュの目開き、濾過精度、及び濾過容量等は、対象となる用途、除去すべき異物の種類、大きさや量に応じて適宜選択される。フィルター及びメッシュの目開き及び濾過精度は、例えば、それぞれ、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の平均粒子径よりも2倍以上大きいものが好ましい。
 アクリル系樹脂フィルム100質量%中において、グラフト共重合体粒子(A)の含有量は特に限定されないが、1質量%以上70質量%以下であることが好ましく、5質量%以上65質量%以下であることがより好ましく、10質量%以上60質量%以下であることがさらに好ましい。
 アクリル系樹脂フィルム100質量%中において、グラフト共重合体粒子(B)の含有量は特に限定されないが、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが最も好ましい。
 <他の成分>
 アクリル系樹脂フィルム(アクリル系樹脂フィルムを構成するアクリル系樹脂組成物)は、本発明の目的を損なわない範囲で、必要に応じて、アクリル樹脂と少なくとも部分的に相溶性を有する熱可塑性樹脂を含んでもよい。このような熱可塑性樹脂としては、例えば、スチレン系樹脂、ポリカーボネート樹脂、非晶質の飽和ポリエステル樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリアリレート樹脂、オレフィン-メタクリル酸誘導体樹脂、オレフィン-アクリル酸誘導体樹脂、セルロース誘導体(セルロースアシレート等)、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリ乳酸樹脂、及びPHBH(ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)樹脂等が挙げられる。スチレン系樹脂としては、例えば、スチレン-アクリロニトリル樹脂、スチレン-(メタ)アクリル酸樹脂、スチレン-無水マレイン酸樹脂、スチレン-N置換もしくは非置換マレイミド樹脂、スチレン-アクリロニトリル-ブタジエン樹脂、及びスチレン-アクリロニトリル-アクリル酸エステル樹脂等が挙げられる。中でも、スチレン系樹脂、ポリカーボネート樹脂、及びセルロースアシレート樹脂からなる群から選ばれる1種以上の熱可塑性樹脂が、アクリル樹脂との相溶性に優れ、アクリル系樹脂フィルムの耐折り曲げ割れ性、耐溶剤性、低吸湿性、また積層体のガラス飛散防止性能等を向上できる可能性があることから好ましい。
 アクリル系樹脂フィルム(アクリル系樹脂フィルムを構成するアクリル系樹脂組成物)は、また、本発明の一実施形態の目的を損なわない範囲で、必要に応じて、アクリル系樹脂フィルムに使用される従来公知の添加剤を含んでも良い。このような添加剤としては、酸化防止剤、紫外線吸収剤、光安定剤、光拡散剤、艶消し剤、滑剤、顔料及び染料等の着色料、繊維状充填材、有機粒子及び/又は無機粒子からなるアンチブロッキング剤、金属及び/又は金属酸化物からなる赤外線反射剤、可塑剤、帯電防止剤等が挙げられる。添加剤は、これらに限定されない。これらの添加剤は、本発明の一実施形態の目的を阻害しない範囲で、もしくは本発明の一実施形態の効果を増強するため、添加剤の種類に応じた任意の量用いることができる。
 <アクリル系樹脂フィルムの物性>
 アクリル系樹脂フィルムのガラス転移温度(Tg)は、140℃以下であることが好ましく、135℃以下であることがより好ましく、130℃以下であることがより好ましい。アクリル系樹脂フィルムのガラス転移温度が140℃以下であると、成形温度を高くすることなく成形が可能であり、成形時のクラック発生を抑制できるとの利点を有する。また、アクリル系樹脂フィルムのガラス転移温度の下限は特に限定されないが、印刷の乾燥時の印刷ズレ防止及び信頼性向上の観点から、例えば、100℃以上であることが好ましい。なお、アクリル系樹脂フィルムのガラス転移温度は、実施例に記載の方法により測定される。
 アクリル系樹脂フィルムの膜厚は、特に限定されないが、例えば、75~500μmであり、75~300μmであることがより好ましく、100~250μmであることがより好ましい。アクリル系樹脂フィルムの膜厚が75~500μmであると、フィルムにコシが出て取り扱い性に優れるとの利点を有する。なお、アクリル系樹脂フィルムの膜厚は、実施例に記載の方法により測定される。
 アクリル系樹脂フィルムの、JIS K 5600-5-4に準じて測定される鉛筆硬度は、2B以上が好ましく、B以上がより好ましく、HB以上が特に好ましい。
 <アクリル系樹脂フィルムの製造方法>
 アクリル系樹脂フィルムは、公知の加工方法により製造できる。公知の加工方法の具体例としては、溶融加工法、カレンダー成形法、プレス成形法、及び溶剤キャスト法等が挙げられる。溶融加工法としては、インフレーション法及びTダイ押出法等が挙げられる。また、溶剤キャスト法では、アクリル樹脂組成物を溶剤に溶解・分散させた後、得られた分散液(ドープ)を、ベルト状基材上にフィルム状に流涎する。次いで、流涎されたフィルム状のドープから溶剤を揮発させることにより、アクリル系樹脂フィルムを得る。
 これらの方法の中では、溶剤を使用しない溶融加工法が好ましく、特にTダイ押出法が好ましい。溶融加工法によれば、製造するフィルムの厚さの制限が少なく、表面性に優れたフィルムを高い生産性で製造でき、且つ溶剤による自然環境及び作業環境への負荷、並びに製造コストを低減することができる。
 アクリル樹脂組成物を、溶融加工法又は溶剤キャスト法によりフィルムに成形する場合、アクリル系樹脂フィルムの外観品質の向上の点から、フィルター又はメッシュを用いるろ過を用いて、アクリル系樹脂フィルムの外観欠陥や内部異物等の原因となる、アクリル樹脂組成物中の環境異物、重合スケール、劣化樹脂等を除去することが好ましい。
 溶融加工によるフィルム製造時には、溶融混合によるアクリル樹脂組成物の調製時、溶融したアクリル樹脂組成物のペレット化時、及びTダイによるフィルム製膜工程のうちの、1以上の任意のタイミングでアクリル樹脂組成物のろ過を行うことができる。溶剤キャスト法では、アクリル樹脂、グラフト共重合体粒子(A)、(B)及び他の成分を溶剤と混合した後、キャスト製膜を行う前にアクリル樹脂組成物のろ過を行えばよい。
 このようなフィルター及びメッシュとしては、フィルター及びメッシュが溶融加工条件に応じた耐熱性及び耐久性、並びにキャスト用の溶剤及びドープ等に対する耐性を有する限りにおいて、公知のフィルター及びメッシュを特に制限なく利用できる。
 アクリル系樹脂フィルムを溶融加工により製造する場合、特に高品質のアクリル系樹脂フィルムを得るためには、濾過容量が大きく、フィルムの品質を損なう樹脂劣化物及び架橋物等の発生原因となる、溶融樹脂の滞留が少ないフィルターが好ましい。例えばリーフディスク型フィルター及びプリーツ型フィルターを用いるのが、ろ過効率及び生産性の観点から好ましい。
 アクリル系樹脂フィルムをTダイ押出法により製造する場合、フィルムの厚み精度を向上させるために、たとえば押出成形されたフィルムのTD方向(押出方向に対して垂直な方向)のフィルム厚み分布をオンラインで測定し、これに基づいてフィルムを押出中のTダイのリップクリアランスを自動調整する、自動ダイ装置を使用することができる。適切な制御方法を用いて自動ダイを適用することにより、アクリル系樹脂フィルムの厚み精度を向上できる可能性がある。
 アクリル系樹脂フィルムの製造において、必要に応じて、フィルムを成形加工する際に、溶融状態のフィルム両面を冷却ロール又は冷却ベルトに同時に接触させる(挟み込む)ことにより、表面性のより優れたフィルムを得ることができる。この場合、溶融状態のフィルムを、アクリル樹脂組成物のガラス転移温度-80℃以上、好ましくはガラス転移温度-70℃以上の温度に維持したロール又は冷却ベルトに同時に接触させるのが好ましい。
 より好ましくは、このような挟み込みを行うためのロールの少なくとも一方として、例えば特開2000-153547号及び特開平11-235747等に開示されたような弾性を有する金属スリーブを有するロールを使用し、低い挟み込み圧力を用いてロール鏡面又は特定の表面形状の転写を行う。これにより、(a)残留ひずみが少なく、平滑性に優れたフィルム、及び/又は(b)適度な表面粗度を有しフィルム表面の滑り性が優れフィルム同士のブロッキングが抑制された、内部歪のより少ないフィルム、を得ることができる。
 また、目的に応じて、フィルムの成形に引続いて、一軸延伸あるいは二軸延伸を行うことも可能である。一軸あるいは二軸延伸は、公知の延伸装置を用いて実施できる。二軸延伸は、逐次二軸延伸、同時二軸延伸、縦延伸の後、縦方向を緩和しつつ横延伸を行い、フィルムのボウイングを低減させる方法等、公知の形式で実施することが可能である。
 さらに、用途の必要に応じて、アクリル系樹脂フィルムの片面又は両面に、ヘアライン、プリズム、凹凸形状、立体装飾、艶消し表面、一定の表面粗度を有する粗面、フィルム端部へのナーリング等の任意の表面形状を付与してもよい。このような表面形状の付与は、公知の方法で実施できる。例えば、押出直後の溶融状態のフィルム、又は繰り出し装置から繰り出された成形済みのフィルムの両面を、少なくとも一方の表面に表面形状を有する2本のロール又はベルトで挟み込むことにより、ロールの表面形状を転写する方法が挙げられる。
 (ハードコート層)
 第1の積層体の製造方法におけるハードコート層は、前記アクリル系樹脂フィルムの少なくとも片面に積層された機能層であり、ウレタンアクリレート樹脂を含む。ハードコート層は、前記アクリル系樹脂フィルムの片面に積層されていてもよく、両面に積層されていてもよい。
 ハードコート層としては、従来より種々の機能性フィルム及び樹脂成形品等において設けられている、ウレタンアクリレート樹脂を含む種々のハードコート層を特に限定なく採用することができる。
 <ウレタンアクリレート樹脂>
 ウレタンアクリレート樹脂は、例えば、多価アルコールと、多価イソシアネートと、水酸基含有(メタ)アクリレートとを混合して、イソシアネート基と水酸基との反応によりウレタン結合を生成させることにより得ることができる。
 ウレタンアクリレート樹脂の各種特性は、多価アルコールの構造と、多価イソシアネートの種類と、水酸基含有(メタ)アクリレートに由来する、アクリロイル基又はメタクリロイル基(CH=CH-CO-、又は、CH=C(CH)-CO-)の数によって適宜調整でき、特に制限されない。ウレタンアクリレート樹脂として、さらに紫外線硬化性ハードコート剤として市販されているウレタンアクリレート樹脂等も挙げられる。
 <その他>
 また、第1の積層体の製造方法において、積層体のハードコート層には、ウレタンアクリレート樹脂に加えて、その他の成分を併用してもよい。ウレタンアクリレート樹脂以外の成分としては、例えば、単官能あるいは多官能の、(メタ)アクリレート、エポキシアクリレート系モノマー、ポリエステルアクリレート、シリコンアクリレート、ポリカーボネートアクリレート、ポリアクリルアクリレート等の、ラジカル反応性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を併用することができる。また、ウレタンアクリレート樹脂と、例えば、(a)2~4官能のシラン化合物の加水分解縮合物、並びに/又は(b)エポキシ基、及びオキセタン基等のカチオン硬化性及び/若しくはアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物、を含む組成物と、を併用してもよい。ハードコート層の形成に用いられる成分として、上記ウレタンアクリレート樹脂を単独で使用してもよく、上記ウレタンアクリレート樹脂に加えて、上記その他の成分を1種または2以上混合して添加してもよい。
 (メタ)アクリレートは、(メタ)アクリロイル基を少なくとも1個以上有する限り特に制限されない。具体的には、(a)アルキル(メタ)アクリレート、アリール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式(メタ)アクリレート、(b)ポリアルキレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、及びジエチレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレート、が挙げられる。これらは、1種を単独で使用しても良く、2種以上を混合して使用しても良い。(メタ)アクリレートとして、さらに紫外線硬化性ハードコート剤として市販されているもの等が挙げられる。本明細書において、(メタ)アクリレートは、メタクリレート及びアクリレートを包含する意味である。本明細書において、(メタ)アクリロイル基は、メタクリロイル基及びアクリロイル基を包含する意味である。
 エポキシアクリレート系モノマーとしては特に制限がない。具体的には、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3、4-エポキシシクロヘキシルメチル(メタ)アクリレート、及びビニルシクロヘキセンモノオキサイド(すなわち、1,2-エポキシ-4-ビニルシクロヘキサン)等が挙げられる。
 水酸基含有(メタ)アクリレートとしては、特に制限されることなく、ヒドロキシル基含有(メタ)アクリレート、例えば、2-ヒドロキシエチルアクリレート及び2-ヒドロキシエチルメタアクリレートのほか、必要により、(a)少なくとも1個のヒドロキシル基を有するエチレン性不飽和結合を持つ化合物、例えば2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリメチールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、アリルアルコール、エチレングリコールアリルエーテル、グリセリン(モノ、ジ)アリルエーテル、N-メチロール(メタ)アクリルアミド等、(b)或いはこれらの混合物、が添加可能である。
 多価イソシアネートとしては特に制限されない。2つ以上のイソシアネート基を含有する化合物である多価イソシアネート化合物として、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、3,3'-ジメチル-4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタントリイソシアネート、3,3'-ジメチルフェニレンジイソシアネート、4,4'-ビフェニレンジイソシアネート、1,6-ヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、ビス(2-イソシアネートエチル)フマレート、6-イソプロピル-1,3-フェニルジイソシアネート、4-ジフェニルプロパンジイソシアネート、トリジンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ[2.2.1]ヘプタン、トリエチレンジイソシアネートのトリメチロールプロパンアダクト体、トリエチレンジイソシアネートのイソシアヌレート体、ジフェニルメタン-4,4'-ジイソシアネートのオリゴマー、ヘキサメチレンジイソシアネートのビウレット体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのウレトジオン、イソホロンジイソシアネートのイソシアヌレート体等が挙げられる。また、これらのポリイソシアネートは、1種を単独或いは2種以上を組み合わせて用いることができる。
 多価アルコールの具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,8-オクタンジオール、1,4-シクロヘキサンジメタノール、及びポリテトラメチレングリコール等が挙げられる。これらの多価アルコールは、1種を単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 イソシアネート成分のイソシアネート基との反応を促進するために、有機錫系ウレタン化触媒が使用される。有機錫系ウレタン化触媒としては、ウレタン化反応に一般に使用されるものであればよく、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアルキルマレート、ステアリン酸錫、オクチル酸錫等が挙げられる。
 シラン化合物の加水分解縮合物からなる組成物は、好ましくは、下記一般式(2):
-(SiR (OR3-a)・・・(2)
 (一般式(2)中、Rは、少なくとも一部の末端が、エポキシ基、オキセタン基、(メタ)アクリロイル基、ビニル基、水酸基、カルボキシル基、アミノ基、官能基保護されたアミノ基からなる群から選ばれる反応性置換基で置換されていてもよい、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。Rはそれぞれ独立して、水素原子、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。Rはそれぞれ独立して水素原子、又は炭素原子数1以上10以下のアルキル基である。aは0以上2以下の整数である。)で表される、加水分解性シリル基を有するシラン化合物(Z)を加水分解及び縮合させて得られる縮合物(A)、及び、必要に応じて反応性置換基を反応せしめる触媒或いは硬化剤(B)を含有する、硬化性組成物である。
 好ましくは、縮合物(A)の重量平均分子量は30,000以下である。また、反応性置換基を有するシラン化合物の使用割合がシラン化合物(Z)の使用量全体の10質量%以上であるのが好ましい。ハードコート層にこのようなシラン化合物(Z)の加水分解縮合物からなる組成物をウレタンアクリレート樹脂と併用する場合、ハードコート層としての硬化物が、硬度、耐薬品性、及び耐久性等に優れる可能性がある。
 一般式(2)における反応性置換基は、ハードコート層形成時の硬化収縮が少ない点と、耐久性に優れカールが抑制された機能性フィルムを得やすい点から、エポキシ基又はオキセタン基であるのが好ましい。
 シラン化合物(Z)の加水分解縮合反応を行う際の触媒としては、中性塩触媒を用いることがより好ましい。反応性置換基がエポキシ基及び/又はオキセタン基である場合に、加水分解縮合時の反応性置換基の分解を抑制しやすいためである。
 ハードコート層を形成する際に樹脂層(樹脂組成物)を硬化させる方法としては、公知の方法を適用できる。硬化方法としては、紫外線に代表される活性エネルギー線を照射する方法が好ましい。活性エネルギー線の照射により硬化を行う場合には、光重合開始剤が使用される。更に、(a)上記のシラン化合物の加水分解縮合物、並びに/又は(b)エポキシ基、及びオキセタン基等のカチオン硬化性及び/若しくはアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物、を含む組成物をウレタンアクリレート樹脂と併用する場合には、適宜、光アニオン発生剤、あるいは光カチオン発生剤等も使用される。
 光重合開始剤の具体例としては、例えば、アセトフェノン、ベンゾフェノン、ベンゾイルメチルエーテル、ベンゾイルエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ジベンジル、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、及び2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン化合物等が挙げられる。これらの中では、樹脂との相溶性に優れる1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが好ましい。
 光カチオン発生剤の具体例としては、例えば、サンアプロ社製のCPI-100P、CPI-101A、CPI-200K、及びCPI-200S;和光純薬工業社製のWPI-124、WPI-113、WPI-116、WPI-169、WPI-170、及びWPI-124;ローディア社製のロードシル2074等が挙げられる。
 光アニオン発生剤の具体例としては、例えば、アセトフェノンo-ベンゾイルオキシウム、ニフェジピン、2-(9-オキソキサンテン2-イル)プロピオン酸1,5,7-トリアザビシクロ〔4.4.0〕デカ-5-エン、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシラート、1,2-ジイソプロピル-3-〔ビス(ジメルアミノ)メチレン〕グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルピグアニジウム、及びn-ブチルトリフェニルバラート等が挙げられる。
 硬化性組成物からなる樹脂層(塗布膜)を硬化させてハードコート層を形成する場合、硬化性組成物には、塗布性、硬化後の耐擦り傷性及び防汚性などの改善等の目的で、公知の各種レベリング剤が配合されてもよい。レベリング剤としては、フッ素系レベリング剤、アクリル系レベリング剤、シリコーン系レベリング剤、及びそれらの付加物或いは混合物を使用することができる。レベリング剤の配合量は特に限定されないが、例えば、硬化性組成物100質量部に対し0.03質量部以上3.0質量部以下の範囲内の量である。
 硬化性組成物を塗布することによりハードコート層を形成する場合、硬化性組成物には、紫外線吸収剤、光安定化剤、消泡剤、酸化防止剤、光拡散剤、艶消し剤、防汚剤、滑剤、顔料及び染料等の着色料、有機粒子、無機微粒子、及び帯電防止剤等の各種添加剤を、必要に応じて添加できる。添加剤は、これらに限定されない。
 硬化性組成物に適切な塗布性を付与するためには、通常、有機溶剤が配合される。有機溶剤としては、硬化性組成物に所望する塗布性を付与でき、かつ所望する膜厚及び性能のハードコート層を形成できる限り特に限定されない。有機溶剤の沸点は50℃以上150℃以下が、塗布性と、形成される樹脂層(塗布膜)の乾燥性の点から好ましい。
 有機溶剤の具体例としては、ヘキサン等の飽和炭化水素;トルエン、及びキシレン等の芳香族炭化水素;クロロホルム、及び塩化メチレン等のハロゲン化炭化水素;メタノール、エタノール、イソプロピルアルコール、及びブタノール等のアルコール類;酢酸メチル、酢酸エチル、及び酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、プロピレングリコールモノエチルエーテル、メチルセロソルブ、及びエチルセロソルブ等のエーテル類;Nメチルピロリドン、及びジメチルホルムアミド等のアミド類等が挙げられる。有機溶剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 硬化性組成物を、基材フィルムである前述のアクリル系樹脂フィルムの主面上に塗布する場合、塗布方法としては任意の方法を特に制限なく採用することができる。塗布方法としては、例えば、リバースコート法、グラビアコート法、バーコート法、ダイコート法、スプレーコート法、キスコート法、ワイヤーバーコート法、及びカーテンコート法等が挙げられる。これらの塗布方法は、1種を単独で、又は複数種を組み合わせて実施されてもよい。
 以上説明したハードコート層形成用の硬化性組成物を基材フィルムである前述のアクリル系樹脂フィルムの表面に塗布して形成した後、乾燥による塗布膜からの有機溶剤の除去と、紫外線照射等の光による得られる樹脂層の硬化とを行うことにより、ハードコート層が形成される。
 塗工後の樹脂層より有機溶剤を除去する際の乾燥温度は、60℃以上120℃以下であることが好ましく、70℃以上100℃以下であることがより好ましい。乾燥温度が低すぎると、樹脂層(塗布膜)中に有機溶剤が残留する場合がある。また、乾燥温度が高すぎると、基材フィルムの熱変形により、機能性フィルム(ハードコート層)の平坦性が損なわれる場合がある。
 樹脂層(塗布膜)を硬化させる際に照射される紫外線の波長は200nm以上400nm以下の範囲が好ましい。紫外線(UV)積算光量は、後述する〔4.積層体の製造方法〕に記載の条件が好ましく使用される。紫外線の露光光の照射装置としては、例えば、(a)高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、無電極ランプ、及びエキシマランプ等のランプ光源、及び/又は(b)アルゴンイオンレーザー及びヘリウムネオンレーザー等のパルス又は連続のレーザー光源、等を備える照射装置を用いることができる。
 ハードコート層形成用組成物(硬化性組成物)としては、例えば、アイカ工業株式会社製の品名「Z-607-27L」、DIC株式会社製の品名「ENS102」、荒川化学工業株式会社製の品名「ビームセット1200W」、大成ファインケミカル株式会社製の品名「アクリット8UX-116A」、日本化工塗料株式会社製の品名「NXD-004AP」、大同化成工業株式会社製の品名「P-5820TAH-1」、トーヨーケム株式会社製の品名「リオデュラスMOL7200」等の市販品を用いてもよい。これら市販品は硬化後にも伸度を有することから、これら市販品を用いることにより、積層体の120℃でのクラック伸度をより高めることができる。
 ハードコート層の膜厚は、特に限定されないが、例えば、0.6μm~10.0μmであり、0.7μm~7.0μmであることが好ましく、0.8μm~5.0μmであることがより好ましい。ハードコート層の膜厚が0.6μm~10.0μmであると、耐摩耗性と成形性とを両立できる利点を有する。なお、ハードコート層の膜厚は、実施例に記載の方法により測定される。
 また、本発明の第1実施形態において、ハードコート層の硬度、耐摩耗性及び帯電防止性等を向上するために、無機粒子及び/又は金属粒子を添加してもよい。無機粒子及び金属粒子としては、特に限定されないが、例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、ジルコニア、グラフェン、ナノカーボン、カーボンブラック、ナノダイヤモンド、マイカ、チタン酸バリウム、窒化ホウ素、金属銀、金属銅等が挙げられる。これらの粒子は、表面処理を行わずに使用してもよく、また分散状態の制御のためにあらかじめ公知の方法で表面処理を実施し、ハードコート層との親和性を適宜制御してもよい。
 <粒子>
 第1の積層体の製造方法におけるハードコート層は、ウレタンアクリレート樹脂に加えて、さらに粒子を含んでいてもよい。第1の積層体の製造方法において、ハードコート層が粒子が含む場合、防眩性に優れたアクリル系樹脂フィルムを含む積層体を得ることができる。
 防眩性等を付与する目的でハードコート層に配合する粒子については、例えば所望の防眩性、透過像の鮮明度、ギラツキ、表面の漆黒感、表面硬度、滑り性、帯電防止性などの種々の特性のバランスを得るために、粒子の材質、配合部数、粒子の分散溶剤の種類、粒子径、分散粒子径、ハードコート層の膜厚、ハードコート基材との相対的な屈折率差、粒子表面とハードコート基材や溶剤との親和性や反応性などを適宜、本発明の効果を損なわない公知の技術範囲で調整することが出来る。
 ハードコート層に配合する粒子の材質としては、本発明の効果を奏するものであれば特に限定されないが、例えば、(a)シリカ、アルミナ、ガラスビーズまたはフレーク、マイカ、クレイ、酸化チタン、酸化亜鉛、ジルコニア、金属粒子などの無機粒子、及び/又は(b)アルキル(メタ)アクリレート単位、芳香族ビニル単位、シロキサン単位などを主成分とする架橋された有機樹脂粒子、並びに(c)コア-シェル型多層構造樹脂粒子、等が挙げられる。入手が容易であり用途に応じた防眩性の設計が容易である点から、粒子は、無機酸化粒子(例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛およびジルコニアなど)および/または架橋された有機樹脂粒子であることが好ましく、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上であることがより好ましい。また、防眩性、分散性、表面硬度等の物性バランスの観点から、シリカ粒子、アルミナ粒子及び架橋された有機樹脂粒子が特に好ましい。また、これらの粒子は、分散性の制御の観点より、反応性置換基を有しても良いシランカップリング剤や反応性単量体などの使用、プラズマ処理、コロナ処理等の公知の手法による表面処理及び/又はグラフト重合処理等が施されていてもよい。粒子とハードコート層との界面接着性が向上し、粒子の分散性、延伸時のクラックおよび/または白化が改善できる可能性があることから、粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有することが好ましい。ウレタンアクリレート樹脂との反応性を有する反応性官能基としては、(a)ビニル基、(メタ)アクリロイル基等のラジカル反応性官能基、(b)エポキシ基、オキセタン基、水酸基、カルボキシル基、メルカプト基、イソシアニル基、水酸基、アミノ基等のイオン性官能基、並びに(c)シリル基、アルコキシシリル基等の湿分硬化性官能基、等が挙げられる。
 本明細書において、「粒子」は、その一次粒子の大きさによって、一次粒子の状態のままで分散している場合もあり、あるいは複数の粒子が凝集した状態で分散している場合もある。これらの粒子あるいはその凝集物が分布した領域(分散ドメイン)のサイズを、「平均分散粒子径」として規定する。一次粒子のサイズが大きいものは、平均分散粒子径と一次(基本)粒子径とが同じになることもある。
 粒子(例えば、シリカ粒子)の平均分散粒子径は、本発明の効果を奏する限り特に限定されないが、例えば、0.1μm~50.0μmであり、0.2μm~25.0μm、0.5μm~10μm等であってもよい。なお、粒子(例えば、シリカ粒子)の平均分散粒子径は、実施例に記載の方法により測定される。
 第1の積層体の製造方法において、ハードコート層中の前記粒子の含有量は、本発明の一実施形態の効果を奏する限り特に限定されないが、例えば、0.1重量%~30.0重量%であり、0.5重量%~20.0重量%、1.0重量%~15.0重量%等であってもよい。
 (低屈折率層)
 第1の積層体の製造方法において、前記ハードコート層上に、さらに、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む低屈折率層を備えていることが好ましい。低屈折率層は、反射防止層を構成する。
 低屈折率層は、典型的には、低屈折率層形成用組成物(硬化性組成物)を硬化させることにより形成される。低屈折率層は、前述したハードコート層との有意な屈折率差及び/又は後述の高屈折率層との有意な屈折率差により、反射防止効果を発現させるための層である。低屈折率層としては、例えば粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む層であればよく、従来より反射防止フィルム等に用いられている公知の層を適宜使用できる。低屈折率層形成用組成物としては、ベースとなる有機材料としてアクリレート系樹脂に、屈折率調整用の材料として中空シリカ微粒子を添加して得られる組成物を用いることができる。
 低屈折率層に含まれるアクリレート系樹脂は、中空シリカ微粒子を含有する。中空シリカ微粒子の粒子径は、100nm未満であり、80nm以下が好ましく、60nm以下がより好ましい。中空シリカ微粒子の粒子径が100nm未満であると、透明性が優れるとの利点を有する。また、中空シリカ微粒子の粒子径の下限は特に限定されないが、反射防止性能の向上の観点から、例えば、10nm以上であり、20nm以上であることが好ましい。なお、中空シリカ微粒子の粒子径は、実施例に記載の方法により測定される。
 低屈折率層において、アクリレート系樹脂中の中空シリカ微粒子の含有量は40%以上であり、45%以上が好ましく、50%以上がより好ましい。アクリレート系樹脂中の中空シリカ微粒子の含有量が50%以上であると、反射防止特性が優れるとの利点を有する。また、アクリレート系樹脂中の中空シリカ微粒子の含有量の上限は特に限定されないが、表面硬度及び耐摩耗性の向上の観点から、例えば、80%以下であり、70%以下であることが好ましい。
 本発明の第1実施形態において、低屈折率層形成用組成物は、アクリレート系樹脂以外の有機材料として、ハードコート層に含まれる樹脂と同様の樹脂を含んでいてもよい。また、本発明の第1実施形態において、低屈折率層形成用組成物は、中空シリカ微粒子以外の屈折率調整用材料として、シリカ微粒子、フッ化物微粒子等を含んでいてもよい。フッ化物微粒子を構成するフッ化物としては、フッ化マグネシウム、フッ化リチウム、フッ化アルミニウム、及びフッ化カルシウム等が挙げられる。
 低屈折率層に防汚性を付与するために、有機材料の一部を撥水性材料、又は撥油性材料に置き換えてもよい。撥水性材料、又は撥油性材料は例えば、(a)長鎖炭化水素骨格、フッ化炭化水素骨格、フルオロポリエーテル骨格、ポリシロキサン系骨格などを含有する化合物、並びに(b)上述した各骨格を有する樹脂などが挙げられる。これらはたとえばウレタンアクリレート樹脂との反応性官能基を有していてもよく、また、これらの骨格を一分子中に二種類以上含むものであっても良い。またこれらを複数併用しても良い。
 低屈折率層には、本発明の一実施形態の効果を損なわない範囲において、その他の成分として各種添加剤を添加することができる。そのような添加剤としては、例えば、光重合開始剤、分散剤、界面活性剤、紫外線吸収剤、酸化防止剤、光安定剤、帯電防止剤、レベリング剤、防汚剤、防指紋剤、滑性付与剤等の添加剤が挙げられる。
 低屈折率層形成用組成物としては、例えば、アイカ工業株式会社製の品名「Z-824」、荒川化学工業株式会社製の品名「TU-2359」、日揮触媒化成工業株式会社製の品名「ELCOM P-5062」等の市販品を用いても良い。これら市販品は硬化後にも伸度を有することから、これら市販品を用いることにより第1の積層体の120℃クラック伸度をより高めることができる。
 <その他の機能層>
 第1の積層体は、上記以外のその他の機能層を有していてもよい。その他の機能層としては、特に限定されず、例えば、従来公知の種々の機能層を採用することができる。その他の機能層の具体例としては、防眩層、防汚層、耐指紋層、耐傷付き層、帯電防止層、紫外線遮蔽層、赤外線遮蔽層、表面凹凸層、光拡散層、艶消層、偏光層、着色層、意匠層、エンボス層、導電層、ガスバリア層、ガス吸収層、高屈折率層等が挙げられる。これらの機能層を、2種以上組み合わせて備えていてもよい。また一つの機能層が、二つ以上の複数の機能を兼ね備えても良い。
 (その他)
 工程(A1)において、活性エネルギー線としては、紫外線(UV)が挙げられる。工程(A1)において、活性エネルギー線照射の積算光量(例えば、紫外線(UV)照射の積算光量)は、例えば、150mJ/cm~500mJ/cmであり、180mJ/cm~450mJ/cmであることが好ましく、200mJ/cm~400mJ/cmであることがより好ましい。前記UV照射の積算光量が150mJ/cm~500mJ/cmであると、成形性を担保しながら、ハードコート層の適度な硬度を得ることができる。前記UV照射の積算光量が150mJ/cm以上であるとハードコート層の架橋度が向上し、表面硬度及び耐擦り傷性を良好にできる。前記UV照射の積算光量が500mJ/m以下であると、低屈折率層形成用組成物の塗工時、ハードコート層への低屈折率層形成用組成物の含侵が適度になるとともに、ハードコート層の残存アクリレート基が適度になる。その結果、低屈折率層形成用組成物(樹脂層)の硬化後、ハードコート層と低屈折率層との密着性が保たれて、得られる積層体において120℃で80%延伸時の白化が抑制され得る。
 工程(A1)において、冷却ロール温度は、例えば、20℃~70℃であり、25℃~60℃であることが好ましく、30℃~55℃であることがより好ましい。工程(A1)における冷却ロール温度が20℃~70℃であると、紫外線照射時のハードコート層形成用組成物の樹脂層の温度上昇を抑制しながら、当該樹脂層(ハードコート層)の硬化を行うことができ、所望の物性の積層体を製造し得る。
 なお、工程(A1)の上記以外の条件等については、上記(ハードコート層)において記載したものが、援用される。
 工程(B1)では、前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂(低屈折率層形成用組成物)を塗布し、得られた前記アクリレート系樹脂を含む樹脂層(低屈折率層形成用組成物)に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する。
 工程(B1)において、活性エネルギー線としては、紫外線(UV)が挙げられる。工程(B1)において、活性エネルギー線照射の積算光量(例えば、紫外線(UV)照射の積算光量)は、上記工程(A1)と同様の条件が採用され得る。
 工程(B1)において、冷却ロール温度は、例えば、20℃~70℃であり、25℃~60℃であることが好ましく、30℃~55℃であることがより好ましい。工程(B1)における冷却ロール温度が20℃~70℃であると、紫外線照射時の低屈折率層形成用組成物の樹脂層の温度上昇を抑制しながら、当該樹脂層(低屈折率層)の硬化を行うことができ、所望の物性の積層体を製造し得る。
 なお、工程(B1)の上記以外の条件等については、上記(ハードコート層)及び(低屈折率層)において記載したものが、援用される。
 また、本発明の第1実施形態において、前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、前記溶剤は少なくとも1種類以上の溶剤を含み、かつ、最も高沸点の溶剤が沸点115℃~180℃である、積層体の製造方法を提供する。工程(B1)及び工程(B1’)において、「粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂」は「低屈折率層形成用組成物」ともいえる。
 工程(B1’)において、最も高沸点の溶剤の沸点は、例えば、115℃~180℃であり、120℃~170℃であることが好ましく、125℃~160℃であることがより好ましい。最も高沸点の溶剤の沸点が115℃~180℃であると、ハードコート層と低屈折率層との密着性が良好となり、延伸時により低白化の(白化の程度がより小さい)積層体を得ることができる。
 工程(B1’)で使用される溶剤としては、上記沸点を有する溶剤を含む限り特に限定されない。沸点が115℃~180℃である溶剤としては、特に限定されないが、例えば、プロピレングリコールモノメチルエーテル(PGM)、シクロヘキサノン、酢酸ブチル、プロピレングリコールモノメチルエーテルアセタート(PGMA)等が挙げられる。中でも、樹脂との相溶性及び乾燥効率の観点から、PGMが好ましい。これらは1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
 工程(B1’)において、アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する方法は特に限定されず、公知の方法を使用することができる。例えば、上記中空シリカ微粒子を含有するアクリレート系樹脂は、実施例に記載の方法により調製される。
 〔1-3.積層体〕
 第1の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む。より具体的には、第1の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である。また、本発明の第1実施形態の好ましい一態様において、第1の積層体は、前記ハードコート層上に、さらに低屈折率層を備える。
 (積層体)
 第1の積層体は、上述の通り、少なくとも、特定のアクリル系樹脂フィルムと、特定のハードコート層とから構成される。また、本発明の第1実施形態の好ましい一態様において、第1の積層体は、特定のアクリル系樹脂フィルムと、特定のハードコート層と、特定の低屈折率層とから構成される。
 本発明の第1実施形態において、第1の積層体は、上記(アクリル系樹脂フィルム)に記載のアクリル系樹脂フィルムと、上記(ハードコート層)に記載のハードコート層とから構成される。また、本発明の第1実施形態の好ましい一態様において、第1の積層体は、上記(アクリル系樹脂フィルム)に記載のアクリル系樹脂フィルムと、上記(ハードコート層)に記載のハードコート層と、上記(低屈折率層)に記載の低屈折率層と、から構成される。第1の積層体は、好ましくは、上記〔1-2.第1の積層体の製造方法〕に記載の製造方法により得られる。
 第1の積層体の鉛筆硬度は、H以上であり、2H以上であることが好ましく、3H以上であることがより好ましい。第1の積層体の鉛筆硬度がH以上であると、傷がつきにくいとの利点を有する。なお、本明細書において、「鉛筆硬度」は、耐摩耗性の指標であり、引っ掻いた時に形成される傷の程度により耐摩耗性を評価する。本明細書において、積層体の鉛筆硬度は、実施例に記載の方法により測定される。
 第1の積層体の「120℃での引張破断伸度」および「120℃でのクラック伸度」は、上記〔1-2.積層体の製造方法〕に記載したものが援用される。
 第1の積層体のヘイズは、例えば、1.0%以下であり、0.8%以下であることが好ましく、0.5%以下であることがより好ましい。第1の積層体のヘイズが1.0%以下であると、透明性に優れるとの利点を有する。なお、本明細書において、積層体のヘイズは、実施例に記載の方法により測定される。
 第1の積層体の120℃での80%延伸後のΔヘイズは、例えば、3.0%以下であり、2.5%以下であることが好ましく、2.0%以下であることがより好ましい。第1の積層体の120℃での80%延伸後のΔヘイズが3.0%以下であると、成形時の白化を抑制できるとの利点を有する。なお、第1の積層体の120℃での80%延伸後のΔヘイズは、実施例に記載の方法により測定される。
 第1の積層体において、前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズ(以下、単に「120℃での20%延伸後のΔヘイズ」とも称する。)は、30%以下であることが好ましく、20%以下であることがより好ましい。第1の積層体における低屈折率層は、第1の積層体の120℃でのクラック伸度を向上させるため、および/または120℃における延伸時の白化を抑制するため、延伸時の白化が少ないものが好ましい。前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが30%以下であると、第1の積層体の120℃での80%延伸後の白化が小さくなり、成形性により優れた積層体とすることができる。なお、本明細書において、120℃での20%延伸後のΔヘイズは、アクリル系樹脂フィルムに低屈折率層を積層させてなる積層フィルムを測定対象として、実施例に記載の方法により測定される。
 第1の積層体の視感反射率は、例えば、2.0%以下であり、1.8%以下であることが好ましく、1.6%以下であることがより好ましい。第1の積層体の視感反射率が2.0%以下であると、反射防止性能に優れ、ディスプレイ表面に積層時の視認性に優れるとの利点を有する。第1の積層体の視感反射率は、低いほど好ましく、0.0%であってもよい。なお、第1の積層体の視感反射率は、実施例に記載の方法により測定される。
 第1の積層体の面内位相差(Re)は、例えば、10nm以下であり、9nm以下であることが好ましく、8nm以下であることがより好ましく、7nm以下であることがさらに好ましく、6nm以下であることが特に好ましい。面内位相差(Re)が10nm以下であると、液晶表示装置においてコントラストの低下を抑制できる。なお、本明細書において、面内位相差(Re)は、実施例に記載の方法により測定される。
 第1の積層体の厚み方向位相差(Rth)の絶対値は、例えば、30nm以下であり、25nm以下であることが好ましく、20nm以下であることがより好ましい。厚み方向位相差(Rth)の絶対値が30nm以下であると、液晶表示装置においてコントラストの低下を抑制できる。なお、本明細書において、厚み方向位相差(Rth)は、実施例に記載の方法により測定される。
 第1の積層体の120℃での80%延伸時の引張応力に平行な方向のマイクロクラック幅(以下、単に、「第1の積層体のマイクロクラック幅」と称することもある。)は、例えば、2.0μm以下であり、1.5μm以下であることが好ましく、1.0μm以下であることがより好ましい。第1の積層体のマイクロクラック幅が2.0μm以下であると、成形時の外観変化を抑制できるとの利点を有する。なお、第1の積層体のマイクロクラック幅は、実施例に記載の方法により測定される。また、本明細書において、「120℃での80%延伸時」は、「120℃での延伸率が80%」と記載することもできる。この場合の、「延伸率」は、単に伸度を示す。
 第1の積層体の120℃での80%延伸時の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さ(以下、単に、「第1の積層体のマイクロクラックの溝の深さ」と称することもある。)は、例えば、1.0μm以下であり、0.8μm以下であることが好ましく、0.5μm以下であることがより好ましい。第1の積層体のマイクロクラックの溝の深さが1.0μm以下であると、成形時の外観変化を抑制できるとの利点を有する。なお、第1の積層体のマイクロクラックの溝の深さは、実施例に記載の方法により測定される。
 ここで、第1の積層体のマイクロクラック幅およびマイクロクラックの溝の深さについて、図1を用いて説明する。図1は、本発明の第1実施形態に係る積層体について、引張試験後のTEM画像を示す図である。図1の積層体4は、アクリル系樹脂フィルム1、ハードコート層2および低屈折率層3から構成される。積層体4において、120℃で積層方向と垂直な方向に力を加えて引張試験を行うと、引張応力に応じて、積層体4の表面にマイクロクラック5が生じる。生じたマイクロクラック5の引張応力に平行な方向の裂け幅をマイクロクラック幅6と呼び、積層方向の裂け幅をマイクロクラックの溝の深さ7と呼ぶ。
 第1の積層体は、アクリル系樹脂フィルムの面(2面)のうち、ハードコート層を設けた面に対し反対側の面にプライマー層を有しても良い。プライマー層の組成としては、(a)後加工の工程で行われる印刷に用いられるインキ、(b)射出成型に用いられる射出樹脂、(c)金属蒸着に用いられる金属などに対して密着性の良い樹脂、等が用いられる。例えば、樹脂成分としては、ウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート、エポキシ系樹脂、メラミン系樹脂、酢酸ビニルと塩化ビニルとの共重合体、酢酸ビニル樹脂等が用いられる。これらの樹脂成分は、酸基、アミノ基、エポキシ基、オキセタン基、ビニル基、水酸基、メルカプト基、イソシアニル基、シリル基、塩類などの官能基を適宜含有してもよい。あるいは、樹脂成分とこれらの官能基を有する化合物とを併用してもよい。このようなプライマー層を設けることにより、射出樹脂、インキ等と第1の積層体のアクリル樹脂との密着性を強化することができる。
 プライマー層の厚みは0.5~10μmが好ましく、0.5~5μmがより好ましく、0.5~3μmが最も好ましい。プライマー層の厚みが0.5μm以上であると、射出樹脂及びインキ等と第1の積層体のアクリル樹脂との密着性が担保でき、10μm以下であると生産性がよりよい。
 〔1-4.成形体〕
 本発明の第1実施形態において、第1の積層体を備える、成形体(以下、「第1の成形体」と称する。)を提供する。また、本発明の第1実施形態において、第1の成形体は、少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、第1の積層体を積層して得られる。
 第1の成形体の用途の具体例としては、インストルメントパネル、車載ディスプレイ前面板、コンソールボックス、メーターカバー、ドアロックペゼル、ステアリングホイール、パワーウィンドウスイッチベース、センタークラスター、ダッシュボード等の自動車内装用途;(a)ウェザーストリップ、バンパー、バンパーガード、サイドマッドガード、ボディーパネル、スポイラー、フロンリル、ストラットマウント、ホイールキャップ、センターピラー、ドアミラー、センターオーナメント、サイドモール、ドアモール、ウインドモール等、及び(b)窓、ヘッドランプカバー、テールランプカバー、風防部品等、の自動車外装用途;スマートフォン、携帯電話及びタブレット等の携帯電子機器等のハウジング、表示窓、ボタン等;テレビ、DVDプレイヤー、ステレオ装置、炊飯器、洗濯機、冷蔵庫、エアコン、加湿器、除湿機、扇風機、その他の家庭用電子電気機器;(a)家具製品等の筐体、フロントパネル、ボタン、エンブレム、表面化粧材等の用途、さらには(b)家具用外装材用途;壁面、天井、床、バスタブ、便座、等の建築用内装材用途;サイディング等の外壁、塀、屋根、門扉、破風板等の建築用外装材用途;窓枠、扉、手すり敷居、鴨居等の家具類の表面化粧材用途;各種ディスプレイ、レンズ、ミラー、ゴーグル、窓ガラス等の光学部材用途;電車、航空機、船舶等の自動車以外の各種乗り物の内外装用途等が挙げられる。
 第1の積層体を用いると、(a)複雑な立体形状であり、かつ(b)表面の硬度、耐擦傷性、耐薬品性、防汚性、反射特性、及び防眩性等が制御された、外観にすぐれる成形体を容易に製造できる。このため、第1の成形体は、上記の用途の中でも、例えば、平面形状、曲面形状及び/又は立体形状を有する車載ティスプレイ前面板等の用途に好ましく用いられる。したがって、本発明の第1実施形態において、第1の成形体を備える、車載ディスプレイ前面板を提供する。
 〔2.第2実施形態〕
 本発明の第2実施形態は、アクリル系樹脂フィルムを基材として含む積層体およびその製造方法に関する。
 上述したように、アクリル系樹脂フィルムを含む加飾・保護用フィルムに機能性をさらに付与する方法として、フィルム基材上にコーティング等の手法により機能性層を形成する方法が行われている。
 例えば、特許文献4には、熱可塑性透明基材フィルム上に防眩性ハードコート層を有し、熱可塑性透明基材フィルム上の防眩性ハードコート層側の最表層として、特定の成分を特定の濃度で含む低屈折率層を備えるインサート成形用防眩性反射防止フィルム等が記載されている。
 特許文献5には、支持体と、前記支持体の一方の面に設けられた易接着層と、前記支持体の他方の面に設けられた透光性樹脂からなる透明層を備え、前記透明層は、透光性粒子を含み、前記透光性粒子の体積平均粒子径rが、0.4μm≦r≦3.0μmを満たし、かつ前記透光性粒子の総和Sが、30mg/m≦S≦500mg/mを満たし、かつ前記透明層の平均膜厚tが、r/4≦t<rを満たす光学積層フィルム等が記載されている。
 しかし、特許文献4および5に記載された技術では、積層体の成形性と、積層体表面の表面硬度及び防眩性等の積層体の機能性との両立という観点においては充分な性能を有するとは言えず、さらなる改善の余地があった。
 そこで、本発明の一実施形態(第2実施形態)の目的は、成形性、表面硬度及び防眩性に優れた、アクリル系樹脂フィルムを含む積層体およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、アクリル系樹脂フィルムおよびハードコート層等から構成される積層体において、特定の粒子を含有し、かつ、特定の物性を有するハードコート層を用いることにより、成形性、表面硬度及び防眩性優れた積層体を得ることができることを初めて見出し、本発明の一実施形態(第2実施形態)を完成するに至った。
 したがって、本発明の第2実施形態の一態様は、(A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法である。
 また、本発明の第2実施形態の一態様は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体である。
 本発明の第2実施形態の一態様によれば、成形性、表面硬度及び防眩性に優れた、アクリル系樹脂フィルムを含む積層体およびその製造方法を提供することができる。
 以下、第2実施形態について説明するが、以下に詳説した事項以外は、適宜、第1実施形態の記載を援用する。
 〔2-1.本発明の第2実施形態の概要〕
 本発明の第2実施形態に係る積層体の製造方法(以下、「第2の積層体の製造方法」と称する。)は、(A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、ことを特徴とする。また、本発明の第2実施形態に係る積層体(以下、「第2の積層体」と称する。)は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、ことを特徴とする。
 本明細書において、第2実施形態に係る積層体の製造方法で得られる積層体及び第2実施形態に係る積層体の両方を「第2の積層体」と称する場合がある。
 上述した第2の積層体の製造方法によって得られる積層体は、表面硬度を有しており、表面硬度に優れる、ともいえる。また、第2の積層体の製造方法によって得られる積層体は、防眩性を有しており、防眩性に優れる、ともいえる。本明細書における、積層体の防眩性の評価方法については、後の実施例にて詳説する。また、第2の積層体の製造方法によって得られる積層体は、成形性に優れる。
 上述したように、大型化及び曲面化が進んでいる、近年の車載ディスプレイ用のフィルムとしては、これまで以上に成形性の高い防眩フィルムや反射防止フィルムが要求される。
 しかし、特許文献4には、大型かつ平面的な形状のフィルムしか開示されておらず、第2実施形態の課題の一つである「成形性」を解決するための技術は開示されていない。また、特許文献5には、防眩粒子含有層の膜厚よりも防眩粒子の分散粒子径の方が大きい構成要素を開示しているものの、樹脂層のクラック伸度が大きいという技術要件の開示はなく、また、「成形性」及び「延伸白化が小さい」等の構成についても開示されていない。すなわち、従来の技術では、成形性、表面硬度及び防眩性といった要求を満たす積層体は見出されておらず、さらなる改善の余地があった。
 そこで、本発明者らは、主として、積層体の成形性および表面硬度、ならびに防眩性の改善について検討を進める中で、(i)積層体中のハードコート層及び屈折率調整層(例えば、低屈折率層)等を特定の物性および状態とすること、並びに(ii)ハードコート層中の粒子の分散状態を制御することにより、大型成形体の立体表面への積層の際にも、機能層の剥離及び割れ等が発生せず、成形性、表面硬度及び防眩性に優れた積層体を得ることができることを初めて見出した。また、本発明者らは、上記の方法により得られた積層体は、成形性に加えて、延伸部の白化の問題も解決され得ることを見出した。
 従来、表面硬度、防眩性及び反射防止性を備えた機能層を有する、成型用の積層体においては、成型に伴い延伸される部位のコーティング層の剥離及びクラック並びにフィルムの破断などの問題に加えて、延伸部の白化に関して次のような課題があった。(1)積層体中の、防眩粒子を含有するハードコート層において、成型に伴い積層体が延伸される際にハードコート層が著しく白化することがあった。(2)積層体の最表面に位置する低屈折率層が、延伸される際に白化することがあった。
 本発明者らは、これらの課題に関して鋭意検討する過程で、以下の知見を得ることに成功した。
 (1)積層体中のハードコート層に用いる樹脂を、延伸時のクラック伸度の高いものにするとともに、ハードコート層の膜厚と粒子の配合量及び分散状態とを制御する。これにより、積層体を延伸する過程で、ハードコート層中で分散している粒子周辺のハードコート層表面の微小な開裂を抑制し、延伸時のハードコート層の著しい白化を防止できることを見出した。より具体的には、(a)積層体中のハードコート層に用いる樹脂を、延伸時のクラック伸度の高いものにするとともに、(b)(b-1)ハードコート層に含まれる粒子(防眩粒子)が単一の粒子もしくは複数の粒子が凝集した状態で分布する領域(分散ドメイン)のサイズを、ハードコート層の膜厚と同程度か、これより大きく設計し、かつ(b-2)少なくとも一部の粒子(防眩粒子)の分散ドメインをハードコート層の表面に予め部分的に露出させた分散形態をとらせる。これにより、積層体を延伸する過程で、粒子(防眩粒子)の分散ドメインの周辺部でのハードコート層表面の開裂の生成及びクラックの発生などを抑制し、延伸時の著しい白化を防止できることを見出した。
 (2)積層体の最表面に位置する低屈折率層の表面において、延伸時に、目視上識別できる大きさのクラックには至らない微小なマイクロクラックが発生することが白化の原因の一つであることを見出した。積層体中のハードコート層に用いる樹脂を、延伸時のクラック伸度の高いものにするとともに、ハードコート層の製造時の条件を適宜調整することにより、低屈折率層の白化が改善できることを見出した。白化の原因が低屈折率層のマイクロクラックであるところ、低屈折率層の下に位置するハードコート層を工夫することで、積層体の成形性のみならず、低屈折率層のマイクロクラックに起因する延伸部の白化を改善できたことは驚くべきことである。
 このように、アクリル系樹脂フィルムおよびハードコート層、またはアクリル系樹脂フィルム、ハードコート層および低屈折率層から構成される、成形性、表面硬度及び防眩性に優れた積層体はこれまでに報告がなく、第2の積層体の製造方法は、極めて優れた技術である。以下、本積層体の製造方法について詳説する。
 なお、第2実施形態において、「積層体」は粒子を含むハードコート層を含む製品(積層物)を意図し、ハードコート層を含まない製品(積層物)またはハードコート層が粒子を含むまない製品(積層物)を「積層フィルム」と記載する。より具体的には、第2実施形態において、例えば、「積層体」は、(1)アクリル系樹脂フィルムと、粒子を含むハードコート層と、からなる積層物、または(2)アクリル系樹脂フィルムと、粒子を含むハードコート層と、低屈折率層と、からなる積層物を意図し、「積層フィルム」は、(3)アクリル系樹脂フィルムと、粒子を含まないハードコート層と、からなる積層物、または(4)アクリル系樹脂フィルムと、低屈折率層と、からなる積層物を意図する。
 なお、第2の積層体におけるハードコート層を構成する硬化性樹脂組成物においては、ハードコート層の表面硬度の向上とともに、高いクラック伸度を有し、成形体の形状への二次成形のもとでは延伸に伴って破断あるいは著しい白化を生じないことが要求される場合がある。しかしながら、上述したように、従来は、表面硬度及び耐擦り傷性と、変形性及び延伸性と、は相反する性質であり、両立することは容易ではなかった。
 このようなハードコート用の硬化性樹脂に、硬度を維持しつつ二次成形時の高い延伸性を付与する方法としては、例えば、上述したような(1)~(3)の方法が挙げられる。これら(1)~(3)の方法は、第2の積層体におけるハードコート層に対して、例えば(1)ないし(3)などの手法を単独で用いてもよく、あるいは適宜組み合わせて使用してもよい。
 〔2-2.第2の積層体の製造方法〕
 第2の積層体の製造方法は、以下の工程(A2)を含む。
・工程(A2):アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程。
 本発明の第2実施形態において、第2の積層体の製造方法は、さらに、以下の工程(B2)を含むことが好ましい。
・工程(B2):前記工程(A2)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む塗布液を塗布し、乾燥し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
 工程(A2)では、アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する。さらに、工程(B2)においては、工程(A2)において形成された、硬化されたウレタンアクリレート樹脂を含むハードコート層上に、アクリレート系樹脂を含む樹脂層を溶液状態で塗布し、当該樹脂層に活性エネルギー線を照射して樹脂層を硬化させて低屈折率層を形成する。
 第2の積層体の製造方法は、前記工程(A2)および任意の工程(B2)に加えて、さらに以下の構成を含む。
・前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上である。
・前記粒子の含有量は、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たす。
・前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上である。
・前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である。
 第2の積層体の製造方法により得られる積層体が、高い表面硬度とともに、120℃における高いクラック伸度及び延伸部の白化の少ない特性を有するためには、ハードコート層と低屈折率層とが良好に密着していることが好ましい。一般に、低屈折率層は中空シリカなどの硬質フィラーを含有することが多く、ハードコート層よりもクラック伸度が低いことが多い。このためハードコート層単独のクラック伸度よりも低い延伸率でクラック及びマイクロクラックを発生する可能性がある。この時、ハードコート層と低屈折率層との密着性が良好であれば、低屈折率層に発生するマイクロクラックの開口幅が例えば1μm以下の微細なものとなり、延伸によって白化を生じにくくなる。
 ハードコート層と低屈折率層との密着性を向上させるためには、例えば、以下の(a)及び/又は(b)などが好ましい:(a)工程(B2)で低屈折率層となる樹脂層を溶液状態で塗工する際に、最終的な2層間の界面が不明瞭となり反射防止特性が損なわれることのない範囲において、一定の程度、塗工した樹脂層(低屈折率層)がハードコート層に含侵すること;(b)ハードコート層の硬化後に残存するアクリレート基が、塗工後の樹脂層(低屈折率層)を活性エネルギー線照射により硬化する際に、樹脂層(低屈折率層)とともに反応硬化し、最終的に得られるハードコート層と低屈折率層との界面に化学結合が形成されること。
 このため、例えば、工程(A2)においては、ハードコート層を形成するウレタンアクリレート樹脂を含む樹脂層を完全に硬化せず、架橋密度をやや低めとするとともに、未反応のアクリレート基を部分的に残留させることが好ましい。さらに工程(B2)においては、低屈折率層を形成するアクリレート系樹脂を含む樹脂層を溶液状態で塗布し、任意で乾燥する工程において、一定の程度、アクリレート系樹脂を含む樹脂層をハードコート層へ含侵させるため、(a)適宜塗布条件及び乾燥条件を調整すること、並びに/または、(b)溶液に使用する溶剤として、乾燥が遅い高沸点の溶剤を一定量使用すること、などが好ましい。
 第2の積層体の製造方法において、積層体中のアクリル系樹脂フィルムの120℃での引張破断伸度は、170%以上であり、180%以上であることが好ましく、190%以上であることがより好ましい。アクリル系樹脂フィルムの120℃での引張破断伸度が170%以上であると、成形の形状追従性に優れる利点を有する。また、第2の積層体の製造方法において、前記引張破断伸度の上限は特に限定されないが、引張強度の向上の観点から、例えば、350%以下であり、300%以下であることが好ましい。
 第2の積層体の製造方法において、積層体の鉛筆硬度は、H以上であり、2H以上であることが好ましく、3H以上であることがより好ましい。積層体の鉛筆硬度がH以上であると、傷がつきにくいとの利点を有する。
 第2の積層体の製造方法において、積層体のヘイズは、3.0%以上であり、3.5%以上であることが好ましく、4.0%以上であることがより好ましく、4.5%以上であることがさらに好ましい。積層体のヘイズが3.0%以上であると、防眩性に優れるとの利点を有する。なお、積層体のヘイズは、実施例に記載の方法により測定される。
 第2の積層体の製造方法において、積層体の120℃でのクラック伸度は、80%以上であり、90%以上であることが好ましく、100%以上であることがより好ましい。積層体の120℃でのクラック伸度が80%以上であると、成形時の形状追従性に優れるとの利点を有する。また、第2の積層体の製造方法において、前記クラック伸度の上限は特に限定されないが、表面硬度及び耐摩耗性の向上の観点から、例えば、350%以下であり、300%以下であることが好ましい。なお、本明細書において、「積層体の120℃でのクラック伸度」とは、120℃の恒温槽内で積層体の引張試験を行いコーティング層にクラックが発生する伸度を意図する。なお、本明細書において、積層体の120℃でのクラック伸度は、実施例に記載の方法により測定される。
 第2の積層体の製造方法において、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルム(以下、「粒子不含積層フィルム」とも称する。)における120℃でのクラック伸度は、80%以上であり、90%以上であることが好ましく、100%以上であることがより好ましい。粒子不含積層フィルムにおける120℃でのクラック伸度が80%以上であると、積層体の成形時の形状追従性に優れるとともに、成形にともない延伸される部分の白化が抑制されるとの利点を有する。また、粒子不含積層フィルムにおける120℃でのクラック伸度の上限は特に限定されないが、表面硬度および/または耐摩耗性の向上の観点から、例えば、200%以下であり、180%以下であることが好ましい。なお、粒子不含積層フィルムにおける120℃でのクラック伸度は、実施例に記載の方法により測定される。
 (アクリル系樹脂フィルム)
 第2実施形態におけるアクリル系樹脂フィルムの各態様については、第1実施形態の(アクリル系樹脂フィルム)の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 (ハードコート層)
 第2の積層体の製造方法におけるハードコート層は、前記アクリル系樹脂フィルムの少なくとも片面に積層された機能層であり、ウレタンアクリレート樹脂および粒子を含む。ハードコート層は、前記アクリル系樹脂フィルムの片面に積層されていてもよく、両面に積層されていてもよい。
 また、第2の積層体の製造方法におけるハードコート層は、前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たす。
 ハードコート層としては、従来より種々の機能性フィルム及び樹脂成形品等において設けられている、ウレタンアクリレート樹脂を含む種々のハードコート層を特に限定なく採用することができる。
 <ウレタンアクリレート樹脂>
 ウレタンアクリレート樹脂の態様については、第1実施形態の<ウレタンアクリレート樹脂>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 <粒子>
 第2の積層体の製造方法において、ハードコート層に粒子が含まれることにより、防眩性に優れたアクリル系樹脂フィルムを含む積層体を得ることができる。
 防眩性等を付与する目的でハードコート層に配合する粒子については、例えば所望の防眩性、透過像の鮮明度、ギラツキ、表面の漆黒感、表面硬度、滑り性、帯電防止性などの種々の特性のバランスを得るために、粒子の材質、配合部数、粒子の分散溶剤の種類、粒子径、分散粒子径、ハードコート層の膜厚、ハードコート基材との相対的な屈折率差、粒子表面とハードコート基材や溶剤との親和性や反応性などを適宜、本発明の効果を損なわない公知の技術範囲で調整することが出来る。
 ハードコート層に配合する粒子の材質としては、本発明の効果を奏するものであれば特に限定されないが、例えば、(a)シリカ、アルミナ、ガラスビーズまたはフレーク、マイカ、クレイ、酸化チタン、酸化亜鉛、ジルコニア、金属粒子などの無機粒子、及び/又は(b)アルキル(メタ)アクリレート単位、芳香族ビニル単位、シロキサン単位などを主成分とする架橋された有機樹脂粒子、並びに(c)コア-シェル型多層構造樹脂粒子、等が挙げられる。入手が容易であり用途に応じた防眩性の設計が容易である点から、粒子は、無機酸化粒子(例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛およびジルコニアなど)および/または架橋された有機樹脂粒子であることが好ましく、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上であることがより好ましい。また、防眩性、分散性、表面硬度等の物性バランスの観点から、シリカ粒子、アルミナ粒子及び架橋された有機樹脂粒子が特に好ましい。また、これらの粒子は、分散性の制御の観点より、反応性置換基を有しても良いシランカップリング剤や反応性単量体などの使用、プラズマ処理、コロナ処理等の公知の手法による表面処理及び/又はグラフト重合処理等が施されていてもよい。粒子とハードコート層との界面接着性が向上し、粒子の分散性、延伸時のクラックおよび/または白化が改善できる可能性があることから、粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有することが好ましい。ウレタンアクリレート樹脂との反応性を有する反応性官能基としては、(a)ビニル基、(メタ)アクリロイル基等のラジカル反応性官能基、(b)エポキシ基、オキセタン基、水酸基、カルボキシル基、メルカプト基、イソシアニル基、水酸基、アミノ基等のイオン性官能基、並びに(c)シリル基、アルコキシシリル基等の湿分硬化性官能基、等が挙げられる。
 ハードコート層に含まれる粒子は、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たす。すなわち、ハードコート層に含まれる粒子は、ハードコート層の膜厚と同じであるか、またはハードコート層の膜厚よりも大きい平均分散粒子径を有する。ハードコート層に含まれる粒子の平均分散粒子径がハードコート層の膜厚より小さい場合、延伸時に、分散粒子の周辺部の、ハードコートの厚みが薄い部分において局所的なハードコート層の開裂及び/又はクラックが発生し、分散粒子がハードコート層表面に露出することがある。これにより延伸前後のハードコート表面の状態変化(色差、ヘイズ、平滑性等)が大きくなり、これが延伸部の白化として観察されるものと考えられる。一方、上記のように、ハードコート層に含まれる粒子の平均分散粒子径が、ハードコート層の膜厚と同程度であるか、またはハードコート層の膜厚よりも大きい場合、延伸前から少なくとも一部の粒子がハードコート層表面に露出しているため、延伸前後のハードコート表面の状態変化(色差、ヘイズ、光沢、平滑性等)が小さくなる傾向があり、延伸後の白化が少なくなるという利点を有するものと考えられる。
 本明細書において、「粒子」は、その一次粒子の大きさによって、一次粒子の状態のままで分散している場合もあり、あるいは複数の粒子が凝集した状態で分散している場合もある。これらの粒子あるいはその凝集物が分布した領域(分散ドメイン)のサイズを、「平均分散粒子径」として規定する。一次粒子のサイズが大きいものは、平均分散粒子径と一次(基本)粒子径とが同じになることもある。
 粒子(例えば、シリカ粒子)の平均分散粒子径は、本発明の効果を奏する限り特に限定されないが、例えば、0.1μm~50.0μmであり、0.2μm~25.0μm、0.5μm~10μm、1.0μm~4.0μm、1.2μm~3.8μm、1.4μm~3.6μm等であってもよい。なお、粒子(例えば、シリカ粒子)の平均分散粒子径は、実施例に記載の方法により測定される。
 本積層体の製造方法において、ハードコート層中の前記粒子の含有量は、本発明の一実施形態の効果を奏する限り特に限定されないが、例えば、0.1重量%~30.0重量%であり、0.5重量%~20.0重量%、1.0重量%~15.0重量%、2.0~5.0重量%、2.2~4.8重量%、2.4~4.6重量%等であってもよい。
 第2の積層体の製造方法において、ハードコート層の膜厚は、本発明の効果を奏する限り特に限定されないが、例えば、0.2~3.0μmであり、0.3~2.9μm、0.4~2.8μm等であってもよい。なお、ハードコート層の膜厚は、実施例に記載の方法により測定される。
 <その他>
 また、第2の積層体の製造方法において、積層体のハードコート層には、ウレタンアクリレート樹脂に加えて、その他の成分を併用してもよい。ウレタンアクリレート樹脂以外の成分としては、例えば、単官能あるいは多官能の、(メタ)アクリレート、エポキシアクリレート系モノマー、ポリエステルアクリレート、シリコンアクリレート、ポリカーボネートアクリレート、ポリアクリルアクリレート等の、ラジカル反応性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を併用することができる。また、ウレタンアクリレート樹脂と、例えば、(a)2~4官能のシラン化合物の加水分解縮合物、並びに/又は(b)エポキシ基、及びオキセタン基等のカチオン硬化性及び/若しくはアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物、を含む組成物と、を併用してもよい。ハードコート層の形成に用いられる成分として、上記ウレタンアクリレート樹脂を単独で使用してもよく、上記ウレタンアクリレート樹脂に加えて、上記その他の成分を1種または2以上混合して添加してもよい。
 (メタ)アクリレート、エポキシアクリレート系モノマー、水酸基含有(メタ)アクリレート、多価イソシアネート、多価アルコール、有機錫系ウレタン化触媒及びシラン化合物の加水分解縮合物からなる組成物の各態様については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 ハードコート層を形成する際に樹脂組成物を硬化させる方法に関する各態様(例えば、光重合開始剤、光カチオン発生剤及び光アニオン発生剤)についても、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 硬化性組成物からなる樹脂層(塗布膜)を硬化させてハードコート層を形成する場合、硬化性組成物には、塗布性、硬化後の耐擦り傷性及び防汚性などの改善等の目的で、公知の各種レベリング剤が配合されてもよい。レベリング剤については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 硬化性組成物を塗布することによりハードコート層を形成する場合、硬化性組成物には、紫外線吸収剤、光安定化剤、消泡剤、酸化防止剤、光拡散剤、艶消し剤、防汚剤、滑剤、顔料及び染料等の着色料、有機粒子、無機微粒子、及び帯電防止剤等の各種添加剤を、必要に応じて添加できる。添加剤は、これらに限定されない。
 硬化性組成物に適切な塗布性を付与するためには、通常、有機溶剤が配合される。有機溶剤については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 硬化性組成物を、基材フィルムである前述のアクリル系樹脂フィルムの主面上に塗布する場合の塗布方法については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 以上説明したハードコート層形成用の硬化性組成物を基材フィルムである前述のアクリル系樹脂フィルムの表面に塗布した後、紫外線照射等の光により得られる樹脂層を硬化することにより、ハードコート層が形成される。ハードコート層形成用の硬化性組成物をアクリル系樹脂フィルムの表面に塗布した後、任意で、乾燥により樹脂層(塗布膜)から有機溶剤を除去してもよい。
 乾燥により有機溶剤を除去する際の樹脂層(塗布膜)の乾燥温度については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 樹脂層(塗布膜)を硬化させる際に照射される紫外線の波長、紫外線(UV)積算光量および紫外線の露光光の照射装置の各態様については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 ハードコート層形成用組成物としては、市販品を用いてもよい。当該市販については、第1実施形態の<その他>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 また、本発明の第2実施形態において、無機粒子及び/又は金属粒子をさらに添加してもよい。このような無機粒子及び金属粒子としては、特に限定されないが、例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、ジルコニア、グラフェン、ナノカーボン、カーボンブラック、ナノダイヤモンド、マイカ、チタン酸バリウム、窒化ホウ素、金属銀、金属銅等が挙げられる。これらの粒子は、ハードコート層の耐摩耗性等を向上させる目的で添加してもよく、防眩性をさらに付与するために添加してもよい。また、耐摩耗性を向上させる機能を有する無機粒子及び/又は金属粒子と、防眩性付与機能を有する無機粒子及び/又は金属粒子と、を併用してもよい。これらの粒子は、表面処理を行わずに使用してもよく、また分散状態の制御のためにあらかじめ公知の方法で表面処理を実施し、ハードコート層との親和性を適宜制御してもよい。
 (低屈折率層)
 第2の積層体の製造方法において、前記ハードコート層上に、さらに、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む低屈折率層を備えていることが好ましい。低屈折率層は、反射防止層を構成する。当該低屈折率層の各態様については、第1実施形態の(低屈折率層)の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 <その他の機能層>
 第2の積層体は、上記以外のその他の機能層を有していてもよい。当該その他の機能層については、第1実施形態の<その他の機能層>の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 (その他)
 第2実施形態において、(a)工程(A2)における紫外線(UV)積算光量及び(b)工程(A2)における冷却ロール温度の各態様については、第1実施形態の(その他)の項で説明した、(a)工程(A1)における紫外線(UV)積算光量及び(b)工程(A1)における冷却ロール温度の各態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。また、第2実施形態において、工程(A2)の上記以外の条件等については、第2実施形態の上記(ハードコート層)の項において記載したものが、援用される。
 第2実施形態の工程(B2)では、前記工程(A2)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する。
 第2実施形態において、(a)工程(B2)における紫外線(UV)積算光量及び(b)工程(B2)における冷却ロール温度の各態様については、第1実施形態の(その他)の項で説明した、(a)工程(B1)における紫外線(UV)積算光量及び(b)工程(B1)における冷却ロール温度の各態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。また、第2実施形態において、工程(B2)の上記以外の条件等については、第2実施形態の上記(ハードコート層)の項において記載したものが、援用される。
 また、本発明の第2実施形態において、前記工程(B2)の前に、(B2’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、前記溶剤は少なくとも1種類以上の溶剤を含み、かつ、最も高沸点の溶剤が沸点115℃~180℃である、積層体の製造方法を提供する。工程(B2)及び工程(B2’)において、「粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂」は「低屈折率層形成用組成物」ともいえる。
 第2実施形態において、(a)工程(B2’)における最も高沸点の溶剤の沸点、(b)工程(B2’)で使用される溶剤、及び(c)工程(B2’)において、アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する方法の各態様については、第1実施形態の(その他)の項で説明した、(a)工程(B1’)における最も高沸点の溶剤の沸点、(b)工程(B1’)で使用される溶剤、及び(c)工程(12’)において、アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する方法、の各態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 〔3.積層体〕
 第2の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む。より具体的には、第2の積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である。また、本発明の第2実施形態の好ましい一態様において、第2の積層体は、前記ハードコート層上に、さらに低屈折率層を備える。
 (積層体)
 第2の積層体は、上述の通り、少なくとも、特定のアクリル系樹脂フィルムと、特定のハードコート層とから構成される。また、本発明の第2実施形態の好ましい一態様において、第2の積層体は、特定のアクリル系樹脂フィルムと、特定のハードコート層と、特定の低屈折率層とから構成される。
 本発明の第2実施形態において、第2の積層体は、上記(アクリル系樹脂フィルム)に記載のアクリル系樹脂フィルムと、上記(ハードコート層)に記載のハードコート層とから構成される。また、本発明の第2実施形態の好ましい一態様において、第2の積層体は、上記(アクリル系樹脂フィルム)に記載のアクリル系樹脂フィルムと、上記(ハードコート層)に記載のハードコート層と、上記(低屈折率層)に記載の低屈折率層と、から構成される。第2の積層体は、好ましくは、上記〔2-2.第2の積層体の製造方法〕に記載の製造方法により得られる。
 第2の積層体の「鉛筆硬度」、「120℃での引張破断伸度」、「120℃でのクラック伸度」、「ヘイズ」等、本項に記載されていない事項については、上記〔2-2.第2の積層体の製造方法〕に記載したものが援用される。
 第2の積層体が、アクリル系樹脂フィルムと、ハードコート層と、から構成される場合、第2の積層体の120℃での80%延伸後のΔヘイズは、例えば、8.0%以下であり、7.5%以下であることが好ましく、7.0%以下であることがより好ましい。第2の積層体の120℃での80%延伸後のΔヘイズが8.0%以下であると、成形時の白化を抑制との利点を有する。なお、第2の積層体の120℃での80%延伸後のΔヘイズは、実施例に記載の方法により測定される。
 第2の積層体が、アクリル系樹脂フィルムと、ハードコート層と、低屈折率層と、から構成される場合、第2の積層体の120℃での80%延伸後のΔヘイズは、例えば、10%以下であり、9.5%以下であることが好ましく、9.0%以下であることがより好ましく、8.5%以下であることがさらに好ましい。第2の積層体の120℃での80%延伸後のΔヘイズが10%以下であると、成形時の白化を抑制との利点を有する。なお、第2の積層体の120℃での80%延伸後のΔヘイズは、実施例に記載の方法により測定される。
 第2の積層体の視感反射率は、例えば、3.0%以下であり、2.8%以下であることが好ましく、2.6%以下であることがより好ましい。第2の積層体の視感反射率が3.0%以下であると、反射防止性能に優れ、ディスプレイ表面に積層時の視認性に優れるとの利点を有する。第2の積層体の視感反射率は、低いほど好ましく、0.0%であってもよい。なお、第2の積層体の視感反射率は、実施例に記載の方法により測定される。
 第2の積層体における、(a)前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズ、(b)面内位相差(Re)及び(c)厚み方向位相差(Rth)の絶対値の各態様は、各態様については、第1実施形態の(積層体)の項で説明した、第1の積層体における、(a)前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズ、(b)面内位相差(Re)及び(c)厚み方向位相差(Rth)、の各態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 第2の積層体は、アクリル系樹脂フィルムの面(2面)のうち、ハードコート層を設けた面に対し反対側の面にプライマー層を有しても良い。第2の積層体におけるプライマー層の態様については、第1実施形態の(積層体)の項で説明した、第1の積層体における、プライマー層の態様に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 〔2-3.成形体〕
 本発明の第2実施形態において、第2の積層体を備える、成形体(以下、「第2の成形体」と称する。)を提供する。また、本発明の第2実施形態において、第2の成形体は、少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、第2の積層体を積層して得られる。
 第2の成形体の用途の具体例としては、第1実施形態の〔1-4.成形体〕の項で説明した、第1の成形体の用途に関する内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 第2の積層体を用いると、(a)複雑な立体形状であり、かつ(b)表面の硬度、耐擦傷性、耐薬品性、防汚性、反射特性、及び防眩性等が制御された、外観にすぐれる成形体を容易に製造できる。このため、第2の成形体は、第1実施形態の〔1-4.成形体〕の項に記載の用途の中でも、例えば、平面形状、曲面形状及び/又は立体形状を有する車載ティスプレイ前面板等の用途に好ましく用いられる。したがって、本発明の第2実施形態において、第2の成形体を備える、車載ディスプレイ前面板を提供する。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の一実施形態は、以下のような構成であってもよい。
<X1>(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
 (B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<X2>前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cmである、<X1>に記載の積層体の製造方法。
<X3>前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<X1>または<X2>に記載の積層体の製造方法。<X4>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<X1>~<X3>のいずれかに記載の積層体の製造方法。
<X5>(A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<X6>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
 前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
 前記ハードコート層は、ウレタンアクリレート樹脂を含み、
 前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。
<X7>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<X6>に記載の積層体。
<X8>前記積層体の視感反射率が、2.0%以下である、<X7>に記載の積層体。
<X9>前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、<X7>または<X8>に記載の積層体。
<X10>120℃での延伸率が80%のときのΔヘイズが3.0%以下である、<X6>~<X9>のいずれかに記載の積層体。
<X11>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、<X7>~<X10>のいずれかに記載の積層体。
<X12>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、<X7>~<X11>のいずれか1項に記載の積層体。
<X13><X6>~<X12>のいずれか1項に記載の積層体を備える、成形体。
<X14>少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、<X6>~<X12>のいずれか1項に記載の積層体を積層して得られたものである、<X13>に記載の成形体。
 また、本発明の一実施形態は、以下のような構成であってもよい。
<Y1>(A)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含む、積層体の製造方法であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Y2>さらに、以下の工程(B)を含む、<Y1>に記載の積層体の製造方法:
 (B)前記工程(A)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む塗布液を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程。
<Y3>前記工程(A)における活性エネルギー線照射の積算光量が150~500mJ/cmである、<Y1>または<Y2>に記載の積層体の製造方法。
<Y4>前記工程(B)の前に、(B’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<Y2>または<Y3>に記載の積層体の製造方法。<Y5>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<Y1>~<Y4>のいずれかに記載の積層体の製造方法。
<Y6>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。
<Y7>前記粒子がシリカ粒子である、<Y6>に記載の積層体。
<Y8>前記ハードコート層は、前記シリカ粒子を2.0~5.0重量%含み、
前記シリカ粒子の平均分散粒子径が1.0~4.0μmである、<Y7>に記載の積層体。
<Y9>前記ハードコート層は、膜厚が0.2~3.0μmである、<Y6>~<Y8>のいずれかに記載の積層体。
<Y10>120℃での延伸率が80%のときのΔヘイズが8.0%以下である、<Y6>~<Y9>のいずれかに記載の積層体。
<Y11>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<Y6>~<Y10>のいずれかに記載の積層体。
<Y12>前記積層体の視感反射率が、3.0%以下である、<Y11>に記載の積層体。
<Y13>120℃でのクラック伸度が170%以上である、<Y11>または<Y12>に記載の積層体。
<Y14>120℃での延伸率が80%のときのΔヘイズが10%以下である、<Y11>~<Y13>のいずれかに記載の積層体。
<Y15><Y6>~<Y14>のいずれかに記載の積層体を備える、成形体。
 また、本発明の一実施形態は、以下のような構成であってもよい。
<Z1>積層体の製造方法であって、
 (A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
 (B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z2>前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、<Z1>に記載の積層体の製造方法。
<Z3>前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、<Z2>に記載の積層体の製造方法。
<Z4>前記ウレタンアクリレート樹脂を含む樹脂層は、さらに粒子を含む、<Z1>~<Z3>のいずれか1つに記載の積層体の製造方法。
<Z5>前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、<Z4>に記載の積層体の製造方法。
<Z6>前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、<Z4>または<Z5>に記載の積層体の製造方法。
<Z7>前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、<Z4>~<Z6>のいずれか1つに記載の積層体の製造方法。
<Z8>前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、<Z4>~<Z7>のいずれか1つに記載の積層体の製造方法。
<Z9>前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cmである、<Z1>~<Z8>のいずれか1つに記載の積層体の製造方法。
<Z10>前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、<Z1>~<Z9>のいずれか1つに記載の積層体の製造方法。
<Z11>前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、<Z1>~<Z10>のいずれか1つに記載の積層体の製造方法。
<Z12>積層体の製造方法であって、
 (A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z13>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z12>に記載の積層体の製造方法。
<Z14>前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、<Z12>または<Z13>に記載の積層体の製造方法。
<Z15>前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、<Z14>に記載の積層体の製造方法。
<Z16>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂を含み、
前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。
<Z17>前記ハードコート層は、さらに粒子を含む、<Z16>に記載の積層体。
<Z18>前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、<Z17>に記載の積層体。
<Z19>前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、<Z17>または<Z18>に記載の積層体。
<Z20>前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、<Z17>~<Z19>のいずれか1つに記載の積層体。
<Z21>前記ハードコート層上に、さらに低屈折率層を備え、
前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、<Z16>~<Z20>のいずれか1つに記載の積層体。
<Z22>前記積層体の視感反射率が、2.0%以下である、<Z21>に記載の積層体。
<Z23>前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、<Z21>または<Z22>に記載の積層体。
<Z24>120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z16>~<Z23>のいずれか1つに記載の積層体。
<Z25>120℃での延伸率が80%のときのΔヘイズが3.0%以下である、<Z16>~<Z24>のいずれか1つに記載の積層体。
<Z26>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、<Z21>~<Z25>のいずれか1つに記載の積層体。
<Z27>120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、<Z21>~<Z26>のいずれか1つに記載の積層体。
<Z28><Z16>~<Z27>のいずれか1つのいずれか1項に記載の積層体を備える、成形体。
<Z29>少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、<Z16>~<Z27>のいずれか1つに記載の積層体を積層して得られた、<Z28>に記載の成形体。
<Z30>積層体の製造方法であって、
 (A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。
<Z31>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z30>に記載の積層体の製造方法。
<Z32>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。
<Z33>前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、<Z32>に記載の積層体。
 〔実施例A〕
 以下、本発明の第1実施形態を実施例Aに基づいてより詳細に説明するが、本発明はこれら実施例Aに限定されるものではない。なお下記実施例A及び比較例Aにおいて「部」および「%」とあるのは、質量部または質量%を意味する。
 〔測定および評価方法〕
 実施例Aおよび比較例Aにおける測定および評価を、以下の方法で行った。
 (平均粒子径の測定)
 水性ラテックス中に分散している架橋エラストマーまたはグラフト共重合体粒子の平均粒子径は、レーザー回折式の粒度分布測定装置(日機装株式会社製、Microtrac粒度分布測定装置 MT3000)を使用して測定した。
 (ガラス転移温度(Tg))
 セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC-5200を用いた。試料(アクリル系樹脂フィルム)を一旦200℃まで25℃/分の速度で昇温した後200℃で10分間ホールドし、次いで25℃/分の速度で50℃まで温度を下げた(予備調整)。その後、当該試料を10℃/分の昇温速度で200℃まで昇温し、その間DSCの測定を行った。得られたDSC曲線から微分値を求め(SSDC)、その極大点からアクリル系樹脂フィルムのガラス転移温度を求めた。
 (引張破断伸度)
 アクリル系樹脂フィルムを10mm(幅)×100mm(長さ)に切り出し、試験片とした。当該試験片について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で測定を行った。アクリル系樹脂フィルムが破断した際の伸度を引張破断伸度とした。
 引張破断伸度の値は、5つの試験片を用いて得られた測定結果のうち、最も高い値と、最も低い値とを除いた3つの値の相加平均値である。
 (120℃でのクラック伸度)
 クラック伸度の測定は、アクリル系樹脂フィルムの片面にハードコート層、またはハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm、引張速度200mm/分の条件で測定を行った。ハードコート層にクラックが発生した時の伸度を120℃でのクラック伸度とした。クラック伸度の値は、3つの試料に対して測定を行って得られた試験結果(3つ)の相加平均値である。結果を、表5に記す。
 (120℃での80%延伸後の白化)
 120℃での80%延伸後の白化の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸し、目視で白化度合を観察した。評価基準は、◎(優良):反射でも透過でも白化無、〇(良):反射では白化無し、透過では僅かに白化、△(可):反射でも透過でも僅かに白化、×(不良):反射でも透過でも白化、とした。
 (膜厚)
 アクリル系樹脂フィルムの膜厚は、PEACOCKダイアルゲージNo25(株式会社尾崎製作所製)で測定した。
 ハードコート層の膜厚は、F20膜厚測定システム(フィルメトリクス株式会社製)で測定した。ハードコート層の反対面をサインペンで黒塗りし、アクリル系樹脂フィルムの屈折率を1.49及びハードコート層の屈折率を1.50として測定した。
 (ヘイズ)
 積層体のヘイズはヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。
 (120℃での80%延伸後のΔヘイズ)
 積層体の120℃での80%延伸後のΔヘイズの測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸し、延伸後の積層体のヘイズをヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。延伸前の積層体のヘイズと80%延伸後の積層体のヘイズとの差を「120℃での80%延伸後のΔヘイズ」とした。
 (120℃での20%延伸後のΔヘイズ)
 積層体の120℃での20%延伸後のΔヘイズの測定は、アクリル系樹脂フィルムの片面にハードコート層を形成せず、アクリル系樹脂フィルムの片面に直接低屈折率層が形成された積層フィルムに対して行われた。具体的には、積層フィルムを10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で20%延伸し、延伸後の積層体のヘイズをヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。延伸前の積層体のヘイズと20%延伸後の積層体のヘイズとの差を「120℃での20%延伸後のΔヘイズ」とした。
 (視感反射率)
 積層体の視感反射率の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。アクリル系樹脂フィルムにおける、ハードコート層および低屈折率層が形成された面と反対側の面を黒色の油性マーキングペン(マジックインキ(登録商標)、寺西化学工業製)で黒く塗り、その上に黒のビニールテープを貼り合わせ、試料とした。当該試料について、JIS Z 8722に準じて測色計SC-P(スガ試験機株式会社製)を用いて視感反射率を測定した。
 (鉛筆硬度)
 JIS K5600-5-4に準じて積層体の鉛筆硬度を測定した。
 (マイクロクラック幅及びマイクロクラックの溝の深さ)
 マイクロクラック幅及びマイクロクラックの溝の深さは、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を10mm(幅)×100mm(長さ)に切り出し、試料とした。当該試料について、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm及び引張速度200mm/分の条件で80%延伸した。延伸後の試料を透過型顕微鏡で観察し、マイクロクラック幅及びマイクロクラックの溝の深さを測定した。
 (中空シリカ微粒子の粒子径)
 中空シリカ微粒子の粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率200,000倍、1200nm×800nmの積層体の断面写真の観察により求めた。中空シリカ微粒子10個の粒子径の相加平均値を計算し、得られた値を中空シリカ微粒子の粒子径とした。
 (ハードコート中の粒子の平均分散粒子径)
 ハードコート中の粒子の平均分散粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率200,000倍、1200nm×800nmの積層体の断面写真の観察により求めた。ハードコート中の粒子の分散ドメイン10個の粒子径の相加平均値を計算し、得られた値をハードコート中の粒子の平均分散粒子径とした。
 (面内位相差(Re))
 面内位相差の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を40mm×40mmに切り出し、試料とした。当該試料について、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃及び湿度50±5%において、波長590nm及び入射角0゜の条件で測定した。
 (厚み方向位相差(Rth))
 厚み方向位相差の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。具体的には、積層体を40mm×40mmに切り出し、試料とした。当該試料について、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃及び湿度50±5%において、波長590nm及び入射角0゜の条件で測定した。
 (粒子の平均分散粒子径)
 粒子の平均分散粒子径は、電子顕微鏡(株式会社日立ハイテクノロジーズ、H7650)にて測定した倍率10,000倍、48μm×32μmの断面写真より、断面写真の観察により求めた、視野中の5か所の分散粒子の平均値を計算した。
 (防眩性)
 防眩性の測定は、片面にハードコート層、またはハードコート層及び低屈折率層が形成された積層体に対して行われた。具体的には、積層体の、ハードコート層の形成された側とは反対の面に黒色粘着PETフィルムを貼り合わせ、明室環境下で、蛍光灯の映り込みを、目視で観察した。〇:蛍光灯の輪郭がぼけていて確認できない、×:蛍光灯の輪郭がはっきり確認できる、とした。
 (光沢)
 積層体の光沢の測定は、アクリル系樹脂フィルムの片面にハードコート層および低屈折率層が形成された積層体に対して行われた。当該試料について、JIS Z 8741に準じてグロスメーターVG7000(日本電色工業株式会社製)を用いて60°における鏡面光沢を測定した。
 〔製造例1:グラフト共重合体粒子(A)〕
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 200部
・ジオクチルスルフォコハク酸ナトリウム 0.24部
・ソディウムホルムアルデヒドスルフォキシレート 0.15部
・エチレンジアミン四酢酸-2-ナトリウム 0.001部
・硫酸第一鉄 0.00025部
 重合装置内の気体を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を60℃にした。次いで、下記単量体混合物を10質量部/時間の割合(速度)で連続的に重合装置内に添加した。単量体混合物の添加終了後、さらに0.5時間重合を継続し、架橋エラストマー(A1)の粒子(平均粒子径90nm)を得た。重合転化率は99.5%であった。
 単量体混合物:
・ビニル単量体混合物(アクリル酸n-ブチル(BA)90%及びメタクリル酸メチル(MMA)10%) 30部
・アリルメタクリレート(AlMA) 1部
・クメンハイドロパーオキサイド(CHP) 0.2部。
 その後、ジオクチルスルフォコハク酸ナトリウム0.05質量部を、架橋エラストマー(A1)の粒子を含む前記重合装置内に仕込んだ。次いで、重合装置の内温を60℃にし、グラフトポリマー層(A2)形成用のビニル単量体混合物(MMA98%、BA1%、及びRUVA1%)70部、ターシャリードデシルメルカプタン(t-DM)0.5部及びCHP0.5部からなる単量体混合物を10部/時間の割合で連続的に重合装置内に添加した。
さらに1時間重合を継続し、グラフト共重合体粒子(平均粒子径90nm)を得た。重合転化率は98.2%であった。得られたラテックスを塩化カルシウムで塩析及び凝固させた後、凝固した固形分を水洗、及び乾燥させてグラフト共重合体粒子(A)の粉末を得た。なお、各成分の配合量は表1に示した通りである。
 また、RUVAは、反応性紫外線吸収剤(2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2-H-ベンゾトリアゾール(大塚化学(株)製、RUVA-93))である。
Figure JPOXMLDOC01-appb-T000002
 〔製造例2:グラフト共重合体粒子(B)〕
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 180部
・ポリオキシエチレンラウリルエーテルリン酸 0.002部
・ホウ酸 0.4725部
・炭酸ナトリウム 0.04725部
・水酸化ナトリウム 0.0098部
 重合装置内の気体を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を80℃にした。過硫酸カリウム0.027部を2%水溶液として重合装置内に入れた後、ビニル単量体混合物(MMA97%、及びBA3%)27部と、メタクリル酸アリル0.036部とからなる混合液を81分かけて連続的に重合装置内に添加した。
 さらに60分重合を継続することにより、コア(架橋エラストマー(B1))の1層目となる重合物の粒子を得た。重合転化率は99.0%であった。
 その後、水酸化ナトリウム0.0267部を2%水溶液として重合装置内に添加した。次いで、過硫酸カリウム0.08部を2%水溶液として重合装置内に添加した。その後、ビニル単量体混合物(BA83%、及びスチレン(St)17%)50部と、メタクリル酸アリル0.375部とからなる混合液を150分かけて連続的に重合装置内に添加した。添加終了後、過硫酸カリウム0.015部を2%水溶液として重合装置内に添加した。次いで、120分重合を継続し、1層目と2層目とからなるコア(架橋エラストマー(B1))を得た。重合転化率は99.0%であり、平均粒子径は230nmであった。
 その後、過硫酸カリウム0.023部を2%水溶液として重合装置内に添加した。次いで、ビニル単量体混合物(MMA80%、及びBA20%)23部を45分かけて連続的に重合装置内に添加した。さらに30分重合を継続することにより、2層構造のコア(架橋エラストマー(B1))とシェル(グラフトポリマー層(B2))とからなるグラフト共重合体粒子(B1)のラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析及び凝固させた後、凝固した固形分を水洗、及び乾燥させて、白色粉末状のグラフト共重合体粒子(B)を得た。グラフト共重合体粒子(B)の平均粒子径は250nmであった。なお、各成分の配合量は表2に示した通りである。
Figure JPOXMLDOC01-appb-T000003
 〔製造例3〕
 得られた粉末状のグラフト共重合体粒子(A)および(B)、ならびにパラペットHM(ポリメタクリル酸メチル;株式会社クラレ製、メタクリル酸メチル100重量%)およびAO60(株式会社ADEKA製)を、各々表3に示す配合量(部)で配合した。得られた混合物を、ヘンシェルミキサーを用いて混合した。次いで、シリンダ温度を190℃~250℃に調整した58mmΦベント式同方向二軸押出機(東芝機械株式会社製TEM58 L/D=41.7)を使用し、スクリュー回転数150rpm、吐出量180kg/時間にて混合物の溶融混練を行った。得られた溶融混練物を、押出機からストランド状に引き取り、水槽にて冷却後、ペレタイザーを用いて切断して、ペレット得た。ダイスはΦ4.5×15穴を使用し、ダイスと押出機のヘッドとの間にポリマーフィルターとして、リーフディスクフィルター(長瀬産業製、濾過制度10μ、サイズ7インチ、枚数33枚)を設置した。得られたペレットを、Tダイ付90mmΦ単軸押出機を用いて、シリンダ設定温度180℃~240℃にて吐出量150kg/hrにて溶融混練し、ダイス温度240℃にてTダイより吐出し、90℃に温調した金属性キャストロールと60℃に温調した弾性金属スリーブを備えたタッチロールに両面を接触させて冷却固化しつつ成膜して巻き取り、厚さ175μmのアクリルフィルム(アクリル系樹脂フィルム)を得た。
Figure JPOXMLDOC01-appb-T000004
 〔実施例A1〕
 製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、表4に記載の塗料1をバーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。得られた積層体について種々の特性を評価した。結果を表5に示す。なお、実施例1では、アクリルフィルムおよびハードコート層からなる積層体を作製した。そして、実施例1では、得られた積層体について、表5の「積層体(ハードコート層、低屈折率層形成)」の欄に記載の各種物性を測定および評価し、その結果を、表5の「積層体(ハードコート層、低屈折率層形成)」の欄に記載している。また、表4に記載の塗料1は、ハードコート層を形成するための硬化性組成物であり、ハードコート層形成用組成物ともいえる。
 〔実施例A2~A12、比較例A1~A2〕
 製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、表4に記載の塗料1~5を表5に記載の組み合わせで、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。次いで、得られたハードコート層上に、表4に記載の塗料6~9を表5に記載の組み合わせで、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。なお、塗料6~9中の中空シリカ微粒子の粒子径(低屈折率層中の中空シリカ微粒子の粒子径)は、いずれも約50nmであった。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表5に示す。なお、表4に記載の塗料1~5は、ハードコート層を形成するための硬化性組成物であり、ハードコート層形成用組成物ともいえる。また、表4に記載の塗料6~9は、低屈折率層を形成するための硬化性組成物であり、低屈折率層形成用組成物ともいえる。
 また、120℃での20%延伸後のΔヘイズを評価するために、別途、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、表4に記載の塗料6~9を、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表5に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてアクリルフィルム上に低屈折率層のみを形成した積層フィルムを作成した。得られた積層フィルムについて、120℃での20%延伸後のΔヘイズを評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 〔結果〕
 表5より、実施例Aの積層体は、成形性に優れることが分かった。また、実施例A1~A7、A10およびA11の積層体は、成形性に加えて、120℃での80%延伸後に白化が良好である(低白化である)ことが分かった。さらに、実施例A2~A12の積層体は、反射防止効果に優れることが分かった。一方、比較例Aの積層体は、成形性に劣ることが分かった。
 〔実施例A13~A21〕
 まず、表6に記載の粒子1~12をメチルエチルケトン(MEK)と混合し、十分に撹拌して20質量%の粒子分散液を作製した。次いで、20質量%の粒子分散液と塗料1とを所定配合量(最終的に得られる積層体において、ハードコート層中に含まれる粒子の量が表7に記載の量となる配合量)となる様に混合し、十分に撹拌して、粒子を含有するハードコート層形成用組成物を調製した。次に、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、上述のように調製した粒子を含有するハードコート層形成用組成物を、表7の組み合わせとなるようにバーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表7に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させて粒子を含むハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。次いで、得られたハードコート層上に、表4に記載の塗料6、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表7に記載のUV積算光量及び窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表7に示す。なお、表7において「粒子不含積層フィルムの120℃でのクラック伸度」という項目がある。かかる項目の数値は、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、粒子を含まない塗料1からなるハードコート層を、上述の方法で形成して得られた積層体を試料として120℃でのクラック伸度を測定して得られた値である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 〔実施例B〕
 以下、本発明の第2実施形態を実施例Bに基づいてより詳細に説明するが、本発明はこれら実施例Bに限定されるものではない。なお下記実施例B及び比較例Bにおいて「部」及び「%」とあるのは、質量部または質量%を意味する。
 〔測定および評価方法〕
 実施例Bおよび比較例Bにおける測定および評価を、以下の方法で行った。
 (粒子不含積層フィルムにおける120℃でのクラック伸度)
 粒子不含積層フィルムにおける120℃でのクラック伸度の測定は、アクリル樹脂フィルムの片面に粒子を含有していないハードコート層が形成された積層フィルムに対して行われた。具体的には、積層フィルムを10mm(幅)×100mm(長さ)に切り出し、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離40mm、引張速度200mm/分の条件で測定を行った。ハードコート層にクラックが発生した時の伸度を、粒子不含積層フィルムにおける120℃でのクラック伸度とした。
 (その他)
 ガラス転移温度(Tg)、引張破断伸度、クラック伸度、膜厚、ヘイズ、120℃での20%延伸後のΔヘイズ、視感反射率、鉛筆硬度、防眩性、粒子の平均分散粒子径及び中空シリカ微粒子の粒子径の測定及び評価方法については、前記〔実施例A〕の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。また、成形性(白化)、120℃での80%延伸後のΔヘイズ、面内位相差(Re)及び厚み方向位相差(Rth)については、これらの測定を片面にハードコート層、またはハードコート層及び低屈折率層が形成された積層体に対して行ったこと以外は、前記〔実施例A〕の項で説明した内容と同じであるため、当該記載を援用し、ここでは説明を省略する。
 〔製造例B〕
 実施例Bでは、〔実施例A〕の〔製造例1〕及び〔製造例2〕と同じ方法で製造して得られたグラフト共重合体粒子(A)及びグラフト共重合体粒子(B)を使用した。また、実施例Bでは、アクリルフィルムとして、〔実施例A〕の〔製造例3〕と同じ方法で製造して得られたフィルムを使用した。
 また、比較例B7では、基材フィルムとして、アクリルフィルムに替えて、PMMA樹脂層とPC樹脂層の積層フィルム(AW-10Uシャインテクノ製、膜厚200μm)を使用した。
 〔実施例B1~B10、比較例B1~B7〕
 まず、表6に記載の粒子1~12をMEKと混合し、十分に撹拌して20質量%の粒子分散液を作製した。次いで、20質量%の粒子分散液と表4に記載の塗料1~5とを所定配合量(最終的に得られる積層体において、ハードコート層中に含まれる粒子の量が表8及び9に記載の量となる配合量)となる様に混合し、十分に撹拌して、粒子を含有するハードコート層形成用組成物を調製した。次に、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)又はPMMA樹脂層とPC樹脂層との積層フィルム上に、上述のように調製した粒子を含有するハードコート層形成用組成物を、表8及び9に記載の組み合わせで、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表8及び9に記載のUV積算光量で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層を形成した。ハードコート層を形成する際の冷却ロールの温度は、50℃であった。得られた積層体について種々の特性を評価した。結果を表8及び9に示す。
 〔実施例B11~B15、比較例B8~B9〕
 前記〔実施例B1~B10、比較例B1~B7〕と同様の方法で、粒子を含有するハードコート層形成用組成物を使用し、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)上に、ハードコート層を形成した。次いで、得られたハードコート層上に、表4に記載の塗料6、8または9を表8及び9に記載の組み合わせで、バーコーターを用いて塗布し、ハードコート層上に樹脂層を形成した。コーティング後、樹脂層を80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表8及び9に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてハードコート層上に低屈折率層を形成した。得られた積層体について種々の特性を評価した。結果を表8及び9に示す。
 また、120℃での20%延伸後のΔヘイズを評価するために、別途、製造例3で得られたアクリルフィルム(アクリル系樹脂フィルム)又はPMMA樹脂層とPC樹脂層との積層フィルム上に、表4に記載の塗料6、8または9を、バーコーターを用いて塗布し、アクリルフィルム上に樹脂層を形成した。コーティング後、80℃で1分間乾燥し、当該樹脂層から溶媒を揮発させた。次いで、表8及び9に記載のUV積算光量および窒素雰囲気化で樹脂層に紫外線(活性エネルギー線)を照射し、樹脂層を硬化させてアクリルフィルム上に低屈折率層のみを形成した積層フィルムを作成した。得られた積層フィルムについて、120℃での20%延伸後のΔヘイズを評価した結果を表8及び9に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 〔結果〕
 表9および10より、実施例Bの積層体は、成形性および表面硬度、ならびに防眩性に優れることが分かった。一方、比較例Bの積層体は、成形性および/または防眩性、表面硬度などに劣ることが分かった。
 第1の積層体の製造方法は、成形性に優れ、低白化の積層体を得ることができる。また、第2の積層体の製造方法は、成形性及び表面硬度、ならびに防眩性に優れた積層体を得ることができる。そのため、本発明の一実施形態は、車載ディスプレイ等の自動車内装用途を含む種々の分野において、好適に利用することができる。
 1 アクリル系樹脂フィルム
 2 ハードコート層
 3 低屈折率層
 4 積層体
 5 マイクロクラック
 6 マイクロクラック幅
 7 マイクロクラックの溝の深さ

 

Claims (33)

  1.  積層体の製造方法であって、
     (A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程と、
     (B1)前記工程(A1)で得られた前記ハードコート層上に、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を塗布し、得られた前記アクリレート系樹脂を含む樹脂層に活性エネルギー線を照射して、前記アクリレート系樹脂を含む樹脂層を硬化させて低屈折率層を形成する工程と、を含み、
     前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
     前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
  2.  前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、
     前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、請求項1に記載の積層体の製造方法。
  3.  前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、
     前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、請求項2に記載の積層体の製造方法。
  4.  前記ウレタンアクリレート樹脂を含む樹脂層は、さらに粒子を含む、請求項1~3のいずれか1項に記載の積層体の製造方法。
  5.  前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、請求項4に記載の積層体の製造方法。
  6.  前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、請求項4または5に記載の積層体の製造方法。
  7.  前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、請求項4~6のいずれか1項に記載の積層体の製造方法。
  8.  前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
     前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
     前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
     前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、請求項4~7のいずれか1項に記載の積層体の製造方法。
  9.  前記工程(A1)における活性エネルギー線照射の積算光量が150~500mJ/cmである、請求項1~8のいずれか1項に記載の積層体の製造方法。
  10.  前記工程(B1)の前に、(B1’)前記低屈折率層の材料である前記アクリレート系樹脂に溶剤を添加して、前記粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を調製する工程を含み、
     前記溶剤は、少なくとも1種類以上の溶剤を含み、かつ、前記溶剤のうち最も高沸点の溶剤の沸点が115~180℃である、請求項1~9のいずれか1項に記載の積層体の製造方法。
  11.  前記アクリル系樹脂フィルム上に前記低屈折率層を積層した積層フィルムにおける、120℃での20%延伸後のΔヘイズが、30%以下である、請求項1~10のいずれか1項に記載の積層体の製造方法。
  12.  積層体の製造方法であって、
     (A1)アクリル系樹脂フィルムの少なくとも片面に塗布したウレタンアクリレート樹脂を含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂を含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
     前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、前記ハードコート層は、ウレタンアクリレート樹脂を含み、
    前記積層体は、120℃でのクラック伸度が80%以上である、積層体の製造方法。
  13.  前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項12に記載の積層体の製造方法。
  14.  前記アクリル系樹脂フィルムは、熱可塑性アクリル重合体と架橋エラストマーを含む重合体粒子とを含むアクリル樹脂組成物を成形してなるものであり、
     前記熱可塑性アクリル重合体は、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成され、前記熱可塑性アクリル重合体中の前記メタクリル酸メチル単位および前記その他の構成単位の合計量は100質量%である、請求項12または13に記載の積層体の製造方法。
  15.  前記架橋エラストマーは、当該架橋エラストマー100質量%中、アクリル酸エステル単位を50質量%以上含み、
     前記重合体粒子は、当該架橋エラストマーと、当該架橋エラストマーよりも表層側に位置するグラフトポリマー層とを含むグラフト共重合体粒子である、請求項14に記載の積層体の製造方法。
  16.  アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
     前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
     前記ハードコート層は、ウレタンアクリレート樹脂を含み、
     前記積層体は、鉛筆硬度がH以上であり、かつ、120℃でのクラック伸度が80%以上である、積層体。
  17.  前記ハードコート層は、さらに粒子を含む、請求項16に記載の積層体。
  18.  前記粒子は、無機酸化粒子および/または架橋された有機樹脂粒子である、請求項17に記載の積層体。
  19.  前記粒子は、シリカ、アルミナ、ジルコニア、架橋されたシリコーン樹脂、架橋されたアクリル樹脂および架橋された芳香族ビニル樹脂からなる群から選択される1種以上である、請求項17または18に記載の積層体。
  20.  前記粒子のうち少なくとも一部の粒子が、当該粒子の表面に、ウレタンアクリレート樹脂との反応性を有する反応性官能基を含有する、請求項17~19のいずれか1項に記載の積層体。
  21.  前記ハードコート層上に、さらに低屈折率層を備え、
     前記低屈折率層は、粒子径100nm未満の中空シリカ微粒子を40%以上含有するアクリレート系樹脂を含む、請求項16~20のいずれか1項に記載の積層体。
  22.  前記積層体の視感反射率が、2.0%以下である、請求項21に記載の積層体。
  23.  前記積層体の面内位相差(Re)が10nm以下であり、厚み方向位相差(Rth)の絶対値が、30nm以下である、請求項21または22に記載の積層体。
  24.  120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項16~23のいずれか1項に記載の積層体。
  25.  120℃での延伸率が80%のときのΔヘイズが3.0%以下である、請求項16~24のいずれか1項に記載の積層体。
  26.  120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック幅が2.0μm以下である、請求項21~25のいずれか1項に記載の積層体。
  27.  120℃での延伸率が80%のときに、前記低屈折率層の引張応力に平行な方向のマイクロクラック部位における、前記積層体の前記低屈折率層側の表面からのマイクロクラックの溝の深さが1.0μm以下である、請求項21~26のいずれか1項に記載の積層体。
  28.  請求項16~27のいずれか1項に記載の積層体を備える、成形体。
  29.  少なくとも一部に非平面の形状を有する成形体の表面の少なくとも一部に、請求項16~27のいずれか1項に記載の積層体を積層して得られた、請求項28に記載の成形体。
  30.  積層体の製造方法であって、
     (A2)アクリル系樹脂フィルムの少なくとも片面に塗布した、ウレタンアクリレート樹脂と粒子とを含む樹脂層に活性エネルギー線を照射して、前記ウレタンアクリレート樹脂と粒子とを含む樹脂層を硬化させてハードコート層を形成する工程、を含み、
     前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
     前記粒子の含有量が、硬化後のハードコート層に対して2.0~5.0重量%であり、
     前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
     前記積層体は、鉛筆硬度がH以上であり、ヘイズが3%以上であり、かつ、120℃でのクラック伸度が170%以上であり、
     前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体の製造方法。
  31.  前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項30に記載の積層体の製造方法。
  32.  アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
     前記アクリル系樹脂フィルムは、120℃での引張破断伸度が170%以上であり、
     前記ハードコート層は、ウレタンアクリレート樹脂と粒子とを含み、
     前記粒子の平均分散粒子径をr(μm)とし、前記ハードコート層の膜厚をd(μm)としたときに、d≦rを満たし、
     前記積層体は、鉛筆硬度がH以上であり、かつ、ヘイズが3%以上であり、
     前記アクリル系樹脂フィルム上に前記粒子を含まない樹脂層を積層した積層フィルムにおける、120℃でのクラック伸度が80%以上である、積層体。
  33.  前記積層体は、120℃での延伸率が80%のときのΔヘイズが8.0%未満である、請求項32に記載の積層体。
PCT/JP2022/003844 2021-03-05 2022-02-01 積層体およびその製造方法 WO2022185815A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280018541.XA CN116963907A (zh) 2021-03-05 2022-02-01 层叠体及其制造方法
EP22762873.2A EP4302996A1 (en) 2021-03-05 2022-02-01 Laminate and method for producing same
JP2023503644A JPWO2022185815A1 (ja) 2021-03-05 2022-02-01
US18/241,465 US20230416556A1 (en) 2021-03-05 2023-09-01 Laminate and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021035774 2021-03-05
JP2021-035772 2021-03-05
JP2021035772 2021-03-05
JP2021-035774 2021-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/241,465 Continuation US20230416556A1 (en) 2021-03-05 2023-09-01 Laminate and method for producing same

Publications (1)

Publication Number Publication Date
WO2022185815A1 true WO2022185815A1 (ja) 2022-09-09

Family

ID=83155007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003844 WO2022185815A1 (ja) 2021-03-05 2022-02-01 積層体およびその製造方法

Country Status (4)

Country Link
US (1) US20230416556A1 (ja)
EP (1) EP4302996A1 (ja)
JP (1) JPWO2022185815A1 (ja)
WO (1) WO2022185815A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873289A (zh) * 2022-12-21 2023-03-31 合肥乐凯科技产业有限公司 一种强柔韧性的防紫外硬化膜
WO2024203401A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 積層体及びそれを含む樹脂成形体

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576B2 (ja) 1971-11-05 1980-07-22
JPS6289705A (ja) 1985-08-27 1987-04-24 ロ−ム・アンド・ハ−ス・カンパニ− イミドポリマ−
JPH02178310A (ja) 1988-12-29 1990-07-11 Mitsubishi Rayon Co Ltd メタクリルイミド含有重合体およびこれを含む樹脂組成物
JPH04270751A (ja) 1991-02-26 1992-09-28 Kanegafuchi Chem Ind Co Ltd 耐衝撃性メタクリル系樹脂組成物
JPH05119217A (ja) 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11235747A (ja) 1998-02-24 1999-08-31 Hitachi Zosen Corp シート・フィルムの成形用ロール装置
JP2000153547A (ja) 1998-11-19 2000-06-06 Toshiba Mach Co Ltd シート成形装置
JP2004168882A (ja) 2002-11-20 2004-06-17 Toray Ind Inc 共重合体およびその製造方法
JP2004307834A (ja) 2003-03-26 2004-11-04 Toray Ind Inc 熱可塑性共重合体の製造方法
WO2005054311A1 (ja) 2003-12-02 2005-06-16 Kaneka Corporation イミド樹脂、並びにその製造方法及び利用
JP2006171464A (ja) 2004-12-16 2006-06-29 Nippon Shokubai Co Ltd 光学フィルム
WO2009084541A1 (ja) 2007-12-27 2009-07-09 Asahi Kasei Chemicals Corporation アクリル系熱可塑性樹脂、及び光学材料用成形体
JP2012189978A (ja) 2011-02-23 2012-10-04 Fujifilm Corp 光学積層フィルム、及び表示装置
JP2013056424A (ja) * 2011-09-07 2013-03-28 Toray Advanced Film Co Ltd 成型用積層フィルム
JP2013086279A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
JP2013087136A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
WO2014041803A1 (ja) 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2015152691A (ja) 2014-02-12 2015-08-24 日油株式会社 インサート成形用防眩性反射防止フィルム及びこれを用いた樹脂成形品
JP2016040105A (ja) 2014-08-13 2016-03-24 日本製紙株式会社 成型用ハードコートフィルム
JP2016071307A (ja) 2014-10-02 2016-05-09 日油株式会社 インサート成形用反射防止フィルム及びそれを用いた樹脂成形品
JP2017126077A (ja) * 2017-02-24 2017-07-20 東レフィルム加工株式会社 成型用積層フィルム
WO2018117018A1 (ja) 2016-12-22 2018-06-28 フクビ化学工業株式会社 透明樹脂基板
JP2019119206A (ja) * 2017-12-27 2019-07-22 東山フイルム株式会社 インサート成形用多層フィルムおよびインサート成形物
WO2019181752A1 (ja) * 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576B2 (ja) 1971-11-05 1980-07-22
JPS6289705A (ja) 1985-08-27 1987-04-24 ロ−ム・アンド・ハ−ス・カンパニ− イミドポリマ−
JPH02178310A (ja) 1988-12-29 1990-07-11 Mitsubishi Rayon Co Ltd メタクリルイミド含有重合体およびこれを含む樹脂組成物
JPH04270751A (ja) 1991-02-26 1992-09-28 Kanegafuchi Chem Ind Co Ltd 耐衝撃性メタクリル系樹脂組成物
JPH05119217A (ja) 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11235747A (ja) 1998-02-24 1999-08-31 Hitachi Zosen Corp シート・フィルムの成形用ロール装置
JP2000153547A (ja) 1998-11-19 2000-06-06 Toshiba Mach Co Ltd シート成形装置
JP2004168882A (ja) 2002-11-20 2004-06-17 Toray Ind Inc 共重合体およびその製造方法
JP2004307834A (ja) 2003-03-26 2004-11-04 Toray Ind Inc 熱可塑性共重合体の製造方法
WO2005054311A1 (ja) 2003-12-02 2005-06-16 Kaneka Corporation イミド樹脂、並びにその製造方法及び利用
JP2006171464A (ja) 2004-12-16 2006-06-29 Nippon Shokubai Co Ltd 光学フィルム
WO2009084541A1 (ja) 2007-12-27 2009-07-09 Asahi Kasei Chemicals Corporation アクリル系熱可塑性樹脂、及び光学材料用成形体
JP2012189978A (ja) 2011-02-23 2012-10-04 Fujifilm Corp 光学積層フィルム、及び表示装置
JP2013056424A (ja) * 2011-09-07 2013-03-28 Toray Advanced Film Co Ltd 成型用積層フィルム
JP2013086279A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
JP2013087136A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
WO2014041803A1 (ja) 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2015152691A (ja) 2014-02-12 2015-08-24 日油株式会社 インサート成形用防眩性反射防止フィルム及びこれを用いた樹脂成形品
JP2016040105A (ja) 2014-08-13 2016-03-24 日本製紙株式会社 成型用ハードコートフィルム
JP2016071307A (ja) 2014-10-02 2016-05-09 日油株式会社 インサート成形用反射防止フィルム及びそれを用いた樹脂成形品
WO2018117018A1 (ja) 2016-12-22 2018-06-28 フクビ化学工業株式会社 透明樹脂基板
JP2017126077A (ja) * 2017-02-24 2017-07-20 東レフィルム加工株式会社 成型用積層フィルム
JP2019119206A (ja) * 2017-12-27 2019-07-22 東山フイルム株式会社 インサート成形用多層フィルムおよびインサート成形物
WO2019181752A1 (ja) * 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873289A (zh) * 2022-12-21 2023-03-31 合肥乐凯科技产业有限公司 一种强柔韧性的防紫外硬化膜
WO2024203401A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 積層体及びそれを含む樹脂成形体

Also Published As

Publication number Publication date
JPWO2022185815A1 (ja) 2022-09-09
EP4302996A1 (en) 2024-01-10
US20230416556A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP7142090B2 (ja) ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板
JP6395478B2 (ja) ポリ(メタ)アクリルイミド系樹脂積層体
WO2022185815A1 (ja) 積層体およびその製造方法
JP4406304B2 (ja) 多層構造重合体及びこれを含む樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品
TWI551881B (zh) Optical continuum
WO2004081090A1 (ja) 二軸配向ポリエステルフィルム及び離型フィルム
TW201634281A (zh) 硬化塗佈層積薄膜
WO2014041803A1 (ja) アクリル系樹脂フィルム
TWI564153B (zh) Optical continuum
JP5158852B2 (ja) アクリル樹脂組成物、アクリル樹脂フィルム、熱成形用艶消しアクリル樹脂フィルム、光硬化性アクリル樹脂フィルム及びこれらを積層した積層体
JPWO2016199847A1 (ja) 積層フィルム
JP2007283665A (ja) 熱成形用艶消しアクリル樹脂フィルム状物、熱成形用艶消しアクリル樹脂フィルム状物の製造方法、および、この熱成形用艶消しアクリル樹脂フィルム状物を含む積層体
WO2014083643A1 (ja) ガラス調意匠を有する物品
KR20160088302A (ko) 청색 광 차폐성 수지 조성물
US20230340218A1 (en) Laminate and use thereof
US11760855B2 (en) Acrylic resin film, laminated film, production method for laminated film, and molded article
JP7245082B2 (ja) フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム
WO2017022704A1 (ja) 成型用コーティングフィルム
WO2014083644A1 (ja) 活性エネルギー線硬化性樹脂組成物
CN116963907A (zh) 层叠体及其制造方法
WO2020203359A1 (ja) 防眩性積層体
JP2023145140A (ja) 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法
WO2024203401A1 (ja) 積層体及びそれを含む樹脂成形体
JP2023145141A (ja) 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法
JP2012187765A (ja) 傷修復型アクリル樹脂フィルムおよびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503644

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280018541.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022762873

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762873

Country of ref document: EP

Effective date: 20231005